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Abstract 
The paper deals with determination of primary bifurcation modes of spherical caps loaded 
by the external pressure. These modes can be used to generate the worst imperfection 
modes which are then the basis for the determination of the lowest critical pressure of 
slender, elastic shells. A program developed by the author and based on the finite element 
method was used in the numerical examples presented herein. The buckling mode strongly 
depends on the semi-angle of a cap and the R/t ratio. 
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1. Introduction 
Structural elements in the form of a full spherical shell or segment of a spherical shell (a 
cap) are structural elements encountered very often in the engineering practice. Shells in the 
form of spherical caps create covers of monumental, historical buildings. In such 
applications, they are usually very thick and the stress limit state is decisive in the 
designing procedure. Spherical caps also occur as closures of cylindrical or conical pressure 
vessels and it is probably the most frequent engineering case of using shallow spherical 
shells.  
It is a natural designing tendency that the shells are thinner and thinner and in such cases 
the buckling limit state seems to be the most important. 
The linear buckling problem of a full sphere subjected to the external pressure was solved 
by Zoelly [16]. The same solution was obtained independently by Leibenson in Russia in 
1917. In the sixth decade of the twenties century the first works, in which the geometrically 
nonlinear approach was adopted, appeared. Works of Weinitschke [14] and Huang [5] were 
probably the most important. In subsequent years, many other authors contributed to the 
clarification of stability phenomenon of spherical shells. The buckling behaviour of 
spherical pressurized shells is the subject of interest of many contemporary researchers as 
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well. Works of Deml & Wunderlich [3], Wunderlich & Albertin [15], Blachut & Galletly 
[1] are just examples and evidence of a continuous interest of many authors in the 
mechanical behaviour of spherical shells. The work of Grigolyuk & Lopanitsyn [4], in 
which stability problem of a spherical shell was solved by the Ritz method adopted  for 
nonlinear, Marguerre type equilibrium equations of a shell, is also worth mentioning.  
The problem is important also from the point of view of engineering practice. 
Recommendations [2] which refer to the safe design of shell structures with respect to 
buckling criteria require the knowledge of the worst imperfection modes. A configuration 
corresponding to the first bifurcation point (primary bifurcation point) is often the worst 
imperfection mode. The primary bifurcation point should be determined by employing a 
linear elastic but geometrically nonlinear analysis (GNA). 
It is worth emphasizing that the linear buckling analysis gives too high values of critical 
loads in a case of shallow shells loaded laterally. It is due to the fact that in the prebuckling 
state nonlinear deformations appear. In such cases the critical load corresponding to the 
primary bifurcation point should be determined as a result of the geometrically nonlinear 
analysis. The linear buckling analysis implemented in many commercial packages gives 
wrong results with reference to the critical load and also with reference to the buckling 
mode. 
The main objective of this paper is the presentation of the numerical procedure leading to 
localization of primary bifurcation points on the nonlinear equilibrium path and then 
determination of the deformation mode corresponding to this bifurcation point. The 
determined mode of bifurcation can be treated as the worst imperfection mode. Using it and 
adopting a proper amplitude of initial deformations one can determine the lowest critical 
pressure.  
To this end, the author’s numerical program based on the finite element method was used. 
Three different illustrative examples are presented and all of them refer to spherical caps 
clamped on their base circles and loaded by the external pressure. Linear elastic and 
geometrically nonlinear analyses of these selected spherical shells were performed and 
results of these analyses are presented in the paper. 

