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José L. Hueso†∗, Eulalia Mart́ınez‡ and Carles Teruel†
†Instituto Universitario de Matemática Multidisciplinar
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Abstract

In this work we present a new family of iterative methods for solv-
ing nonlinear systems that are optimal in the sense of Kung and Traub’s
conjecture for the unidimensional case. We generalize this family by per-
forming a new step in the iterative method, getting a new family with
order of convergence six. We study the efficiency of these families for the
multidimensional case by introducing a new term in the computational
cost defined by Grau-Sánchez et al. A comparison with already known
methods is done by studying the dynamics of these methods in an example
system.

keywords: Nonlinear systems, iterative methods, convergence order,
optimal methods, computational cost, efficiency, dynamics.

1 Introduction

Finding iterative methods with high order of convergence in order to approxi-
mate the solution of a nonlinear system F (x) = 0 is an active field in numerical
analysis. Nowadays, the range of applications where it is required to use a high
level of numerical precision is increasing.

In the scalar case, a recent publication, [1], makes an interesting compila-
tion of multipoint iterative methods and analyzes their efficiency, accuracy and
optimality.

Focusing on higher order iterative methods for the multidimensional case,
we can mention, among others, some recently published works: [2]-[7], where,
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as we can see, different techniques can be applied in order to improve the com-
putational cost and so the effectiveness of the procedures for approximating
solutions of nonlinear systems.

In this work we generalize the technique used in [8], obtaining a new family
of iterative methods with fourth order of convergence. The procedures used in
[9, 6] for increasing the convergence order of an iterative method, that is, to
perform another Newton’s step avoiding the evaluation of the jacobian matrix
in order to get the maximum efficiency, do not work for the optimal method
introduced in [8], so we propose a new procedure to increase the order with a
reasonable efficiency.

Obviously, performing a new step in an iterative method carries more func-
tion evaluations and so one has to check if the gain in convergence order justi-
fies the increase of the computational cost. A thorough study of the cost and
efficiency of iterative methods for nonlinear systems can be found in [5, 10].
Nevertheless, we introduce a new term in the cost expression to take into ac-
count matrix-vector operations that occur in some iterative methods such as
the considered here.

The paper is organized as follows. New families of iterative methods, Jar-
ratt’s two point and three point methods, are obtained in section 2. In section
3, we analyze the computational efficiency for the new methods and in section
4 the new methods are applied in order to approximate the solutions of some
nonlinear systems. Finally, section 5 studies the dynamics of these methods for
a particular nonlinear system and section 5 is devoted to the conclusions.

2 New families of iterative methods

Our aim is to develop high order methods for nonlinear systems, motivated by
the techniques exposed in section 2.6 of chapter 3 of [1] for obtaining multipoint
iterative methods of Jarratt’s type in the unidimensional case. We try to apply
some of the ideas of [11] and [12] to the fourth order method recently published
by Sharma et al. [8]. First of all, we generalize this technique by introducing
a new term in their proposal, obtaining a new family of fourth order iterative
methods.

That is, we consider the family of methods given by:

yn = xn − θ ΓxnF (xn) (1)

H(xn, yn) = ΓxnF
′ (yn) (2)

Gs(xn, yn) = s1I + s2H(yn, xn) + s3H(xn, yn) + s4H(yn, xn)
2 (3)

zn = xn −Gs(xn, yn)ΓxnF (xn) (4)

xn+1 = zn (5)

where Γxn = F ′ (xn)
−1

, and θ, s1, s2, s3, s4 are constants that we determine
in order to get a new family of fourth order optimal methods. Notice that,
in the unidimensional case, we evaluate just three functions, F (xn), F ′ (xn)
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and F ′ (yn), so that the family is optimal in the sense of Kung and Traub’s
conjecture, [13].

By adequately using Taylor’s expansion we prove the following result about
the convergence order.

Theorem 1 Let F : Rn −→ Rn be a sufficiently Fréchet differentiable function
in a convex neighborhood of D, containing α, that is a solution of the system
F (x) = 0, whose jacobian matrix is continuous and nonsingular in D. Then,
for an initial approximation sufficiently close to α, the family of methods defined
by (1-5) has local order of convergence 4 for the following relations among the
parameters: s1 = 5−8s2

8 , s3 = s2
3 , s4 = 9−8s2

24 ; ∀s2 ∈ R and for θ = 2
3 .

