
Departamento de Sistemas Informáticos y Computación

Towards a Universal Test of

Social Intelligence

Javier Insa Cabrera

Supervisor: José Hernández Orallo

A thesis presented for the degree of Doctor of Philosophy

at the Universitat Politècnica de València

Valencia, Spain

May 2016

Abstract

Under the view of artificial intelligence, an intelligent agent is an autonomous entity which in-
teracts in an environment through observations and actions, trying to achieve one or more goals
with the aid of several signals called rewards. The creation of intelligent agents is proliferating
during the last decades, and the evaluation of their intelligence is a fundamental issue for their
understanding, construction and improvement.

Social intelligence is recently obtaining special attention in the creation of intelligent agents
due to the current view of human intelligence as highly social. Social intelligence in natural
and artificial systems is usually measured by the evaluation of associated traits or tasks that
are deemed to represent some facets of social behaviour. The amalgamation of these traits
or tasks is then used to configure an operative notion of social intelligence. However, this
operative notion does not truly represent what social intelligence is and a definition following
this principle will not be precise. Instead, in this thesis we investigate the evaluation of social
intelligence in a more formal and general way, by actually considering the evaluee’s interaction
with other agents.

In this thesis we analyse the implications of evaluating social intelligence using a test that
evaluates general intelligence. For this purpose, we include other agents into an initially single-
agent environment to figure out the issues that appear when evaluating an agent in the context
of other agents. From this analysis we obtain useful information for the evaluation of social
intelligence.

From the lessons learned, we identify the components that should be considered in order
to measure social intelligence, and we provide a formal and parametrised definition of social
intelligence. This definition calculates an agent’s social intelligence as its expected performance
in a set of environments with a set of other agents arranged in teams and participating in line-
ups, with rewards being re-understood appropriately. This is conceived as a tool to define social
intelligence testbeds where we can generate several degrees of competitive and cooperative
behaviours. We test this definition by experimentally analysing the influence of teams and
agent line-ups for several multi-agent systems with variants of Q-learning agents.

However, not all testbeds are appropriate for the evaluation of social intelligence. To facili-
tate the analysis of a social intelligence testbed, we provide some formal property models about
social intelligence in order to characterise the testbed and thus assess its suitability. Finally, we
use the presented properties to characterise some social games and multi-agent environments,
we make a comparison between them and discuss their strengths and weaknesses in order to
evaluate social intelligence.

ii

Resumen

Bajo la visión de la inteligencia artificial, un agente inteligente es una entidad autónoma la
cual interactúa en un entorno a través de observaciones y acciones, tratando de lograr uno o
más objetivos con la ayuda de varias señales llamadas recompensas. La creación de agentes
inteligentes está proliferando durante las últimas décadas, y la evaluación de su inteligencia es
un asunto fundamental para su entendimiento, construcción y mejora.

Recientemente la inteligencia social está obteniendo especial atención en la creación de
agentes inteligentes debido a la visión actual de la inteligencia humana como altamente social.
Normalmente la inteligencia social en sistemas naturales y artificiales se mide mediante la
evaluación de rasgos asociados o tareas que se consideran que representan algunas facetas
del comportamiento social. La agrupación de estos rasgos o tareas se utiliza entonces para
configurar una noción operacional de inteligencia social. Sin embargo, esta noción operacional
no representa fielmente a la inteligencia social y no seŕıa posible una definición siguiendo este
principio. En su lugar, en esta tesis investigamos la evaluación de la inteligencia social de un
modo más formal y general, considerando la interacción del agente a evaluar con otros agentes.

En esta tesis analizamos las implicaciones de evaluar la inteligencia social utilizando un test
que evalúe la inteligencia general. Con este objetivo incluimos otros agentes en un entorno
inicialmente diseñado para un único agente con el fin de averiguar qué cuestiones aparecen
cuando evaluamos a un agente en un contexto con otros agentes. A partir de este análisis
obtenemos información útil para la evaluación de la inteligencia social.

A partir de las lecciones aprendidas identificamos los componentes que debeŕıan consider-
arse al medir la inteligencia social y proporcionamos una definición formal y parametrizada
de esta inteligencia social. Esta definición calcula la inteligencia social de un agente como su
rendimiento esperado en un conjunto de entornos y con un conjunto de otros agentes organiza-
dos en equipos y distribuidos en alineaciones, reinterpretando apropiadamente las recompensas.
Esto se concibe como una herramienta para definir bancos de prueba de inteligencia social donde
podamos generar varios grados de comportamientos competitivos y cooperativos. Probamos
esta definición analizando experimentalmente la influencia de los equipos y las alineaciones de
agentes en varios sistemas multiagente con variantes de agentes Q-learning.

Sin embargo, no todos los bancos de prueba son apropiados para la evaluación de la in-
teligencia social. Para facilitar el análisis de un banco de pruebas de inteligencia social, propor-
cionamos algunos modelos de propiedades formales sobre la inteligencia social con el objetivo de
caracterizar el banco de pruebas y aśı valorar su idoneidad. Finalmente, usamos las propiedades
presentadas para caracterizar algunos juegos sociales y entornos multiagente, hacemos una com-
paración entre ellos y discutimos sus puntos fuertes y débiles para ser usados en la evaluación
de la inteligencia social.

iii

Resum

Davall la visió de la intel·ligència artificial, un agent intel·ligent és una entitat autònoma la
qual interactua en un entorn a través d’observacions i accions, tractant d’aconseguir un o
més objectius amb l’ajuda de diverses senyals anomenades recompenses. La creació d’agents
intel·ligents està proliferant durant les últimes dècades, i l’avaluació de la seua intel·ligència és
un assumpte fonamental per al seu enteniment, construcció i millora.

Recentment la intel·ligència social està obtenint especial atenció en la creació d’agents in-
tel·ligents a causa de la visió actual de la intel·ligència humana com altament social. Normal-
ment la intel·ligència social en sistemes naturals i artificials es mesura per mitjà de l’avaluació
de trets associats o tasques que es consideren que representen algunes facetes del comporta-
ment social. L’agrupació d’aquests trets o tasques s’utilitza llavors per a configurar una noció
operacional d’intel·ligència social. No obstant això, aquesta noció operacional no representa
fidelment a la intel·ligència social i no seria possible una definició seguint aquest principi. En
el seu lloc, en aquesta tesi investiguem l’avaluació de la intel·ligència social d’una manera més
formal i general, considerant la interacció de l’agent a avaluar amb altres agents.

En aquesta tesi analitzem les implicacions d’avaluar la intel·ligència social utilitzant un test
que avalue la intel·ligència general. Amb aquest objectiu incloem altres agents en un entorn
inicialment dissenyat per a un únic agent amb la finalitat d’esbrinar quines qüestions apareixen
quan avaluem un agent en un context amb altres agents. A partir d’aquesta anàlisi obtenim
informació útil per a l’avaluació de la intel·ligència social.

A partir de les lliçons apreses identifiquem els components que haurien de considerar-se al
mesurar la intel·ligència social i proporcionem una definició formal i parametrizada d’aquesta
intel·ligència social. Aquesta definició calcula la intel·ligència social d’un agent com el seu rendi-
ment esperat en un conjunt d’entorns i amb un conjunt d’altres agents organitzats en equips
i distribüıts en alineacions, reinterpretant apropiadament les recompenses. Açò es concep com
una ferramenta per a definir bancs de prova d’intel·ligència social on podem generar diversos
graus de comportaments competitius i cooperatius. Provem aquesta definició analitzant exper-
imentalment la influència dels equips i les alineacions d’agents en diversos sistemes multiagent
amb variants d’agents Q-learning.

No obstant això, no tots els bancs de prova són apropiats per a l’avaluació de la intel·ligència
social. Per a facilitar l’anàlisi d’un banc de proves d’intel·ligència social, proporcionem alguns
models de propietats formals sobre la intel·ligència social amb l’objectiu de caracteritzar el
banc de proves i aix́ı valorar la seua idonëıtat. Finalment, usem les propietats presentades per
a caracteritzar alguns jocs socials i entorns multiagent, fem una comparació entre ells i discutim
els seus punts forts i dèbils per a ser usats en l’avaluació de la intel·ligència social.

iv

Acknowledgements

I still remember my first days in research, I was happy to have the opportunity to achieve one
of my greatest aspirations; to achieve a PhD. At the very beginning of your doctoral thesis you
feel excited about the new challenges that arise along the journey, until you realise where you
really are. The development of a thesis is not at all easy. During its development there are
thousands of situations that make you feel lost and overwhelmed due to the huge amount of
new and baffling information that they pile on you. Once you have decided on the direction
of your thesis, there comes the insecurity of not knowing whether you are focusing it properly.
All PhD. students have the sensation that “there is no light at the end of the tunnel”. I never
imagined that reaching such a dream would be so complicated. Fortunately, there are always
family, colleagues and friends whose support and patience help you to alleviate such a burden.

I would like to thank my parents, Juan and Amparo, for always believing in me, for the
invaluable advice they have given me and for their sustained effort in making me the man I’m
today; to my sister Natalia for putting up with me for all these years and always keeping us
together; to my brother David for having accompanied me during all stages of my life, in both
good times and bad times; and to the rest of my family, for their interest in my thesis and their
understanding, especially when my thesis did not allow me to attend some of the family get
togethers.

To my friends and other special people in my life for being there for me during all this time.
Their support and words of encouragement gave me strength to go ahead in difficult moments.
Without them I would have never been able to finish this doctoral thesis.

To my university colleagues and professors who have accompanied me on this journey, with
whom I have, so far, spent the most stressful, endless and essentially gratifying years of my
life, and especially to those who have managed to make it more bearable: Marco, Francisco,
Fernando, Sonia, Julia, Salvador, Laura, Javier, César and Josep, among others. Also to David
L. Dowe and Nader Chmait for inviting and welcoming me in Monash (their university) and
succeeding in making my stay as professionally productive as personally enriching.

Finally, I want to thank my supervisor José for all his help and time spent with me, as well
as for the patience to show me my mistakes and for being an example of hard work, constancy
and wisdom.

To all, thanks for making this thesis possible.

v

Agradecimientos

Aún recuerdo mis primeros d́ıas en esto de la investigación, me sent́ıa feliz por tener la opor-
tunidad de realizar una de mis mayores aspiraciones; convertirme en doctor. Al empezar la
tesis doctoral te sientes ilusionado, emocionado ante los nuevos retos que se abren a tu paso,
hasta que te das cuenta de dónde te has metido. El desarrollo de una tesis no es nada fácil.
Durante su desarrollo existen miles de situaciones que te hacen sentir perdido y abrumado por
la ingente cantidad de nueva y desconcertante información que se te echa encima. Una vez
decidido en qué dirección realizar la tesis, viene la inseguridad de no saber si se está enfocando
adecuadamente. Además, a todo doctorando le llega el momento en el que “no ve la luz al
final del túnel”. Nunca imaginé que alcanzar este sueño fuera tan complicado. Por suerte,
siempre hay familiares, compañeros y amigos que con su apoyo y paciencia consiguen aliviar
tanta carga.

Me gustaŕıa dar las gracias a mis padres, Juan y Amparo, por siempre confiar en mı́, haberme
sabido dar los mejores consejos y esforzarse tanto por hacerme ser el hombre que soy hoy; a
mi hermana Natalia, por haberme aguantado durante todos estos años y habernos mantenido
siempre unidos; a mi hermano David, por haberme acompañado durante todas las etapas de
mi vida, tanto en los buenos momentos como en los malos; y al resto de mis familiares, por su
interés en mi tesis y por su comprensión en algunas reuniones familiares a las que la tesis no
me permitió asistir.

A mis amigos y personas especiales en mi vida, por haberme acompañado durante todo
este tiempo. Sus apoyos y palabras de ánimo me han dado fuerzas para seguir adelante en los
momentos dif́ıciles. Sin ellos nunca hubiera podido terminar esta tesis doctoral.

A mis compañeros y profesores de universidad que me han acompañado en este trayecto,
con los cuales he pasado, hasta el momento, los años más estresantes, interminables y sobre
todo gratificantes de mi vida, y especialmente a aquellos que han conseguido hacerlo más
llevadero: Marco, Francisco, Fernando, Sonia, Julia, Salvador, Laura, Javier, César y Josep,
entre tantos otros. También a David L. Dowe y Nader Chmait por invitarme y acogerme en
Monash (su universidad) y conseguir que mi estancia fuera tan productiva en lo profesional
como enriquecedora en lo personal.

Por último, quiero dar las gracias a mi director José, por toda la ayuda y el tiempo que
me ha dedicado, aśı como por la paciencia que ha tenido para mostrarme mis errores y ser un
ejemplo de trabajo, constancia y sabiduŕıa.

A todos, gracias por haber hecho posible esta tesis.

vi

Contents

1 Introduction 1
1.1 Objectives . 2
1.2 Structure . 3

2 Background 6
2.1 Multi-Agent Environment . 6

2.1.1 Matching Pennies . 7
2.1.2 Prisoner’s Dilemma . 8
2.1.3 Predator-Prey (Pursuit Game) . 8
2.1.4 Pac-Man . 9
2.1.5 RoboCup Soccer . 11

2.2 Reinforcement Learning . 12
2.2.1 Q-learning . 12
2.2.2 SARSA . 13
2.2.3 QV-learning . 14

2.3 Kolmogorov Complexity . 14
2.4 Probability Distribution . 15

2.4.1 Uniform Distribution . 15
2.4.2 Geometric Distribution . 16
2.4.3 Universal Distribution . 16

2.5 Monte Carlo Approximation . 16

3 State of the Art 18
3.1 Evaluation of Intelligence . 18

3.1.1 Psychometrics . 18
3.1.2 Animals . 20
3.1.3 Machines . 21
3.1.4 Formal Evaluation . 22

3.2 Works Focussed on the Interaction Between Agents 22

4 Extending a General Intelligence Test to Evaluate Social Intelligence 25
4.1 Universal Intelligence . 25
4.2 Universal Anytime Intelligence Test . 26

4.2.1 Lambda Environment Class . 28
4.2.2 A Prototype of a General Intelligence Test 29

4.3 Evaluation of Social Intelligence Using a General Intelligence Test 30
4.3.1 Extending a General Intelligence Test to Consider Several Agents 31

vii

Contents viii

4.3.2 Evaluating Agents Isolatedly . 32
4.3.3 Evaluating Agents in a Competitive Scenario 32
4.3.4 Evaluating Agents in a Cooperative Scenario 34
4.3.5 Scenario Measuring Both Competition and Cooperation 35
4.3.6 Discussion . 36

5 Defining Social Intelligence Universally 39
5.1 Teams . 41
5.2 Multi-Agent Environment Using Teams . 42
5.3 Agents’ Setup . 43
5.4 A Formal Definition of Social Intelligence . 44
5.5 Social Intelligence Test . 47

6 Experimental Analysis for Several Types of Environments and Agents 49
6.1 Experiment Configuration . 49
6.2 Prisoner’s Dilemma (3-Players Version) . 52
6.3 Lambda Environment . 54
6.4 Predator-Prey (Pursuit Game) . 57
6.5 Aggregation of Results: Towards Social Intelligence Evaluation 60
6.6 Discussion . 62

7 Properties About Social Intelligence Testbeds 64
7.1 Boundedness . 66
7.2 Interactivity . 67

7.2.1 Action Dependency . 68
7.3 Non-Neutralism . 69

7.3.1 Reward Dependency . 69
7.3.2 Slot Result Dependency . 70

7.4 Anticipation . 71
7.4.1 Competitive Anticipation . 72
7.4.2 Cooperative Anticipation . 73

7.5 Secernment . 73
7.5.1 Fine and Coarse Discrimination . 74
7.5.2 Strict Total and Partial Grading . 75

7.6 Validity . 77
7.7 Reliability . 78
7.8 Efficiency . 79
7.9 Team Symmetry . 80
7.10 Summary of Properties . 81

8 Characterising Several Multi-Agent and Social Scenarios 85
8.1 Graphical Analysis for the Properties . 85
8.2 Matching Pennies . 89
8.3 Prisoner’s Dilemma . 92
8.4 Predator-Prey (Pursuit Game) . 95
8.5 Pac-Man . 98
8.6 RoboCup Soccer . 100
8.7 Discussion . 103

Contents ix

9 Conclusions and Future Work 111

Bibliography 114

Appendices 124

A Matching Pennies Properties 125
A.1 Action Dependency . 126
A.2 Reward Dependency . 131
A.3 Fine Discrimination . 135
A.4 Strict Total Grading . 140
A.5 Partial Grading . 147
A.6 Slot Result Dependency . 154
A.7 Competitive Anticipation . 155

B Prisoner’s Dilemma Properties 159
B.1 Action Dependency . 159
B.2 Reward Dependency . 163
B.3 Fine Discrimination . 166
B.4 Strict Total Grading . 169
B.5 Partial Grading . 174
B.6 Slot Result Dependency . 179
B.7 Competitive Anticipation . 181

C Predator-Prey Properties 184
C.1 Action Dependency . 184
C.2 Reward Dependency . 192
C.3 Fine Discrimination . 201
C.4 Strict Total Grading . 208
C.5 Partial Grading . 230
C.6 Slot Result Dependency . 251
C.7 Competitive Anticipation . 254
C.8 Cooperative Anticipation . 260

Chapter 1

Introduction

Evaluation tools are crucial in any discipline as a way to assess its progress and creations.
The discipline of artificial intelligence (AI) has been concerned with the creation of algorithms
that obtain good performance in some specific tasks. Recently, there is increasing interest and
progress in AI systems that behave well in a more general range of situations. The evaluation
procedures, benchmarks and computations are hence very different, depending on whether
we focus on specialised benchmarks [72, 38, 24, 116] or on more general problems [96, 31,
94]. Despite this trend, AI is still lacking general, well-grounded and universally accepted
intelligence measurement tools.

In fact, AI is a paradigmatic case of how useful these tools would be and how impeding this
lack is. There are, of course, some tools, benchmarks and contests, aimed at the measurement
of humanoid intelligence. However, the evolution and state of the art of AI is now more focussed
towards social abilities, and here the measuring tools are still rather incipient.

In the past two decades, the notion of agent and the area of multi-agent systems have shifted
AI to problems and solutions where ‘social’ intelligence is more relevant [26]. This shift towards
a more social-oriented AI is related to the current view of human intelligence as highly social,
actually one of the most distinctive features of human intelligence over other kinds of animal
intelligence.

Dating back from the late nineties, we can find several works [19, 39, 69, 44] addressing
the problem of measuring agent intelligence in a principled and general way. Using notions
taken from (algorithmic) information theory, MML and two-part compression, Kolmogorov
complexity and Solomonoff priors (see [71] for proper definitions of all these notions), some of
these works present definitions and tests to evaluate agent intelligence.

A universal test, as introduced in [44], is a test which aims at evaluating any kind of
subject including, e.g. humans and reinforcement learning agents. Some preliminary results of
a universal test evaluating general intelligence [57, 62] show that the setting is able to compare
and evaluate different kinds of agents, but it fails at placing them on the same scale, since
humans usually get similar scores to those of other relatively simple agents. One possible
explanation for these results is that it is virtually impossible to find other agents in the test,
so social intelligence is not measured. The question, therefore, is what and how agents should

1

1.1. Objectives 2

be introduced in the test. This is related to the Turing test and the question of evaluating
intelligence with games (also suggested in [44]), where the difficulty of a task is not only given
by the complexity of the game, but from the opponent’s intelligence.

Social intelligence has been defined in many ways in psychology and cognitive science, but it
can be just worded, with the terminology of agents, as the ability to perform well in the context
of other agents. The difference between social intelligence and general intelligence is that in
the latter an agent could perform well if it were able to solve non-social tasks, such as escaping
from a maze, solving a puzzle or predicting the next number in a series. On the contrary, social
intelligence implies that tasks involve competing and/or collaborating with other agents. One
problem of this definition is that we have to be more precise about what the ‘other agents’
are. If we evaluate humans, and the other agents are worms or sea sponges, then our intuitive
notion of social intelligence does not work well, because working well in the context of other
agents with low intelligence is not necessarily related to social intelligence as we know it. In
psychometrics and human cognition, social intelligence clearly sets these other agents as other
humans. But what about artificial agents? If we use a society of dull agents, the useful abilities
might be very different to those which are required if we introduce an agent into, e.g. a society
of humans.

The typical approach to observe and evaluate the social behaviour of an agent or group
of agents is to test its performance interacting with several agents (homogeneous or heteroge-
neous) populating a selection of multi-agent environments [138]. However, this does not ensure
that the agents we want to evaluate fully use their social abilities. For example, some agents
could deliberately ignore the rest of agents in order to follow their own strategy. Also, the
environments could be more focused on solving a certain problem rather than measuring the
social abilities used by the agent we are evaluating. The use of specific environments (such
as predator-prey, cooperation games, etc. [27, 83, 28]) ensures that some predefined social
behaviours appear, but their generality is questionable and agent performance may depend
on the specialisation to the game (good predators, good preys, etc.) instead of general social
capabilities. In the end, this means that we must be careful about what elements (and more
specifically, multi-agent environments and populating agents) are included in the test for the
evaluation.

Nowadays, there is no clear procedure about how to define multi-agent settings where (1)
social behaviour is encouraged and (2) social behaviour is not limited to the specific goals of the
environment. Also, in the past, it has been difficult to easily regulate (3) how much important
cooperation and competition are relatively and how they relate to rewards. Finally, (4) the
relevance of the (social) intelligence of the other agents in the environments and their influence
in the behaviour and performance of the agent to evaluate cannot be properly analysed with
the current approaches.

1.1 Objectives

The goal of this thesis is to provide a firm scientific basis for the evaluation of social intelli-
gence. Some significant questions that appear here are then whether it is possible to develop
measurement tools that:

• Properly evaluate social intelligence universally (not only for artificial agents, but for
any kind of interactive system), letting the evaluee interact with other (social) agents in

1.2. Structure 3

a (social) environment and being able to evaluate both its competitive and cooperative
social intelligence.

• Distinguish between general intelligence and social intelligence, fostering the evaluation
in those scenarios where the interaction with other agents has an impact in performance.

• Permit us to assess the appropriateness of multi-agent environments and agents populat-
ing them, by providing some social properties they should meet in order to be used in a
test to evaluate social intelligence.

1.2 Structure

The thesis is structured as follows:

Chapter 2) Background

This chapter explains some basic concepts which are necessary to understand some of the ideas
presented in the following chapters. The presented concepts include:

• The definition of multi-agent environments, where several agents interact simultaneously
in the same environment, also presenting some current games and scenarios that we use
during the thesis as multi-agent environments.

• The area of reinforcement learning, where agents have to learn from experience how to
behave in an environment using positive and/or negative signals called reinforcements,
and presenting one of its well-known algorithms called Q-learning and some of its variants
called SARSA and QV-learning.

• Kolmogorov complexity, which quantifies the size of the shortest program to describe
strings.

• Probability distributions, such as the uniform and geometric distribution and the more
complex universal distribution, which makes use of Kolmogorov complexity.

• A Monte Carlo method to approximate the value of the root of a given tree that needs
high computational resources.

Chapter 3) State of the Art

For a long time, psychology has defined and evaluated intelligence and social intelligence for
humans. More recently, the discipline of computer science has also been concerned with intel-
ligence in order to make some progress on creating artificial intelligence. Although continuous
progress has been achieved, nowadays we still do not have proper tools or tests to evaluate
intelligence in AI and even fewer achievements have been done in evaluating social intelligence.
This chapter makes a survey about the evaluation of social intelligence in psychometrics, the
evaluation for animals, machines and a new paradigm focussed on the formal evaluation of
intelligence using notions from algorithmic information theory.

1.2. Structure 4

Chapter 4) Extending a General Intelligence Test to Evaluate Social Intelligence

During a recent line of research to formally define intelligence, in 2007, a promising definition of
intelligence called Universal Intelligence was presented, which basically defines the intelligence of
an agent as its ability to perform well in the possibly infinite variety of environments. Following
ideas from this definition and algorithmic information theory, a universal and formal, but at the
same time practical, intelligence test was attempted. In this chapter, we extend this general
intelligence test to consider several agents. This extension is performed in order to obtain
some insights about the evaluation of social intelligence, paying special attention to how the
inclusion of other agents influences the evaluee and its performance in an environment class
created following the principles of a universal intelligence test.

This chapter is based on works from [69, 44]. Section 4.3 is based on the material in [56],
which is an original work.

Chapter 5) Defining Social Intelligence Universally

Hitherto, the evaluation of social intelligence has typically been done in an informal and non-
interacting way. This chapter presents a framework for a formal and parametric definition of
social intelligence, which measures the performance of the evaluee interacting with other agents,
which it has to compete and cooperate with. This parametrisation allows us to indicate any
kind of social situation or testbed (in the form of agent and multi-agent environment sets and
weights) of interest, allowing us, not only to define the social intelligence of an agent, but even
to calculate it for a particular social situation. The definition also arranges the group of agents
into teams, which fosters competitive and cooperative behaviours for the agents and facilitates
the measurement for agents with low degrees of social intelligence. From this social intelligence
definition, we define how to obtain a test to feasibly evaluate an agent.

This chapter is based on the material in [59], which is an original work.

Chapter 6) Experimental Analysis for Several Types of Environments and Agents

In order to validate the previously presented definition of social intelligence and find possible
weaknesses on it, in this chapter we perform some experiments with Q-learning agents, modi-
fied to (somehow) behave more socially, interacting in several multi-agent environments. The
experiments analyse the impact of the selection of environments and agents (and how this rela-
tiveness is understood), whether we can effectively gauge between competitive and cooperative
behaviours for the agents by using teams, and finally, whether the definition actually focusses
on social intelligence.

This chapter is based on the material in [59], which is an original work.

Chapter 7) Properties About Social Intelligence Testbeds

Since not all testbeds are suitable to evaluate social intelligence properly, we need to figure
out a way to analyse any testbed, by means of its components, in order to determine its
suitability to be used in a social intelligence test. In this chapter, we propose a formalisation of
some property models in order to characterise any testbed. Several properties we present are
parametrised and by using them we provide quantitative values for the testbeds. We define some
properties that we consider are associated with social intelligence, such as social dependency and
anticipation, and we analyse some properties that a good test of social intelligence should have,

1.2. Structure 5

such as discrimination, grading, boundedness, symmetry, validity, reliability and efficiency.
These properties help to: identify the components of social intelligence and its varieties; make
clear that the mere appearance of other agents does not make a context social; and pave the
way for the analysis of whether many multi-agent environments, games and tests found in the
literature are useful for measuring social intelligence.

This chapter is based on the material in [61, 60], which are original works.

Chapter 8) Characterising Several Multi-Agent and Social Scenarios

Due to de current absence of environments specially designed to evaluate social intelligence,
in this chapter, as a proof of concept, we use the previously defined properties to characterise
some common multi-agent environments. With their characterisations we want to analyse their
suitability as a test to evaluate social intelligence, compare them and analyse their differences.
Besides, we want to analyse their strengths and weaknesses to figure out some of the facets
that a good multi-agent environment should have to be used in a social intelligence test.

This chapter is partially based on the material in [60], which is an original work.

Chapter 9) Conclusions and Future Work

The final chapter discusses some conclusions and future work that arise from this thesis.

Appendices A, B and C

Appendices present how we calculate the property values for the matching pennies, prisoner’s
dilemma and predator-prey environments analysed in chapter 8.

Chapter 2

Background

This chapter gives an introduction to the needed concepts and terminology and serves as a
background for the following chapters.

2.1 Multi-Agent Environment

An environment can be seen as a place (or world) where an agent can interact through ob-
servations, actions and rewards, as seen in figure 2.1 (a). This general view of the interaction
between an agent and an environment can be extended to various agents by letting them interact
simultaneously with a multi-agent environment, as seen in figure 2.1 (b).

Environment

Observation

Action

Reward

Agent

(a) Interaction between a single agent and an
environment.

Agent 1 Interaction

Agent 2

Agent n

Multi-Agent
Environment

(b) Simultaneous interaction of multiple agents
with a multi-agent environment.

Figure 2.1: Interaction between the agent(s) and the (multi-agent) environment.

A multi-agent environment is an interactive scenario with several agents. A multi-agent
environment accepting n agents defines n parameters (one for each agent) that we denote
as agent slots. We use i = 1, . . . , n to denote the agent slots. We call a time step to each
simultaneous interaction of the n agents, where the order of events is always: observations,
actions and rewards. Oi is the observation set that the agent in agent slot i can perceive from
the environment, Ai is the action set provided by the environment that the agent in agent
slot i can perform and Ri ⊆ Q represents the possible rewards obtained by the agent in agent

6

2.1. Multi-Agent Environment 7

slot i from the environment. For each time step k, the agent in agent slot i must perceive an
observation oi,k ∈ Oi, perform an action ai,k ∈ Ai and obtain a reward ri,k ∈ Ri. We use ok, ak
and rk respectively to denote the joint observation, joint action and joint reward profiles of the
n agents at time step k (i.e. ok = (o1,k, . . . , on,k) ∈ O1×· · ·×On represents the joint observation
profile at time step k, and similarly for actions and rewards). For example, a sequence of two
time steps in a multi-agent environment is then a string such as o1a1r1o2a2r2 and the string
o1,1a1,1r1,1o1,2a1,2r1,2 denotes the sequence of observations, actions and rewards for the agent in
agent slot 1.

At time step k, the term π(ai,k|oi,1ai,1ri,1 . . . oi,k) is a probability measure, denoting the
probability of the agent in agent slot i to perform action ai,k after the sequence of events
oi,1ai,1ri,1 . . . oi,k. The observation provided by the multi-agent environment at time step k to
the agent in agent slot i also has a probability measure ω(oi,k|o1a1r1 . . . ok−1ak−1rk−1). As with
the observation, the reward provided at time step k by the environment to the agent in agent
slot i depends on observations, actions and rewards at previous time steps ρ(ri,k|o1a1r1 . . . okak).
Note that the rewards obtained by each agent depend on the joint observations, actions and
rewards of all the agents interacting in the environment, and not only on their own. A random
agent (usually denoted as πr) in agent slot i is an agent that chooses its actions from Ai using
a uniform distribution.

In order to evaluate an ability (such as social intelligence), we basically need a system where
agents can interact showing their behaviour and, at the same time, where the system can judge
such behaviour (in the form of environment rewards) to give an assessment. Following this
principle, a system that is not providing any kind of assessment to agents’ behaviour cannot
be used for evaluation purposes. This is the reason we use an interactive model, where agents
are forced to interact with the environment and the environment provides them rewards based
on their behaviour. For simplicity, we will assume a discrete time in this interaction.

Below, we present some of the multi-agent environments that we use in the following chap-
ters.

2.1.1 Matching Pennies

Matching pennies [136] can be considered the simplest game in game theory featuring competi-
tion. It is a binary version of rock-paper-scissors. This game consists of two players (or agents)
each flipping a coin. If both coins match player 1 wins, otherwise player 2 wins.

This game is played as a repeated game (i.e. it is the iterated matching pennies), which
means that the game is played on a single time step and repeated for several time steps. Each
player can see the actions performed by the other player, so they can use past time steps in
order to predict the other player’s strategy. For the agent in agent slot i, this environment
only allows two actions Ai = {Head, Tail} and only provides two rewards Ri = {−1, 1}, which
correspond to lose and win respectively. For the agent in agent slot i, the environment provides
an observation set Oi = Aj ∪ {λ} (where j represents the agent slot of the other agent) and
the observation function ω returns to each agent the action performed by the other agent in
the previous time step or λ if it is the first time step. Table 2.1 shows the reward function ρ as
a reward matrix, which has the actions of both agents as input and their rewards as output.

2.1. Multi-Agent Environment 8

Head Tail
Head (1,−1) (−1, 1)
Tail (−1, 1) (1,−1)

Table 2.1: Matching pennies’ payoff matrix. Rows and columns represent the actions performed
by the agents in agent slots 1 and 2 respectively. Cells content (X, Y) corresponds to the rewards
obtained by the agents in agent slots 1 and 2 respectively when the actions leading to that cell
are performed.

2.1.2 Prisoner’s Dilemma

The prisoner’s dilemma [93] is a simple and well-known game involving competition and coop-
eration. In this game, two prisoners (or agents) are suspects of a crime, and are asked whether
the other prisoner is guilty of that crime. If both remain silent and do not betray the other,
both spend a short time in prison. If one remains silent but not the other, the one who be-
trays reduces its time in prison to the minimum sentence, and the other prisoner obtains the
maximum sentence. Finally, when both prisoners betray the other, both spend a long time in
prison.

As happens with the matching pennies, this game is played as a repeated game (i.e. it is the
iterated prisoner’s dilemma), which means that the game is played on a single time step and
repeated for several time steps. Each player can see the actions performed by the other player,
so they can use past time steps in order to predict the other player’s strategy. For the agent
in agent slot i, this environment only allows two actions Ai = {Silent, Betray} and provides
four rewards Ri = {−4,−3,−2,−1}, which correspond to the time spent in prison (where −i
represents i units of time in prison). Instead, we can normalise Ri to have rewards between −1
and 1 as Ri = {−1,−0.33, 0.33, 1}. For the agent in agent slot i, the environment provides an
observation set Oi = Aj ∪ {λ} (where j represents the agent slot of the other agent) and the
observation function ω returns to each agent the action performed by the other agent in the
previous time step or λ if it is the first time step. Table 2.2 shows the reward function ρ as a
reward matrix, which has the actions of both agents as input and their rewards as output.

Silent Betray
Silent (0.33, 0.33) (−1, 1)
Betray (1,−1) (−0.33,−0.33)

Table 2.2: Prisoner’s dilemma’s payoff matrix. Rows and columns represent the actions per-
formed by the agents in agent slots 1 and 2 respectively. Cells content (X, Y) corresponds to
the rewards obtained by the agents in agent slots 1 and 2 respectively when the actions leading
to that cell are performed.

The prisoner’s dilemma differs from matching pennies by including some cooperation, since
both agents can cooperate by remaining silent to spend a relatively little time in prison.

2.1.3 Predator-Prey (Pursuit Game)

One typical multi-agent environment for cooperation that uses a 2D discrete space is a pur-
suit game called predator-prey [3], where the evaluee acts as a predator and has to cooper-

2.1. Multi-Agent Environment 9

ate/coordinate with other two predators in order to chase a prey. If they succeed chasing the
prey, the goal is achieved. Figure 2.2 shows an example of a predator-prey scenario.

♦ ⃝

⃝ ⃝

Figure 2.2: A predator-prey scenario with a 4x4 grid space. ⃝ denotes a predator, ♦ denotes
the prey and a black cell denotes a block. At each time step, agents can stay or move one cell
horizontally or vertically, but blocks and boundaries cannot be crossed. The prey is chased
once it shares a cell with a predator.

Many variants have been proposed about this scenario, which provides a high diversity of
environments. Some examples include spaces with and without obstacles or boundaries, and
many variants about the parameters have been considered: the distance of the grid that the
agents can perceive, the number of predators or preys, the speed of the agents, etc. Even the
definition of how the prey is chased has been modified, e.g. the prey is surrounded by the
predators, or one predator chases the prey by occupying the same position. Some of these
variants add a variety of social complexity, such as different levels of cooperation/competition
by having to interact with different numbers of predators or preys, or having faster preys. These
and other pursuit games have been widely studied and used in multi-agent systems (e.g. [27,
111, 17, 18, 82]).

Since we cannot use all the variants, we just select one of them. In what follows, we use
the predator-prey environment shown in figure 2.2, which also shows its initial position. The
pursuit game is typically performed in episodes. We make an episode to end after six time
steps are performed. Even if the prey is chased, the interaction continue until the episode is
finished.

For the agent in agent slot i, this environment allows four actions Ai = {Up, Right, Down,
Left}, which leads the agent to the cell facing this direction (when an agent performs an action
leading to a block or boundary, the agent does not move). For the agent in agent slot i, the
environment provides three rewards Ri = {0,−6, 6}, which for the prey correspond to ‘the
episode is not finished’, ‘failed to survive’ and ‘achieved to survive’ respectively, and for the
predators correspond to ‘the episode is not finished’, ‘failed the chase’ and ‘achieved the chase’
respectively. At time step 1, the prey is located in the upper left corner and the three predators
are located in the upper right, bottom left and bottom right corners. For the agent in agent slot
i, the environment provides an observation set Oi which corresponds to the set of spaces with
any possible location of the agents, and the observation function ω returns for every agent a
description of the environment as, for example, figure 2.2. Table 2.3 shows the reward function
ρ as a payoff matrix which has the current time step and the chasing situation as input and
the agents’ rewards as output. Note that after the six time steps, the average reward for each
agent is −1 or 1 depending on whether the agent’s team wins the chase.

2.1.4 Pac-Man

Pac-Man is a simple and well known game, but still complex enough to the state of the art in
AI, which uses a 2D maze. The AI community has used this game as a testbed in order to

2.1. Multi-Agent Environment 10

Chased Not chased
Time step 1 to 5 (0, 0) (0, 0)

Time step 6 (−6, 6) (6,−6)

Table 2.3: Predator-prey’s payoff matrix. Rows represent the time step, while columns represent
whether the prey has been chased or not. Cells content (X, Y) corresponds to the obtained
rewards for the prey and each predator respectively.

evaluate their algorithms, e.g. [29, 118]. This game resembles a pursuit game, but this time
the player represents the prey role (most of the time), so it must avoid being caught by the
enemies (represented by ghosts). In order to win, Pac-Man must also collect all the pills that
are spread through the space, which also provide some points. On the other hand, ghosts are
appearing one by one over time, and they win if at least one of them is able to chase Pac-Man.
If Pac-Man is able to reach certain locations in the space and eat specific pills, it becomes
invulnerable for a short period of time, and receives additional points by chasing the ghosts.
Figure 2.3 shows a Pac-Man game screenshot.

Figure 2.3: A Pac-Man game screenshot. Pac-Man is represented by a yellow circle with
a mouth, which must avoid enemies represented by ghosts. Pac-Man must collect all the
small pills and big pills change chasing agents’ roles for a limited period of time. Taken from
http: // www. freepik. com/ with permission.

For the agent in agent slot i, this environment allows four actions Ai = {Up, Right, Down,
Left}, which leads the agent to this direction (when an agent performs an action leading to a
wall, the agent does not move). For the agent in agent slot i, the environment provides three
rewards Ri = {0,−1, 1}, which for Pac-Man correspond to ‘do not eat any pill’, ‘be captured
by a ghost’ and ‘eat a pill’ or ‘capture a ghost’ respectively, and for the ghosts correspond to
‘do not capture Pac-Man’, ‘be captured by Pac-Man’ and ‘capture Pac-Man’ respectively. At
time step 1, ghosts are located in the middle of the space and Pac-Man is located just below
the ghosts. For the agent in agent slot i, the environment provides an observation set Oi which

http://www.freepik.com/

2.1. Multi-Agent Environment 11

corresponds to the set of spaces with any possible location of the agents and the pills remaining,
and the observation function ω returns for every agent a description of the environment as, for
example, figure 2.3. The reward function ρ simply gives to Pac-Man rewards (or points) as long
as it captures the pills that are spread in the space or, while it becomes invulnerable, additional
points when chasing a ghost. Meanwhile, ghosts obtain rewards only when they chase Pac-Man
and get negative rewards when get caught while Pac-Man is invulnerable.

2.1.5 RoboCup Soccer

As an example of a 3D space game we find the RoboCup Soccer competition [67]. Here, two
artificial groups of agents (or teams) have to compete against each other in order to win a
soccer match. The agents in each team must cooperate to make the ball reach the adversary’s
goal, while cooperate to avoid the adversary to score a goal. The game follows the rules of a
typical soccer match. Figure 2.4 shows a picture of a RoboCup Soccer match, but actually we
use a virtual version, which is just a simplification of the physical version.

Figure 2.4: A standard RoboCup Soccer platform with robots playing a match. Used with
permission from http: // www. robocup2013. org/ , photograph by Bart van Overbeeke.

For the agent in agent slot i, this environment allows multiple actions Ai = {Up, Right,
Down, Left, Kick, StandUp, . . . }. For the agent in agent slot i, the environment provides three
rewards Ri = {0,−1, 1}, which correspond to ‘the match is not finished’ or ‘tie the match’, ‘lose
the match’ and ‘win the match’ respectively. At time step 1, agents in one team are located
on the left-hand side of the space and the other team is located on the right-hand side of the
space. For the agent in agent slot i, the environment provides an observation set Oi which
corresponds to the set of spaces with any possible location of the agents and the ball, and the
observation function ω returns for every agent a description of the environment. The reward
function ρ simply gives to each agent a reward of 0 while the match is being played, and when
the match is finished, a reward of −1 when its team scored less goals than the other team, a
reward of 0 when there is a tie and a reward of 1 when its team scored more goals than the
other team. In order to ensure that, once the match is finished all agents obtain an average
reward of −1, 0 or 1, Ri could be accordingly normalised.

http://www.robocup2013.org/

2.2. Reinforcement Learning 12

2.2 Reinforcement Learning

The goal of reinforcement learning (RL) [110] is to make the agent learn how to solve a problem
based on reinforcement signals (in the form of positive and negative rewards). Depending on
the rewards the agent perceives, it reconfigures its behaviour modifying its future actions in
order to obtain the maximum number of positive rewards. As a result, the agent ‘learns’ what
to do to correctly solve these problems. In brief, reinforcement learning wants an agent to act
in an environment in such a way that maximises the rewards it obtains.

The reinforcement signal may be immediate or delayed; an immediate signal represents a
critic about each action just after the agent performs it. Therefore, the information provided
by the reinforcement signal is local to each action. On the contrary, a delayed signal is not
given after each action, but after completing a sequence of actions in order to solve a problem.
In this case, this signal represents an overall assessment of the agent’s behaviour. There also
exist hybrid situations where positive rewards are not immediately provided after performing
an action in the good direction, but there is neither a task nor problem to solve where rewards
are not provided until the end.

There are many algorithms to address the reinforcement learning problem. Some of them
make assumptions about the environments they interact with, as, for example, that they are
‘Markov Decision Process’ (MDP), while other algorithms try to address the problem by con-
sidering more general classes of environments.

2.2.1 Q-learning

One of the reference algorithms in reinforcement learning is the technique known as Q-learning
[123, 124]. This reinforcement learning technique tries to learn an action-value function, indi-
cating the expected utility of performing an action in a state. One of the strengths of Q-learning
is its ability to compare the expected utility of its available actions without having a complex
model of the environment, being as well one of its weaknesses, since usually it is not able to
generalise enough to correctly “understand” the environment.

This technique consists of a set of states S (being each state a representation of the envi-
ronment in a particular situation), a set of actions Ai (having the agent in agent slot i) and a
quality value q ∈ Q for each pair of state-action. On each time step k, the agent models the
environment as a state sk, usually calculated as a simple function with the observation provided
by the environment as a parameter (i.e. sk = f(oi,k)). We use Q(s, a) to denote the quality
value of performing action a at state s and Q to denote the whole Q(s, a) values.

The goal of Q-learning is to find (one of) the best Q that solves the problem, obtaining at
the end the highest possible rewards. To do this, after each time step k the agent corrects its
Q as follows:

Q(sk, ak)← (1− αk(sk, ak))×Q(sk, ak)︸ ︷︷ ︸
old value

+αk(sk, ak)×


learned value︷ ︸︸ ︷

rk + γ max
a

Q(sk+1, a)︸ ︷︷ ︸
estimate of optimal future value

 (2.1)

where αk(sk, ak) represents the ‘learning rate’ (it may be the same for all time steps and/or
state-action pairs) and γ represents the ‘discount factor’. rk is the responsible to update Q,

2.2. Reinforcement Learning 13

which is calculated as a function with the reward provided by the environment as a parameter
(i.e. rk = g(ri,k)). A simple option is to consider rk = ri,k.

Initially, Q must be filled with an ‘initial value’ Q0. More formally:

∀s, a : Q(s, a)← Q0 (2.2)

Here we have many variants to select the Q0 value. A Q0 value equal to 0 makes the agent to
quickly exploit positive rewards, while a very high Q0 value makes the agent to quickly explore
the environment. Since the algorithm goal is to find the best Q values, the closer (on average)
Q0 is to this (unknown) Q values, the better.

Finally, the agent just selects which action to perform as the action with the highest quality
value in that state. More formally, at each time step k, the agent selects the next action to
perform ai,k given the current state sk with:

ai,k = argmax
a∈Ai

Q(sk, a) (2.3)

But this policy may lead the agent only to a local maximum. In order to let the agent
explore more states, we provide the algorithm with a ‘random rate’ β to sometimes select a
random action. More formally:

ai,k =

{
rand(Ai) if 0 ≤ x < β

argmaxa∈Ai
Q(sk, a) otherwise

(2.4)

where x is a random number between 0 (inclusive) and 1 (exclusive) and rand(Ai) selects an
action from Ai using a uniform distribution.

Learning rate α

The learning rate (with 0 < α ≤ 1) determines to which extent the new information overrides
the old information. A factor of 0 makes the agent not learn anything (this is the reason α is
never equal to 0), while a factor of 1 makes the agent only consider the newest information.

Discount factor γ

The discount factor (with 0 ≤ γ < 1) determines the importance of future rewards. A factor
of 0 makes the agent only consider current rewards. Meanwhile, a factor near to 1 makes the
agent consider more long-term rewards. If the discount factor is set to be equal or greater than
1, the values of Q may diverge, which is usually avoided.

2.2.2 SARSA

A Q-learning variant known as SARSA [100] does not assume that the estimate of optimal
future value (in equation 2.1) will actually be the one obtained in the next time step. Due to
the exploration policy introduced by the random rate β, the next action may be different, and
such randomly selected action may give the agent an unexpected and worse reward. Instead,
SARSA waits until such next action is actually performed in order to give a value to the current
action. In other words, this slightly different update policy makes SARSA to not only consider
the action that produces the estimate of the optimal future value, which may not occur due to
the exploration, but to also consider those actions that may occur during the exploration.

2.3. Kolmogorov Complexity 14

2.2.3 QV-learning

Another Q-learning variant known as QV-learning [140] considers a state-value function (V -
function) in order to update its Q values. QV-learning is also enhanced by eligibility traces [109]
to learn the state-values of the V -function using TD(λ) methods. The update done by QV-
learning uses such a V -function instead of the estimate of optimal future value (in equation 2.1).
The idea of using a V -function is that it does not consider actions and, therefore, it is more
often updated and, supposedly, more informed about the state where the agent currently is
interacting.

2.3 Kolmogorov Complexity

In algorithmic information theory, the Kolmogorov complexity of an object is the length of
the shortest program that describes the object. Kolmogorov complexity is also known as
‘descriptive complexity’, ‘Kolmogorov-Chaitin complexity’, ‘algorithmic entropy’ or ‘program-
size complexity’.

To define the Kolmogorov complexity, we first must describe a Turing-complete description
language for strings. Such a description language can be based on any computer programming
language, such as C or Java. If p is a program (for example written in C) executed in a reference
machine U that obtains as output the string x, then p is a description for x in the reference
machine U . A typical assumption is to use a language that is prefix-free, which means that no
string describing a program can be substring of any other program.

Once we find the program p with the minimum length that obtains x (with regard to the
rest of programs that obtain x), then the length of p is the so-called Kolmogorov complexity.

Definition 1. The Kolmogorov complexity of a string x using a reference machine U is denoted
as:

KU(x) , min
p such that U(p)=x

|p| (2.5)

where |p| denotes the length in bits of p and U(p) denotes the result of executing p in U .

The importance of U mostly depends on the size of x. Since every Turing-complete machine
can emulate any other, for every pair of Turing-complete machines U and V , there is a constant
c(U, V) (the length of the emulator of U in V) that only depends on U and V but not on x, so
for all x : |KU(x) −KV (x)| ≤ c(U, V). The constant c(U, V) will be relatively less significant
as the length of x becomes larger.

For a better understanding of the Kolmogorov complexity, let us see an example:

az
lnkjdfglkfgvoijmnfgvil

As we can see, the first string is a succession of ‘az’ which can be described in natural
language (in English) as ‘az 30 times’, using a total of 11 symbols (including spaces). However,
for the second string, despite being much smaller than the first string, it is difficult to find a
way to describe it with 11 symbols or less. Therefore, in English, it is more complex to describe
the second string than the first one.

2.4. Probability Distribution 15

The main problem of the Kolmogorov complexity is that it is not computable due to the
halting problem (or more generally, the Entscheidungsproblem). Let us imagine that we have
a program p that provides x, whose length is |p| = n. This means that n is an upper bound to
the Kolmogorov complexity of x, so n ≥ K(x). However, there may exist other programs that
obtain x whose length is lower than n, but they need an almost infinite time to be executed.
This is the reason this complexity is uncomputable in practice.

However, some other variants to Kolmogorov complexity are computable. One of them is
the so-called Levin’s Kt complexity.

Definition 2. The Levin’s Kt complexity of a string x using a reference machine U is denoted
as:

KtU(x) , min
p such that U(p)=x

{|p|+ log time(U, p)} (2.6)

where |p| denotes the length in bits of p, U(p) denotes the result of executing p in U and
time(U, p) denotes the (computational) time that U takes to execute p.

Once the time to obtain the string x is added to the formula, any program requiring an
infinite time y to finish will be more complex than any other program obtaining x in a finite
period of time, since limy→∞ log(y) =∞.

For more information about Kolmogorov complexity, see [71].

2.4 Probability Distribution

A probability distribution (or simply ‘distribution’) is a function that gives a probability Pr(x)
to each element x from a particular set X.1 Independently of X, in a distribution the sum of
its elements probability must be 1. More formally:

∀X :
∑
x∈X

Pr(x) = 1 (2.7)

Next we show the three distributions we use during this thesis.

2.4.1 Uniform Distribution

A uniform distribution just gives equal probability to each element of a particular set X. This
is simply done by giving 1/n probability to each element x ∈ X, assuming that the number of
elements in X is n. More formally:

∀x ∈ X : Pr(x) =
1

|X|
(2.8)

where |X| denotes the number of elements in X.

1Actually, a distribution over X may be discrete or continuous depending on whether the elements of X are
respectively discrete or continuous. In what follows, we only consider discrete distributions.

2.5. Monte Carlo Approximation 16

2.4.2 Geometric Distribution

A geometric distribution gives a probability to the number of binomial trials (i.e. an inde-
pendent repetition of a random experiment with only two possible results: success or failure)
needed to obtain the first success, where every trial has the same probability of success p.

The following equation calculates the probability of any natural number:

∀x ∈ {1, 2, 3, ...} : Pr(x) = (1− p)x−1p (2.9)

where p denotes the probability of success.

2.4.3 Universal Distribution

Using Kolmogorov complexity (section 2.3), we define the universal distribution as follows:

Definition 3. The universal distribution, with respect to a prefix-free machine U , gives to each
string x (from the set of all possible strings X) a probability as follows:

PrU(x) , 2−KU (x) (2.10)

where KU(x) is the Kolmogorov complexity of the string x.

This distribution gives a higher probability to those objects whose description is small,
and gives lower probability to those objects whose description is large. When U is universal
(i.e. Turing-complete), this distribution is similar (depending on a constant) to the universal
distribution for any other universal machine, since they can emulate each other. However, two
universal distributions may give very different values to the most likely strings.

2.5 Monte Carlo Approximation

A Monte Carlo method is a way to approximate a result from a set of randomly sampled
values. Such methods are normally used when it is difficult or impossible to obtain an exact
value. This approximation is based on the idea that, by taking a representative selection of
values, the result obtained from such values will be close to the real value. In order to obtain
a representative selection, the sample procedure should not be biased. The use of a random
selection of values should avoid any kind of bias.

In figure 2.5 we illustrate how to obtain a Monte Carlo approximation for the root value of a
tree, where every leaf has a value and a non-leaf node value is calculated from its children values.
As long as the number of nodes increases, it becomes more difficult to calculate the root value.
To solve this problem, instead of calculating all nodes values, the algorithm approximates the
value of each non-leaf node at level α (with α ≥ 0) and calculates the values for those nodes
above the α level as usual. To approximate a node value, the algorithm randomly selects β
(with β ≥ 1) paths from all its node-to-leaf paths (possibly with repetitions) and only uses the
value at their leaves.

There exist some trees where each non-leaf node calculates its value from the weighted sum
of the values of its children. In such trees, when approximating the value of a node we use the
following process in order to seek a representative selection. The weights are transformed into
unit weights (i.e. for each non-leaf node, the sum of its children weights is 1), and the β paths
are selected using these unit weights as probability distributions (section 2.4). Finally, each
approximated node obtains its value as the mean of the leaves values of its β paths.

2.5. Monte Carlo Approximation 17

α

Figure 2.5: Monte Carlo method to calculate an approximation of the root value of the tree
from its descendants. We represent an exact value with a green node and an approximated
value with a yellow node. The method obtains a value for all nodes within the first α levels.
For each yellow node at level α, blue arrows represent the β paths selected to approximate its
value.

Chapter 3

State of the Art

3.1 Evaluation of Intelligence

The evaluation of intelligence and social intelligence has been studied in several disciplines
during the last century. In this section we make a brief summary of the attempts to evaluate
intelligence and social intelligence.

3.1.1 Psychometrics

The measurement of intelligence has its roots in Binet, which is considered the father of intelli-
gence tests [8, 7, 6] and subsequent revisions [9, 5], later compiled and translated into English
in [10]. His original study treated the problem of detecting those children who could not follow
the regular rate of school. The study was focussed on elaborating a scale as a questionnaire
with different questions related to reasoning and problem solving. They started with the as-
sumption that the mental aptitude is a general and unique ability, and introduced the concept
of “mental age” under the assumption that children’s mentality develops at a certain rate, so
children from a certain biological age should perform well on a questionnaire made from items
or exercises of that mental age. Then, a child that obtains a lower performance than those of
his or her same biological age is considered to have a lower mental age. The scale was then
revised and adapted to children of different ages, and was widely accepted due to its simplicity
and ease of administration, making it very pragmatic. Nowadays, the concept of mental age
has been abandoned and substituted with the average score of the population of the same age,
thus a person’s score is compared with this average score.

In [106], Spearman proposed the theory of general intelligence. This general intelligence
consists of a general factor (or g factor), which is mostly invariant during the person’s lifetime.
He proposed that a person’s score in a mental test is composed of two parts, the general factor
which is the same for every test, and a specific factor which may vary on each test for a mental
aptitude. In this context, the g factor is nothing more than a score-factor which is invariant and
cannot be trained. Thus, this g factor is omnipresent in all actions that require an intellectual
aptitude. Nowadays, this theory of a general cognitive ability is still used and debated [91, 37,

18

3.1. Evaluation of Intelligence 19

88], where researchers defend that intelligence does not seem to constitute a unique ability as
initially stated by Binet. Practically all current researchers agree on the existence of specific
interrelated mental abilities or factors, although they differ in their number and nature.

In late 1930, Wechsler was trying to evaluate intelligence for adults, but having analysed
tests from that period he concluded that they were not satisfactory. After revising all existing
intelligence tests, he published the Wechsler-Bellevue Intelligence Scale (WBIS) [125] and its
revision [126]. Such scale introduced some innovations to the evaluation of intelligence. It gets
rid of the traditional quotient introduced by Binet, and replaces it with a non-scale with average
at 100 for the average intelligence and with a standard deviation of 15. He also included his
own classification of intelligence and introduced the concept of point scale, by assigning points
to each item or exercise. This allowed the grouping of items by their content, instead of
grouping them by the age of the evaluee as was traditionally done by Binet. Typical tests were
composed only with a verbal scale, which was criticised for its emphasis on language and verbal
skills. Wechsler added to his test a performance scale, where nonverbal items were included so
the evaluee had to solve problems instead of only answering questions. The WBIS was later
renamed as Wechsler Adult Intelligence Scale (WAIS) [128] and had several revisions [131, 133,
135]. Wechsler also created another version for children from 5 to 15 years old, the Wechsler
Intelligence Scale for Children (WISC) [127], changed to children from 6 to 16 years old in
posterior revisions [130, 132, 134].

Social intelligence (and its true distinction from general intelligence) has been a matter
of study for many years. In psychometrics, social intelligence has its roots in [113], where
Thorndike divided intelligence into three major abilities, which he identified as mechanical,
social and abstract intelligence. While mechanical intelligence was referred to understand and
manage physical objects and abstract intelligence to ideas and symbols, social intelligence
was referred to understand and manage people. In its original definition, he defined social
intelligence as “the ability to understand and manage men and women, boys and girls—to
act wisely in human relations”. Since then, many other definitions have been proposed in
psychometrics, such as the “ability to get along with others” [75], the “facility in dealing with
human beings” [129], or more specific definitions including “[the] ability to get along with
people in general, social technique or ease in society, knowledge of social matters, susceptibility
to stimuli from other members of a group, as well as insight into the temporary moods or
the underlying personality traits of friends and of strangers” [119]. Nonetheless, none of these
definitions is sufficiently formal and operational to provide a clear measurement procedure. In
fact, all these definitions require the definition of many other new concepts that appear in the
definition.

The first test trying to measure social intelligence was the George Washington University
Social Intelligence Test [77] and subsequent revisions [76, 78]. However, several controversies
appeared about the test, such as whether social intelligence should be correlated with sociability
or extraversion as done in the test (e.g. [114]). Furthermore, several studies revealed that test
results were relatively high correlated with abstract intelligence [55] and partially with other
multiple intelligence factors. Those difficulties for validating the results of the test led to lose
interest on it.

From 1940, Spearman’s g factor obtained the main attention, where social intelligence was
not considered an intelligence factor by itself, but only the ability to use general intelligence in
the context of other persons. For instance, Wechsler considered that “social intelligence is just
general intelligence applied to social situations” [129], so no subtest was specifically created to
measure social intelligence. However, Wechsler considered that the picture arrangement and

3.1. Evaluation of Intelligence 20

comprehension subtests of WAIS could be interpretable as measures of social competence, but
there was not enough empirical experiments to support this claim [13].

In the late 1960s, Guilford revived the interest on social intelligence with his factorial def-
inition of intelligence [34]. He proposed a taxonomy of intelligence with 120 possible factors.
Each factor consisted on the combination of three different facets, which consisted on 5 kinds
of operations, 4 kinds of contents and 6 kinds of products. Guilford stated that social intel-
ligence was composed with factors from the content facet. Guilford’s model was contrary to
Spearman’s g factor, gaining wide acceptance with those who did not consider the existence of
a biological general factor of intelligence, while others criticised this model for being unneces-
sarily complex. Following this model, a test was created to measure social intelligence [86] but,
again, the results correlated with those of general intelligence, losing validity.

From around 1985, psychologists put more attention on the understanding of social intel-
ligence, leading to different theories about intelligence and letting its measurement aside. In
[30], Gardner proposed his theory of multiple intelligences, where intelligence is not considered
unique but as the combination of eight (but possibly more) different and semi-independent intel-
ligences. Within his model, social intelligence can be identified as the interpersonal intelligence,
where someone is able to identify, among other things, others’ motivations and intentions. A
different point of view is the Machiavellian Intelligence [12]. Here, Byrne and Whiten suggest
that intelligence in humans has evolved from social interaction, i.e. interacting with other
humans, viewing them as tools which can be manipulated.

Nowadays, from a theoretical perspective, it is still not clear whether social intelligence is
simply the general intelligence applied to social situations, it is an actual factor of intelligence or
it is an independent intelligence, although the latter has proliferated in the last years. Besides,
it is still not clear how to empirically measure social intelligence, but it seems that a good
solution could be to measure the cognitive strategies used to solve daily social problems.

3.1.2 Animals

Social intelligence is not only present in humans. Other animal species have also demonstrated
this kind of intelligence. The evaluation of an animal is more difficult, as we cannot ask it to
perform a test as we do with humans, so we make the animal confront other animals (usually
of the same species) and see whether the subject deals with them or get along well. Also, tests
include some food as rewards in order to motivate the animals to perform the tasks. This is
the same configuration as in reinforcement learning (section 2.2). In social intelligence tests for
animals, especially for those focussing on cooperation, they must obtain some food or reward
that cannot be obtained by one individual alone, but two or more animals interacting are needed
to get their reward. Some of the capabilities evaluated with those tests are their predisposition
to deal with others, and their selfishness or altruism.

Although these tests measure some aspects of social intelligence, many have been devised to
evaluate social intelligence for a particular species and for very specific tasks. In these tests, it
is highly debatable whether the tasks are representative of a broader view of social intelligence.
Also, it is usually very difficult to compare the results with those of other species. Fortunately,
there have been some exceptions to this (species) specialisation, and they are proliferating in
the past decade. For instance, some recent work has shown that social abilities can be compared
in a systematic way between human children and non-human apes [51, 52].

Actually, comparative cognition [122, 102] is more and more concerned about performing
tests that compare the abilities of many different species and also the abilities of individuals

3.1. Evaluation of Intelligence 21

of different species. From this point of view, it should be more natural to provide a single test
(with possibly many different customised interfaces and rewards) to assess every kind of species
(or, in other words, a more general, or universal [44, 22, 46], test). To achieve this, such a test
should be able to evaluate any level and spectrum of social intelligence, instead of focussing on
the specific range and particular abilities of a single species.

3.1.3 Machines

When thinking about social tests and making them more species-independent, we can take the
most general perspective, which leads us to the consideration of machines as well. However,
evaluating social intelligence in machines has been quite different to the assessment of human
and animal social intelligence, even from its beginning with the Turing Test [115]. Nonetheless,
as occurs with animals, rewards or scores may be used as a measure of their performance and
a way of giving feedback to make them show their abilities. Besides, environments must be
presented in such a way that a machine can process the observations and perform a set of
actions. This is done by providing them with sensors and actuators that interact with our
physical world, or provide them with a logical or virtual environment.

Multi-agent learning (MAL) is a broad area of research where problems involving multiple
agents have to be solved using machine learning (see [87] for a survey in cooperation). The
environments used in tests for MAL tend to represent tasks that the agents must perform by
interacting with other agents, so the performance is calculated as their capability to successfully
cooperate with and/or compete against them to achieve some goals (see [3, 67] for two testbeds
in multi-agent environments). In this way, the evaluation is a simulation in a social context,
which is more directly linked to the definition of social intelligence.

Multi-agent systems (MAS) present rich and diverse possibilities for the interaction of dis-
tributed agents, both in competition [101, 93, 67, 4, 137] and cooperation [3, 111, 144, 107,
142]. Environments are usually selected to represent some particular problems for which MAL
techniques are developed and evaluated. However, these evaluations lack some important fea-
tures. They do not evaluate social intelligence in a general way, but they are typically designed
to evaluate one kind of task. However, the most important problem is that they usually require
very specific abilities, or when they require many, it is not clear how to disentangle them. For
instance, if a MAS setting requires both competition and cooperation to solve a problem, it is
not always easy to select or gauge the degree of relevance of each one in order to give more
relevance to competition over cooperation, or vice versa. Nonetheless, the major issue is that
many capabilities other than social intelligence also contaminate the results, which makes many
MAS scenarios unsuitable if we want to measure social abilities only.

Efforts in MAS are usually put on creating or improving multi-agent algorithms. Few
works are devoted to the evaluation perspective, and when it is the case, they are focussed on
evaluating some characteristics of the agents such as their rationality, autonomy or reactivity
(see [11] for an example). However, in order to evaluate social intelligence, it is convenient to
put efforts not only on the agents, but also on the environments where they have to interact,
treating the system as a whole.

Artificial general intelligence (AGI) research focusses on the original and ultimate goal of
artificial intelligence, to create broad human-like intelligence by exploring, not only theoretical
and experimental computer science, but all available paradigms or paths. AGI is a more complex
area, because it is not based on the performance as in many artificial intelligence areas, but on
more general-purpose systems with broader capabilities. AGI has been proliferating in the last

3.2. Works Focussed on the Interaction Between Agents 22

decades. However, we still do not have a clear method to evaluate and compare their results
[120, 121].

3.1.4 Formal Evaluation

As an alternative to the previous approaches in several disciplines1, could we just start from
a formal definition of an ability (such as social intelligence) and derive tests from it? This
approach has been investigated for machine intelligence evaluation. Formal approaches started
in the late 1990s using notions from Kolmogorov complexity, Solomonoff prediction and the
MML principle [19, 47, 39, 40]. Legg and Hutter developed in [69] the so-called “Universal
Intelligence”, calculating it as the performance of the agent in a wide range of environments,
weighted by a universal distribution. Adjusting to this definition, a framework to evaluate
general intelligence [44] and an environment class [41] were proposed. In order to show their
effectiveness, some experiments were performed [57, 62, 63, 70], but their results suggested that
the framework still has some limitations. One of the possible reasons is that these environments
lacked the richness of interaction. From the formal definition, it is virtually impossible to
randomly generate an environment that contains some kind of social behaviour. Therefore, in
order to overcome some of the limitations of these tests, some other agents need to be included
in the environment to generate social situations.

In order to measure social intelligence in isolation, we need to provide an appropriate social
environment class where only social intelligence is needed or, at least, where the degree of social
intelligence needed can be fine tuned. For this purpose, in this thesis we provide a formal setting
of social intelligence evaluation, where positions and roles of the agents used in the definition
are taken into account.

In this context, one of the key issues is to determine what kind of agents we must include in
the test to interact with and what their roles are. This boils down to choosing a distribution of
agents. However, in order to provide an environment with some rich social situations, we need
first to know the level of social intelligence of the agents provided by the distribution. This
circular problem is turned into a recursive one in [48], where different levels of distributions
are recursively provided by constructing a new distribution of agents from a prior distribution
by selecting (or increasing the probability of) those agents with higher performance. However,
it is not easy to derive a definition of social intelligence from here or a procedure to create
environments that would be the base for social intelligence tests.

Overall, there are many different approaches for the study and evaluation of social intelli-
gence, but we lack a comprehensive theory, well-grounded tools and wide comparisons to better
understand the problem and find better measurement devices.

3.2 Works Focussed on the Interaction Between Agents

In the literature there are many works that investigate some aspects about the interaction
between agents, such as their performance or how to improve and evaluate such agents to achieve
better results in some environments. Although these works are focussing on the interaction
between agents, they are not directly related or linked to the evaluation of social intelligence.
In this section we discuss some of these other works.

1Not only as an alternative to MAS scenarios, but also to IQ tests, the Turing Test and other kind of tests
(see [20] for a discussion).

3.2. Works Focussed on the Interaction Between Agents 23

In the context of social sciences (stretching from economics to AI), game theory [85] has
studied the interaction of different agents in formalised structures (called games). For this
purpose, game theory uses a formal approach to define a utility function, and the effort is made
for finding the best strategy among all possible strategies, assuming that the rest of agents also
try to obtain their best results following some kind of rational actions. Although game theory
needs the interaction of several agents, the goal is not to evaluate social intelligence but rather
to analyse how the agents (or just policies) behave in these games and whether they reach
some kind of equilibrium. Several kinds of games try to represent or to analyse a variety of
properties: cooperative or non-cooperative games, simultaneous or sequential games, normal-
form or extensive-form games, zero-sum or general-sum games, and symmetric or asymmetric
games [81, 85]. However, games that may have the most interesting properties or applications
are not necessarily useful for testing. For instance, a game where equilibria are easy may be
inappropriate if we want a discriminative test. Similarly, asymmetric games make it more
difficult to assess agent performance, as they depend on the role each agent takes.

