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Abstract 
Mesh motion strategy is one of the key problems in fluid-structure interaction analysis 
(FSI). One popular technique which often used to solve this problem is known as the spring 
analogy method. In this paper a new mesh update approach based on the spring analogy 
method is presented for the effective treatment of mesh moving boundary problem,which 
can avoid the generation of squashed invalid elements and maintain mesh quality by 
considering each element shape and grid scale in the definition of the spring stiffness. 
Meanwhile, the approach is applied to several 2D and 3D boundary correction problems for 
fully unstructured meshes and evaluated by a mesh quality indicator. With this  application, 
it is demonstrated that the present approach can keep good mesh quality even under large 
motion of bodies. Finally, the computational robustness of the present approach on is 
highlighted. 
 
Keywords: spatial structure, mesh motion, unstructured mesh, mesh quality, grid scale 

1. Introduction 
Since last decades, long-span spatial structures have been worldwidely used in a variety of 
public buildings. As being characterized by lightweight and flexibility, the great vibration  
of long-span spatial structures could be excited by wind action, which may also affect the 
wind pressure distribution on structural surface. Mesh motion strategy is one of the key 
problems in FSI analysis (Lopez et al. [12]). Already several mesh motion approaches for 
the dynamic mesh have been developed and show good computational results under 
circumstances of structural oscillation with small amplitude and small structural 
deformation (Batina [2]; Venkatakrishnan and Mavriplis [18]; Crumpton and Giles [6]; 
Nielsen and Anderson [14]; Tezduyar [17]). However, these approaches are still far from 
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being mature ones for geometrically complex and greatly moving and deforming body 
problems.  
The re-meshing method (Löhner et al. [11]) which generates the mesh automatically at each 
time step on the time-dependent domain, is commonly used for moving boundaries 
problems if the mesh has some distorted and invalid elements. By the use of the re-
meshing, the quality of the obtained mesh system could be improved. However, the re-
meshing has serious problems, that is, it suffers from the loss of physical conservation law. 
In other words, it may locally reduce the computational accuracy due to drastic grid size 
variation. It also needs extra computational costs especially when solving a flow field about 
three-dimensional complex bodies (Douglass et al. [7]).  
Common approach of the unstructured dynamic meshes is to use the spring analogy 
(Bottasso et al. [5]; Farhat et al. [9]; Markou et al. [13]), which is introduced by Batina [1], 
who used the method for a forced vibration problem of an airfoil. Many researchers have 
adopted the spring analogy to solve moving boundary problems. To give a few examples, 
the spring analogy is used for free surface problems by Slikkeveer et al. [16], store 
separation problems by Hassan et al. [10], forced vibration and fluid – structure interaction 
problems by Blom and Leyland [4], and aero-elastic calculation by Farhat et al. [8] and 
Piperno [15].  
The initial spring analogy only uses the linear tension spring analogy. However, this 
approach can only prevent the nodes collision, cannot control the cell shape and often 
creates ill-conditioned cells for large movements. Then the torsional springs are designed to 
prohibit the interpenetration of neighboring triangles or tetrahedrons by the consideration of 
the internal angles of triangles or the angles of tetrahedrons’ two faces,which show good 
robustness performance and extend the applications of spring analogy to two-dimensional 
and three-dimensional problems.  
The lineal spring stiffness is a value related to grid scale, while the torsional spring stiffness  
related to element shape. Usually, different meshes in a flow field possess different grid  
scales. In order to ensure the computational precision in simulating flow field, the mesh 
near the walls and boundaries should be kept in small grid scale. 
In this paper, we present a new mesh motion approach by introducing a grid scale 
parameter to the definition of the spring stiffness. This approach is similar to the lineal 
sring formulation with angle information incorporated into spring stiffness, and the springs 
of which have different matching parameters in  2D and 3D moving boundary problems. 
Moreover, the robustness of this  approach is evaluated by several applications with greatly 
moving and deforming bodies. 

2. Numerical approaches 
2.1. Spring analogy 
Spring analogy models can be categorized into two types: vertex model and segment model 
(Piperno [15]). Vertex springs are always under tension unless the spring length is zero, and 
are mainly used for mesh smoothing because the tension tends to pull the mesh towards 
equal inter-nodal distances. On the other hand, segment springs have zero tension at some 
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equilibrium length (before deformation) and nodal displacement on the boundary creates 
spring forces that subsequently displace internal nodes. The descriptions for these two 
kinds of springs are consistent (Blom [3]). However, segment spring models are better 
suited for moving internal nodes to follow a dynamically deforming computational domain. 
Only segment spring analogy is discussed in this paper. 
The lineal spring stiffness kij for a given element edge i-j takes the following general form: 
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where ( xi, yi, zi ) and ( xj, yj, zj ) are the spatial coordinates of the two nodes connected by 
the edge i-j, and α is the coefficient. Node collision is prevented by selecting the spring 
stiffness as the inverse of the edge length, demonstrated by Blom [3] in 1D analysis. It is 
noted that the version of Eq. (1) takes the original form studied by a great deal of numerical 
applications when α = 1.    
 