The error equation obtained is as follows:

en+1 =
(64s2 + 117)c32 − 81c1c3c2 + 9c21c4

81c31
e4n +O

(
e5n

)
where en = xn − α and ck = F (k)(α)

k! , k ≥ 1.

Proof: By applying the Taylor’s expansion of F (xn) about α and taking into
account that F (α) = 0, we have

F (xn) = c1en + c2e
2
n + c3e

3
n + c4e

4
n +O(e5n) (6)

where ck = F (k)(α)
k! ∈ Lk(Rn,Rn), k ≥ 1. By differentiating, one has

F ′(xn) = c1 + 2c2en + 3c3e
2
n + 4c4e

3
n + 5c5e

4
n +O(e5n) (7)

and then the following Taylor’s development:

ΓxnF (xn) = en − c2
c1

e2n +
2
(
c22 − c1c3

)
c21

e3n +
−4c32 + 7c1c2c3 − 3c21c4

c31
e4n +O(e5n)

By substituting in the first step (1), we have:

yn − α = (1− θ) en +
c2 θ

c1
e2n +

2 θ
(
c1c3 − c22

)
c21

e3n +
θ
(
4c32 − 7c1c2c3 + 3c21c4

)
c31

e4n +O(e5n)

And, then

F ′(yn) = c1 − 2 (c2(θ − 1)) en +

(
3c3(θ − 1)2 +

2c22θ

c1

)
e2n − 2

c21

(
2c21c4(θ − 1)3

(8)

+ 2c32θ + c1c2c3θ(3θ − 5)
)
e3n +

1

c31

(
6c21c4c2θ

(
2θ2 − 4θ + 3

)
+ 8c42θ

+ c1c3c
2
2θ(15θ − 26) + c21(θ − 1)

(
5c1c5(θ − 1)3 − 12c23θ

) )
e4n +O(e5n)
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and by substituting now in (2) we get:

H(xn, yn) = Γxn
F ′(yn) = 1− 2c2θ

c1
en +

3θ
(
c1c3(θ − 2) + 2c22

)
c21

e2n (9)

−
4
(
θ
(
c21c4

(
θ2 − 3θ + 3

)
+ c1c3c2(3θ − 7) + 4c32

))
c31

e3n

+
1

c41
θ
(
2c21c4c2

(
10θ2 − 24θ + 25

)
+ c21

(
5c1c5

(
θ3 − 4θ2 + 6θ − 4

)
+ c23(30− 21θ)

)
+ c1c3c

2
2(39θ − 100) + 40c42

)
e4n +O(e5n)

and

H(yn, xn) = ΓynF
′(xn) = 1 +

2θc2
c1

en +
θ
(
(4θ − 6)c22 − 3(θ − 2)c1c3

)
c21

e2n

(10)

+
4θ

(
2
(
θ2 − 3θ + 2

)
c32 +

(
−3θ2 + 9θ − 7

)
c1c3c2 +

(
θ2 − 3θ + 3

)
c21c4

)
c31

e3n

+
1

c41
θ
(
4
(
4θ3 − 18θ2 + 25θ − 10

)
c42 +

(
−36θ3 + 156θ2 − 223θ + 100

)
c1c3c

2
2

+ 2
(
8θ3 − 34θ2 + 48θ − 25

)
c21c4c2 + c21

( (
9θ3 − 36θ2 + 57θ − 30

)
c23

− 5
(
θ3 − 4θ2 + 6θ − 4

)
c1c5

))
e4n +O(e5n)

These expressions (9) and (10) allow us going to (3) obtain:

Gs(xn, yn) = s1I + s2H(xn, yn) + s3H(yn, xn) + s4H(xn, yn)
2

= (s1 + s2 + s3 + s4) +
2(s2 − s3 + 2s4) θ c2

c1
en +

2θ

c21

(
(3(s3 + 2s4(θ − 1))