One important concept in game theory is the notion of zero-sum vs. non-zero-sum games.
Zero-sum games are a particular set of games where a player’s gains (or losses) are equally
balanced by the other players’ losses (or gains). These kinds of games are known as competitive
games, since one’s gains reduces the gains (or increases the losses) of the other player(s), making
the players having opposed interests. When a zero-sum game only has two players it becomes
a pure competitive game. But zero-sum games can also contain cooperation in games with
three or more players. Two players can cooperate in order to compete against a third or more
players. As the number of players increase, cooperation becomes more important. In contrast,
general-sum games are those games where the payoffs sum more or less than zero, and games
can be cooperative even for two players. Finally, another particular feature in game theory is
that environments are generally simple (without objects or spaces) and it is just the continuous
interaction between agents that matters.

The understanding of social behaviours has also been studied from the perspective of
robotics, where robots (physical or simulated) are used in order to better understand the
interaction between the agents [74]. These studies are performed by avoiding some convenient
assumptions on their designs or models and adjusting their robots to a more realistic vision of
the environment. However, such studies are designed to understand such social behaviours in
order to have more information to improve their robots performance, while less effort is made
on how to better understand the evaluation of such social behaviour.

In cooperative/competitive co-evolution (see [16] for a competitive example), the problem
is to design algorithms or models to evolve the behaviour of a group of agents in cooperat-
ing/competing scenarios. This line of research is more concerned about creating specialised
algorithms for specific environments and empirically see if new generations are more prepared
to succeed in their scenarios. This approach can make the agents obtain good performance
for some specific social contexts, but their environment-specialisation will probably make them
useless for other situations.

Ad Hoc teamwork is a recent challenge where autonomous agents have to learn to coordinate
and cooperate with previously unknown teammates in order to solve some task as a team [108].
Besides, this challenge is more concerned about creating autonomous agents. Stone et al.
propose that these agents have to be evaluated by making them interact in a team with a set
of agents in a variety of environments or domains. But this evaluation is not always easy to
be performed. In fact, part of the difficulty comes from the set of agents to use. For example,
a socially intelligent agent may obtain bad results while cooperating with a set of non-social

3.2. Works Focussed on the Interaction Between Agents 24

agents. Moreover, when they exist, opponent agents are treated as part of the environment,
which makes their evaluations more dependent to the specific agents they face. Additionally,
[1] proposes how to evaluate an agent in those environments or domains by using what they
call dimensions, which try to quantitatively represent some information about the environment
(including opponent agents) when the autonomous agent is interacting on it. Our main criticism
about this approach is that they assume that the agent to be evaluated has to know in advance
some predefined behaviours that their teammates may be following, so they can measure how
precise that knowledge is with respect to the real behaviour of its teammates.

Some researchers try to obtain some information about what happened during the evalua-
tions of their agents in some scenarios. For this goal, they create some measures (see [65, 98]
for some examples), which usually count the number of times a certain situation occurs. For
example, in soccer, a measure could be the number of scored goals, the percentage of time that
their team is in possession of the ball or the number of successful passes. Most of these mea-
sures are very domain- or task-specific. However, some measures are somehow independent to
a domain or task, such as for example interference [33, 97], which is used to count the amount
of time that agents need to manage a spacial collision, usually with another agent. Finally,
researchers try to improve the results that their agents obtain in these measures to, hopefully,
improve their performance on these scenarios. However, it is difficult to use such measures to
represent a property of the environment or characterise the system where the agent is being
evaluated.

The analysis of environments, benchmarks and testbeds have also received some attention.
Several researchers have acknowledged that the environments used during the evaluation is
an important element to consider [139, 138], since such environments establish the rules that
agents must follow and represent the abilities that are taken into consideration. Moreover, it
is not always clear what benchmarks and testbeds are actually evaluating and how to interpret
the results that agents obtain on them [35]. In order to better understand what environments
represent, some studies try to identify their components or provide for them a topology as well
as some intuitive properties (e.g. [117, 79]). Although providing an appropriate scenario where
evaluate the agents’ abilities seems an essential issue, such works barely emphasise on analysing
the appropriateness of the environments or testbeds for evaluating particular abilities such as
social intelligence.

Chapter 4

Extending a General Intelligence Test
to Evaluate Social Intelligence

The evaluation of social intelligence in a formal way does not appear to have been carefully
analysed yet. It seems that a good starting point is to use a general intelligence test and analyse
how it performs when evaluating social intelligence. From here, one possibility is to adjust an
existing general intelligence test in such a way that some interactions with other agents are
ensured to make it more ‘social’.

In this chapter, we perform some experiments on such ‘social’ test setting in order to examine
the way in which some simple agents have a big impact on their performance while competing
and cooperating with other (intelligent) agents. There are many possible ways of introducing
cooperation and competition, which may lead to different experimental results, some of them
similar to what has been previously studied in the AI literature. Here, we do not want to
evaluate these choices, but to analyse how the degree of ‘intelligence’ of the agents in a multi-
agent environment affects the role of cooperation and competition. This is crucial in order to
get more information about how to perform a social intelligence test.

Below, we present the features and principles of such general intelligence test, how it has
been ‘socially’ adjusted to perform the experiments and we discuss their results.

4.1 Universal Intelligence

In [69], Legg and Hutter provide a new definition of intelligence called Universal intelligence,
which is based on Kolmogorov complexity (section 2.3) and Solomonoff’s inductive inference
[104, 105]. This definition basically consists in measuring the performance of an agent in-
teracting in a variety of environments, where this variety stands for the set of all possible
environments. The term universal stands for its capacity to include in the definition all the
possible environments by the use of a universal distribution (section 2.4.3). Another possibility
would have been to select the environments with a uniform distribution, but for an infinite set of
environments this distribution would not work, since each environment would have a probability

25

4.2. Universal Anytime Intelligence Test 26

equal to 0. We show Legg and Hutter’s universal intelligence in the following definition:

Definition 4. The universal intelligence of an agent π, using the reference machine U , is:

ΥU(π) ,
∑
µ∈M

PrU(µ)× V π
µ (4.1)

where M denotes the infinite set of all environments, PrU(µ) denotes the universal probability
to obtain µ with the reference machine U and V π

µ denotes the expected cumulative reward of
π interacting in µ.

This definition makes the agent interact in the set of all environments M giving them a
weight based on their universal probability by a reference machine U . This assumes a coding
of the environments as strings in U and that environments are recursively enumerable [68]. For
each environment, the agent’s performance is calculated as the expected cumulative reward as
follows:

Definition 5. The expected cumulative reward of agent π interacting in environment µ is:

V π
µ , E

(
∞∑
k=1

rµ,πk

)
(4.2)

where rµ,πk denotes the reward obtained by π interacting in µ at time step k.

In order to prevent equation 4.1 from giving an infinite value, Legg and Hutter impose a re-
striction on environments rewards. This restriction consists in making the expected cumulative
rewards to always be less than or equal to one. More formally:

∀µ, π : V π
µ = E

(
∞∑
k=1

rµ,πk

)
≤ 1 (4.3)

Finally, in equation 4.4 we just rewrite equation 4.1 by substituting the universal probability
and the expected cumulative reward with their definitions:

ΥU(π) ,
∑
µ∈M

PrU(µ)× V π
µ =

∑
µ∈M

2−KU (µ) × E

(
∞∑
k=1

rµ,πk

)
(4.4)

4.2 Universal Anytime Intelligence Test

Following the ideas of the universal intelligence definition presented above, in [44] Hernandez-
Orallo and Dowe propose a conceptual framework to construct a universal and anytime in-
telligence test. Unlike universal intelligence, here the term ‘universal’ refers that the test is
able to evaluate intelligence for all kinds of systems or species. Moreover, the term anytime
refers to the test being applicable to agents that interact with different time spans, any level of
intelligence, as well as that it can be interrupted at any time, providing an approximation to
the agent’s intelligence (i.e. the longer the evaluation time, the better the result it obtains).

In order to provide all these features, the test considers several issues about the environments
such as their difficulty and discrimination power. Also, they must react immediately and they
must be balanced (a random agent should obtain an expected reward equal to 0). Also, the

4.2. Universal Anytime Intelligence Test 27

test must provide a mechanism to sample the environments such that their difficulty adjusts
to the level of intelligence shown by the evaluee.

An option to select the environments would be to use a universal distribution as in equa-
tion 4.4. Although this option would work theoretically, it would give high probability to
simple environments while providing a low probability to more complex environments. This
would make the test spend most of the time and importance evaluating the agent in the same
simplest environments, but the complex (and probably more interesting) environments would
be almost ignored.

When selecting the environments, it is important to take into account that not all of them
are useful to evaluate intelligence. Some of them could give the same rewards to all evaluated
agents, which makes them not discriminate between non-similar agents, so they would be
unsuitable to be used in a test. Besides, some environments could be similar to previous
environments used during the test. It becomes clear the necessity to make a correct selection
of the environments to be used during the evaluation.

To ensure that an environment is discriminative, evaluated agents must be able to influence
on the rewards they obtain. An option to achieve this would be to make the environment
reward-sensitive, which means that depending on the sequence of actions the agents perform,
the environment provides a different sequence of rewards.

A desired property is that environments must be able to interact indefinitely and must be
computable. Since their descriptions must be finite, there must exist some kind of pattern
making them not stop. The environment should also distribute the rewards among the whole
evaluation session, thus avoiding undesired situations where rewards are only provided in a
certain moment of the evaluation and not providing rewards for the rest of the time. Otherwise,
most of the evaluation time will be useless, since evaluated agents will not be able to improve
their rewards.

To promote some balancedness regarding random agents’ rewards, environments must be
balanced. Basically this means that random agents must obtain an expected reward of 0 on
these environments. More formally:

∀µ : E

(
∞∑
k=0

rµ,πr

k

)
= 0 (4.5)

where πr denotes a random agent. To facilitate this, an approach could be to use symmetric
rewards. That is:

∀µ, π, k : −1 ≤ rµ,πk ≤ 1 (4.6)

In order to ensure that the environments react immediately, a possibility is to simply avoid
using those environments that take too much time to output observations and rewards. One
option is to take this time into consideration in the probability to sample the environments,
making them less probable as long as their time to output observations and rewards increase.

To permit a test to evaluate different kinds of systems, the test must be presented in such
a way that there is no bias in favour of a particular system. For example, an environment with
a 3D space would be easier for humans than for machines, since humans have been interacting
and learning in such kind of spaces since their birth. Also, the interface could be partially-
observable since not always the environment information is available for the evaluated agent,
but fully-observable interfaces could also be used.

4.2. Universal Anytime Intelligence Test 28

Finally, a practical test should be applied in a reasonable period of time. One way to
achieve this is that the test must adapt itself accordingly to the evaluee’s performance. To
achieve this, since several environments to approximate the level of intelligence of the evaluee
could be necessary, each of these environments could be used during a limited period of time in
the evaluation. Then, the test would select the next environment depending on the performance
shown by the evaluated agent on previous environments, providing more complex environments
as long as the evaluee obtains good results, and sampling simplest ones when its results decrease.
As long as the environment becomes more complex, this period of time could increase to let
the evaluated agent enough time to understand the environment.

4.2.1 Lambda Environment Class

According to the above discussion, in order to evaluate general intelligence, in [41] a class of en-
vironments (called Λ) was presented. Next we show the main characteristics of this environment
class.

The environment class is basically composed of a discrete space where the evaluated agent
can interact, some objects that can move through the space and two special objects that are
responsible to provide the rewards in the form of reward units.

The space is composed of cells with actions that connect those cells. Each cell has a reflexive
action that leads to itself. A cell can contain the evaluated agent, any number of objects and
a reward unit. Objects are visible to the evaluated agent, but reward units are not. Before
starting the evaluation, the evaluated agent and each object are randomly (using a uniform
distribution) placed in cells and they can move to an adjacent cell by performing the action
that leads to that cell.

When generating the environment, the space and each object behaviour (or movements)
are generated using a Turing-complete language (such as Markov algorithms). This allows the
environment class to have a universal descriptive power to obtain any possible behaviour for
the objects.

Two special objects called Good and Evil are the responsible to provide rewards. Good
and Evil move through the space following both the same behaviour (or sequence or pattern of
actions) and leaving a reward unit on each cell they visit: Good leaves a positive reward unit (1)
while Evil leaves a negative reward unit (−1). On each time step, the evaluated agent obtains
a reward equal to the reward unit present in the cell it is occupying and 0 if the cell does not
contain a reward unit. The reason that both special objects let these reward units and follow
the same pattern of actions is to ensure symmetry on rewards and a balanced environment
(random agents score 0 on average).

Good and Evil cannot share the same cell. If that occurs one of them is randomly chosen
to move, while the other remains on its cell. This avoids those situations where both objects
remain indefinitely in the same cell, cancelling their reward units and, therefore, making the
evaluated agent to always obtain the same reward of 0. On each new time step, rewards
units are divided by a constant (as if reward units were fading in an exponential decay), but
disappear when the evaluated agent obtains them. This makes Good and Evil leave a trail of
rewards units as they move through the space following their pattern of actions. This makes the
environments interact indefinitely and distribute rewards during the whole evaluation session.

The space is randomly generated in such a way that its topology follows a strongly connected
graph, where vertices represent cells and edges represent actions. A strongly connected graph
is a directed graph where every vertex is reachable from any other vertex in one or more moves.

4.2. Universal Anytime Intelligence Test 29

This restriction in the topology of the space is to avoid that the evaluated agent falls into a
heaven or hell subenvironment, where it can only obtain positive or negative rewards. This
permits the evaluated agents to have influence on their future rewards and, therefore, allows to
better discriminate them. Figure 4.1 shows an example of a randomly generated space.

c1
a2

c2 c3

c4c5c6

a1 a1

a2

a1

a2

a1

a2

a1

a2

a1

a2

Figure 4.1: A space with 6 cells and 3 actions (a0, a1, a2). Reflexive action a0 is not shown.

Finally, the complexity of each environment can be determined by: the topology of its space
(including the number of cells and actions) and the objects that are present (including their
behaviour, movements or action pattern). In order to calculate the environment complexity, an
option could be to generate a string describing the environment, and use this string to calculate
(or approximate) the Kolmogorov complexity (section 2.3) of the environment.

4.2.2 A Prototype of a General Intelligence Test

Following the definition of the Λ environment class, some simplifications were performed to
generate the environments [57]. For instance, speed is not considered, thus being a non-anytime
version of the test. In addition, the prototype does not use a Turing-complete algorithm to
generate the spaces nor the object behaviours. Spaces are generated by first determining the
number of cells nc, which is given by a number between 2 and 9, using a geometric distribution
with p = 0.5 and normalising to sum up to 1. Similarly, the number of actions na is defined
with a uniform distribution between 2 and nc. Both cells and actions are indexed with natural
numbers. There is a special action 0 which connects each cell with itself (the reflexive action).
The arrows between cells are created by using a uniform distribution for each pair of cell and
action, which assigns the destination cell for each pair.

The number of cells and actions is, of course, related to the complexity of the space, but not
monotonically related to its Kolmogorov complexity or a computable variant such as Levin’s
Kt (section 2.3). Nonetheless, most of the actual grading of environments comes from the
behaviour of Good and Evil. The sequence of actions for Good and Evil is defined by using a
uniform distribution for each element in the sequence, and a geometric distribution to determine
whether to stop generating the sequence, by using a probability of stopping p = 0.5. An example
of sequence of actions for the space in figure 4.1 is 201210200, which means the execution of
actions a2, a0, a1, a2, etc. Consider, e.g. that Good is placed at cell c5. Since the sequence
starts with ‘2’, Good will move (via a2) to cell c6. For each time step the agents Good and
Evil take the next action from the sequence and execute it. When the actions are exhausted,
the sequence is started all over again. If an action is not allowed at a particular cell, the agent
does not move.

4.3. Evaluation of Social Intelligence Using a General Intelligence Test 30

The prototype lets Good, Evil and the evaluated agent interact for a certain number of time
steps m, which is called an exercise (or episode). On each time step, reward units are divided
by 2. For an exercise, the result or score of the evaluated agent in the environment is calculated
as the average of its obtained reward units.

Figure 4.2 shows an example of the interface created for humans which is hopefully designed
to be unbiased.

Figure 4.2: A snapshot of the interface for humans. The evaluated agent has just received a
positive reward, shown with the green circle with an upwards arrow. The image also shows the
evaluated agent located in cell 3, and Evil and Good are placed in cells 2 and 3 respectively.
The evaluated agent can move to cell 1 and cell 3. Cell 3 is highlighted since the mouse cursor
is over it.

Although the framework suggests to have a partially-observable interface, in the prototype
it is fully-observable, so the evaluated agent can see all the cells and their contents (except
reward units). The evaluated agent does not know in advance who Good is and who Evil is. It
has to guess that.

The first evaluations using this prototype [57, 62] show that the setting is able to compare
and evaluate different kinds of agents (humans and RL algorithms), but they do not properly
reflect their supposed difference in intelligence, failing at placing them on the same scale, since
humans usually get similar scores to those of other relatively simple agents.

4.3 Evaluation of Social Intelligence Using a General In-

telligence Test

Many possible explanations are suggested in [62] about why the prototype of the previous
section does not work in practice to evaluate general intelligence, with incremental knowledge
acquisition and social intelligence being two of the abilities this test is not giving enough impor-
tance. With respect to the second issue, it is virtually impossible to find any social behaviour
in the environments originating from the objects, so social intelligence is not measured in the
test. In order to address this second issue, we must define environments which are more social.
The question, therefore, is what and how agents should be introduced in the test, since the
results of the evaluated agent will depend on the abilities of the other agents. This is related to
the Turing Test and the question of evaluating intelligence with games (also suggested in [44]),
where the difficulty is not only given by the complexity of the game, but from the opponent’s

4.3. Evaluation of Social Intelligence Using a General Intelligence Test 31

intelligence. This leads to a circular problem: we need to know the opponent’s intelligence first
in order to know the difficulty of the problem. Figure 4.3 shows this situation. The question is
what criteria we can use to introduce the other agents and how we can measure their (social)
intelligence in advance.

Environment

Competing or
Cooperating

AgentsI ??

I1

I2

Im
Single-Agent Test

Multi-Agent Test

Evaluated
Agent

Figure 4.3: A multi-agent test compared to a single-agent test. In a multi-agent (social)
intelligence test, other agents also interact (and become integral part) of the environment. In
order to assess the intelligence of the evaluated agent, we need to know the intelligence of the
other agents.

For the experiments, we use very simple reinforcement learning algorithms (section 2.2). The
goal is neither showing how these algorithms behave nor comparing them. We just use them
as off-the-shelf agents which can learn from an environment, in order to see how performance
is affected by the introduction of more agents in an environment. Rather, the true goal is to
analyse the behaviour of intelligence tests when environments are populated with agents, and
how this affects the results of the evaluated agent. To have a broad picture, we examine several
scenarios, some with competition and some with cooperation.

To evaluate social intelligence we need to develop intelligence tests in multi-agent scenarios.
An easy way to achieve this is by adapting an existing intelligence test proposal into a multi-
agent setting. This is what we do below.

4.3.1 Extending a General Intelligence Test to Consider Several
Agents

The adaptation of the general intelligence test presented above to a multi-agent scenario gives
us a fast and easy way to analyse what happens when we try to evaluate an agent interacting
with other agents.

In particular we only need to consider how to include other agents in the environment.
First, we let the environment include more agents. All agents can move freely to other cells
independently of whether they are occupied or not by other agents. In other words, agents can
share a cell. And second, Good and Evil are also considered agents but, since they are not
even generally reactive, if no further agent is included, the environment cannot be considered
a proper multi-agent system. Therefore, the behaviour of Good and Evil is slightly modified in
such a way that they cannot step into a cell where any other agent is located. This re-introduces
some degree of reactivity (with respect to the prototype), even in the case where no further
agents other than Good and Evil are introduced.

4.3. Evaluation of Social Intelligence Using a General Intelligence Test 32

The first question when several agents are introduced in the space is how the rewards are
shared among them. A competitive, individualistic scenario is set by each agent trying to
improve its own rewards. But we must address what happens when two or more agents share
a reward unit. In such a case, one solution is to give as reward to each agent the reward unit
divided by the number of agents in that cell. A second, relatively more difficult, question is
how we can deal with cooperation. The easiest way of making this setting purely cooperative
is by just putting all the obtained reward units in the same bag, so giving as reward to each
agent an average of their reward units. With this, one should not be concerned about not
getting some reward unit itself if some other agent is able to get it instead. What matters is
the overall result. We can of course move between competition and cooperation by using the
notion of team. All the members of a team put their reward units in the same bag, and each
team should compete against the others as usual in games and economics.

Now we are ready to see what happens with a single-agent intelligence test when we convert
it into multi-agent. But before that, we need to determine the agents that we use for the
experiment. The agents are:

• Random: an agent which chooses randomly among the available actions using a uniform
distribution.

• Q-learning (section 2.2.1): the most common reinforcement learning algorithm. We use
the description of cells content as a state.

• SARSA (section 2.2.2): a well-known variant of Q-learning which also takes the future
action into account.

• QV-learning (section 2.2.3) (without eligibility trace): a variant of Q-learning which par-
tially resembles ActorCritic methods.

The three latter algorithms will be referred to as RL agents. In order to have a consistent view
of the experiments, the parameters for all the RL agents algorithms (learning rate α, discount
factor γ, random rate β and initial value Q0) were fine-tuned on the single-agent scenarios, by
using 1,000 exercises for each parameter variation, totalling a huge number of experiments to
set the optimal parameters.

4.3.2 Evaluating Agents Isolatedly

We start our experiments with the scenario where agents are just taken and evaluated isolatedly.
In addition, we just restrict the evaluation to environments which space has nine cells.

The result of figure 4.4 is clear (and consistent with the results in [57]). Random has an
average reward of 0, as predicted by the theory. The three RL agents are very slow learners
and only get closer to 0.5 after 10,000 time steps. Their behaviour is similar and the differences
are small.

4.3.3 Evaluating Agents in a Competitive Scenario

More interesting things can be observed when we switch to the competitive scenario. Here all
the agents are located in the space at the same time competing for reward units. As we can
see in figure 4.5 Random gets a value which is even lower than 0, since most of the positive

4.3. Evaluation of Social Intelligence Using a General Intelligence Test 33

0 2000 4000 6000 8000 10000

−1.0

−0.5

0.0

0.5

1.0

Time Step

R
es

ul
t

Random
Q−learning
SARSA
QV−learning

Figure 4.4: Isolated scenario. The four evaluated agents are evaluated independently over the
same test. Agents’ results (an average of rewards) after 10,000 time steps and 100 repetitions.

reward units are eaten by the other agents, leaving the negative rewards for Random. RL
algorithms have a very poor result (not reaching 0.02 in 10,000 time steps). This is explained
by the presence of Random, which makes the state-action tables of the RL algorithms grow
considerably.

0 2000 4000 6000 8000 10000

−0.04

−0.02

0.00

0.02

0.04

Time Step

R
es

ul
t

Random
Q−learning
SARSA
QV−learning
Average

Figure 4.5: The three RL agents along with Random are evaluated at the same time competing
for reward units. Agents’ results (an average of rewards) after 10,000 time steps and 100
repetitions.

Finally, in order to further confirm that the problem is the state-action table space, we
remove Random (which, given its random behaviour, can be considered noise), and we only
leave the RL agents. We also increase the number of time steps to 100,000. This is shown in
figure 4.6. Things improve slightly and, in the very long term, Q-learning and SARSA get close

4.3. Evaluation of Social Intelligence Using a General Intelligence Test 34

to 0.2, while QV-learning lags behind around 0.1. We see that just the presence of only two
other agents makes their tables so big that they require more than 100,000 time steps to derive
their Q values accurately.

0e+00 2e+04 4e+04 6e+04 8e+04 1e+05

−0.2

−0.1

0.0

0.1

0.2

Time Step

R
es

ul
t

Q−learning
SARSA
QV−learning
Average

Figure 4.6: The three RL agents are evaluated at the same time competing for reward units.
Agents’ results (an average of rewards) after 100,000 time steps and 100 repetitions.

Apart from the comparative results, we see that performance depends on the other agents’
policies, but especially on the ability of digesting the state-action table space, and how much
noise (e.g. from Random) can be handled. Finally, it is interesting to mention that one of the
properties of the Λ environment class that has been lost when other agents are introduced is
the notion of balancedness, since a random agent typically scores worse than 0.

4.3.4 Evaluating Agents in a Cooperative Scenario

The next scenario we want to explore is when the four agents are prompted to cooperate. This
is done by putting all the obtained reward units in the same bag, so the agents just see the
reward as the average of their reward units.

Figure 4.7 changes from figure 4.5 very significantly. How can it be that moving from a
competitive to a cooperative case we get worse results? The explanation is a little bit more
convoluted. The problem of cooperation is the way we assign rewards. Since the reward they
receive is the average of their reward units, it is much more difficult for them to determine the
goodness of their actions, since their rewards are affected by other agents’ movements. In other
words, they lose ‘individuality’.

This explanation is only part of the story if we compare figure 4.8 with figure 4.7 and
figure 4.6. In this case, where Random has been removed, the results are slightly better than
in the competitive case. However, this improvement is not uniform for the three RL agents.
SARSA is clearly benefited in this situation, next comes Q-learning, while QV-learning is less
able (or more altruistic) coping with the cooperation.

4.3. Evaluation of Social Intelligence Using a General Intelligence Test 35

0 2000 4000 6000 8000 10000

−0.04

−0.02

0.00

0.02

0.04

Time Step

R
es

ul
t

Random
Q−learning
SARSA
QV−learning
Average

Figure 4.7: The three RL agents along with Random are evaluated at the same time cooperating
for reward units (all the agents are in the same team). Agents’ results (an average of rewards)
after 10,000 time steps and 100 repetitions.

0e+00 2e+04 4e+04 6e+04 8e+04 1e+05

−0.2

−0.1

0.0

0.1

0.2

Time Step

R
es

ul
t

Q−learning
SARSA
QV−learning
Average

Figure 4.8: The three RL agents are evaluated at the same time cooperating for reward units
(all the agents are in the same team). Agents’ results (an average of rewards) after 100,000
time steps and 100 repetitions.

4.3.5 Scenario Measuring Both Competition and Cooperation

Finally, we examine another scenario where we now have competition and cooperation at the
same time, using the notion of ‘team’. We define two teams, one with two Q-learning agents
and the other one with two SARSA agents. Inside each team, the obtained reward units go to
the same bag, but different teams compete for the reward units. This is shown in figure 4.9. In
general, the results are poorer than with three agents in the cooperative case (figure 4.8). This
can be explained because here we have four agents instead of three, but also because having

4.3. Evaluation of Social Intelligence Using a General Intelligence Test 36

two teams is a more complex scenario than having just one.

0e+00 2e+04 4e+04 6e+04 8e+04 1e+05

−0.2

−0.1

0.0

0.1

0.2

Time Step

R
es

ul
t

Q−learning
Q−learning
SARSA
SARSA
Q−learning Average
SARSA Average

Figure 4.9: Two teams scenario. One team with two Q-learning agents against another team
with two SARSA agents. Agents’ results (an average of rewards) after 100,000 time steps and
100 repetitions.

The results show that there are no significant differences between both teams. However,
there are important differences between the components of each team. This can be observed in
figure 4.9, where we assign the best results in the team to the first entry and the worst results
to the second entry. So, the plot just shows the difference in (average) performance between
the best and the worst component in the team. We see that this difference is very significant.
While usually an agent in the team performs around 0.1, the other agent stays at a very low
result close to 0. It is not clear which role this second agent takes.

4.3.6 Discussion

We have analysed several multi-agent scenarios. A test which was originally designed to mea-
sure the intelligence of an agent in an environment without other agents is adapted to other
scenarios where other agents are introduced in the environment, including cooperation and
competition. As expected, working with many agents makes things much more complex. We
see that performance can be seriously degraded by the inclusion of other agents with null in-
telligence, as a random agent. This is surprising if we look at this from the point of view of
game theory (two-player games, in particular), but it is much more natural if we realise that
it is more difficult to attain a goal if there is another agent bugging around (even randomly).
This is extreme in the case of RL agents, because they cannot learn that random agents are
just noise.

All this means that the difficulty of a task is no longer related to the complexity of the
patterns in the environment in a tight way, as it was for the single-agent situation. We can see
this by comparing the complexity of the environment (excluding the evaluated agents) and the
results for the scenarios where only the three RL agents are used, i.e. figure 4.6 and figure 4.8.
In order to approximate the environment complexity, we use the size of a compressed coding of
the concatenation of the description of the space S and the description of the pattern for Good

4.3. Evaluation of Social Intelligence Using a General Intelligence Test 37

and Evil, denoted by P . More formally, we calculate an approximation to its (Kolmogorov)
complexity, denoted by Kapprox as Kapprox = LZ(S, P) where LZ is just the ‘gzip’ method
given by the memCompress function in R, a GNU project implementation of Lempel-Ziv
coding [145]. This comparison is shown in figure 4.10. We see that there is still a relation
between the complexity of the environment and the result, while this relation is stronger for
Q-learning and SARSA in the cooperative case. In fact, the results for Q-learning and SARSA
are very good when the complexity is very low. This means that in very simple cases RL agents
are able to perform well, even in social scenarios. This seems to suggest that the difficulty of
a social environment is a cumulative issue, which adds the complexity of the environment and
the complexity/performance/noise of other agents.

●

●

50 100 150 200 250 300

−1.0

−0.5

0.0

0.5

1.0

Complexity

R
es

ul
t ●

●

●

●
●

●

●

●
● ● ●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

● ●

●
●

●

●
●●

●

●

●

●

●

●
● ●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●
● ● ●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

● ●

●
●

●

●
●●

●

●

●

●

●

●
● ●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●
● ● ●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

● ●

●
●

●

●
●●

●

●

●

●

●

●
● ●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●
● ● ●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

● ●

●
●

●

●
●●

●

●

●

●

●

●
● ●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●
● ● ●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

● ●

●
●

●

●
●●

●

●

●

●

●

●
● ●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●
● ● ●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

● ●

●
●

●

●
●●

●

●

●

●

●

●
● ●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●
● ● ●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

● ●

●
●

●

●
●●

●

●

●

●

●

●
● ●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●
● ● ●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

● ●

●
●

●

●
●●

●

●

●

●

●

●
● ●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●
● ● ●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

● ●

●
●

●

●
●●

●

●

●

●

●

●
● ●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●
● ● ●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

● ●

●
●

●

●
●●

●

●

●

●

●

●
● ●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●
● ● ●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

● ●

●
●

●

●
●●

●

●

●

●

●

●
● ●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●
● ● ●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

● ●

●
●

●

●
●●

●

●

●

●

●

●
● ●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●
● ● ●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

● ●

●
●

●

●
●●

●

●

●

●

●

●
● ●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●
● ● ●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

● ●

●
●

●

●
●●

●

●

●

●

●

●
● ●

●

●

●

●

●
●●

●

● Q−learning
SARSA
QV−learning

(a) Competitive scenario.

●

●

50 100 150 200 250 300

−1.0

−0.5

0.0

0.5

1.0

Complexity

R
es

ul
t

●

●

●

● ●

●
●●

●
●

● ●●

●

●

●

●
●

●

● ●
●

●

●
●

● ●

●

●● ●●
●

●

●
●

● ●

●

●

●●

● ●

●

●

●●
●●

●

●

●

● ●

●

●

●

●

●● ●

●

●●
●

●

● ●
● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●●

●
●

● ●●

●

●

●

●
●

●

● ●
●

●

●
●

● ●

●

●● ●●
●

●

●
●

● ●

●

●

●●

● ●

●

●

●●
●●

●

●

●

● ●

●

●

●

●

●● ●

●

●●
●

●

● ●
● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●●

●
●

● ●●

●

●

●

●
●

●

● ●
●

●

●
●

● ●

●

●● ●●
●

●

●
●

● ●

●

●

●●

● ●

●

●

●●
●●

●

●

●

● ●

●

●

●

●

●● ●

●

●●
●

●

● ●
● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●●

●
●

● ●●

●

●

●

●
●

●

● ●
●

●

●
●

● ●

●

●● ●●
●

●

●
●

● ●

●

●

●●

● ●

●

●

●●
●●

●

●

●

● ●

●

●

●

●

●● ●

●

●●
●

●

● ●
● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●●

●
●

● ●●

●

●

●

●
●

●

● ●
●

●

●
●

● ●

●

●● ●●
●

●

●
●

● ●

●

●

●●

● ●

●

●

●●
●●

●

●

●

● ●

●

●

●

●

●● ●

●

●●
●

●

● ●
● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●●

●
●

● ●●

●

●

●

●
●

●

● ●
●

●

●
●

● ●

●

●● ●●
●

●

●
●

● ●

●

●

●●

● ●

●

●

●●
●●

●

●

●

● ●

●

●

●

●

●● ●

●

●●
●

●

● ●
● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●●

●
●

● ●●

●

●

●

●
●

●

● ●
●

●

●
●

● ●

●

●● ●●
●

●

●
●

● ●

●

●

●●

● ●

●

●

●●
●●

●

●

●

● ●

●

●

●

●

●● ●

●

●●
●

●

● ●
● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●●

●
●

● ●●

●

●

●

●
●

●

● ●
●

●

●
●

● ●

●

●● ●●
●

●

●
●

● ●

●

●

●●

● ●

●

●

●●
●●

●

●

●

● ●

●

●

●

●

●● ●

●

●●
●

●

● ●
● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●●

●
●

● ●●

●

●

●

●
●

●

● ●
●

●

●
●

● ●

●

●● ●●
●

●

●
●

● ●

●

●

●●

● ●

●

●

●●
●●

●

●

●

● ●

●

●

●

●

●● ●

●

●●
●

●

● ●
● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●●

●
●

● ●●

●

●

●

●
●

●

● ●
●

●

●
●

● ●

●

●● ●●
●

●

●
●

● ●

●

●

●●

● ●

●

●

●●
●●

●

●

●

● ●

●

●

●

●

●● ●

●

●●
●

●

● ●
● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●●

●
●

● ●●

●

●

●

●
●

●

● ●
●

●

●
●

● ●

●

●● ●●
●

●

●
●

● ●

●

●

●●

● ●

●

●

●●
●●

●

●

●

● ●

●

●

●

●

●● ●

●

●●
●

●

● ●
● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●●

●
●

● ●●

●

●

●

●
●

●

● ●
●

●

●
●

● ●

●

●● ●●
●

●

●
●

● ●

●

●

●●

● ●

●

●

●●
●●

●

●

●

● ●

●

●

●

●

●● ●

●

●●
●

●

● ●
● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●●

●
●

● ●●

●

●

●

●
●

●

● ●
●

●

●
●

● ●

●

●● ●●
●

●

●
●

● ●

●

●

●●

● ●

●

●

●●
●●

●

●

●

● ●

●

●

●

●

●● ●

●

●●
●

●

● ●
● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●●

●
●

● ●●

●

●

●

●
●

●

● ●
●

●

●
●

● ●

●

●● ●●
●

●

●
●

● ●

●

●

●●

● ●

●

●

●●
●●

●

●

●

● ●

●

●

●

●

●● ●

●

●●
●

●

● ●
● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● Q−learning
SARSA
QV−learning

(b) Cooperative scenario.

Figure 4.10: Relation between environment complexity and agents’ result for the scenarios
where only the three RL agents are used. Linear regression is also shown for each agent.

In fact, it would be extremely informative (with regard to the creation of universal envi-
ronments) to repeat the experiment performed with humans and RL agents in [62] by using
one of these simple multi-agent environments. We guess that while humans would still be able
to manage, the collapse that we observe in the RL agents would show that the mere introduc-
tion of some simple social behaviour may show the real differences between these two types of
agents. We guess that humans will still be able to manage, mostly because they handle noise
much better and the real differences with RL agents would show up.

However, before constructing a social intelligence test based on these ideas, we need to
better understand some phenomena that take place when we include other agents and let them
compete and cooperate. Naturally, many other experiments must be done before embarking
on the challenge of a true (and feasible) social intelligence test. In this regard, the experiments
shown in this section could be extended in many ways. For instance, for the RL agents, we only
consider model-free techniques whose search space grows geometrically as more agents are there.
It would be interesting to see the results for model-based techniques or RL algorithms using
function approximations, as well as other RL algorithms which work better when the Markov
property does not hold (which is the general case in multi-agent systems). Also, some other RL

4.3. Evaluation of Social Intelligence Using a General Intelligence Test 38

algorithms which are specialised for multi-agent settings, such as Frequently Adjusted Multi-
agent Q-learning [64] might give different results. Other issues which could be reconsidered
is the way we modify the reward system to make the test competitive or cooperative. One
possibility would be to remove the agents Good and Evil and let all the agents (and perhaps
other objects) be able to generate rewards for the other agents. This would make things more
difficult, but it would allow for more elaborate scenarios for competition, cooperation and
communication.

Summing up, in order to evaluate social intelligence, we have pushed forward the idea
of ‘multi-agent intelligence test’, which is a situated intelligence test where there are other
agents in the environments. This is a new notion, since the kind of intelligence tests we are
used to are typically those where the evaluated agent has to solve some tasks or where it has
to be interrogated by other agents (interviews, Turing test, etc.), but the other agents are
not inside the test. The closest notion is an old companion of artificial intelligence, games,
especially multiplayer games, but it has only been recently proposed as a testbed for measuring
intelligence [44]. However, the role of the opponent and its intelligence has not been clarified
to date, especially if we want a test to give an absolute result, not only comparing a pair of
agents.

Chapter 5

Defining Social Intelligence Universally

Once analysed the implications about the evaluation of an agent interacting with other agents,
we can make our first steps towards the creation of a social intelligence test. In particular, the
social intelligence test we are looking for should have the following requirements:

• It evaluates social intelligence for all kinds of interactive systems or species.

• Its measurement can be directly obtained from the operational definition.

• The evaluee has to interact in the environments with other agents.

• The evaluee has to use its social abilities and their consequences have to be perceived.

• The agent’s performance is affected when the agent has to compete and cooperate with
other socially intelligent agents.

• The evaluated agent must use its social intelligence to understand and/or have influence
over other agents’ policies in such a way that this is useful to accomplish its goals.

• The role every agent takes in the environment is relative to the agent to evaluate.

And, obviously, other requirements that every test should have, among others:

• It must be a finite procedure that can be feasibly applicable to an agent.

• It should be applied in a reasonable period of time to be practical.

• The exercises included in the test have to discriminate, with respect to the overall result,
between non-similar agents.

In order to formally measure an ability, it seems clear that the first thing we need is a
precise and formal definition about what we want to measure. in such a case, a formal social
intelligence definition.

39

40

One way of reaching a universal definition of social intelligence is to consider more specific
definitions and generalising them for any kind of subject. Thorndike’s definition of social
intelligence refers to “men, women, boys and girls” [113]. The approach we propose would
generalise Thorndike’s view with the variety of species in animal cognition, but also including
machines, robots and other artificial systems. This is in the spirit of universal psychometrics
[46], where we must consider any kind of agent (natural or artificial). Any of these systems
can, in principle, be evaluated and can also be subject of interaction with the evaluee.

This approach can take us to definitions such as “performance of an agent in a wide range
of environments while interacting with other agents” [56], as carried out along the previous
chapter. As a result, we see clearly that social intelligence is a relative property, where we need
to specify these other agents (and the range of environments)1.

With this approach, we distinguish those traits that have positive consequences on the
performance (rewards) from those that are associated to social intelligence but do not necessarily
lead to better performance (such as being generous, open, extroverted, etc.). In other words,
we understand that an agent is socially intelligent if it has the ability to perform better in a
social environment, but not if it is very sociable but showing very poor performance. In the
end, we want an operational definition such that its measurement can be directly linked to it,
and not derived by some other traits that are usually associated to social intelligence in humans
and animals.

So we must focus our attention on the specification of the set of environments used for mea-
suring and, most especially, on the characteristics of other agents. Nonetheless, it is important
to determine the role these agents take in the environment relative to the agent to evaluate.
For instance, the environment can be populated by very intelligent agents, but the possibilities
of an evaluated agent to achieve its goals depends on whether these agents are allies or enemies,
or more generally if they are cooperative or competitive. The key issue is to establish whether
the other agents’ goals and interests are compatible with one’s goals. The concept is complex,
as alliances can be created and broken even if no clear teams are established from the begin-
ning (which is an interesting property of social intelligence). Nonetheless we have to consider
the notion of role from the beginning and make it visible at the top, jointly with the kind of
environment and the kind of agents.

These roles or alliances determine two major social behaviours: cooperation and competi-
tion. These are in fact linked to the issue that some agents share some goals while some other
agents compete or are against other agents’ goals. If we think of rewards (with some kind of
utility function) as a general way of expressing goals, interests and even resources they share
or compete for, we can distinguish two major kinds of social intelligence:

Definition 6. Competitive social intelligence is the capability to obtain the best performance
in a multi-agent environment where other agents compete for the same rewards.

Definition 7. Cooperative social intelligence is the capability to obtain the best performance
in a multi-agent environment where other agents share the same rewards.

Note that both definitions are not exclusive, as there are environments where both com-
petitive and cooperative behaviours are possible. This is similar to the several degrees of
general-sum games in game theory. Nonetheless, it would be very useful to have some way to
analyse competition and cooperation separately (as two main facets of social intelligence). How

1Note that the evaluee should not know the environments and agents with which it will be evaluated in order
to avoid overspecialisation in the evaluation.

5.1. Teams 41

clear-cut such separation can be done is an open question, as both abilities are occasionally
correlated. For instance, the creation of alliances in a purely competitive scenario leads to
temporary or permanent cooperation, where the other agents are seen in an instrumental way.
In figure 5.1 we can see how these competitive and cooperative social intelligences are related
to social (and general) intelligence.

Social
Intelligence

Cooperative
Social

Intelligence

Competitive
Social

Intelligence

General
Intelligence

Figure 5.1: Venn diagram showing the relations between social intelligence types.

In what follows, we see how these informal definitions can be formalised and integrated.

5.1 Teams

We need to address a characterisation of agent slots, such that we can specify how agents par-
ticipate in the environment. This actually means that we need to decide how the environment
distributes rewards among the agents. An easy possibility will be to make each agent get its
rewards without further constraints over other agents’ rewards. With this configuration (e.g.
general-sum games), both competition and cooperation may be completely useless for most
environments, as the rewards are not limited or linked to the other agents. In contrast, if we
set that the total set of rewards is limited in some way, we will foster competition, as happens
in zero-sum games. But in any of these two cases it is not ensured that cooperation will occur.
Alliances and coalitions [14, 36, 89, 15, 95] could arise sporadically between at least two agents
in order to improve their rewards, probably by bothering or defending against a third agent.
However, with low levels of social intelligence, alliances and coalitions seem unlikely to happen,
since they would need some predisposed social abilities to maintain them in groups. For this
reason, we need to find a way to make agents cooperate, or at least to make it more likely
before any (sophisticated) alliance or coalition can emerge on its own. One possible answer to
make the agents compete and/or cooperate is the use of teams, defined as follows:

Definition 8. Agent slots i and j are in the same team iff for every time step k any agents in
i and j obtain the exact same reward regardless of which agents are present in the multi-agent
environment.

5.2. Multi-Agent Environment Using Teams 42

which means that all agents in a team receive exactly the same rewards. This differs from
alliances and coalitions, where the agents could receive different rewards. In fact, teams are
fixed and cannot be changed by the agents. Also, we do not use the terms alliance or coalition
as we do not use any sophisticated mechanism to award rewards, related to the contribution of
each agent in the team, as it is done with the Shapley Value [99]. We just distribute rewards
equitably. However, teams also allow the formation of alliances or coalitions between several
(possibly individual) teams, or also between agents of different teams.

The inclusion of teams is a useful tool to evaluate the agents’ abilities for cooperation and/or
competition. In fact, in AI and game theory, we tend to characterise environments depending
on their payoff structures as, for example, cooperative, (pure) competitive or conflicting interest
games. This characterisation relies on the distribution of the rewards obtained by the agents,
which typically depends on whether agents have similar, different or independent goals. The
inclusion of teams allows us to explicitly arrange agents with similar goals in the same team,
while arranging agents with different or independent goals in other teams.

5.2 Multi-Agent Environment Using Teams

At this moment, we are ready to define a multi-agent environment with parametrised agents
by only specifying its agent slots and team arrangement.

Definition 9. A multi-agent environment µ accepting N(µ) agents (i.e. the number of agent
slots in µ) is a tuple ⟨O,A,R, ω, ρ, τ⟩, where O, A, R represent the observation sets, action
sets and reward sets respectively (i.e. O = (O1, . . . ,ON(µ)), A = (A1, . . . ,AN(µ)) and R =
(R1, . . . ,RN(µ))) and ω and ρ are the observation function and reward function respectively.
Finally, τ is a partition on the set of agent slots {1, . . . , N(µ)}, where each set in τ represents
a team.

Note that with this definition the agents are not included in the environment. For instance,
noughts and crosses (tic-tac-toe) could be defined as an environment µnc with two agents, where
τ = {{1}, {2}} defines the partition of agent slots into teams, which represents that this game
allows two teams, and one agent in each. Another example is RoboCup Soccer [67], whose τ
would be {{1, 2, 3, 4, 5}, {6, 7, 8, 9, 10}}, which represents that there are two teams, with agent
slots {1, 2, 3, 4, 5} in one team and agent slots {6, 7, 8, 9, 10} in the other team.

Some environments typically do not take into account whether the agent slots are part of a
team to provide them with rewards, having that Ri and Rj can be different even when i and
j are in the same team. Following this idea, for any agent slot i and time step k, we denote
ri,k ∈ Ri as an individual reward. Here, in order to ensure the equality relation of rewards
between agents in the same team (definition 8), we just provide for each agent slot i in that
team and any time step k with what we denote as team reward r̄i,k (this is the actual reward
obtained by the agents), calculated as the mean of their members’ individual rewards:

∀k, t ∈ τ : r̄i,k =
1

|t|
∑
i∈t

ri,k (5.1)

where k is the time step, τ is the partition of agent slots into teams and |t| is the number of
agent slots in t.

5.3. Agents’ Setup 43

5.3 Agents’ Setup

Once environments are defined, without including the agents, now we can define an instantiation
of an environment with a particular agent line-up. Formally, a line-up l is a list of agents.
For instance, if we have an agent set Π = {π1, π2, π3, π4}, a line-up from this set could be
l1 = (π2, π3). The use of the same agent twice is allowed, so l2 = (π1, π1) is also a line-up. We
denote by µ[l] the instantiation of an environment µ with a line-up l in such a way that the ith
agent of l occupies the agent slot i of µ, provided that the length of l is greater than or equal to
the number of agents allowed by µ (if l has more agents, the excess is ignored). For instance,
for the noughts and crosses, an instantiation would be µnc[l1]. Note that different instantiations
over the same environment would normally lead to different results.

When evaluating an agent in a multi-agent environment, it is usually desired not to evaluate
it in all agent slots, but only in some of them (as, for example, when evaluating the goalkeeper
in soccer), and use the rest of agent slots to populate the multi-agent environment with the
agents we want it to interact with. Since line-ups could take into account undesired situations,
where the agent to evaluate is located in an undesired agent slot, we make use of agent line-up
patterns. An agent line-up pattern l̇ is a list of agents where one or more elements are not
instantiated. We can instantiate (or insert) an agent into a non instantiated position to create
more specific line-up patterns. The instantiation of an agent π at position i on line-up pattern

l̇ of length n is denoted by l̇
i← π, which is exactly l̇1:(i−1) · π · l̇(i+1):n, where l ·m denotes the

concatenation of lists l and m and lj:k denotes the elements in l from position j to k. This

notation can be extended to instantiate several agents simultaneously using l̇
i,...,j← π1, . . . , πn to

represent l̇
i← π1 · · ·

j← πn. Once a line-up pattern l̇ has all its elements instantiated becomes
a line-up l. For instance, a line-up pattern for the agent set Π could be l̇3 = (π3, ∗), where ∗
represents an element that is not instantiated, and l̇3

2← π4 instantiates position 2 with agent
π4, converting the line-up pattern into the line-up l3 = (π3, π4). Note that environments can
only be instantiated with line-ups, so first we need to instantiate all the elements from a line-up
pattern to convert it to a line-up, and then use it to instantiate the multi-agent environment.

We use L̇n
−i,...,j(Π) to denote the set of all the line-up patterns of length n with agents of Π

where positions i, . . . , j are not instantiated. For instance, L̇n
−i(Π) defines the set of all possible

line-up patterns {l̇1:i−1 · ∗ · l̇i+1:n} using agents from Π.
We typically use a line-up pattern with positions i, . . . , j not being instantiated to evaluate

agents in agent slots i, . . . , j of an environment, while the rest of positions in the line-up pattern
contains the agents they have to interact with.

We use discrete weight functions of non-negative rational numbers2 for the environments,
their agent slots and the line-up patterns. These weights represent each element relevance
within a set (or group) of elements. wM(µ) denotes a weight for environment µ from a certain
set M , wS(i, µ) denotes a weight for agent slot i of a certain environment µ and wL̇(l̇) denotes a
weight for a line-up pattern l̇ formed with agents from a certain set of agents Π, giving weights
to the agents in the line-up pattern and their positions. Note that both wM and wL̇ could be
integrated into a single weight wL̇,M(l̇, µ) for instantiated environments. However, we want to
decouple agents and environments and use both of them as independent parameters. To make
the agents and the environment independent we work with the next assumption.

Assumption 1. If wL̇,M(l̇, µ), where ∃i : l̇ ∈ L̇
N(µ)
−i (Π), is independent of µ then:

2We make use of rational numbers instead of real numbers to let the evaluation be computable.

5.4. A Formal Definition of Social Intelligence 44

∀l̇, µ : wL̇,M(l̇, µ) = wL̇(l̇)

which means that an agent line-up has the same weight (or importance) independently of the
multi-agent environment.

Finally, we use RK
i (µ[l]) to denote the expected result that the ith agent in l obtains in µ

(also in agent slot i) during K time steps. If K is omitted, we assume K = ∞. It might be
difficult to obtain an agent’s expected result when either µ and/or some of the agents in l are
stochastic. In order to obtain the expected result of an agent in such situations, some methods
(e.g. Monte Carlo at section 2.5) may be used to approximate this value.

5.4 A Formal Definition of Social Intelligence

Having these ideas in mind we can now attempt a first definition of social intelligence. We first
fix the line-up and vary on the possible environments.

Definition 10. We define the social intelligence of an agent π interacting in agent line-up l
which contains π at position i, over a set of multi-agent environments M accepting at least
i agents and at most |l| agents (being | · | the length of a list), weighting the multi-agent
environments by wM as:

Υi(l,M,wM) ,
∑
µ∈M

wM(µ)Ri(µ[l]) (5.2)

where |M | ≥ 1 and ∀µ ∈M : N(µ) ≥ 2.

When M contains two or more environments whose rewards have different domains, we could
just normalise their rewards. Another option when evaluating various agents is to rank them
for each environment according to their results, and use their ranks instead of their expected
results, allowing us to compare the ranking performance of several agents.

Alternatively, we can think about a definition of the social intelligence of an agent for a
varying set of line-up patterns while fixing the environment.

Definition 11. We define the social intelligence of an agent π in agent slot i, interacting in
a multi-agent environment µ accepting at least i agents, with a set of agent line-up patterns
defined over agent set Π and wL̇ as a weight for agent line-up patterns:

Υi(π,Π, wL̇, µ) ,
∑

l̇∈L̇N(µ)
−i (Π)

wL̇(l̇)Ri(µ[l̇
i← π]) (5.3)

where N(µ) ≥ 2 and |Π| ≥ 1.

Note that now l̇ has always N(µ) elements when instantiated, so now no upper restriction
exists over the number of agent slots of µ.

We can integrate both equations 5.2 and 5.3, also summing the performance over all possible
agent slots of the environments of M , weighting the agent slots of each environment by wS as
follows:

5.4. A Formal Definition of Social Intelligence 45

Definition 12. The social intelligence of π interacting with the class of agents Π with a weight
for agent line-up patterns wL̇, in a set of multi-agent environments M with a weight for multi-
agent environments wM and a weight for agent slots wS is defined as:

Υ(π,Π, wL̇,M,wM , wS) ,
∑
µ∈M

wM(µ)

N(µ)∑
i=1

wS(i, µ)
∑

l̇∈L̇N(µ)
−i (Π)

wL̇(l̇)Ri(µ[l̇
i← π]) (5.4)

where |M | ≥ 1,∀µ ∈M : N(µ) ≥ 2 and |Π| ≥ 1.

This equation now relaxes the lower restriction of the number of agent slots on the environments
to be at least 2.

The interpretation of the above definition is the expected performance of agent π interacting
with all possible instantiated environments generated using the set of agents Π and set of
environments M , with π interacting in all possible agent slots in each environment. When we
are interested in evaluating the social intelligence in the broadest way, we need to instantiate
the set of environments M and agents Π with classes of environments and agents respectively
that cover this ability appropriately, or use two infinite sets with all possible social environments
and agents3. To measure this ability for a particular situation, M and Π can be instantiated
with the variables of interest, such as suggested for M in [112] for the evaluation of intelligence.

When every environment in M gives several rewards, each of which indicating the agent’s
performance to achieve a particular goal, definition 12 can be easily extended by giving a weight
to each goal.

But it is not necessary to build specific line-up patterns for each environment. Instead,
environments and line-up patterns can be independently provided beforehand, without need of
being interrelated. For this purpose, the positions of the agents in the line-up patterns can be
assumed independent:

Assumption 2. If wΠ(π, i) defines the weight for the agent π appearing at position i in a
line-up pattern, we assume that the agent has the same weight independently of its position.
Formally:

∀π, i : wΠ(π, i) = wΠ(π)

Under assumption 2, wL̇ can be derived as a function of terms from wΠ. Finally, we assume
that the line-up pattern weight only depends on its agents weights (independently of their
position).

Assumption 3. We calculate wL̇ as a product of agent weights wΠ as:

∀i, n,Π, l̇ ∈ L̇n
−i(Π) : wL̇(l̇) =

∏
1≤k<i

wΠ(l̇k:k)
∏

i<k≤n

wΠ(l̇k:k) (5.5)

3When using an infinite set with all possible social environments, the definition can be simplified. For every
environment µ1 and agent slot i in it, there is always an environment µ2 with exactly the same behaviour where
agent slot i becomes 1. That means that, after properly adjusting environment weights wM , we could easily
get rid of the summation over agent slots and work just with agent slot 1 for agent π. In other words, this
would be like considering that the evaluated agent always interacts in agent slot 1. For practical reasons, when
using a finite set of environments we included agents slots in order to avoid the tedious work of defining several
environments for the same domain.

5.4. A Formal Definition of Social Intelligence 46

Now we can obtain the expected performance of agent π interacting with all possible line-up
patterns generated using the set of agents Π, and in a set of environments M with π interacting
in all possible agent slots in each environment.

Proposition 1. Under assumption 3, social intelligence as per equation 5.4 is also defined as:

Υ(π,Π, wL̇,M,wM , wS) =

=
∞∑
j=2

j∑
i=1

∑
l̇∈L̇j

−i(Π)

(∏
1≤k<i

wΠ(l̇k:k)
∏

i<k≤j

wΠ(l̇k:k)

) ∑
µ∈Mj

wM(µ)wS(i, µ)Ri(µ[l̇
i← π])

where M j denotes all the environments in M with j agent slots, |M | ≥ 1 and |Π| ≥ 1.

Proof. Definition 12 ranges over environments, their agent slots and then over line-up pat-
terns, but we could express an equivalent equation by ranging over line-up patterns first and
environments and their agent slots next:

Υ(π,Π, wL̇,M,wM , wS) =
∑
µ∈M

wM(µ)

N(µ)∑
i=1

wS(i, µ)
∑

l̇∈L̇N(µ)
−i (Π)

wL̇(l̇)Ri(µ[l̇
i← π]) =

ass.3
=
∑
µ∈M

wM(µ)

N(µ)∑
i=1

wS(i, µ)
∑

l̇∈L̇N(µ)
−i (Π)

 ∏
1≤k<i

wΠ(l̇k:k)
∏

i<k≤N(µ)

wΠ(l̇k:k)

Ri(µ[l̇
i← π]) =

=
∞∑
j=2

∑
µ∈Mj

wM(µ)

j∑
i=1

wS(i, µ)
∑

l̇∈L̇j
−i(Π)

(∏
1≤k<i

wΠ(l̇k:k)
∏

i<k≤j

wΠ(l̇k:k)

)
Ri(µ[l̇

i← π]) =

=
∞∑
j=2

j∑
i=1

∑
l̇∈L̇j

−i(Π)

(∏
1≤k<i

wΠ(l̇k:k)
∏

i<k≤j

wΠ(l̇k:k)

) ∑
µ∈Mj

wM(µ)wS(i, µ)Ri(µ[l̇
i← π])

This shows how we can parametrise the definition in terms of the weight of the other
participants (wΠ) independently of their order in line-up patterns. For instance, the weight for
each agent could depend on its (social) intelligence, provided we are able to estimate this value.
The use of a product of weights makes sense if wΠ is a unit measure.

Proposition 1 is not only useful for parametrising the definition in terms of the agents in
isolation, but also because it decouples agents from environments. This makes sense in the
context of social intelligence evaluation, as we want to consider other agents that are able to
work in different environments, and not very specific agents that only work in one environment.

Definition 12 and its reformulation by proposition 1 integrates all kinds of social behaviour,
as it does not distinguish between agents appearing in the same team or opponent teams. For
instance, if we consider a set Π with very intelligent agents, some environments (and line-up
patterns) will be easier if many of these agents appear in the same team, but will be harder if
they appear in opponent teams. Also, the aggregation may consider many other environments
where no social behaviour takes place, or even non-social agents. This means that the above
equations are a skeleton for the definition, but we still need to better analyse the pair (Π, wL̇)
or (Π, wΠ) and the trio (M , wM , wS).

5.5. Social Intelligence Test 47

5.5 Social Intelligence Test

A definition is not a test, most especially because many definitions range over infinite sets or an
infinite number of time steps. A test must be a finite procedure that can be feasibly applicable
to an agent. For the moment, we focus on non-adaptive tests, which are based on performing
just a finite number of finite experiments or exercises (episodes), which are independent of the
previous ones.

Consequently, a test to evaluate social intelligence is defined using the previous definition
of Υ(π,Π, wL̇,M,wM , wS), where Π is sampled with some distribution, M is sampled with
some distribution and the number of time steps for each experiment is limited in some way.
Sampling is understood to be without replacement when there is determinism (it does not make
sense to repeat the same exercise if the result is already known) but is understood to be with
replacement for non-deterministic agents or environments. We denote by S ∼n [A]p a sample S
of n elements from set A using probability distribution p for the powerset of A, i.e. for 2A, only
giving a probability > 0 to subsets with n elements. The use of a distribution over samples
instead of a distribution over exercises gives more flexibility about the conditions that we could
establish on the sampling procedure. For instance, we could define a sample probability such
that high diversity is ensured (apart from high accumulated relevance of the exercises that are
chosen) or such that a range of difficulties is covered. Keep in mind that with this definition, the
issues of with replacement or without replacement are re-understood as whether these samples
allow repeated values or not. With this notation, we can give the following definition of test:

Definition 13. A test over Υ (definition 12 in section 5.4), denoted by Υ̂[pΠ, pM , pS, pK , nE], is
a sample of nE exercises from all those summed in the definition, using agent distribution pΠ,
a multi-agent environment distribution pM , an agent slot distribution pS, and a distribution on
the number of time steps pK .

Υ̂[pΠ, pM , pS, pK , nE](π,Π, wL̇,M,wM , wS) , ηE
∑
⟨µ,i,l̇⟩∈E

wM(µ)wS(i, µ)wL̇(l̇)R
K
i (µ[l̇

i← π])

where ηE normalises the formula with ηE = 1∑
⟨µ,i,l̇⟩∈E wM (µ)wS(i,µ)wL̇(l̇)

, K is chosen using proba-

bility distribution pK and the exercises E are sampled as:

E ∼nE

 ⋃
µ∈M

N(µ)⋃
i=1

{〈
µ, i, l̇

〉
: l̇ ∈ L̇

N(µ)
−i (Π)

}
pE

with pE being a distribution on the set of triplets
〈
µ, i, l̇

〉
based on pM , pS and pΠ.

Note that we use pΠ for the line-up patterns, which could be the line-up pattern probabil-
ity derived as the product of the probabilities of each agent in the line-up pattern following
assumption 2, as in equation 5.5.

It is important not to confuse the probabilities of sampling the line-up patterns, environ-
ments, agent slots and number of time steps (pΠ, pM , pS, pK) with any weight defined on
them, in particular, the weights wL̇, wM and wS defined on line-up patterns, environments and
agent slots respectively. While weights represent the relevance of an environment, its agent
slots and line-up pattern for the definition (so it determines the abilities, roles and agents that

5.5. Social Intelligence Test 48

have higher weight in the formula), the distributions are just a way of sampling the usually
large or infinite set of environments, agent slots and agents. Weights and distributions might
be related (or may be equal in order to ensure fast convergence to the actual value), but some
other considerations may suggest that a less relevant case (low weight) can be sampled with
high probability, as it may be highly representative or more robust, for instance. Actually, we
want that a diversity of cases is sampled, rather than similar cases that will provide redundant
information. This is why we use a distribution on 2A and not on A because otherwise we would
not be able to measure how good (e.g. informative) a set of exercises is.

Chapter 6

Experimental Analysis for Several
Types of Environments and Agents

Social abilities may be more or less important depending on the situation the agent is facing.
It seems that the performance of cooperative agents should improve as the environment focuses
more on cooperation, as well as competitive agents in more competitive scenarios. In this
chapter we do some experiments to see whether, by the use of different partitions of agent
slots used to group agents together, the environment becomes a more cooperative (respectively
competitive) scenario and, therefore, cooperative (respectively competitive) agents improve
their results. We also analyse not only the impact of a particular environment, but also whether
the agents they have to face have relevance on their performance. In order to do so, we analyse
the results obtained by several agents with different social aptitudes (more competitive or
cooperative behaviours), while interacting in some environments with several partition of agent
slots and with different line-ups.

6.1 Experiment Configuration

We wished to use some agents specially designed for general cooperation and competition,
but since we could not find such agents (at least in a way they could be applied to several
environments without further assumptions or constraints), we had to use a general agent and
adapt it to be more socially interactive. We also wanted simple agents such that the analysis of
results were easier. For this experiments, we make use of some Q-learning agents (section 2.2.1).
In order to make them more or less cooperative/competitive oriented, we feed their state-action
Q values (i.e. rk in equation 2.1) with the result of a function based on their individual rewards
or team rewards (section 5.2). We call this their “motivation”.1 Here we show the agents used
for the experiments:2

1Note that the Q-learning agents we obtain are completely equal except for their motivations.
2Although technically agents do not have access to individual rewards, we assume they do since we are not

interested in providing realistic agents but only in evaluating agents.

49

6.1. Experiment Configuration 50

• Random: An agent whose actions are selected using a uniform distribution (section 2.4.1).

• QLSelfish: A Q-learning agent whose motivation is to increase its individual reward. The
original Q-learning behaviour without using teams.

• QLCommunal: A Q-learning agent whose motivation is to increase its team reward.

• QLMerciful: A Q-learning agent whose motivation is to increase the minimum individual
reward in its team.

• QLHarmful: A Q-learning agent whose motivation is to increase the difference between
its individual reward and the sum of the individual rewards of agents in other teams.

For this selection of agents we hypothesise that agents encouraging its team rewards are co-
operative or team-oriented, while agents only concerned about their own individual rewards or
about bothering other agents are competitive or self-oriented.

Now we show the pseudocode for the algorithm we use for the experiments (see algorithm 1).
Input variables are accessible in all functions. The QLearning agent has the typical Q-learning
behaviour. lr, df, rr, iv refer to the learning rate α, discount factor γ, random rate β and initial
value Q0 parameters for a Q-learning agent. We use Πe and Πo to respectively represent the
set of agents to evaluate and the set of agents to populate the environment. The algorithm
makes use of six functions: flatten, size and initialise have their standard interpretation, while
expectedResult, createLineups and train are defined below:

• expectedResult(µ, i, l,K, β) refers to the R function defined in section 5.3 (page 44) which
calculates the expected result of agent in the ith position of line-up l interacting in
environment µ (also in agent slot i) during K time steps. We use an average of rewards
as the utility function to calculate an agent’s result. The expected result of an agent
is approximated with a Monte Carlo method (section 2.5), approximating this value by
sampling β root-to-leaf paths (i.e. α = 0).

• createLineups(Π, S, π, i) creates the set of all line-ups with size(S) number of agents
(being S a set of agent slots), formed with agents from Π but ensuring that π is located
in agent slot i.

• train(µ, l, nE) creates a line-up with the agents of l in the same order after training them
interacting in environment µ during nE episodes (or exercises).

Following the definitions in chapter 5, we calculate the social intelligence of an agent in an
environment as its expected result3 interacting in all possible line-ups and agent slots using
uniform weights for wL̇ and wS. Before evaluating an agent in a line-up, all the agents in this
line-up are trained simultaneously (similarly as it is done in co-evolution [16]).

3The evaluation is actually calculated as the average of 200 repetitions to approximate the expected average
rewards of the agents.

6.1. Experiment Configuration 51

Algorithm 1 Experiment.

1: Input:
2: Se ◃ Agent slots where the agents are evaluated
3: T ◃ Partitions of agent slots where the agents are evaluated
4: µ ◃ Environment where the agents are evaluated
5: nE ◃ Number of episodes that the agents are trained
6: K ◃ Number of time steps that the agents interact with the environment
7: β ◃ Number of samples to approximate an agent’s expected result
8: Output:
9: results

1: Begin
2: ΠQL = {QLSelfish, QLCommunal, QLMerciful, QLHarmful}
3: initialiseQL(ΠQL)
4: Π = ΠQL∪ {Random}
5: return {(τ , evaluateAgents(Π,Π, τ)) | τ ∈ T}
6: End

1: procedure initialiseQL(ΠQL)
2: Params = {(lr, df, rr, iv) | lr ∈ [0.05, 0.15, . . . , 0.95] ∧ df ∈ [0, 0.1, . . . , 0.9] ∧ rr = 0.05 ∧ iv = 10}
3: bestParam = argmaxparam∈Params evaluateQLParam(param)
4: for all πQL ∈ ΠQL do
5: initialise(πQL, bestParam) ◃ Sets the parameters to a Q-learning agent
6: end for
7: end procedure

1: function evaluateQLParam(parameters)
2: initialise(QLearning, parameters) ◃ Sets the parameters to QLearning
3: return

∑
{ result | (QLearning, result) ∈ evaluateAgents({QLearning}, {Random}, τ) ∧ τ ∈ T }

4: end function

1: function evaluateAgents(Πe, Πo, τ)
2: agentsResult = ∅
3: S = flatten(τ) ◃ Flattens the structure into a set
4: initialise(µ, τ) ◃ Restructures the partition of agent slots of the environment
5: for all πe ∈ Πe do
6: agentResult = 0
7: for all i ∈ Se do
8: agentSlotResult = 0
9: L = createLineups(Πo, S, πe, i)
10: for all l ∈ L do
11: l̂ = train(µ, l, nE)

12: agentSlotResult += expectedResult(µ, i, l̂,K, β)
13: end for
14: agentResult += agentSlotResult / size(L)
15: end for
16: agentsResults = agentsResults ∪ (πe, agentResult / size(Se))
17: end for
18: return agentsResults;
19: end function

6.2. Prisoner’s Dilemma (3-Players Version) 52

6.2 Prisoner’s Dilemma (3-Players Version)

For our first experiment, we use the prisoner’s dilemma environment (section 2.1.2) which is a
simple and well-known game involving competition and cooperation. In order to better analyse
the importance of the partition of agent slots, we use a 3-players version4, where more complex
teams may exist. Next we explain the difference with the original version.