2. Calculation of equilibrium paths 
The geometrically nonlinear analysis requires calculation of nonlinear equlibrium paths in 
the load–displacement space. A numerical approach based on the finite element method is 
used in this research. The author’s computer program (comp. works of Marcinowski and 
Hadid [8] and Marcinowski [6]) previously exploited and tested on shells of various 
geometries was applied. The eight node, quadrilateral finite element adequate for thin and 
thick shells subjected to big displacements within the elastic range was used in this 
program. Arbitrary displacements can be taken into account, but rotations have to remain 
moderate. 
It is worth mentioning that only conservative loads are considered in the analyses and the 
whole loading process has a quasi static character. As far as material properties are 
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concerned, only a linearly elastic material is taken into account. Elastic–plastic effects are 
excluded from considerations presented in this research.  
In the detailed analyses presented below only the displacement control technique was used 
with the algorithm of automatic selection of the best displacement control parameter. 
It is obvious that in many cases besides the fundamental path, there usually also exist 
bifurcation paths and their determination is even more difficult than the calculation of the 
fundamental path in a particular case. First of all, the location of the bifurcation point must 
be established. It is the point at which the equilibrium path splits, or more strictly speaking, 
the bifurcation path takes its origin on the fundamental path.  
In the program the so called stability indicator (SI) was defined and was monitored all the 
time while tracing the equilibrium path. The stability indicator is defined as the number of 
negative parameters on the diagonal of the tangent stiffness matrix after its 
triangularisation. One can prove that if all those diagonal parameters are positive, the 
equilibrium configuration under analysis is stable. If at least one parameter is negative, the 
equilibrium configuration is unstable. The level of instability is determined by the number 
of negative diagonal parameters. It is worth mentioning that the SI always changes its value 
after passing the consecutive bifurcation point on the fundamental path or on the bifurcation 
path. In this manner, the SI indicates locations of bifurcation points. Minimising the value 
of the displacement control parameter one can determine the location of the bifurcation 
point very accurately. Knowing the location of the bifurcation point on the fundamental 
equilibrium path it is relatively easy to switch into the bifurcation path by using the well 
known load disturbance procedure.  

This idea is illustrated in 
Figure 1. Knowing the 
location of the bifurcation 
point B on the fundamental 
path the path switching 
procedure starts beneath this 
very point after adding an 
additional small disturbing 
load. As a result the path 
denoted as d is obtained. 
Then the disturbing force is 
removed in one or in several 
steps and the first 
configuration on the 
bifurcation path is 
determined. Afterwards the 

tracing of the bifurcation path is continued in the one or in the other direction. The 
deformation mode corresponding to configurations on this path is the primary bifurcation 
configuration which was looked for. 
 

f
p

d

f  - the fundamental path,
d - the path with a disturbing load,
b - the bifurcation path

B

d

b

 
Figure 1. The switching path procedure 
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3. Primary bifurcation modes of selected spherical caps 
 The procedure outlined above was adopted for three different spherical caps. The finite 
element mesh used in calculations is shown in Figure 2. It was very important to create 
such a mesh which is nearly ideally axisymmetric and in a case of quadrilateral finite 
elements it was not an easy task. 

The data for considered caps were taken from works of Marcinowski [9] (cap A), Nolte and 
Makowski [13] (cap B) and Wunderlich and Albertin [15] (cap C) and are presented below 
in Figure 3.  

Figure 3. Geometrical and material data. 

The slenderness of the cap can be measured by the geometrical parameter λ introduced by 
Weinitschke [14] and defined as follows 

Cap R [m] t [mm] R/t ϕ [rad] E [MPa] ν pB1 [MPa] pz [MPa] pB1/pz 
A 19.244 5.0 3849 0.0520 

=2.98o 
205000 0.3 12.85E-03 16.75E-03 0.767 

B 179.35 400 448 0.2094 
=11.990 

200 0.3 9.084E-4 1.204E-03 0.75 

C 1.4732 29.46 50 1.0472 
=60o 

210000 0.3 76.65 101.68 0.75 

 y

z x  X 
 Y 
 Z 

 