+ s2(2θ − 3))c22 − 3(s2 − s3 + 2s4)(θ − 2)c1c3
)
e2n +

4θ

c31

(
2
(
− 2s3 + s2(θ

2

− 3θ + 2) + s4
(
4θ2 − 9θ + 4

) )
c32 −

(
s3(3θ − 7) + s2

(
3θ2 − 9θ + 7

)
+ s4

(
9θ2 − 24θ + 14

) )
c1c3c2 + (s2 − s3 + 2s4)

(
θ2 − 3θ + 3

)
c21c4

)
e3n

+
1

c41
θ
(
4
(
10s3 + s2

(
4θ3 − 18θ2 + 25θ − 10

)
+ s4(20θ

3 − 72θ2 + 75θ

− 20)
)
c42 +

(
s3(39θ − 100) + s2

(
−36θ3 + 156θ2 − 223θ + 100

)
+ 2s4

(
−72θ3 + 270θ2 − 315θ + 100

) )
c1c3c

2
2 + 2

(
s3

(
10θ2 − 24θ + 25

)
+ s2

(
8θ3 − 34θ2 + 48θ − 25

)
+ 2s4

(
12θ3 − 46θ2 + 60θ − 25

) )
c21c4c2

+ c21
(
3
(
s3(10− 7θ) + s2

(
3θ3 − 12θ2 + 19θ − 10

)
+ s4(9θ

3 − 36θ2 + 50θ+

− 20)
)
c23 − 5(s2 − s3 + 2s4)

(
θ3 − 4θ2 + 6θ − 4

)
c1c5

))
e4n +O(e5n)
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By substituting in (4) and (5), we can obtain the error equation:

en+1 = (−s1 − s2 − s3 − s4 + 1) en +
(s1 + s2 + s3 + s4 − 2s2θ + 2s3θ − 4s4θ)c2

c1
e2n

+
1

c21

( (
−3s3θ

2 + 6s4θ
2 + 6s3θ − 12s4θ + 2s1 + 2s3 + 2s4 + s2

(
3θ2 − 6θ + 2

))
c1c3

− 2
(
2s2θ

2 + 6s4θ
2 − 4s2θ + 4s3θ − 8s4θ + s1 + s2 + s3 + s4

)
c22

)
e3n

+
1

c31

((
− 32s4θ

3 + 84s4θ
2 + 26s3θ − 52s4θ + 4s1 + 4s3 + 4s4 + s2

(
− 8θ3 + 28θ2

− 26θ + 4
))
c32 −

(
− 36s4θ

3 − 15s3θ
2 + 102s4θ

2 + 38s3θ − 76s4θ + 7s1 + 7s3

+ 7s4 + s2
(
−12θ3 + 39θ2 − 38θ + 7

) )
c1c3c2 +

(
4s3θ

3 − 8s4θ
3 − 12s3θ

2 + 24s4θ
2

+ 12s3θ − 24s4θ + 3s1 + 3s3 + 3s4 + s2
(
−4θ3 + 12θ2 − 12θ + 3

) )
c21c4

)
e4n +O(e5n)

Finally, to obtain a fourth order iterative method, we will find a solution of the
system given by conditions C1, C2, C3 and C4. Furthermore, to get a higher
order of convergence we should also solve the system given C5,C6 and C7.

C1 : (1 − s1 − s2 − s3 − s4) = 0 (11)