In this game, one or more prisoners (a team) are locked in the same jail cell, while the rest
of the prisoners are locked in other jail cell(s) in the same way. The prisoners that share a jail
cell have the same team reward (i.e. time avoided in prison), which is calculated as the mean
of all individual rewards of prisoners in that team. Each player can see the actions performed
by the other players. For the agent in agent slot i, the environment provides an observation
set Oi = Aj × Ak ∪ {λ} such that i ̸= j ̸= k ∧ j < k, and for each agent the observation
function ω returns the actions performed by the other agents in the previous time step or λ if
it is the first time step. In this game, three partitions of agent slots may exist: τ1 = {{1, 2, 3}},
τ2 = {{1, 2}, {3}} and τ3 = {{1}, {2}, {3}}. For this experiment we evaluate and analyse the
agents interacting in all of them and in all agent slots. Table 6.1 shows the individual reward
matrix5 for the agent in agent slot i (i.e. Ri), which has the actions of the agents in the three
agent slots as input and its individual reward as output.

Silent Betray
Silent 7 3
Betray 3 0

(a) Agent remains silent.

Silent Betray
Silent 9 5
Betray 5 1

(b) Agent betrays.

Table 6.1: Prisoner’s dilemma’s (a 3-players version) individual payoff matrix. Rows and
columns represent the actions of the agents in the other agent slots.

For this environment, according to algorithm 1, the parameters obtained for the Q-learning
agents are learning rate = 0.05 and discount factor = 0.6. Next we show the results obtained by
the agents for each partition of agent slots after first training them and then evaluating them
during 500 time steps with 100 Monte Carlo samples to approximate their expected results (an
average of rewards), and averaging over 200 repetitions.

In figure 6.1 (a) we see the results obtained for the 1-team partition of agent slots {{1,
2, 3}}. As we notice from the figure, having a cooperative behaviour, as QLCommunal and
QLMerciful do, provides far better results than non-cooperative behaviours. Also, competitive
oriented agents (QLSelfish and QLHarmful) obtain bad results, even worse than Random. It
could be argued that these results only represent the learning speed as if the agent were given
more time to learn they could reach similar values. In figure 6.1 (b) we see the results that the
agents obtain during the training phase, which show that this is not the case.

But regardless of the partition of agent slots, this environment is typically encouraging
cooperation over competition, so it could also be argued that the results are independent of the

4This 3-players version of the prisoner’s dilemma has been freely adapted from web page
http://www.classes.cs.uchicago.edu/archive/1998/fall/CS105/Project/node6.html

5The numbers in the matrix have been chosen to meet the following rules: “1) Betray should be the dominant
choice for each agent. 2) An agent should always be better off if more of the other agents choose to remain silent.
And, 3) if one agent’s choice is fixed, the other two agents should be left in a two-player prisoner’s dilemma.”

http://www.classes.cs.uchicago.edu/archive/1998/fall/CS105/Project/node6.html

6.2. Prisoner’s Dilemma (3-Players Version) 53

0

2

4

6

8

Agent

R
es

ul
t

Random QLSelfish QLCommunal QLMerciful QLHarmful

●
●

● ●

●

(a) Mean with standard error of the mean.

0 100 200 300 400 500

0

2

4

6

8

Time Step

R
es

ul
t

Random
QLSelfish
QLCommunal
QLMerciful
QLHarmful

(b) Training phase during 500 time steps.

Figure 6.1: Agents’ results for the partition of agent slots into teams {{1, 2, 3}} with 100
Monte Carlo samples to approximate their expected results (an average of rewards) and after
averaging over 200 repetitions.

partition of agent slots. In figure 6.2 (a) we see the results for another partition of agent slots
{{1, 2}, {3}}.

0

2

4

6

8

Agent

R
es

ul
t

Random QLSelfish QLCommunal QLMerciful QLHarmful

● ●
● ●

●

(a) Partition of agent slots into teams {{1, 2},
{3}}.

0

2

4

6

8

Agent

R
es

ul
t

Random QLSelfish QLCommunal QLMerciful QLHarmful

●

● ● ● ●

(b) Partition of agent slots into teams {{1}, {2},
{3}}.

Figure 6.2: Mean with standard error of the mean of agents’ results with 100 Monte Carlo
samples to approximate their expected results (an average of rewards) and after averaging over
200 repetitions.

After modifying the partition of agent slots, the picture changes slightly. Cooperative agents

6.3. Lambda Environment 54

still maintain better results than competitive agents, but the difference is smaller.
Finally, in figure 6.2 (b) we provide a 3-team partition of agent slots {{1}, {2}, {3}}. Here

we see how this modification has a clear impact on agents’ results. With this partition of
agent slots, after making the agents to have totally opposed goals, cooperative and competitive
agents’ results become quite similar. In fact, QLSelfish, QLCommunal and QLMerciful must
reach the same result since their behaviour in one team with only one agent is the same. Mean-
while, although QLHarmful is a competitive agent, it still has some difficulties to reduce other
agents’ rewards while increasing its owns. At least, with this 3-team partition of agent slots
the difference in performance between cooperative and competitive behaviours is drastically
reduced.

With this environment, we manage to show that it is possible to balance an environment
to a more cooperative/competitive scenario by placing agents in the same or different teams.
However, only one environment seems not enough to reach a conclusion. Next we show some
other environments.

6.3 Lambda Environment

The next environment (actually a prototype) we use for this experiment is the lambda envi-
ronment (section 4.2.1). Since this environment was initially designed for one agent, here we
extend it to include any number of agents, similarly as done in section 4.3.1 but with small
differences.

For this experiment, we instantiate environments with 6 cells and 3 actions, reward units
are divided by 2 after each time step, and the pattern of actions of Good and Evil is randomly
generated to have (on average) 6 actions. The environment is modified in such a way that teams
can exist. This modification is done straightforwardly by adding more agents to the environment
and placing them in teams. We let the environment have either 1, 2 or 3 agents, which leads
us to six different partitions of agent slots: τ1 = {{1}}, τ2 = {{1, 2}}, τ3 = {{1}, {2}},
τ4 = {{1, 2, 3}}, τ5 = {{1, 2}, {3}} and τ6 = {{1}, {2}, {3}}. Again, we evaluate and analyse
the agents interacting in all of them and in all agent slots.

In this environment, if we let the agents interact an infinite number of time steps, a Q-
learning agent usually obtains its maximum possible result. For this reason, we analyse in
which cases the Q-learning agents will reach their maximum possible result in the limit. Since
in most cases their final performance will be the same, here instead we are more concerned
about analysing their learning speed while dealing with other agents.

For this environment, according to algorithm 1, the parameters obtained for the Q-learning
agents are learning rate = 0.95 and discount factor = 0.3. Next we show the results of each
agent obtained for each partition of agent slots after first training them and then evaluating
them during 10,000 time steps with 5 Monte Carlo samples to approximate their expected
results (an average of rewards), and averaging over 200 repetitions.

In figure 6.3 (a) we see the results obtained for the partition of agent slots {{1}}. This
configuration is the same as the original lambda environment. As there is only one agent
interacting, all Q-learning agents’ behaviours are similar, so they have similar results. As
expected, Random obtains a result near to 0.

Next we include some cooperation into the environment by putting two agents in the same
team. In figure 6.3 (b) we see the results obtained for the partition of agent slots {{1, 2}}.
Here, QLMerciful has a lower result than the other Q-learning agents. This is because when it

6.3. Lambda Environment 55

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Agent

R
es

ul
t

Random QLSelfish QLCommunal QLMerciful QLHarmful

●

● ● ● ●

(a) Partition of agent slots into teams {{1}}.

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Agent

R
es

ul
t

Random QLSelfish QLCommunal QLMerciful QLHarmful

●

● ●

●

●

(b) Partition of agent slots into teams {{1, 2}}.

Figure 6.3: Mean with standard error of the mean of agents’ results with 5 Monte Carlo
samples to approximate their expected results (an average of rewards) and after averaging over
200 repetitions. Green and red dots respectively mean the agents reach or not their maximum
possible result after an infinite number of time steps.

has to interact with Random, it is trying to help it to obtain good rewards, but clearly Random
is not going to obtain good rewards by itself. In fact, Random obtains good rewards on this
configuration, but this is because the other agents share their reward units with it, so despite it
is no contributing to obtain good reward units, it is profiting from other agents’ reward units.

In figure 6.4 (a) we see the results obtained for the partition of agent slots {{1}, {2}}, where
agents are placed in different teams, having opposed interests. Here, agents have to compete for
reward units and competition is encouraged. As a result, Q-learning agents have good results,
since they only have to take care of their own. Also, QLHarmful obtains a slightly worse result
than the other Q-learning agents, since it also wants to decrease others rewards, this makes it
to sometimes lose good rewards.

Next we increase the number of agents to see more diversity in the teams. In figure 6.4 (b)
we see the results obtained for a partition of agent slots with three agents {{1, 2, 3}}, where
all of them are arranged in the same team. Once we move to a configuration with three agents,
Q-learning agents need much more time to reach their best results. This configuration has a lot
of agents interacting together, so Q-learning agents need much more time to distinguish which
part of the rewards comes from their own actions and which from other agents’ actions. We
also see that QLSelfish and QLHarmful learn faster than the other agents. This is because they
behave to obtain good rewards by themselves and they do not take into account other agents’
rewards.

In figure 6.5 (a) we see the results obtained for the next partition of agent slots {{1, 2}, {3}},
where we have two teams with one agent in one team and two agents in the other, obtaining
both cooperation and competition, which makes it a more interesting configuration to analyse.
First, Random is evaluated in more cooperative scenarios than competitive ones, so it is taking
more advantage of the good reward units shared by the other agents, than reward units lost

6.3. Lambda Environment 56

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Agent

R
es

ul
t

Random QLSelfish QLCommunal QLMerciful QLHarmful

●

● ● ●
●

(a) Partition of agent slots into teams {{1}, {2}}.

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Agent

R
es

ul
t

Random QLSelfish QLCommunal QLMerciful QLHarmful

●

●
●

●

●

(b) Partition of agent slots into teams {{1, 2,
3}}.

Figure 6.4: Mean with standard error of the mean of agents’ results with 5 Monte Carlo
samples to approximate their expected results (an average of rewards) and after averaging over
200 repetitions. Green and red dots respectively mean the agents reach or not their maximum
possible result after an infinite number of time steps.

when interacting alone. As occurred in previous cooperative configurations, QLMerciful loses
some good rewards since it is sometimes in the same team than Random, making its behaviour
of helping its teammate useless. Again, QLSelfish is the fastest Q-learning agent to obtain its
best result, and again it is because it does not have to consider the results of the other agents.
QLCommunal also leads to good results, but it is not as fast as QLSelfish, since it also has
to adapt to its teammate’s actions. QLHarmful is usually satisfied when the opponent team
obtains bad rewards, forgetting to improve its own rewards, making it to slowly learn how to
correctly achieve good results.

Finally, in figure 6.5 (b) we see the results obtained for the partition of agent slots {{1}, {2},
{3}}, where the three agents have opposed interests. Here we see that QLSelfish, QLCommunal
and QLMerciful reach similar results as expected, since none of them have to take into account
other agents in their team. But QLHarmful takes longer to reach the same result, since it also
has to concern about making decrease other agents’ rewards. In fact, these results are similar
(not regarding agents’ results numbers, but their grading) to partition of agent slots {{1}, {2}}
shown in figure 6.4 (a), since agents are similarly arranged into teams by only having one agent
on each team.

With this environment, we could see that QLSelfish is learning faster to obtain better
rewards, and the other Q-learning agents take more time to reach the same results (or they
never reach them). This is because QLSelfish does not take into account the actions of the
other agents, which can be considered as noise, so they do not distract it to perform well.

Although this same environment has been used in section 4.3, the goal of this experiment
is clearly different. Here we are interested in analysing the effect that team partitions have on
agents that have some social behaviours. Here we show an example where partitions of agent

6.4. Predator-Prey (Pursuit Game) 57

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Agent

R
es

ul
t

Random QLSelfish QLCommunal QLMerciful QLHarmful

●

●
●

● ●

(a) Partition of agent slots into teams {{1, 2},
{3}}.

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Agent

R
es

ul
t

Random QLSelfish QLCommunal QLMerciful QLHarmful

●

● ● ●

●

(b) Partition of agent slots into teams {{1}, {2},
{3}}.

Figure 6.5: Mean with standard error of the mean of agents’ results with 5 Monte Carlo
samples to approximate their expected results (an average of rewards) and after averaging over
200 repetitions. Green and red dots respectively mean the agents reach or not their maximum
possible result after an infinite number of time steps.

slots do not provide the desired result of encouraging cooperation/competition, at least for
this agent population of Q-learning and random agents. Although the agents will finally reach
similar results, it is clear that team-oriented agents are not favoured just by including them in
teams, and self-oriented agents do not always obtain better results when they have to compete
for reward units. This result can be explained because the environment does not foster the
interaction between the agents, so individual actions are better rewarded and, therefore, the
partition of agent slots cannot benefit from neither cooperative nor competitive actions.

6.4 Predator-Prey (Pursuit Game)

Our last environment is a pursuit game called predator-prey (section 2.1.3).
For this environment, τ = {{1}, {2, 3, 4}} represents the partition of agent slots. The first

team {1} contains the prey and the second team {2, 3, 4} contains three predators. Agent slot
1 starts in the upper left corner and agent slots 2, 3 and 4 start in the upper right, bottom
left and bottom right corners respectively. Since some of the agents we use differ in how they
treat individual and team rewards, we slightly change the rewards provided by the environment
(i.e. Ri) in order to let the agents use individual rewards. However, their team rewards are
calculated as usual. Table 6.2 shows the individual reward matrix which has the current time
step and the chasing situation as input and the agents’ individual rewards as output. The
predator who chased the prey obtains an individual reward of 18, while the rest of predators
obtain an individual reward of 0. If two or more predators chase the prey at the same time
step, the 18 individual rewards are distributed equally. Note that the obtained team rewards
are the same, so agents’ results are consistent with the original Ri.

6.4. Predator-Prey (Pursuit Game) 58

Chased Not chased
Time step 1-5 0 0
Time step 6 −6 6

(a) Prey individual rewards.

Chased Not chased
Time step 1-5 (0, 0) 0
Time step 6 (18, 0) −6

(b) Predator individual rewards.

Table 6.2: Predator-prey’s individual payoff matrix. Rows represent the time step, while
columns represents whether the prey has been chased or not. In table (b), cells content (X, Y)
in the prey chased situation corresponds to the individual reward (X) shared by the predators
who chased the prey, and the individual reward (Y) for the rest of predators.

For this environment, according to algorithm 1, the parameters obtained for the Q-learning
agents are learning rate = 0.95 and discount factor = 0.9. In figure 6.6 we show the results
for each agent interacting as a predator (agent slots 2, 3 and 4) with 100 Monte Carlo samples
to approximate their expected results (an average of rewards), for the partition of agent slots
{{1}, {2,3,4}} after training them during 1,500 episodes and averaging over 200 repetitions.

−0.3

−0.2

−0.1

0.0

0.1

Agent

R
es

ul
t

Random QLSelfish QLCommunal QLMerciful QLHarmful

●
● ● ● ●

Figure 6.6: Mean with standard error of the mean of agents’ results interacting as a predator
with 100 Monte Carlo samples to approximate their expected results (an average of rewards),
for the partition of agent slots into teams {{1}, {2, 3, 4}} after training them during 1,500
episodes and averaging over 200 repetitions.

As expected, Random obtains the worst result, since it is not possible for the other two
predators to coordinate with it to chase the prey. For the rest of agents, QLSelfish and QL-
Harmful lead the results, although they are very close. In fact, we cannot conclude that any of
the Q-learning agents is better than the others.

As there are not many meaningful combinations of partition of agent slots in this environ-
ment to analyse, and the previous one has not shown a clear result, now we analyse whether it
is possible to obtain different gradings for the evaluated agents depending on which agents we
use to populate the environment. In other words, we analyse the influence of the composition of
the teams. In figure 6.7 we can see the training phase of different situations when the evaluated
agents interact along with two Random agents as predators. In figure 6.7 (a), the prey is also

6.4. Predator-Prey (Pursuit Game) 59

a Random agent, while figure 6.7 (b) shows the results when Q-learning agents act as the prey.

0 500 1000 1500

−0.3

−0.2

−0.1

0.0

0.1

Episode

R
es

ul
t

Random
QLSelfish
QLCommunal
QLMerciful
QLHarmful

(a) Random interacts as the prey.

0 500 1000 1500

−0.3

−0.2

−0.1

0.0

0.1

Episode
R

es
ul

t

Random
QLSelfish
QLCommunal
QLMerciful
QLHarmful

(b) Q-learning agents interact as the prey.

Figure 6.7: Agents’ results for the training phase during 1,500 episodes with 100 Monte Carlo
samples to approximate their expected results (an average of rewards) having two Random
agents as teammates.

In figure 6.7 (a), Q-learning agents obtain quite similar results around −0.06, while the
result of Random is stabilised around −0.15. As expected, three Random agents cooperating
as predators have more difficulties to chase a Random agent prey, while two Random agents
along with a Q-learning agent cooperating as predators chase it more often.

In figure 6.7 (b), the agents obtain better results, since it is easier to predict the movements
of a prey when it follows some kind of simple strategy. The result of Random stabilises around
0.1, while Q-learning agents obtain slightly worse results. QLMerciful seems to quickly stabilise
around 0.08, while QLSelfish, QLCommunal and QLHarmful have to learn several episodes to
reach a slightly lower result (although it seems that with more episodes they will reach the
result of QLMerciful). The explanation is simple. In this scenario, the prey has to escape
from two Random agents in a small space, which becomes quite difficult, and when the other
predator also acts randomly, it is still more difficult to anticipate the three predators’ actions.
But when the third predator is actually trying to chase the prey, it is easier to anticipate its
movements and, therefore, easier to escape.

Now let us see in figure 6.8 what happens when the two predator teammates are also social
agents. We can see in figure 6.8 (a) that social agents’ results have clearly increased when they
have to chase a Random agent prey (with respect to figure 6.7 (a)), as well as Random also
increases its results since it can benefit from social agents coordination. In figure 6.8 (b), the
change is more visible. Social agents have slightly increased from figure 6.7 (b) as they now
have two social agents as predator teammates to coordinate with. Random has worsen, even to
the point of having worse results than the social agents. This is consistent with the idea that
social behaviour only pays off when there are other social agents in the environment.

With this environment we see that we can obtain different rankings for the several agents
depending on the other agents present in the line-up. This shows us that social intelligence is

6.5. Aggregation of Results: Towards Social Intelligence Evaluation 60

0 500 1000 1500

−0.3

−0.2

−0.1

0.0

0.1

Episode

R
es

ul
t

Random
QLSelfish
QLCommunal
QLMerciful
QLHarmful

(a) Random interacts as the prey.

0 500 1000 1500

−0.3

−0.2

−0.1

0.0

0.1

Episode

R
es

ul
t

Random
QLSelfish
QLCommunal
QLMerciful
QLHarmful

(b) Q-learning agents interact as the prey.

Figure 6.8: Agents’ results for the training phase during 1,500 episodes with 100 Monte Carlo
samples to approximate their expected results (an average of rewards) having two social agents
as teammates.

not only dependent on the environment used for the evaluation or the partition of agent slots,
but also on the agents used to populate the environment.

6.5 Aggregation of Results: Towards Social Intelligence

Evaluation

Now let us calculate the social intelligence (Υ) of the set of agents used for the experiments.
We use uniform weights for environments wM , agent slots wS and line-ups wL̇ to give simi-
lar importance to all environments, agent slots and line-ups, but with wS(1, µ) = 0 for the
predator-prey since, in this environment, we are only interested in agents’ performance inter-
acting as a predator (agent slots 2, 3 and 4). In previous subsections, we already calculated the
performance of the agents for all the agent slots of interest and line-ups, using uniform weights
for agent slots and line-up patterns. Actually, when we change the partition of agent slots in
an environment, we are creating a (slightly) different environment. Using equation 5.4 with a
uniform weight for environments wM , let us first calculate the social intelligence for the three
prisoner’s dilemma environments (table 6.3), the six lambda environments (table 6.4) and the
predator-prey environment (table 6.5).

As we can see, each environment has different social intelligences for the agents. Random is
clearly the worst of the agents. In the predator-prey all Q-learning agents have similar results,
but there exists a grading among the agents in the other two environments and they are different
depending on which environment we look at. In the prisoner’s dilemma, team-oriented agents
clearly have the best results, whilst in the lambda environment results are more equal.

Finally, we can also calculate the social intelligence in the three environments for all social
scenarios disaggregating by partition of agent slots. Since the rewards of the environments do

6.5. Aggregation of Results: Towards Social Intelligence Evaluation 61

{{1, 2, 3}} {{1, 2}, {3}} {{1}, {2}, {3}} Υ
Random 4.29808 3.42243 2.11226 3.27759
QLSelfish 4.01913 3.52103 2.98515 3.50843
QLCommunal 5.16402 3.86189 3.02557 4.01716
QLMerciful 5.21163 3.95900 3.03797 4.06953
QLHarmful 4.04678 3.41647 2.95404 3.47243

Table 6.3: Agents’ social intelligence for the prisoner’s dilemma.

{{1}} {{1, 2}} {{1}, {2}}
Random 0.00210 0.20756 -0.08068
QLSelfish 0.88013 0.42655 0.51851
QLCommunal 0.87829 0.41755 0.51864
QLMerciful 0.87735 0.29792 0.52756
QLHarmful 0.88257 0.42723 0.50538

{{1, 2, 3}} {{1, 2}, {3}} {{1}, {2}, {3}} Υ
Random 0.12106 0.01710 -0.08158 0.03092
QLSelfish 0.21164 0.26259 0.29388 0.43221
QLCommunal 0.18182 0.23876 0.29435 0.42156
QLMerciful 0.16105 0.21003 0.29240 0.39438
QLHarmful 0.21015 0.21836 0.22382 0.41125

Table 6.4: Agents’ social intelligence for the lambda environment.

{{1}, {2, 3, 4}} : Υ
Random 0.06413
QLSelfish 0.08025
QLCommunal 0.07856
QLMerciful 0.07996
QLHarmful 0.08293

Table 6.5: Agents’ social intelligence for the predator-prey.

not have the same domain, we cannot use their expected result to perform an aggregation of R
as for definition 12. Instead, here we use the ranking of the agents. We consider that each agent
belongs to a tie group of agents (TGA), where all agents within the group obtain the same rank
value. We use the mean (M) and standard error (SE) to determine whether an agent belongs
to a tie group. For agent i we calculate a tie acceptance range as TARi = [Mi−SEi,Mi+SEi].
An agent i belongs to a TGA iff ∀j∈TGA : TARi ∩ TARj ̸= ∅. If an agent can belong to
different tie groups of agents, it will belong to the group with most agents. Now, we calculate
agents’ ranking performance for the three environments on cooperative, competitive and mixed
scenarios by using partition of agent slots where all agent slots are in the same team (table 6.6),
different teams (table 6.7) and mixed (table 6.8) respectively6:

Now we can see that Random obtains the worst result in all kinds of scenarios. In the

6PD, LE and PP represent the prisoner’s dilemma, lambda environment and predator-prey environments
respectively.

6.6. Discussion 62

PD LE Υ
Random 3 5 4.00000
QLSelfish 4.5 1.5 3.00000
QLCommunal 2 3 2.50000
QLMerciful 1 4 2.50000
QLHarmful 4.5 1.5 3.00000

Table 6.6: Agents’ ranking performance for cooperative partitions of agent slots into teams
({{1, 2, 3}}).

PD LE Υ
Random 5 5 5.00000
QLSelfish 2 2 2.00000
QLCommunal 2 2 2.00000
QLMerciful 2 2 2.00000
QLHarmful 4 4 4.00000

Table 6.7: Agents’ ranking performance for competitive partitions of agent slots into teams
({{1}, {2}, {3}}).

PD LE PP Υ
Random 4.5 5 5 4.83333
QLSelfish 3 1 2.5 2.16666
QLCommunal 2 2 2.5 2.16666
QLMerciful 1 3.5 2.5 2.33333
QLHarmful 4.5 3.5 2.5 3.50000

Table 6.8: Agents’ ranking performance for mixed partitions of agent slots into teams ({{1, 2},
{3}} for PD and LE, and {{1}, {2, 3, 4}} for PP).

cooperative scenario, team-oriented agents obtain the best positions, while in the competitive
scenario, QLSelfish, QLCommunal and QLMerciful obtain the same results, while QLHarmful
is the worst of the Q-learning agents. This grading is explained because when all agent slots are
in different teams the first three agents lead to the same behaviour, obtaining similar results,
and QLHarmful is right behind them. In the mixed scenario, the grading is more diverse. In
this case, QLSelfish and QLCommunal obtain the best results.

6.6 Discussion

We have seen some interesting and diverse results from these experiments. We have seen that the
arrangement of agents into different teams can have an impact on how cooperative/competitive
the environment is, making different social agents obtain different results depending on the
partition of agent slots. This is the case of the prisoner’s dilemma, an initially cooperative
environment, where the results of team-oriented social agents worsen as long as the partition
of agent slots becomes more competitive. But this does not work for every environment (as we
saw in the lambda environment), where making the environment more cooperative/competitive

6.6. Discussion 63

does not provide the expected result since the environment is not evaluating social behaviour.
Also, other environments (such as the predator-prey) are less malleable to use partitions of agent
slots. So, if we want to evaluate social intelligence using this setting, we should carefully choose
which environments we want to use. Besides, as shown in the predator-prey environment,
we saw that social intelligence is not only dependent on the rules of the environments, but
also on which agents are used to populate them. For instance, we saw that social agents reach
better results than a random agent when they have to interact with social agents as teammates.
This forces us to be careful about which set of agents we select to populate the environments.
Finally, with this setting we showed agents’ results for each environment, providing us their
social intelligence for that particular (or specialised) environment. But, more importantly, we
could also include a variety of environments, allowing us to evaluate their social intelligence (or
ranking performance) in a more general sense.

From a general perspective, we have to realise that here we used a random agent as well as
a set of modified Q-learning as social agents to perform the experiments. But Q-learning was
not initially meant to be a social agent. Maybe with more real social agents this picture would
change and partitions of agent slots could better encourage cooperation/competition. But still
with such low social intelligence agents, this experiments show that the inclusion of partitions
of agent slots by itself is not enough (although it helps) to ensure a cooperative or competitive
scenario, so social intelligence cannot be evaluated in all scenarios. The environments and the
agents used have a big impact on the social aspect of the testbed.

In the end, we have seen several scenarios where we obtained different results with the
inclusion of partitions of agent slots. This shows that we have a powerful tool to study both
cooperative and competitive scenarios. However, not every environment is equally useful for
this. In particular, we can barely take advantage of this tool in environments where agents
cannot benefit from interacting with other agents. This suggests that we should also analyse
the environments themselves in order to see how suitable they are to evaluate social intelligence.
Nonetheless, the key idea is the aggregation of results for several environments, as given by
definition 12, as we have done in the final part of the experiments. Once the environments
and the agents are properly selected, this definition can be used to measure an agent’s social
intelligence.

Chapter 7

Properties About Social Intelligence
Testbeds

In order to evaluate social intelligence and distinguish it from general intelligence, we need tests
where social abilities have to be used and, also, where we can perceive their consequences. This
means that not every multi-agent environment is useful for measuring social intelligence and
not every set of populating agents is also useful. We want tests such that the evaluated agent
must use its social intelligence to understand and/or have influence over other agents’ policies
in such a way that this is useful to accomplish its goals. We also need situations where common
general intelligence is not enough. In a way, we want to subtract (from the summation of all
multi-agent environments and line-up patterns) those problems (as defined by sets of multi-
agent environments and populating agents) where general intelligence is enough (and social
intelligence is useless) and those where intelligence (of any kind, social or non-social) is useless.

We investigate some property models that are hence desirable (or necessary) for a social
intelligence testbed, and more specifically for its set of multi-agent environments M and set
of agents to populate them Πo, to measure social intelligence. For many of the properties
we present, we have been inspired by many and different research areas such as game theory,
ecology, statistics or psychology. Actually, we define these properties for one environment but
they are easily extensible to a family or distribution of environments using a weight function.
Similarly, some of the properties below are presented for two agent slots but they could be
extended to three or more agent slots as well. In particular, we provide a property about
interactivity, designed to measure how the populating agents reflect on the actions performed
by the evaluated agents. Similarly, non-neutralism properties have been designed to measure
how the populating agents reflect on the rewards obtained by the evaluated agents. Basically,
interactivity and non-neutralism have been designed in order to measure how the populating
agents affect on how the evaluated agents interact. Furthermore, we included two anticipa-
tion properties (competitive and cooperative) in order to measure how the knowledge of the
populating agents behaviours can be exploited by the evaluated agents to perform better. We
also provide some other properties that are more of a practical nature: such as the degree
of discrimination and grading of the environments, measuring whether different agents obtain

64

65

different results and they can be ordered based on their results respectively; the boundedness
and team symmetry of agent slots, facilitating the evaluation procedure; or the reliability and
efficiency of a test, included to determine whether such a test can be easily applied. Finally,
the validity property has been included with the goal to identify how a test to evaluate social
intelligence should be.

Figure 7.1 gives a summary of the properties we consider for a social intelligence testbed.
They have different purposes and reach different levels of formalisation. Many of the properties
(the quantitative ones) follow the structure Prop(Πe, wΠe ,Πo, wL̇, µ, wS), i.e. given the two
agent sets Πe and Πo (for evaluated agents and populating agents respectively), the weights
for them (wΠe for evaluated agents and wL̇ for line-up patterns respectively), a multi-agent
environment µ and its agent slot weight wS, we obtain a value for the property Prop. Note
that we use a set for evaluated agents Πe and a weight over them wΠe . This is a mechanism we
use to calculate the properties not only for one evaluated agent, but for several of them in a
general way. We have designed this quantitative properties in such a way that can be applied
with the parameters used (appropriately adjusted) in the definition of social intelligence (i.e.
the parameters in definition 12).

SOCIAL

INSTRUMENTAL

Social Dependency

Mind Modelling

INTERACTIVITY (AD)

NON-NEUTRALISM (RD, SRD)

COMPETITIVE ANTICIPATION (AComp)

COOPERATIVE ANTICIPATION (ACoop)

Secernment

Technical

DISCRIMINATION (FD, CD)

GRADING (STG, PG)

BOUNDEDNESS

TEAM SYMMETRY

Testing quality

VALIDITY

RELIABILITY

EFFICIENCY

Quantitative

Qualitative

CorrectnessUNIVOCAL

Figure 7.1: Taxonomy of property models about social intelligence testbeds, grouped in three
main categories (social, instrumental and univocal) and six subcategories (social dependency,
mind modelling, secernment, technical, testing quality and correctness).

In some of the properties we present, we use ĂK
i (µ[l]) to denote the distribution (a proba-

bility measure) of action sequences that the ith agent in line-up l performs in the multi-agent
environment µ (also in agent slot i) during K time steps. If K is omitted, we assume K =∞,
i.e. infinite sequences of actions for an endless episode. If µ and the agents on l are determin-
istic then this boils down to a probability measure giving probability 1 to one single sequence,
the sequence of actions performed by the ith agent of l on µ. Similarly, we use R̆K

i (µ[l]) to
denote the distribution of reward sequences that the ith agent in l obtains in µ (also in agent
slot i) during K time steps.

With these properties we try to represent how appropriate a multi-agent environment µ and
the set of populating agents Πo are in order to evaluate the social intelligence of a given set of
agents Πe. Next, we analyse and formalise them.

7.1. Boundedness 66

7.1 Boundedness

One desirable property is that rewards are bounded, otherwise the value of Υ (e.g. equation 5.4)
could diverge. Any arbitrary choice of upper and lower bounds can be scaled to any other choice
so, without loss of generality, we can assume that all of them are bounded between −1 and 1.
Formally:

∀i, k : −1 ≤ ri,k ≤ 1 (7.1)

Note that they are bounded for every time step. So, if we use a bounded utility function to
calculate the agent’s result (e.g. an average of rewards), then RK

i (·) is also bounded.
However, bounded expected results do not ensure that the measurement from Υ is bounded.

In order to ensure bounded measurements of social intelligence and the properties we present,
we also need to consider that weights are bounded, i.e. there are constants cM , cS, cΠe and cL̇
such that:

∀M :
∑
µ∈M

wM(µ) = cM (7.2)

∀µ :

N(µ)∑
i=1

wS(i, µ) = cS (7.3)

∀Πe :
∑
π∈Πe

wΠe(π) = cΠe (7.4)

∀i, n,Πo :
∑

l̇∈L̇n
−i(Πo)

wL̇(l̇) = cL̇ (7.5)

Equation 7.5 can also be extended for two or more non-instantiated positions.
A convenient choice would be to have cM = cS = cΠe = cL̇ = 1, and these weights would

become unit measures (which should not be confused with the probabilities used to sample
elements in a test). With these conditions on rewards and weights, Υ and Υ̂ are bounded1, as
well as some of the properties we present below.

An optional property that might be interesting occasionally is to consider environments
whose reward sum is constant. Without loss of generality, we can take this constant to be zero,
which leads to the well-known notion of zero-sum games in game theory.

Definition 14. A multi-agent environment µ is zero-sum if and only if:

∀k :

N(µ)∑
i=1

ri,k = 0 (7.6)

The above definition may be too strict when we have environments with an episode goal at
the end, but we want some positive or negative rewards to be given while agents approach the
goal. A more convenient version follows:

1Note that we are talking about the measure. For instance, Υ can be a measure that represents the, e.g.
sigmoid function of an unbounded magnitude, easily recovered with a logit or probit function.

7.2. Interactivity 67

Definition 15. A multi-agent environment µ is zero-sum in the limit iff:

lim
K→∞

K∑
k=1

N(µ)∑
i=1

ri,k = 0 (7.7)

With teams, the previous definition could be modified in such a way that:

lim
K→∞

K∑
k=1

∑
t∈τ

∑
i∈t

ri,k = 0 (7.8)

So the sum of the agents’ rewards in a team does not need to be zero but the sum of all
agents’ rewards does. For instance, if we have a team with agents {1, 2} and another team with
agents {3, 4, 5}, then a result (in the limit) of 1/4 for agents 1 and 2 implies −1/6 for each of
the agents in the other team.

The zero-sum properties are appropriate for competition between teams. In fact, if we
have two agents and each in a different team then we have pure competitive environments. We
can have both competition and cooperation by using teams in a zero-sum environment, where
agents in a team cooperate and agents in different teams compete. If we want to evaluate pure
cooperation (with one or more teams) then zero-sum environments are not appropriate.

7.2 Interactivity

By interactivity we mean that agents’ actions have implications on the actions (and ultimately
on rewards) of the other agents. This is a key property as the existence of several agents in an
environment does not ensure, per se, any social behaviour. In fact, it is important to realise
that the use of several agents and their arrangement into teams does not ensure that some social
behaviour can ever take place. Imagine a non-social environment, such as finding the way out of
a maze (without other agents). Rewards depend on the agent finding the way out or not. While
this is clearly non-social, we can use this environment as a building block and create a multi-
agent environment that takes two agents but makes them play separately on two equal mazes.
We can generate rewards in at least four different ways: (1) we can give rewards separately
without any modification on the outputs of the building blocks, (2) we can normalise them to
a constant or a zero-sum, (3) we can average both rewards and give them to both agents or (4)
any other combination of the rewards, including a stochastic (non-deterministic) combination.
Note that none of these four options would contain or foster any kind of social behaviour. In
fact, no agent is aware of the other agent’s presence (apart from the effect on rewards, which
could be attributed to some randomness of the environment). However, the rewards can get
highly correlated (as in ways 2 or 3 above) and do so in a non-additive or functional way.

The explanation of why there is no social behaviour in this case is that one agent can
not have influence on the actions that the other agent has to perform. As a result, the big
issue about choosing social contexts is how to determine that an agent has influence on other
agents’ actions. In fact, this is at the roots of definitions of interaction [23, 141, 21, 58] and the
distinction between several kinds of interaction [66]. In fact, a similar detection of interactivity
has already been attempted under the name of reactivity [1]. Some other approaches have
looked for some common information content between the peers. However, as pointed out by
[21], ‘this may originate from a common source’, so common or mutual information is not
sufficient for interaction to have taken place.

7.2. Interactivity 68

So we need a measure of interaction that is not based on correlation or common information
content. However, the degree of influence that other agents may have on the actions of the agent
we are evaluating is difficult to grasp; as environments and agents can be non-deterministic,
changes can appear just randomly.

7.2.1 Action Dependency

We need to take a different approach. The key idea defines interaction in terms of sensitivity
to other agents or, in other words, whether the inclusion of different agents in the multi-agent
environment has an effect on what the evaluated agent does. One formalisation of this idea
goes as follows:

Definition 16. The action dependency degree for the evaluated agent π interacting in agent
slot i in multi-agent environment µ with a set of populating agents Πo with a weight of agent
line-up patterns wL̇, is given by:

ADi(π,Πo, wL̇, µ) , ηL̇2

∑
u̇,v̇∈L̇N(µ)

−i (Πo)|u̸̇=v̇

wL̇(u̇)wL̇(v̇)∆A+(Ăi(µ[u̇
i← π]), Ăi(µ[v̇

i← π])) (7.9)

where ηL̇2 normalises the formula with ηL̇2 = 1∑
u̇,v̇∈L̇

N(µ)
−i

(Πo)|u̸̇=v̇
wL̇(u̇)wL̇(v̇)

, ∆A+ denotes a diver-

gence function between distributions of action sequences, |Πo| ≥ 2, N(µ) ≥ 2 and ∃u̇, v̇ ∈
L̇
N(µ)
−i (Πo)|u̇ ̸= v̇, wL̇(u̇) > 0 and wL̇(v̇) > 0.

This equation basically calculates how the actions performed by π depend on what other
agents are present on the environment.

Note that Ă returns a distribution of action sequences if the environment or any of the
agents is non-deterministic. If ADi is high, then the proportion of cases where two line-up
patterns lead to different action sequences for π is high. This means that π is highly sensitive
in this environment about who else is interacting in it. Conversely, if for many pairs of line-
up patterns the action sequences of π are similar, this means that π’s actions are not usually
affected by other agents. Note that having action dependency does not imply that π knows
which actions are performed by the other agents, but that their actions have implications in
π’s actions.

The previous definition is relative to a distribution of line-up patterns on a population of
agents, but it is given for a particular evaluated agent π interacting in a particular agent slot i.
We may have that one evaluated agent can be very insensitive to line-up pattern changes, but
other evaluated agents can be more sensitive in the same situation. Similarly, being in agent
slot i may make the evaluated agent ignore the actions of the other agents, but other agent
slots could be more willing to make it take into account the other agents’ actions. If we want to
generalise this for a set of evaluated agents Πe and aggregate for all agent slots, then we have:

Definition 17. The action dependency degree for a set of evaluated agents Πe with associated
weight wΠe in multi-agent environment µ with weight of agent slots wS, a set of populating
agents Πo and a weight of agent line-up patterns wL̇, is given by:

AD(Πe, wΠe ,Πo, wL̇, µ, wS) ,
∑
π∈Πe

wΠe(π)

N(µ)∑
i=1

wS(i, µ)ADi(π,Πo, wL̇, µ) (7.10)

7.3. Non-Neutralism 69

where N(µ) ≥ 1 and |Πe| ≥ 1.

It certainly remains to clarify what ∆A+ can be. For deterministic cases, a possibility
would be to represent the action sequences as strings and use an edit distance. However,
for non-deterministic cases we need to find alignments between the distributions or aggregate
action sequences into some prototypes and compare them. One simple approach for both (the
deterministic and non-deterministic cases) could be based on comparing action frequencies
(independently of their order) or n-grams. Note that different ∆A+ functions may lead to
different interpretations of action influence. For instance, there can be environments where a
first few actions are interactive, but then no interaction takes places any more. In this case,
the action sequences may be very different, but the degree, or more precisely, the timespan of
interaction is small (like a butterfly effect).

7.3 Non-Neutralism

The existence of interaction between agents does not ensure that these interactions are mean-
ingful in terms of rewards. For instance, two agents can influence each other’s actions, but they
may not affect each other’s rewards. This, in ecological terms, is known as ‘neutralism’. In fact,
in ecology, given two species, there are seven possible combinations of positive, negative or no
effect between them, leading to six forms of symbiosis [73]: neutralism (0,0), amensalism (0,-),
commensalism (+,0), competition (-,-), mutualism (+,+), and predation/parasitism (+,-). In
our case, as we want to characterise environments that may contain individuals (possibly more
than two), we can simplify this to neutralism, cooperation (including commensalism and mu-
tualism) and competition (including the rest). In other words, we want to analyse whether
interaction has no effect on rewards (and ultimately on agents’ expected results), has a positive
relation or a negative one.

7.3.1 Reward Dependency

So, the first thing that we need to determine is whether the evaluated agent’s rewards are
affected by the presence of other agents, i.e. there is a dependency in rewards. This is very
similar to the action dependency seen above:

Definition 18. The reward dependency degree for the evaluated agent π interacting in agent
slot i in multi-agent environment µ with a set of populating agents Πo and a weight of agent
line-up patterns wL̇, is given by:

RDi(π,Πo, wL̇, µ) , ηL̇2

∑
u̇,v̇∈L̇N(µ)

−i (Πo)|u̸̇=v̇

wL̇(u̇)wL̇(v̇)∆Q+(R̆i(µ[u̇
i← π]), R̆i(µ[v̇

i← π])) (7.11)

where ηL̇2 normalises the formula with ηL̇2 = 1∑
u̇,v̇∈L̇

N(µ)
−i

(Πo)|u̇ ̸=v̇
wL̇(u̇)wL̇(v̇)

, ∆Q+ denotes a di-

vergence function for distributions of rational number sequences, |Πo| ≥ 2, N(µ) ≥ 2 and

∃u̇, v̇ ∈ L̇
N(µ)
−i (Πo)|u̇ ̸= v̇, wL̇(u̇) > 0 and wL̇(v̇) > 0.

For ∆Q+ we could use a function similar to the one used in ∆A+ (section 7.2.1), calculating
the divergence between distributions of rational number sequences. Another possibility would

7.3. Non-Neutralism 70

be to first calculate the expected result for both distributions of reward sequences, and then
use a divergence function between rational numbers ∆Q. Following this possibility, we can use
∆Q(a, b) = 1 − δ(a, b), where δ is the Kronecker delta function (δ(a, b) = 1 if a = b and 0
otherwise). With this choice, equation 7.11 would boil down to the probability that, when π
is instantiated into two line-up patterns in position i, its expected results interacting in agent
slot i of µ are different (using weight wL̇). Another choice could be relative absolute difference,

i.e. ∆Q(a, b) =
|a−b|
|a|+|b| .

We can generalise this for a set of evaluated agents Πe and aggregate for all agent slots:

Definition 19. The reward dependency degree for a set of evaluated agents Πe with associated
weight wΠe in multi-agent environment µ with weight of agent slots wS, a set of populating
agents Πo and a weight of agent line-up patterns wL̇ is given by:

RD(Πe, wΠe ,Πo, wL̇, µ, wS) ,
∑
π∈Πe

wΠe(π)

N(µ)∑
i=1

wS(i, µ)RDi(π,Πo, wL̇, µ) (7.12)

where N(µ) ≥ 1 and |Πe| ≥ 1.

So now we measure how dependent the rewards are in general (for any evaluated agent in
Πe and agent slot).

The previous definition may slightly resemble the Shapley Value [99] in cooperative game
theory, but here we are not concerned with how relevant each agent is in a team (whether its
contribution is higher than the contribution of its teammates), but to see whether there is effect
on the rewards.

7.3.2 Slot Result Dependency

Both definitions 17 and 19 are necessary as we can have reward dependency without action
dependency and action dependency without reward dependency. That is we could have an
agent that always performs the same actions and depending on the other agents it could obtain
different rewards. Similarly, an agent could perform different actions depending on the actions
performed by the other agents, but obtaining always the same rewards. An ideal situation would
be an environment where the populating agents are able to influence the rewards obtained by
the evaluated agent, as well as the actions that it can perform. Ultimately, such an environment
would force the evaluated agent to take into consideration the other agents’ behaviour in order
to improve its own results. This will make the evaluating agent use its social intelligence to
understand these other agents and act accordingly to perform better.

Now, we are interested in telling the sign of this dependency, i.e. whether the evaluated
agent has to consider the agents interacting in other agent slots as cooperative or competitive.

Definition 20. The slot result dependency for the evaluated agent π interacting in agent slot
i with agent slot j (with i ̸= j) in multi-agent environment µ with a set of populating agents
Πo and a weight of agent line-up patterns wL̇ is given by:

SRDi,j(π,Πo, wL̇, µ) , corr
l̇∈L̇N(µ)

−i (Πo)
[wL̇(l̇)](Ri(µ[l̇

i← π]), Rj(µ[l̇
i← π])) (7.13)

where corrx∈X [w](a, b) is a weighted (w) correlation function between a and b for the elements
of X, |Πo| ≥ 1 and N(µ) ≥ 2.

7.4. Anticipation 71

Any correlation function can be used here (Pearson, Spearman, etc.). Clearly, if two agent
slots are in the same team, from definition 8, we have that its SRD is 1. In the case of a
zero-sum environment with only two teams, any two agent slots of different teams have a SRD
of −1 (provided there is at least one ‘match’ which is not a tie). Note that, as usual with
correlation measures, if we have that two agent slots are reward independent, then its SRD
is 0. However, having SRD = 0 does not necessarily imply independency. We would need to
calculate the reward dependency degree and then ask whether the slot result dependency is
positive or negative for pairs of agent slots.

Now, we can generalise this for a set of evaluated agents Πe and aggregate for all combina-
tions of pairs of agent slots:

Definition 21. The slot result dependency for a set of evaluated agents Πe with associated
weight wΠe in multi-agent environment µ with weight of agent slots wS, with a set of populating
agents Πo and a weight of agent line-up patterns wL̇ is given by:

SRD(Πe, wΠe ,Πo, wL̇, µ, wS) ,
∑
π∈Πe

wΠe(π)ηS2
1

N(µ)∑
i=1

wS(i, µ)×

×

 i−1∑
j=1

wS(j, µ)SRDi,j(π,Πo, wL̇, µ) +

N(µ)∑
j=i+1

wS(j, µ)SRDi,j(π,Πo, wL̇, µ)

 (7.14)

where ηS2
1
normalises the formula with ηS2

1
= 1∑N(µ)

i=1 wS(i,µ)
(∑i−1

j=1 wS(j,µ)+
∑N(µ)

j=i+1 wS(j,µ)
) , N(µ) ≥ 2,

|Πe| ≥ 1, |Πe| ≥ 1 and ∃i, j|1 ≤ i ≤ N(µ), 1 ≤ j ≤ N(µ), i ̸= j, wS(i, µ) > 0 and wS(j, µ) > 0.

In practice, in order to evaluate social abilities, we require environments with high RD.
Then, depending on the use of teams and normalisations, we can gauge whether we want to
evaluate competition or cooperation, and have some positive SRD with some agent slots and
some negative SRD with some other agent slots. This is easily obtained by using teams.

7.4 Anticipation

One crucial property that is related to social intelligence is anticipation, which means that the
evaluated agents can benefit from anticipating other agents’ moves or, in more general terms,
by having a theory of others’ minds. Having an environment where anticipating abilities are
useful will permit the evaluated agent to take advantage of its understanding of other agents
in order to improve its results. While a formalisation of this concept is very elusive, we can at
least introduce an approximation.

In anticipation we usually expect that the evaluated agents can perform better if the agents
they interact with can be well anticipated. This is difficult to define in general, but we can
introduce a simplified approach based on the idea that one evaluated agent anticipates if its
expected result interacting with a (generally) non-random agent is higher than its expected
result interacting with a random agent. We generalise this as follows:

Definition 22. The anticipation benefit for the evaluated agent π interacting in agent slot i
with respect to agent slot j in multi-agent environment µ with a set of populating agents Πo

and a weight of agent line-up patterns wL̇ is given by:

7.4. Anticipation 72

Anti,j(π,Πo, wL̇, µ) ,
∑

l̇∈L̇N(µ)
−i,j (Πo)

∑
πo∈Πo

wL̇(l̇
j← πo)

1

2

(
Ri(µ[l̇

i,j← π, πo])−Ri(µ[l̇
i,j← π, πr])

)
(7.15)

where πr is a random agent, 1
2
normalises the formula, N(µ) ≥ 2 and |Πo| ≥ 1.

Anti,j uses as reference the expected result of the evaluated agent when it interacts with
a random agent (which movements are impossible to anticipate, making the evaluated agent’s
anticipation abilities useless), and calculates the benefit that the evaluated agent can obtain
when it interacts with populating agents instead (which movements could be anticipated)2.

Definition 22 provides us information about the evaluated agent’s exploitation of the other
agents’ behaviour in order to improve its own results. Note that such definition does not specify
the relation between the agent slot that occupies the evaluated agent and the agent slot that
occupies each of the populating agents. Next we see how we consider this relation in the context
of competition and cooperation when using teams.

7.4.1 Competitive Anticipation

We usually expect that the evaluated agents can perform better if their opponents/competitors
can be well anticipated. When using teams, the position of the opponents is clearly stated. So,
in order to calculate this anticipation about competitive agents (or competitive anticipation),
we must consider those agent slots that do not pertain to the team where the evaluated agent
is.

Here, we generalise this concept for a set of evaluated agents Πe and for all combinations of
pairs of agent slots in different teams:

Definition 23. The competitive anticipation benefit for a set of evaluated agents Πe with
associated weight wΠe interacting in multi-agent environment µ with weight of agent slots wS,
with a set of populating agents Πo and a weight of agent line-up patterns wL̇ is given by:

AComp(Πe, wΠe ,Πo, wL̇, µ, wS) ,
∑
π∈Πe

wΠe(π)ηS2
2

∑
t1,t2∈τ |t1 ̸=t2

∑
i∈t1

wS(i, µ)
∑
j∈t2

wS(j, µ)×

× Anti,j(π,Πo, wL̇, µ)

(7.16)

where ηS2
2
normalises the formula with ηS2

2
= 1∑

t1,t2∈τ |t1 ̸=t2

∑
i∈t1

wS(i,µ)
∑

j∈t2
wS(j,µ)

, τ is the par-

tition of agent slots into teams of multi-agent environment µ, N(µ) ≥ 2, |Πe| ≥ 1 and
∃t1, t2 ∈ τ |t1 ̸= t2,∃i ∈ t1, j ∈ t2|wS(i, µ) > 0 and wS(j, µ) > 0.

If AComp is positive this means that the evaluated agents behave better against (generally)
non-random agents than against random agents. One good example of the above definition
is when t1 is a predator team and t2 is a prey team (and vice-versa). If the evaluated agents

2Note that, in the reference we use, the expected result of the evaluated agent could be different of zero.
In fact, this reference provides us with some information about how important the evaluated agent’s non-
anticipating abilities are and, therefore, corrects the importance that the anticipating abilities have in the
expected result. Possibly, an indicator about the reference might be useful to better interpret the result of this
property.

7.5. Secernment 73

in a set perform better with non-random preys than with random preys then the multi-agent
environment shows a benefit for this set (and for these agent slots). Of course, this depends
on Πo, but if we include non-random opponents with some movement patterns and/or some
degree of intelligence, the definition becomes more meaningful.

7.4.2 Cooperative Anticipation

On the other hand, we usually expect that the evaluated agents can perform better if their
cooperators can be well anticipated. Similarly as done with competitive anticipation, we gen-
eralise this concept for a set of evaluated agents Πe and for all combinations of pairs of agent
slots in the same team:

Definition 24. The cooperative anticipation benefit for a set of evaluated agents Πe with
associated weight wΠe interacting in multi-agent environment µ with weight of agent slots wS,
with a set of populating agents Πo and a weight of agent line-up patterns wL̇ is given by:

ACoop(Πe, wΠe ,Πo, wL̇, µ, wS) ,
∑
π∈Πe

wΠe(π)ηS2
3

∑
t∈τ

∑
i,j∈t|i ̸=j

wS(i, µ)wS(j, µ)×

× Anti,j(π,Πo, wL̇, µ)

(7.17)

where ηS2
3
normalises the formula with ηS2

3
= 1∑

t∈τ

∑
i,j∈t|i ̸=j wS(i,µ)wS(j,µ)

, τ is the partition of

agent slots into teams of multi-agent environment µ, N(µ) ≥ 2, |Πe| ≥ 1 and ∃i, j ∈ t ∈ τ |i ̸=
j, wS(i, µ) > 0 and wS(j, µ) > 0.

For cooperative anticipation, the use of a random agent for definition 22 may not work in
some cases if there are more than two agents in a team, as cooperation may only take place
when all of them cooperate and not only a pair (if a random agent is included, this can be very
disruptive). In this case, this definition could be extended to reach the number of agents in the
team instead.

When using teams, the position of teammates cooperators is clearly stated, but agents in
different teams could also form an alliance to cooperate. In order to calculate this anticipa-
tion about alliances, we could extend equation 7.17 by also considering those situations where
agent slots in other teams may form an alliance with the evaluated agent. In such a case, defini-
tion 24 should include a weight to provide the appropriate importance when cooperation occurs
within a team and when it occurs between agent slots of different teams. Another option (and
probably easier) would be to calculate this alliance anticipation as a different property, letting
the evaluated agent’s ability to anticipate teammates actions as we defined in definition 24,
and proposing a new definition to calculate the evaluated agent’s ability to ally with agents in
different teams and anticipate them to improve its results.

Here, we have defined the anticipation with only two agent slots, but competition and
cooperation (and possibly alliance) can also appear with three or more agents.

7.5 Secernment

It is an important characteristic for a test to be able to give different results for different
evaluated agents. Otherwise, if the results are the same (or very similar) for most evaluated
agents, we get little information. In other words, we want tests (and with special attention,
the environment and the set of populating agents) to secern, to be discriminative.

7.5. Secernment 74

7.5.1 Fine and Coarse Discrimination

Although there are many approaches to the idea of discriminating power (e.g. [43]), one simple
notion that accounts for this concept quite well is the variance of results. In order to formalise
this notion of variance (or number of different values) of the expected result of the set of
evaluated agents, we can just compare pairs of values as follows:

Definition 25. The fine discriminating power for evaluated agents π1 and π2 interacting in
agent slot i in multi-agent environment µ with a set of populating agents Πo and a weight of
agent line-up patterns wL̇ is given by:

FDi(π1, π2,Πo, wL̇, µ) ,
∑

l̇∈L̇N(µ)
−i (Πo)

wL̇(l̇)∆Q(Ri(µ[l̇
i← π1]), Ri(µ[l̇

i← π2])) (7.18)

where ∆Q denotes a divergence function for rational numbers, N(µ) ≥ 1 and if N(µ) > 1 then
|Πo| ≥ 1 otherwise |Πo| ≥ 0.

This measures the expected result divergence of two evaluated agents placed both in agent
slot i of µ in the same line-up patterns, or in other words, whether the evaluation of two
different agents obtains different results for them. If ∆Q is some kind of numeric difference (e.g.
the absolute difference or the squared difference), then this measure would be similar to some
kind of dispersion of expected results (like a variance). If ∆Q(a, b) = 1 − δ(a, b) (with δ being
the Kronecker delta function) we have that this measures the number of times two different
evaluated agents score differently.

We can generalise this for a set of evaluated agents Πe and aggregate for all agent slots:

Definition 26. The fine discriminating power for a set of evaluated agents Πe with associated
weight wΠe in multi-agent environment µ with weight of agent slots wS, with a set of populating
agents Πo and a weight of agent line-up patterns wL̇ is given by:

FD(Πe, wΠe ,Πo, wL̇, µ, wS) , ηΠ2

∑
π1,π2∈Πe|π1 ̸=π2

wΠe(π1)wΠe(π2)

N(µ)∑
i=1

wS(i, µ)×

× FDi(π1, π2,Πo, wL̇, µ)

(7.19)

where N(µ) ≥ 1, ηΠ2 normalises the formula with ηΠ2 = 1∑
π1,π2∈Πe|π1 ̸=π2

wΠe (π1)wΠe (π2)
, |Πe| ≥ 2

and ∃π1, π2 ∈ Πe|π1 ̸= π2, wΠe(π1) > 0 and wΠe(π2) > 0.

Being able to discriminate in terms of pair of evaluated agents for each line-up pattern in
an environment can be generalised with the overall result of a social intelligence measure (Υ),
namely:

Definition 27. The coarse discriminating power for the evaluated agents π1 and π2 interacting
in agent slot i in multi-agent environment µ with a set of populating agents Πo and a weight
of agent line-up patterns wL̇ is given by:

CDi(π1, π2,Πo, wL̇, µ) , ∆Q(Υi(π1,Πo, wL̇, µ),Υi(π2,Πo, wL̇, µ)) (7.20)

7.5. Secernment 75

where ∆Q denotes a divergence function for rational numbers and Υi(π,Πo, wL̇, µ) denotes a
measure of the social intelligence of π interacting in agent slot i of multi-agent environment µ
with the set of populating agents Πo with associated line-up pattern weight wL̇. As an example
of Υ we could use the one presented in equation 5.3 (with Πo as Π).

We generalise this for a set of evaluated agents Πe and aggregate for all agent slots:

Definition 28. The coarse discriminating power for a set of evaluated agents Πe with associated
weight wΠe in multi-agent environment µ with weight of agent slots wS, with a set of populating
agents Πo and a weight of agent line-up patterns wL̇ is given by:

CD(Πe, wΠe ,Πo, wL̇, µ, wS) , ηΠ2

∑
π1,π2∈Πe|π1 ̸=π2

wΠe(π1)wΠe(π2)

N(µ)∑
i=1

wS(i, µ)×

× CDi(π1, π2,Πo, wL̇, µ)

(7.21)

where N(µ) ≥ 1, ηΠ2 normalises the formula with ηΠ2 = 1∑
π1,π2∈Πe|π1 ̸=π2

wΠe (π1)wΠe (π2)
, |Πe| ≥ 2

and ∃π1, π2 ∈ Πe|π1 ̸= π2, wΠe(π1) > 0 and wΠe(π2) > 0.
In both fine and coarse discrimination the goal is to check whether two evaluated agents

obtain similar results. The difference resides at the level we check this similarity. While the
fine discrimination checks the similarity for each line-up pattern, the coarse discrimination is
more oriented to check the overall similarity.

7.5.2 Strict Total and Partial Grading

A multi-agent environment and a set of populating agents being discriminative when comparing
a set of evaluated agents does not mean that there is a gradation or order between the results
for this set of evaluated agents. For instance, if we have three agents π1, π2 and π3 that we want
to evaluate in a competitive environment with two agent slots divided into two teams, and we
get that π1 scores better when interacts with π2, π2 scores better when interacts with π3 and
π3 scores better when interacts with π1, then there is no way to establish a gradation for these
three agents. Idealistically, we would like to have a strict total order, but this is unrealistic for
many environments and sets of populating agents.

So the idea we will pursue is to evaluate how close an environment and a set of populating
agents are to this ideal situation, from the perspective of the expected results of the evaluated
agents (without using an aggregated rating system3):

Definition 29. The strict total grading quality for the evaluated agents π1, π2 and π3 inter-
acting in agent slots i and j (with i ̸= j) in multi-agent environment µ with a set of populating
agents Πo and a weight of agent line-up patterns wL̇ is given by:

STGi,j(π1, π2, π3,Πo, wL̇, µ) ,
∑

l̇∈L̇N(µ)
−i,j (Πo)

wL̇(l̇)STOi,j(π1, π2, π3, l̇, µ) (7.22)

where N(µ) ≥ 2, if N(µ) > 2 then |Πo| ≥ 1 otherwise |Πo| ≥ 0 and STOi,j(π1, π2, π3, l̇, µ)
(where l̇ has all its elements instantiated except positions i and j) is 1 if there is a permutation

3A common approach is to create a rating when we have many experiments, as done with sport ratings, such
as the ELO rating [25] in chess.

7.5. Secernment 76

of the three evaluated agents such that there is a strict total order in their expected results
when placed by pairs in l̇ interacting in µ in agent slots i and j, and 0 otherwise. Formally,

it is 1 iff there is a permutation (π′
1, π

′
2, π

′
3) such that: Ri(µ[l̇

i,j← π′
1, π

′
2]) < Rj(µ[l̇

i,j← π′
1, π

′
2]),

Ri(µ[l̇
i,j← π′

2, π
′
3]) < Rj(µ[l̇

i,j← π′
2, π

′
3]) and Ri(µ[l̇

i,j← π′
1, π

′
3]) < Rj(µ[l̇

i,j← π′
1, π

′
3]). For instance,

if we have three evaluated agents a, b and c in a multi-agent environment µ and agent line-up
pattern l̇ with positions i and j not instantiated, and their expected results when placed by
pairs in l̇ shows us that b < a, a < c and b < c, then we have STOi,j(a, b, c, l̇, µ) = 1 with the
permutation (b, a, c).

If equation 7.22 is equal to 1, intuitively this would mean that there exists an order between
the three agents, and when two of them interact together, the one with the better position
would always obtain a better result. Now, we generalise this for a set of evaluated agents Πe

and aggregate for all combinations of pairs of agent slots:

Definition 30. The strict total grading quality for a set of evaluated agents Πe with associated
weight wΠe in multi-agent environment µ with weight of agent slots wS, with a set of populating
agents Πo and a weight of agent line-up patterns wL̇ is given by:

STG(Πe, wΠe ,Πo, wL̇, µ, wS) , ηΠ3

∑
π1,π2,π3∈Πe|π1 ̸=π2 ̸=π3

wΠe(π1)wΠe(π2)wΠe(π3)ηS2
1

N(µ)∑
i=1

wS(i, µ)×

×

 i−1∑
j=1

wS(j, µ)STGi,j(π1, π2, π3,Πo, wL̇, µ) +

N(µ)∑
j=i+1

wS(j, µ)STGi,j(π1, π2, π3,Πo, wL̇, µ)


(7.23)

where ηΠ3 normalises the formula with ηΠ3 = 1∑
π1,π2,π3∈Πe|π1 ̸=π2 ̸=π3

wΠe (π1)wΠe (π2)wΠe (π3)
, ηS2

1
nor-

malises the formula with ηS2
1
= 1∑N(µ)

i=1 wS(i,µ)
(∑i−1

j=1 wS(j,µ)+
∑N(µ)

j=i+1 wS(j,µ)
) , |Πe| ≥ 3, ∃π1, π2, π3 ∈

Πe|π1 ̸= π2 ̸= π3, wΠe(π1) > 0, wΠe(π2) > 0 and wΠe(π3) > 0, N(µ) ≥ 2 and ∃i, j|1 ≤ i ≤
N(µ), 1 ≤ j ≤ N(µ), i ̸= j, wS(i, µ) > 0 and wS(j, µ) > 0.

The previous definition considers all pairs of agent slots, even if both agent slots of the pair
pertain to the same team, which by definition 8 will make STG to become 0 for such pair. If
such situation wants to be avoided, we could just consider those pairs that its agent slots do
not pertain to the same team.

Definition 30 only considers strict total orders, and is useful to determine whether we can
find a strict total order for the evaluated agents. However, this does not say much about the
existence of grading ‘inconsistencies’, such as non-discriminative cases such as π1 = π2, π2 = π3

and π1 = π3 which, for the above definition, are considered in the same way as not ordering
cases such as π1 > π2, π2 > π3 and π1 < π3. In order to distinguish these cases, we can give a
new definition as follows:

Definition 31. The partial grading quality for a set of evaluated agents Πe with associated
weight wΠe in multi-agent environment µ with weight of agent slots wS, with a set of populating
agents Πo and a weight of agent line-up patterns wL̇ is defined as in definition 30 with the use
of a partial order with ≤ instead of a strict total order with <. It is denoted by PG.

If STG and PG are high, this means that a derivation of a rating is highly consistent to what
we see when using evaluated agents from Πe on agent slots i and j. A very similar property is

7.6. Validity 77

known as monotonicity in [50, sec. 5], [49] showing an agent set for the matching pennies game
that is non-monotonic. Nonetheless, a partial order can still be constructed for the agent set
of all finite state machines for this game [53].

The existence of a meaningful rating allows for subselections of Πo according to this rating,
which can be used to furbish the tests with high-rank agents that can lead to more sophisticated
social environments (making it more or less difficult depending on whether it is used for the
same team or for opponents).

7.6 Validity

Validity is the most important property of a cognitive test in psychometrics. In our context,
the validity of a definition means that it accounts for the notion we expect it to grasp. For
instance, if we say that a given definition of Υ measures social intelligence but it actually
measures arithmetic abilities then the definition is not valid. Ultimately, this depends on the
choice of Πo and M as the core of Υ (e.g. equation 5.4).

Poor validity may have two sources (or may appear in two different variants): a definition
may be too specific (it does not account for all the abilities the notion is thought to consider)
or it is too general (it includes some abilities that are not part of the notion to be measured).
In other words, the measure should account for all, but not more, of the concept it tries to
represent. We refer to these two issues of validity as the generality and the specificity of the
measure. While validity is not usually seen as an instrumental property, we have to say that the
choices of Πo andM may both have generality and specificity, which eventually can compensate,
but could lead to a test that is not very effective. That means that we should try to find proper
choices such that they fit the concept we want to measure precisely.

Regarding generality, we should be careful about the use of very restrictive choices for Πo and
M . It could be possible to find a single multi-agent environment that meets all the properties
seen in the previous sections. However, using just one environment is prone to specialisation,
as usual in many AI benchmarks. For instance, if we use a particular maze as an environment
with a set of particular populating agents, then we can have good scores by evaluating a very
specialised agent for this situation, which may be unable to succeed in other mazes or problems.
For instance, chess with current chess players is an example where a specialised system (e.g.
Deep Blue) is able to score well, while it is clearly useless for other problems. A similar over-
specialisation may happen if the populating agent set is too small. This is usual in biology,
where some species specialise for predating (or establishing a symbiosis) with other species.

Consequently, the multi-agent environment set and the populating agent set must be general
enough to avoid that some predefined or hardwired policies could be optimal for these sets. This
is the key issue of a (social) intelligence test; it must be as general as possible. We need to
choose a diverse multi-agent environment set. One possibility is to consider all multi-agent
environments (as done in [69, 44] with single-agent environments), and another is to find a
multi-agent environment class that is sufficiently representative (as attempted in [41] with
single-agent environments).

Similarly, we need to consider a set of populating agents that leads to a diversity in line-up
patterns. This set should incorporate many different types of agents: random agents, agents
with some predetermined policies, agents that are able to learn, human agents, agents with
low social intelligence, agents with high social intelligence, etc. The set of all possible agents
(either artificial or biological) is known asmachine kingdom in [45, 46] and raises many questions

7.7. Reliability 78

about the feasibility of any test considering this astronomically large set. Also, there are doubts
about what the weight for this universal set should be when forming line-up patterns (i.e. wL̇).
Instead, some representative kinds of agents could be chosen to populate the environments.
In this way, we could aim at social intelligence relative to a smaller (and well-defined) set of
populating agents, possibly specialising the definition by limiting the resources, the program
size [42] or the intelligence of these agents [48].