 
 
 
 

 

 
 
 

(a)                                                             (b)  

Figure 1: The spring simulation principle  
       (a) The lineal spring; (b) The torsional spring 

Neither angular displacement nor area (volume) change of an element is associated with its 
edges’ stiffness, which means that element inversion are not sensed by the lineal model. To 
prevent element inversion, a torsional spring is attached to each vertex in addition to the 
lineal spring. The stiffness of the torsional spring is defined as 
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where ijk
iC is the torsional stiffness associated with the angle ijk

iθ  where the node i is as its 
vertex on the triangle Δijk. By virtue of the definition for torsional stiffness, as 

ijk
iθ approaches zero or π, the corresponding torsional stiffness increases rapidly and 

prevents element inversion. 
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A semi-torsional spring analogy is a approach which incorporates both edge and angle 
information into the spring stiffness. For 2D triangular elements, a semi-torsional stiffness 
of an edge i-j was proposed by Blom [3], 

θ
k

k
lineal
ijtorsionalsemi

ij
=−                                                     (3) 

where θ is the angle facing the edge i-j of the element.  
Another kind of semi-torsional spring analogy model in which the stiffness of an edge i-j is 
defined as the sum of its lineal stiffness and its torsional stiffness proposed by Zeng and 
Ethier [19]:  

torsional
ij

lineal
ij

torsionalsemi
ij kkk +=−                                        (4) 

In comparison with the semi-torsional model as in Eq. (3), the semi-torsional stiffness as in 
Eq. (4) has several advantages (Zeng and Ethier [19]). Here, we choose the Eq. (4) as the 
combination pattern of the spring stiffness. 
 

            

    (a)                                                             (b)  

Figure 2: Definition of the spring stiffness  
(a) 2D spring stiffness; (b) 3D spring stiffness 

 
As shown in Fig. 2, the stiffness of an edge i-j is defined as: 
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where NEij is the number of elements sharing edge i-j. In 2D mesh system, ij
mθ is the angle 

the edge i-j facing and NEij = 2; while in 3D mesh system, ij
mθ is the angle between two 

faces as shown in Fig. 2b, the value of NEij depends on the mesh generation while α and β 
are coefficients depended on dimension, where α = 2 and β = 4 in 2D problem, and α = 1 
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and β = 3 in 3D problem for a great deal of numerical applications. the parameter λ is the 
grid scale parameter, defined as 

ijl
l0=λ                                                                     (6) 

where l0 is the largest scale of the model. From the Eq. (5) and Eq. (6), we can see that the 
stiffness is greater in smaller grid scale, so the higher density meshes near the moving 
boundaries cannot move easily and the mesh quality can be preserved. For this reason, the 
mesh can move uniform under different grid scales using the present stiffness definition. 

2.2. Solution technique 

The fictitious spring force n
ijF acting on node i from i-j is: 
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where n
jδ and n

iδ are nodal displacements of both node j and i at step n, respectively: 
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The static equilibrium equation for node i at time step n is 
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where Nei is the number of nodes directly connected to node i through fictitious springs. A 
system of equations is derived through applying the equilibrium conditions to all nodes in 
the mesh system. To linearize the system, the spring stiffness is computed using nodal 
coordinates of the previous time step. With displacements on boundary nodes prescribed, 
and nodal coordinates of the previous time step known, the system is solved iteratively for 
nodal displacements at internal nodes. Nodal coordinates are updated by using the nodal 
displacements and old coordinates: 
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We implement the successive over-relaxation (SOR) algorithm to solve the linear system 
for nodal displacements at internal nodes. The system is linearized by using the spring 
constants based on the geometry of the previous time step. On the other hand, the stopping 
criterion for the SOR iteration was 
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where i ranged over all internal nodes, k denoted iteration, and δ1, δ2, δ3, are three 
components of nodal displacement. Based on a variety of preliminary tests, we set ε 
between 5 × 10−6 and 5 × 10−5, which can ensure robust convergence at an acceptable 
computational cost. 
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2.3. Mesh quality judgment 
Since the static equilibrium equations for the mesh are elliptic, the principle of Saint 
Venant holds for the deformation of the mesh. Therefore, boundary displacement does not 
spread far into the mesh. Besides, the quality of mesh near the boundary is a guarantee of 
the computational precision of the convection term when simulating the flow field. Here, 
only the quality of meshes attaching to moving boundaries is measured in numerical 
applications, and we use mesh gradient as the yardstick of the mesh quality, defined as 
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where, in 2D problem, Qe is equilateral triangle’s interior angle, Qe = π/3, and in 3D 

problem, Qe is the angle between two surfaces of regular tetrahedron, 
2
2arctan2=eQ . 

Qmax and Qmin are the maximum and minimum interior angles of one element respectively. 
The more R approaches zero, the better mesh quality becomes. 