C2 : (s1 + s2 + s3 + s4 − 2s2θ + 2s3θ − 4s4θ) = 0

C3 : (s1 + s2 + s3 + s4 − 4s2θ + 4s3θ − 8s4θ + 2s2θ
2
+ 6s4θ

2
) = 0

C4 : (2s1 + 2s3 + 2s4 + 6s3θ − 12s4θ − 3s3θ
2
+ 6s4θ

2
+ s2(2 − 6θ + 3θ

2
)) = 0

C5 : (4s1 + 4s3 + 4s4 + 26s3θ − 52s4θ + 84s4θ
2 − 32s4θ

3
+ s2(4 − 26θ + 28θ

2 − 8θ
3
)) = 0

C6 : (7s1 + 7s3 + 7s4 + 38s3θ − 76s4θ − 15s3θ
2
+ 102s4θ

2 − 36s4θ
3
+ s2(7 − 38θ + 39θ

2 − 12θ
3
)) = 0

C7 : (3s1 + 3s3 + 3s4 + 12s3θ − 24s4θ − 12s3θ
2
+ 24s4θ

2
+ 4s3θ

3 − 8s4θ
3
+ s2(3 − 12θ + 12θ

2 − 4θ
3
)) = 0

Unfortunately, the seven condition system has no solution. However, the con-
ditions C1, C2, C3 and C4 provide a parametric solution:

θ =
2

3
; s1 =

5− 8s2
8

; s3 =
s2
3
; s4 =

9− 8s2
24

, ∀s2 ∈ R (12)

Thus, we have obtained a family of fourth order optimal methods, whose error
expression is:

en+1 =
(64s2 + 117)c32 − 81c1c3c2 + 9c21c4

81c31
e4n +O(e5n) (13)

�
We are now interested in improving the convergence order of this family of

methods, and so, we substitute the last (trivial) step of the fourth order iteration
(5) by a new step similar to (4)

xn+1 = zn −Gt(xn, yn)ΓynF (zn) (14)

where

Gt(xn, yn) = t1I + t2H(xn, yn) + t3H(yn, xn) + t4H(xn, yn)
2 (15)
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For each value of s2, we find relations among the constants t1, t2, t3 and t4
providing a family of sixth order methods according to the following:

Theorem 2 Considering the same conditions as in Theorem 1, the biparamet-
ric family of three-step methods (14)-(15) has local order of convergence 6 for
this relation among the constants: t2 = − 3+8t1

8 , t3 = 15−8t1
24 , t4 = 9+4t1

12 ;
∀(s2, t1) ∈ R2. The vectorial error difference equation can be written as:

en+1 =
−(64s2 + 117)c32 + 81c1c3c2 − 9c21c4

81c41
c3e

6
n +O

(
e7n

)
where ck = F (k)(α)

k! , k ≥ 1

Proof: Rewriting the error expression obtained in the preceding Theorem, we
have

zn − α =

(
(64s2 + 117)c32 − 81c1c3c2 + 9c21c4

)
81c31

e4n +
2

243c41

(
− 2(352s2 + 387)c42

+ 144(4s2 + 9)c1c3c
2
2 − 270c21c4c2 + 9c21

(
4c1c5 − 27c23

) )
e5n +

2

243c51

(
7
(
448s2

+ 297
)
c52 − (5056s2 + 5625)c1c3c

3
2 + (832s2 + 1953)c21c4c

2
2 − 9c21c2

(
45c1c5

− (128s2 + 315)c23
)
+ 9c31 (7c1c6 − 99c3c4)

)
e6n +O(e7n)

Reasoning as in the previous theorem, we obtain expansions for the terms of (14)
and (15) and, finally, an expression for the error depending on the parameters

en+1 = xn+1 − zn = −
(
(64s2 + 117)c32 − 81c1c3c2 + 9c21c4

)
(t1 + t2 + t3 + t4 − 1)

81c31
e4n

− 2

243c41

(
c42(−(64s2(12t1 + 10t2 + 14t3 + 8t4 − 11) + 9(99t1 + 73t2 + 125t3 + 47t4

− 86))) + 9c1c3c
2
2(64s2(t1 + t2 + t3 + t4 − 1) + 9(17t1 + 15t2 + 19t3 + 13t4 − 16))

− 9c21c4c2(31t1 + 29t2 + 33t3 + 27t4 − 30) + 9c21
(
4c1c5 − 27c23

)
(t1 + t2 + t3 + t4

− 1)
)
e5n +

1

729c51

(
− 2c52(64s2(165t1 + 107t2 + 231t3 + 57t4 − 147) + 9(813t1

+ 287t2 + 1443t3 − 135t4 − 693)) + 3c1c3c
3
2(64s2(171t1 + 139t2 + 203t3 + 107t4

− 158) + 9(1431t1 + 859t2 + 2051t3 + 335t4 − 1250))− 6c21c4c
2
2(832s2(t1 + t2 + t3