Regarding specificity, it is equally important for the measurement to only include those
environments and populating agents that really reflect what we want to measure. For instance,
it is desirable that the evaluation of an ability is done in an environment where no other
abilities are required, or in other words, we want that the environment evaluates the ability
in isolation. Otherwise, it will not be clear which part of the result comes from the ability to
be evaluated, and which part comes from other abilities. Although it is very difficult to avoid
any contamination, the idea is to ensure that the role of these other abilities are minor, or are
taken for granted for all the agents we want to evaluate.

The properties of dependency (interactivity, non-neutralism) and anticipation (both com-
petitive and cooperative) seen in previous sections have been included for the sake of specificity.
We are certainly not interested in non-social environments as this would contaminate the mea-
sure with other abilities. In fact, one of the recurrent issues in defining and measuring social
intelligence is to be specific enough to distinguish it from general intelligence.

Unlike all other properties in this chapter, validity precisely accounts for how well the
definition reflects the natural or intuitive notion that is to be measured.

The assurement about validity must come then from the use of a formal definition (e.g.
definition 12), with a meaningful instantiation for the sets of multi-agent environments and
populating agents, and also from the experimental results that can be obtained through the
tests derived from the definition. Note that in psychometrics there is usually a lack of a
proper definition of the cognitive abilities of interest (e.g. psychometrics has not presented
a representational definition of intelligence), so validity is applied to a test and not to the
definition of a cognitive ability. In fact, the concept is frequently derived from the test, as has
happened with the modern view of intelligence, as ‘the ability measured by IQ tests’.

7.7 Reliability

Another key issue in psychometric tests is the notion of reliability, which means that the
measurement is close to the actual value. Note that this is different to validity, which refers
about the true identification or definition of the actual value. In other words, if we assume
validity, i.e. that the definition is correct4, reliability refers to the quality of the measurement
with respect to the actual value. More technically, if the actual value of π for an ability φ is
v then we want a test to give a value which is close to v. The cause of the divergence may be
systematic (bias), non-systematic (variance) or both.

First, we need to realise that reliability applies to tests (e.g. definition 13). Reliability is
then defined by considering that a test can be repeated many times, so becoming a random
variable that we can compare to the true value. Formally:

Definition 32. Given a definition of a cognitive ability Υ and a test over it Υ̂, the test error
is given by:

4The lack of a proper definition for many abilities makes reliability refer to the quality of the result of a single
application of the test in comparison to the idealised average result if the test could be repeated indefinitely.

7.8. Efficiency 79

TE(Υ̂) , Mean((Υ̂−Υ)2) (7.24)

where the mean is calculated over the repeated application of the test (to one subject or more
subjects).

The reason for defining test error as the mean squared error (and not an absolute error) is
a customary choice in many measures of error, as we can decompose it into the squared bias
(Mean(Υ̂)−Υ)2 and the variance of the error V ar(Υ̂−Υ). These values can be calculated for
just one evaluated agent or for all evaluated agents.

Following the definition of test at section 5.5, if the bias is not zero this means that the
procedure to sample the exercises and/or the number of time steps is inappropriate, and the
choices for pΠo (pΠ), pM , pS and pK in definition 13 must be revised. If there is a high variance,
this suggests that the number of exercises nE is too small and we need more (i.e. exercises in
a tests) to get a less volatile result, or that the exercises run for a very short time.

In this sense, note that some of the properties studied in previous sections can hold for Υ
but may be significantly different for unreliable tests (i.e. approximations) Υ̂.

The reliability Rel(Υ̂) can be defined as a decreasing function over TE(Υ̂), such as Rel(Υ̂) =

e−TE(Υ̂). The estimation of TE(Υ̂) or Rel(Υ̂) depends on knowing the true value of Υ. This is
not possible in practice for most environments, so Υ will need to be estimated for large samples
and compared with an actual test (working with a small sample). Because of the difficulties of
estimating this, in what follows we will just give a qualitative assessment. In order to determine
the reliability of a test, we will obtain various samples of exercises and calculate whether the
results obtained in such exercises correlate with their expected results. For doing this, we
determine a test is reliable if such correlation (e.g. a Pearson Correlation) is equal to or greater
than 0.7.5

7.8 Efficiency

This property refers to how efficient a test is in terms of the (computational) time required to
get a reliable score. It is easy to see that efficiency and reliability are opposed. If we were able
to perform an infinite number of infinite exercises, where exercises are selected without bias,
then we would have Υ̂ = Υ, with perfect reliability, as we would exhaust Πo and M . However,
as we usually try to make tests not only finite but more efficient, we lose reliability because of
the sampling procedure. If done properly, it is usually the variance component of the reliability
decomposition that is affected if we keep the bias close to 0 even with very low values for the
number of exercises (nE in definition 13).

Efficiency can be defined as a ratio between the reliability and the time taken by the test
(depending mostly on nE and pK in definition 13, but also on pΠo (pΠ), pM and pS).

Definition 33. Given a definition of a cognitive ability Υ and a test over it Υ̂, the efficiency
is given by:

Eff(Υ̂) , Rel(Υ̂)/T ime(Υ̂) (7.25)

where Time is the average time taken by test Υ̂. Time can be measured as physical (real) time
or as computational time (steps).

5[84] suggests 0.7 as an acceptable reliability coefficient.

7.9. Team Symmetry 80

While this is the way it should be measured, the big issue is how to choose multi-agent
environments and populating agents such that a high efficiency is attained. Clearly, if the
selected environments are insensitive to agents’ actions or require too many actions to affect
rewards, then this will negatively affect efficiency. As we are interested in social abilities,
interactivity and non-neutralism must be high, as otherwise most time steps will be useless to
get information about the evaluated agent. This of course includes cases where the evaluated
agent is stuck or bored because its opponents (or teammates) are too good or too bad, or the
environment leads it to heaven or hell situations where its actions are almost irrelevant.

Naturally, a way of making tests more efficient is by the use of adaptive tests, as in com-
puterised adaptive testing. Here we do not explore this possibility as our definition of test in
section 5.5 is not adaptive (for adaptive versions of universal tests, the reader is referred to [44,
46]).

Similarly to reliability, we will just give a qualitative assessment of efficiency. For doing this,
we determine the efficiency of the test based on the number of repetitions that is needed to
obtain a reliable test. If such number of repetitions is lower than 20, we say the test is efficient.

7.9 Team Symmetry

In game theory, a symmetric game is a game where the payoffs for playing a particular strategy
depend only on the other strategies employed by the rest of agents, not on who is playing
each strategy. This property is very useful for evaluating purposes, as the results would be
independent of the position of the evaluated agent in the environment.

When using teams, this definition of symmetry must be reconsidered. The previous def-
inition means that for each pair of line-ups with the same agents but in different order, the
agents maintain their previous results. But with the inclusion of teams this definition is not
appropriate. For example, using a multi-agent environment with the partition of agent slots
τ = {{1, 2}, {3, 4}} and line-up l = (π1, π2, π3, π4), we have that agents π1 and π2 must both
obtain the same result, as π3 and π4 as well. Following the definition and switching the posi-
tions of π2 and π3 we obtain line-up l′ = (π1, π3, π2, π4), which now means that agents π1 and
π3 must have the same results (since they are now in the same team) while maintaining their
previous results, as π2 and π4 as well. This situation can only occur when all agent slots (and
therefore teams) obtain equal results.

Instead, we extend this definition of symmetry to include teams. First, we denote by σ(l)
the set of all possible line-ups that we can obtain by permuting the positions of the agents
of line-up l. This set corresponds with the one used in game theory to define symmetry. To
adapt this set to include teams, we must select a subset of line-ups from σ(l) respecting the
teams defined in τ . We denote this subset with σ(l, τ), where we only select line-ups from σ(l)
if original teams are maintained. Following the example, line-up l′ is not included in σ(l, τ)
since π1 and π3 from l′ were not in the same team in l (as π2 and π4 as well). However,
l′′ = (π3, π4, π2, π1) is included in σ(l, τ), since both pair of agents (π1, π2) and (π3, π4) are still
in the same team. From here, we define symmetry for a multi-agent environment that uses
teams as follows:

Definition 34. We say a multi-agent environment µ is team symmetric if and only if every
team in τ has the same number of elements and:

∀i,K,Π, l ∈ LN(µ)(Π), l′ ∈ σ(l, τ) : RK
i (µ[l]) = RK

i′ (µ[l
′]) (7.26)

7.10. Summary of Properties 81

where i′ represents the position of agent li:i in l′ and whatever the utility function used to
calculate agents’ results.

Note that we impose that every set in τ must have the same number of elements. This is
because we only consider multi-agent environments to be team symmetric if we can evaluate
an agent in every agent slot and obtain the same result. Having teams with different number
of elements will not allow us to do this.

This definition now fits our goal of team symmetry. But too few multi-agent environments
will fit this definition because it is too restrictive. However, we could divide this definition of
team symmetry into two parts depending on the relation between the agent slots.

For the first part we look at the relation between the agent slots within each team:

Definition 35. We say a multi-agent environment is Intra-Team Symmetric when the agents
within every team can be swapped without affecting their results.

This kind of team symmetry will allow us to evaluate the agents in an environment without
taking into account their positions within their teams.

For the second part we look at the relation between the agent slots in different teams:

Definition 36. We say a multi-agent environment is Total Inter-Team Symmetric if every pair
of teams has the same number of elements and they can be swapped without affecting their
results.

This kind of team symmetry will allow us to evaluate a team of agents in a multi-agent
environment without taking into account in which set of τ it is situated.

Definition 34 corresponds with both Intra-Team and Total Inter-Team Symmetry, where
every team of agents can be located in every set of τ and in different order, maintaining their
performance expectation.

However, although a multi-agent environment whose teams do not have the same number
of elements is not ideal for evaluating purposes, some partial symmetry among its teams may
still exist:

Definition 37. We say a multi-agent environment is Partial Inter-Team Symmetric if not all
teams have the same number of elements and every pair of teams having the same number of
elements can be swapped without affecting their results.

Team symmetry is not a necessary condition for social behaviours, but it is a very practical
one for measurement as the result does not depend on the agent slot we use to evaluate and all
agent slots are useful for evaluating the same ability.

7.10 Summary of Properties

In tables 7.1, 7.2 and 7.3 we can see a summary of all previous properties. Tables 7.1 and 7.2
show the quantitative properties, while table 7.3 shows the qualitative6 properties. This com-
pletes our picture jointly with figure 7.1.

The quantitative properties are divided into two kinds. The properties whose values range
from 0 to 1 (i.e. table 7.1) determine the percentage of compliance that the multi-agent en-
vironment µ and the set of populating agents Πo have about this property when evaluating

6Some of them can in principle be quantified, but here we only give a qualitative assessment.

7.10. Summary of Properties 82

Property model Meaning Lowest value Highest value

AD(Πe, wΠe ,Πo, wL̇, µ, wS)
Social:Social dependency:Interactivity

The action de-
pendency of the
evaluated agents
on the agent line-
up pattern they
encounter.

The evaluated
agents do not
take into account
other agents’
actions in their
behaviour.

The evaluated
agents behave
completely de-
pending on the
other agents’
actions.

RD(Πe, wΠe ,Πo, wL̇, µ, wS)
Social:Social dependency:Non-neutralism

The reward de-
pendency of the
evaluated agents
on the agent line-
up pattern they
encounter.

Each evaluated
agent obtains
the same reward
sequence inde-
pendently of the
agent line-up
pattern.

The agents in
the agent line-up
pattern directly
exercise influence
on the reward
sequences of each
evaluated agent.

FD(Πe, wΠe ,Πo, wL̇, µ, wS)
Instrumental:Secernment:Discrimination

The fine dis-
crimination
between pairs of
evaluated agents
when interacting
with the same
agent line-up
patterns.

Every evaluated
agent obtains the
same expected
result for each
agent line-up
pattern.

Every evaluated
agent obtains
different expected
results for each
agent line-up
pattern.

CD(Πe, wΠe ,Πo, wL̇, µ, wS)
Instrumental:Secernment:Discrimination

The coarse dis-
crimination
between pairs of
evaluated agents.

Every evaluated
agent obtains
the same (social)
intelligence value.

Every evaluated
agent obtains
different (so-
cial) intelligence
values.

STG(Πe, wΠe ,Πo, wL̇, µ, wS)
Instrumental:Secernment:Grading

The strict to-
tal grading mea-
sures the level of
strict grading (<)
between the eval-
uated agents.

There is no strict
total order be-
tween any trio of
evaluated agents.

There is a strict
total order be-
tween all the eval-
uated agents.

PG(Πe, wΠe ,Πo, wL̇, µ, wS)
Instrumental:Secernment:Grading

The partial
grading mea-
sures the level of
partial grading
(≤) between the
evaluated agents.

There is no par-
tial order between
any trio of evalu-
ated agents.

There is a par-
tial order between
all the evaluated
agents.

Table 7.1: Summary of the quantitative property models, whose values range from 0 to 1, about
a multi-agent environment µ with agent slot probability wS, evaluated agent set Πe with weights
wΠe and populating agent set Πo with agent line-up pattern weights wL̇. For each property
model the table shows its arguments, a brief description and a description of the situations
when their lowest and highest values occur.

a set of agents Πe. Therefore, the lower the value the worse the testbed is in regard to this
property, and the higher the value the better. On the contrary, the properties whose values
range from −1 to 1 (i.e. table 7.2) must not be interpreted in the same way. Instead, these

7.10. Summary of Properties 83

Property model Meaning Lowest value Highest value

SRD(Πe, wΠe ,Πo, wL̇, µ, wS)
Social:Social dependency:Non-neutralism

The slot result
dependency
measures how
competitive
or cooperative
the multi-agent
environment is.

The multi-agent
environment
is completely
competitive.

The multi-agent
environment
is completely
cooperative.

AComp(Πe, wΠe ,Πo, wL̇, µ, wS)
Social:Mind modelling:Competitive

The benefit of an-
ticipating com-
petitive agents.

Every evaluated
agent com-
pletely fails at
anticipating com-
petitive agents’
behaviour.

Every evaluated
agent perfectly
anticipates com-
petitive agents’
behaviour.

ACoop(Πe, wΠe ,Πo, wL̇, µ, wS)
Social:Mind modelling:Cooperative

The benefit of an-
ticipating coop-
erative agents.

Every evaluated
agent com-
pletely fails at
anticipating co-
operative agents’
behaviour.

Every evaluated
agent perfectly
anticipates coop-
erative agents’
behaviour.

Table 7.2: Summary of the quantitative property models, whose values range from −1 to 1,
about a multi-agent environment µ with agent slot probability wS, evaluated agent set Πe with
weights wΠe and populating agent set Πo with agent line-up pattern weights wL̇. For each
property model the table shows its arguments, a brief description and a description of the
situations when their lowest and highest values occur.

Property Meaning
Boundedness
Instrumental:Technical

Rewards and weights are bounded, so the social intelligence
definition and test and all quantitative property models are
also bounded.

Validity
Univocal:Correctness

The test evaluates what it is supposed to evaluate and
nothing more.

Reliability
Instrumental:Testing quality

The result of an agent’s ability in the test is close to its
actual value.

Efficiency
Instrumental:Testing quality

Decreases with the amount of (computational) time used
in the test to obtain a reliable score.

Team Symmetry
Instrumental:Technical

Desirable condition to simplify the measurement in such a
way that only one agent slot has to be used to evaluate an
agent.

Table 7.3: Summary of the qualitative properties (or for which we give a qualitative assess-
ment) about a social intelligence testbed, providing a brief description of what each property
represents.

properties measure to which kind of type the testbed is more focussed on, and not a level of
accomplishment or quality.

The set of properties we propose here provides key information about the testbed we are

7.10. Summary of Properties 84

analysing. First, we can measure the influence that a set of populating agents Πo produces
on the set of agents we want to evaluate Πe. Second, we can analyse to what extent the
anticipation abilities are useful for the set of agents we want to evaluate Πe interacting with a
set of populating agents Πo. Third, we can determine whether cooperation or competition is
given more importance in the testbed. Fourth, we estimate the discriminative power that the
testbed has for the evaluation of different agents Πe. Fifth, the grading power of the testbed
indicates how effective it is to rank the agents we want to evaluate Πe. And sixth, we have
some instrumental properties that are convenient to convert the definition into a practical test.

We presented the properties in such a way that the multi-agent environment and both sets
of agents (Πe and Πo) are included. These properties can also analyse the testbed without
including the set of evaluated agents that we want to evaluate by letting Πe unfixed, i.e. by
not specifying a particular set of evaluated agents. This could be done by letting Πe be the set
of all possible agents that will be evaluated with this testbed. Another more practical option
would be to use instead a representative sample of the agents that will be evaluated. A third
(and easier) option would be to use the set of populating agents also as the set of evaluated
agents. Although this last set of evaluated agents will not represent accurately the agents that
are pretended to be evaluated, it could be used in order to obtain an idea about the properties
of the testbed. Similarly, the properties of a multi-agent environment can also been calculated
by letting both sets of agents (Πe and Πo) unfixed.

Note that the properties we present need to specify several functions, such as the correlation
function, the utility function or divergence functions between distributions, so depending on
the functions we use, the same testbed could obtain different values for the properties. When
trying to assess a realistic testbed, we would need to decide what functions are most appropriate
before obtaining any conclusion about the testbed.

Finally, although possible, the calculation of the properties for complex scenarios may be
prohibitively expensive. Instead, we could just approximate them. One possibility would be to
not consider all the pairs of line-up patterns and agent slots, but make a representative sample
of them. A similar solution could be used to approximate the expected result of an agent in
complex stochastic scenarios, such as, e.g. a Monte Carlo approximation (section 2.5).

The property models we present in this chapter can be used to characterise social intelligence
testbeds, letting us to make a comparison between them and allowing us to identify their
strengths and weaknesses.

Chapter 8

Characterising Several Multi-Agent
and Social Scenarios

Many games and multi-agent environments have been proposed as testbeds to evaluate the
performance of an agent (or group of agents) interacting with other agents [90, 138, 103, 143].
Typically, these games and multi-agent environments are created or selected to represent a
specific problem or family of problems to analyse or solve, although they are not specifically
designed to evaluate social intelligence itself. In this chapter, we use our properties to char-
acterise some of them and analyse their suitability to be used in a test to evaluate social
intelligence. Since we are interested in developing social intelligence tests, it is first mandatory
to evaluate whether these other previous testbeds could be valid as they are (or with minor
modifications). Otherwise, they can still be a good source of inspiration to figure out new
multi-agent environment classes by reusing some of their ideas or hybridising some of their
features.

We would have liked to explore many games and multi-agent environments, but we can just
practically do a selection of some of the most common and representative in the area of multi-
agent systems, game theory and (social) computer games. We will focus on some environments
whose specification is complete, so we can analyse them with respect to the properties seen
in the previous chapter. In particular, the environments that we analyse in this chapter are
presented in section 2.1, which are: matching pennies, prisoner’s dilemma, predator-prey (a
pursuit game), Pac-Man and RoboCup Soccer.

8.1 Graphical Analysis for the Properties

Before starting with the environments, we introduce some indicators and a graphical represen-
tation that we illustrate on a figurative multi-agent environment.

In order to assess interactivity, non-neutralism, anticipation and other properties for a multi-
agent environment µ, we need to specify the evaluated agent set Πe with associated weight wΠe ,
the agent set Πo that populates the environment, line-up pattern weights wL̇ and agent slot
weights wS. One choice for Πe and Πo would be to consider any possible agent that is expressible

85

8.1. Graphical Analysis for the Properties 86

using a given policy language. This, however, would make the calculation of most properties
difficult (if not impossible). A better approach would be to use a (representative) sample of
all agents or a sample of a meaningful class. Instead of that, and in order to give a more
general picture of the environment itself, we will show the range of values that each property
can have (for every possible agent set), and how much this range can be restricted (for better
or worse) depending on which Πo we select. In fact, when evaluating a set of agents Πe in a
certain setup, we must provide which set of agents Πo populates the environment but, when
assessing the properties of a testbed, we could let Πo unfixed in order to better evaluate how
the environment behaves for such Πe. Finally, the use of different weights can lead to different
ranges for the properties but, in order to simplify our calculations, in what follows we assume
uniform unit weights for evaluated agents wΠe , line-up patterns wL̇ and agent slots wS. The
same happens with which utility function we use to calculate an agent’s result (section 5.3 on
page 44), the correlation function we use to calculate the correlation on rewards of agents in
different agent slots (section 7.3.2 in definition 20), and divergence functions we use to calculate
the divergence between actions and rewards distributions (sections 7.2, 7.3 and 7.5.1). In what
follows we assume an average of rewards as the utility function, any correlation function where
two equal and two inverse values obtain 1 and −1 respectively, and we use ∆Q(a

′, b′) instead of
∆Q+(a, b) where a′ and b′ are the expected results of a and b respectively, and ∆A+(a, b) and
∆Q(a, b) return 0 if a and b are equal and 1 otherwise.

We divided the properties into three types. In the first type we have the properties which
have a quantitative value that can range between 0 and 1. In the second type we have the
properties which have a quantitative value that can range between −1 and 1. And in the third
type are the properties for which we provide a qualitative value.

For the first two types of properties we calculate the range that each property can have in
an environment. For this, we need to calculate the lowest and highest values that this range
can have for each quantitative property Prop. To achieve this, we select Πe and Πo (from the
set of all possible Πe and Πo such that Prop is defined) that obtain the lowest and highest
values respectively. We define General as follows:

Definition 38. We denote General to be the range of values from Generalmin(Prop, µ) to
Generalmax(Prop, µ), where:

Generalmin(Prop, µ) , min
Πe,Πo

Prop(Πe, wΠe ,Πo, wL̇, µ, wS) (8.1)

Generalmax(Prop, µ) , max
Πe,Πo

Prop(Πe, wΠe ,Πo, wL̇, µ, wS) (8.2)

where the weights for evaluated agents wΠe , agent line-up patterns wL̇ and agent slots wS are
uniform unit weights and the pair ⟨Πe,Πo⟩ is selected (from the set of all possible ⟨Πe,Πo⟩
such that Prop is defined) to minimise/maximise the values of a quantitative property Prop
for multi-agent environment µ.

For the first type of properties Prop, we can select some set of populating agents Πo to obtain
a situation where General is restricted in such a way that Generalmax(Prop, µ) decreases. In
particular, we are interested in the setup with the “lowest maximum”, where Πo minimises this
maximum. We define Left as follows:

Definition 39. We denote Left to be the most restricted range of values from Leftmin(Prop, µ)
to Leftmax(Prop, µ) that we can obtain when Πo is selected (from the set of all possible Πo

8.1. Graphical Analysis for the Properties 87

such that Prop is defined) to decrease the values of a quantitative property Prop which range
is between 0 and 1 for multi-agent environment µ, where:

Leftmin(Prop, µ) , Generalmin(Prop, µ) (8.3)

Leftmax(Prop, µ) , min
Πo

max
Πe

Prop(Πe, wΠe ,Πo, wL̇, µ, wS) (8.4)

In the same way, for the first type of properties Prop we can select some set of populating
agents Πo to obtain a situation where General is restricted in such a way that
Generalmin(Prop, µ) increases. In particular, we are interested in the setup with the “highest
minimum”, where Πo maximises this minimum. We define Right as follows:

Definition 40. We denote Right to be the most restricted range of values from
Rightmin(Prop, µ) to Rightmax(Prop, µ) that we can obtain when Πo is selected (from the set
of all possible Πo such that Prop is defined) to increase the values of a quantitative property
Prop which range is between 0 and 1 for multi-agent environment µ, where:

Rightmin(Prop, µ) , max
Πo

min
Πe

Prop(Πe, wΠe ,Πo, wL̇, µ, wS) (8.5)

Rightmax(Prop, µ) , Generalmax(Prop, µ) (8.6)

For the first type of properties, the General, Left and Right ranges become better as long
as their minimum and maximum values become higher. If the Left range values are lower, this
would mean that a bad selection of Πo is disastrous for the quality of the testbed. If Right
range values are higher would mean that there is a good selection of Πo which improves the
quality of the testbed. The comparison between Left and Right with General shows us the
importance that a good selection for the set of populating agents Πo has for a property Prop
in a multi-agent environment µ. As these three ranges become more different, the selection
of populating agents Πo becomes more important in order to provide a better quality for the
testbed.

In figure 8.1 we present the properties of a figurative multi-agent environment divided in
three sections. The top section represents five quantitative properties of the first type1 (whose
range can be between 0 and 1). The middle section represents the three quantitative properties
of the second type (whose range can be between −1 and 1). Finally, the bottom section
represents the five qualitative properties.

We can see that each property of the first type has the early mentioned General, Left
and Right ranges represented with three bands. The first property (Action Dependency) has
a General range from 0 to 1, represented with the first band. This is the broadest range that
this kind of property can have. This means that this environment can have any value for this
property depending on the sets of populating agents Πo and evaluated agents Πe. The second
band represents its Left range, which is equal to [0, 0]. In this case, there exists a set of
populating agents Πo that restricts this range to the minimum possible range. The third band
represents its Right range, which remains from 0 to 1. Now, no set of populating agents Πo

can be selected to restrict this range. In the next four properties we see some other examples
for the three ranges that this type of property can have. As we can see in the last property of

1Since FD and CD are similar properties, we decided to just calculate the FD property in order to simplify
the analysis.

8.1. Graphical Analysis for the Properties 88

0,00 0,25 0,50 0,75 1,00

General

Left

Right

General

Left

Right

General

Left

Right

General

Left

Right

General

Left

Right

Figurative Multi-Agent Environment

Action
Dependency

Reward
Dependency

Strict Total
Grading

Partial
Grading

Fine
Discrimination

Boundedness  Team Symmetry  Validity  Reliability  Efficiency 

-1,00 -0,50 0,00 0,50 1,00

General

General

General

Slot Result
Dependency

Competitive
Anticipation

Cooperative
Anticipation

Not Defined

Figure 8.1: Properties for a figurative multi-agent environment. Lighter bands mean the values
are not formally calculated, but an estimation is given.

this type (Partial Grading), we use a lighter colour to represent that (part of) a range is not
formally calculated, but instead we provide an estimation.

Next, we arrive to the second type of properties. Here the values for the General range
can be between −1 and 1. Unlike the previous case, we do not provide Left and Right ranges
for this type of properties. This is because these properties represent for which kind of social
intelligence the environment is more oriented, so there are not really good or bad ranges.

In the first property of this second type (Slot Result Dependency), we see that the General
range is equal to [−1,−1], indicating that this environment is purely competitive. The next
property shows another example for this type of properties. Meanwhile, the last property has
a label with the text “Not Defined”. This is because for this environment the property is not
defined, so we cannot represent it.

Finally, we arrive to the last type of properties. Here, we denote whether the environment
meets the properties or not by using a tick (X) or cross (×) mark respectively.

To determine the reliability of an environment, we perform 100 exercises where only such
environment is used. All exercises have the same configuration except for the line-ups. To
obtain a variety of line-ups, each of them is formed with Q-learning agents (section 2.2.1) with
all their parameters randomly selected to be uniformly distributed between 0 and 1.

Now that we have explained how we represent the properties, let us start analysing some
true multi-agent environments.

8.2. Matching Pennies 89

8.2 Matching Pennies

The first multi-agent environment we analyse is the matching pennies (section 2.1.1), which
can be considered the simplest game in game theory featuring competition. Clearly, in this
game, τ = {{1}, {2}} represents the partition of agent slots into teams, i.e. it has two teams
and only one agent slot in each.

Next we discuss this game with respect to the properties seen in chapter 7. We can see
a summary of the properties for the matching pennies in figure 8.2. The proofs of the figure
values are found in appendix A.

0,00 0,25 0,50 0,75 1,00

General

Left

Right

General

Left

Right

General

Left

Right

General

Left

Right

General

Left

Right

Matching Pennies

Action
Dependency

Reward
Dependency

Strict Total
Grading

Partial
Grading

Fine
Discrimination

Boundedness  Team Symmetry  Validity  Reliability  Efficiency 

-1,00 -0,50 0,00 0,50 1,00

General

General

General

Slot Result
Dependency

Competitive
Anticipation

Cooperative
Anticipation

Not Defined

Figure 8.2: Properties for the matching pennies game using uniform unit weights for wΠe , wL̇

and wS, using ∆Q(a
′, b′) instead of ∆Q+(a, b) where a′ and b′ are the expected results of a and b

respectively, and ∆A+(a, b) and ∆Q(a, b) return 0 if a and b are equal and 1 otherwise. We use
an average of rewards as the utility function to calculate an agent’s result and any correlation
function where two equal and two inverse values obtain 1 and −1 respectively.

In order to calculate the reliability of this environment, we let it run for 10 time steps and we
accurately calculate the expected results of the 100 exercises.

If we start with the properties, since rewards are always between −1 and 1, we see that this
game is bounded. This means that the value of Υ and many other properties will be bounded.
Also, matching pennies is a well known zero-sum game, which means that the payoffs of the
agents always sum zero (as we can see in table 2.1) and, therefore, agents have totally opposed
interests.

We next move to the team symmetry property. This game has only two teams with one

8.2. Matching Pennies 90

agent slot on each team. So, in order to prove that this multi-agent environment is not team
symmetric, we only need to find a pair of line-ups l1 = (π1, π2) and l2 = (π2, π1) where the
sequence of rewards for π1 and/or π2 differs in both line-ups. This becomes trivial by using
the same agent πt (which always performs Tail) as both π1 and π2 (i.e. l1 = l2 = (πt, πt)) and
check whether the agent obtains the same expected result in both agent slots. Since πt gets
an expected result of 1 in agent slot 1 and an expected result of −1 in agent slot 2, we can
conclude that this multi-agent environment is not team symmetric. This forces us to calculate
some other properties for all the agent slots.

If we look to the General range for the action dependency (AD) property, we see that it
goes from 0 to 1. That means that the evaluated agents can either interact without noticing
the other agent or can perform actions depending on which agent they encounter. But some
particular selection of Πo could make this environment to have a too restrictive Left range with
respect to this property, making it equal to [0, 0], so no evaluated agent could perform different
actions depending on which agent it interacts with. In addition, we see that no particular
selection of Πo can restrict the Right range, which remains from 0 to 1.

When we look at the General range for the reward dependency (RD) property, we see that
it goes from 0 to 1. This means that the evaluated agents can either obtain the same expected
result or can obtain different expected results depending on which agent they encounter. But
some particular selection of Πo could make this environment to have a too restrictive Left range
with respect to this property, making it equal to [0, 0]. In addition, we see that no particular
selection of Πo can restrict the Right range, which remains between 0 and 1.

The General range for the fine discrimination (FD) property goes from 0 to 1. This means
that two different evaluated agents can either obtain the same expected result or can obtain
different expected results. The Left range can be restricted to be equal to [0, 0], and the Right
range goes from 0 to 1. This means that, with a bad selection of Πo, no pair of evaluated agents
can be differentiated in terms of performance, and it does not exist a Πo to always differentiate
any pair of evaluated agents.

The General range for the strict total grading (STG) and partial grading (PG) properties
has, as in all the previous properties, a minimum value of 0 and a maximum value of 1. This
means that we cannot provide an ordering for some sets of evaluated agents, but we can provide
it for some other sets of evaluated agents. In both STG and PG, Left cannot be restricted by
any Πo, remaining from 0 to 1, and the same occurs with Right, which cannot be restricted by
any Πo, remaining from 0 to 1.

This environment always has a General range for the slot result dependency (SRD) property
equal to [−1,−1]. This means that both agent slots have opposed interests, i.e. it is entirely
competitive.

The General range for the competitive anticipation (AComp) property goes from −0.5 to
0.5. These values tell us that an evaluated agent can improve its expected results by correctly
anticipating the other agent’s actions, but an incorrect anticipation worsens its expected results.

On the contrary, we cannot evaluate the cooperative anticipation (ACoop) property in this
environment. This is because each of the two teams has only one agent slot (in addition, this
is also a zero-sum game), so the formula cannot be applied.

We now discuss the validity property. Matching pennies is a very simple game. As a result,
it seems clear that it is not general enough to be used (alone) as the basis of a social intelligent
test. Nonetheless, there are different opinions about this, as it has been suggested that match-
ing pennies could be an intelligence test on its own, under the name ‘Adversarial Sequence
Prediction’ [53, 54]. In fact, a tournament was organised in 2011 where computer algorithms

8.2. Matching Pennies 91

competed2 and very interesting emergence phenomena were observed. Only strategies that
were able to see patterns in the other players scored well (better than random). There are of
course some counter-intuitive things about this game. Actually, random agents obtain exactly
the same expected result interacting with any opponent, even with very intelligent ones. This
raises concerns about the validity of this environment for a (social) test since, in a (social)
intelligence test, the average result of a random policy should not obtain a good score, since
random agents are clearly not (social) intelligent. Also, matching pennies expected results can
be non-monotonic for a set of agents. In [50] there is an example of an agent set for matching
pennies that is non-monotonic (so PG < 1). Nonetheless, partial orders can still be constructed
for the agent set of all finite state machines [54]. Another important problem about matching
pennies is that it only evaluates pure competition (it is a zero-sum game), and no form of co-
operation can be found (although some versions, or the ternary extension, rock-paper-scissors,
could allow for cooperation). Finally, another strong argument against the validity of this game
as a good environment (alone) for a social intelligence test is that some current AI systems may
score better than humans, even though these AI systems are not (socially) intelligent at all and
they are designed to play matching pennies only.

Finally, as we can see in figure 8.3, matching pennies is not reliable since the results obtained
in a single test only correlate 0.18 with their expected results. Besides, the environment is not
efficient since a lot of repetitions of the test (1866) are needed to reach a reliable result (0.7
correlation).

0 500 1000 1500

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Repetition

C
or

re
la

tio
n

C
oe

ffi
ci

en
t

Figure 8.3: Pearson correlation coefficients between the average results of several repetitions of
100 exercises and their expected results of a test using the matching pennies environment.

Overall, matching pennies is an interesting game, but it lacks the suitability and generality
that a social intelligence test should have. None of the quantitative properties of the first type
(those whose range can be between 0 and 1) can be restricted by using a proper set of populating
agents, so we cannot ensure that some social interactions will happen when evaluating an agent’s
social intelligence. Moreover, this game only focusses on evaluating competition as seen in the
slot result dependency, not measuring at all any cooperative social intelligence from the agents.

2See http://matchingpennies.com/tournament/.

http://matchingpennies.com/tournament/

8.3. Prisoner’s Dilemma 92

Nonetheless, it is a very simple game that illustrates how the range values of several properties
can be calculated and provide very useful information about how a multi-agent environment
or game behaves. In the end, it has been a useful exercise before analysing more sophisticated
scenarios below.

8.3 Prisoner’s Dilemma

The second multi-agent environment we analyse is the prisoner’s dilemma (section 2.1.2) which
is a simple and well-known game involving competition and cooperation. In this game, τ =
{{1}, {2}} represents the partition of agent slots, which has two teams and only one agent slot
in each team.

We can see a summary of the properties for the prisoner’s dilemma in figure 8.4. The proofs
of the figure values are found in appendix B.

0,00 0,25 0,50 0,75 1,00

General

Left

Right

General

Left

Right

General

Left

Right

General

Left

Right

General

Left

Right

Prisoner's Dilemma

Action
Dependency

Reward
Dependency

Strict Total
Grading

Partial
Grading

Fine
Discrimination

Boundedness  Team Symmetry  Validity  Reliability  Efficiency 

-1,00 -0,50 0,00 0,50 1,00

General

General

General

Slot Result
Dependency

Competitive
Anticipation

Cooperative
Anticipation

Not Defined

Figure 8.4: Properties for the prisoner’s dilemma game using uniform unit weights for wΠe , wL̇

and wS, using ∆Q(a
′, b′) instead of ∆Q+(a, b) where a′ and b′ are the expected results of a and b

respectively, and ∆A+(a, b) and ∆Q(a, b) return 0 if a and b are equal and 1 otherwise. We use
an average of rewards as the utility function to calculate an agent’s result and any correlation
function where two equal and two inverse values obtain 1 and −1 respectively. Lighter bands
mean the values are not formally calculated, but an estimation is given.

In order to calculate the reliability of this environment, we let it run for 10 time steps and we
accurately calculate the expected results of the 100 exercises.

8.3. Prisoner’s Dilemma 93

Similarly as happens with matching pennies, since rewards are always between −1 and 1,
we see that this game is bounded. In this game some cooperation appears when both agents
decide to remain silent, so they obtain the maximum joint reward (0.33). But betraying can
provide the best reward to one agent if the other agent still remains silent, so remaining silent
now provides the worst reward (−1). Finally, if both decide to betray, both obtain the worst
joint reward (−0.33). Again, the value of Υ and many properties will be bounded.

Analysing the team symmetry property, we can see that the payoff matrix (table 2.2) is
clearly symmetric for both agent slots. This makes that the payoffs of any strategies made by
the agents do not depend on which agent slots they are, since they will obtain the same rewards.
From this observation we can conclude that this multi-agent environment is team symmetric,
which allows us to calculate some other properties only for one agent slot and assume that it
is maintained for the other.

If we look at the ranges for the action dependency (AD) property, we encounter exactly
the same scenario than in the matching pennies. That means that evaluated agents can either
interact without noticing the other agent, obtaining a value of 0, or can always perform actions
depending on the agent they encounter, obtaining a value of 1. But some particular selections
of Πo can provide a too restricted Left range, forcing this value to be equal to [0, 0], so no
evaluated agent from Πe can behave differently depending on the populating agents of Πo. In
addition, no particular selection of Πo can restrict the Right range, remaining from 0 to 1.

We start to find some differences with the matching pennies when we analyse the reward
dependency (RD) property. As in matching pennies, the General range for this property goes
from 0 to 1, so the expected results of the evaluated agents can either depend or not on which
agent they encounter. Also, some particular selection of Πo could make this environment to
have a too restrictive Left range with respect to this property, making it equal to [0, 0], so
no evaluated agent obtains different expected results depending on which agent it interacts
with. But, a good selection of Πo can restrict the Right range making it equal to [1, 1]. This
means that the evaluated agents obtain different expected results depending on which agent
they interact with.

We now move to the fine discrimination (FD) property. The General range for this property
goes from 0 to 1. This means that two different evaluated agents can either obtain the same
expected result or different expected results depending on the set of populating agents Πo we
select. It exists a particular Πo which restricts the Left range to be equal to [0, 0], meaning
that the environment does not discriminate the evaluated agents, since every evaluated agent
obtain the same expected result. It is not possible to restrict the Right range in such a way
that we can always discriminate every pair of evaluated agents, remaining from 0 to 1, so it
is possible to find two different evaluated agents from some particular Πe obtaining the same
expected result.

The General range for the strict total grading (STG) and partial grading (PG) properties
can, as in all the previous properties, reach a minimum value of 0 and a maximum value of 1 for
this environment. This means that we cannot provide an ordering for some sets of evaluated
agents, but we can provide it for some other sets of evaluated agents. In both STG and PG,
the Left range cannot be restricted by any Πo, remaining from 0 to 1, and the same occurs
with the Right range, which cannot be restricted by any Πo, remaining from 0 to 1.

The General range for the slot result dependency (SRD) property goes from −1 to 1. This
provides very different expected results depending on the agents’ strategies.

The General range for the competitive anticipation (AComp) property goes from −0.66
to 0.66. Anticipating the strategy of the other agent can be really useful to obtain a good

8.3. Prisoner’s Dilemma 94

expected result, but it can also provide a really bad expected result if the strategy is not
correctly anticipated.

We cannot evaluate the cooperative anticipation (ACoop) property in this environment.
This is because, as in the matching pennies game, each of the two teams has only one agent
slot, so the formula cannot be applied. This seems counter-intuitive since agents’ actions can
lead to cooperation among the agents, but this cooperation is not meant to improve the agent’s
own rewards, but to improve the other agent’s rewards (which is in a different team). Indeed,
if we reframe the game by using only one team and calculating the team reward as the mean
of the agents’ rewards, then both agents can cooperate to obtain the best team reward. This
would lead us to a situation where a bad cooperative anticipation between the agents’ actions
can negatively affect the team reward, but also, a good cooperative anticipation will have good
benefits for the team.

We now discuss the validity property. The prisoner’s dilemma is similar in simplicity to
the matching pennies game. But in this game, competition is not so strong, providing some
cooperation between the two teams and making this game more general than the matching
pennies. But in this game we cannot evaluate cooperation within a team, so it is not general
enough to evaluate social intelligence. Actually, some simple strategies can clearly make the
adversary’s results get stuck, forcing it to obtain bad rewards independently of its strategy.
This raises concerns about the validity of this environment for a (social) test, since a (social)
intelligence test should not give bad results to (social) intelligent agents.

Finally, as we can see in figure 8.5, prisoner’s dilemma is not reliable since the results
obtained in a single test only correlate 0.21 with their expected results. However, the environ-
ment is efficient since few repetitions of the test (13) are needed to reach a reliable result (0.7
correlation).

2 4 6 8 10 12

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Repetition

C
or

re
la

tio
n

C
oe

ffi
ci

en
t

Figure 8.5: Pearson correlation coefficients between the average results of several repetitions of
100 exercises and their expected results of a test using the prisoner’s dilemma environment.

The prisoner’s dilemma resembles the matching pennies in many aspects, but it is slightly
a more complex game. As many similarities exist between both environments, many properties
remain equal.

Let us see a more complex multi-agent environment.

8.4. Predator-Prey (Pursuit Game) 95

8.4 Predator-Prey (Pursuit Game)

The next multi-agent environment we analyse is a pursuit game called predator-prey (sec-
tion 2.1.3). τ = {{1}, {2, 3, 4}} represents the partition of agent slots. The first team {1}
contains the prey and the second team {2, 3, 4} contains three predators. Agent slot 1 starts
in the upper left corner and agent slots 2, 3 and 4 start in the upper right, bottom left and
bottom right corners respectively. For the analysis of this multi-agent environment we follow
the same procedure as for the previous ones. This is the reason why we allow the evaluated
agent to interact in every agent slot, even as the prey. But, as mentioned above, if we only let
the agent interact as a predator, the values of the properties could be different.

We can see a summary of the properties for the predator-prey in figure 8.6. The proofs of
the figure values are found in appendix C. We assume that each agent knows in which agent
slot it starts.

0,00 0,25 0,50 0,75 1,00

General

Left

Right

General

Left

Right

General

Left

Right

General

Left

Right

General

Left

Right

Predator-prey

Action
Dependency

Reward
Dependency

Strict Total
Grading

Partial
Grading

Fine
Discrimination

Boundedness  Team Symmetry  Validity  Reliability  Efficiency 

-1,00 -0,50 0,00 0,50 1,00

General

General

General

Slot Result
Dependency

Competitive
Anticipation

Cooperative
Anticipation

Figure 8.6: Properties for the predator-prey environment using uniform unit weights for wΠe ,
wL̇ and wS, using ∆Q(a

′, b′) instead of ∆Q+(a, b) where a′ and b′ are the expected results of a and
b respectively, and ∆A+(a, b) and ∆Q(a, b) return 0 if a and b are equal and 1 otherwise. We use
an average of rewards as the utility function to calculate an agent’s result and any correlation
function where two equal and two inverse values obtain 1 and −1 respectively. Lighter bands
mean the values are not formally calculated, but an estimation is given.

In order to calculate the reliability of the environment, we estimate the expected results of the
100 exercises with a Monte Carlo approximation (section 2.5).

When we start with the properties we see that this multi-agent environment is bounded

8.4. Predator-Prey (Pursuit Game) 96

since its rewards are between −6 and 6, so average rewards when the episode is finished (after
six time steps) are between −1 and 1. As with the previous environments, the value of Υ and
many properties will be bounded.

Analysing the team symmetry property, we clearly see that this multi-agent environment
is not team symmetric. First, prey and predator teams do not have the same number of agent
slots. And second, only by changing the positions of the agents within the predator team does
not provide the same expected results for the agents, owing to they start in different positions
in the space. This forces us to calculate all the other properties for all the agent slots.

If we look at the action dependency (AD) property, we cannot see any difference with the
previous environments, even having a so different scenario. For the General range, evaluated
agents can either interact without noticing the other agents, providing a minimum value of 0,
or can perform different actions depending on the agents they encounter, providing a maximum
value of 1. But some particular bad selections of Πo could restrict the Left range to be equal
to [0, 0]. On the contrary, no particular selections of Πo can restrict the Right range for this
property, remaining from 0 to 1.

When we look at the ranges for the reward dependency (RD) property, we can see that the
General range goes from 0 to 1 so the expected results of the evaluated agents can either differ
or not depending on the agents they encounter. A really bad selection of Πo can make the
Left range too restrictive, staying on [0, 0] no matter which Πe we are evaluating. But we can
restrict the Right range by selecting a properly Πo, obtaining a range from 0.4643 to 1. This
would force that almost half of the expected results of the evaluated agents would be different
depending on the line-up pattern they interact with.

We now move to the ranges for the fine discrimination (FD) property. The General range
goes from 0 to 1, i.e. the expected result of one evaluated agent can be different or not from
the expected result of another evaluated agent depending on which set of populating agents Πo

is selected. But a bad selection of Πo can restrict too much the Left range, making it equal
to [0, 0], so every evaluated agent would obtain the same expected result. However, the Right
range cannot be restricted, remaining from 0 to 1, since there are always two different evaluated
agents that can obtain the same expected result, independently of the set of populating agents
Πo.

The strict total grading (STG) and partial grading (PG) properties are clearly different
from the previous environments. The General range for the strict total grading property can
only go from 0 to 0.5, so we cannot even have a strict total ordering for all the evaluated agents.
In addition, its Left range can be restricted to be from 0 to 0.25, so it would be possible to
obtain some strict total ordering. At least, its Right range can be restricted to be from 0.25 to
0.5, which somehow alleviates this situation. But instead, its partial grading has really good
ranges. Its General range goes from 0.5 to 1, its Left range can be restricted to be from 0.5 to
0.75 and its Right range can be restricted to be from 0.75 to 1. This makes this environment
good for grading the evaluated agents, so even with a bad selection of Πo we would still be able
to obtain some partial orders between some of the evaluated agents, and provides a promising
partial grading for the evaluated agents if Πo is well selected.

The slot result dependency (SRD) has a General range equal to [0, 0]. This particular value
comes from the opposite results of the prey and predators. As early mentioned, if we had only
used the agent slots of the predators for evaluating the agents, we would have had another
range.

The General range for the competitive anticipation (AComp) property goes from −1 to 1.
Anticipating the strategy of the other team can really be useful to improve the expected result,

8.4. Predator-Prey (Pursuit Game) 97

but a bad anticipation really penalises the expected result of an evaluated agent.
In this environment we can find cooperation between the agents within the predator team.

The General range for the cooperative anticipation (ACoop) goes from −1 to 1. This makes a
good coordination within the predator team to always chase the prey, but a bad coordination
can let the prey to escape.

We now discuss the validity property. In the predator-prey environment we can encounter
both competition between the prey and predators, and cooperation among the predators, which
makes it a complex game to evaluate social intelligence. Both competition and cooperation seem
important in this environment, giving us a general situation to evaluate social intelligence in
a broad way. Also, agents that are evaluated in this environment can have good orderings as
properties STG and PG reflect, making it a good environment to classify the agents. However,
the abilities that the agents need to accomplish their goals are not balanced. It is easier for the
predator team to win the chase if they cooperate adequately, where the prey will not have a
chance to survive. Also, the Left ranges of the properties are usually very restrictive when Πo

is not selected carefully. So it is really necessary to select a correct set of populating agents, but
still, once a certain level of (social) intelligence is reached we cannot evaluate higher levels of
(social) intelligence, since their result will remain equal. From here, we can say that the social
intelligence that this environment is evaluating is clearly limited to a certain level, and once
this level is reached the results will not vary as happens in the Left range for the RD property.
Summarising, this environment allows us to evaluate both competition and cooperation which
makes it good to evaluate social intelligence, but this can only be evaluated until a certain level
of (social) intelligence. Over this level, the environment lacks mechanisms to let the evaluated
agent show its actual level of (social) intelligence, so with this environment we are not able
to measure such agent’s social intelligence level. As a result, the environment is not valid for
interesting levels of social intelligence.

Finally, as we can see in figure 8.7, the predator-prey is not reliable since the results obtained
in a single test have no correlation with their expected results. Besides, the environment is not
efficient since a lot of repetitions of the test (51) are needed to reach a reliable result.

0 10 20 30 40 50

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Repetition

C
or

re
la

tio
n

C
oe

ffi
ci

en
t

Figure 8.7: Pearson correlation coefficients between the average results of several repetitions of
100 exercises and their expected results of a test using the predator-prey environment.

8.5. Pac-Man 98

The predator-prey gives us a more complex multi-agent environment than the previous ones.
However, it can be a good multi-agent environment for a testbed to evaluate social intelligence
if Πo is wisely chosen. But we must be careful, since we could obtain a really poor testbed if
Πo is not properly selected. The results we have obtained came from our choice to include the
possibility to evaluate the agents also interacting as the prey. A more classical approach (where
agents are only evaluated interacting as predators) could have given us a different picture for
this environment.

8.5 Pac-Man

Computer games are also currently used as mainstream environments to evaluate AI systems.
One example of the use of games for evaluating AI is the ALE (Arcade Learning Environment)
[2], a framework where a set of arcade computer games are used to evaluate the performance of
current AI algorithms. The following multi-agent environment we analyse here is a computer
game called Pac-Man (section 2.1.4). τ = {{1}, {2, 3, 4, 5}} represents the partition of agent
slots. The first team {1} contains Pac-Man and the second team {2, 3, 4, 5} contains four
ghosts. For the analysis of this multi-agent environment we follow the same procedure as for
the previous ones. This is the reason why we allow the evaluated agent to interact in every
agent slot, even as the ghosts.

From the huge diversity of situations that can occur in this environment, it is difficult to
formally analyse some of the properties as we did with the previous environments. As long
as the games and multi-agent environments are more complex, it becomes more difficult to
determine their actual levels of cooperation and competition, and more effort is needed to
formalise them and find some Πe and Πo to find the properties ranges. Instead, we analyse this
environment in an informal way. However, we could still use the properties to assess such a
testbed when both sets of agents Πe and Πo are fixed.

In figure 8.8 we show a summary with an estimation of the properties for Pac-Man.
Regarding reliability and efficiency, due to the intractability to accurately approximate their
expected results we do not perform the calculations, but we give our estimation about what we
think it would happen.

When we start with the properties we see that this game is not bounded, since Pac-Man can
obtain more and more points (or rewards) as long as it continues surpassing levels. This makes
that Υ and many properties will not be bounded for this environment. Reframing the game by
calculating an average of points by time as rewards in order to make it bounded will change
the goal of the game significantly. Since we give an estimation for the properties, we give them
bounded values.

Also, this multi-agent environment is not team symmetric. On one hand, both teams do
not have the same number of agent slots, which makes the multi-agent environment not Total
Inter-Team Symmetric. On the other hand, we could say that the multi-agent environment
is Intra-Team Symmetric, since every ghost has the same probability to chase Pac-Man, but
this is not exact, since each ghost appears in different moments of the game, so swapping
their behaviour could not provide exactly the same expected results, making the multi-agent
environment not Intra-Team Symmetric.

The action dependency (AD) property seems to be as in previous environments. All agents
have the possibility to ignore the actions of the other agents or act according to what these
other agents did in previous time steps.

8.5. Pac-Man 99

0,00 0,25 0,50 0,75 1,00

General

Left

Right

General

Left

Right

General

Left

Right

General

Left

Right

General

Left

Right

Pac-Man

Action
Dependency

Reward
Dependency

Strict Total
Grading

Partial
Grading

Fine
Discrimination

Boundedness  Team Symmetry  Validity  Reliability  Efficiency 

-1,00 -0,50 0,00 0,50 1,00

General

General

General

Slot Result
Dependency

Competitive
Anticipation

Cooperative
Anticipation

Figure 8.8: Estimation of the properties for the Pac-Man game using uniform unit weights for
wΠe , wL̇ and wS, using ∆Q(a

′, b′) instead of ∆Q+(a, b) where a′ and b′ are the expected results of
a and b respectively, and ∆A+(a, b) and ∆Q(a, b) return 0 if a and b are equal and 1 otherwise.
We use an average of rewards as the utility function to calculate an agent’s result.

When we look at the reward dependency (RD) property, it could obtain some different
values. Indeed, it is too easy to chase Pac-Man if the four ghosts cooperate coherently, but a
bad behaviour for the ghosts can facilitate the game for Pac-Man. In addition, small differences
in the behaviour of the agents can provide very different results as, for example, a ghost passes
near Pac-Man and decides to chase or to avoid it. This small difference in behaviour will provide
high differences in their results. However, when a ghost is far from Pac-Man, small differences
in its behaviour will probably lead to similar results.

The fine discrimination (FD) property also has a huge range of values. As mentioned above,
the behaviour of two different evaluated agents can both obtain the same or very different
expected results, highly depending on the behaviour of the other agents. However, the points
that Pac-Man obtains can somehow depend on Pac-Man’s behaviour itself (at least during the
first moments of the game) but, since eventually good coordinated ghosts will always chase it,
Pac-Man results are still limited.

It seems difficult to know whether we can establish a grading between the evaluated agents
in this environment. But we venture that the grading properties could be similar to the ones
provided in the predator-prey environment, since both environments have many similarities.

It is also difficult to provide a slot result dependency, since rewards obtained by one team
typically do not reflect on the other team. For example, every point obtained by Pac-Man does
not directly have influence on the ghost team’s rewards, and chasing Pac-Man only prevents

8.6. RoboCup Soccer 100

it from obtaining more points. But, if we just assume that both teams rewards are always
different, we can do as we did in the SRD for the predator-prey environment (which has a
similar configuration) to obtain an approximated value, meaning that the slot result dependency
is more focused on cooperation than competition.

If we look at the anticipation properties, it is possible that anticipating competitors does
not have a huge reflect on rewards, but still can provide some good rewards. This is specially
seen while interacting as Pac-Man. It can avoid being chased by the ghosts and achieve more
points, but this anticipation will eventually become useless, since ghosts have an enormous
advantage to chase it. In cooperative anticipation, it is possible that one ghost can do worse
than a random agent (as, for example, perfectly following another ghost’s movements, making
its presence useless), leading to really bad values for this property, but a good cooperating
anticipation can make chasing Pac-Man easier.

This environment is not very reliable as it depends on many small details, such as which
direction takes each agent on each deviation or whether Pac-Man captures the ghosts when it
becomes invulnerable. Also, it is not efficient. We would need to run the game at least hundreds
of times to get some stability in the agents’ results, since many of the first actions obtain the
same rewards but the crucial part of the game comes when the pills become scattered.

Finally, with this environment we can both evaluate competition and cooperation. We
can find competition, since each team can only gain rewards by making the other team lose
rewards. Additionally, in the ghost team, cooperation is also needed to properly chase Pac-Man.
However, for this environment, the selection of populating agents is crucial, a set of predators
with high (and more interesting) level of (social) intelligence can make Pac-Man efforts useless,
which will always obtain bad results, making this game not valid to evaluate social intelligence
for more relevant situations, similarly as happened with the predator-prey environment.

8.6 RoboCup Soccer

The last multi-agent environment we analyse is a 3D space game called RoboCup Soccer (sec-
tion 2.1.5). τ = {{1, 2, 3, 4, 5}, {6, 7, 8, 9, 10}} represents the partition of agent slots, where
agent slots 1 and 6 represent the goalkeepers.

As happens with the previous environment, this game has a huge diversity of situations that
can occur (including physical and virtual versions), which makes difficult to formally analyse
its General, Left and Right ranges. Again, in such complex scenario, it becomes more difficult
to determine the actual levels of cooperation and competition. But also, due to the high level
of complexity of this game, teams tend to some specialisation, with each player focussing on
some specific aspects of the game instead of focusing on the problem in a general way. Again,
we analyse this environment in an informal way.

Similarly as we did in the previous environment, in figure 8.9 we show a summary with an
estimation of the properties for RoboCup Soccer.
Similarly with the previous environment, regarding reliability and efficiency, we give our esti-
mation about what we think it would happen.

When we start with the properties we see that this game is bounded, since rewards (1 for
win, 0 for a tie and −1 for lose) are bounded. This makes that Υ and many properties will be
bounded.

When we look at the team symmetry property, both teams have the same number of agent
slots and, if we ignore which team starts with the possession of the ball on each half, it makes the

8.6. RoboCup Soccer 101

0,00 0,25 0,50 0,75 1,00

General

Left

Right

General

Left

Right

General

Left

Right

General

Left

Right

General

Left

Right

RoboCup Soccer

Action
Dependency

Reward
Dependency

Strict Total
Grading

Partial
Grading

Fine
Discrimination

Boundedness  Team Symmetry  Validity  Reliability  Efficiency 

-1,00 -0,50 0,00 0,50 1,00

General

General

General

Slot Result
Dependency

Competitive
Anticipation

Cooperative
Anticipation

Figure 8.9: Estimation of the properties for the RoboCup Soccer game using uniform unit
weights for wΠe , wL̇ and wS, using ∆Q(a

′, b′) instead of ∆Q+(a, b) where a′ and b′ are the
expected results of a and b respectively, and ∆A+(a, b) and ∆Q(a, b) return 0 if a and b are
equal and 1 otherwise. We use an average of rewards as the utility function to calculate an
agent’s result.

multi-agent environment Total Inter-Team Symmetric, so both teams can swap their positions
and the expected result will remain the same. But, if we want to swap the positions of two agents
within the same team, they would not obtain the same expected results (as, for example, the
goalkeeper has different rules), so the multi-agent environment is not Intra-Team Symmetric.
Since for the team symmetry condition we need the multi-agent environment to be both Total
Inter-Team Symmetric and Intra-Team Symmetric, we can conclude that the RoboCup Soccer
is not team symmetric.

The action dependency (AD) property is similar to the previous environments. All the
evaluated agents have the possibility to act differently depending on the agents they encounter,
but, at least, in this game an agent can affect the actions of the evaluated agents. For example,
one agent can knock the evaluated agent down to the ground, so now it is only able to stand
up.

We now see the reward dependency (RD) property, which can have a huge range. A change
in the line-up of course can change the result of the match. Conversely, only changing one
agent in the line-up can completely change the match result to make a team lose. And we can
reason in the same way for the fine discrimination (FD) property, since the behaviour of only
one agent (the evaluated agent) can also make its team to either win/lose the game, or obtain
the same expected result. However, it is not always the case that the presence of the evaluated

8.6. RoboCup Soccer 102

agent in a team has a difference on its results, specially when its teammates are bad players
and the opponent team is really good.

It is not easy to determine if there exists some grading between the evaluated agents in this
environment. Instead, we can take a look at some professional (human) soccer leagues. It is
not unusual to see situations where two teams repeatedly tie, and a third team beats one of
them while loses against the other one repeatedly. This situation shows us that there is no
strict grading between teams (and neither is between their players) for this game. However,
some teams usually win against other teams, specially against teams of inferior leagues.

The slot result dependency is straightforward for this environment. We have two teams with
five agents on each team. Every agent within a team obtain the same expected result, while
the other agents within the other team obtain the opposite expected result. Using a correlation
function over these expected results and over all agent slots, we obtain a slot result dependency
equal to [0, 0].

If we look at the anticipation properties, correctly anticipating both competitive and coop-
erative can provide a high advantage, so the team of the evaluated agent can score more goals
and win the game more easily. A bad competitive anticipation can lead the opponent to win
the game, while a good one can provide good expected results. In cooperative anticipation, the
evaluated agent could play worse if it is not correctly anticipating its teammates, but a good
anticipation can provide them really good expected results. In both cases, good anticipation
never ensures to score more goals and, therefore, obtain better results. But a very good under-
standing of the behaviour of the teammates can provide better chances to win the game, since
defending every possible attack is not always possible, but only understanding the adversary
does not ensure by itself to score more goals.

Let us now consider the validity of this environment. First, with this environment we can
both evaluate competition and cooperation. We can find competition, since both teams must
compete to win the game. Additionally, the agents within each team can cooperate to mislead
the other team and score more goals. Second, increasing the social intelligence of the agents
typically increases the difficulty of the match, since more skilled agents score goals more easily,
and also defend better, preventing the other team to score. This makes the game useful to
match a high variety of skill levels. But conversely, this game also evaluates some other skills
than social intelligence, such as for example, their ability to predict the movement that the
ball will do when it is kicked. In principle, there are reasons to consider this environment a
valid scenario to evaluate social intelligence. However, since the agents need more than their
social intelligence in order to play the game, we think that it is not specific enough, and an
evaluation using this kind of environment does not only evaluate social intelligence, but also
other abilities such as motion understanding. For this reason we consider this environment not
valid to evaluate social intelligence.

This environment is not reliable. In this environment, it is widely known that two teams
that are facing each other do not necessarily obtain the same result in every match, and several
matches are needed to figure out which of them is better. This depends highly on the decisions
made by the agents, since a small change can lead to a very different result on the match. Also,
the result of the game depends on luck (at least for the physical version), since the players
cannot always predict the correct movement of the ball. This situation is aggravated when
several matches must correlate with their expected results, where hundreds or thousands of
repetitions are needed to obtain a reliable test, making the environment not efficient.

8.7. Discussion 103

8.7 Discussion

So far, we have analysed some ranges of values that the properties presented in chapter 7 can
have for the five multi-agent environments we have selected. Next, let us group the environment
properties by the different ranges in order to make a comparison between the environments
through their properties.

In figure 8.10 we see the General range of the quantitative properties for the five multi-agent
environments.

0,00 0,25 0,50 0,75 1,00

Matching Pennies

Prisoner's Dilemma

Predator-prey

Pac-Man

RoboCup Soccer

Matching Pennies

Prisoner's Dilemma

Predator-prey

Pac-Man

RoboCup Soccer

Matching Pennies

Prisoner's Dilemma

Predator-prey

Pac-Man

RoboCup Soccer

Matching Pennies

Prisoner's Dilemma

Predator-prey

Pac-Man

RoboCup Soccer

Matching Pennies

Prisoner's Dilemma

Predator-prey

Pac-Man

RoboCup Soccer

General Range

Action
Dependency

Reward
Dependency

Strict Total
Grading

Partial
Grading

Fine
Discrimination

-1,00 -0,50 0,00 0,50 1,00

Matching Pennies

Prisoner's Dilemma

Predator-prey

Pac-Man

RoboCup Soccer

Matching Pennies

Prisoner's Dilemma

Predator-prey

Pac-Man

RoboCup Soccer

Matching Pennies

Prisoner's Dilemma

Predator-prey

Pac-Man

RoboCup Soccer

General Range

Slot Result
Dependency

Competitive
Anticipation

Cooperative
Anticipation

Not Defined

Figure 8.10: General range for the quantitative properties of the five multi-agent environments
analysed, using uniform unit weights for wΠe , wL̇ and wS, using ∆Q(a

′, b′) instead of ∆Q+(a, b)
where a′ and b′ are the expected results of a and b respectively, and ∆A+(a, b) and ∆Q(a, b)
return 1 if a and b are equal and 0 otherwise. We use an average of rewards as the utility
function to calculate an agent’s result and any correlation function where two equal and two
inverse values obtain 1 and −1 respectively. Lighter bands mean the values are not formally
calculated, but an estimation is given.

As we can see in the top part of figure 8.10, there are few differences with respect to this
range for the environments. In the first three properties all the environments have the broadest
possible range, so considering all possible agents leads to virtually any possibility in any of
them. We only see some difference for the grading properties in the last three environments.
While the first two environments have the broadest possible range, the last three environments

8.7. Discussion 104

seems that as long as the strict total grading gets worse, the partial grading gets a better range.
This is simply explained because agents in the same team obtain the same rewards, so it is not
possible to obtain a strict total ordering for them while it is still possible for agents in different
teams. Obviously, the agents in the same team always have a partial ordering, making this
range higher.

In the bottom part of figure 8.10 we can see more differences. In the slot result dependency
property we can see the first big difference between the environments. The majority of these
environments have a unique (and usually different) value for this property. While the match-
ing pennies is completely competitive, Pac-Man is slightly more oriented to cooperation, and
predator-prey and RoboCup Soccer are neutral (i.e. provide both competition and cooperation
to the same extent). But, the prisoner’s dilemma is the only one that has the broadest possible
range instead of having a predetermined configuration, so this environment allows the agents
to dynamically cooperate and compete with other agents depending on which actions they
perform.

Finally, we have the two anticipation properties. In both of them, the agents obtain better
expected results when they correctly anticipate, but their expected results get worse when they
incorrectly anticipate.

In the competitive anticipation we see some small differences between the environments.
While a correct competitive anticipation provides good expected results, some environment
could provide much worse expected results when incorrectly anticipating competitive agents, as
we can see for the RoboCup Soccer. For the cooperative anticipation we see a different picture.
In this case two of the environments do not have this property, since they do not provide
teams where the evaluated agent can cooperate with a teammate. However, the last three
environments provide teams where cooperative anticipation can be useful between cooperative
agents, and also they (almost) provide the broadest range for this property.

It is much more interesting to see what happens with these multi-agent environments if we
make bad selections for Πo. In figure 8.11 we see the Left range of the quantitative properties
which range is between 0 and 1 for the five multi-agent environments.

We can see that both the action and reward dependency properties have the worst possible
range for all the environments. This means that a bad selection of Πo would be disastrous
with respect to these properties. In fact, this is not surprising, since Πo could be populated
only with agents having the same exact behaviour, so the evaluated agents would not be able
to behave or obtain different rewards depending on which populating agents from Πo they are
interacting with.

For the fine discrimination property, we can see that (almost) all the environments have a
very low range, so the evaluated agents can hardly be discriminated.

The strict total grading property clearly gives us an order for the environments. With regard
to this property, RoboCup Soccer is clearly the worst environment, while predator-prey and
Pac-Man follow it. Meanwhile, matching pennies and prisoner’s dilemma cannot be restricted
with any particular Πo, obtaining a good range for this property.

Finally, the partial grading has different ranges for the environments. Predator-prey and
Pac-Man have the same range, and they also have a clearly better range than the RoboCup
Soccer. Both matching pennies and the prisoner’s dilemma have the broadest possible range. At
this point, it is not clear which pair matching pennies and the prisoner’s dilemma, or predator-
prey and Pac-Man has better ranges. From one side, the ranges for matching pennies and
prisoner’s dilemma go from 0 to 1, so a selection of Πo does not necessarily worsen their ranges
for this property, but still it is possible to have a bad value. From the other side, the worst

8.7. Discussion 105

0,00 0,25 0,50 0,75 1,00

Matching Pennies

Prisoner's Dilemma

Predator-prey

Pac-Man

RoboCup Soccer

Matching Pennies

Prisoner's Dilemma

Predator-prey

Pac-Man

RoboCup Soccer

Matching Pennies

Prisoner's Dilemma

Predator-prey

Pac-Man

RoboCup Soccer

Matching Pennies

Prisoner's Dilemma

Predator-prey

Pac-Man

RoboCup Soccer

Matching Pennies

Prisoner's Dilemma

Predator-prey

Pac-Man

RoboCup Soccer

Left Range

Action
Dependency

Reward
Dependency

Strict Total
Grading

Partial
Grading

Fine
Discrimination

Figure 8.11: Left range for the quantitative properties which range is between 0 and 1 of the
five multi-agent environments analysed, using uniform unit weights for wΠe , wL̇ and wS, using
∆Q(a

′, b′) instead of ∆Q+(a, b) where a′ and b′ are the expected results of a and b respectively,
and ∆A+(a, b) and ∆Q(a, b) return 1 if a and b are equal and 0 otherwise. We use an average
of rewards as the utility function to calculate an agent’s result. Lighter bands mean the values
are not formally calculated, but an estimation is given.

value for the predator-prey and Pac-Man cannot be as bad as it can be in matching pennies
and the prisoner’s dilemma. However, a bad selection of Πo does worsen their best values for
this property.