3. Numerical applications 

3.1. 2D rolling NACA0012 airfoil 
For the validation of the present approach, the grid movement of a two-dimensional 
NACA0012 airfoil is computed. The computational grid is shown in Fig. 3. The number of 
the grid nodes and triangle cells are 3875 and 7587, respectively. This airfoil is assumed to 
be forced to rotate around the quarter chord as follows, 

nm 2
sin0

πααα +=                                                    (14) 

where α, α0, αm and n are the instantaneous angle of attack, average angle of attack, the 
oscillation amplitude, and the steps of the movement, respectively. Here, α0 and αm are set 
to be 0° and 45°, which is very great amplitude. And n is set at 100.  
Using the linear spring method, the maximum and minimum pitch angles can only achieve 
at 27°, and then invert element occurs as shown in Fig. 4a. Fig. 4b and 4c are the results of 
torsional spring method and the present approach respectively. From Fig. 4b, we can see 
that elements near the boundary distort dramatically by using the torsional spring method, 
where some elements are squashed heavily and some are elongated. In contrary, as Fig. 4c 
shown, the grid moves very smoothly as the airfoil pitches by using the present approach 
and elements near the airfoil keep in good quality even with the relatively great oscillation. 
Fig. 5 shows the statistics of the mesh gradient criteria near the moving boundary. We 
divide the mesh gradient criteria into ten intervals as follows: 0~0.1; 0.1~0.2; ……0.9~1.0. 
The abscissa is the ten intervals while the ordinate represents the percentage of elements in 
each interval versus total elements. After the movement obtained by using the torsional 
spring method, the majority of mesh gradient R are greater than 0.5, that is, elements have 
great distortion. But, the majority of mesh gradient R is in 0.4~0.6 by using present 
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approach. The mesh around the greatly curved airfoil after the movement is shown in Fig. 6, 
where  the mesh system is still fair around the region. 
 

                                         
(a)                                                   (b)  

Figure 3: Computational grid of NACA0012 airfoil 
(a) Overview; (b) Close-up view 

 

                    
           (a)                                (b)                                  (c) 

Figure 4: Close-up view of the airfoil  
(a) Lineal spring method; (b) Torsional spring method; (c) The present spring approach 
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(a)                                        (b)                                           (c) 

Figure 5: Statistics of the mesh gradient criteria 
(a) Origin mesh; (b) Using torsional spring method; (c) Using the present spring approach 
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Figure 6: Close-up view of the curved airfoil 

3.2. 3D rolling NACA0012 airfoil 
Moreover, the proposed approach is also evaluated through another example of the   
rotation of a three-dimensional wing, where the computational grid is shown in Fig. 7. The 
number of the grid nodes and tetrahedral cells are 57924 and 308850, respectively. The 
outer boundary is a sphere whose radius is fifteen times of the airfoil length. This wing is 
assumed to be forced to rotate around the half chord by Eq. (14). Here, α0, and αm are set to 
be 0° and 30°, which is fairly great amplitude. And  n is set at 100. 
The results by using the linear spring analogy are shown in Fig. 8, where some invalid 
tetrahedrons are generated near the trailing edge at attack angle of about 17° and more 
rotation cannot continue. If using the torsional analogy, the rotary angle only achieves at 
about 26°. Fortunately, by using the present approach, the mesh system can move smoothly 
without any invalid tetrahedrons and the rotary angle of αm can be achieved. 
The results of mesh gradient R using the present approach are shown in Fig. 9. We can see 
that there are no invalid tetrahedrons near the boundary domain. Fig.10a~10c show the 
moved meshes by using the present approach at the rotary angles of 30° and (-30°) as well 
as  under a great curve. 
 

                 

                                         (a)                                                           (b) 
Figure 7: Computational mesh of NACA0012 airfoil  

(a) Overview; (b) Close-up view 
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Figure 8: Computational mesh of  NACA0012 airfoil after the pitching motion  

By using linear spring method 
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(a)                                  (b)    
Figure 9: Statistics of the mesh gradient criteria  
(a) Origin mesh; (b) Using the present approach 

 

                       

(a)                                      (b)                                         (c) 
Figure 10: Moved mesh by the present approach 

 (a) At the rotary angle of 30°; (b) At the rotary angle of (−30°); (c) Under a great curve 
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4. Conclusion 
In this paper, we develop grid scale parameters to the combination of the spring stiffness, in 
order to make the mesh move smoothly without generating invalid elements and keep them 
in good quality. The present motion mesh approach is applied to several typical problems 
and evaluated by the comparison with the lineal spring method and torsional spring mesh 
method. It is shown through a series of examples that the computation for the mesh 
movement fails under some cases or inhomogeneous mesh deformation if using the 
commonly-used approaches. However, by means of the present approach, the mesh system 
can convieniently keep in high quality and successfully move without much cost in CPU 
time even under severe deformation. Besides, it should be pointed out that, through 
extensive mesh testing of the spring analogy model, we can implement the mesh updating 
algorithm for solving the 2D/3D incompressible N-S equations in the arbitrary Lagrange–
Euler (ALE) formulation. 
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