Figure 2. The FE mesh used in the presented calulations 
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Values of this parameter for the shells under consideration are 5.86, 7.83 and 11.13, 
respectively.  
The symbol pz denotes the critical pressure for the full sphere and its value follows from the 
Zolly-Leibenson formula: 
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3.1. Cap A 
This shell was analysed in detail in the work of Marcinowski [9] for a slightly different 
material (E =210 GPa, was adopted in that work) and using a coarse finite element mesh. 
The shell of similar slenderness was considered independently by Grigolyuk and 
Lopanitsyn [4].  
The initial segment of the nonlinear equilibrium path, the localization of the primary 
bifurcation point and the deformation mode corresponding to the bifurcation path splitting 
from the fundamental path at this point are presented in Figure 4.  
On the ordinate of the plot, the ratio p/pz is depicted, where 
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On the abscissa of the plot, the ratio wc/t is depicted, where wc is the vertical deflection of 
the central node of the shell.  
The bifurcation mode shown in Figure 4 is very similar to the primary bifurcation mode 
determined by Grigolyuk and Lopanitsyn [4] and Marcinowski [9]. 
It is worth mentioning that four other bifurcation points were detected above the primary 
bifurcation point B1 before the limit point was reached. This is a typical case of clustered 
bifurcation points. It is obvious that the most important one is the lowest (B1) with a 
properly chosen deformation amplitude. Using this deformation mode as the imperfection 
shape, one can obtain the lowest critical pressure which may be decisive in the assessment 
of the elastic buckling resistance. 

3.2. Cap B 
This shell was analysed originally by Mescall [12] and then by Nolte and Makowski [13] 
and Marcinowski [10]. The initial segment of the nonlinear equilibrium path, the 
localization of the primary bifurcation point and the deformation mode corresponding to the 
bifurcation path splitting from the fundamental path at this point are presented in Figure 5.  
On the ordinate of the plot, the ratio p/pz is depicted, where 
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It is worth mentioning that nine other bifurcation points were detected above the primary 
bifurcation point B1 before the limit point was reached. This is again a typical case of 
clustered bifurcation points. 

3.3. Cap C 
This shell was the subject of a detailed analysis performed by Wunderlich and Albertin 
[14]. The initial segment of the nonlinear equilibrium path, the localization of the primary 
bifurcation point and the deformation mode corresponding to the bifurcation path splitting 
from the fundamental path at this point are presented in Figure 6. pz used to depict the ratio 
p/pz is equal to 101,68 MPa. 

B1
0.767

R t 
E

= 19.243 m, = 0.005 m, 
= 2.98  = 205 GPa,  = 0.3ϕ νo , 

Rϕ

p

a

t

w  /tC

 
 

Figure 4. Equilibrium path and the first bifurcation mode for the cap A 
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In this very case fifteen other bifurcation points were detected above the primary 
bifurcation point B1 before the limit point (94,33 MPa) was reached. It would be a very 
laborius task to determine all bifurcation paths having their origins at these points. Some of 
them terminate on the descending part of the fundamental equilibrium path and some on 
other bifurcation paths (compare solutions presented in the work of Marcinowski [9]). Of 

course, the first bifurcation path and the corresponding mode of bifurcation are the most 
important as far as the buckling resistance is concerned. 
It is worth mentioning that the buckling mode shown in Figure 6 corresponds to the 
buckling mode obtained in the work of Wunderlich and Albertin [15]. The critical pressure 
obtained in the present work (pB1/pz=0,75) is little bit smaller than the one presented in the 
work of Wunderlich and Albertin [15] (pB1/pz=0,8).  
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Figure 5. Equilibrium path and the first bifurcation mode for the cap B 
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4. Recapitulation 
It is obvious that the buckling resistance of a shell is determined by the worst imperfection 
mode. In most common cases of structural members the configuration corresponding to the 
first bifurcation point (primary bifurcation point) is at the same time the worst imperfection 
mode at least as far as linearly elastic analysis is concerned.  
The effective procedure leading to determination of the buckling mode corresponding to the 
primary bifurcation point was presented in the paper in reference to spherical shells in a 
form of a cap clamped along the basic circle and loaded by the external pressure. Three 
different spherical shells were considered as illustrative examples. Buckling modes were 
obtained as a result of geometrically nonlinear analysis in which not only fundamental 
paths were obtained but bifurcation points laying below the limit point as well. Using the 
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Figure 6. Equilibrium path and the first bifurcation mode for the cap C 
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load perturbation technique the branching paths corresponding to the primary bifurcation 
points and accompanying deformation modes were determined as well. The complexity of 
these deformation modes depends on the semi angle ϕ and R/t ratio of the cap. Deformation 
patterns obtained in this manner can be treated as the worst imperfection modes for 
considered shells.  
The elastic critical pressure which can be measure of the buckling resistance can be 
obtained for the geometry being result of the superposition of the original geometry and the 
deformation pattern defined by the amplitude which is dependent on an fabrication quality 
parameter (cf. Recommendations [2]).  
 