Now we see the effect that good selections for Πo can have on some quantitative properties
for the multi-agent environments. This is possibly the most interesting picture, because it gives
us the best we could do with a right choice of Πo. In figure 8.12 we see the Right range of the
quantitative properties which range is between 0 and 1 for the five multi-agent environments.

We can see that the action dependency and fine discrimination properties cannot improve
much by selecting an appropriate Πo. At least RoboCup Soccer can slightly restrict its action
dependency range, which means that even with the best possible choice of Πo we cannot ensure
that there will be a high action dependency.

For the reward dependency property the ranges vary. Matching pennies and RoboCup
Soccer cannot restrict their ranges. Pac-Man can slightly restrict this range and predator-
prey does not have a bad range, so depending on which line-up pattern the evaluated agents
encounter, they certainly obtain some differences in their expected results. But prisoner’s
dilemma can ace this property, making the expected results different for every evaluated agent
in Πe depending on the line-up pattern they interact with.

For the strict total grading we find more differences. It is not clear which environment has
a better range, but at least we can say that RoboCup Soccer has the worst range among the
five environments. However, it is not as clear which of the other four environments has the best
range. From one side, the ranges for matching pennies and the prisoner’s dilemma go from 0
to 1, so a selection of Πo does not necessarily improve their ranges for this property, but still it
is possible to have a good value. From the other side, the best value for the predator-prey and
Pac-Man cannot be as good as it can be in matching pennies and prisoner’s dilemma. However,

8.7. Discussion 106

0,00 0,25 0,50 0,75 1,00

Matching Pennies

Prisoner's Dilemma

Predator-prey

Pac-Man

RoboCup Soccer

Matching Pennies

Prisoner's Dilemma

Predator-prey

Pac-Man

RoboCup Soccer

Matching Pennies

Prisoner's Dilemma

Predator-prey

Pac-Man

RoboCup Soccer

Matching Pennies

Prisoner's Dilemma

Predator-prey

Pac-Man

RoboCup Soccer

Matching Pennies

Prisoner's Dilemma

Predator-prey

Pac-Man

RoboCup Soccer

Right Range

Action
Dependency

Reward
Dependency

Strict Total
Grading

Partial
Grading

Fine
Discrimination

Figure 8.12: Right range for the quantitative properties which range is between 0 and 1 of the
five multi-agent environments analysed, using uniform unit weights for wΠe , wL̇ and wS, using
∆Q(a

′, b′) instead of ∆Q+(a, b) where a′ and b′ are the expected results of a and b respectively
and ∆A+(a, b) and ∆Q(a, b) return 1 if a and b are equal and 0 otherwise. We use an average
of rewards as the utility function to calculate an agent’s result. Lighter bands mean the values
are not formally calculated, but an estimation is given.

a good selection of Πo does improve their worst values for this property.
Finally, the partial grading gives us more information about the orderings. RoboCup Soccer

has improved its range, but it is still worse than the predator-prey and Pac-Man, which now are
clearly the best to obtain an ordering. However, matching pennies and the prisoner’s dilemma
cannot restrict their ranges, making them the worst of the five environments.

Overall, the Right range is more informative. Note that the Πo that we use to calculate the
values for each environment property is not necessarily the same. We just obtain the values
locally for each property. That means that some values could not be achievable at the same
time.

Lastly, in table 8.1 we see a summary of the qualitative properties to obtain a practical test
for the five multi-agent environments.

Boundedness Team Symmetry Validity Reliability Efficiency

Matching Pennies     

Prisoner's Dilemma     

Predator-prey     

Pac-Man     

RoboCup Soccer     

Table 8.1: Qualitative properties of the five multi-agent environments analysed.

As we have seen, almost all the environments have bounded rewards. This allows us to
provide a bounded value for Υ and many properties. But only the prisoner’s dilemma is team
symmetric, so in order to evaluate an agent in the other environments, we need to evaluate
them in all the agent slots. With respect to the validity property, no multi-agent environment

8.7. Discussion 107

is correctly evaluating social intelligence. Some of them are not sufficiently general, as happens
with the matching pennies or the prisoners’ dilemma. We have the opposite situation with
RoboCup Soccer, where more abilities are evaluated and it seems difficult to isolate social
intelligence from these other abilities. Finally, other environments can only evaluate the social
intelligence to a certain degree, as happens in the predator-prey and Pac-Man. With respect to
the reliability property, none of these environments is reliable, since the correlations between
the results obtained by the evaluated agents and their expected results are too weak. Lastly,
only the prisoner’s dilemma is an efficient environment in terms of the number of repetitions
needed to reach a reliable result (only 13 repetitions are needed). We need to average the
results of more than 20 repetitions of the test for the other environments to obtain values close
to their expected results.

From the analysis and comparison between the properties of the multi-agent environments
we made in this chapter, we can provide some insights. First, we give some findings about the
five multi-agent environments.

• As we have seen in our analysis, these multi-agent environments are typically covering
anticipation well. Competitive anticipation is well covered in all the environments, while
cooperative anticipation is not defined for the first two environments, but the last three
are covering it very well. It also seems that the partial grading is generally well covered,
so we can find some partial orderings between the evaluated agents.

• We can find some other properties that the multi-agent environments are not covering
well. One example is the action dependency, where (almost) every environment analysed
obtained the same poor ranges. This property is something which is not usually thought of
when designing a multi-agent environment, but the possibility of having influence on the
actions that other players can do is an interesting thing to consider when designing a multi-
agent environment and, in particular, if we want to evaluate social intelligence. Another
property which is not usually well covered is the slot result dependency, where these
environments are typically only giving one value. We do not mean that the environments
do not have good values but, instead, having a broader range of values would provide
us with a more interesting scenario, where the relations of competition and cooperation
between agents can change dynamically.

• As we can see from their qualitative properties, four of the five multi-agent environments
we selected have some difficulties to be used in a practical test. None of them provides
team symmetry to simplify the evaluation. The range of abilities required to succeed in
these environments are not appropriate to be used in a test to evaluate social intelligence
accurately, as well as the reliability of the environments is compromised even for slightly
sophisticated agents (such as Q-learning agents) and only one of the five environments
is efficient. At least, the environments usually provide bounded rewards, so we could
calculate a bounded value of the (social) intelligence of the agents we want to evaluate.

• With these properties, we obtained different ranges of General, Left and Right for each
of the five multi-agent environments. In addition, we could see that some little changes
over the definition of a multi-agent environment (as occurs with the matching pennies
and prisoner’s dilemma) are clearly reflected with these properties. In fact, every kind of
multi-agent environment will have particular ranges of values for these properties, with
which we will be able to select the (social) environment(s) that best fits our goals (e.g.
select an environment focused on anticipating other agents).

8.7. Discussion 108

• As we have seen, a good selection of the set of populating agents Πo is crucial in order
to obtain appropriate social intelligence testbeds. But, how could we provide a Πo which
is appropriate to evaluate the social ability of an agent in a large number of multi-agent
environments? This is a difficult task. When starting the evaluation, since the social
intelligence of the evaluated agent is not known, it would be appropriate to use one Πo

which agents are not too socially smart during the first exercises. As long as the evaluation
goes ahead and the social intelligence of the evaluee is better known, it would be better
to use another Πo whose agents are conforming to this level of social intelligence. In order
to solve this problem, we could provide a unique Πo and use some kind of distribution
which is continuously evolving, giving more probability to the agents which are obtaining
better results on these exercises, as in the spirit of the Darwin-Wallace distribution [48].

From the previous analysis, we can now distinguish the features of the multi-agent environ-
ments that could be reused for the design of better multi-agent environments to measure social
intelligence more effectively. The first environment we saw is matching pennies, but it does
not seem to have any particular useful feature from the properties we analysed. Next we saw
the prisoner’s dilemma environment, which is similar to the matching pennies with some little
modifications. The prisoner’s dilemma offers some nice features to include in a social intelli-
gence test. First, we notice its capability to dynamically change the relation between the agent
slots, providing a competitive and cooperative environment at the same time depending on the
agents’ actions. Second, the evaluated agent can obtain drastically different results when it
interacts with very different populating agents from Πo. And third, its team symmetry and
efficiency makes this environment a good candidate to provide a simple test. The third environ-
ment was the predator-prey. This is the first environment that we analysed providing several
agents in (at least) one team. From this team of agents, it is possible to anticipate cooperative
agents in such a way that really good expected results can be achieved when it is done correctly,
and an incorrect anticipation can provide really bad expected results. The same occurs while
anticipating competitive agents, but in this case, both teams can anticipate the agents in the
other team. Besides, we can obtain good partial gradings for the evaluated agents. However,
Pac-Man and RoboCup Soccer do not provide significant features beyond those provided by
predator-prey. At least, in RoboCup Soccer it is possible to exert a slight influence on other
agents’ actions, but only to some extent.

Conversely, we also distinguish those features that we do not want to appear in multi-
agent environments for social intelligence testbeds. The first feature we distinguish is that
none of these environments is valid to evaluate social intelligence since they are evaluating:
1) more abilities than necessary, as in RoboCup Soccer where the agents need their motion
understanding to play the game; 2) not enough abilities, as in matching pennies and prisoner’s
dilemma where the agents cannot cooperate with agents in the same team; or 3) is only valid
for lower levels of social intelligence, as in predator-prey and Pac-Man where the predators and
ghosts can easily chase the prey and Pac-Man respectively once they reach a certain level of
(social) intelligence. Also, none of the environments provide reliable results, probably due to
that some little changes in the behaviour of the agents can create a butterfly effect, making
the agents to obtain very different results (as occurs in the last three environments). Also, the
multi-agent environments are typically not team symmetric, which will force to evaluate the
agents in all agent slots, and we usually need many repetitions evaluating the agents in these
environments to obtain a reliable result. In these five multi-agent environments, it is weird
(if not impossible) to find a situation where an agent can directly influence on which actions

8.7. Discussion 109

are available for one (or more) of the other agents. The capability to directly influence on the
available actions of the rest of agents could provide us a richer social environment, helping us
to force the evaluated agent to consider the other agents if it wants to improve its performance.
Also, some environments (matching pennies and prisoner’s dilemma) are not suitable to let the
agents anticipate cooperation within a team, since they do not provide the agents a team of
agents to cooperate with them. Finally, when we see in more detail some environments, we
notice that predator-prey and Pac-Man sometimes provide a really difficult/hostile scenario,
where the predators and ghosts respectively have an enormous advantage to win the game.

Even if it is not the goal of this thesis (but a future work in our path to create a social
intelligence test), we consider that a good multi-agent environment to measure social intelligence
should have (at least) these characteristics: 1) It should provide two or more teams to interact
with, and two or more agent slots on each team. By having this, the agents would be able
to compete against the other team(s), cooperate with the agent(s) within their team and, if
the environment provides more than two teams, cooperate with other teams to improve one’s
own results. This would provide anticipation to the environment, so the agents would be
able to competitive and cooperative anticipate other agents; 2) The multi-agent environment
should allow the agents to influence in some way the rewards obtained by the other agents,
providing some reward dependency; 3) There should not be easy equilibria in the multi-agent
environment. If such circumstance occurs, most of the agents (the intelligent ones) would always
perform the same actions, which would limit the results obtained by the agents. Avoiding easy
equilibria would provide the multi-agent environment with more discriminative power, reward
dependency and grading for the agents; 4) The multi-agent environment should allow the agents
to influence in some extent the actions that the other agents can perform, creating richer social
situations and providing some action dependency; 5) There should be limited rewards that the
agents can obtain and the payoff of the agents should only depend on the actions they perform.
This would provide us a bounded and team symmetric multi-agent environment, which would
be ideal to create a practical social test; And 6) the multi-agent environment should provide
different kind of spaces where the agents can move. This would avoid the agents to specialise
to a particular space, which would make the multi-agent environment more valid to evaluate
social intelligence in a more broader way.

During this chapter, we have characterised all the multi-agent environments individually.
However, we remind that we could have created a more general testbed by grouping them in a
set for environments M and weighted the values obtained for each property with a weight for
environments wM . The values obtained for the properties would have been more representative
of a more general testbed.

Finally, what can we say about the properties? Are they sufficient to characterise any
testbed or multi-agent environment? How should they be used? Are the Left and Right
ranges more meaningful than the General ranges? Some insights below.

• With these properties we are able to obtain different values for each multi-agent environ-
ment, which gives us some idea about their strengths and weaknesses.

• We only used one evaluated agent from a set of evaluated agents Πe interacting with
a set of populating agents Πo. More specialised properties (and even a definition of
social collective intelligence) can be easily extended by, for example, dividing the set of
populating agents Πo into two sets (i.e. one for opponent players and one for team players)
or, instead of making the evaluated agents interact in the environments in isolation,
include together in the environment a group (or collective) of evaluated agents.

8.7. Discussion 110

• There are also other issues which may not be covered on these properties, as for example
communication between teammates. They do not provide information about misleading
opponents, or the possibility of the agents to influence the actions of other agents on its
benefit. Also, the properties do not show us the contribution of the agents to their teams’
rewards, as well as the impact that their inclusion in the line-up has in the rewards of the
other teams.

• These properties provide us some interesting information about the testbeds such as the
fine and coarse discrimination, which give us a measure of their discriminative power.
Other interesting properties are the action, reward and slot result dependency, giving
us an idea about the existing dependency between the actions/rewards of the agents,
and which relation between the agent slots is given more importance in the testbed or
multi-agent environment (i.e. it is a more competitive- or cooperative-oriented testbed or
multi-agent environment), and if this relation is static or can change during the evaluation.

• We used the Left and Right ranges in order to compare for each property how a partic-
ular good or bad selection of Πo can affect that property in a multi-agent environment.
Conversely, an actual test should provide a unique Πo to evaluate the agents, obtaining a
unique range for each property. This selection of Πo will (most probably) make the prop-
erties to barely look like the Left or Right ranges we calculated for these five multi-agent
environments, providing instead more varied ranges. Therefore, a comparison between
some testbeds or multi-agent environments with their Πo fixed would give us a more clear
idea about their differences.

In this chapter, we have provided some examples of how the properties presented in chapter 7
can be used to obtain some useful information about the suitability of a testbed or multi-agent
environment in order to evaluate social intelligence. The identification of suitable testbeds is
crucial in order to determine whether the improvements on performance of socially intelligent
agents are really general improvements towards the creation and development of such agents
or, on the contrary, these improvements do not really correspond to a better understanding of
social behaviours, but to a better understanding of other unrelated characteristics.

Chapter 9

Conclusions and Future Work

Social intelligence has been an important area of study in psychology, comparative cognition
and economics for more than a century, and more recently, in artificial intelligence, notably
in the area of multi-agent systems. However, despite the fact that other tests have been
created to evaluate other cognitive abilities, nowadays it is still difficult to find a proper test
to evaluate social intelligence. Also, current tests tend to be focussed on evaluating the ability
of a single species and it is even more complicated to find a test to evaluate social intelligence
that is applicable to machines. In fact, tests designed to succeed on a task that requires
social intelligence usually also require other abilities to succeed in the task, making them
not appropriate for the evaluation of social intelligence. This lack of general socially-oriented
tests may be due to the absence of a precise (and formal) definition of social intelligence and
theoretical tools to assess the suitability of testbeds for the evaluation of social intelligence.

In this thesis we have made a survey about the evaluation of social intelligence, we have
analysed some repercussions about evaluating social intelligence using a general intelligence
test, we have formalised a proper definition of social intelligence (as an aggregation of results
on multi-agent environments interacting with other agents) and some useful social properties
to characterise testbeds. In particular, the contributions are:

• We have analysed what social behaviour and its evaluation implies, reviewing what it
means from several disciplines.

• We have considered various options for a definition, and we finally proposed a formal and
parametrised definition of social intelligence. This definition formalises the notion of the
performance of an agent interacting with any set of (social) agents in a variety of multi-
agent environments. The definition allows us to provide different sets of environments and
agents to perform the evaluation and parametrise them, allowing us to arrange the agents
into teams to help us evaluate cooperation and/or competition for some environments.
For this definition we propose two alternatives: one starting from the environments and
including the agents afterwards, and the other way around, selecting the agents first and
placing them later into the set of environments. We also have indicated how a test can
be constructed using this definition.

111

112

• We have analysed the effect that the arrangement of agents into teams and the selection
of agents to populate the environments have in a social test. We showed that the arrange-
ment of agents into teams can foster cooperation and/or competition in some multi-agent
environments, but is not enough to obtain an appropriate testbed or multi-agent environ-
ment. We also have seen the dependency of the agents used to populate the environment,
so social agents are more or less effective not only depending on the environment, but
also on the agents that populate that environment.

• We have proposed some properties along with their formal definitions in order to better
analyse the appropriateness of a testbed or simply a multi-agent environment to evaluate
social intelligence. Some of them (action dependency, reward dependency, fine and coarse
discrimination and strict total and partial grading) are conceived as the degree of com-
pliance that the testbed has about these properties, while others (slot result dependency
and cooperative and cooperative anticipation) just indicate which type (competitive or
cooperative) the testbed is more focussed on.

• With the properties proposed, we have analysed and compared several environments
and games from artificial intelligence and game theory (where social intelligence has an
important role) to see which properties they meet and which can be improved in order to
evaluate social intelligence.

This definition of social intelligence along with the social properties proposed here are a first
attempt in order to determine whether a testbed is useful for the assessment of social intelli-
gence. As far as we know, this is the first approximation to provide a formal definition of social
intelligence along with some useful properties to judge a certain testbed. A formal definition of
social intelligence should facilitate us the development, comparison and improvement of socially
intelligent agents. Besides, being able to determine the (social) characteristics that are present
on a (social) testbed will help in the development of more general agents [32]. Also, they can
help us to prevent some of the risks of creating artificial social intelligence, such as the creation
of excessively competitive but uncooperative agents [80] or unethical or not empathic agents
[92]. Indeed, further research will provide us with more information about which properties can
be improved and information about other properties to complement the ones presented here.

There is still work to be done to achieve our goal of providing a practical test to measure
social intelligence. The definition of social intelligence proposed here along with the social
properties we propose to characterise a testbed or multi-agent environment and determine
whether it is useful to evaluate social intelligence have some open features to be solved.

1. Our definition uses various sets and weights in the formula as parameters. How do we
obtain an appropriate set of agents? We noted the importance of providing a good
environment class where only social abilities are required to succeed on it but, how to
provide this environment class? How to assess the appropriateness of environments?
Which distributions and weights of agents and environments are appropriate to use in a
social intelligence test?

2. It is not clear what utility function the agents must have to calculate their results. Should
rewards be regulated using a discount factor as usual in reinforcement learning? Should
we give more importance to later rewards, when the agents are supposed to understand
how to behave? Or is it better to use an average, giving the same importance to all the
rewards? Similar issues happen with the correlation function and divergence functions.

113

3. Every test should provide which level of difficulty it is evaluating. The difficulty of the
environment could be calculated as, for example, the performance of a distribution of
agents’ policies with different levels of complexity, as presented in [43]. We postulated
that the level of difficulty should be determined by the agents included in the environment
(and their intelligence), the partition of agent slots that determines how teams are formed
and the environment where the agent is evaluated. We determined how the first two
parameters should influence the formula, but without indicating the formula itself. Should
the level of intelligence of the agents weight more than the partition of agent slots, or
should it be otherwise? How can we consider the environment in this formula?

4. We only evaluated one agent π interacting with a set of agents Πo. But a more specialised
definition of social (multi-agent or collective) intelligence and social properties about it
can be easily extended by including more parameters as, for example, dividing the set
of agents Πo into two sets (i.e. one for team players and one for opponent players) or,
instead of evaluating the agent in isolation, evaluating together a group (or collective) of
agents.

5. We noticed that when a space is used in the definition of an environment, the agents
necessarily require some spatial intelligence. In theory, we should calculate which part of
the result comes from spatial intelligence and subtract it, but this seems very difficult.
Alternatively, we could figure out a multi-agent environment class where no other abilities
needed to interact will be really useful. Or at least with a wide variety such that, on
average, these other abilities do not bias the result.

6. We could also use this definition of social intelligence by letting the agents cooperate
placing them into individual teams. Life has taught us that alliances and coalitions can
arise from several agents, even when they do not share the same objectives, to improve
the chances of success. It would be interesting to analyse whether a test evaluating only
competition can indirectly evaluate this spontaneous cooperation.

7. Social intelligence is linked to communication and language. We have not included any
property or feature in the definitions to account for the presence of communication and
language, or to facilitate that. Clearly, communication is possible through actions. Even
language can be transmitted by the agent actions with a proper coding. However, this
could be rendered more easily to agents. Nonetheless, any particular communication
protocol can make the test non-universal. Instead we think that some extra actions that
could be observed immediately by other agents (or by a subset of them) could be basic
enough as a signal.

In this thesis we provided a formal definition that, when the multi-agent environments and
populating agents used are properly selected, allows us to evaluate the social intelligence of
any agent interacting in teams. Besides, the social properties we present go beyond the simple
properties of game theory in many ways, opening a number of possibilities for the evaluation
of testbeds and multi-agent environments. Of course, further research is needed to clarify
many open questions, as happens with the arguably easier problem of non-social intelligence
evaluation, which has not been fully achieved and it is still being investigated. The evaluation
of social intelligence is still more convoluted. We have set some formal principles and made the
difficulties arise. This thesis provides the basis of how we can evaluate social intelligence in a
formal way following these principles.

Bibliography

[1] Samuel Barrett and Peter Stone. “An Analysis Framework for Ad Hoc Teamwork Tasks”.
In: Proceedings of the Eleventh International Conference on Autonomous Agents and
Multiagent Systems. Vol. 2. Richland, South Carolina, United States of America: Inter-
national Foundation for Autonomous Agents and Multiagent Systems, 2012, pp. 357–
364.

[2] Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. “The Arcade
Learning Environment: An Evaluation Platform for General Agents”. In: Journal of
Artificial Intelligence Research 47 (May 2013), 253–279.

[3] Miroslav Benda, Vasudevan Jagannathan, and Rajendra T. Dodhiawala. On Optimal
Cooperation of Knowledge Sources - An Empirical Investigation. Tech. rep. Seattle,
Washington, United States of America: Boeing Advanced Technology Center, Boeing
Computing Services, July 1986.

[4] Darse Billings. “Thoughts on RoShamBo”. In: International Computer Games Associa-
tion 23.1 (Mar. 2000), pp. 3–8.

[5] Alfred Binet. “Nouvelles recherches sur la mesure du niveau intellectuel chez les enfants
d’école”. In: L’Année Psychologique 17.1 (1910), pp. 145–201.

[6] Alfred Binet and Thomas Simon. “Application des méthodes nouvelles au diagnostic du
niveau intellectuel chez des enfants normaux et anormaux d’hospice et d’école primaire”.
In: L’Année Psychologique 11.1 (1904), pp. 245–336.

[7] Alfred Binet and Thomas Simon. “Méthodes nouvelles pour le diagnostic du niveau
intellectuel des anormaux”. In: L’Année Psychologique 11.1 (1904), pp. 191–244.

[8] Alfred Binet and Thomas Simon. “Sur la nécessité d’établir un diagnostic scientifique
des états inférieurs de l’intelligence”. In: L’Année Psychologique 11.1 (1904), pp. 163–
190.

[9] Alfred Binet and Thomas Simon. “Le développement de l’intelligence chez les enfants”.
In: L’Année Psychologique 14.1 (1907), pp. 1–94.

[10] Alfred Binet and Thomas Simon. The Development of Intelligence in Children (the
Binet-Simon Scale). Translated by Elizabeth S. Kite from articles in L’Année Psy-
chologique 11.1, pp. 163-336; 14.1, pp. 1-90; and 17.1, pp. 145-201. The Williams &
Wilkins Company, May 1916, p. 355.

[11] Pierpaolo Di Bitonto, Maria Laterza, Teresa Roselli, and Veronica Rossano. “Evaluation
of Multi-Agent Systems: Proposal and Validation of a Metric Plan”. In: Transactions
on Computational Collective Intelligence VII. Lecture Notes in Computer Science 7270
(Apr. 2012), pp. 198–221.

114

Bibliography 115

[12] Richard W. Byrne and Andrew Whiten, eds. Machiavellian Intelligence: Social Expertise
and the Evolution of Intellect in Monkeys, Apes, and Humans. Oxford University Press,
July 1988, p. 430.

[13] Jonathan M. Campbell and David M. McCord. “Measuring Social Competence with
the Wechsler Picturei Arrangement and Comprehension Subtests”. In: Assessment 6.3
(Sept. 1999), pp. 215–223.

[14] Theodore Caplow. Two Against One: Coalitions in Triads. Englewood Cliffs, New Jersey,
United States of America: Prentice-Hall, 1968, p. 183.

[15] Georgios Chalkiadakis and Craig Boutilier. “Sequentially optimal repeated coalition
formation under uncertainty”. In: Autonomous Agents and Multi-Agent Systems 24.3
(May 2012), pp. 441–484.

[16] Dave Cliff and Geoffrey F. Miller. “Co-evolution of Pursuit and Evasion II: Simulation
Methods and Results”. In: From Animals to Animats 4: Proceedings of the Fourth Inter-
national Conference on Simulation of Adaptive Behavior. Complex Adaptive Systems.
The MIT Press, Sept. 1996, pp. 506–515.

[17] Jörg Denzinger and Matthias Fuchs. “Experiments in Learning Prototypical Situations
for Variants of the Pursuit Game”. In: Proceedings of the Second International Confer-
ence on Multi-Agent Systems. Menlo Park, California, United States of America: AAAI
Press, 1996, pp. 48–55.

[18] Jörg Denzinger and Michael Kordt. “Evolutionary On-line Learning of Cooperative Be-
havior with Situation-Action-Pairs”. In: Proceedings of the Fourth International Confer-
ence on Multi-Agent Systems. IEEE Press, 2000, pp. 103–110.

[19] David L. Dowe and Alan R. Hájek. “A non-behavioural, computational extension to
the Turing Test”. In: Proceedings of the International Conference on Computational
Intelligence and Multimedia Applications. River Edge, New Jersey, United States of
America: World Scientific, 1998, pp. 101–106.

[20] David L. Dowe and José Hernández-Orallo. “IQ tests are not for machines, yet”. In:
Intelligence 40.2 (Mar. 2012), pp. 77–81.

[21] David L. Dowe and José Hernández-Orallo. “On interaction complexity, (space-time)
resolution and intelligence”. In: ReteCog II Workshop: Interaction. Zaragoza, Spain,
Jan. 2013, p. 5.

[22] David L. Dowe and José Hernández-Orallo. “How universal can an intelligence test be?”
In: Adaptive Behavior 22.1 (Feb. 2014), pp. 51–69.

[23] David L. Dowe, José Hernández-Orallo, and Paramjit K. Das. “Compression and Intelli-
gence: Social Environments and Communication”. In: Proceedings of the Fourth Confer-
ence on Artificial General Intelligence. Vol. 6830. Lecture Notes in Artificial Intelligence.
Springer, 2011, pp. 204–211.

[24] Chris Drummond and Nathalie Japkowicz. “Warning: statistical benchmarking is addic-
tive. Kicking the habit in machine learning”. In: Journal of Experimental & Theoretical
Artificial Intelligence 22.1 (2010), pp. 67–80.

[25] Arpad E. Elo. The rating of chessplayers, past and present. Arco Pub., 1978, p. 206.

[26] Joshua M. Epstein. Generative Social Science: Studies in Agent-Based Computational
Modeling. Princeton University Press, 2006, p. 356.

Bibliography 116

[27] Peter Frankl. “On a pursuit game on Cayley graphs”. In: Combinatorica 7.1 (Mar. 1987),
pp. 67–70.

[28] Feng Fu, Martin A. Nowak, and Christoph Hauert. “Invasion and expansion of coop-
erators in lattice populations: Prisoner’s dilemma vs. snowdrift games”. In: Journal of
Theoretical Biology 266.3 (Oct. 2010), pp. 358–366.

[29] Marcus Gallagher and Amanda Ryan. “Learning to Play Pac-Man: An Evolutionary,
Rule-based Approach”. In: Evolutionary Computation, 2003. CEC ’03. Vol. 4. IEEE
Press, 2003, pp. 2462–2469.

[30] Howard Gardner. Frames of Mind: The Theory of Multiple Intelligences. New York, New
York, United States of America: Basic Books, 1983, p. 440.

[31] Michael Genesereth and Yngvi Björnsson. “The International General Game Playing
Competition”. In: AI Magazine 34.2 (2013), pp. 107–111.

[32] Ted Goertzel. “The path to more general artificial intelligence”. In: Journal of Experi-
mental & Theoretical Artificial Intelligence 26.3 (Apr. 2014), pp. 343–354.

[33] Dani Goldberg and Maja J. Matarić. “Interference as a Tool for Designing and Evaluat-
ing Multi-Robot Controllers”. In: Proceedings of the Fourteenth National Conference on
Artificial Intelligence. Menlo Park, California, United States of America: AAAI Press,
1997, pp. 637–642.

[34] J. P. Guilford. The Nature of Human Intelligence. New York, New York, United States
of America: McGraw-Hill, 1967, p. 538.

[35] Steve Hanks, Martha E. Pollack, and Paul R. Cohen. “Benchmarks, Test Beds Controlled
Experimentation, and the Design of Agent Architectures”. In: AI Magazine 14.4 (1993),
pp. 17–42.

[36] Alexander Harcourt and Frans B. M. de Waal, eds. Coalitions and alliances in humans
and other animals. New York, New York, United States of America: Oxford University
Press, 1992, p. 531.

[37] C. M. A. Haworth, M. J. Wright, M. Luciano, N. G. Martin, E. J. C. de Geus, C. E. M.
van Beijsterveldt, M. Bartels, D. Posthuma, D. I. Boomsma, O. S. P. Davis, Y. Kovas,
R. P. Corley, J. C. DeFries, J. K. Hewitt, R. K. Olson, S-A Rhea, S. J. Wadsworth, W.
G. Iacono, M. McGue, L. A. Thompson, S. A. Hart, S. A. Petrill, D. Lubinski, and R.
Plomin. “The heritability of general cognitive ability increases linearly from childhood
to young adulthood”. In: Molecular Psychiatry 15.11 (Nov. 2010), pp. 1112–1120.

[38] Malte Helmert. “Complexity results for standard benchmark domains in planning”. In:
Artificial Intelligence 143.2 (Feb. 2003), pp. 219–262.

[39] José Hernández-Orallo. “Beyond the Turing Test”. In: Journal of Logic, Language and
Information 9.4 (Oct. 2000), pp. 447–465.

[40] José Hernández-Orallo. “On the Computational Measurement of Intelligence Factors”.
In: Measuring the Performance and Intelligence of Systems: Proceedings of the 2000
PerMIS Workshop. National Institute of Standards and Technology, 2001, pp. 72–79.

[41] José Hernández-Orallo. “A (hopefully) Unbiased Universal Environment Class for Mea-
suring Intelligence of Biological and Artificial Systems”. In: Proceedings of the Third
Conference on Artificial General Intelligence. Vol. 11. Advances in Intelligent Systems
Research. Atlantis Press, June 2010, pp. 182–183.

Bibliography 117

[42] José Hernández-Orallo. Complexity distribution of agent policies. Tech. rep. Valencia,
Spain: Universitat Politècnica de València, Feb. 2013, p. 49.

[43] José Hernández-Orallo. “On environment difficulty and discriminating power”. In: Au-
tonomous Agents and Multi-Agent Systems 29.3 (May 2015), pp. 402–454.

[44] José Hernández-Orallo and David L. Dowe. “Measuring universal intelligence: Towards
an anytime intelligence test”. In: Artificial Intelligence 174.18 (Dec. 2010), pp. 1508–
1539.

[45] José Hernández-Orallo and David L. Dowe. “On Potential Cognitive Abilities in the
Machine Kingdom”. In: Minds and Machines 23.2 (May 2013), pp. 179–210.

[46] José Hernández-Orallo, David L. Dowe, and Maŕıa Victoria Hernández-Lloreda. “Univer-
sal psychometrics: Measuring cognitive abilities in the machine kingdom”. In: Cognitive
Systems Research 27 (Mar. 2014), pp. 50–74.

[47] José Hernández-Orallo and Neus Minaya-Collado. “A Formal Definition of Intelligence
Based on an Intensional Variant of Kolmogorov Complexity”. In: Proceedings of the
International ICSC Symposium on Engineering of Intelligent Systems. ICSC Press, 1998,
pp. 146–163.

[48] José Hernández-Orallo, David L. Dowe, Sergio España, Maŕıa Victoria Hernández-Llore-
da, and Javier Insa-Cabrera. “On More Realistic Environment Distributions for Defin-
ing, Evaluating and Developing Intelligence”. In: Proceedings of the Fourth Conference
on Artificial General Intelligence. Vol. 6830. Lecture Notes in Artificial Intelligence.
Springer, 2011, pp. 82–91.

[49] José Hernández-Orallo, Javier Insa-Cabrera, David L. Dowe, and Bill Hibbard. “Turing
Machines and Recursive Turing Tests”. In: Revisiting Turing and his Test: Comprehen-
siveness, Qualia, and the Real World. The Society for the Study of Artificial Intelligence
and Simulation of Behaviour, 2012, pp. 28–33.

[50] José Hernández-Orallo, Javier Insa-Cabrera, David L. Dowe, and Bill Hibbard. “Turing
Tests with Turing Machines”. In: Alan Turing Centenary. Vol. 10. EPiC. EasyChair,
2012, pp. 140–156.

[51] Esther Herrmann, Josep Call, Maŕıa Victoria Hernández-Lloreda, Brian Hare, and Mi-
chael Tomasello. “Humans Have Evolved Specialized Skills of Social Cognition: The
Cultural Intelligence Hypothesis”. In: Science 317.5843 (Sept. 2007), pp. 1360–1366.

[52] Esther Herrmann, Maŕıa Victoria Hernández-Lloreda, Josep Call, Brian Hare, and Mi-
chael Tomasello. “The Structure of Individual Differences in the Cognitive Abilities of
Children and Chimpanzees”. In: Psychological Science 21.1 (Jan. 2010), pp. 102–110.

[53] Bill Hibbard. “Adversarial Sequence Prediction”. In: Proceedings of the First Conference
on Artificial General Intelligence. Vol. 171. Amsterdam, Netherlands: IOS Press, Feb.
2008, pp. 399–403.

[54] Bill Hibbard. “Measuring Agent Intelligence via Hierarchies of Environments”. In: Pro-
ceedings of the Fourth Conference on Artificial General Intelligence. Vol. 6830. Lecture
Notes in Artificial Intelligence. Springer, 2011, pp. 303–308.

[55] Thelma Hunt. “The measurement of social intelligence”. In: Journal of Applied Psychol-
ogy 12.3 (June 1928), pp. 317–334.

Bibliography 118

[56] Javier Insa-Cabrera, José Luis Benacloch-Ayuso, and José Hernández-Orallo. “On Mea-
suring Social Intelligence: Experiments on Competition and Cooperation”. In: Proceed-
ings of the Fifth Conference on Artificial General Intelligence. Vol. 7716. Lecture Notes
in Computer Science. Springer, 2012, pp. 126–135.

[57] Javier Insa-Cabrera, David L. Dowe, and José Hernández-Orallo. “Evaluating a Rein-
forcement Learning Algorithm with a General Intelligence Test”. In: Advances in Artifi-
cial Intelligence: Proceedings of the Fourteenth Conference of the Spanish Association for
Artificial Intelligence, CAEPIA 2011. Vol. 7023. Lecture Notes in Artificial Intelligence.
Springer, 2011, pp. 1–11.

[58] Javier Insa-Cabrera and José Hernández-Orallo. “Interaction settings for measuring
(social) intelligence in multi-agent systems”. In: ReteCog II Workshop: Interaction.
Zaragoza, Spain, Jan. 2013, p. 4.

[59] Javier Insa-Cabrera and José Hernández-Orallo. “A formal, parametrised setting to eval-
uate social intelligence”. In: Computational Intelligence (2015). Submitted.

[60] Javier Insa-Cabrera and José Hernández-Orallo. “Characterisation of Social Intelligence
Testbeds using Quantitative Properties”. In: Autonomous Agents and Multi-Agent Sys-
tems (2015). Submitted.

[61] Javier Insa-Cabrera and José Hernández-Orallo. “Instrumental Properties of Social
Testbeds”. In: Proceedings of the Eighth Conference on Artificial General Intelligence.
Vol. 9205. Lecture Notes in Artificial Intelligence. Springer, 2015, pp. 101–110.

[62] Javier Insa-Cabrera, David L. Dowe, Sergio España, Maŕıa Victoria Hernández-Lloreda,
and José Hernández-Orallo. “Comparing Humans and AI Agents”. In: Proceedings of
the Fourth Conference on Artificial General Intelligence. Vol. 6830. Lecture Notes in
Artificial Intelligence. Springer, 2011, pp. 122–132.

[63] Javier Insa-Cabrera, José Hernández-Orallo, David L. Dowe, Sergio España, and Maŕıa
Victoria Hernández-Lloreda. “The ANYNT Project Intelligence Test: Λone”. In: Revisit-
ing Turing and his Test: Comprehensiveness, Qualia, and the Real World. The Society
for the Study of Artificial Intelligence and Simulation of Behaviour, 2012, pp. 20–27.

[64] Michael Kaisers and Karl Tuyls. “Frequency Adjusted Multi-agent Q-learning”. In: Pro-
ceedings of the Ninth International Conference on Autonomous Agents and Multiagent
Systems. Vol. 1. Richland, South Carolina, United States of America: International Foun-
dation for Autonomous Agents and Multiagent Systems, 2010, pp. 309–316.

[65] Gal A. Kaminka, Ian Frank, Katsuto Arai, and Kumiko Tanaka-Ishii. “Performance
Competitions as Research Infrastructure: Large Scale Comparative Studies of Multi-A-
gent Teams”. In: Autonomous Agents and Multi-Agent Systems 7.1 (July 2003), pp. 121–
144.

[66] David Keil and Dina Goldin. “Indirect Interaction in Environments for Multi-agent
Systems”. In: Environments for Multi-Agent Systems II: Second International Workshop,
E4MAS 2005. Vol. 3830. Lecture Notes in Computer Science. Springer, 2006, pp. 68–87.

[67] Hiroaki Kitano, Minoru Asada, Yasuo Kuniyoshi, Itsuki Noda, and Eiichi Osawa. “Ro-
boCup: The Robot World Cup Initiative”. In: Proceedings of the First International
Conference on Autonomous Agents. New York, New York, United States of America:
ACM Press, 1997, pp. 340–347.

Bibliography 119

[68] Shane Legg. “Machine Super Intelligence”. PhD thesis. Lugano, Switzerland: University
of Lugano, June 2008, p. 184.

[69] Shane Legg and Marcus Hutter. “Universal Intelligence: A Definition of Machine Intel-
ligence”. In: Minds and Machines 17.4 (Dec. 2007), pp. 391–444.

[70] Shane Legg and Joel Veness. “An Approximation of the Universal Intelligence Measure”.
In: Algorithmic Probability and Friends: Bayesian Prediction and Artificial Intelligence.
Vol. 7070. Lecture Notes in Artificial Intelligence. Springer, 2013, pp. 236–249.

[71] Ming Li and Paul M. B. Vitányi. An Introduction to Kolmogorov Complexity and Its
Applications. 3rd ed. Springer-Verlag, 2008, p. 790.

[72] Vladimir Lifschitz. “Benchmark problems for formal nonmonotonic reasoning”. In: Non-
Monotonic Reasoning: Proceedings of the Second International Workshop. Vol. 346. Lec-
ture Notes in Computer Science. Springer, May 1989, pp. 202–219.

[73] Michael L. McKinney and Robert M. Schoch. Environmental Science: Systems and So-
lutions. Jones & Bartlett, 2003, p. 560.

[74] Sara Mitri, Steffen Wischmann, Dario Floreano, and Laurent Keller. “Using robots to
understand social behaviour”. In: Biological Reviews 88.1 (Feb. 2013), pp. 31–39.

[75] Fred A. Moss and Thelma Hunt. “Are You Socially Intelligent?” In: Scientific American
137.2 (Aug. 1927), pp. 108–110.

[76] Fred A. Moss, Thelma Hunt, and K. T. Omwake.Manual for the Social Intelligence Test,
Revised Form. Washington D. C., United States of America: The Center for Psychological
Service, 1949.

[77] Fred A. Moss, Thelma Hunt, K. T. Omwake, and M. M. Ronning. Social Intelligence
Test. Washington D. C., United States of America: The Center for Psychological Service,
1927.

[78] Fred A. Moss, Thelma Hunt, K. T. Omwake, and L. G. Woodward. Manual for the
George Washington University Series Social Intelligence Test. Washington D. C., United
States of America: The Center for Psychological Service, 1955.

[79] Lisa J. Moya and Andreas Tolk. “Towards a Taxonomy of Agents and Multi-Agent
Systems”. In: Proceedings of the 2007 Spring Simulation Multiconference. Vol. 2. San
Diego, California, United States of America: Society for Computer Simulation Interna-
tional, Mar. 2007, pp. 11–18.

[80] Vincent C. Müller. “Risks of general artificial intelligence”. In: Journal of Experimental
& Theoretical Artificial Intelligence 26.3 (Apr. 2014), pp. 297–301.

[81] Roger B. Myerson. Game Theory: Analysis of Conflict. Harvard University Press, Sept.
1997, p. 600.

[82] Majid Nili Ahmadabadi and Masoud Asadpour. “Expertness Based Cooperative Q-
Learning”. In: IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cyber-
netics 32.1 (Feb. 2002), pp. 66–76.

[83] Geoff Nitschke. “Co-evolution of cooperation in a Pursuit Evasion Game”. In: Proceed-
ings IROS 2003, International Conference on Intelligent Robots and Systems. Vol. 2.
IEEE Press, 2003, pp. 2037–2042.

Bibliography 120

[84] Jum C. Nunnally. Psychometric Theory. 2nd ed. New York, New York, United States
of America: McGraw-Hill, 1978, p. 701.

[85] Martin J. Osborne. An Introduction to Game Theory. Oxford University Press, Aug.
2003, p. 560.

[86] Maureen O’Sullivan, J. P. Guilford, and R. de Mille. The Measurement of Social In-
telligence. Los Angeles, California, United States of America: University of Southern
California, 1965, p. 39.

[87] Liviu Panait and Sean Luke. “Cooperative Multi-Agent Learning: The State of the Art”.
In: Autonomous Agents and Multi-Agent Systems 11.3 (Nov. 2005), pp. 387–434.

[88] Matthew S. Panizzon, Eero Vuoksimaa, Kelly M. Spoon, Kristen C. Jacobson, Michael
J. Lyons, Carol E. Franz, Hong Xian, Terrie Vasilopoulos, and William S. Kremen.
“Genetic and environmental influences on general cognitive ability: Is g a valid latent
construct?” In: Intelligence 43 (Mar. 2014), pp. 65–76.

[89] Arvind Parkhe. “Strategic Alliance Structuring: A Game Theoretic and Transaction
Cost Examination of Interfirm Cooperation”. In: The Academy of Management Journal
36.4 (Aug. 1993), pp. 794–829.

[90] Barney Pell. “A Strategic Metagame Player for General Chess-Like Games”. In: Com-
putational Intelligence 12.1 (Feb. 1996), pp. 177–198.

[91] Robert Plomin and Frank M. Spinath. “Genetics and general cognitive ability (g)”. In:
Trends in Cognitive Sciences 6.4 (Apr. 2002), pp. 169–176.

[92] Alexey Potapov and Sergey Rodionov. “Universal Empathy and Ethical Bias for Arti-
ficial General Intelligence”. In: Journal of Experimental & Theoretical Artificial Intelli-
gence 26.3 (Apr. 2014), pp. 405–416.

[93] William Poundstone. Prisoner’s Dilemma. Anchor Books, Feb. 1993, p. 294.

[94] Diego Pérez, Spyridon Samothrakis, Julian Togelius, Tom Schaul, Simon M. Lucas,
Adrien Couëtoux, Jerry Lee, Chong-U Lim, and Tommy Thompson. “The 2014 General
Video Game Playing Competition”. In: IEEE Transactions on Computational Intelli-
gence and AI in Games (2015). To Appear.

[95] Talal Rahwan, Tomasz Michalak, Michael Wooldridge, and Nicholas R. Jennings. “Any-
time coalition structure generation in multi-agent systems with positive or negative
externalities”. In: Artificial Intelligence 186 (July 2012), pp. 95–122.

[96] Brandon Rohrer. “Accelerating progress in Artificial General Intelligence: Choosing a
benchmark for natural world interaction”. In: Journal of Artificial General Intelligence
2.1 (Dec. 2010), pp. 1–28.

[97] Avi Rosenfeld, Gal A. Kaminka, and Sarit Kraus. “A Study of Scalability Properties
in Robotic Teams”. In: Coordination of Large-Scale Multiagent Systems. Ed. by Paul
Scerri, Régis Vincent, and Roger Mailler. Springer, 2006. Chap. 2, pp. 27–51.

[98] Avi Rosenfeld, Gal A. Kaminka, Sarit Kraus, and Onn Shehory. “A study of mechanisms
for improving robotic group performance”. In: Artificial Intelligence 172.6-7 (Apr. 2008),
pp. 633–655.

[99] Alvin E. Roth, ed. The Shapley value: Essays in honor of Lloyd S. Shapley. Cambridge
University Press, 1988, p. 338.

Bibliography 121

[100] G. A. Rummery and M. Niranjan. On-Line Q-Learning Using Connectionist Systems.
Tech. rep. Cambridge, England: Cambridge University Engineering Department, Sept.
1994, p. 20.

[101] John Rust, John H. Miller, and Richard G. Palmer. “Behavior of Trading Automata in
a Computerized Double Auction Market”. In: The Double Auction Market: Institutions,
Theories, and Evidence. Ed. by Daniel Friedman and John Rust. Vol. 15. Studies in the
Sciences of Complexity. Addison-Wesley, 1992. Chap. 6, pp. 155–198.

[102] Sara J. Shettleworth. Fundamentals of Comparative Cognition. Oxford University Press,
Mar. 2012, p. 192.

[103] Yoav Shoham and Kevin Leyton-Brown. Multiagent Systems: Algorithmic, Game-The-
oretic, and Logical Foundations. Cambridge University Press, Dec. 2008.

[104] Raymond J. Solomonoff. “A Formal Theory of Inductive Inference. Part I”. In: Infor-
mation and Control 7.1 (Mar. 1964), pp. 1–22.

[105] Raymond J. Solomonoff. “A Formal Theory of Inductive Inference. Part II”. In: Infor-
mation and Control 7.2 (June 1964), pp. 224–254.

[106] Charles E. Spearman. ““General Intelligence”, Objectively Determined and Measured”.
In: The American Journal of Psychology 15.2 (Apr. 1904), pp. 201–292.

[107] Esben H. Østergaard, Gaurav S. Sukhatme, and Maja J. Matarić. “Emergent Bucket
Brigading: A simple mechanism for improving performance in multi-robot constrained-
space foraging tasks”. In: Proceedings of the Fifth international conference on Autono-
mous agents. New York, New York, United States of America: ACM Press, 2001, pp. 29–
30.

[108] Peter Stone, Gal A. Kaminka, Sarit Kraus, and Jeffrey S. Rosenschein. “Ad Hoc Au-
tonomous Agent Teams: Collaboration without Pre-Coordination”. In: Proceedings of
the Twenty-Fourth Conference on Artificial Intelligence. AAAI Press, 2010, pp. 1504–
1509.

[109] Richard S. Sutton. “Learning to Predict by the Methods of Temporal Differences”. In:
Machine Learning 3.1 (Aug. 1988), pp. 9–44.

[110] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.
Cambridge, Massachusetts, United States of America: The MIT Press, May 1998, p. 338.

[111] Ming Tan. “Multi-Agent Reinforcement Learning: Independent vs. Cooperative Agents”.
In: Proceedings of the Tenth International Conference on Machine Learning. Morgan
Kaufmann, June 1993, pp. 330–337.

[112] Kristinn R. Thórisson, Jordi Bieger, Stephan Schiffel, and Deon Garrett. “Towards Flex-
ible Task Environments for Comprehensive Evaluation of Artificial Intelligent Systems
and Automatic Learners”. In: Proceedings of the Eighth Conference on Artificial General
Intelligence. Vol. 9205. Lecture Notes in Artificial Intelligence. Springer, 2015, pp. 187–
196.

[113] Edward L. Thorndike. “Intelligence and its uses”. In: Harper’s Magazine 140.2 (Jan.
1920), pp. 227–235.

[114] Robert L. Thorndike and Saul Stein. “An evaluation of the attempts to measure social
intelligence”. In: Psychological Bulletin 34.5 (May 1937), pp. 275–285.

Bibliography 122

[115] Alan M. Turing. “Computing Machinery and Intelligence”. In: Mind 59.236 (Oct. 1950),
pp. 433–460.

[116] Andrew J. Turner and Julian F. Miller. “Cartesian Genetic Programming encoded Ar-
tificial Neural Networks: A Comparison using Three Benchmarks”. In: Proceedings of
the Fifteenth Annual Conference on Genetic and Evolutionary Computation. New York,
New York, United States of America: ACM Press, 2013, pp. 1005–1012.

[117] Paul Valckenaers, John Sauter, Carles Sierra, and Juan Antonio Rodriguez Aguilar.
“Applications and environments for multi-agent systems”. In: Autonomous Agents and
Multi-Agent Systems 14.1 (Feb. 2007), pp. 61–85.

[118] Joel Veness, Kee Siong Ng, Marcus Hutter, William Uther, and David Silver. “A Monte-
Carlo AIXI Approximation”. In: Journal of Artificial Intelligence Research 40 (Jan.
2011), pp. 95–142.

[119] Philip E. Vernon. “Some Characteristics of the Good Judge of Personality”. In: The
Journal of Social Psychology 4.1 (1933), pp. 42–57.

[120] Pei Wang. “What Do You Mean by “A””. In: Proceedings of the First Conference on
Artificial General Intelligence. Vol. 171. Amsterdam, Netherlands: IOS Press, Feb. 2008,
pp. 362–373.

[121] Pei Wang. “The evaluation of AGI systems”. In: Proceedings of the Third Conference
on Artificial General Intelligence. Vol. 11. Advances in Intelligent Systems Research.
Atlantis Press, June 2010, pp. 164–169.

[122] Edward A. Wasserman and Thomas R. Zentall, eds. Comparative Cognition: Experimen-
tal Explorations of Animal Intelligence. Oxford University Press, Apr. 2009, p. 720.

[123] Christopher J. C. H. Watkins. “Learning from Delayed Rewards”. PhD thesis. Cam-
bridge, England: King’s College, May 1989, p. 234.

[124] Christopher J. C. H. Watkins and Peter Dayan. “Q-Learning”. In: Machine Learning
8.3-4 (May 1992), pp. 279–292.

[125] David Wechsler. The Measurement of Adult Intelligence. The Williams & Wilkins Com-
pany, 1939, p. 229.

[126] David Wechsler. The Wechsler-Bellevue Intelligence Scale, Form II. The Psychological
Corporation, 1946, p. 96.

[127] David Wechsler. Wechsler Intelligence Scale for Children. New York, New York, United
States of America: The Psychological Corporation, 1949.

[128] David Wechsler. Manual for the Wechsler Adult Intelligence Scale. Oxford, England:
The Psychological Corporation, 1955, p. 110.

[129] David Wechsler. The Measurement and Appraisal of Adult Intelligence. 4th ed. Balti-
more, Maryland, United States of America: The Williams & Wilkins Company, 1958,
p. 324.

[130] David Wechsler.Wechsler Intelligence Scale for Children - Revised. San Antonion, Texas,
United States of America: The Psychological Corporation, 1974, p. 191.

[131] David Wechsler. Wechsler Adult Intelligence Scale - Revised. The Psychological Corpo-
ration, 1981.

Bibliography 123

[132] David Wechsler. Wechsler Intelligence Scale for Children - Third Edition. San Antonion,
Texas, United States of America: The Psychological Corporation, 1991.

[133] David Wechsler. Wechsler Adult Intelligence Scale - Third Edition. San Antonion, Texas,
United States of America: The Psychological Corporation, 1997.

[134] DavidWechsler.Wechsler Intelligence Scale for Children - Fourth Edition. San Antonion,
Texas, United States of America: The Psychological Corporation, 2003.

[135] David Wechsler. Wechsler Adult Intelligence Scale - Fourth Edition. NCS Pearson, 2008.

[136] Jörgen W. Weibull. Evolutionary Game Theory. Cambridge, Massachusetts, United
States of America: The MIT Press, 1995.

[137] Michael P. Wellman, Peter R. Wurman, Kevin O’Malley, Roshan Bangera, Shou–de Lin,
Daniel Reeves, and William E. Walsh. “Designing the Market Game for a Trading Agent
Competition”. In: Internet Computing, IEEE 5.2 (Mar. 2001), pp. 43–51.

[138] Danny Weyns, H. Van Dyke Parunak, Fabien Michel, Tom Holvoet, and Jacques Ferber.
“Environments for Multiagent Systems State-of-the-Art and Research Challenges”. In:
Environments for Multi-Agent Systems: First International Workshop, E4MAS 2004.
Vol. 3374. Lecture Notes in Computer Science. Springer, 2005, pp. 1–47.

[139] Danny Weyns, Michael Schumacher, Alessandro Ricci, Mirko Viroli, and Tom Holvoet.
“Environments in multiagent systems”. In: The Knowledge Engineering Review 20.2
(June 2005), pp. 127–141.

[140] Marco A. Wiering. “QV(λ)-learning: A New On-policy Reinforcement Learning Algo-
rithm”. In: Proceedings of the Seventh European Workshop on Reinforcement Learning.
2005, pp. 17–18.

[141] Paul L. Williams and Randall D. Beer. Generalized Measures of Information Transfer.
Tech. rep. Bloomington, Indiana, United States of America: Indiana University, Feb.
2011, p. 6.

[142] Dan Xiao and Ah-Hwee Tan. “Cooperative reinforcement learning in topology-based
multi-agent systems”. In: Autonomous Agents and Multi-Agent Systems 26.1 (Jan. 2013),
pp. 86–119.

[143] Zhanna V. Zatuchna and Anthony Bagnall. “Learning Mazes with Aliasing States: An
LCS Algorithm with Associative Perception”. In: Adaptive Behavior 17.1 (Feb. 2009),
pp. 28–57.

[144] Byoung-Tak Zhang and Dong-Yeon Cho. “Co-evolutionary Fitness Switching: Learning
Complex Collective Behaviors Using Genetic Programming”. In: Advances in Genetic
Programming. Ed. by Lee Spector, William B. Langdon, Una-May O’Reilly, and Peter J.
Angeline. Vol. 3. The MIT Press, 1999. Chap. 18, pp. 425–445.

[145] Jacob Ziv and Abraham Lempel. “A Universal Algorithm for Sequential Data Compres-
sion”. In: IEEE Transactions on Information Theory 23.3 (May 1977), pp. 337–343.

Appendices

The appendices give the proofs showing how we obtained the values of the properties for some
multi-agent environments analysed in chapter 8.

Before starting with each of the multi-agent environments, we prove a lemma that is helpful
for the Left and Right ranges.

We could calculate Left and Right using Πe and Πo with a high number of agents. However,
the more agents we include the more difficult the calculation becomes. Instead of this, and in
order to simplify calculations, we can just use the minimum necessary number of agents in
Πe and Πo for that property to obtain the maximum/minimum value following the idea on
lemma 1:

Lemma 1. In order to calculate Left/Right maximum/minimum value for a property Prop,
the length of the set of evaluated agents |Πe| and the length of the set of populating agents
|Πo| can be respectively equal to the minimum number of evaluated agents n and populating
agents m needed to calculate Prop.

Proof. Let Πe = {π1, . . . , πn, . . . , πp} be the set of evaluated agents with weight wΠe in a multi-
agent environment µ with weight of agent slots wS using a set of populating agents Πo and wL̇

as a weight for agent line-up patterns.
Let us suppose that we want to calculate the value for a property Prop which needs n

evaluated agents to be defined, its definition calculates first the value for each evaluated agent
π and then these values are weighted using wΠe(π) to provide the property value. Following
this definition we obtain a list of values (v1, . . . , vn, . . . , vp) (one for each evaluated agent) that
are weighted with wΠe to obtain the property value v. If we get rid of the evaluated agent
which obtains the maximum value for Prop and we normalise wΠe to sum 1 after removing the
weight for this evaluated agent, then the new property value v′ will always be lower than v. We
can repeat this process until n agents remain in Πe (i.e. |Πe| = n) to obtain vmin for this set of
evaluated agents. An analogous process applies to obtain vmax by getting rid of the evaluated
agent which obtains the minimum value for Prop.

The same reasoning applies to the properties that calculate each value using a pair of
evaluated agents, but in this case we get rid of the agent whose sum of values (the values of the
pairs where this agent is used) is highest/lowest. Also, the same reasoning applies for Πo.

124

Appendix A

Matching Pennies Properties

In this section we prove how we obtained the values for the properties for the matching pennies
environment (section 2.1.1). We use uniform unit weights for wΠe , wL̇ and wS. To calculate
some of the values for the properties, we make use of lemma 2.

Lemma 2. In the matching pennies environment and for every agent slot, introducing a random
agent πr in an agent line-up always provides an expected result equal to 0 for both agents.

Proof. A random agent πr has a probability of pkr,h = pkr,t =
1
2
to perform both Head and Tail

at time step k. Let us denote with πs the agent that πr is interacting with, and denote with
p1s,h the probability of performing Head and p1s,t = 1 − p1s,h the probability of performing Tail
at the first time step for πs.

To calculate the expected reward of an agent, we sum the possible rewards that this agent
can obtain multiplied by the probability that these rewards occur. When we calculate the
expected reward for πr for the first time step in the matching pennies environment µ in any
agent slot i, we obtain:

∀i : R1
i (µ[l̇

i← πr]) = p1r,h
(
p1s,h × r1h,h,i + p1s,t × r1h,t,i

)
+ p1r,t

(
p1s,h × r1t,h,i + p1s,t × r1t,t,i

)
where l̇ contains πs in agent slot j (having i ̸= j), rka1,a2,i is the reward that the agent in agent
slot i obtains at time step k when one agent performs a1 and the other agent performs a2.

From the matching pennies’ payoff matrix (table 2.1), we can see that for every agent slot
i, rh,h,i = rt,t,i and rh,t,i = rt,h,i, so we name them re,i and rd,i respectively. We can also see that
the reward values are the inverse of each other, having rd,i = −re,i. Renaming the rewards in
the formula and rearranging it we obtain:

125

A.1. Action Dependency 126

∀i : R1
i (µ[l̇

i← πr]) = p1r,h
(
p1s,h × re,i + p1s,t × rd,i

)
+ p1r,t

(
p1s,h × rd,i + p1s,t × re,i

)
=

= p1r,h
(
p1s,h × re,i + p1s,t × (−re,i)

)
+ p1r,t

(
p1s,h × (−re,i) + p1s,t × re,i

)
=

= p1r,h
(
re,i ×

(
p1s,h − p1s,t

))
+ p1r,t

(
(−re,i)×

(
p1s,h − p1s,t

))
=

= p1r,h
(
re,i ×

(
p1s,h − p1s,t

))
− p1r,t

(
re,i ×

(
p1s,h − p1s,t

))
=

=
(
p1r,h − p1r,t

)
×
(
re,i ×

(
p1s,h − p1s,t

))
And since πr gives the same probability to both Head and Tail (i.e. p1r,h = p1r,t =

1
2
) we

obtain the following expected reward:

∀i : R1
i (µ[l̇

i← πr]) =

(
1

2
− 1

2

)
×
(
re,i ×

(
p1s,h − p1s,t

))
= 0

We calculated the expected reward for the first time step. At this point πs could change its
behaviour depending on what happened on the previous time step, using different probabilities
p2s,h and p2s,t for time step 2. But note that it does not matter which probabilities pns,h and pns,t
we use, the expected reward will still be 0. Since all the expected rewards are 0, any utility
function using these expected rewards obtains an expected result equal to 0. Obviously, since
this is a zero-sum game, when πr obtains an expected result of 0, πs obtains the same expected
result of 0.

A.1 Action Dependency

We start with the action dependency (AD) property. As given in section 7.2.1, we want to
know if the evaluated agents behave differently depending on which agent line-up they interact
with. We use ∆A+(a, b) = 0 if distributions a and b are equal and 1 otherwise.

Proposition 2. Generalmin for the action dependency (AD) property is equal to 0 for the
matching pennies environment.

Proof. To find Generalmin (equation 8.1), we need to find a pair ⟨Πe,Πo⟩ that minimises the
property value as much as possible. We can have this situation by selecting Πe = {πt} and
Πo = {πh1, πh2} (a πh agent always performs Head and a πt agent always performs Tail).

Following definition 17 we obtain the AD value for this ⟨Πe,Πo⟩. Since the multi-agent
environment is not team symmetric, we need to calculate this property value for every agent
slot. Also, since |Πe| = 1 we just need to calculate this property value for one evaluated agent.
Following definition 16 we calculate the AD value for the evaluated agent πt ∈ Πe and each
agent slot. We start with agent slot 1:

AD1(πt,Πo, wL̇, µ) = ηL̇2

∑
u̇,v̇∈L̇N(µ)

−1 (Πo)|u̸̇=v̇

wL̇(u̇)wL̇(v̇)∆A+(Ă1(µ[u̇
1← πt]), Ă1(µ[v̇

1← πt])) =

= 2
2

1

1

2

1

2
∆A+(Ă1(µ[πt, πh1]), Ă1(µ[πt, πh2]))

Note that we avoided to calculate both ∆A+(a, b) and ∆A+(b, a), since they provide the same
result, by calculating only ∆A+(a, b) and multiplying the result by 2.

A.1. Action Dependency 127

The agent in both agent slots 1 (πt) performs the same sequence of actions (always Tail)
independently of the agent line-up. So:

AD1(πt,Πo, wL̇, µ) = 2
2

1

1

2

1

2
0 = 0

And for agent slot 2, the agent in both agent slots 2 (πt) also performs the same sequence
of actions (always Tail) independently of the agent line-up. So:

AD2(πt,Πo, wL̇, µ) = ηL̇2

∑
u̇,v̇∈L̇N(µ)

−2 (Πo)|u̸̇=v̇

wL̇(u̇)wL̇(v̇)∆A+(Ă2(µ[u̇
2← πt]), Ă2(µ[v̇

2← πt])) =

= 2
2

1

1

2

1

2
∆A+(Ă2(µ[πh1, πt]), Ă2(µ[πh2, πt])) =

= 2
2

1

1

2

1

2
0 = 0

And finally, we calculate the AD value:

AD(Πe, wΠe ,Πo, wL̇, µ, wS) =
∑
π∈Πe

wΠe(π)

N(µ)∑
i=1

wS(i, µ)ADi(π,Πo, wL̇, µ) =

=
1

1

1

2
{AD1(πt,Πo, wL̇, µ) + AD2(πt,Πo, wL̇, µ)} =

=
1

1

1

2
{0 + 0} = 0

Since 0 is the lowest possible value for the action dependency property, therefore matching
pennies has Generalmin = 0 for this property.

Proposition 3. Generalmax for the action dependency (AD) property is equal to 1 for the
matching pennies environment.

Proof. To find Generalmax (equation 8.2), we need to find a pair ⟨Πe,Πo⟩ that maximises the
property value as much as possible. We can have this situation by selecting Πe = {πm} and
Πo = {πh, πt} (a πm agent first acts randomly and from time step 2 always mimics the other
agent’s last action, a πh agent always performs Head and a πt agent always performs Tail).

Following definition 17 we obtain the AD value for this ⟨Πe,Πo⟩. Since the multi-agent
environment is not team symmetric, we need to calculate this property value for every agent
slot. Also, since |Πe| = 1 we just need to calculate this property value for one evaluated agent.
Following definition 16 we calculate the AD value for the evaluated agent πm ∈ Πe and each
agent slot. We start with agent slot 1:

AD1(πm,Πo, wL̇, µ) = ηL̇2

∑
u̇,v̇∈L̇N(µ)

−1 (Πo)|u̸̇=v̇

wL̇(u̇)wL̇(v̇)∆A+(Ă1(µ[u̇
1← πm]), Ă1(µ[v̇

1← πm])) =

= 2
2

1

1

2

1

2
∆A+(Ă1(µ[πm, πh]), Ă1(µ[πm, πt]))

Note that we avoided to calculate both ∆A+(a, b) and ∆A+(b, a), since they provide the same
result, by calculating only ∆A+(a, b) and multiplying the result by 2.

A.1. Action Dependency 128

From time step 2, πm mimics the last action of the agent in agent slot 2, so the agent in
both agent slots 1 (πm) performs different sequences of actions depending on the agent line-up.
So:

AD1(πm,Πo, wL̇, µ) = 2
2

1

1

2

1

2
1 = 1

And for agent slot 2, the agent in both agent slots 2 (πm) also performs different sequences
of actions depending on the agent line-up. So:

AD2(πm,Πo, wL̇, µ) = ηL̇2

∑
u̇,v̇∈L̇N(µ)

−2 (Πo)|u̸̇=v̇

wL̇(u̇)wL̇(v̇)∆A+(Ă2(µ[u̇
2← πm]), Ă2(µ[v̇

2← πm])) =

= 2
2

1

1

2

1

2
∆A+(Ă2(µ[πh, πm]), Ă2(µ[πt, πm])) =

= 2
2

1

1

2

1

2
1 = 1

And finally, we calculate the AD value:

AD(Πe, wΠe ,Πo, wL̇, µ, wS) =
∑
π∈Πe

wΠe(π)

N(µ)∑
i=1

wS(i, µ)ADi(π,Πo, wL̇, µ) =

=
1

1

1

2
{AD1(πm,Πo, wL̇, µ) + AD2(πm,Πo, wL̇, µ)} =

=
1

1

1

2
{1 + 1} = 1

Since 1 is the highest possible value for the action dependency property, therefore matching
pennies has Generalmax = 1 for this property.

Proposition 4. Leftmax for the action dependency (AD) property is equal to 0 for the matching
pennies environment.

Proof. To find Leftmax (equation 8.4), we need to find a Πe that maximises the property value
as much as possible while Πo minimises it. Using Πo = {πh1, πh2} (a πh agent always performs
Head) we find this situation no matter which Πe we use.

Following definition 17 we obtain the AD value for this ⟨Πe,Πo⟩ (where Πe is instantiated
with any permitted value). Since the multi-agent environment is not team symmetric, we need
to calculate this property value for every agent slot. Also, we do not know which Πe we have,
so we use a figurative evaluated agent π from Πe. Following definition 16 we calculate the AD
value for this figurative evaluated agent π ∈ Πe and each agent slot. We start with agent slot
1:

AD1(π,Πo, wL̇, µ) = ηL̇2

∑
u̇,v̇∈L̇N(µ)

−1 (Πo)|u̸̇=v̇

wL̇(u̇)wL̇(v̇)∆A+(Ă1(µ[u̇
1← π]), Ă1(µ[v̇

1← π])) =

= 2
2

1

1

2

1

2
∆A+(Ă1(µ[π, πh1]), Ă1(µ[π, πh2]))

A.1. Action Dependency 129

Note that we avoided to calculate both ∆A+(a, b) and ∆A+(b, a), since they provide the same
result, by calculating only ∆A+(a, b) and multiplying the result by 2.