+ t4 − 1) + 3(707t1 + 573t2 + 849t3 + 447t4 − 651)) + 9c21c2
(
2c1c5(143t1 + 127t2

+ 3(53t3 + 37t4 − 45))− 3c23(256s2(t1 + t2 + t3 + t4 − 1) + 9(75t1 + 59t2 + 91t3

+ 43t4 − 70))
)
− 27c31(14c1c6(t1 + t2 + t3 + t4 − 1)− c3c4(199t1 + 191t2 + 3(69t3

+ 61t4 − 66)))
)
e6n +O(e7n)
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Imposing the following conditions:

C8 : t1 + t2 + t3 + t4 − 1 = 0,

C9 : 64s2(12t1 + 10t2 + 14t3 + 8t4 − 11) + 9(99t1 + 73t2 + 125t3 + 47t4 − 86) = 0

C10 : 64s2(t1 + t2 + t3 + t4 − 1) + 9(17t1 + 15t2 + 19t3 + 13t4 − 16) = 0

C11 : 31t1 + 29t2 + 33t3 + 27t4 − 30 = 0

C12 : 64s2(165t1 + 107t2 + 231t3 + 57t4 − 147) + 9(813t1 + 287t2 + 1443t3 − 135t4 − 693) = 0

C13 : 64s2(171t1 + 139t2 + 203t3 + 107t4 − 158) + 9(1431t1 + 859t2 + 2051t3 + 335t4 − 1250) = 0

C14 : 832s2(t1 + t2 + t3 + t4 − 1) + 3(707t1 + 573t2 + 849t3 + 447t4 − 651) = 0

C15 : 143t1 + 127t2 + 3(53t3 + 37t4 − 45) = 0

C16 : 53t3 + 37t4 − 45 = 0

C17 : 256s2(t1 + t2 + t3 + t4 − 1) + 9(75t1 + 59t2 + 91t3 + 43t4 − 70) = 0

C18 : 199t1 + 191t2 + 3(69t3 + 61t4 − 66) = 0

one finds the following solutions:

t2 =
1

8
(−8t1 − 3), t3 =

1

24
(15− 8t1), t4 =

1

12
(4t1 + 9), ∀t1 ∈ R

For these values of the parameters, the error equation is given by

en+1 =
c3

(
−(64s2 + 117)c32 + 81c1c3c2 − 9c21c4

)
e6n

81c41
+O(e7n)

which proves that the method is of sixth order of convergence. We can see
that the error expression depends on the parameter s2 of the first steps of the
iteration. �

3 Computational efficiency

In order to compare the different methods we have to study their efficiency. We
use the efficiency index introduced in [5, 10], given by E = ρ1/C , where ρ is
the order of convergence and C is the computational cost per iteration. For a
system of n nonlinear equations with n unknowns, C is obtained by:

C (µ0, µ1, n) = µ0a0n+ µ1a1n
2 + P (n)

where a0 and a1 represent the number of evaluations of F (x) and F ′ (x) respec-
tively, P (n) is the number of products per iteration and µ0 and µ1 are the ratios
between products and evaluations required to express the value of C (µ0, µ1, n)
in terms of products.

The best methods of the family defined by (1-5) from the point of view of
computational efficiency are obtained for s2 = 9

8 and s2 = 0, because in the first
case the corresponding term of s4, that involves more operations, is annihilated
and in the second one two terms are annihilated. The first one is the method
proposed in [8], which we denote by M14. The second one is a new method,
denoted by M24.

We point out that for each particular method of the fourth order family,
performing the new step (14-15), we obtain a different family of sixth order
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methods. For the comparisons, starting from M14 and M24 we choose for the
new step value t1 = −9

4 in both cases, and so, we obtain two new methods de-
noted by M16 and M26 respectively. Table 1 shows the values of the parameters
of the four methods considered in the numerical experiments.