References 
[1] Błachut J., Galletly G. D., Buckling Strength of Imperfect Steel Hemispheres, Thin-

Walled Structures, 1995, 23: 1-20. 
[2] Buckling of Steel Shells. European Design Recommendations 5th Edition. Eds: J. M. 

Rotter and H. Schmidt. Published by ECCS, 2008. 
[3] Deml M., Wunderlich W., 1997, Direct evaluation of the ‚worst’ imperfection shape 

in shell buckling, Comput. Methods Appl. Mech. Engrg., 149: 201-222. 
[4] Grigolyuk E. I., Lopanitsyn Ye., A., The non-axisymmetric postbuckling behaviour of 

shallow spherical domes, J. Appl. Math. Mechs., 2003;67: 809-818. 
[5] Huang Nai-Chien, Unsymmetrical buckling of thin shallow spherical shells, Journal 

of Applied Mechanics, Trans. ASME, 1964; 31: 447-457.  
[6] Marcinowski J. Large deflections of shells subjected to an external load and 

temperature changes. Int. Journal of Solids and Structures, 1997;34(6):755−768. 
[7] Marcinowski J., Bifurcation points and branching paths in the nonlinear stability 

analysis of shell structures, Journal of Theoretical and Applied Mechanics,1994, 3: 
637-651. 

[8] Marcinowski J., Hadid H. A., Nonlinear stability analysis of elastic shells, In F. del 
Pozo & A. de las Casas (eds), 30 Anniversary of IASS, Madrid 1989, Cedex-
Laboratorio Central des Estructuras Y Materiales. 

[9] Marcinowski J., On some distinctive features of load displacement paths of shallow 
spherical shells subjected to uniform pressure, Proceedings of the Fourth International 
Conference on Coupled Instabilities in Metal Structures CIMS’ 2004, Eds. M. 
Pignataro, J. Rondal, V. Gioncu, pp. 67-78. 

[10] Marcinowski J., Stability of relatively deep segments of spherical shells loaded by 
external pressure, Thin-Walled Structures, 2007, 45: 906-910.  

[11] Marcinowski, J., Stability of a spherical cap loaded by the external pressure, In; Shells 
structures. Theory and Applications. Eds. W. Pietraszkiewicz, C. Szymczak, pp. 241-
244, Taylor&Francis Group, London, 2006. 

[12] Mescall J., Numerical solutions of nonlinear equations for shells of revolution, AIAA 
Journal, 1966; 4: 2041-2043. 

2555



Proceedings of the International Association for Shell and Spatial Structures (IASS) Symposium 2009, Valencia 
Evolution and Trends in Design, Analysis and Construction of Shell and Spatial Structures 

 

[13] Nolte L. P., Makowski J., Pressure loaded shells undergoing different levels of 
nonlinearity, Mechanics Research Communications, 1985;12:339-345. 

[14] Weinitschke H., On the stability problem for shallow spherical shells, Journal of 
Mathematics and Physics, 1960;38: 209-223.  

[15] Wunderlich W., Albertin U., Buckling behaviour of imperfect spherical shells, 
International Journal of Non-Linear Mechanics, 2002, 37: 589-604. 

[16] Zoelly R., Über ein Knickungsproblem an der Kugelschale, PhD Thesis, Zürich, 
1915. 

 
 

2556