The agent in both agent slots 1 (any π) is not able to differentiate with which agent is
interacting, so it is not able to change its distribution of action sequences depending on the
opponent’s behaviour. So, for any π we obtain the same result:

AD1(π,Πo, wL̇, µ) = 2
2

1

1

2

1

2
0 = 0

And for agent slot 2, the agent in both agent slots 2 (any π) is also not able to change its
distribution of action sequences depending on the opponent’s behaviour. So again, for any π
we obtain the same result:

AD2(π,Πo, wL̇, µ) = ηL̇2

∑
u̇,v̇∈L̇N(µ)

−2 (Πo)|u̸̇=v̇

wL̇(u̇)wL̇(v̇)∆A+(Ă2(µ[u̇
2← π]), Ă2(µ[v̇

2← π])) =

= 2
2

1

1

2

1

2
∆A+(Ă2(µ[πh1, π]), Ă2(µ[πh2, π])) =

= 2
2

1

1

2

1

2
0 = 0

And finally, we calculate the AD value generalising for any possible evaluated agent:

AD(Πe, wΠe ,Πo, wL̇, µ, wS) =
∑
π∈Πe

wΠe(π)

N(µ)∑
i=1

wS(i, µ)ADi(π,Πo, wL̇, µ) =

=
∑
π∈Πe

wΠe(π)
1

2
{AD1(π,Πo, wL̇, µ) + AD2(π,Πo, wL̇, µ)} =

=
∑
π∈Πe

wΠe(π)
1

2
{0 + 0} = 0

So, for every Πe we obtain the same result:

∀Πe : AD(Πe, wΠe ,Πo, wL̇, µ, wS) = 0

Therefore, matching pennies has Leftmax = 0 for this property.

Proposition 5. Rightmin for the action dependency (AD) property is equal to 0 for the match-
ing pennies environment.

Proof. To find Rightmin (equation 8.5), we need to find a Πe that minimises the property value
as much as possible while Πo maximises it. Using Πe = {πh} (a πh agent always performs Head)
we find this situation no matter which Πo we use.

Following definition 17 we obtain the AD value for this ⟨Πe,Πo⟩ (where Πo is instantiated
with any permitted value). Since the multi-agent environment is not team symmetric, we need
to calculate this property value for every agent slot. Also, since |Πe| = 1 we just need to
calculate this property value for one evaluated agent. Following definition 16 we calculate the
AD value for the evaluated agent πh ∈ Πe and each agent slot. We start with agent slot 1:

A.1. Action Dependency 130

AD1(πh,Πo, wL̇, µ) = ηL̇2

∑
u̇,v̇∈L̇N(µ)

−1 (Πo)|u̸̇=v̇

wL̇(u̇)wL̇(v̇)∆A+(Ă1(µ[u̇
1← πh]), Ă1(µ[v̇

1← πh]))

We do not know which Πo we have, so we use two figurative agent line-up patterns u̇ = (∗, π1)

and v̇ = (∗, π2) from L̇
N(µ)
−1 (Πo):

∆A+(Ă1(µ[u̇
1← πh]), Ă1(µ[v̇

1← πh])) = ∆A+(Ă1(µ[πh, π1]), Ă1(µ[πh, π2]))

The agent in both agent slots 1 (πh) performs the same sequence of actions (always Head)
independently of the agent line-up. So:

∆A+(Ă1(µ[πh, π1]), Ă1(µ[πh, π2])) = 0

We generalise AD1 for any possible pair of agent line-up patterns:

AD1(πh,Πo, wL̇, µ) = ηL̇2

∑
u̇,v̇∈L̇N(µ)

−1 (Πo)|u̸̇=v̇

wL̇(u̇)wL̇(v̇)∆A+(Ă1(µ[u̇
1← πh]), Ă1(µ[v̇

1← πh])) =

= ηL̇2

∑
u̇,v̇∈L̇N(µ)

−1 (Πo)|u̸̇=v̇

wL̇(u̇)wL̇(v̇)0 = 0

And for agent slot 2, the agent in both agent slots 2 (πh) also performs the same sequence
of actions (always Head) independently of the agent line-up. So:

AD2(πh,Πo, wL̇, µ) = ηL̇2

∑
u̇,v̇∈L̇N(µ)

−2 (Πo)|u̸̇=v̇

wL̇(u̇)wL̇(v̇)∆A+(Ă2(µ[u̇
2← πh]), Ă2(µ[v̇

2← πh])) =

= ηL̇2

∑
u̇,v̇∈L̇N(µ)

−2 (Πo)|u̸̇=v̇

wL̇(u̇)wL̇(v̇)0 = 0

And finally, we calculate the AD value:

AD(Πe, wΠe ,Πo, wL̇, µ, wS) =
∑
π∈Πe

wΠe(π)

N(µ)∑
i=1

wS(i, µ)ADi(π,Πo, wL̇, µ) =

=
1

1

1

2
{AD1(πh,Πo, wL̇, µ) + AD2(πh,Πo, wL̇, µ)} =

=
1

1

1

2
{0 + 0} = 0

So, for every Πo we obtain the same result:

∀Πo : AD(Πe, wΠe ,Πo, wL̇, µ, wS) = 0

Therefore, matching pennies has Rightmin = 0 for this property.

A.2. Reward Dependency 131

A.2 Reward Dependency

We continue with the reward dependency (RD) property. As given in section 7.3.1, we want to
know if the evaluated agents obtain different rewards depending on which agent line-up they
interact with. We use ∆Q(a

′, b′) for ∆Q+(a, b) where a′ and b′ are the expected results of a and
b respectively, and ∆Q(a

′, b′) = 0 if numbers a′ and b′ are equal and 1 otherwise. We use an
average of rewards as the utility function to calculate an agent’s result.

Proposition 6. Generalmin for the reward dependency (RD) property is equal to 0 for the
matching pennies environment.

Proof. To find Generalmin (equation 8.1), we need to find a pair ⟨Πe,Πo⟩ that minimises the
property value as much as possible. We can have this situation by selecting Πe = {πt} and
Πo = {πh1, πh2} (a πh agent always performs Head and a πt agent always performs Tail).

Following definition 19 we obtain the RD value for this ⟨Πe,Πo⟩. Since the multi-agent
environment is not team symmetric, we need to calculate this property value for every agent
slot. Also, since |Πe| = 1 we just need to calculate this property value for one evaluated agent.
Following definition 18 we calculate the RD value for the evaluated agent πt ∈ Πe and each
agent slot. We start with agent slot 1:

RD1(πt,Πo, wL̇, µ) = ηL̇2

∑
u̇,v̇∈L̇N(µ)

−1 (Πo)|u̸̇=v̇

wL̇(u̇)wL̇(v̇)∆Q(R1(µ[u̇
1← πt]), R1(µ[v̇

1← πt])) =

= 2
2

1

1

2

1

2
∆Q(R1(µ[πt, πh1]), R1(µ[πt, πh2]))

Note that we avoided to calculate both ∆Q(a, b) and ∆Q(b, a), since they provide the same
result, by calculating only ∆Q(a, b) and multiplying the result by 2.

The agent in both agent slots 1 (πt) obtains the same expected average reward (−1) inde-
pendently of the agent line-up. So:

RD1(πt,Πo, wL̇, µ) = 2
2

1

1

2

1

2
0 = 0

And for agent slot 2, the agent in both agent slots 2 (πt) also obtains the same expected
average reward (1) independently of the agent line-up. So:

RD2(πt,Πo, wL̇, µ) = ηL̇2

∑
u̇,v̇∈L̇N(µ)

−2 (Πo)|u̸̇=v̇

wL̇(u̇)wL̇(v̇)∆Q(R2(µ[u̇
2← πt]), R2(µ[v̇

2← πt])) =

= 2
2

1

1

2

1

2
∆Q(R2(µ[πh1, πt]), R2(µ[πh2, πt])) =

= 2
2

1

1

2

1

2
0 = 0

And finally, we calculate the RD value:

A.2. Reward Dependency 132

RD(Πe, wΠe ,Πo, wL̇, µ, wS) =
∑
π∈Πe

wΠe(π)

N(µ)∑
i=1

wS(i, µ)RDi(π,Πo, wL̇, µ) =

=
1

1

1

2
{RD1(πt,Πo, wL̇, µ) +RD2(πt,Πo, wL̇, µ)} =

=
1

1

1

2
{0 + 0} = 0

Since 0 is the lowest possible value for the reward dependency property, therefore matching
pennies has Generalmin = 0 for this property.

Proposition 7. Generalmax for the reward dependency (RD) property is equal to 1 for the
matching pennies environment.

Proof. To find Generalmax (equation 8.2), we need to find a pair ⟨Πe,Πo⟩ that maximises the
property value as much as possible. We can have this situation by selecting Πe = {πt} and
Πo = {πh, πt} (a πh agent always performs Head and a πt agent always performs Tail).

Following definition 19 we obtain the RD value for this ⟨Πe,Πo⟩. Since the multi-agent
environment is not team symmetric, we need to calculate this property value for every agent
slot. Also, since |Πe| = 1 we just need to calculate this property value for one evaluated agent.
Following definition 18 we calculate the RD value for the evaluated agent πt ∈ Πe and each
agent slot. We start with agent slot 1:

RD1(πt,Πo, wL̇, µ) = ηL̇2

∑
u̇,v̇∈L̇N(µ)

−1 (Πo)|u̸̇=v̇

wL̇(u̇)wL̇(v̇)∆Q(R1(µ[u̇
1← πt]), R1(µ[v̇

1← πt])) =

= 2
2

1

1

2

1

2
∆Q(R1(µ[πt, πh]), R1(µ[πt, πt]))

Note that we avoided to calculate both ∆Q(a, b) and ∆Q(b, a), since they provide the same
result, by calculating only ∆Q(a, b) and multiplying the result by 2.

In agent line-up (πt, πh), the agent in agent slot 1 (πt) obtains one expected average reward
(−1), while in agent line-up (πt, πt), the agent in agent slot 1 (πt) obtains a different expected
average reward (1). So:

RD1(πt,Πo, wL̇, µ) = 2
2

1

1

2

1

2
1 = 1

And for agent slot 2, the agent in both agent slots 2 (πt) also obtains different expected
average rewards depending on the agent line-up. So:

RD2(πt,Πo, wL̇, µ) = ηL̇2

∑
u̇,v̇∈L̇N(µ)

−2 (Πo)|u̸̇=v̇

wL̇(u̇)wL̇(v̇)∆Q(R2(µ[u̇
2← πt]), R2(µ[v̇

2← πt])) =

= 2
2

1

1

2

1

2
∆Q(R2(µ[πh, πt]), R2(µ[πt, πt])) =

= 2
2

1

1

2

1

2
1 = 1

And finally, we calculate the RD value:

A.2. Reward Dependency 133

RD(Πe, wΠe ,Πo, wL̇, µ, wS) =
∑
π∈Πe

wΠe(π)

N(µ)∑
i=1

wS(i, µ)RDi(π,Πo, wL̇, µ) =

=
1

1

1

2
{RD1(πt,Πo, wL̇, µ) +RD2(πt,Πo, wL̇, µ)} =

=
1

1

1

2
{1 + 1} = 1

Since 1 is the highest possible value for the reward dependency property, therefore matching
pennies has Generalmax = 1 for this property.

Proposition 8. Leftmax for the reward dependency (RD) property is equal to 0 for the match-
ing pennies environment.

Proof. To find Leftmax (equation 8.4), we need to find a Πe that maximises the property value
as much as possible while Πo minimises it. Using Πo = {πh1, πh2} (a πh agent always performs
Head) we find this situation no matter which Πe we use.

Following definition 19 we obtain the RD value for this ⟨Πe,Πo⟩ (where Πe is instantiated
with any permitted value). Since the multi-agent environment is not team symmetric, we need
to calculate this property value for every agent slot. Also, we do not know which Πe we have,
so we use a figurative evaluated agent π from Πe. Following definition 18 we calculate the RD
value for this figurative evaluated agent π ∈ Πe and each agent slot. We start with agent slot
1:

RD1(π,Πo, wL̇, µ) = ηL̇2

∑
u̇,v̇∈L̇N(µ)

−1 (Πo)|u̸̇=v̇

wL̇(u̇)wL̇(v̇)∆Q(R1(µ[u̇
1← π]), R1(µ[v̇

1← π])) =

= 2
2

1

1

2

1

2
∆Q(R1(µ[π, πh1]), R1(µ[π, πh2]))

Note that we avoided to calculate both ∆Q(a, b) and ∆Q(b, a), since they provide the same
result, by calculating only ∆Q(a, b) and multiplying the result by 2.

The agent in both agent slots 1 (any π) is not able to differentiate with which agent is
interacting, so it is not able to change its distribution of action sequences depending on the
opponent’s behaviour, obtaining the same expected average reward. So, for any π we obtain
the same result:

RD1(π,Πo, wL̇, µ) = 2
2

1

1

2

1

2
0 = 0

And for agent slot 2, the agent in both agent slots 2 (any π) is also not able to change its
distribution of action sequences depending on the opponent’s behaviour, obtaining the same
expected average reward. So again, for any π we obtain the same result:

RD2(π,Πo, wL̇, µ) = ηL̇2

∑
u̇,v̇∈L̇N(µ)

−2 (Πo)|u̸̇=v̇

wL̇(u̇)wL̇(v̇)∆Q(R2(µ[u̇
2← π]), R2(µ[v̇

2← π])) =

= 2
2

1

1

2

1

2
∆Q(R2(µ[πh1, π]), R2(µ[πh2, π])) =

= 2
2

1

1

2

1

2
0 = 0

A.2. Reward Dependency 134

And finally, we calculate the RD value generalising for any possible evaluated agent:

RD(Πe, wΠe ,Πo, wL̇, µ, wS) =
∑
π∈Πe

wΠe(π)

N(µ)∑
i=1

wS(i, µ)RDi(π,Πo, wL̇, µ) =

=
∑
π∈Πe

wΠe(π)
1

2
{RD1(π,Πo, wL̇, µ) +RD2(π,Πo, wL̇, µ)} =

=
∑
π∈Πe

wΠe(π)
1

2
{0 + 0} = 0

So, for every Πe we obtain the same result:

∀Πe : RD(Πe, wΠe ,Πo, wL̇, µ, wS) = 0

Therefore, matching pennies has Leftmax = 0 for this property.

Proposition 9. Rightmin for the reward dependency (RD) property is equal to 0 for the
matching pennies environment.

Proof. To find Rightmin (equation 8.5), we need to find a Πe that minimises the property value
as much as possible while Πo maximises it. Using Πe = {πr} (a πr agent always acts randomly)
we find this situation no matter which Πo we use.

Following definition 19 we obtain the RD value for this ⟨Πe,Πo⟩ (where Πo is instantiated
with any permitted value). Since the multi-agent environment is not team symmetric, we need
to calculate this property value for every agent slot. Also, since |Πe| = 1 we just need to
calculate this property value for one evaluated agent. Following definition 18 we calculate the
RD value for the evaluated agent πr ∈ Πe and each agent slot. We start with agent slot 1:

RD1(πr,Πo, wL̇, µ) = ηL̇2

∑
u̇,v̇∈L̇N(µ)

−1 (Πo)|u̸̇=v̇

wL̇(u̇)wL̇(v̇)∆Q(R1(µ[u̇
1← πr]), R1(µ[v̇

1← πr]))

We do not know which Πo we have, so we use two figurative agent line-up patterns u̇ = (∗, π1)

and v̇ = (∗, π2) from L̇
N(µ)
−1 (Πo):

∆Q(R1(µ[u̇
1← πr]), R1(µ[v̇

1← πr])) = ∆Q(R1(µ[πr, π1]), R1(µ[πr, π2]))

The agent in both agent slots 1 (πr) obtains the same expected average reward (0 as proved
in lemma 2) independently of the agent line-up. So:

∆Q(R1(µ[πr, π1]), R1(µ[πr, π2])) = 0

We generalise RD1 for any possible pair of agent line-up patterns:

RD1(πr,Πo, wL̇, µ) = ηL̇2

∑
u̇,v̇∈L̇N(µ)

−1 (Πo)|u̸̇=v̇

wL̇(u̇)wL̇(v̇)∆Q(R1(µ[u̇
1← πr]), R1(µ[v̇

1← πr])) =

= ηL̇2

∑
u̇,v̇∈L̇N(µ)

−1 (Πo)|u̸̇=v̇

wL̇(u̇)wL̇(v̇)0 = 0

A.3. Fine Discrimination 135

And for agent slot 2, the agent in both agent slots 2 (πr) also obtains the same expected
average reward (0) independently of the agent line-up. So:

RD2(πr,Πo, wL̇, µ) = ηL̇2

∑
u̇,v̇∈L̇N(µ)

−2 (Πo)|u̸̇=v̇

wL̇(u̇)wL̇(v̇)∆Q(R2(µ[u̇
2← πr]), R2(µ[v̇

2← πr])) =

= ηL̇2

∑
u̇,v̇∈L̇N(µ)

−2 (Πo)|u̸̇=v̇

wL̇(u̇)wL̇(v̇)0 = 0

And finally, we calculate the RD value:

RD(Πe, wΠe ,Πo, wL̇, µ, wS) =
∑
π∈Πe

wΠe(π)

N(µ)∑
i=1

wS(i, µ)RDi(π,Πo, wL̇, µ) =

=
1

1

1

2
{RD1(πr,Πo, wL̇, µ) +RD2(πr,Πo, wL̇, µ)} =

=
1

1

1

2
{0 + 0} = 0

So, for every Πo we obtain the same result:

∀Πo : RD(Πe, wΠe ,Πo, wL̇, µ, wS) = 0

Therefore, matching pennies has Rightmin = 0 for this property.

A.3 Fine Discrimination

Now we move to the fine discrimination (FD) property. As given in section 7.5.1, we want
to know if different evaluated agents obtain different expected rewards when interacting in the
same agent line-up patterns. We use ∆Q(a, b) = 0 if numbers a and b are equal and 1 otherwise.
We use an average of rewards as the utility function to calculate an agent’s result.

Proposition 10. Generalmin for the fine discrimination (FD) property is equal to 0 for the
matching pennies environment.

Proof. To find Generalmin (equation 8.1), we need to find a pair ⟨Πe,Πo⟩ that minimises the
property value as much as possible. We can have this situation by selecting Πe = {πt1, πt2} and
Πo = {πh} (a πh agent always performs Head and a πt agent always performs Tail).

Following definition 26 we obtain the FD value for this ⟨Πe,Πo⟩. Since the multi-agent
environment is not team symmetric, we need to calculate this property value for every agent
slot. Also, since |Πe| = 2 we just need to calculate this property value for one pair of evaluated
agents. Following definition 25 we calculate the FD value for the evaluated agents πt1, πt2 ∈ Πe

and each agent slot. We start with agent slot 1:

FD1(πt1, πt2,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−1 (Πo)

wL̇(l̇)∆Q(R1(µ[l̇
1← πt1]), R1(µ[l̇

1← πt2])) =

=
1

1
∆Q(R1(µ[πt1, πh]), R1(µ[πt2, πh]))

A.3. Fine Discrimination 136

Both agents in agent slot 1 (πt1 and πt2) obtain the same expected average reward (−1).
So:

FD1(πt1, πt2,Πo, wL̇, µ) =
1

1
0 = 0

And for agent slot 2, both agents in agent slot 2 (πt1 and πt2) also obtain the same expected
average reward (1). So:

FD2(πt1, πt2,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−2 (Πo)

wL̇(l̇)∆Q(R2(µ[l̇
2← πt1]), R2(µ[l̇

2← πt2])) =

=
1

1
∆Q(R2(µ[πh, πt1]), R2(µ[πh, πt2])) =

=
1

1
0 = 0

And finally, we calculate the FD value:

FD(Πe, wΠe ,Πo, wL̇, µ, wS) = ηΠ2

∑
π1,π2∈Πe|π1 ̸=π2

wΠe(π1)wΠe(π2)

N(µ)∑
i=1

wS(i, µ)×

× FDi(π1, π2,Πo, wL̇, µ) =

= 2
2

1

1

2

1

2

1

2
{FD1(πt1, πt2,Πo, wL̇, µ) + FD2(πt1, πt2,Πo, wL̇, µ)} =

= 2
2

1

1

2

1

2

1

2
{0 + 0} = 0

Note that we avoided to calculate both FDi(a, b,Πo, wL̇, µ) and FDi(b, a,Πo, wL̇, µ), since they
provide the same result, by calculating only FDi(a, b,Πo, wL̇, µ) and multiplying the result by
2.

Since 0 is the lowest possible value for the fine discrimination property, therefore matching
pennies has Generalmin = 0 for this property.

Proposition 11. Generalmax for the fine discrimination (FD) property is equal to 1 for the
matching pennies environment.

Proof. To find Generalmax (equation 8.2), we need to find a pair ⟨Πe,Πo⟩ that maximises the
property value as much as possible. We can have this situation by selecting Πe = {πh, πt} and
Πo = {πh} (a πh agent always performs Head and a πt agent always performs Tail).

Following definition 26 we obtain the FD value for this ⟨Πe,Πo⟩. Since the multi-agent
environment is not team symmetric, we need to calculate this property value for every agent
slot. Also, since |Πe| = 2 we just need to calculate this property value for one pair of evaluated
agents. Following definition 25 we calculate the FD value for the evaluated agents πh, πt ∈ Πe

and each agent slot. We start with agent slot 1:

FD1(πh, πt,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−1 (Πo)

wL̇(l̇)∆Q(R1(µ[l̇
1← πh]), R1(µ[l̇

1← πt])) =

=
1

1
∆Q(R1(µ[πh, πh]), R1(µ[πt, πh]))

A.3. Fine Discrimination 137

Both agents in agent slot 1 (πh and πt) obtain different expected average rewards (1 and
−1 respectively). So:

FD1(πh, πt,Πo, wL̇, µ) =
1

1
1 = 1

And for agent slot 2, both agents in agent slot 2 (πh and πt) also obtain different expected
average rewards (−1 and 1 respectively). So:

FD2(πh, πt,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−2 (Πo)

wL̇(l̇)∆Q(R2(µ[l̇
2← πh]), R2(µ[l̇

2← πt])) =

=
1

1
∆Q(R2(µ[πh, πh]), R2(µ[πh, πt])) =

=
1

1
1 = 1

And finally, we calculate the FD value:

FD(Πe, wΠe ,Πo, wL̇, µ, wS) = ηΠ2

∑
π1,π2∈Πe|π1 ̸=π2

wΠe(π1)wΠe(π2)

N(µ)∑
i=1

wS(i, µ)×

× FDi(π1, π2,Πo, wL̇, µ) =

= 2
2

1

1

2

1

2

1

2
{FD1(πh, πt,Πo, wL̇, µ) + FD2(πh, πt,Πo, wL̇, µ)} =

= 2
2

1

1

2

1

2

1

2
{1 + 1} = 1

Note that we avoided to calculate both FDi(a, b,Πo, wL̇, µ) and FDi(b, a,Πo, wL̇, µ), since they
provide the same result, by calculating only FDi(a, b,Πo, wL̇, µ) and multiplying the result by
2.

Since 1 is the highest possible value for the fine discrimination property, therefore matching
pennies has Generalmax = 1 for this property.

Proposition 12. Leftmax for the fine discrimination (FD) property is equal to 0 for the
matching pennies environment.

Proof. To find Leftmax (equation 8.4), we need to find a Πe that maximises the property value
as much as possible while Πo minimises it. Using Πo = {πr} (a πr agent always acts randomly)
we find this situation no matter which Πe we use.

Following definition 26 we obtain the FD value for this ⟨Πe,Πo⟩ (where Πe is instantiated
with any permitted value). Since the multi-agent environment is not team symmetric, we need
to calculate this property value for every agent slot. Also, we do not know which Πe we have, so
we use a figurative pair of evaluated agents π1, π2 from Πe. Following definition 25 we calculate
the FD value for these figurative evaluated agents π1, π2 ∈ Πe and each agent slot. We start
with agent slot 1:

FD1(π1, π2,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−1 (Πo)

wL̇(l̇)∆Q(R1(µ[l̇
1← π1]), R1(µ[l̇

1← π2])) =

=
1

1
∆Q(R1(µ[π1, πr]), R1(µ[π2, πr]))

A.3. Fine Discrimination 138

The agent in both agent slots 2 (πr) makes its expected average reward equal to its opponent
expected average reward (both 0 as proved in lemma 2). So, for any pair π1 and π2 we obtain
the same result:

FD1(π1, π2,Πo, wL̇, µ) =
1

1
0 = 0

And for agent slot 2, both agents in agent slot 2 (any pair π1 and π2) also obtain the same
expected average reward (0). So again, for any pair π1 and π2 we obtain the same result:

FD2(π1, π2,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−2 (Πo)

wL̇(l̇)∆Q(R2(µ[l̇
2← π1]), R2(µ[l̇

2← π2])) =

=
1

1
∆Q(R2(µ[πr, π1]), R2(µ[πr, π2])) =

=
1

1
0 = 0

And finally, we calculate the FD value generalising for any possible pair of evaluated agents:

FD(Πe, wΠe ,Πo, wL̇, µ, wS) = ηΠ2

∑
π1,π2∈Πe|π1 ̸=π2

wΠe(π1)wΠe(π2)

N(µ)∑
i=1

wS(i, µ)×

× FDi(π1, π2,Πo, wL̇, µ) =

= 2× ηΠ2

∑
π1,π2∈Πe|π1 ̸=π2

wΠe(π1)wΠe(π2)
1

2
×

× {FD1(π1, π2,Πo, wL̇, µ) + FD2(π1, π2,Πo, wL̇, µ)} =

= 2× ηΠ2

∑
π1,π2∈Πe|π1 ̸=π2

wΠe(π1)wΠe(π2)
1

2
{0 + 0} = 0

Note that we avoided to calculate both FDi(a, b,Πo, wL̇, µ) and FDi(b, a,Πo, wL̇, µ), since they
provide the same result, by calculating only FDi(a, b,Πo, wL̇, µ) and multiplying the result by
2.

So, for every Πe we obtain the same result:

∀Πe : FD(Πe, wΠe ,Πo, wL̇, µ, wS) = 0

Therefore, matching pennies has Leftmax = 0 for this property.

Proposition 13. Rightmin for the fine discrimination (FD) property is equal to 0 for the
matching pennies environment.

Proof. To find Rightmin (equation 8.5), we need to find a Πe that minimises the property value
as much as possible while Πo maximises it. Using Πe = {πt1, πt2} (a πt agent always performs
Tail) we find this situation no matter which Πo we use.

Following definition 26 we obtain the FD value for this ⟨Πe,Πo⟩ (where Πo is instantiated
with any permitted value). Since the multi-agent environment is not team symmetric, we
need to calculate this property value for every agent slot. Also, since |Πe| = 2 we just need
to calculate this property value for one pair of evaluated agents. Following definition 25 we

A.3. Fine Discrimination 139

calculate the FD value for the evaluated agents πt1, πt2 ∈ Πe and each agent slot. We start
with agent slot 1:

FD1(πt1, πt2,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−1 (Πo)

wL̇(l̇)∆Q(R1(µ[l̇
1← πt1]), R1(µ[l̇

1← πt2]))

We do not know which Πo we have, so we use a figurative agent line-up pattern l̇ = (∗, π)
from L̇

N(µ)
−1 (Πo):

∆Q(R1(µ[l̇
1← πt1]), R1(µ[l̇

1← πt2])) = ∆Q(R1(µ[πt1, π]), R1(µ[πt2, π]))

The agent in both agent slots 2 (any π) is not able to differentiate with which agent is
interacting, so it is not able to change its distribution of action sequences depending on the
opponent’s behaviour, obtaining both agents in agent slot 1 (πt1 and πt2) the same expected
average reward. So:

∆Q(R1(µ[πt1, π]), R1(µ[πt2, π])) = 0

We generalise FD1 for any possible agent line-up pattern:

FD1(πt1, πt2,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−1 (Πo)

wL̇(l̇)∆Q(R1(µ[l̇
1← πt1]), R1(µ[l̇

1← πt2])) =

=
∑

l̇∈L̇N(µ)
−1 (Πo)

wL̇(l̇)0 = 0

And for agent slot 2, the agent in both agent slots 2 (any π) is also not able to differentiate
with which agent is interacting, so again it is not able to change its distribution of action
sequences depending on the opponent’s behaviour, obtaining both agents in agent slot 2 (πt1

and πt2) the same expected average reward. So:

FD2(πt1, πt2,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−2 (Πo)

wL̇(l̇)∆Q(R2(µ[l̇
2← πt1]), R2(µ[l̇

2← πt2])) =

=
∑

l̇∈L̇N(µ)
−2 (Πo)

wL̇(l̇)0 = 0

And finally, we calculate the FD value:

FD(Πe, wΠe ,Πo, wL̇, µ, wS) = ηΠ2

∑
π1,π2∈Πe|π1 ̸=π2

wΠe(π1)wΠe(π2)

N(µ)∑
i=1

wS(i, µ)×

× FDi(π1, π2,Πo, wL̇, µ) =

= 2
2

1

1

2

1

2

1

2
{FD1(πt1, πt2,Πo, wL̇, µ) + FD2(πt1, πt2,Πo, wL̇, µ)} =

= 2
2

1

1

2

1

2

1

2
{0 + 0} = 0

A.4. Strict Total Grading 140

Note that we avoided to calculate both FDi(a, b,Πo, wL̇, µ) and FDi(b, a,Πo, wL̇, µ), since they
provide the same result, by calculating only FDi(a, b,Πo, wL̇, µ) and multiplying the result by
2.

So, for every Πo we obtain the same result:

∀Πo : FD(Πe, wΠe ,Πo, wL̇, µ, wS) = 0

Therefore, matching pennies has Rightmin = 0 for this property.

A.4 Strict Total Grading

We arrive to the strict total grading (STG) property. As given in section 7.5.2, we want to
know if there exists a strict ordering between the evaluated agents when interacting in the
multi-agent environment. We use an average of rewards as the utility function to calculate an
agent’s result.

To simplify the notation, we use the next table to represent the STO: Ri(µ[l̇
i,j← π1, π2]) <

Rj(µ[l̇
i,j← π1, π2]), Ri(µ[l̇

i,j← π2, π3]) < Rj(µ[l̇
i,j← π2, π3]) and Ri(µ[l̇

i,j← π1, π3]) < Rj(µ[l̇
i,j←

π1, π3]).

AS i AS j
π1 < π2

π2 < π3

π1 < π3

where AS stands for agent slot.

Proposition 14. Generalmin for the strict total grading (STG) property is equal to 0 for the
matching pennies environment.

Proof. To find Generalmin (equation 8.1), we need to find a pair ⟨Πe,Πo⟩ that minimises the
property value as much as possible. We can have this situation by selecting Πe = {πr1, πr2, πr3}
and Πo = ∅ (a πr agent always acts randomly).

Following definition 30 we obtain the STG value for this ⟨Πe,Πo⟩. Since the multi-agent
environment is not team symmetric, we need to calculate this property value for every pair of
agent slots. Also, since |Πe| = 3 we just need to calculate this property value for one trio of
evaluated agents. Following definition 29 we calculate the STG value for the evaluated agents
πr1, πr2, πr3 ∈ Πe and each pair of agent slots. We start with agent slots 1 and 2:

STG1,2(πr1, πr2, πr3,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−1,2 (Πo)

wL̇(l̇)STO1,2(πr1, πr2, πr3, l̇, µ) =

=
1

1
STO1,2(πr1, πr2, πr3, (∗, ∗), µ)

The following table shows us STO1,2 for all the permutations of πr1, πr2, πr3.

A.4. Strict Total Grading 141

AS 1 AS 2 AS 1 AS 2 AS 1 AS 2
πr1 < πr2 πr1 < πr3 πr2 < πr1

πr2 < πr3 πr3 < πr2 πr1 < πr3

πr1 < πr3 πr1 < πr2 πr2 < πr3

AS 1 AS 2 AS 1 AS 2 AS 1 AS 2
πr2 < πr3 πr3 < πr1 πr3 < πr2

πr3 < πr1 πr1 < πr2 πr2 < πr1

πr2 < πr1 πr3 < πr2 πr3 < πr1

It is not possible to find a STO, since for every permutation both agents obtain the same
expected average reward (0 as proved in lemma 2). So:

STG1,2(πr1, πr2, πr3,Πo, wL̇, µ) =
1

1
0 = 0

And for agent slots 2 and 1, the following table shows us STO2,1 for all the permutations
of πr1, πr2, πr3.

AS 2 AS 1 AS 2 AS 1 AS 2 AS 1
πr1 < πr2 πr1 < πr3 πr2 < πr1

πr2 < πr3 πr3 < πr2 πr1 < πr3

πr1 < πr3 πr1 < πr2 πr2 < πr3

AS 2 AS 1 AS 2 AS 1 AS 2 AS 1
πr2 < πr3 πr3 < πr1 πr3 < πr2

πr3 < πr1 πr1 < πr2 πr2 < πr1

πr2 < πr1 πr3 < πr2 πr3 < πr1

For every permutation both agents also obtain the same expected average reward (0). So:

STG2,1(πr1, πr2, πr3,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−2,1 (Πo)

wL̇(l̇)STO2,1(πr1, πr2, πr3, l̇, µ) =

=
1

1
STO2,1(πr1, πr2, πr3, (∗, ∗), µ) =

=
1

1
0 = 0

And finally, we calculate the STG value:

STG(Πe, wΠe ,Πo, wL̇, µ, wS) = ηΠ3

∑
π1,π2,π3∈Πe|π1 ̸=π2 ̸=π3

wΠe(π1)wΠe(π2)wΠe(π3)ηS2
1

N(µ)∑
i=1

wS(i, µ)×

×

 i−1∑
j=1

wS(j, µ)STGi,j(π1, π2, π3,Πo, wL̇, µ) +

N(µ)∑
j=i+1

wS(j, µ)STGi,j(π1, π2, π3,Πo, wL̇, µ)

 =

= 6
9

2

1

3

1

3

1

3

2

1

1

2

1

2
{STG1,2(πr1, πr2, πr3,Πo, wL̇, µ)+

+ STG2,1(πr1, πr2, πr3,Πo, wL̇, µ)} =

= 6
9

2

1

3

1

3

1

3

2

1

1

2

1

2
{0 + 0} = 0

A.4. Strict Total Grading 142

Note that we avoided to calculate all the permutations of π1, π2, π3 for STGi,j(π1, π2, π3,Πo, wL̇, µ),
since they provide the same result, by calculating only one permutation and multiplying the
result by 6 (the number of permutations).

Since 0 is the lowest possible value for the strict total grading property, therefore matching
pennies has Generalmin = 0 for this property.

Proposition 15. Generalmax for the strict total grading (STG) property is equal to 1 for the
matching pennies environment.

Proof. To find Generalmax (equation 8.2), we need to find a pair ⟨Πe,Πo⟩ that maximises the
property value as much as possible. We can have this situation by selecting Πe = {πh, πh/t, πm/o}
and Πo = ∅ (a πh agent always performs Head, a πh/t agent always performs Head when
interacting in agent slot 1 and always performs Tail when interacting in agent slot 2, and a
πm/o agent first acts randomly and from time step 2 always mimics the other agent’s last action
when interacting in agent slot 1 and always performs the opposite of the other agent’s last
action when interacting in agent slot 2)1.

Following definition 30 we obtain the STG value for this ⟨Πe,Πo⟩. Since the multi-agent
environment is not team symmetric, we need to calculate this property value for every pair of
agent slots. Also, since |Πe| = 3 we just need to calculate this property value for one trio of
evaluated agents. Following definition 29 we calculate the STG value for the evaluated agents
πh, πh/t, πm/o ∈ Πe and each pair of agent slots. We start with agent slots 1 and 2:

STG1,2(πh, πh/t, πm/o,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−1,2 (Πo)

wL̇(l̇)STO1,2(πh, πh/t, πm/o, l̇, µ) =

=
1

1
STO1,2(πh, πh/t, πm/o, (∗, ∗), µ)

The following table shows us STO1,2 for all the permutations of πh, πh/t, πm/o.

AS 1 AS 2 AS 1 AS 2 AS 1 AS 2
πh < πh/t πh < πm/o πh/t < πh

πh/t < πm/o πm/o < πh/t πh < πm/o

πh < πm/o πh < πh/t πh/t < πm/o

AS 1 AS 2 AS 1 AS 2 AS 1 AS 2
πh/t < πm/o πm/o < πh πm/o < πh/t

πm/o < πh πh < πh/t πh/t < πh

πh/t < πh πm/o < πh/t πm/o < πh

It is possible to find a STO for the first permutation. In agent line-up (πh, πh/t), πh always
performs Head and πh/t always performs Tail, obtaining the expected average rewards of −1
and 1 respectively. In agent line-up (πh/t, πm/o), πh/t always performs Head and πm/o always
performs Tail, obtaining the expected average rewards of −1 and 1 respectively. In agent line-
up (πh, πm/o), πh always performs Head and πm/o always performs Tail, obtaining the expected
average rewards of −1 and 1 respectively. So:

1Note that πh/t and πm/o have to know in which agent slot they are interacting. To infer this, they start
with a random action at the first time step and then they look at the other agent’s action and the reward they
obtain.

A.4. Strict Total Grading 143

STG1,2(πh, πh/t, πm/o,Πo, wL̇, µ) =
1

1
1 = 1

And for agent slots 2 and 1, the following table shows us STO2,1 for all the permutations
of πh, πh/t, πm/o.

AS 2 AS 1 AS 2 AS 1 AS 2 AS 1
πh < πh/t πh < πm/o πh/t < πh

πh/t < πm/o πm/o < πh/t πh < πm/o

πh < πm/o πh < πh/t πh/t < πm/o

AS 2 AS 1 AS 2 AS 1 AS 2 AS 1
πh/t < πm/o πm/o < πh πm/o < πh/t

πm/o < πh πh < πh/t πh/t < πh

πh/t < πh πm/o < πh/t πm/o < πh

Again, it is possible to find a STO for the first permutation. In agent line-up (πh/t, πh), πh

always performs Head and πh/t always performs Head, obtaining the expected average rewards
of −1 and 1 respectively. In agent line-up (πm/o, πh/t), πh/t always performs Tail and πm/o

always performs Tail, obtaining the expected average rewards of −1 and 1 respectively. In
agent line-up (πm/o, πh), πh always performs Head and πm/o always performs Head, obtaining
the expected average rewards of −1 and 1 respectively. So:

STG2,1(πh, πh/t, πm/o,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−2,1 (Πo)

wL̇(l̇)STO2,1(πh, πh/t, πm/o, l̇, µ) =

=
1

1
STO2,1(πh, πh/t, πm/o, (∗, ∗), µ) =

=
1

1
1 = 1

And finally, we calculate the STG value:

STG(Πe, wΠe ,Πo, wL̇, µ, wS) = ηΠ3

∑
π1,π2,π3∈Πe|π1 ̸=π2 ̸=π3

wΠe(π1)wΠe(π2)wΠe(π3)ηS2
1

N(µ)∑
i=1

wS(i, µ)×

×

 i−1∑
j=1

wS(j, µ)STGi,j(π1, π2, π3,Πo, wL̇, µ) +

N(µ)∑
j=i+1

wS(j, µ)STGi,j(π1, π2, π3,Πo, wL̇, µ)

 =

= 6
9

2

1

3

1

3

1

3

2

1

1

2

1

2
{STG1,2(πh, πh/t, πm/o,Πo, wL̇, µ)+

+ STG2,1(πh, πh/t, πm/o,Πo, wL̇, µ)} =

= 6
9

2

1

3

1

3

1

3

2

1

1

2

1

2
{1 + 1} = 1

Note that we avoided to calculate all the permutations of π1, π2, π3 for STGi,j(π1, π2, π3,Πo, wL̇, µ),
since they provide the same result, by calculating only one permutation and multiplying the
result by 6 (the number of permutations).

Since 1 is the highest possible value for the strict total grading property, therefore matching
pennies has Generalmax = 1 for this property.

A.4. Strict Total Grading 144

Proposition 16. Leftmax for the strict total grading (STG) property is equal to 1 for the
matching pennies environment.

Proof. To find Leftmax (equation 8.4), we need to find a Πe that maximises the property value
as much as possible while Πo minimises it. Using Πe = {πh, πh/t, πm/o} (a πh agent always
performs Head, a πh/t agent always performs Head when interacting in agent slot 1 and always
performs Tail when interacting in agent slot 2, and a πm/o agent first acts randomly and from
time step 2 always mimics the other agent’s last action when interacting in agent slot 1 and
always performs the opposite of the other agent’s last action when interacting in agent slot 2)2

we find this situation no matter which Πo we use.
Following definition 30 we obtain the STG value for this ⟨Πe,Πo⟩ (where Πo is instantiated

with any permitted value). Since the multi-agent environment is not team symmetric, we need
to calculate this property value for every pair of agent slots. Also, since |Πe| = 3 we just need
to calculate this property value for one trio of evaluated agents. Following definition 29 we
calculate the STG value for the evaluated agents πh, πh/t, πm/o ∈ Πe and each pair of agent
slots. We start with agent slots 1 and 2:

STG1,2(πh, πh/t, πm/o,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−1,2 (Πo)

wL̇(l̇)STO1,2(πh, πh/t, πm/o, l̇, µ) =

=
1

1
STO1,2(πh, πh/t, πm/o, (∗, ∗), µ)

Note that the choice of Πo does not affect the result of STG1,2.
The following table shows us STO1,2 for all the permutations of πh, πh/t, πm/o.

AS 1 AS 2 AS 1 AS 2 AS 1 AS 2
πh < πh/t πh < πm/o πh/t < πh

πh/t < πm/o πm/o < πh/t πh < πm/o

πh < πm/o πh < πh/t πh/t < πm/o

AS 1 AS 2 AS 1 AS 2 AS 1 AS 2
πh/t < πm/o πm/o < πh πm/o < πh/t

πm/o < πh πh < πh/t πh/t < πh

πh/t < πh πm/o < πh/t πm/o < πh

It is possible to find a STO for the first permutation. In agent line-up (πh, πh/t), πh always
performs Head and πh/t always performs Tail, obtaining the expected average rewards of −1
and 1 respectively. In agent line-up (πh/t, πm/o), πh/t always performs Head and πm/o always
performs Tail, obtaining the expected average rewards of −1 and 1 respectively. In agent line-
up (πh, πm/o), πh always performs Head and πm/o always performs Tail, obtaining the expected
average rewards of −1 and 1 respectively. So:

STG1,2(πh, πh/t, πm/o,Πo, wL̇, µ) =
1

1
1 = 1

And for agent slots 2 and 1, the following table shows us STO2,1 for all the permutations
of πh, πh/t, πm/o.

2Note that πh/t and πm/o have to know in which agent slot they are interacting. To infer this, they start
with a random action at the first time step and then they look at the other agent’s action and the reward they
obtain.

A.4. Strict Total Grading 145

AS 2 AS 1 AS 2 AS 1 AS 2 AS 1
πh < πh/t πh < πm/o πh/t < πh

πh/t < πm/o πm/o < πh/t πh < πm/o

πh < πm/o πh < πh/t πh/t < πm/o

AS 2 AS 1 AS 2 AS 1 AS 2 AS 1
πh/t < πm/o πm/o < πh πm/o < πh/t

πm/o < πh πh < πh/t πh/t < πh

πh/t < πh πm/o < πh/t πm/o < πh

Again, it is possible to find a STO for the first permutation. In agent line-up (πh/t, πh), πh

always performs Head and πh/t always performs Head, obtaining the expected average rewards
of −1 and 1 respectively. In agent line-up (πm/o, πh/t), πh/t always performs Tail and πm/o

always performs Tail, obtaining the expected average rewards of −1 and 1 respectively. In
agent line-up (πm/o, πh), πh always performs Head and πm/o always performs Head, obtaining
the expected average rewards of −1 and 1 respectively. So:

STG2,1(πh, πh/t, πm/o,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−2,1 (Πo)

wL̇(l̇)STO2,1(πh, πh/t, πm/o, l̇, µ) =

=
1

1
STO2,1(πh, πh/t, πm/o, (∗, ∗), µ) =

=
1

1
1 = 1

Note again that the choice of Πo does not affect the result of STG2,1.
And finally, we calculate the STG value:

STG(Πe, wΠe ,Πo, wL̇, µ, wS) = ηΠ3

∑
π1,π2,π3∈Πe|π1 ̸=π2 ̸=π3

wΠe(π1)wΠe(π2)wΠe(π3)ηS2
1

N(µ)∑
i=1

wS(i, µ)×

×

 i−1∑
j=1

wS(j, µ)STGi,j(π1, π2, π3,Πo, wL̇, µ) +

N(µ)∑
j=i+1

wS(j, µ)STGi,j(π1, π2, π3,Πo, wL̇, µ)

 =

= 6
9

2

1

3

1

3

1

3

2

1

1

2

1

2
{STG1,2(πh, πh/t, πm/o,Πo, wL̇, µ)+

+ STG2,1(πh, πh/t, πm/o,Πo, wL̇, µ)} =

= 6
9

2

1

3

1

3

1

3

2

1

1

2

1

2
{1 + 1} = 1

Note that we avoided to calculate all the permutations of π1, π2, π3 for STGi,j(π1, π2, π3,Πo, wL̇, µ),
since they provide the same result, by calculating only one permutation and multiplying the
result by 6 (the number of permutations).

So, for every Πo we obtain the same result:

∀Πo : STG(Πe, wΠe ,Πo, wL̇, µ, wS) = 1

Therefore, matching pennies has Leftmax = 1 for this property.

A.4. Strict Total Grading 146

Proposition 17. Rightmin for the strict total grading (STG) property is equal to 0 for the
matching pennies environment.

Proof. To find Rightmin (equation 8.5), we need to find a Πe that minimises the property value
as much as possible while Πo maximises it. Using Πe = {πr1, πr2, πr3} (a πr agent always acts
randomly) we find this situation no matter which Πo we use.

Following definition 30 we obtain the STG value for this ⟨Πe,Πo⟩ (where Πo is instantiated
with any permitted value). Since the multi-agent environment is not team symmetric, we need
to calculate this property value for every pair of agent slots. Also, since |Πe| = 3 we just need
to calculate this property value for one trio of evaluated agents. Following definition 29 we
calculate the STG value for the evaluated agents πr1, πr2, πr3 ∈ Πe and each pair of agent slots.
We start with agent slots 1 and 2:

STG1,2(πr1, πr2, πr3,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−1,2 (Πo)

wL̇(l̇)STO1,2(πr1, πr2, πr3, l̇, µ) =

=
1

1
STO1,2(πr1, πr2, πr3, (∗, ∗), µ)

Note that the choice of Πo does not affect the result of STG1,2.
The following table shows us STO1,2 for all the permutations of πr1, πr2, πr3.

AS 1 AS 2 AS 1 AS 2 AS 1 AS 2
πr1 < πr2 πr1 < πr3 πr2 < πr1

πr2 < πr3 πr3 < πr2 πr1 < πr3

πr1 < πr3 πr1 < πr2 πr2 < πr3

AS 1 AS 2 AS 1 AS 2 AS 1 AS 2
πr2 < πr3 πr3 < πr1 πr3 < πr2

πr3 < πr1 πr1 < πr2 πr2 < πr1

πr2 < πr1 πr3 < πr2 πr3 < πr1

It is not possible to find a STO, since for every permutation both agents obtain the same
expected average reward (0 as proved in lemma 2). So:

STG1,2(πr1, πr2, πr3,Πo, wL̇, µ) =
1

1
0 = 0

And for agent slots 2 and 1, the following table shows us STO2,1 for all the permutations
of πr1, πr2, πr3.

AS 2 AS 1 AS 2 AS 1 AS 2 AS 1
πr1 < πr2 πr1 < πr3 πr2 < πr1

πr2 < πr3 πr3 < πr2 πr1 < πr3

πr1 < πr3 πr1 < πr2 πr2 < πr3

AS 2 AS 1 AS 2 AS 1 AS 2 AS 1
πr2 < πr3 πr3 < πr1 πr3 < πr2

πr3 < πr1 πr1 < πr2 πr2 < πr1

πr2 < πr1 πr3 < πr2 πr3 < πr1

For every permutation both agents also obtain the same expected average reward (0). So:

A.5. Partial Grading 147

STG2,1(πr1, πr2, πr3,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−2,1 (Πo)

wL̇(l̇)STO2,1(πr1, πr2, πr3, l̇, µ) =

=
1

1
STO2,1(πr1, πr2, πr3, (∗, ∗), µ) =

=
1

1
0 = 0

Note again that the choice of Πo does not affect the result of STG2,1.
And finally, we calculate the STG value:

STG(Πe, wΠe ,Πo, wL̇, µ, wS) = ηΠ3

∑
π1,π2,π3∈Πe|π1 ̸=π2 ̸=π3

wΠe(π1)wΠe(π2)wΠe(π3)ηS2
1

N(µ)∑
i=1

wS(i, µ)×

×

 i−1∑
j=1

wS(j, µ)STGi,j(π1, π2, π3,Πo, wL̇, µ) +

N(µ)∑
j=i+1

wS(j, µ)STGi,j(π1, π2, π3,Πo, wL̇, µ)

 =

= 6
9

2

1

3

1

3

1

3

2

1

1

2

1

2
{STG1,2(πr1, πr2, πr3,Πo, wL̇, µ)+

+ STG2,1(πr1, πr2, πr3,Πo, wL̇, µ)} =

= 6
9

2

1

3

1

3

1

3

2

1

1

2

1

2
{0 + 0} = 0

Note that we avoided to calculate all the permutations of π1, π2, π3 for STGi,j(π1, π2, π3,Πo, wL̇, µ),
since they provide the same result, by calculating only one permutation and multiplying the
result by 6 (the number of permutations).

So, for every Πo we obtain the same result:

∀Πo : STG(Πe, wΠe ,Πo, wL̇, µ, wS) = 0

Therefore, matching pennies has Rightmin = 0 for this property.

A.5 Partial Grading

Now we arrive to the partial grading (PG) property. As given in section 7.5.2, we want to
know if there exists a partial ordering between the evaluated agents when interacting in the
multi-agent environment. We use an average of rewards as the utility function to calculate an
agent’s result.

To simplify the notation, we use the next table to represent the PO: Ri(µ[l̇
i,j← π1, π2]) ≤

Rj(µ[l̇
i,j← π1, π2]), Ri(µ[l̇

i,j← π2, π3]) ≤ Rj(µ[l̇
i,j← π2, π3]) and Ri(µ[l̇

i,j← π1, π3]) ≤ Rj(µ[l̇
i,j←

π1, π3]).

AS i AS j
π1 ≤ π2

π2 ≤ π3

π1 ≤ π3

A.5. Partial Grading 148

where AS stands for agent slot.

Proposition 18. Generalmin for the partial grading (PG) property is equal to 0 for the match-
ing pennies environment.

Proof. To find Generalmin (equation 8.1), we need to find a pair ⟨Πe,Πo⟩ that minimises the
property value as much as possible. We can have this situation by selecting Πe = {πh1, πh2, πt}
and Πo = ∅ (a πh agent always performs Head and a πt agent always performs Tail).

Following definition 31 we obtain the PG value for this ⟨Πe,Πo⟩. Since the multi-agent
environment is not team symmetric, we need to calculate this property value for every pair of
agent slots. Also, since |Πe| = 3 we just need to calculate this property value for one trio of
evaluated agents. Following definition 29 (for PG) we calculate the PG value for the evaluated
agents πh1, πh2, πt ∈ Πe and each pair of agent slots. We start with agent slots 1 and 2:

PG1,2(πh1, πh2, πt,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−1,2 (Πo)

wL̇(l̇)PO1,2(πh1, πh2, πt, l̇, µ) =

=
1

1
PO1,2(πh1, πh2, πt, (∗, ∗), µ)

The following table shows us PO1,2 for all the permutations of πh1, πh2, πt.

AS 1 AS 2 AS 1 AS 2 AS 1 AS 2
πh1 ≤ πh2 πh1 ≤ πt πh2 ≤ πh1

πh2 ≤ πt πt ≤ πh2 πh1 ≤ πt

πh1 ≤ πt πh1 ≤ πh2 πh2 ≤ πt

AS 1 AS 2 AS 1 AS 2 AS 1 AS 2
πh2 ≤ πt πt ≤ πh1 πt ≤ πh2

πt ≤ πh1 πh1 ≤ πh2 πh2 ≤ πh1

πh2 ≤ πh1 πt ≤ πh2 πt ≤ πh1

It is not possible to find a PO, since for every permutation we have either the agent line-up
(πh1, πh2) or (πh2, πh1). In both cases, the agents obtain the expected average rewards of 1 and
−1 respectively. So:

PG1,2(πh1, πh2, πt,Πo, wL̇, µ) =
1

1
0 = 0

And for agent slots 2 and 1, the following table shows us PO2,1 for all the permutations of
πh1, πh2, πt.

AS 2 AS 1 AS 2 AS 1 AS 2 AS 1
πh1 ≤ πh2 πh1 ≤ πt πh2 ≤ πh1

πh2 ≤ πt πt ≤ πh2 πh1 ≤ πt

πh1 ≤ πt πh1 ≤ πh2 πh2 ≤ πt

AS 2 AS 1 AS 2 AS 1 AS 2 AS 1
πh2 ≤ πt πt ≤ πh1 πt ≤ πh2

πt ≤ πh1 πh1 ≤ πh2 πh2 ≤ πh1

πh2 ≤ πh1 πt ≤ πh2 πt ≤ πh1

A.5. Partial Grading 149

It is also not possible to find a PO, since for every permutation we have either the agent
line-up (πt, πh1) or (πh1, πt). In both cases, the agents obtain the expected average rewards of
−1 and 1 respectively. So:

PG2,1(πh1, πh2, πt,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−2,1 (Πo)

wL̇(l̇)PO2,1(πh1, πh2, πt, l̇, µ) =

=
1

1
PO2,1(πh1, πh2, πt, (∗, ∗), µ) =

=
1

1
0 = 0

And finally, we calculate the PG value:

PG(Πe, wΠe ,Πo, wL̇, µ, wS) = ηΠ3

∑
π1,π2,π3∈Πe|π1 ̸=π2 ̸=π3

wΠe(π1)wΠe(π2)wΠe(π3)ηS2
1

N(µ)∑
i=1

wS(i, µ)×

×

 i−1∑
j=1

wS(j, µ)PGi,j(π1, π2, π3,Πo, wL̇, µ) +

N(µ)∑
j=i+1

wS(j, µ)PGi,j(π1, π2, π3,Πo, wL̇, µ)

 =

= 6
9

2

1

3

1

3

1

3

2

1

1

2

1

2
{PG1,2(πh1, πh2, πt,Πo, wL̇, µ)+

+ PG2,1(πh1, πh2, πt,Πo, wL̇, µ)} =

= 6
9

2

1

3

1

3

1

3

2

1

1

2

1

2
{0 + 0} = 0

Note that we avoided to calculate all the permutations of π1, π2, π3 for PGi,j(π1, π2, π3,Πo, wL̇, µ),
since they provide the same result, by calculating only one permutation and multiplying the
result by 6 (the number of permutations).

Since 0 is the lowest possible value for the partial grading property, therefore matching
pennies has Generalmin = 0 for this property.

Proposition 19. Generalmax for the partial grading (PG) property is equal to 1 for the match-
ing pennies environment.

Proof. To find Generalmax (equation 8.2), we need to find a pair ⟨Πe,Πo⟩ that maximises the
property value as much as possible. We can have this situation by selecting Πe = {πr1, πr2, πr3}
and Πo = ∅ (a πr agent always acts randomly).

Following definition 31 we obtain the PG value for this ⟨Πe,Πo⟩. Since the multi-agent
environment is not team symmetric, we need to calculate this property value for every pair of
agent slots. Also, since |Πe| = 3 we just need to calculate this property value for one trio of
evaluated agents. Following definition 29 (for PG) we calculate the PG value for the evaluated
agents πr1, πr2, πr3 ∈ Πe and each pair of agent slots. We start with agent slots 1 and 2:

PG1,2(πr1, πr2, πr3,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−1,2 (Πo)

wL̇(l̇)PO1,2(πr1, πr2, πr3, l̇, µ) =

=
1

1
PO1,2(πr1, πr2, πr3, (∗, ∗), µ)

The following table shows us PO1,2 for all the permutations of πr1, πr2, πr3.

A.5. Partial Grading 150

AS 1 AS 2 AS 1 AS 2 AS 1 AS 2
πr1 ≤ πr2 πr1 ≤ πr3 πr2 ≤ πr1

πr2 ≤ πr3 πr3 ≤ πr2 πr1 ≤ πr3

πr1 ≤ πr3 πr1 ≤ πr2 πr2 ≤ πr3

AS 1 AS 2 AS 1 AS 2 AS 1 AS 2
πr2 ≤ πr3 πr3 ≤ πr1 πr3 ≤ πr2

πr3 ≤ πr1 πr1 ≤ πr2 πr2 ≤ πr1

πr2 ≤ πr1 πr3 ≤ πr2 πr3 ≤ πr1

It is possible to find a PO for every permutation, since both agents obtain the same expected
average reward (0 as proved in lemma 2). So:

PG1,2(πr1, πr2, πr3,Πo, wL̇, µ) =
1

1
1 = 1

And for agent slots 2 and 1, the following table shows us PO2,1 for all the permutations of
πr1, πr2, πr3.

AS 2 AS 1 AS 2 AS 1 AS 2 AS 1
πr1 ≤ πr2 πr1 ≤ πr3 πr2 ≤ πr1

πr2 ≤ πr3 πr3 ≤ πr2 πr1 ≤ πr3

πr1 ≤ πr3 πr1 ≤ πr2 πr2 ≤ πr3

AS 2 AS 1 AS 2 AS 1 AS 2 AS 1
πr2 ≤ πr3 πr3 ≤ πr1 πr3 ≤ πr2

πr3 ≤ πr1 πr1 ≤ πr2 πr2 ≤ πr1

πr2 ≤ πr1 πr3 ≤ πr2 πr3 ≤ πr1

For every permutation both agents also obtain the same expected average reward (0). So:

PG2,1(πr1, πr2, πr3,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−2,1 (Πo)

wL̇(l̇)PO2,1(πr1, πr2, πr3, l̇, µ) =

=
1

1
PO2,1(πr1, πr2, πr3, (∗, ∗), µ) =

=
1

1
1 = 1

And finally, we calculate the PG value:

PG(Πe, wΠe ,Πo, wL̇, µ, wS) = ηΠ3

∑
π1,π2,π3∈Πe|π1 ̸=π2 ̸=π3

wΠe(π1)wΠe(π2)wΠe(π3)ηS2
1

N(µ)∑
i=1

wS(i, µ)×

×

 i−1∑
j=1

wS(j, µ)PGi,j(π1, π2, π3,Πo, wL̇, µ) +

N(µ)∑
j=i+1

wS(j, µ)PGi,j(π1, π2, π3,Πo, wL̇, µ)

 =

= 6
9

2

1

3

1

3

1

3

2

1

1

2

1

2
{PG1,2(πr1, πr2, πr3,Πo, wL̇, µ)+

+ PG2,1(πr1, πr2, πr3,Πo, wL̇, µ)} =

= 6
9

2

1

3

1

3

1

3

2

1

1

2

1

2
{1 + 1} = 1

A.5. Partial Grading 151

Note that we avoided to calculate all the permutations of π1, π2, π3 for PGi,j(π1, π2, π3,Πo, wL̇, µ),
since they provide the same result, by calculating only one permutation and multiplying the
result by 6 (the number of permutations).

Since 1 is the highest possible value for the partial grading property, therefore matching
pennies has Generalmax = 1 for this property.

Proposition 20. Leftmax for the partial grading (PG) property is equal to 1 for the matching
pennies environment.

Proof. To find Leftmax (equation 8.4), we need to find a Πe that maximises the property value
as much as possible while Πo minimises it. Using Πe = {πr1, πr2, πr3} (a πr agent always acts
randomly) we find this situation no matter which Πo we use.

Following definition 31 we obtain the PG value for this ⟨Πe,Πo⟩ (where Πo is instantiated
with any permitted value). Since the multi-agent environment is not team symmetric, we need
to calculate this property value for every pair of agent slots. Also, since |Πe| = 3 we just need
to calculate this property value for one trio of evaluated agents. Following definition 29 (for
PG) we calculate the PG value for the evaluated agents πr1, πr2, πr3 ∈ Πe and each pair of
agent slots. We start with agent slots 1 and 2:

PG1,2(πr1, πr2, πr3,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−1,2 (Πo)

wL̇(l̇)PO1,2(πr1, πr2, πr3, l̇, µ) =

=
1

1
PO1,2(πr1, πr2, πr3, (∗, ∗), µ)

Note that the choice of Πo does not affect the result of PG1,2.
The following table shows us PO1,2 for all the permutations of πr1, πr2, πr3.

AS 1 AS 2 AS 1 AS 2 AS 1 AS 2
πr1 ≤ πr2 πr1 ≤ πr3 πr2 ≤ πr1

πr2 ≤ πr3 πr3 ≤ πr2 πr1 ≤ πr3

πr1 ≤ πr3 πr1 ≤ πr2 πr2 ≤ πr3

AS 1 AS 2 AS 1 AS 2 AS 1 AS 2
πr2 ≤ πr3 πr3 ≤ πr1 πr3 ≤ πr2

πr3 ≤ πr1 πr1 ≤ πr2 πr2 ≤ πr1

πr2 ≤ πr1 πr3 ≤ πr2 πr3 ≤ πr1

It is possible to find a PO for every permutation, since both agents obtain the same expected
average reward (0 as proved in lemma 2). So:

PG1,2(πr1, πr2, πr3,Πo, wL̇, µ) =
1

1
1 = 1

And for agent slots 2 and 1, the following table shows us PO2,1 for all the permutations of
πr1, πr2, πr3.

AS 2 AS 1 AS 2 AS 1 AS 2 AS 1
πr1 ≤ πr2 πr1 ≤ πr3 πr2 ≤ πr1

πr2 ≤ πr3 πr3 ≤ πr2 πr1 ≤ πr3

πr1 ≤ πr3 πr1 ≤ πr2 πr2 ≤ πr3

A.5. Partial Grading 152

AS 2 AS 1 AS 2 AS 1 AS 2 AS 1
πr2 ≤ πr3 πr3 ≤ πr1 πr3 ≤ πr2

πr3 ≤ πr1 πr1 ≤ πr2 πr2 ≤ πr1

πr2 ≤ πr1 πr3 ≤ πr2 πr3 ≤ πr1

For every permutation both agents also obtain the same expected average reward (0). So:

PG2,1(πr1, πr2, πr3,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−2,1 (Πo)

wL̇(l̇)PO2,1(πr1, πr2, πr3, l̇, µ) =

=
1

1
PO2,1(πr1, πr2, πr3, (∗, ∗), µ) =

=
1

1
1 = 1

Note again that the choice of Πo does not affect the result of PG2,1.
And finally, we calculate the PG value:

PG(Πe, wΠe ,Πo, wL̇, µ, wS) = ηΠ3

∑
π1,π2,π3∈Πe|π1 ̸=π2 ̸=π3

wΠe(π1)wΠe(π2)wΠe(π3)ηS2
1

N(µ)∑
i=1

wS(i, µ)×

×

 i−1∑
j=1

wS(j, µ)PGi,j(π1, π2, π3,Πo, wL̇, µ) +

N(µ)∑
j=i+1

wS(j, µ)PGi,j(π1, π2, π3,Πo, wL̇, µ)

 =

= 6
9

2

1

3

1

3

1

3

2

1

1

2

1

2
{PG1,2(πr1, πr2, πr3,Πo, wL̇, µ)+

+ PG2,1(πr1, πr2, πr3,Πo, wL̇, µ)} =

= 6
9

2

1

3

1

3

1

3

2

1

1

2

1

2
{1 + 1} = 1

Note that we avoided to calculate all the permutations of π1, π2, π3 for PGi,j(π1, π2, π3,Πo, wL̇, µ),
since they provide the same result, by calculating only one permutation and multiplying the
result by 6 (the number of permutations).

So, for every Πo we obtain the same result:

∀Πo : PG(Πe, wΠe ,Πo, wL̇, µ, wS) = 1

Therefore, matching pennies has Leftmax = 1 for this property.

Proposition 21. Rightmin for the partial grading (PG) property is equal to 0 for the matching
pennies environment.

Proof. To find Rightmin (equation 8.5), we need to find a Πe that minimises the property
value as much as possible while Πo maximises it. Using Πe = {πh1, πh2, πt} (a πh agent always
performs Head and a πt agent always performs Tail) we find this situation no matter which Πo

we use.
Following definition 31 we obtain the PG value for this ⟨Πe,Πo⟩ (where Πo is instantiated

with any permitted value). Since the multi-agent environment is not team symmetric, we need
to calculate this property value for every pair of agent slots. Also, since |Πe| = 3 we just need
to calculate this property value for one trio of evaluated agents. Following definition 29 (for

A.5. Partial Grading 153

PG) we calculate the PG value for the evaluated agents πh1, πh2, πt ∈ Πe and each pair of agent
slots. We start with agent slots 1 and 2:

PG1,2(πh1, πh2, πt,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−1,2 (Πo)

wL̇(l̇)PO1,2(πh1, πh2, πt, l̇, µ) =

=
1

1
PO1,2(πh1, πh2, πt, (∗, ∗), µ)

Note that the choice of Πo does not affect the result of PG1,2.
The following table shows us PO1,2 for all the permutations of πh1, πh2, πt.

AS 1 AS 2 AS 1 AS 2 AS 1 AS 2
πh1 ≤ πh2 πh1 ≤ πt πh2 ≤ πh1

πh2 ≤ πt πt ≤ πh2 πh1 ≤ πt

πh1 ≤ πt πh1 ≤ πh2 πh2 ≤ πt

AS 1 AS 2 AS 1 AS 2 AS 1 AS 2
πh2 ≤ πt πt ≤ πh1 πt ≤ πh2

πt ≤ πh1 πh1 ≤ πh2 πh2 ≤ πh1

πh2 ≤ πh1 πt ≤ πh2 πt ≤ πh1

It is not possible to find a PO, since for every permutation we have either the agent line-up
(πh1, πh2) or (πh2, πh1). In both cases, the agents obtain the expected average rewards of 1 and
−1 respectively. So:

PG1,2(πh1, πh2, πt,Πo, wL̇, µ) =
1

1
0 = 0

And for agent slots 2 and 1, the following table shows us PO2,1 for all the permutations of
πh1, πh2, πt.

AS 2 AS 1 AS 2 AS 1 AS 2 AS 1
πh1 ≤ πh2 πh1 ≤ πt πh2 ≤ πh1

πh2 ≤ πt πt ≤ πh2 πh1 ≤ πt

πh1 ≤ πt πh1 ≤ πh2 πh2 ≤ πt

AS 2 AS 1 AS 2 AS 1 AS 2 AS 1
πh2 ≤ πt πt ≤ πh1 πt ≤ πh2

πt ≤ πh1 πh1 ≤ πh2 πh2 ≤ πh1

πh2 ≤ πh1 πt ≤ πh2 πt ≤ πh1

It is also not possible to find a PO, since for every permutation we have either the agent
line-up (πt, πh1) or (πh1, πt). In both cases, the agents obtain the expected average rewards of
−1 and 1 respectively. So:

PG2,1(πh1, πh2, πt,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−2,1 (Πo)

wL̇(l̇)PO2,1(πh1, πh2, πt, l̇, µ) =

=
1

1
PO2,1(πh1, πh2, πt, (∗, ∗), µ) =

=
1

1
0 = 0

Note again that the choice of Πo does not affect the result of PG2,1.