Method s1 s2 s3 s4 t1 t2 t3 t4
M14 −1/2 9/8 3/8 0 - - - -
M24 5/8 0 0 3/8 - - - -
M16 −1/2 9/8 3/8 0 −9/4 15/8 11/8 0
M26 5/8 0 0 3/8 −9/4 15/8 11/8 0

Table 1: Parameters that define the selected methods.

We will express the computational cost per iteration with the same notation
as in [5], where p0 denotes the number of scalar products per iteration, p1 the
number of complete resolutions of the linear system (LU decomposition and
resolution of two triangular systems) and p2 the number of resolutions of two
linear systems when LU decomposition is computed in another step in the same
iteration.

Nevertheless, we need to introduce a new factor p3 that is the number matrix
by vector products per iteration. This adds a new term in the expression of the
total number of products:

P (n) =
n

6
(2p1n

2 + (3p1(k+1)+ 6p2))n+6p0 + p1(3k− 5) + 6p2(k− 1) + 6p3n)

where it is supposed that a quotient is equivalent to k products.
Table 2 shows the expression of the computational cost of the analyzed

methods and compare it with Newton’s method, that we denote by M2.

Method a0 a1 p0 p1 p2 p3 C(µ0, µ1, n)
M2 1 1 0 1 0 0 1/6n(−5 + 6µ0 + 3n+ 6µ1n+ 2n2 + 3k(1 + n))
M14 1 2 4 2 1 1 1/3n(4 + 3µ0 + 9n+ 6µ1n+ 2n2 + 3k(2 + n))
M24 1 2 3 2 1 1 1/3n(1 + 3µ0 + 9n+ 6µ1n+ 2n2 + 3k(2 + n))
M16 2 2 7 2 3 2 1/3n(7 + 6µ0 + 18n+ 6µ1n+ 2n2 + 3k(4 + n))
M26 2 2 6 2 4 2 1/3n(1 + 6µ0 + 21n+ 6µ1n+ 2n2 + 3k(5 + n))

Table 2: Computational cost for the different methods.

Assuming standard values for the parameters µ0 and µ1, one obtains the
efficiencies of tables 3 and 4.
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M2 M14 M24 M16 M26

n = 2 1.05846 1.03818 1.0404 1.03116 1.03011
n = 4 1.01292 1.00933 1.00959 1.00833 1.00789
n = 6 1.00491 1.00377 1.00383 1.00356 1.00336
n = 9 1.00177 1.00143 1.00145 1.00143 1.00135
n = 12 1.00083 1.0007 1.0007 1.00072 1.00069
n = 15 1.00045 1.00039 1.00039 1.00042 1.0004
n = 18 1.00028 1.00024 1.00024 1.00026 1.00025

Table 3: Efficiency indexes for different values of n for µ0 = 1.7 and µ1 = 0.7.

M2 M14 M24 M16 M26

n = 2 1.02123 1.02377 1.02462 1.01808 1.01772
n = 4 1.0071 1.00703 1.00717 1.00591 1.00569
n = 6 1.00329 1.00309 1.00313 1.00279 1.00266
n = 8 1.00179 1.00164 1.00166 1.00156 1.00148
n = 12 1.00069 1.00063 1.00064 1.00064 1.00061
n = 16 1.00034 1.00031 1.00031 1.00033 1.00031
n = 20 1.00019 1.00017 1.00017 1.00019 1.00018

Table 4: Efficiency indexes for different values of n for a µ0 = 11.5 and µ1 = 1.

4 Numerical Examples

In this section, we applied methods presented above in order to solve to the
following integral equation:

y(t) =
t

e
+

∫ 1

0

2tse−y(s)2ds

By discretizing this equation we obtain the following nonlinear system:

yi =
ti
e
+ 2ti

n∑
j=1

pjtje
−y2

j (16)

where ti ∈ [0, 1], yi = y(ti), pi ∈ R for i = 1, 2, . . . , n.
We now apply to the nonlinear system (16) Newton’s method, and the most

efficient of our methods with two different starting points: x0a = (0.5, 0.5, . . . , 0.5)
and x0b = (0.5,−0.5, 0.5,−0.5, . . . ). We discretize the integral by Simpson’s for-
mula with 30 subintervals. The computations have been performed in variable
precision arithmetics with 1000 digits mantissa. Table 5 shows the increments
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of the iterates, the computational order of convergence ACOC, see [14], and the
number of iterations to converge with tolerance 10−125.