A.6. Slot Result Dependency 154

And finally, we calculate the PG value:

PG(Πe, wΠe ,Πo, wL̇, µ, wS) = ηΠ3

∑
π1,π2,π3∈Πe|π1 ̸=π2 ̸=π3

wΠe(π1)wΠe(π2)wΠe(π3)ηS2
1

N(µ)∑
i=1

wS(i, µ)×

×

 i−1∑
j=1

wS(j, µ)PGi,j(π1, π2, π3,Πo, wL̇, µ) +

N(µ)∑
j=i+1

wS(j, µ)PGi,j(π1, π2, π3,Πo, wL̇, µ)

 =

= 6
9

2

1

3

1

3

1

3

2

1

1

2

1

2
{PG1,2(πh1, πh2, πt,Πo, wL̇, µ)+

+ PG2,1(πh1, πh2, πt,Πo, wL̇, µ)} =

= 6
9

2

1

3

1

3

1

3

2

1

1

2

1

2
{0 + 0} = 0

Note that we avoided to calculate all the permutations of π1, π2, π3 for PGi,j(π1, π2, π3,Πo, wL̇, µ),
since they provide the same result, by calculating only one permutation and multiplying the
result by 6 (the number of permutations).

So, for every Πo we obtain the same result:

∀Πo : PG(Πe, wΠe ,Πo, wL̇, µ, wS) = 0

Therefore, matching pennies has Rightmin = 0 for this property.

A.6 Slot Result Dependency

Next we see the slot result dependency (SRD) property. As given in section 7.3.2, we want to
know how much competitive or cooperative the multi-agent environment is. We use an average
of rewards as the utility function to calculate an agent’s result.

Proposition 22. General range for the slot result dependency (SRD) property is equal to
[−1,−1] for the matching pennies environment.

Proof. Following definition 21 we obtain the SRD value for ⟨Πe,Πo⟩ (where Πe and Πo are
instantiated with any permitted values). Since the multi-agent environment is not team sym-
metric, we need to calculate this property value for every pair of agent slots. Also, we do not
know which Πe we have, so we use a figurative evaluated agent π1 from Πe. Following defini-
tion 20 we calculate the SRD value for this figurative evaluated agent π1 ∈ Πe and each pair of
agent slots. We start with agent slots 1 and 2:

SRD1,2(π1,Πo, wL̇, µ) = corr
l̇∈L̇N(µ)

−1 (Πo)
[wL̇(l̇)](R1(µ[l̇

1← π1]), R2(µ[l̇
1← π1]))

We do not know which Πo we have, so we use a figurative agent line-up pattern l̇ = (∗, π2)

from L̇
N(µ)
−1 (Πo):

corr(R1(µ[l̇
1← π1]), R2(µ[l̇

1← π1])) = corr(R1(µ[π1, π2]), R2(µ[π1, π2]))

This game is a zero-sum game with two agents. That means that, in every game, the sum
of both agents’ rewards is always zero or, in other words, when the agent in agent slot 1 (any

A.7. Competitive Anticipation 155

π1) obtains a reward (r) the agent in agent slot 2 (any π2) obtains the opposite reward (−r),
and this relation is propagated to expected average rewards as well. Since we use a correlation
function between expected average rewards, and the agents in agent slots 1 and 2 always obtain
opposite expected average rewards, then the correlation function always obtains the same value3

of −1. So, for any π1 we obtain the same result:

corr(R1(µ[π1, π2]), R2(µ[π1, π2])) = −1

We generalise SRD1,2 for any possible agent line-up pattern:

SRD1,2(π1,Πo, wL̇, µ) = corr
l̇∈L̇N(µ)

−1 (Πo)
[wL̇(l̇)](R1(µ[l̇

1← π1]), R2(µ[l̇
1← π1])) =

= corr
l̇∈L̇N(µ)

−1 (Πo)
[wL̇(l̇)] (−1) = −1

And for agent slots 2 and 1, the correlation function also always obtains the same value of
−1. So:

SRD2,1(π1,Πo, wL̇, µ) = corr
l̇∈L̇N(µ)

−2 (Πo)
[wL̇(l̇)](R2(µ[l̇

2← π1]), R1(µ[l̇
2← π1])) =

= corr
l̇∈L̇N(µ)

−2 (Πo)
[wL̇(l̇)] (−1) = −1

And finally, we calculate the SRD value generalising for any possible evaluated agent:

SRD(Πe, wΠe ,Πo, wL̇, µ, wS) =
∑
π∈Πe

wΠe(π)ηS2
1

N(µ)∑
i=1

wS(i, µ)×

×

 i−1∑
j=1

wS(j, µ)SRDi,j(π,Πo, wL̇, µ) +

N(µ)∑
j=i+1

wS(j, µ)SRDi,j(π,Πo, wL̇, µ)

 =

=
∑
π∈Πe

wΠe(π)
2

1

1

2

1

2
{SRD1,2(π,Πo, wL̇, µ)+

+ SRD2,1(π,Πo, wL̇, µ)} =

=
∑
π∈Πe

wΠe(π)
2

1

1

2

1

2
{−1 + (−1)} = −1

So, for every pair ⟨Πe,Πo⟩ we obtain the same result:

∀Πe,Πo : SRD(Πe, wΠe ,Πo, wL̇, µ, wS) = −1

Therefore, matching pennies has General = [−1,−1] for this property.

A.7 Competitive Anticipation

Finally, we follow with the competitive anticipation (AComp) property. As given in sec-
tion 7.4.1, we want to know how much benefit the evaluated agents obtain when they anticipate
competing agents. We use an average of rewards as the utility function to calculate an agent’s
result.

3Provided there is at least one game which is not a tie.

A.7. Competitive Anticipation 156

Proposition 23. Generalmin for the competitive anticipation (AComp) property is equal to
−1

2
for the matching pennies environment.

Proof. To find Generalmin (equation 8.1), we need to find a pair ⟨Πe,Πo⟩ that minimises the
property value as much as possible. We can have this situation by selecting Πe = {πt/h} and
Πo = {πh} (a πh agent always performs Head and a πt/h agent always performs Tail when
interacting in agent slot 1 and always performs Head when interacting in agent slot 2)4.

Following definition 23 we obtain the AComp value for this ⟨Πe,Πo⟩. Since the multi-agent
environment is not team symmetric, we need to calculate this property value for every pair of
agent slots in different teams. Also, since |Πe| = 1 we just need to calculate this property value
for one evaluated agent. Following definition 22 we calculate the Ant value for the evaluated
agent πt/h ∈ Πe and each pair of agent slots in different teams. We start with agent slots 1 and
2:

Ant1,2(πt/h,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−1,2 (Πo)

∑
π∈Πo

wL̇(l̇
2← π)×

× 1

2

(
R1(µ[l̇

1,2← πt/h, π])−R1(µ[l̇
1,2← πt/h, πr])

)
=

=
1

1

1

2

(
R1(µ[πt/h, πh])−R1(µ[πt/h, πr])

)
In agent line-up (πt/h, πh), the agent in agent slot 1 (πt/h) obtains the expected average

reward of −1, while in agent line-up (πt/h, πr), the agent in agent slot 1 (πt/h) obtains the
expected average reward of 0 (as proved in lemma 2). So:

Ant1,2(πt/h,Πo, wL̇, µ) =
1

1

1

2
[(−1)− 0] = −1

2

And for agent slots 2 and 1, in agent line-up (πh, πt/h), the agent in agent slot 2 (πt/h)
obtains the expected average reward of −1, while in agent line-up (πr, πt/h), the agent in agent
slot 2 (πt/h) obtains the expected average reward of 0. So:

Ant2,1(πt/h,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−2,1 (Πo)

∑
π∈Πo

wL̇(l̇
1← π)×

× 1

2

(
R2(µ[l̇

2,1← πt/h, π])−R2(µ[l̇
2,1← πt/h, πr])

)
=

=
1

1

1

2

(
R2(µ[πh, πt/h])−R2(µ[πr, πt/h])

)
=

=
1

1

1

2
[(−1)− 0] = −1

2

And finally, we calculate the AComp value:

4Note that πt/h has to know in which agent slot it is interacting. To infer this, it starts with a random action
at the first time step and then it looks at the other agent’s action and the reward it obtains.

A.7. Competitive Anticipation 157

AComp(Πe, wΠe ,Πo, wL̇, µ, wS) =
∑
π∈Πe

wΠe(π)ηS2
2

∑
t1,t2∈τ |t1 ̸=t2

∑
i∈t1

wS(i, µ)
∑
j∈t2

wS(j, µ)×

× Anti,j(π,Πo, wL̇, µ) =

=
1

1

2

1

1

2

1

2
{Ant1,2(πt/h,Πo, wL̇, µ) + Ant2,1(πt/h,Πo, wL̇, µ)} =

=
1

1

2

1

1

2

1

2

{
−1

2
+

(
−1

2

)}
= −1

2

Since −1
2
is the lowest possible value that we can obtain for the competitive anticipation

property, therefore matching pennies has Generalmin = −1
2
for this property.

Proposition 24. Generalmax for the competitive anticipation (AComp) property is equal to
1
2
for the matching pennies environment.

Proof. To find Generalmax (equation 8.2), we need to find a pair ⟨Πe,Πo⟩ that maximises the
property value as much as possible. We can have this situation by selecting Πe = {πh/t} and
Πo = {πh} (a πh agent always performs Head and a πh/t agent always performs Head when
interacting in agent slot 1 and always performs Tail when interacting in agent slot 2)5.

Following definition 23 we obtain the AComp value for this ⟨Πe,Πo⟩. Since the multi-agent
environment is not team symmetric, we need to calculate this property value for every pair of
agent slots in different teams. Also, since |Πe| = 1 we just need to calculate this property value
for one evaluated agent. Following definition 22 we calculate the Ant value for the evaluated
agent πh/t ∈ Πe and each pair of agent slots in different teams. We start with agent slots 1 and
2:

Ant1,2(πh/t,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−1,2 (Πo)

∑
π∈Πo

wL̇(l̇
2← π)×

× 1

2

(
R1(µ[l̇

1,2← πh/t, π])−R1(µ[l̇
1,2← πh/t, πr])

)
=

=
1

1

1

2

(
R1(µ[πh/t, πh])−R1(µ[πh/t, πr])

)
In agent line-up (πh/t, πh), the agent in agent slot 1 (πh/t) obtains the expected average

reward of 1, while in agent line-up (πh/t, πr), the agent in agent slot 1 (πh/t) obtains the
expected average reward of 0 (as proved in lemma 2). So:

Ant1,2(πh/t,Πo, wL̇, µ) =
1

1

1

2
(1− 0) =

1

2

And for agent slots 2 and 1, in agent line-up (πh, πh/t), the agent in agent slot 2 (πh/t)
obtains the expected average reward of 1, while in agent line-up (πr, πh/t), the agent in agent
slot 2 (πh/t) obtains the expected average reward of 0. So:

5Note that πh/t has to know in which agent slot it is interacting. To infer this, it starts with a random action
at the first time step and then it looks at the other agent’s action and the reward it obtains.

A.7. Competitive Anticipation 158

Ant2,1(πh/t,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−2,1 (Πo)

∑
π∈Πo

wL̇(l̇
1← π)×

× 1

2

(
R2(µ[l̇

2,1← πh/t, π])−R2(µ[l̇
2,1← πh/t, πr])

)
=

=
1

1

1

2

(
R2(µ[πh, πh/t])−R2(µ[πr, πh/t])

)
=

=
1

1

1

2
(1− 0) =

1

2

And finally, we calculate the AComp value:

AComp(Πe, wΠe ,Πo, wL̇, µ, wS) =
∑
π∈Πe

wΠe(π)ηS2
2

∑
t1,t2∈τ |t1 ̸=t2

∑
i∈t1

wS(i, µ)
∑
j∈t2

wS(j, µ)×

× Anti,j(π,Πo, wL̇, µ) =

=
1

1

2

1

1

2

1

2
{Ant1,2(πh/t,Πo, wL̇, µ) + Ant2,1(πh/t,Πo, wL̇, µ)} =

=
1

1

2

1

1

2

1

2

{
1

2
+

1

2

}
=

1

2

Since 1
2
is the highest possible value that we can obtain for the competitive anticipation

property, therefore matching pennies has Generalmax = 1
2
for this property.

Appendix B

Prisoner’s Dilemma Properties

In this section we prove how we obtained the values for the properties for the prisoner’s dilemma
environment (section 2.1.2). We use uniform unit weights for wΠe , wL̇ and wS.

B.1 Action Dependency

We start with the action dependency (AD) property. As given in section 7.2.1, we want to
know if the evaluated agents behave differently depending on which agent line-up they interact
with. We use ∆A+(a, b) = 0 if distributions a and b are equal and 1 otherwise.

Proposition 25. Generalmin for the action dependency (AD) property is equal to 0 for the
prisoner’s dilemma environment.

Proof. To find Generalmin (equation 8.1), we need to find a pair ⟨Πe,Πo⟩ that minimises the
property value as much as possible. We can have this situation by selecting Πe = {πb} and
Πo = {πs1, πs2} (a πs agent always performs Silent and a πb agent always performs Betray).

Following definition 17 we obtain the AD value for this ⟨Πe,Πo⟩. Since the multi-agent
environment is team symmetric, we just need to calculate this property value for one agent
slot and generalise it to all agent slots. Also, since |Πe| = 1 we just need to calculate this
property value for one evaluated agent. Following definition 16 we calculate the AD value for
the evaluated agent πb ∈ Πe and agent slot 1:

AD1(πb,Πo, wL̇, µ) = ηL̇2

∑
u̇,v̇∈L̇N(µ)

−1 (Πo)|u̸̇=v̇

wL̇(u̇)wL̇(v̇)∆A+(Ă1(µ[u̇
1← πb]), Ă1(µ[v̇

1← πb])) =

= 2
2

1

1

2

1

2
∆A+(Ă1(µ[πb, πs1]), Ă1(µ[πb, πs2]))

Note that we avoided to calculate both ∆A+(a, b) and ∆A+(b, a), since they provide the same
result, by calculating only ∆A+(a, b) and multiplying the result by 2.

159

B.1. Action Dependency 160

The agent in both agent slots 1 (πb) performs the same sequence of actions (always Betray)
independently of the agent line-up. So:

AD1(πb,Πo, wL̇, µ) = 2
2

1

1

2

1

2
0 = 0

And finally, we calculate the AD value generalising for every agent slot:

AD(Πe, wΠe ,Πo, wL̇, µ, wS) =
∑
π∈Πe

wΠe(π)

N(µ)∑
i=1

wS(i, µ)ADi(π,Πo, wL̇, µ) =

=
1

1

N(µ)∑
i=1

wS(i, µ)0 = 0

Since 0 is the lowest possible value for the action dependency property, therefore prisoner’s
dilemma has Generalmin = 0 for this property.

Proposition 26. Generalmax for the action dependency (AD) property is equal to 1 for the
prisoner’s dilemma environment.

Proof. To find Generalmax (equation 8.2), we need to find a pair ⟨Πe,Πo⟩ that maximises the
property value as much as possible. We can have this situation by selecting Πe = {πm} and
Πo = {πs, πb} (a πm agent first acts randomly and from time step 2 always mimics the other
agent’s last action, a πs agent always performs Silent and a πb agent always performs Betray).

Following definition 17 we obtain the AD value for this ⟨Πe,Πo⟩. Since the multi-agent
environment is team symmetric, we just need to calculate this property value for one agent
slot and generalise it to all agent slots. Also, since |Πe| = 1 we just need to calculate this
property value for one evaluated agent. Following definition 16 we calculate the AD value for
the evaluated agent πm ∈ Πe and agent slot 1:

AD1(πm,Πo, wL̇, µ) = ηL̇2

∑
u̇,v̇∈L̇N(µ)

−1 (Πo)|u̸̇=v̇

wL̇(u̇)wL̇(v̇)∆A+(Ă1(µ[u̇
1← πm]), Ă1(µ[v̇

1← πm])) =

= 2
2

1

1

2

1

2
∆A+(Ă1(µ[πm, πs]), Ă1(µ[πm, πb]))

Note that we avoided to calculate both ∆A+(a, b) and ∆A+(b, a), since they provide the same
result, by calculating only ∆A+(a, b) and multiplying the result by 2.

From time step 2, πm mimics the last action of the agent in agent slot 2, so the agent in
both agent slots 1 (πm) performs different sequences of actions depending on the agent line-up.
So:

AD1(πm,Πo, wL̇, µ) = 2
2

1

1

2

1

2
1 = 1

And finally, we calculate the AD value generalising for every agent slot:

AD(Πe, wΠe ,Πo, wL̇, µ, wS) =
∑
π∈Πe

wΠe(π)

N(µ)∑
i=1

wS(i, µ)ADi(π,Πo, wL̇, µ) =

=
1

1

N(µ)∑
i=1

wS(i, µ)1 = 1

B.1. Action Dependency 161

Since 1 is the highest possible value for the action dependency property, therefore prisoner’s
dilemma has Generalmax = 1 for this property.

Proposition 27. Leftmax for the action dependency (AD) property is equal to 0 for the
prisoner’s dilemma environment.

Proof. To find Leftmax (equation 8.4), we need to find a Πe that maximises the property value
as much as possible while Πo minimises it. Using Πo = {πs1, πs2} (a πs agent always performs
Silent) we find this situation no matter which Πe we use.

Following definition 17 we obtain the AD value for this ⟨Πe,Πo⟩ (where Πe is instantiated
with any permitted value). Since the multi-agent environment is team symmetric, we just need
to calculate this property value for one agent slot and generalise it to all agent slots. Also, we
do not know which Πe we have, so we use a figurative evaluated agent π from Πe. Following
definition 16 we calculate the AD value for this figurative evaluated agent π ∈ Πe and agent
slot 1:

AD1(π,Πo, wL̇, µ) = ηL̇2

∑
u̇,v̇∈L̇N(µ)

−1 (Πo)|u̸̇=v̇

wL̇(u̇)wL̇(v̇)∆A+(Ă1(µ[u̇
1← π]), Ă1(µ[v̇

1← π])) =

= 2
2

1

1

2

1

2
∆A+(Ă1(µ[π, πs1]), Ă1(µ[π, πs2]))

Note that we avoided to calculate both ∆A+(a, b) and ∆A+(b, a), since they provide the same
result, by calculating only ∆A+(a, b) and multiplying the result by 2.

The agent in both agent slots 1 (any π) is not able to differentiate with which agent is
interacting, so it is not able to change its distribution of action sequences depending on the
opponent’s behaviour. So, for any π we obtain the same result:

AD1(π,Πo, wL̇, µ) = 2
2

1

1

2

1

2
0 = 0

And finally, we calculate the AD value generalising for every agent slot and any possible
evaluated agent:

AD(Πe, wΠe ,Πo, wL̇, µ, wS) =
∑
π∈Πe

wΠe(π)

N(µ)∑
i=1

wS(i, µ)ADi(π,Πo, wL̇, µ) =

=
∑
π∈Πe

wΠe(π)

N(µ)∑
i=1

wS(i, µ)0 = 0

So, for every Πe we obtain the same result:

∀Πe : AD(Πe, wΠe ,Πo, wL̇, µ, wS) = 0

Therefore, prisoner’s dilemma has Leftmax = 0 for this property.

Proposition 28. Rightmin for the action dependency (AD) property is equal to 0 for the
prisoner’s dilemma environment.

B.1. Action Dependency 162

Proof. To find Rightmin (equation 8.5), we need to find a Πe that minimises the property value
as much as possible while Πo maximises it. Using Πe = {πs} (a πs agent always performs Silent)
we find this situation no matter which Πo we use.

Following definition 17 we obtain the AD value for this ⟨Πe,Πo⟩ (where Πo is instantiated
with any permitted value). Since the multi-agent environment is team symmetric, we just need
to calculate this property value for one agent slot and generalise it to all agent slots. Also,
since |Πe| = 1 we just need to calculate this property value for one evaluated agent. Following
definition 16 we calculate the AD value for the evaluated agent πs ∈ Πe and agent slot 1:

AD1(πs,Πo, wL̇, µ) = ηL̇2

∑
u̇,v̇∈L̇N(µ)

−1 (Πo)|u̸̇=v̇

wL̇(u̇)wL̇(v̇)∆A+(Ă1(µ[u̇
1← πs]), Ă1(µ[v̇

1← πs]))

We do not know which Πo we have, so we use two figurative agent line-up patterns u̇ = (∗, π1)

and v̇ = (∗, π2) from L̇
N(µ)
−1 (Πo):

∆A+(Ă1(µ[u̇
1← πs]), Ă1(µ[v̇

1← πs])) = ∆A+(Ă1(µ[πs, π1]), Ă1(µ[πs, π2]))

The agent in both agent slots 1 (πs) performs the same sequence of actions (always Silent)
independently of the agent line-up. So:

∆A+(Ă1(µ[πs, π1]), Ă1(µ[πs, π2])) = 0

We generalise AD1 for any possible pair of agent line-up patterns:

AD1(πs,Πo, wL̇, µ) = ηL̇2

∑
u̇,v̇∈L̇N(µ)

−1 (Πo)|u̸̇=v̇

wL̇(u̇)wL̇(v̇)∆A+(Ă1(µ[u̇
1← πs]), Ă1(µ[v̇

1← πs])) =

= ηL̇2

∑
u̇,v̇∈L̇N(µ)

−1 (Πo)|u̸̇=v̇

wL̇(u̇)wL̇(v̇)0 = 0

And finally, we calculate the AD value generalising for every agent slot:

AD(Πe, wΠe ,Πo, wL̇, µ, wS) =
∑
π∈Πe

wΠe(π)

N(µ)∑
i=1

wS(i, µ)ADi(π,Πo, wL̇, µ) =

=
1

1

N(µ)∑
i=1

wS(i, µ)0 = 0

So, for every Πo we obtain the same result:

∀Πo : AD(Πe, wΠe ,Πo, wL̇, µ, wS) = 0

Therefore, prisoner’s dilemma has Rightmin = 0 for this property.

B.2. Reward Dependency 163

B.2 Reward Dependency

We continue with the reward dependency (RD) property. As given in section 7.3.1, we want to
know if the evaluated agents obtain different rewards depending on which agent line-up they
interact with. We use ∆Q(a

′, b′) for ∆Q+(a, b) where a′ and b′ are the expected results of a and
b respectively, and ∆Q(a

′, b′) = 0 if numbers a′ and b′ are equal and 1 otherwise. We use an
average of rewards as the utility function to calculate an agent’s result.

Proposition 29. Generalmin for the reward dependency (RD) property is equal to 0 for the
prisoner’s dilemma environment.

Proof. To find Generalmin (equation 8.1), we need to find a pair ⟨Πe,Πo⟩ that minimises the
property value as much as possible. We can have this situation by selecting Πe = {πb} and
Πo = {πs1, πs2} (a πs agent always performs Silent and a πb agent always performs Betray).

Following definition 19 we obtain the RD value for this ⟨Πe,Πo⟩. Since the multi-agent
environment is team symmetric, we just need to calculate this property value for one agent
slot and generalise it to all agent slots. Also, since |Πe| = 1 we just need to calculate this
property value for one evaluated agent. Following definition 18 we calculate the RD value for
the evaluated agent πb ∈ Πe and agent slot 1:

RD1(πb,Πo, wL̇, µ) = ηL̇2

∑
u̇,v̇∈L̇N(µ)

−1 (Πo)|u̸̇=v̇

wL̇(u̇)wL̇(v̇)∆Q(R1(µ[u̇
1← πb]), R1(µ[v̇

1← πb])) =

= 2
2

1

1

2

1

2
∆Q(R1(µ[πb, πs1]), R1(µ[πb, πs2]))

Note that we avoided to calculate both ∆Q(a, b) and ∆Q(b, a), since they provide the same
result, by calculating only ∆Q(a, b) and multiplying the result by 2.

The agent in both agent slots 1 (πb) obtains the same expected average reward (1) indepen-
dently of the agent line-up. So:

RD1(πb,Πo, wL̇, µ) = 2
2

1

1

2

1

2
0 = 0

And finally, we calculate the RD value generalising for every agent slot:

RD(Πe, wΠe ,Πo, wL̇, µ, wS) =
∑
π∈Πe

wΠe(π)

N(µ)∑
i=1

wS(i, µ)RDi(π,Πo, wL̇, µ) =

=
1

1

N(µ)∑
i=1

wS(i, µ)0 = 0

Since 0 is the lowest possible value for the reward dependency property, therefore prisoner’s
dilemma has Generalmin = 0 for this property.

Proposition 30. Generalmax for the reward dependency (RD) property is equal to 1 for the
prisoner’s dilemma environment.

B.2. Reward Dependency 164

Proof. To find Generalmax (equation 8.2), we need to find a pair ⟨Πe,Πo⟩ that maximises the
property value as much as possible. We can have this situation by selecting Πe = {πb} and
Πo = {πs, πb} (a πs agent always performs Silent and a πb agent always performs Betray).

Following definition 19 we obtain the RD value for this ⟨Πe,Πo⟩. Since the multi-agent
environment is team symmetric, we just need to calculate this property value for one agent
slot and generalise it to all agent slots. Also, since |Πe| = 1 we just need to calculate this
property value for one evaluated agent. Following definition 18 we calculate the RD value for
the evaluated agent πb ∈ Πe and agent slot 1:

RD1(πb,Πo, wL̇, µ) = ηL̇2

∑
u̇,v̇∈L̇N(µ)

−1 (Πo)|u̸̇=v̇

wL̇(u̇)wL̇(v̇)∆Q(R1(µ[u̇
1← πb]), R1(µ[v̇

1← πb])) =

= 2
2

1

1

2

1

2
∆Q(R1(µ[πb, πs]), R1(µ[πb, πb]))

Note that we avoided to calculate both ∆Q(a, b) and ∆Q(b, a), since they provide the same
result, by calculating only ∆Q(a, b) and multiplying the result by 2.

In agent line-up (πb, πs), the agent in agent slot 1 (πb) obtains one expected average reward
(1), while in agent line-up (πb, πb), the agent in agent slot 1 (πb) obtains a different expected
average reward (−1

3
). So:

RD1(πb,Πo, wL̇, µ) = 2
2

1

1

2

1

2
1 = 1

And finally, we calculate the RD value generalising for every agent slot:

RD(Πe, wΠe ,Πo, wL̇, µ, wS) =
∑
π∈Πe

wΠe(π)

N(µ)∑
i=1

wS(i, µ)RDi(π,Πo, wL̇, µ) =

=
1

1

N(µ)∑
i=1

wS(i, µ)1 = 1

Since 1 is the highest possible value for the reward dependency property, therefore prisoner’s
dilemma has Generalmax = 1 for this property.

Proposition 31. Leftmax for the reward dependency (RD) property is equal to 0 for the
prisoner’s dilemma environment.

Proof. To find Leftmax (equation 8.4), we need to find a Πe that maximises the property value
as much as possible while Πo minimises it. Using Πo = {πs1, πs2} (a πs agent always performs
Silent) we find this situation no matter which Πe we use.

Following definition 19 we obtain the RD value for this ⟨Πe,Πo⟩ (where Πe is instantiated
with any permitted value). Since the multi-agent environment is team symmetric, we just need
to calculate this property value for one agent slot and generalise it to all agent slots. Also, we
do not know which Πe we have, so we use a figurative evaluated agent π from Πe. Following
definition 18 we calculate the RD value for this figurative evaluated agent π ∈ Πe and agent
slot 1:

B.2. Reward Dependency 165

RD1(π,Πo, wL̇, µ) = ηL̇2

∑
u̇,v̇∈L̇N(µ)

−1 (Πo)|u̸̇=v̇

wL̇(u̇)wL̇(v̇)∆Q(R1(µ[u̇
1← π]), R1(µ[v̇

1← π])) =

= 2
2

1

1

2

1

2
∆Q(R1(µ[π, πs1]), R1(µ[π, πs2]))

Note that we avoided to calculate both ∆Q(a, b) and ∆Q(b, a), since they provide the same
result, by calculating only ∆Q(a, b) and multiplying the result by 2.

The agent in both agent slots 1 (any π) is not able to differentiate with which agent is
interacting, so it is not able to change its distribution of action sequences depending on the
opponent’s behaviour, obtaining the same expected average reward. So, for any π we obtain
the same result:

RD1(π,Πo, wL̇, µ) = 2
2

1

1

2

1

2
0 = 0

And finally, we calculate the RD value generalising for every agent slot and any possible
evaluated agent:

RD(Πe, wΠe ,Πo, wL̇, µ, wS) =
∑
π∈Πe

wΠe(π)

N(µ)∑
i=1

wS(i, µ)RDi(π,Πo, wL̇, µ) =

=
∑
π∈Πe

wΠe(π)

N(µ)∑
i=1

wS(i, µ)0 = 0

So, for every Πe we obtain the same result:

∀Πe : RD(Πe, wΠe ,Πo, wL̇, µ, wS) = 0

Therefore, prisoner’s dilemma has Leftmax = 0 for this property.

Proposition 32. Rightmin for the reward dependency (RD) property is equal to 1 for the
prisoner’s dilemma environment.

Proof. To find Rightmin (equation 8.5), we need to find a Πe that minimises the property value
as much as possible while Πo maximises it. Using Πo = {πs, πb} (a πs agent always performs
Silent and a πb agent always performs Betray) we find this situation no matter which Πe we
use.

Following definition 19 we obtain the RD value for this ⟨Πe,Πo⟩ (where Πe is instantiated
with any permitted value). Since the multi-agent environment is team symmetric, we just need
to calculate this property value for one agent slot and generalise it to all agent slots. Also, we
do not know which Πe we have, so we use a figurative evaluated agent π from Πe. Following
definition 18 we calculate the RD value for this figurative evaluated agent π ∈ Πe and agent
slot 1:

RD1(π,Πo, wL̇, µ) = ηL̇2

∑
u̇,v̇∈L̇N(µ)

−1 (Πo)|u̸̇=v̇

wL̇(u̇)wL̇(v̇)∆Q(R1(µ[u̇
1← π]), R1(µ[v̇

1← π])) =

= 2
2

1

1

2

1

2
∆Q(R1(µ[π, πs]), R1(µ[π, πb]))

B.3. Fine Discrimination 166

Note that we avoided to calculate both ∆Q(a, b) and ∆Q(b, a), since they provide the same
result, by calculating only ∆Q(a, b) and multiplying the result by 2.

In agent line-up (π, πs), the agent in agent slot 1 (any π) obtains an expected average
reward (between 1

3
and 1), while in agent line-up (π, πb), the agent in agent slot 1 (any π)

obtains another different expected average reward (between −1 and −1
3
). So, for any π we

obtain the same result:

RD1(π,Πo, wL̇, µ) = 2
2

1

1

2

1

2
1 = 1

And finally, we calculate the RD value generalising for every agent slot and any possible
evaluated agent:

RD(Πe, wΠe ,Πo, wL̇, µ, wS) =
∑
π∈Πe

wΠe(π)

N(µ)∑
i=1

wS(i, µ)RDi(π,Πo, wL̇, µ) =

=
∑
π∈Πe

wΠe(π)

N(µ)∑
i=1

wS(i, µ)1 = 1

So, for every Πe we obtain the same result:

∀Πe : RD(Πe, wΠe ,Πo, wL̇, µ, wS) = 1

Therefore, prisoner’s dilemma has Rightmin = 1 for this property.

B.3 Fine Discrimination

Now we move to the fine discrimination (FD) property. As given in section 7.5.1, we want
to know if different evaluated agents obtain different expected rewards when interacting in the
same agent line-up patterns. We use ∆Q(a, b) = 0 if numbers a and b are equal and 1 otherwise.
We use an average of rewards as the utility function to calculate an agent’s result.

Proposition 33. Generalmin for the fine discrimination (FD) property is equal to 0 for the
prisoner’s dilemma environment.

Proof. To find Generalmin (equation 8.1), we need to find a pair ⟨Πe,Πo⟩ that minimises the
property value as much as possible. We can have this situation by selecting Πe = {πb1, πb2}
and Πo = {πs} (a πs agent always performs Silent and a πb agent always performs Betray).

Following definition 26 we obtain the FD value for this ⟨Πe,Πo⟩. Since the multi-agent
environment is team symmetric, we just need to calculate this property value for one agent slot
and generalise it to all agent slots. Also, since |Πe| = 2 we just need to calculate this property
value for one pair of evaluated agents. Following definition 25 we calculate the FD value for
the evaluated agents πb1, πb2 ∈ Πe and agent slot 1:

FD1(πb1, πb2,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−1 (Πo)

wL̇(l̇)∆Q(R1(µ[l̇
1← πb1]), R1(µ[l̇

1← πb2])) =

=
1

1
∆Q(R1(µ[πb1, πs]), R1(µ[πb2, πs]))

B.3. Fine Discrimination 167

Both agents in agent slot 1 (πb1 and πb2) obtain the same expected average reward (1). So:

FD1(πb1, πb2,Πo, wL̇, µ) =
1

1
0 = 0

And finally, we calculate the FD value generalising for every agent slot:

FD(Πe, wΠe ,Πo, wL̇, µ, wS) = ηΠ2

∑
π1,π2∈Πe|π1 ̸=π2

wΠe(π1)wΠe(π2)

N(µ)∑
i=1

wS(i, µ)×

× FDi(π1, π2,Πo, wL̇, µ) =

= 2
2

1

1

2

1

2

N(µ)∑
i=1

wS(i, µ)0 = 0

Note that we avoided to calculate both FDi(a, b,Πo, wL̇, µ) and FDi(b, a,Πo, wL̇, µ), since they
provide the same result, by calculating only FDi(a, b,Πo, wL̇, µ) and multiplying the result by
2.

Since 0 is the lowest possible value for the fine discrimination property, therefore prisoner’s
dilemma has Generalmin = 0 for this property.

Proposition 34. Generalmax for the fine discrimination (FD) property is equal to 1 for the
prisoner’s dilemma environment.

Proof. To find Generalmax (equation 8.2), we need to find a pair ⟨Πe,Πo⟩ that maximises the
property value as much as possible. We can have this situation by selecting Πe = {πs, πb} and
Πo = {πs} (a πs agent always performs Silent and a πb agent always performs Betray).

Following definition 26 we obtain the FD value for this ⟨Πe,Πo⟩. Since the multi-agent
environment is team symmetric, we just need to calculate this property value for one agent slot
and generalise it to all agent slots. Also, since |Πe| = 2 we just need to calculate this property
value for one pair of evaluated agents. Following definition 25 we calculate the FD value for
the evaluated agents πs, πb ∈ Πe and agent slot 1:

FD1(πs, πb,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−1 (Πo)

wL̇(l̇)∆Q(R1(µ[l̇
1← πs]), R1(µ[l̇

1← πb])) =

=
1

1
∆Q(R1(µ[πs, πs]), R1(µ[πb, πs]))

Both agents in agent slot 1 (πs and πb) obtain different expected average rewards (1
3
and 1

respectively). So:

FD1(πs, πb,Πo, wL̇, µ) =
1

1
1 = 1

And finally, we calculate the FD value generalising for every agent slot:

FD(Πe, wΠe ,Πo, wL̇, µ, wS) = ηΠ2

∑
π1,π2∈Πe|π1 ̸=π2

wΠe(π1)wΠe(π2)

N(µ)∑
i=1

wS(i, µ)×

× FDi(π1, π2,Πo, wL̇, µ) =

= 2
2

1

1

2

1

2

N(µ)∑
i=1

wS(i, µ)1 = 1

B.3. Fine Discrimination 168

Note that we avoided to calculate both FDi(a, b,Πo, wL̇, µ) and FDi(b, a,Πo, wL̇, µ), since they
provide the same result, by calculating only FDi(a, b,Πo, wL̇, µ) and multiplying the result by
2.

Since 1 is the highest possible value for the fine discrimination property, therefore prisoner’s
dilemma has Generalmax = 1 for this property.

Conjecture 1. Leftmax for the fine discrimination (FD) property is equal to 0 for the prisoner’s
dilemma environment.

An agent π ∈ Πo can force every evaluated agent to obtain an expected average reward
equal to 0 (in the limit). The procedure is simple. While the evaluated agent has an expected
average reward lower than 0, π performs Silent forcing the evaluated agent to increase its
expected average reward. Analogously, while the evaluated agent has an expected average
reward greater than 0, π performs Betray forcing the evaluated agent to decrease its expected
average reward. If this procedure is repeated indefinitely, the expected average reward of any
evaluated agent tends to 0. So:

∀Πe∃Πo : FD(Πe, wΠe ,Πo, wL̇, µ, wS) = 0

Therefore, prisoner’s dilemma has Leftmax = 0 for this property.

Proposition 35. Rightmin for the fine discrimination (FD) property is equal to 0 for the
prisoner’s dilemma environment.

Proof. To find Rightmin (equation 8.5), we need to find a Πe that minimises the property value
as much as possible while Πo maximises it. Using Πe = {πb1, πb2} (a πb agent always performs
Betray) we find this situation no matter which Πo we use.

Following definition 26 we obtain the FD value for this ⟨Πe,Πo⟩ (where Πo is instantiated
with any permitted value). Since the multi-agent environment is team symmetric, we just need
to calculate this property value for one agent slot and generalise it to all agent slots. Also,
since |Πe| = 2 we just need to calculate this property value for one pair of evaluated agents.
Following definition 25 we calculate the FD value for the evaluated agents πb1, πb2 ∈ Πe and
agent slot 1:

FD1(πb1, πb2,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−1 (Πo)

wL̇(l̇)∆Q(R1(µ[l̇
1← πb1]), R1(µ[l̇

1← πb2]))

We do not know which Πo we have, so we use a figurative agent line-up pattern l̇ = (∗, π)
from L̇

N(µ)
−1 (Πo):

∆Q(R1(µ[l̇
1← πb1]), R1(µ[l̇

1← πb2])) = ∆Q(R1(µ[πb1, π]), R1(µ[πb2, π]))

The agent in both agent slots 2 (any π) is not able to differentiate with which agent is
interacting, so it is not able to change its distribution of action sequences depending on the
opponent’s behaviour, obtaining both agents in agent slot 1 (πb1 and πb2) the same expected
average reward. So:

∆Q(R1(µ[πb1, π]), R1(µ[πb2, π])) = 0

We generalise FD1 for any possible agent line-up pattern:

B.4. Strict Total Grading 169

FD1(πb1, πb2,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−1 (Πo)

wL̇(l̇)∆Q(R1(µ[l̇
1← πb1]), R1(µ[l̇

1← πb2])) =

=
∑

l̇∈L̇N(µ)
−1 (Πo)

wL̇(l̇)0 = 0

And finally, we calculate the FD value generalising for every agent slot:

FD(Πe, wΠe ,Πo, wL̇, µ, wS) = ηΠ2

∑
π1,π2∈Πe|π1 ̸=π2

wΠe(π1)wΠe(π2)

N(µ)∑
i=1

wS(i, µ)×

× FDi(π1, π2,Πo, wL̇, µ) =

= 2
2

1

1

2

1

2

N(µ)∑
i=1

wS(i, µ)0 = 0

Note that we avoided to calculate both FDi(a, b,Πo, wL̇, µ) and FDi(b, a,Πo, wL̇, µ), since they
provide the same result, by calculating only FDi(a, b,Πo, wL̇, µ) and multiplying the result by
2.

So, for every Πo we obtain the same result:

∀Πo : FD(Πe, wΠe ,Πo, wL̇, µ, wS) = 0

Therefore, prisoner’s dilemma has Rightmin = 0 for this property.

B.4 Strict Total Grading

We arrive to the strict total grading (STG) property. As given in section 7.5.2, we want to
know if there exists a strict ordering between the evaluated agents when interacting in the
multi-agent environment. We use an average of rewards as the utility function to calculate an
agent’s result.

To simplify the notation, we use the next table to represent the STO: Ri(µ[l̇
i,j← π1, π2]) <

Rj(µ[l̇
i,j← π1, π2]), Ri(µ[l̇

i,j← π2, π3]) < Rj(µ[l̇
i,j← π2, π3]) and Ri(µ[l̇

i,j← π1, π3]) < Rj(µ[l̇
i,j←

π1, π3]).

AS i AS j
π1 < π2

π2 < π3

π1 < π3

where AS stands for agent slot.

Proposition 36. Generalmin for the strict total grading (STG) property is equal to 0 for the
prisoner’s dilemma environment.

B.4. Strict Total Grading 170

Proof. To find Generalmin (equation 8.1), we need to find a pair ⟨Πe,Πo⟩ that minimises the
property value as much as possible. We can have this situation by selecting Πe = {πb1, πb2, πb3}
and Πo = ∅ (a πb agent always performs Betray).

Following definition 30 we obtain the STG value for this ⟨Πe,Πo⟩. Since the multi-agent
environment is team symmetric, we just need to calculate this property value for one pair of
agent slots and generalise it to all pairs of agent slots. Also, since |Πe| = 3 we just need
to calculate this property value for one trio of evaluated agents. Following definition 29 we
calculate the STG value for the evaluated agents πb1, πb2, πb3 ∈ Πe and the pair of agent slots
1 and 2:

STG1,2(πb1, πb2, πb3,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−1,2 (Πo)

wL̇(l̇)STO1,2(πb1, πb2, πb3, l̇, µ) =

=
1

1
STO1,2(πb1, πb2, πb3, (∗, ∗), µ)

The following table shows us STO1,2 for all the permutations of πb1, πb2, πb3.

AS 1 AS 2 AS 1 AS 2 AS 1 AS 2
πb1 < πb2 πb1 < πb3 πb2 < πb1

πb2 < πb3 πb3 < πb2 πb1 < πb3

πb1 < πb3 πb1 < πb2 πb2 < πb3

AS 1 AS 2 AS 1 AS 2 AS 1 AS 2
πb2 < πb3 πb3 < πb1 πb3 < πb2

πb3 < πb1 πb1 < πb2 πb2 < πb1

πb2 < πb1 πb3 < πb2 πb3 < πb1

It is not possible to find a STO, since for every permutation both agents obtain the same
expected average reward (−1

3
). So:

STG1,2(πb1, πb2, πb3,Πo, wL̇, µ) =
1

1
0 = 0

And finally, we calculate the STG value generalising for every pair of agent slots:

STG(Πe, wΠe ,Πo, wL̇, µ, wS) = ηΠ3

∑
π1,π2,π3∈Πe|π1 ̸=π2 ̸=π3

wΠe(π1)wΠe(π2)wΠe(π3)ηS2
1

N(µ)∑
i=1

wS(i, µ)×

×

 i−1∑
j=1

wS(j, µ)STGi,j(π1, π2, π3,Πo, wL̇, µ) +

N(µ)∑
j=i+1

wS(j, µ)STGi,j(π1, π2, π3,Πo, wL̇, µ)

 =

= 6
9

2

1

3

1

3

1

3
ηS2

1

N(µ)∑
i=1

wS(i, µ)

 i−1∑
j=1

wS(j, µ)0 +

N(µ)∑
j=i+1

wS(j, µ)0

 = 0

Note that we avoided to calculate all the permutations of π1, π2, π3 for STGi,j(π1, π2, π3,Πo, wL̇, µ),
since they provide the same result, by calculating only one permutation and multiplying the
result by 6 (the number of permutations).

Since 0 is the lowest possible value for the strict total grading property, therefore prisoner’s
dilemma has Generalmin = 0 for this property.

B.4. Strict Total Grading 171

Proposition 37. Generalmax for the strict total grading (STG) property is equal to 1 for the
prisoner’s dilemma environment.

Proof. To find Generalmax (equation 8.2), we need to find a pair ⟨Πe,Πo⟩ that maximises the
property value as much as possible. We can have this situation by selecting Πe = {πs, πb, πr}
and Πo = ∅ (a πs agent always performs Silent, a πb agent always performs Betray and a πr

agent always acts randomly).
Following definition 30 we obtain the STG value for this ⟨Πe,Πo⟩. Since the multi-agent

environment is team symmetric, we just need to calculate this property value for one pair of
agent slots and generalise it to all pairs of agent slots. Also, since |Πe| = 3 we just need
to calculate this property value for one trio of evaluated agents. Following definition 29 we
calculate the STG value for the evaluated agents πs, πb, πr ∈ Πe and the pair of agent slots 1
and 2:

STG1,2(πs, πb, πr,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−1,2 (Πo)

wL̇(l̇)STO1,2(πs, πb, πr, l̇, µ) =

=
1

1
STO1,2(πs, πb, πr, (∗, ∗), µ)

The following table shows us STO1,2 for all the permutations of πs, πb, πr.

AS 1 AS 2 AS 1 AS 2 AS 1 AS 2
πs < πb πs < πr πb < πs

πb < πr πr < πb πs < πr

πs < πr πs < πb πb < πr

AS 1 AS 2 AS 1 AS 2 AS 1 AS 2
πb < πr πr < πs πr < πb

πr < πs πs < πb πb < πs

πb < πs πr < πb πr < πs

It is possible to find a STO for the second permutation. In agent line-up (πs, πr), πs always
performs Silent and πr always acts randomly, obtaining the expected average rewards of −1

3
and

2
3
respectively. In agent line-up (πr, πb), πr always acts randomly and πb always performs Betray,

obtaining the expected average rewards of −2
3
and 1

3
respectively. In agent line-up (πs, πb), πs

always performs Silent and πb always performs Betray, obtaining the expected average rewards
of −1 and 1 respectively. So:

STG1,2(πs, πb, πr,Πo, wL̇, µ) =
1

1
1 = 1

And finally, we calculate the STG value generalising for every pair of agent slots:

B.4. Strict Total Grading 172

STG(Πe, wΠe ,Πo, wL̇, µ, wS) = ηΠ3

∑
π1,π2,π3∈Πe|π1 ̸=π2 ̸=π3

wΠe(π1)wΠe(π2)wΠe(π3)ηS2
1

N(µ)∑
i=1

wS(i, µ)×

×

 i−1∑
j=1

wS(j, µ)STGi,j(π1, π2, π3,Πo, wL̇, µ) +

N(µ)∑
j=i+1

wS(j, µ)STGi,j(π1, π2, π3,Πo, wL̇, µ)

 =

= 6
9

2

1

3

1

3

1

3
ηS2

1

N(µ)∑
i=1

wS(i, µ)

 i−1∑
j=1

wS(j, µ)1 +

N(µ)∑
j=i+1

wS(j, µ)1

 = 1

Note that we avoided to calculate all the permutations of π1, π2, π3 for STGi,j(π1, π2, π3,Πo, wL̇, µ),
since they provide the same result, by calculating only one permutation and multiplying the
result by 6 (the number of permutations).

Since 1 is the highest possible value for the strict total grading property, therefore prisoner’s
dilemma has Generalmax = 1 for this property.

Proposition 38. Leftmax for the strict total grading (STG) property is equal to 1 for the
prisoner’s dilemma environment.

Proof. To find Leftmax (equation 8.4), we need to find a Πe that maximises the property value
as much as possible while Πo minimises it. Using Πe = {πs, πb, πr} (a πs agent always performs
Silent, a πb agent always performs Betray and a πr agent always acts randomly) we find this
situation no matter which Πo we use.

Following definition 30 we obtain the STG value for this ⟨Πe,Πo⟩ (where Πo is instantiated
with any permitted value). Since the multi-agent environment is team symmetric, we just
need to calculate this property value for one pair of agent slots and generalise it to all pairs of
agent slots. Also, since |Πe| = 3 we just need to calculate this property value for one trio of
evaluated agents. Following definition 29 we calculate the STG value for the evaluated agents
πs, πb, πr ∈ Πe and the pair of agent slots 1 and 2:

STG1,2(πs, πb, πr,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−1,2 (Πo)

wL̇(l̇)STO1,2(πs, πb, πr, l̇, µ) =

=
1

1
STO1,2(πs, πb, πr, (∗, ∗), µ)

Note that the choice of Πo does not affect the result of STG1,2.
The following table shows us STO1,2 for all the permutations of πs, πb, πr.

AS 1 AS 2 AS 1 AS 2 AS 1 AS 2
πs < πb πs < πr πb < πs

πb < πr πr < πb πs < πr

πs < πr πs < πb πb < πr

AS 1 AS 2 AS 1 AS 2 AS 1 AS 2
πb < πr πr < πs πr < πb

πr < πs πs < πb πb < πs

πb < πs πr < πb πr < πs

B.4. Strict Total Grading 173

It is possible to find a STO for the second permutation. In agent line-up (πs, πr), πs always
performs Silent and πr always acts randomly, obtaining the expected average rewards of −1

3
and

2
3
respectively. In agent line-up (πr, πb), πr always acts randomly and πb always performs Betray,

obtaining the expected average rewards of −2
3
and 1

3
respectively. In agent line-up (πs, πb), πs

always performs Silent and πb always performs Betray, obtaining the expected average rewards
of −1 and 1 respectively. So:

STG1,2(πs, πb, πr,Πo, wL̇, µ) =
1

1
1 = 1

And finally, we calculate the STG value generalising for every pair of agent slots:

STG(Πe, wΠe ,Πo, wL̇, µ, wS) = ηΠ3

∑
π1,π2,π3∈Πe|π1 ̸=π2 ̸=π3

wΠe(π1)wΠe(π2)wΠe(π3)ηS2
1

N(µ)∑
i=1

wS(i, µ)×

×

 i−1∑
j=1

wS(j, µ)STGi,j(π1, π2, π3,Πo, wL̇, µ) +

N(µ)∑
j=i+1

wS(j, µ)STGi,j(π1, π2, π3,Πo, wL̇, µ)

 =

= 6
9

2

1

3

1

3

1

3
ηS2

1

N(µ)∑
i=1

wS(i, µ)

 i−1∑
j=1

wS(j, µ)1 +

N(µ)∑
j=i+1

wS(j, µ)1

 = 1

Note that we avoided to calculate all the permutations of π1, π2, π3 for STGi,j(π1, π2, π3,Πo, wL̇, µ),
since they provide the same result, by calculating only one permutation and multiplying the
result by 6 (the number of permutations).

So, for every Πo we obtain the same result:

∀Πo : STG(Πe, wΠe ,Πo, wL̇, µ, wS) = 1

Therefore, prisoner’s dilemma has Leftmax = 1 for this property.

Proposition 39. Rightmin for the strict total grading (STG) property is equal to 0 for the
prisoner’s dilemma environment.

Proof. To find Rightmin (equation 8.5), we need to find a Πe that minimises the property value
as much as possible while Πo maximises it. Using Πe = {πb1, πb2, πb3} (a πb agent always
performs Betray) we find this situation no matter which Πo we use.

Following definition 30 we obtain the STG value for this ⟨Πe,Πo⟩ (where Πo is instantiated
with any permitted value). Since the multi-agent environment is team symmetric, we just
need to calculate this property value for one pair of agent slots and generalise it to all pairs of
agent slots. Also, since |Πe| = 3 we just need to calculate this property value for one trio of
evaluated agents. Following definition 29 we calculate the STG value for the evaluated agents
πb1, πb2, πb3 ∈ Πe and the pair of agent slots 1 and 2:

STG1,2(πb1, πb2, πb3,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−1,2 (Πo)

wL̇(l̇)STO1,2(πb1, πb2, πb3, l̇, µ) =

=
1

1
STO1,2(πb1, πb2, πb3, (∗, ∗), µ)

Note that the choice of Πo does not affect the result of STG1,2.
The following table shows us STO1,2 for all the permutations of πb1, πb2, πb3.

B.5. Partial Grading 174

AS 1 AS 2 AS 1 AS 2 AS 1 AS 2
πb1 < πb2 πb1 < πb3 πb2 < πb1

πb2 < πb3 πb3 < πb2 πb1 < πb3

πb1 < πb3 πb1 < πb2 πb2 < πb3

AS 1 AS 2 AS 1 AS 2 AS 1 AS 2
πb2 < πb3 πb3 < πb1 πb3 < πb2

πb3 < πb1 πb1 < πb2 πb2 < πb1

πb2 < πb1 πb3 < πb2 πb3 < πb1

It is not possible to find a STO, since for every permutation both agents obtain the same
expected average reward (−1

3
). So:

STG1,2(πb1, πb2, πb3,Πo, wL̇, µ) =
1

1
0 = 0

And finally, we calculate the STG value generalising for every pair of agent slots:

STG(Πe, wΠe ,Πo, wL̇, µ, wS) = ηΠ3

∑
π1,π2,π3∈Πe|π1 ̸=π2 ̸=π3

wΠe(π1)wΠe(π2)wΠe(π3)ηS2
1

N(µ)∑
i=1

wS(i, µ)×

×

 i−1∑
j=1

wS(j, µ)STGi,j(π1, π2, π3,Πo, wL̇, µ) +

N(µ)∑
j=i+1

wS(j, µ)STGi,j(π1, π2, π3,Πo, wL̇, µ)

 =

= 6
9

2

1

3

1

3

1

3
ηS2

1

N(µ)∑
i=1

wS(i, µ)

 i−1∑
j=1

wS(j, µ)0 +

N(µ)∑
j=i+1

wS(j, µ)0

 = 0

Note that we avoided to calculate all the permutations of π1, π2, π3 for STGi,j(π1, π2, π3,Πo, wL̇, µ),
since they provide the same result, by calculating only one permutation and multiplying the
result by 6 (the number of permutations).

So, for every Πo we obtain the same result:

∀Πo : STG(Πe, wΠe ,Πo, wL̇, µ, wS) = 0

Therefore, prisoner’s dilemma has Rightmin = 0 for this property.

B.5 Partial Grading

Now we arrive to the partial grading (PG) property. As given in section 7.5.2, we want to
know if there exists a partial ordering between the evaluated agents when interacting in the
multi-agent environment. We use an average of rewards as the utility function to calculate an
agent’s result.

To simplify the notation, we use the next table to represent the PO: Ri(µ[l̇
i,j← π1, π2]) ≤

Rj(µ[l̇
i,j← π1, π2]), Ri(µ[l̇

i,j← π2, π3]) ≤ Rj(µ[l̇
i,j← π2, π3]) and Ri(µ[l̇

i,j← π1, π3]) ≤ Rj(µ[l̇
i,j←

π1, π3]).

B.5. Partial Grading 175

AS i AS j
π1 ≤ π2

π2 ≤ π3

π1 ≤ π3

where AS stands for agent slot.

Proposition 40. Generalmin for the partial grading (PG) property is equal to 0 for the pris-
oner’s dilemma environment.

Proof. To find Generalmin (equation 8.1), we need to find a pair ⟨Πe,Πo⟩ that minimises the
property value as much as possible. We can have this situation by selecting Πe =
{π−ssb

b , π−bbs
b , πm} and Πo = ∅ (a πm agent first acts randomly and from time step 2 always

mimics the other agent’s last action, a π−ssb
b agent always performs Betray except for the last

three actions where it performs Silent twice and finalises performing Betray, and a π−bbs
b agent

always performs Betray except for the last three actions where it performs Betray twice and
finalises performing Silent).

Following definition 31 we obtain the PG value for this ⟨Πe,Πo⟩. Since the multi-agent
environment is team symmetric, we just need to calculate this property value for one pair of
agent slots and generalise it to all pairs of agent slots. Also, since |Πe| = 3 we just need to
calculate this property value for one trio of evaluated agents. Following definition 29 (for PG)
we calculate the PG value for the evaluated agents π−ssb

b , π−bbs
b , πm ∈ Πe and the pair of agent

slots 1 and 2:

PG1,2(π
−ssb
b , π−bbs

b , πm,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−1,2 (Πo)

wL̇(l̇)PO1,2(π
−ssb
b , π−bbs

b , πm, l̇, µ) =

=
1

1
PO1,2(π

−ssb
b , π−bbs

b , πm, (∗, ∗), µ)

The following table shows us PO1,2 for all the permutations of π−ssb
b , π−bbs

b , πm.

AS 1 AS 2 AS 1 AS 2 AS 1 AS 2

π−ssb
b ≤ π−bbs

b π−ssb
b ≤ πm π−bbs

b ≤ π−ssb
b

π−bbs
b ≤ πm πm ≤ π−bbs

b π−ssb
b ≤ πm

π−ssb
b ≤ πm π−ssb

b ≤ π−bbs
b π−bbs

b ≤ πm

AS 1 AS 2 AS 1 AS 2 AS 1 AS 2

π−bbs
b ≤ πm πm ≤ π−ssb

b πm ≤ π−bbs
b

πm ≤ π−ssb
b π−ssb

b ≤ π−bbs
b π−bbs

b ≤ π−ssb
b

π−bbs
b ≤ π−ssb

b πm ≤ π−bbs
b πm ≤ π−ssb

b

It is not possible to find a PO, since for every permutation we have either the agent line-up
(π−ssb

b , πm), (π
−bbs
b , π−ssb

b) or (πm, π
−bbs
b). In the three cases, the agent in agent slot 1 obtains a

slightly better expected average reward than the agent in agent slot 2. So:

PG1,2(π
−ssb
b , π−bbs

b , πm,Πo, wL̇, µ) =
1

1
0 = 0

And finally, we calculate the PG value generalising for every pair of agent slots:

B.5. Partial Grading 176

PG(Πe, wΠe ,Πo, wL̇, µ, wS) = ηΠ3

∑
π1,π2,π3∈Πe|π1 ̸=π2 ̸=π3

wΠe(π1)wΠe(π2)wΠe(π3)ηS2
1

N(µ)∑
i=1

wS(i, µ)×

×

 i−1∑
j=1

wS(j, µ)PGi,j(π1, π2, π3,Πo, wL̇, µ) +

N(µ)∑
j=i+1

wS(j, µ)PGi,j(π1, π2, π3,Πo, wL̇, µ)

 =

= 6
9

2

1

3

1

3

1

3
ηS2

1

N(µ)∑
i=1

wS(i, µ)

 i−1∑
j=1

wS(j, µ)0 +

N(µ)∑
j=i+1

wS(j, µ)0

 = 0

Note that we avoided to calculate all the permutations of π1, π2, π3 for PGi,j(π1, π2, π3,Πo, wL̇, µ),
since they provide the same result, by calculating only one permutation and multiplying the
result by 6 (the number of permutations).

Since 0 is the lowest possible value for the partial grading property, therefore prisoner’s
dilemma has Generalmin = 0 for this property.

Proposition 41. Generalmax for the partial grading (PG) property is equal to 1 for the pris-
oner’s dilemma environment.

Proof. To find Generalmax (equation 8.2), we need to find a pair ⟨Πe,Πo⟩ that maximises the
property value as much as possible. We can have this situation by selecting Πe = {πb1, πb2, πb3}
and Πo = ∅ (a πb agent always performs Betray).

Following definition 31 we obtain the PG value for this ⟨Πe,Πo⟩. Since the multi-agent
environment is team symmetric, we just need to calculate this property value for one pair of
agent slots and generalise it to all pairs of agent slots. Also, since |Πe| = 3 we just need to
calculate this property value for one trio of evaluated agents. Following definition 29 (for PG)
we calculate the PG value for the evaluated agents πb1, πb2, πb3 ∈ Πe and the pair of agent slots
1 and 2:

PG1,2(πb1, πb2, πb3,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−1,2 (Πo)

wL̇(l̇)PO1,2(πb1, πb2, πb3, l̇, µ) =

=
1

1
PO1,2(πb1, πb2, πb3, (∗, ∗), µ)

The following table shows us PO1,2 for all the permutations of πb1, πb2, πb3.

AS 1 AS 2 AS 1 AS 2 AS 1 AS 2
πb1 ≤ πb2 πb1 ≤ πb3 πb2 ≤ πb1

πb2 ≤ πb3 πb3 ≤ πb2 πb1 ≤ πb3

πb1 ≤ πb3 πb1 ≤ πb2 πb2 ≤ πb3

AS 1 AS 2 AS 1 AS 2 AS 1 AS 2
πb2 ≤ πb3 πb3 ≤ πb1 πb3 ≤ πb2

πb3 ≤ πb1 πb1 ≤ πb2 πb2 ≤ πb1

πb2 ≤ πb1 πb3 ≤ πb2 πb3 ≤ πb1

It is possible to find a PO for every permutation, since both agents obtain the same expected
average reward (−1

3
). So:

B.5. Partial Grading 177

PG1,2(πb1, πb2, πb3,Πo, wL̇, µ) =
1

1
1 = 1

And finally, we calculate the PG value generalising for every pair of agent slots:

PG(Πe, wΠe ,Πo, wL̇, µ, wS) = ηΠ3

∑
π1,π2,π3∈Πe|π1 ̸=π2 ̸=π3

wΠe(π1)wΠe(π2)wΠe(π3)ηS2
1

N(µ)∑
i=1

wS(i, µ)×

×

 i−1∑
j=1

wS(j, µ)PGi,j(π1, π2, π3,Πo, wL̇, µ) +

N(µ)∑
j=i+1

wS(j, µ)PGi,j(π1, π2, π3,Πo, wL̇, µ)

 =

= 6
9

2

1

3

1

3

1

3
ηS2

1

N(µ)∑
i=1

wS(i, µ)

 i−1∑
j=1

wS(j, µ)1 +

N(µ)∑
j=i+1

wS(j, µ)1

 = 1

Note that we avoided to calculate all the permutations of π1, π2, π3 for PGi,j(π1, π2, π3,Πo, wL̇, µ),
since they provide the same result, by calculating only one permutation and multiplying the
result by 6 (the number of permutations).

Since 1 is the highest possible value for the partial grading property, therefore prisoner’s
dilemma has Generalmax = 1 for this property.

Proposition 42. Leftmax for the partial grading (PG) property is equal to 1 for the prisoner’s
dilemma environment.

Proof. To find Leftmax (equation 8.4), we need to find a Πe that maximises the property value
as much as possible while Πo minimises it. Using Πe = {πb1, πb2, πb3} (a πb agent always
performs Betray) we find this situation no matter which Πo we use.

Following definition 31 we obtain the PG value for this ⟨Πe,Πo⟩ (where Πo is instantiated
with any permitted value). Since the multi-agent environment is team symmetric, we just need
to calculate this property value for one pair of agent slots and generalise it to all pairs of agent
slots. Also, since |Πe| = 3 we just need to calculate this property value for one trio of evaluated
agents. Following definition 29 (for PG) we calculate the PG value for the evaluated agents
πb1, πb2, πb3 ∈ Πe and each pair of agent slots. We start with agent slots 1 and 2:

PG1,2(πb1, πb2, πb3,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−1,2 (Πo)

wL̇(l̇)PO1,2(πb1, πb2, πb3, l̇, µ) =

=
1

1
PO1,2(πb1, πb2, πb3, (∗, ∗), µ)

Note that the choice of Πo does not affect the result of PG1,2.
The following table shows us PO1,2 for all the permutations of πb1, πb2, πb3.

AS 1 AS 2 AS 1 AS 2 AS 1 AS 2
πb1 ≤ πb2 πb1 ≤ πb3 πb2 ≤ πb1

πb2 ≤ πb3 πb3 ≤ πb2 πb1 ≤ πb3

πb1 ≤ πb3 πb1 ≤ πb2 πb2 ≤ πb3

AS 1 AS 2 AS 1 AS 2 AS 1 AS 2
πb2 ≤ πb3 πb3 ≤ πb1 πb3 ≤ πb2

πb3 ≤ πb1 πb1 ≤ πb2 πb2 ≤ πb1

πb2 ≤ πb1 πb3 ≤ πb2 πb3 ≤ πb1

B.5. Partial Grading 178

It is possible to find a PO for every permutation, since both agents obtain the same expected
average reward (−1

3
). So:

PG1,2(πb1, πb2, πb3,Πo, wL̇, µ) =
1

1
1 = 1

And finally, we calculate the PG value generalising for every pair of agent slots:

PG(Πe, wΠe ,Πo, wL̇, µ, wS) = ηΠ3

∑
π1,π2,π3∈Πe|π1 ̸=π2 ̸=π3

wΠe(π1)wΠe(π2)wΠe(π3)ηS2
1

N(µ)∑
i=1

wS(i, µ)×

×

 i−1∑
j=1

wS(j, µ)PGi,j(π1, π2, π3,Πo, wL̇, µ) +

N(µ)∑
j=i+1

wS(j, µ)PGi,j(π1, π2, π3,Πo, wL̇, µ)

 =

= 6
9

2

1

3

1

3

1

3
ηS2

1

N(µ)∑
i=1

wS(i, µ)

 i−1∑
j=1

wS(j, µ)1 +

N(µ)∑
j=i+1

wS(j, µ)1

 = 1

So, for every Πo we obtain the same result:

∀Πo : PG(Πe, wΠe ,Πo, wL̇, µ, wS) = 1

Therefore, prisoner’s dilemma has Leftmax = 1 for this property.

Proposition 43. Rightmin for the partial grading (PG) property is equal to 0 for the prisoner’s
dilemma environment.

Proof. To find Rightmin (equation 8.5), we need to find a Πe that minimises the property value
as much as possible while Πo maximises it. Using Πe = {π−ssb

b , π−bbs
b , πm} and Πo = ∅ (a πm

agent first acts randomly and from time step 2 always mimics the other agent’s last action, a
π−ssb
b agent always performs Betray except for the last three actions where it performs Silent

twice and finalises performing Betray, and a π−bbs
b agent always performs Betray except for the

last three actions where it performs Betray twice and finalises performing Silent) we find this
situation no matter which Πo we use.

Following definition 31 we obtain the PG value for this ⟨Πe,Πo⟩ (where Πo is instantiated
with any permitted value). Since the multi-agent environment is team symmetric, we just need
to calculate this property value for one pair of agent slots and generalise it to all pairs of agent
slots. Also, since |Πe| = 3 we just need to calculate this property value for one trio of evaluated
agents. Following definition 29 (for PG) we calculate the PG value for the evaluated agents
π−ssb
b , π−bbs

b , πm ∈ Πe and the pair of agent slots 1 and 2:

PG1,2(π
−ssb
b , π−bbs

b , πm,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−1,2 (Πo)

wL̇(l̇)PO1,2(π
−ssb
b , π−bbs

b , πm, l̇, µ) =

=
1

1
PO1,2(π

−ssb
b , π−bbs

b , πm, (∗, ∗), µ)

Note that the choice of Πo does not affect the result of PG1,2.
The following table shows us PO1,2 for all the permutations of π−ssb

b , π−bbs
b , πm.