M2 M14 M24 M16 M26

∥xk+1 − xk∥ 2.1225e-214 3.4406e-272 3.8187e-272 4.3999e-206 4.2176e-206
x0a ACOC 2.0000 4.0000 4.0000 6.0000 6.0000

iter 8 5 5 4 4
∥xk+1 − xk∥ 5.1892e-222 1.5384e-162 6.6729e-180 4.8624e-152 8.1328e-163

x0b ACOC 2.0000 4.0000 4.0000 5.9999 6.0000
iter 9 5 5 4 4

Table 5: Numerical results with two different starting points.

There are no relevant differences between the two methods of the same order
of convergence for the first starting point, neither in the number of iterations
nor in the increment. However, method M24 behaves slightly better than M14
for the second starting point and so do their sixth order extensions.

5 Dynamics of the methods

In this section we study the dynamics of the iterative methods M14, M24, M16
and M26 when applied to the solution of a 2× 2 nonlinear system and compare
them with the dynamics of Newton’s method. We show that the methods are
generally convergent and depict their attraction basins.

Let us first recall some dynamical concepts. Consider a Frechet differentiable
function G : Rn −→ Rn. For x ∈ Rn, we define the orbit of x as the set
x,G(x), G2(x), . . . , Gp(x), . . .. A point xf is a fixed point of G if G(xf ) = xf .
The basin of attraction of a fixed point xf is the set of points whose orbit tends
to this fixed point

A(xf ) = {x ∈ Rn : Gp(x) −→ xf for p −→ ∞}

The dynamics of Newton’s method and higher order iterative methods has been
widely studied [15, 16, 17, 18]. In these references the method is applied to sim-
ple polynomial equations in the complex domain. Our purpose here is to show
the aspect of the basins of attraction of the above mentioned methods applied
to a system of nonlinear equations in R2, because we are mainly interested in
the behavior of the methods for solving systems of nonlinear equations in the
real n-dimensional space.

Consider the following quadratic system representing the intersection of two
hyperbolas

(x− 3)2 − 16y2 = 1

x2 − y2 = 1

}
In this system the axes of one hyperbola are parallel to the asymptotes of

the other. This system presents four simple real roots. One solution is near
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Figure 1: Attraction basins and iteration count for Newton’s method

the barycenter of the other three. When there are less or multiple solutions,
the convergence order is lower, as expected, and even the convergence fails in
certain regions of the plane.

For the comparisons, we have run the methods iterating with tolerance 10−6

performing a maximum of 100 iterations. The starting points form a uniform
grid of 512×512 in a rectangle of the real plane. The attraction basins have
been colored according to the corresponding fixed point.

Figure 1 shows the attraction basins and the number of iterations for New-
ton’s method. Figures 2, and 3 show the attraction basins of methods M14,
M24, M16, and M26, respectively.

Observe that the complexity of the basins increases with the order, but the
convergence regions cover almost all the plane. Methods M24 and M26 have
slightly more complex basins than their counterparts M14 and M16. The four
roots are superattracting for all the analyzed methods. In a further study we
will consider the existence of periodic orbits and the convergence in case of
double or missing roots.

6 Conclusions

As it can be observed in tables 3 and 4, Newton’s method, M2, maintains higher
efficiency index than the other methods. Our method M24 always gets better
indexes than M14 due to the fewer number of operations. However, M26 does
not reach the efficiency of M16. Although the fourth order methods are good
for systems with a reduced number of equations, as more complex a systems
is, more advantages we get using the methods of order six. So, the fourth
order methods are as good as the sixth order ones for systems between nine
to twelve equations. From this point on, these last methods exceed lower order
methods. In particular M16 goes closer than the others to the efficiency index of
Newton’s method. The dynamical experiment shows that the global convergence
properties are not worsened by the increase of the order of the method.
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Figure 2: Attraction basins for methods M14 (left) and M24 (right)

Figure 3: Attraction basins for method M16 (left) and M26 (right)
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