B.6. Slot Result Dependency 179

AS 1 AS 2 AS 1 AS 2 AS 1 AS 2

π−ssb
b ≤ π−bbs

b π−ssb
b ≤ πm π−bbs

b ≤ π−ssb
b

π−bbs
b ≤ πm πm ≤ π−bbs

b π−ssb
b ≤ πm

π−ssb
b ≤ πm π−ssb

b ≤ π−bbs
b π−bbs

b ≤ πm

AS 1 AS 2 AS 1 AS 2 AS 1 AS 2

π−bbs
b ≤ πm πm ≤ π−ssb

b πm ≤ π−bbs
b

πm ≤ π−ssb
b π−ssb

b ≤ π−bbs
b π−bbs

b ≤ π−ssb
b

π−bbs
b ≤ π−ssb

b πm ≤ π−bbs
b πm ≤ π−ssb

b

It is not possible to find a PO, since for every permutation we have either the agent line-up
(π−ssb

b , πm), (π
−bbs
b , π−ssb

b) or (πm, π
−bbs
b). In the three cases, the agent in agent slot 1 obtains a

slightly better expected average reward than the agent in agent slot 2. So:

PG1,2(π
−ssb
b , π−bbs

b , πm,Πo, wL̇, µ) =
1

1
0 = 0

And finally, we calculate the PG value generalising for every pair of agent slots:

PG(Πe, wΠe ,Πo, wL̇, µ, wS) = ηΠ3

∑
π1,π2,π3∈Πe|π1 ̸=π2 ̸=π3

wΠe(π1)wΠe(π2)wΠe(π3)ηS2
1

N(µ)∑
i=1

wS(i, µ)×

×

 i−1∑
j=1

wS(j, µ)PGi,j(π1, π2, π3,Πo, wL̇, µ) +

N(µ)∑
j=i+1

wS(j, µ)PGi,j(π1, π2, π3,Πo, wL̇, µ)

 =

= 6
9

2

1

3

1

3

1

3
ηS2

1

N(µ)∑
i=1

wS(i, µ)

 i−1∑
j=1

wS(j, µ)0 +

N(µ)∑
j=i+1

wS(j, µ)0

 = 0

Note that we avoided to calculate all the permutations of π1, π2, π3 for PGi,j(π1, π2, π3,Πo, wL̇, µ),
since they provide the same result, by calculating only one permutation and multiplying the
result by 6 (the number of permutations).

So, for every Πo we obtain the same result:

∀Πo : PG(Πe, wΠe ,Πo, wL̇, µ, wS) = 0

Therefore, prisoner’s dilemma has Rightmin = 0 for this property.

B.6 Slot Result Dependency

Next we see the slot result dependency (SRD) property. As given in section 7.3.2, we want to
know how much competitive or cooperative the multi-agent environment is. We use an average
of rewards as the utility function to calculate an agent’s result.

Proposition 44. Generalmin for the slot result dependency (SRD) property is equal to −1 for
the prisoner’s dilemma environment.

Proof. To find Generalmin (equation 8.1), we need to find a pair ⟨Πe,Πo⟩ that minimises the
property value as much as possible. We can have this situation by selecting Πe = {πb} and
Πo = {πs} (a πs agent always performs Silent and a πb agent always performs Betray).

B.6. Slot Result Dependency 180

Following definition 21 we obtain the SRD value for this ⟨Πe,Πo⟩. Since the multi-agent
environment is team symmetric, we just need to calculate this property value for one pair of
agent slots and generalise it to all pairs of agent slots. Also, since |Πe| = 1 we just need to
calculate this property value for one evaluated agent. Following definition 20 we calculate the
SRD value for the evaluated agent πb ∈ Πe and the pair of agent slots 1 and 2:

SRD1,2(πb,Πo, wL̇, µ) = corr
l̇∈L̇N(µ)

−1 (Πo)
[wL̇(l̇)](R1(µ[l̇

1← πb]), R2(µ[l̇
1← πb])) =

= corr(R1(µ[πb, πs]), R2(µ[πb, πs]))

The agent in agent slot 1 (πb) obtains the expected average reward of 1, while the agent
in agent slot 2 (πs) obtains the expected average reward of −1. Since we use a correlation
function between expected average rewards, and the agents in agent slots 1 and 2 obtain
opposite expected average rewards, then the correlation function obtains the value of −1. So:

SRD1,2(πb,Πo, wL̇, µ) = −1

And finally, we calculate the SRD value generalising for every pair of agent slots:

SRD(Πe, wΠe ,Πo, wL̇, µ, wS) =
∑
π∈Πe

wΠe(π)ηS2
1

N(µ)∑
i=1

wS(i, µ)×

×

 i−1∑
j=1

wS(j, µ)SRDi,j(π,Πo, wL̇, µ) +

N(µ)∑
j=i+1

wS(j, µ)SRDi,j(π,Πo, wL̇, µ)

 =

=
1

1
ηS2

1

N(µ)∑
i=1

wS(i, µ)

 i−1∑
j=1

wS(j, µ) (−1) +
N(µ)∑
j=i+1

wS(j, µ) (−1)

 = −1

Since −1 is the lowest possible value for the slot result dependency property, therefore
prisoner’s dilemma has Generalmin = −1 for this property.

Proposition 45. Generalmax for the slot result dependency (SRD) property is equal to 1 for
the prisoner’s dilemma environment.

Proof. To find Generalmax (equation 8.2), we need to find a pair ⟨Πe,Πo⟩ that maximises the
property value as much as possible. We can have this situation by selecting Πe = {πb} and
Πo = {πb} (a πb agent always performs Betray).

Following definition 21 we obtain the SRD value for this ⟨Πe,Πo⟩. Since the multi-agent
environment is team symmetric, we just need to calculate this property value for one pair of
agent slots and generalise it to all pairs of agent slots. Also, since |Πe| = 1 we just need to
calculate this property value for one evaluated agent. Following definition 20 we calculate the
SRD value for the evaluated agent πb ∈ Πe and the pair of agent slots 1 and 2:

SRD1,2(πb,Πo, wL̇, µ) = corr
l̇∈L̇N(µ)

−1 (Πo)
[wL̇(l̇)](R1(µ[l̇

1← πb]), R2(µ[l̇
1← πb])) =

= corr(R1(µ[πb, πb]), R2(µ[πb, πb]))

The agents in agent slot 1 (πb) and agent slot 2 (πb) obtain the same expected average
reward (−1

3
). Since we use a correlation function between the expected average rewards, and

B.7. Competitive Anticipation 181

the agents in agent slots 1 and 2 obtain the same expected average reward, then the correlation
function obtains the value of 1. So:

SRD1,2(πb,Πo, wL̇, µ) = 1

And finally, we calculate the SRD value generalising for every pair of agent slots:

SRD(Πe, wΠe ,Πo, wL̇, µ, wS) =
∑
π∈Πe

wΠe(π)ηS2
1

N(µ)∑
i=1

wS(i, µ)×

×

 i−1∑
j=1

wS(j, µ)SRDi,j(π,Πo, wL̇, µ) +

N(µ)∑
j=i+1

wS(j, µ)SRDi,j(π,Πo, wL̇, µ)

 =

=
1

1
ηS2

1

N(µ)∑
i=1

wS(i, µ)

 i−1∑
j=1

wS(j, µ)1 +

N(µ)∑
j=i+1

wS(j, µ)1

 = 1

Since 1 is the highest possible value for the slot result dependency property, therefore
prisoner’s dilemma has Generalmax = 1 for this property.

B.7 Competitive Anticipation

Finally, we follow with the competitive anticipation (AComp) property. As given in sec-
tion 7.4.1, we want to know how much benefit the evaluated agents obtain when they anticipate
competing agents. We use an average of rewards as the utility function to calculate an agent’s
result.

Proposition 46. Generalmin for the competitive anticipation (AComp) property is equal to
−2

3
for the prisoner’s dilemma environment.

Proof. To find Generalmin (equation 8.1), we need to find a pair ⟨Πe,Πo⟩ that minimises the
property value as much as possible. We can have this situation by selecting Πe = {πs/b} and
Πo = {πb} (a πb agent always performs Betray and a πs/b agent performs Silent until the other
agent also performs Silent, then it starts to perform Betray).

Following definition 23 we obtain the AComp value for this ⟨Πe,Πo⟩. Since the multi-agent
environment is team symmetric, we just need to calculate this property value for one pair of
agent slots in different teams and generalise it to all pairs of agent slots in different teams. Also,
since |Πe| = 1 we just need to calculate this property value for one evaluated agent. Following
definition 22 we calculate the Ant value for the evaluated agent πs/b ∈ Πe and the pair of agent
slots 1 and 2:

Ant1,2(πs/b,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−1,2 (Πo)

∑
π∈Πo

wL̇(l̇
2← π)×

× 1

2

(
R1(µ[l̇

1,2← πs/b, π])−R1(µ[l̇
1,2← πs/b, πr])

)
=

=
1

1

1

2

(
R1(µ[πs/b, πb])−R1(µ[πs/b, πr])

)

B.7. Competitive Anticipation 182

In agent line-up (πs/b, πb), the agent in agent slot 1 (πs/b) obtains the expected average
reward of −1, while in agent line-up (πs/b, πr), the agent in agent slot 1 (πs/b) starts performing
Silent and then it continues performing Betray once πr performs Silent, and the agent in agent
slot 2 (πr) always acts randomly, obtaining the agent in agent slot 1 (πs/b) the expected average
reward of 1

3
(in the limit). So:

Ant1,2(πs/b,Πo, wL̇, µ) =
1

1

1

2

[
(−1)− 1

3

]
= −2

3

And finally, we calculate the AComp value generalising for every pair of agent slots in
different teams:

AComp(Πe, wΠe ,Πo, wL̇, µ, wS) =
∑
π∈Πe

wΠe(π)ηS2
2

∑
t1,t2∈τ |t1 ̸=t2

∑
i∈t1

wS(i, µ)
∑
j∈t2

wS(j, µ)×

× Anti,j(π,Πo, wL̇, µ) =

=
1

1
ηS2

2

∑
t1,t2∈τ |t1 ̸=t2

∑
i∈t1

wS(i, µ)
∑
j∈t2

wS(j, µ)

(
−2

3

)
= −2

3

Since −2
3
is the lowest possible value that we can obtain for the competitive anticipation

property, therefore prisoner’s dilemma has Generalmin = −2
3
for this property.

Proposition 47. Generalmax for the competitive anticipation (AComp) property is equal to
2
3
for the prisoner’s dilemma environment.

Proof. To find Generalmax (equation 8.2), we need to find a pair ⟨Πe,Πo⟩ that maximises the
property value as much as possible. We can have this situation by selecting Πe = {πb/s} and
Πo = {πs} (a πs agent always performs Silent and a πb/s agent performs Betray until the other
agent also performs Betray, then it starts to perform Silent).

Following definition 23 we obtain the AComp value for this ⟨Πe,Πo⟩. Since the multi-agent
environment is team symmetric, we just need to calculate this property value for one pair of
agent slots in different teams and generalise it to all pairs of agent slots in different teams. Also,
since |Πe| = 1 we just need to calculate this property value for one evaluated agent. Following
definition 22 we calculate the Ant value for the evaluated agent πb/s ∈ Πe and the pair of agent
slots 1 and 2:

Ant1,2(πb/s,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−1,2 (Πo)

∑
π∈Πo

wL̇(l̇
2← π)×

× 1

2

(
R1(µ[l̇

1,2← πb/s, π])−R1(µ[l̇
1,2← πb/s, πr])

)
=

=
1

1

1

2

(
R1(µ[πb/s, πs])−R1(µ[πb/s, πr])

)
In agent line-up (πb/s, πs), the agent in agent slot 1 (πb/s) obtains the expected average

reward of 1, while in agent line-up (πb/s, πr), the agent in agent slot 1 (πb/s) starts performing
Betray and then it continues performing Silent once πr performs Betray, and the agent in agent
slot 2 (πr) always acts randomly, obtaining the agent in agent slot 1 (πb/s) the expected average
reward of −1

3
(in the limit). So:

B.7. Competitive Anticipation 183

Ant1,2(πb/s,Πo, wL̇, µ) =
1

1

1

2

[
1−

(
−1

3

)]
=

2

3

And finally, we calculate the AComp value generalising for every pair of agent slots in
different teams:

AComp(Πe, wΠe ,Πo, wL̇, µ, wS) =
∑
π∈Πe

wΠe(π)ηS2
2

∑
t1,t2∈τ |t1 ̸=t2

∑
i∈t1

wS(i, µ)
∑
j∈t2

wS(j, µ)×

× Anti,j(π,Πo, wL̇, µ) =

=
1

1
ηS2

2

∑
t1,t2∈τ |t1 ̸=t2

∑
i∈t1

wS(i, µ)
∑
j∈t2

wS(j, µ)
2

3
=

2

3

Since 2
3
is the highest possible value that we can obtain for the competitive anticipation

property, therefore prisoner’s dilemma has Generalmax = 2
3
for this property.

Appendix C

Predator-Prey Properties

In this section we prove how we obtained the values for the properties for the predator-prey
environment (section 2.1.3). We use uniform unit weights for wΠe , wL̇ and wS. To calculate
some of the values for the properties, we make use of lemma 3.

Lemma 3. When three perfectly coordinated predators are trying to chase the prey, it is always
chased in 5 time steps or less no matter the behaviour of the prey.

Since there exists a lot of variants to chase the prey, we cannot show them all. Instead, here
we show one of the largest sequences of actions to chase the prey in 5 time steps when the prey
is trying to escape and the predators are well coordinated.

♦ ⃝

⃝ ⃝

⃝
♦
⃝ ⃝

⃝
⃝♦

⃝

⃝
♦⃝
⃝

♦
⃝⃝
⃝

⊗
⃝

⃝

Figure C.1: One of the largest sequences of actions to chase the prey in 5 time steps with three
well coordinated predators.

⊗
represents a chased prey.

Other behaviours of the prey will lead it closer to the boundaries, where the predators would
chase it more easily.

C.1 Action Dependency

We start with the action dependency (AD) property. As given in section 7.2.1, we want to
know if the evaluated agents behave differently depending on which agent line-up they interact
with. We use ∆A+(a, b) = 0 if distributions a and b are equal and 1 otherwise.

Proposition 48. Generalmin for the action dependency (AD) property is equal to 0 for the
predator-prey environment.

184

C.1. Action Dependency 185

Proof. To find Generalmin (equation 8.1), we need to find a pair ⟨Πe,Πo⟩ that minimises the
property value as much as possible. We can have this situation by selecting Πe = {πu} and
Πo = {πd1, πd2} (a πd agent always performs Down and a πu agent always performs Up).

Following definition 17 we obtain the AD value for this ⟨Πe,Πo⟩. Since the multi-agent
environment is not team symmetric, we need to calculate this property value for every agent
slot. Also, since |Πe| = 1 we just need to calculate this property value for one evaluated agent.
Following definition 16 we calculate the AD value for the evaluated agent πu ∈ Πe and each
agent slot. We start with agent slot 1:

AD1(πu,Πo, wL̇, µ) = ηL̇2

∑
u̇,v̇∈L̇N(µ)

−1 (Πo)|u̸̇=v̇

wL̇(u̇)wL̇(v̇)∆A+(Ă1(µ[u̇
1← πu]), Ă1(µ[v̇

1← πu])) =

= 2
8

7

1

8

1

8
{∆A+(Ă1(µ[πu, πd1, πd1, πd1]), Ă1(µ[πu, πd1, πd1, πd2]))+

+ ∆A+(Ă1(µ[πu, πd1, πd1, πd1]), Ă1(µ[πu, πd1, πd2, πd1]))+

...

+ ∆A+(Ă1(µ[πu, πd2, πd2, πd1]), Ă1(µ[πu, πd2, πd2, πd2]))}

Note that we avoided to calculate both ∆A+(a, b) and ∆A+(b, a), since they provide the same
result, by calculating only ∆A+(a, b) and multiplying the result by 2.

We have 28 possible pairs of agent line-ups, where the agent in both agent slots 1 (πu)
performs the same sequence of actions (always Up) independently of the agent line-up. So:

AD1(πu,Πo, wL̇, µ) = 2
8

7

1

8

1

8
{28× 0} = 0

For agent slot 2, the agent in both agent slots 2 (πu) also performs the same sequence of
actions (always Up) independently of the agent line-up. So:

AD2(πu,Πo, wL̇, µ) = ηL̇2

∑
u̇,v̇∈L̇N(µ)

−2 (Πo)|u̸̇=v̇

wL̇(u̇)wL̇(v̇)∆A+(Ă2(µ[u̇
2← πu]), Ă2(µ[v̇

2← πu])) =

= 2
8

7

1

8

1

8
{∆A+(Ă2(µ[πd1, πu, πd1, πd1]), Ă2(µ[πd1, πu, πd1, πd2]))+

+ ∆A+(Ă2(µ[πd1, πu, πd1, πd1]), Ă2(µ[πd1, πu, πd2, πd1]))+

...

+ ∆A+(Ă2(µ[πd2, πu, πd2, πd1]), Ă2(µ[πd2, πu, πd2, πd2]))} =

= 2
8

7

1

8

1

8
{28× 0} = 0

For agent slot 3, the agent in both agent slots 3 (πu) also performs the same sequence of
actions (always Up) independently of the agent line-up. So:

C.1. Action Dependency 186

AD3(πu,Πo, wL̇, µ) = ηL̇2

∑
u̇,v̇∈L̇N(µ)

−3 (Πo)|u̸̇=v̇

wL̇(u̇)wL̇(v̇)∆A+(Ă3(µ[u̇
3← πu]), Ă3(µ[v̇

3← πu])) =

= 2
8

7

1

8

1

8
{∆A+(Ă3(µ[πd1, πd1, πu, πd1]), Ă3(µ[πd1, πd1, πu, πd2]))+

+ ∆A+(Ă3(µ[πd1, πd1, πu, πd1]), Ă3(µ[πd1, πd2, πu, πd1]))+

...

+ ∆A+(Ă3(µ[πd2, πd2, πu, πd1]), Ă3(µ[πd2, πd2, πu, πd2]))} =

= 2
8

7

1

8

1

8
{28× 0} = 0

And for agent slot 4, the agent in both agent slots 4 (πu) also performs the same sequence
of actions (always Up) independently of the agent line-up. So:

AD4(πu,Πo, wL̇, µ) = ηL̇2

∑
u̇,v̇∈L̇N(µ)

−4 (Πo)|u̸̇=v̇

wL̇(u̇)wL̇(v̇)∆A+(Ă4(µ[u̇
4← πu]), Ă4(µ[v̇

4← πu])) =

= 2
8

7

1

8

1

8
{∆A+(Ă4(µ[πd1, πd1, πd1, πu]), Ă4(µ[πd1, πd1, πd2, πu]))+

+ ∆A+(Ă4(µ[πd1, πd1, πd1, πu]), Ă4(µ[πd1, πd2, πd1, πu]))+

...

+ ∆A+(Ă4(µ[πd2, πd2, πd1, πu]), Ă4(µ[πd2, πd2, πd2, πu]))} =

= 2
8

7

1

8

1

8
{28× 0} = 0

And finally, we calculate the AD value:

AD(Πe, wΠe ,Πo, wL̇, µ, wS) =
∑
π∈Πe

wΠe(π)

N(µ)∑
i=1

wS(i, µ)ADi(π,Πo, wL̇, µ) =

=
1

1

1

4
{AD1(πu,Πo, wL̇, µ) + AD2(πu,Πo, wL̇, µ)+

+ AD3(πu,Πo, wL̇, µ) + AD4(πu,Πo, wL̇, µ)} =

=
1

1

1

4
{0 + 0 + 0 + 0} = 0

Since 0 is the lowest possible value for the action dependency property, therefore predator-
prey has Generalmin = 0 for this property.

Proposition 49. Generalmax for the action dependency (AD) property is equal to 1 for the
predator-prey environment.

Proof. To find Generalmax (equation 8.2), we need to find a pair ⟨Πe,Πo⟩ that maximises the
property value as much as possible. We can have this situation by selecting Πe = {πm} and
Πo = {πu, πd} (a πm agent first acts randomly and from time step 2 always mimics sequentially

C.1. Action Dependency 187

the other agents’ last action, a πu agent always performs Up and a πd agent always performs
Down).

Following definition 17 we obtain the AD value for this ⟨Πe,Πo⟩. Since the multi-agent
environment is not team symmetric, we need to calculate this property value for every agent
slot. Also, since |Πe| = 1 we just need to calculate this property value for one evaluated agent.
Following definition 16 we calculate the AD value for the evaluated agent πm ∈ Πe and each
agent slot. We start with agent slot 1:

AD1(πm,Πo, wL̇, µ) = ηL̇2

∑
u̇,v̇∈L̇N(µ)

−1 (Πo)|u̸̇=v̇

wL̇(u̇)wL̇(v̇)∆A+(Ă1(µ[u̇
1← πm]), Ă1(µ[v̇

1← πm])) =

= 2
8

7

1

8

1

8
{∆A+(Ă1(µ[πm, πu, πu, πu]), Ă1(µ[πm, πu, πu, πd]))+

+ ∆A+(Ă1(µ[πm, πu, πu, πu]), Ă1(µ[πm, πu, πd, πu]))+

...

+ ∆A+(Ă1(µ[πm, πd, πd, πu]), Ă1(µ[πm, πd, πd, πd]))}

Note that we avoided to calculate both ∆A+(a, b) and ∆A+(b, a), since they provide the same
result, by calculating only ∆A+(a, b) and multiplying the result by 2.

We have 28 possible pairs of agent line-ups, where the agent in both agent slots 1 (πm)
performs different sequences of actions depending on the agent line-up. So:

AD1(πm,Πo, wL̇, µ) = 2
8

7

1

8

1

8
{28× 1} = 1

For slot 2, the agent in both agent slots 2 (πm) also performs different sequences of actions
depending on the agent line-up. So:

AD2(πm,Πo, wL̇, µ) = ηL̇2

∑
u̇,v̇∈L̇N(µ)

−2 (Πo)|u̸̇=v̇

wL̇(u̇)wL̇(v̇)∆A+(Ă2(µ[u̇
2← πm]), Ă2(µ[v̇

2← πm])) =

= 2
8

7

1

8

1

8
{∆A+(Ă2(µ[πu, πm, πu, πu]), Ă2(µ[πu, πm, πu, πd]))+

+ ∆A+(Ă2(µ[πu, πm, πu, πu]), Ă2(µ[πu, πm, πd, πu]))+

...

+ ∆A+(Ă2(µ[πd, πm, πd, πu]), Ă2(µ[πd, πm, πd, πd]))} =

= 2
8

7

1

8

1

8
{28× 1} = 1

For slot 3, the agent in both agent slots 3 (πm) also performs different sequences of actions
depending on the agent line-up. So:

C.1. Action Dependency 188

AD3(πm,Πo, wL̇, µ) = ηL̇2

∑
u̇,v̇∈L̇N(µ)

−3 (Πo)|u̸̇=v̇

wL̇(u̇)wL̇(v̇)∆A+(Ă3(µ[u̇
3← πm]), Ă3(µ[v̇

3← πm])) =

= 2
8

7

1

8

1

8
{∆A+(Ă3(µ[πu, πu, πm, πu]), Ă3(µ[πu, πu, πm, πd]))+

+ ∆A+(Ă3(µ[πu, πu, πm, πu]), Ă3(µ[πu, πd, πm, πu]))+

...

+ ∆A+(Ă3(µ[πd, πd, πm, πu]), Ă3(µ[πd, πd, πm, πd]))} =

= 2
8

7

1

8

1

8
{28× 1} = 1

And for slot 4, the agent in both agent slots 4 (πm) also performs different sequences of
actions depending on the agent line-up. So:

AD4(πm,Πo, wL̇, µ) = ηL̇2

∑
u̇,v̇∈L̇N(µ)

−4 (Πo)|u̸̇=v̇

wL̇(u̇)wL̇(v̇)∆A+(Ă4(µ[u̇
4← πm]), Ă4(µ[v̇

4← πm])) =

= 2
8

7

1

8

1

8
{∆A+(Ă4(µ[πu, πu, πu, πm]), Ă4(µ[πu, πu, πd, πm]))+

+ ∆A+(Ă4(µ[πu, πu, πu, πm]), Ă4(µ[πu, πd, πu, πm]))+

...

+ ∆A+(Ă4(µ[πd, πd, πu, πm]), Ă4(µ[πd, πd, πd, πm]))} =

= 2
8

7

1

8

1

8
{28× 1} = 1

And finally, we calculate the AD value:

AD(Πe, wΠe ,Πo, wL̇, µ, wS) =
∑
π∈Πe

wΠe(π)

N(µ)∑
i=1

wS(i, µ)ADi(π,Πo, wL̇, µ) =

=
1

1

1

4
{AD1(πm,Πo, wL̇, µ) + AD2(πm,Πo, wL̇, µ)+

+ AD3(πm,Πo, wL̇, µ) + AD4(πm,Πo, wL̇, µ)} =

=
1

1

1

4
{1 + 1 + 1 + 1} = 1

Since 1 is the highest possible value for the action dependency property, therefore predator-
prey has Generalmax = 1 for this property.

Proposition 50. Leftmax for the action dependency (AD) property is equal to 0 for the
predator-prey environment.

Proof. To find Leftmax (equation 8.4), we need to find a Πe that maximises the property value
as much as possible while Πo minimises it. Using Πo = {πd1, πd2} (a πd agent always performs
Down) we find this situation no matter which Πe we use.

C.1. Action Dependency 189

Following definition 17 we obtain the AD value for this ⟨Πe,Πo⟩ (where Πe is instantiated
with any permitted value). Since the multi-agent environment is not team symmetric, we need
to calculate this property value for every agent slot. Also, we do not know which Πe we have,
so we use a figurative evaluated agent π from Πe. Following definition 16 we calculate the AD
value for this figurative evaluated agent π ∈ Πe and each agent slot. We start with agent slot
1:

AD1(π,Πo, wL̇, µ) = ηL̇2

∑
u̇,v̇∈L̇N(µ)

−1 (Πo)|u̸̇=v̇

wL̇(u̇)wL̇(v̇)∆A+(Ă1(µ[u̇
1← π]), Ă1(µ[v̇

1← π])) =

= 2
8

7

1

8

1

8
{∆A+(Ă1(µ[π, πd1, πd1, πd1]), Ă1(µ[π, πd1, πd1, πd2]))+

+ ∆A+(Ă1(µ[π, πd1, πd1, πd1]), Ă1(µ[π, πd1, πd2, πd1]))+

...

+ ∆A+(Ă1(µ[π, πd2, πd2, πd1]), Ă1(µ[π, πd2, πd2, πd2]))}

Note that we avoided to calculate both ∆A+(a, b) and ∆A+(b, a), since they provide the same
result, by calculating only ∆A+(a, b) and multiplying the result by 2.

We have 28 possible pairs of agent line-ups, where the agent in both agent slots 1 (any
π) is not able to differentiate with which agents is interacting, so it is not able to change its
distribution of action sequences depending on the agent line-up. So, for any π we obtain the
same result:

AD1(π,Πo, wL̇, µ) = 2
8

7

1

8

1

8
{28× 0} = 0

For agent slot 2, the agent in both agent slots 2 (any π) is also not able to change its
distribution of action sequences depending on the agent line-up. So again, for any π we obtain
the same result:

AD2(π,Πo, wL̇, µ) = ηL̇2

∑
u̇,v̇∈L̇N(µ)

−2 (Πo)|u̸̇=v̇

wL̇(u̇)wL̇(v̇)∆A+(Ă2(µ[u̇
2← π]), Ă2(µ[v̇

2← π])) =

= 2
8

7

1

8

1

8
{∆A+(Ă2(µ[πd1, π, πd1, πd1]), Ă2(µ[πd1, π, πd1, πd2]))+

+ ∆A+(Ă2(µ[πd1, π, πd1, πd1]), Ă2(µ[πd1, π, πd2, πd1]))+

...

+ ∆A+(Ă2(µ[πd2, π, πd2, πd1]), Ă2(µ[πd2, π, πd2, πd2]))} =

= 2
8

7

1

8

1

8
{28× 0} = 0

For agent slot 3, the agent in both agent slots 3 (any π) is also not able to change its
distribution of action sequences depending on the agent line-up. So again, for any π we obtain
the same result:

C.1. Action Dependency 190

AD3(π,Πo, wL̇, µ) = ηL̇2

∑
u̇,v̇∈L̇N(µ)

−3 (Πo)|u̸̇=v̇

wL̇(u̇)wL̇(v̇)∆A+(Ă3(µ[u̇
3← π]), Ă3(µ[v̇

3← π])) =

= 2
8

7

1

8

1

8
{∆A+(Ă3(µ[πd1, πd1, π, πd1]), Ă3(µ[πd1, πd1, π, πd2]))+

+ ∆A+(Ă3(µ[πd1, πd1, π, πd1]), Ă3(µ[πd1, πd2, π, πd1]))+

...

+ ∆A+(Ă3(µ[πd2, πd2, π, πd1]), Ă3(µ[πd2, πd2, π, πd2]))} =

= 2
8

7

1

8

1

8
{28× 0} = 0

And for agent slot 4, the agent in both agent slots 4 (any π) is also not able to change its
distribution of action sequences depending on the agent line-up. So again, for any π we obtain
the same result:

AD4(π,Πo, wL̇, µ) = ηL̇2

∑
u̇,v̇∈L̇N(µ)

−4 (Πo)|u̸̇=v̇

wL̇(u̇)wL̇(v̇)∆A+(Ă4(µ[u̇
4← π]), Ă4(µ[v̇

4← π])) =

= 2
8

7

1

8

1

8
{∆A+(Ă4(µ[πd1, πd1, πd1, π]), Ă4(µ[πd1, πd1, πd2, π]))+

+ ∆A+(Ă4(µ[πd1, πd1, πd1, π]), Ă4(µ[πd1, πd2, πd1, π]))+

...

+ ∆A+(Ă4(µ[πd2, πd2, πd1, π]), Ă4(µ[πd2, πd2, πd2, π]))} =

= 2
8

7

1

8

1

8
{28× 0} = 0

And finally, we calculate the AD value generalising for any possible evaluated agent:

AD(Πe, wΠe ,Πo, wL̇, µ, wS) =
∑
π∈Πe

wΠe(π)

N(µ)∑
i=1

wS(i, µ)ADi(π,Πo, wL̇, µ) =

=
∑
π∈Πe

wΠe(π)
1

4
{AD1(π,Πo, wL̇, µ) + AD2(π,Πo, wL̇, µ)+

+ AD3(π,Πo, wL̇, µ) + AD4(π,Πo, wL̇, µ)} =

=
∑
π∈Πe

wΠe(π)
1

4
{0 + 0 + 0 + 0} = 0

So, for every Πe we obtain the same result:

∀Πe : AD(Πe, wΠe ,Πo, wL̇, µ, wS) = 0

Therefore, predator-prey has Leftmax = 0 for this property.

Proposition 51. Rightmin for the action dependency (AD) property is equal to 0 for the
predator-prey environment.

C.1. Action Dependency 191

Proof. To find Rightmin (equation 8.5), we need to find a Πe that minimises the property value
as much as possible while Πo maximises it. Using Πe = {πu} (a πu agent always performs Up)
we find this situation no matter which Πo we use.

Following definition 17 we obtain the AD value for this ⟨Πe,Πo⟩ (where Πo is instantiated
with any permitted value). Since the multi-agent environment is not team symmetric, we need
to calculate this property value for every agent slot. Also, since |Πe| = 1 we just need to
calculate this property value for one evaluated agent. Following definition 16 we calculate the
AD value for the evaluated agent πu ∈ Πe and each agent slot. We start with agent slot 1:

AD1(πu,Πo, wL̇, µ) = ηL̇2

∑
u̇,v̇∈L̇N(µ)

−1 (Πo)|u̸̇=v̇

wL̇(u̇)wL̇(v̇)∆A+(Ă1(µ[u̇
1← πu]), Ă1(µ[v̇

1← πu]))

We do not know which Πo we have, so we use two figurative agent line-up patterns u̇ =
(∗, π1, π2, π3) and v̇ = (∗, π4, π5, π6) from L̇

N(µ)
−1 (Πo):

∆A+(Ă1(µ[u̇
1← πu]), Ă1(µ[v̇

1← πu])) = ∆A+(Ă1(µ[πu, π1, π2, π3]), Ă1(µ[πu, π4, π5, π6]))

The agent in both agent slots 1 (πu) performs the same sequence of actions (always Up)
independently of the agent line-up. So:

∆A+(Ă1(µ[πu, π1, π2, π3]), Ă1(µ[πu, π4, π5, π6])) = 0

We generalise AD1 for any possible pair of agent line-up patterns:

AD1(πu,Πo, wL̇, µ) = ηL̇2

∑
u̇,v̇∈L̇N(µ)

−1 (Πo)|u̸̇=v̇

wL̇(u̇)wL̇(v̇)∆A+(Ă1(µ[u̇
1← πu]), Ă1(µ[v̇

1← πu])) =

= ηL̇2

∑
u̇,v̇∈L̇N(µ)

−1 (Πo)|u̸̇=v̇

wL̇(u̇)wL̇(v̇)0 = 0

For agent slot 2, the agent in both agent slots 2 (πu) also performs the same sequence of
actions (always Up) independently of the agent line-up. So:

AD2(πu,Πo, wL̇, µ) = ηL̇2

∑
u̇,v̇∈L̇N(µ)

−2 (Πo)|u̸̇=v̇

wL̇(u̇)wL̇(v̇)∆A+(Ă2(µ[u̇
2← πu]), Ă2(µ[v̇

2← πu])) =

= ηL̇2

∑
u̇,v̇∈L̇N(µ)

−2 (Πo)|u̸̇=v̇

wL̇(u̇)wL̇(v̇)0 = 0

For agent slot 3, the agent in both agent slots 3 (πu) also performs the same sequence of
actions (always Up) independently of the agent line-up. So:

AD3(πu,Πo, wL̇, µ) = ηL̇2

∑
u̇,v̇∈L̇N(µ)

−3 (Πo)|u̸̇=v̇

wL̇(u̇)wL̇(v̇)∆A+(Ă3(µ[u̇
3← πu]), Ă3(µ[v̇

3← πu])) =

= ηL̇2

∑
u̇,v̇∈L̇N(µ)

−3 (Πo)|u̸̇=v̇

wL̇(u̇)wL̇(v̇)0 = 0

C.2. Reward Dependency 192

And for agent slot 4, the agent in both agent slots 4 (πu) also performs the same sequence
of actions (always Up) independently of the agent line-up. So:

AD4(πu,Πo, wL̇, µ) = ηL̇2

∑
u̇,v̇∈L̇N(µ)

−4 (Πo)|u̸̇=v̇

wL̇(u̇)wL̇(v̇)∆A+(Ă4(µ[u̇
4← πu]), Ă4(µ[v̇

4← πu])) =

= ηL̇2

∑
u̇,v̇∈L̇N(µ)

−4 (Πo)|u̸̇=v̇

wL̇(u̇)wL̇(v̇)0 = 0

And finally, we calculate the AD value:

AD(Πe, wΠe ,Πo, wL̇, µ, wS) =
∑
π∈Πe

wΠe(π)

N(µ)∑
i=1

wS(i, µ)ADi(π,Πo, wL̇, µ) =

=
1

1

1

4
{AD1(πu,Πo, wL̇, µ) + AD2(πu,Πo, wL̇, µ)+

+ AD3(πu,Πo, wL̇, µ) + AD4(πu,Πo, wL̇, µ)} =

=
1

1

1

4
{0 + 0 + 0 + 0} = 0

So, for every Πo we obtain the same result:

∀Πo : AD(Πe, wΠe ,Πo, wL̇, µ, wS) = 0

Therefore, predator-prey has Rightmin = 0 for this property.

C.2 Reward Dependency

We continue with the reward dependency (RD) property. As given in section 7.3.1, we want to
know if the evaluated agents obtain different rewards depending on which agent line-up they
interact with. We use ∆Q(a

′, b′) for ∆Q+(a, b) where a′ and b′ are the expected results of a and
b respectively, and ∆Q(a

′, b′) = 0 if numbers a′ and b′ are equal and 1 otherwise. We use an
average of rewards as the utility function to calculate an agent’s result.

Proposition 52. Generalmin for the reward dependency (RD) property is equal to 0 for the
predator-prey environment.

Proof. To find Generalmin (equation 8.1), we need to find a pair ⟨Πe,Πo⟩ that minimises the
property value as much as possible. We can have this situation by selecting Πe = {πu} and
Πo = {πd1, πd2} (a πd agent always performs Down and a πu agent always performs Up).

Following definition 19 we obtain the RD value for this ⟨Πe,Πo⟩. Since the multi-agent
environment is not team symmetric, we need to calculate this property value for every agent
slot. Also, since |Πe| = 1 we just need to calculate this property value for one evaluated agent.
Following definition 18 we calculate the RD value for the evaluated agent πu ∈ Πe and each
agent slot. We start with agent slot 1:

C.2. Reward Dependency 193

RD1(πu,Πo, wL̇, µ) = ηL̇2

∑
u̇,v̇∈L̇N(µ)

−1 (Πo)|u̸̇=v̇

wL̇(u̇)wL̇(v̇)∆Q(R1(µ[u̇
1← πu]), R1(µ[v̇

1← πu])) =

= 2
8

7

1

8

1

8
{∆Q(R1(µ[πu, πd1, πd1, πd1]), R1(µ[πu, πd1, πd1, πd2]))+

+ ∆Q(R1(µ[πu, πd1, πd1, πd1]), R1(µ[πu, πd1, πd2, πd1]))+

...

+ ∆Q(R1(µ[πu, πd2, πd2, πd1]), R1(µ[πu, πd2, πd2, πd2]))}

Note that we avoided to calculate both ∆Q(a, b) and ∆Q(b, a), since they provide the same
result, by calculating only ∆Q(a, b) and multiplying the result by 2.

We have 28 possible pairs of agent line-ups, where the agent in both agent slots 1 (πu)
obtains the same expected average reward (1) independently of the agent line-up. So:

RD1(πu,Πo, wL̇, µ) = 2
8

7

1

8

1

8
{28× 0} = 0

For agent slot 2, the agent in both agent slots 2 (πu) also obtains the same expected average
reward (1) independently of the agent line-up. So:

RD2(πu,Πo, wL̇, µ) = ηL̇2

∑
u̇,v̇∈L̇N(µ)

−2 (Πo)|u̸̇=v̇

wL̇(u̇)wL̇(v̇)∆Q(R2(µ[u̇
2← πu]), R2(µ[v̇

2← πu])) =

= 2
8

7

1

8

1

8
{∆Q(R2(µ[πd1, πu, πd1, πd1]), R2(µ[πd1, πu, πd1, πd2]))+

+ ∆Q(R2(µ[πd1, πu, πd1, πd1]), R2(µ[πd1, πu, πd2, πd1]))+

...

+ ∆Q(R2(µ[πd2, πu, πd2, πd1]), R2(µ[πd2, πu, πd2, πd2]))} =

= 2
8

7

1

8

1

8
{28× 0} = 0

For agent slot 3, the agent in both agent slots 3 (πu) also obtains the same expected average
reward (−1) independently of the agent line-up. So:

RD3(πu,Πo, wL̇, µ) = ηL̇2

∑
u̇,v̇∈L̇N(µ)

−3 (Πo)|u̸̇=v̇

wL̇(u̇)wL̇(v̇)∆Q(R3(µ[u̇
3← πu]), R3(µ[v̇

3← πu])) =

= 2
8

7

1

8

1

8
{∆Q(R3(µ[πd1, πd1, πu, πd1]), R3(µ[πd1, πd1, πu, πd2]))+

+ ∆Q(R3(µ[πd1, πd1, πu, πd1]), R3(µ[πd1, πd2, πu, πd1]))+

...

+ ∆Q(R3(µ[πd2, πd2, πu, πd1]), R3(µ[πd2, πd2, πu, πd2]))} =

= 2
8

7

1

8

1

8
{28× 0} = 0

C.2. Reward Dependency 194

And for agent slot 4, the agent in both agent slots 4 (πu) also obtains the same expected
average reward (1) independently of the agent line-up. So:

RD4(πu,Πo, wL̇, µ) = ηL̇2

∑
u̇,v̇∈L̇N(µ)

−4 (Πo)|u̸̇=v̇

wL̇(u̇)wL̇(v̇)∆Q(R4(µ[u̇
4← πu]), R4(µ[v̇

4← πu])) =

= 2
8

7

1

8

1

8
{∆Q(R4(µ[πd1, πd1, πd1, πu]), R4(µ[πd1, πd1, πd2, πu]))+

+ ∆Q(R4(µ[πd1, πd1, πd1, πu]), R4(µ[πd1, πd2, πd1, πu]))+

...

+ ∆Q(R4(µ[πd2, πd2, πd1, πu]), R4(µ[πd2, πd2, πd2, πu]))} =

= 2
8

7

1

8

1

8
{28× 0} = 0

And finally, we calculate the RD value:

RD(Πe, wΠe ,Πo, wL̇, µ, wS) =
∑
π∈Πe

wΠe(π)

N(µ)∑
i=1

wS(i, µ)RDi(π,Πo, wL̇, µ) =

=
1

1

1

4
{RD1(πu,Πo, wL̇, µ) +RD2(πu,Πo, wL̇, µ)+

+RD3(πu,Πo, wL̇, µ) +RD4(πu,Πo, wL̇, µ)} =

=
1

1

1

4
{0 + 0 + 0 + 0} = 0

Since 0 is the lowest possible value for the reward dependency property, therefore predator-
prey has Generalmin = 0 for this property.

Conjecture 2. Generalmax for the reward dependency (RD) property is equal to 1 for the
predator-prey environment.

To find Generalmax (equation 8.2), we need to find a pair ⟨Πe,Πo⟩ that maximises the
property value as much as possible. We can have this situation by selecting Πe = {πr} and
Πo = {πs, πr} (a πr agent always acts randomly and a πs agent always stays in the same cell1).

Following definition 19 we obtain the RD value for this ⟨Πe,Πo⟩. Since the multi-agent
environment is not team symmetric, we need to calculate this property value for every agent
slot. Also, since |Πe| = 1 we just need to calculate this property value for one evaluated agent.
Following definition 18 we calculate the RD value for the evaluated agent πr ∈ Πe and each
agent slot. We start with agent slot 1:

1Note that every cell has an action that leads to a block or a boundary, therefore an agent performing this
action stays at its current cell.

C.2. Reward Dependency 195

RD1(πr,Πo, wL̇, µ) = ηL̇2

∑
u̇,v̇∈L̇N(µ)

−1 (Πo)|u̸̇=v̇

wL̇(u̇)wL̇(v̇)∆Q(R1(µ[u̇
1← πr]), R1(µ[v̇

1← πr])) =

= 2
8

7

1

8

1

8
{∆Q(R1(µ[πr, πs, πs, πs]), R1(µ[πr, πs, πs, πr]))+

+ ∆Q(R1(µ[πr, πs, πs, πs]), R1(µ[πr, πs, πr, πs]))+

...

+ ∆Q(R1(µ[πr, πr, πr, πs]), R1(µ[πr, πr, πr, πr]))}

Note that we avoided to calculate both ∆Q(a, b) and ∆Q(b, a), since they provide the same
result, by calculating only ∆Q(a, b) and multiplying the result by 2.

The expected average reward that agents obtain in these agent line-ups highly depends on
the positions of the agents. The expected average reward of the agent in agent slot 1 (πr)
ranges from −1 to 1 (both values exclusive, since it always exists some probability that the
prey is either chased or not). One reason is the stochastic behaviour of the πr agents, which
makes that, for every pair of agent line-ups, the agents in the same agent slot obtain different
expected average rewards. Another reason is that the starting positions of the agent slots (in
particular those for the predator team) do not have a symmetric place in the space (blocks are
not symmetrically located in the space) which, for each πr in a different agent slot, provides
(most likely) different probabilities to chase the prey2. This makes that, for every pair of agent
line-ups, the agents in the same agent slot obtain different expected average rewards, making
its reward dependency equal to 1.

RD1(πr,Πo, wL̇, µ) = 2
8

7

1

8

1

8
{28× 1} = 1

For agent slot 2, the expected results of agent line-ups highly depend on the positions of
the agents too. So:

RD2(πr,Πo, wL̇, µ) = ηL̇2

∑
u̇,v̇∈L̇N(µ)

−2 (Πo)|u̸̇=v̇

wL̇(u̇)wL̇(v̇)∆Q(R2(µ[u̇
2← πr]), R2(µ[v̇

2← πr])) =

= 2
8

7

1

8

1

8
{∆Q(R2(µ[πs, πr, πs, πs]), R2(µ[πs, πr, πs, πr]))+

+ ∆Q(R2(µ[πs, πr, πs, πs]), R2(µ[πs, πr, πr, πs]))+

...

+ ∆Q(R2(µ[πr, πr, πr, πs]), R2(µ[πr, πr, πr, πr]))} =

= 2
8

7

1

8

1

8
{28× 1} = 1

For agent slot 3, the expected results of agent line-ups highly depend on the positions of
the agents too. So:

2It is more likely that the prey is chased by the predator in agent slot 3 (which starting position is located
in the lower left corner) than the predator in agent slot 2 (which starting position is located in the upper right
corner), and the predator in agent slot 4 (which starting position is located in the lower right corner) has the
lowest probability to chase the prey.

C.2. Reward Dependency 196

RD3(πr,Πo, wL̇, µ) = ηL̇2

∑
u̇,v̇∈L̇N(µ)

−3 (Πo)|u̸̇=v̇

wL̇(u̇)wL̇(v̇)∆Q(R3(µ[u̇
3← πr]), R3(µ[v̇

3← πr])) =

= 2
8

7

1

8

1

8
{∆Q(R3(µ[πs, πs, πr, πs]), R3(µ[πs, πs, πr, πr]))+

+ ∆Q(R3(µ[πs, πs, πr, πs]), R3(µ[πs, πr, πr, πs]))+

...

+ ∆Q(R3(µ[πr, πr, πr, πs]), R3(µ[πr, πr, πr, πr]))} =

= 2
8

7

1

8

1

8
{28× 1} = 1

And for agent slot 4, the expected results of agent line-ups highly depend on the positions
of the agents too. So:

RD4(πr,Πo, wL̇, µ) = ηL̇2

∑
u̇,v̇∈L̇N(µ)

−4 (Πo)|u̸̇=v̇

wL̇(u̇)wL̇(v̇)∆Q(R4(µ[u̇
4← πr]), R4(µ[v̇

4← πr])) =

= 2
8

7

1

8

1

8
{∆Q(R4(µ[πs, πs, πs, πr]), R4(µ[πs, πs, πr, πr]))+

+ ∆Q(R4(µ[πs, πs, πs, πr]), R4(µ[πs, πr, πs, πr]))+

...

+ ∆Q(R4(µ[πr, πr, πs, πr]), R4(µ[πr, πr, πr, πr]))} =

= 2
8

7

1

8

1

8
{28× 1} = 1

And finally, we calculate the RD value:

RD(Πe, wΠe ,Πo, wL̇, µ, wS) =
∑
π∈Πe

wΠe(π)

N(µ)∑
i=1

wS(i, µ)RDi(π,Πo, wL̇, µ) =

=
1

1

1

4
{RD1(πr,Πo, wL̇, µ) +RD2(πr,Πo, wL̇, µ)+

+RD3(πr,Πo, wL̇, µ) +RD4(πr,Πo, wL̇, µ)} =

=
1

1

1

4
{1 + 1 + 1 + 1} = 1

Since 1 is the highest possible value for the reward dependency property, therefore predator-
prey has Generalmax = 1 for this property.

Proposition 53. Leftmax for the reward dependency (RD) property is equal to 0 for the
predator-prey environment.

Proof. To find Leftmax (equation 8.4), we need to find a Πe that maximises the property value
as much as possible while Πo minimises it. Using Πo = {πd1, πd2} (a πd agent always performs
Down) we find this situation no matter which Πe we use.

Following definition 19 we obtain the RD value for this ⟨Πe,Πo⟩ (where Πe is instantiated
with any permitted value). Since the multi-agent environment is not team symmetric, we need

C.2. Reward Dependency 197

to calculate this property value for every agent slot. Also, we do not know which Πe we have,
so we use a figurative evaluated agent π from Πe. Following definition 18 we calculate the RD
value for this figurative evaluated agent π ∈ Πe and each agent slot. We start with agent slot
1:

RD1(π,Πo, wL̇, µ) = ηL̇2

∑
u̇,v̇∈L̇N(µ)

−1 (Πo)|u̸̇=v̇

wL̇(u̇)wL̇(v̇)∆Q(R1(µ[u̇
1← π]), R1(µ[v̇

1← π])) =

= 2
8

7

1

8

1

8
{∆Q(R1(µ[π, πd1, πd1, πd1]), R1(µ[π, πd1, πd1, πd2]))+

+ ∆Q(R1(µ[π, πd1, πd1, πd1]), R1(µ[π, πd1, πd2, πd1]))+

...

+ ∆Q(R1(µ[π, πd2, πd2, πd1]), R1(µ[π, πd2, πd2, πd2]))}

Note that we avoided to calculate both ∆Q(a, b) and ∆Q(b, a), since they provide the same
result, by calculating only ∆Q(a, b) and multiplying the result by 2.

We have 28 possible pairs of agent line-ups, where the agent in both agent slots 1 (any
π) is not able to differentiate with which agents is interacting, so it is not able to change its
distribution of action sequences depending on the agent line-up, obtaining the same expected
average reward. So, for any π we obtain the same result:

RD1(π,Πo, wL̇, µ) = 2
8

7

1

8

1

8
{28× 0} = 0

For agent slot 2, the agent in both agent slots 2 (any π) is also not able to change its
distribution of action sequences depending on the agent line-up, obtaining the same expected
average reward. So again, for any π we obtain the same result:

RD2(π,Πo, wL̇, µ) = ηL̇2

∑
u̇,v̇∈L̇N(µ)

−2 (Πo)|u̸̇=v̇

wL̇(u̇)wL̇(v̇)∆Q(R2(µ[u̇
2← π]), R2(µ[v̇

2← π])) =

= 2
8

7

1

8

1

8
{∆Q(R2(µ[πd1, π, πd1, πd1]), R2(µ[πd1, π, πd1, πd2]))+

+ ∆Q(R2(µ[πd1, π, πd1, πd1]), R2(µ[πd1, π, πd2, πd1]))+

...

+ ∆Q(R2(µ[πd2, π, πd2, πd1]), R2(µ[πd2, π, πd2, πd2]))} =

= 2
8

7

1

8

1

8
{28× 0} = 0

For agent slot 3, the agent in both agent slots 3 (any π) is also not able to change its
distribution of action sequences depending on the agent line-up, obtaining the same expected
average reward. So again, for any π we obtain the same result:

C.2. Reward Dependency 198

RD3(π,Πo, wL̇, µ) = ηL̇2

∑
u̇,v̇∈L̇N(µ)

−3 (Πo)|u̸̇=v̇

wL̇(u̇)wL̇(v̇)∆Q(R3(µ[u̇
3← π]), R3(µ[v̇

3← π])) =

= 2
8

7

1

8

1

8
{∆Q(R3(µ[πd1, πd1, π, πd1]), R3(µ[πd1, πd1, π, πd2]))+

+ ∆Q(R3(µ[πd1, πd1, π, πd1]), R3(µ[πd1, πd2, π, πd1]))+

...

+ ∆Q(R3(µ[πd2, πd2, π, πd1]), R3(µ[πd2, πd2, π, πd2]))} =

= 2
8

7

1

8

1

8
{28× 0} = 0

And for agent slot 4, the agent in both agent slots 4 (any π) is also not able to change its
distribution of action sequences depending on the agent line-up, obtaining the same expected
average reward. So again, for any π we obtain the same result:

RD4(π,Πo, wL̇, µ) = ηL̇2

∑
u̇,v̇∈L̇N(µ)

−4 (Πo)|u̸̇=v̇

wL̇(u̇)wL̇(v̇)∆Q(R4(µ[u̇
4← π]), R4(µ[v̇

4← π])) =

= 2
8

7

1

8

1

8
{∆Q(R4(µ[πd1, πd1, πd1, π]), R4(µ[πd1, πd1, πd2, π]))+

+ ∆Q(R4(µ[πd1, πd1, πd1, π]), R4(µ[πd1, πd2, πd1, π]))+

...

+ ∆Q(R4(µ[πd2, πd2, πd1, π]), R4(µ[πd2, πd2, πd2, π]))} =

= 2
8

7

1

8

1

8
{28× 0} = 0

And finally, we calculate the RD value generalising for any possible evaluated agent:

RD(Πe, wΠe ,Πo, wL̇, µ, wS) =
∑
π∈Πe

wΠe(π)

N(µ)∑
i=1

wS(i, µ)RDi(π,Πo, wL̇, µ) =

=
∑
π∈Πe

wΠe(π)
1

4
{RD1(π,Πo, wL̇, µ) +RD2(π,Πo, wL̇, µ)+

+RD3(π,Πo, wL̇, µ) +RD4(π,Πo, wL̇, µ)} =

=
∑
π∈Πe

wΠe(π)
1

4
{0 + 0 + 0 + 0} = 0

So, for every Πe we obtain the same result:

∀Πe : RD(Πe, wΠe ,Πo, wL̇, µ, wS) = 0

Therefore, predator-prey has Leftmax = 0 for this property.

Approximation 1. Rightmin for the reward dependency (RD) property is equal to 13
28

(as a
lower approximation) for the predator-prey environment.

C.2. Reward Dependency 199

Proof. To find Rightmin (equation 8.5), we need to find a Πe that minimises the property value
as much as possible while Πo maximises it. Using Πe = {πchase} and Πo = {πlose, πwin} (a
πchase agent tries to be chased when interacting as the prey and tries to perfectly coordinate
with the other predators to chase the prey when interacting as a predator, a πlose agent tries
to be chased when interacting as the prey and avoids to chase the prey when interacting as
a predator, and a πwin agent tries not to be chased when interacting as the prey and tries to
perfectly coordinate with the other predators to chase the prey when interacting as a predator)
we find a lower approximation.

Following definition 19 we obtain the RD value for this ⟨Πe,Πo⟩. Since the multi-agent
environment is not team symmetric, we need to calculate this property value for every agent
slot. Also, since |Πe| = 1 we just need to calculate this property value for one evaluated agent.
Following definition 18 we calculate the RD value for the evaluated agent πchase ∈ Πe and each
agent slot. We start with agent slot 1:

RD1(πchase,Πo, wL̇, µ) = ηL̇2

∑
u̇,v̇∈L̇N(µ)

−1 (Πo)|u̸̇=v̇

wL̇(u̇)wL̇(v̇)∆Q(R1(µ[u̇
1← πchase]), R1(µ[v̇

1← πchase])) =

= 2
8

7

1

8

1

8
{∆Q(R1(µ[πchase, πlose, πlose, πlose]), R1(µ[πchase, πlose, πlose, πwin]))+

+ ∆Q(R1(µ[πchase, πlose, πlose, πlose]), R1(µ[πchase, πlose, πwin, πlose]))+

...

+ ∆Q(R1(µ[πchase, πwin, πwin, πlose]), R1(µ[πchase, πwin, πwin, πwin]))}

Note that we avoided to calculate both ∆Q(a, b) and ∆Q(b, a), since they provide the same
result, by calculating only ∆Q(a, b) and multiplying the result by 2.

We have 28 possible pairs of agent line-ups, where πchase from Πe tries to make in the
maximum pairs of agent line-ups, the agents in the same agent slot obtain the same expected
average rewards while πwin and πlose from Πo try to make in the maximum pairs of agent line-ups,
the agents in the same agent slot obtain different expected average rewards. The agents from Πo

can only assure that two agent line-ups ((πchase, πlose, πlose, πlose) and (πchase, πwin, πwin, πwin))
have different results (‘prey not chased’ and ‘prey chased’ respectively), therefore the agent
from Πe can obtain the same expected average reward on seven of the eight agent line-ups3

(and therefore obtain the same expected average reward on twenty one pairs of agent line-ups).
So:

RD1(πchase,Πo, wL̇, µ) = 2
8

7

1

8

1

8
{21× 0 + 7× 1} = 1

4

For agent slot 2, the agents from Πo can assure that three agent line-ups
((πlose, πchase, πlose, πwin), (πlose, πchase, πwin, πlose) and (πlose, πchase, πwin, πwin)) have the same re-
sult (‘prey chased’) and other three agent line-ups ((πwin, πchase, πlose, πlose),
(πwin, πchase, πlose, πwin) and (πwin, πchase, πwin, πlose)) have a different result (‘prey not chased’),
therefore the agent from Πe can only obtain the same expected average reward on five of the
eight agent line-ups (and therefore obtain the same expected average reward on thirteen pairs
of agent line-ups). So:

3Note that only one predator trying to win is enough to chase a prey which wants to be chased.

C.2. Reward Dependency 200

RD2(πchase,Πo, wL̇, µ) = ηL̇2

∑
u̇,v̇∈L̇N(µ)

−2 (Πo)|u̸̇=v̇

wL̇(u̇)wL̇(v̇)∆Q(R2(µ[u̇
2← πchase]), R2(µ[v̇

2← πchase])) =

= 2
8

7

1

8

1

8
{∆Q(R2(µ[πlose, πchase, πlose, πlose]), R2(µ[πlose, πchase, πlose, πwin]))+

+ ∆Q(R2(µ[πlose, πchase, πlose, πlose]), R2(µ[πlose, πchase, πwin, πlose]))+

...

+ ∆Q(R2(µ[πwin, πchase, πwin, πlose]), R2(µ[πwin, πchase, πwin, πwin]))} =

= 2
8

7

1

8

1

8
{13× 0 + 15× 1} = 15

28

For agent slot 3, the agents from Πo can also assure that three agent line-ups
((πlose, πlose, πchase, πwin), (πlose, πwin, πchase, πlose) and (πlose, πwin, πchase, πwin)) have the same re-
sult (‘prey chased’) and other three agent line-ups ((πwin, πlose, πchase, πlose),
(πwin, πlose, πchase, πwin) and (πwin, πwin, πchase, πlose)) have a different result (‘prey not chased’),
therefore the agent from Πe can again only obtain the same expected average reward on five
of the eight agent line-ups (and therefore obtain the same expected average reward on thirteen
pairs of agent line-ups). So:

RD3(πchase,Πo, wL̇, µ) = ηL̇2

∑
u̇,v̇∈L̇N(µ)

−3 (Πo)|u̸̇=v̇

wL̇(u̇)wL̇(v̇)∆Q(R3(µ[u̇
3← πchase]), R3(µ[v̇

3← πchase])) =

= 2
8

7

1

8

1

8
{∆Q(R3(µ[πlose, πlose, πchase, πlose]), R3(µ[πlose, πlose, πchase, πwin]))+

+ ∆Q(R3(µ[πlose, πlose, πchase, πlose]), R3(µ[πlose, πwin, πchase, πlose]))+

...

+ ∆Q(R3(µ[πwin, πwin, πchase, πlose]), R3(µ[πwin, πwin, πchase, πwin]))} =

= 2
8

7

1

8

1

8
{13× 0 + 15× 1} = 15

28

And for agent slot 4, the agents from Πo can also assure that three agent line-ups
((πlose, πlose, πwin, πchase), (πlose, πwin, πlose, πchase) and (πlose, πwin, πwin, πchase)) have the same re-
sult (‘prey chased’) and other three agent line-ups ((πwin, πlose, πlose, πchase),
(πwin, πlose, πwin, πchase) and (πwin, πwin, πlose, πchase)) have a different result (‘prey not chased’),
therefore the agent from Πe can again only obtain the same expected average reward on five
of the eight agent line-ups (and therefore obtain the same expected average reward on thirteen
pairs of agent line-ups). So:

C.3. Fine Discrimination 201

RD4(πchase,Πo, wL̇, µ) = ηL̇2

∑
u̇,v̇∈L̇N(µ)

−4 (Πo)|u̸̇=v̇

wL̇(u̇)wL̇(v̇)∆Q(R4(µ[u̇
4← πchase]), R4(µ[v̇

4← πchase])) =

= 2
8

7

1

8

1

8
{∆Q(R4(µ[πlose, πlose, πlose, πchase]), R4(µ[πlose, πlose, πwin, πchase]))+

+ ∆Q(R4(µ[πlose, πlose, πlose, πchase]), R4(µ[πlose, πwin, πlose, πchase]))+

...

+ ∆Q(R4(µ[πwin, πwin, πlose, πchase]), R4(µ[πwin, πwin, πwin, πchase]))} =

= 2
8

7

1

8

1

8
{13× 0 + 15× 1} = 15

28

And finally, we calculate the RD value:

RD(Πe, wΠe ,Πo, wL̇, µ, wS) =
∑
π∈Πe

wΠe(π)

N(µ)∑
i=1

wS(i, µ)RDi(π,Πo, wL̇, µ) =

=
1

1

1

4
{RD1(πchase,Πo, wL̇, µ) +RD2(πchase,Πo, wL̇, µ)+

+RD3(πchase,Πo, wL̇, µ) +RD4(πchase,Πo, wL̇, µ)} =

=
1

1

1

4

{
1

4
+

15

28
+

15

28
+

15

28

}
=

13

28

Therefore, predator-prey has Rightmin = 13
28

(as a lower approximation) for this property.

C.3 Fine Discrimination

Now we move to the fine discrimination (FD) property. As given in section 7.5.1, we want
to know if different evaluated agents obtain different expected rewards when interacting in the
same agent line-up patterns. We use ∆Q(a, b) = 0 if numbers a and b are equal and 1 otherwise.
We use an average of rewards as the utility function to calculate an agent’s result.

Proposition 54. Generalmin for the fine discrimination (FD) property is equal to 0 for the
predator-prey environment.

Proof. To find Generalmin (equation 8.1), we need to find a pair ⟨Πe,Πo⟩ that minimises the
property value as much as possible. We can have this situation by selecting Πe = {πu1, πu2}
and Πo = {πd} (a πu agent always performs Up and a πd agent always performs Down).

Following definition 26 we obtain the FD value for this ⟨Πe,Πo⟩. Since the multi-agent
environment is not team symmetric, we need to calculate this property value for every agent
slot. Also, since |Πe| = 2 we just need to calculate this property value for one pair of evaluated
agents. Following definition 25 we calculate the FD value for the evaluated agents πu1, πu2 ∈ Πe

and each agent slot. We start with agent slot 1:

C.3. Fine Discrimination 202

FD1(πu1, πu2,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−1 (Πo)

wL̇(l̇)∆Q(R1(µ[l̇
1← πu1]), R1(µ[l̇

1← πu2])) =

=
1

1
∆Q(R1(µ[πu1, πd, πd, πd]), R1(µ[πu2, πd, πd, πd]))

Both agents in agent slot 1 (πu1 and πu2) obtain the same expected average reward (1). So:

FD1(πu1, πu2,Πo, wL̇, µ) =
1

1
0 = 0

For agent slot 2, both agents in agent slot 2 (πu1 and πu2) also obtain the same expected
average reward (1). So:

FD2(πu1, πu2,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−2 (Πo)

wL̇(l̇)∆Q(R2(µ[l̇
2← πu1]), R2(µ[l̇

2← πu2])) =

=
1

1
∆Q(R2(µ[πd, πu1, πd, πd]), R2(µ[πd, πu2, πd, πd])) =

=
1

1
0 = 0

For agent slot 3, both agents in agent slot 3 (πu1 and πu2) also obtain the same expected
average reward (−1). So:

FD3(πu1, πu2,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−3 (Πo)

wL̇(l̇)∆Q(R3(µ[l̇
3← πu1]), R3(µ[l̇

3← πu2])) =

=
1

1
∆Q(R3(µ[πd, πd, πu1, πd]), R3(µ[πd, πd, πu2, πd])) =

=
1

1
0 = 0

And for agent slot 4, both agents in agent slot 4 (πu1 and πu2) also obtain the same expected
average reward (1). So:

FD4(πu1, πu2,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−4 (Πo)

wL̇(l̇)∆Q(R4(µ[l̇
4← πu1]), R4(µ[l̇

4← πu2])) =

=
1

1
∆Q(R4(µ[πd, πd, πd, πu1]), R4(µ[πd, πd, πd, πu2])) =

=
1

1
0 = 0

And finally, we calculate the FD value:

C.3. Fine Discrimination 203

FD(Πe, wΠe ,Πo, wL̇, µ, wS) = ηΠ2

∑
π1,π2∈Πe|π1 ̸=π2

wΠe(π1)wΠe(π2)

N(µ)∑
i=1

wS(i, µ)×

× FDi(π1, π2,Πo, wL̇, µ) =

= 2
2

1

1

2

1

2

1

4
{FD1(πu1, πu2,Πo, wL̇, µ) + FD2(πu1, πu2,Πo, wL̇, µ)+

+ FD3(πu1, πu2,Πo, wL̇, µ) + FD4(πu1, πu2,Πo, wL̇, µ)} =

= 2
2

1

1

2

1

2

1

4
{0 + 0 + 0 + 0} = 0

Note that we avoided to calculate both FDi(a, b,Πo, wL̇, µ) and FDi(b, a,Πo, wL̇, µ), since they
provide the same result, by calculating only FDi(a, b,Πo, wL̇, µ) and multiplying the result by
2.

Since 0 is the lowest possible value for the fine discrimination property, therefore predator-
prey has Generalmin = 0 for this property.

Proposition 55. Generalmax for the fine discrimination (FD) property is equal to 1 for the
predator-prey environment.

Proof. To find Generalmax (equation 8.2), we need to find a pair ⟨Πe,Πo⟩ that maximises the
property value as much as possible. We can have this situation by selecting Πe = {πs, πr} and
Πo = {πs} (a πr agent always acts randomly and a πs agent always stays in the same cell4).

Following definition 26 we obtain the FD value for this ⟨Πe,Πo⟩. Since the multi-agent
environment is not team symmetric, we need to calculate this property value for every agent
slot. Also, since |Πe| = 2 we just need to calculate this property value for one pair of evaluated
agents. Following definition 25 we calculate the FD value for the evaluated agents πs, πr ∈ Πe

and each agent slot. We start with agent slot 1:

FD1(πs, πr,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−1 (Πo)

wL̇(l̇)∆Q(R1(µ[l̇
1← πs]), R1(µ[l̇

1← πr])) =

=
1

1
∆Q(R1(µ[πs, πs, πs, πs]), R1(µ[πr, πs, πs, πs]))

Both agents in agent slot 1 (πs and πr) obtain different expected average rewards (1 and
slightly less than 1 respectively). So:

FD1(πs, πr,Πo, wL̇, µ) =
1

1
1 = 1

For agent slot 2, both agents in agent slot 2 (πs and πr) also obtain different expected
average rewards (−1 and slightly more than −1 respectively). So:

4Note that every cell has an action that leads to a block or a boundary, therefore an agent performing this
action stays at its current cell.

C.3. Fine Discrimination 204

FD2(πs, πr,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−2 (Πo)

wL̇(l̇)∆Q(R2(µ[l̇
2← πs]), R2(µ[l̇

2← πr])) =

=
1

1
∆Q(R2(µ[πs, πs, πs, πs]), R2(µ[πs, πr, πs, πs])) =

=
1

1
1 = 1

For agent slot 3, both agents in agent slot 3 (πs and πr) also obtain different expected
average rewards (−1 and slightly more than −1 respectively). So:

FD3(πs, πr,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−3 (Πo)

wL̇(l̇)∆Q(R3(µ[l̇
3← πs]), R3(µ[l̇

3← πr])) =

=
1

1
∆Q(R3(µ[πs, πs, πs, πs]), R3(µ[πs, πs, πr, πs])) =

=
1

1
1 = 1

And for agent slot 4, both agents in agent slot 4 (πs and πr) also obtain different expected
average rewards (−1 and slightly more than −1 respectively). So:

FD4(πs, πr,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−4 (Πo)

wL̇(l̇)∆Q(R4(µ[l̇
4← πs]), R4(µ[l̇

4← πr])) =

=
1

1
∆Q(R4(µ[πs, πs, πs, πs]), R4(µ[πs, πs, πs, πr])) =

=
1

1
1 = 1

And finally, we calculate the FD value:

FD(Πe, wΠe ,Πo, wL̇, µ, wS) = ηΠ2

∑
π1,π2∈Πe|π1 ̸=π2

wΠe(π1)wΠe(π2)

N(µ)∑
i=1

wS(i, µ)×

× FDi(π1, π2,Πo, wL̇, µ) =

= 2
2

1

1

2

1

2

1

4
{FD1(πs, πr,Πo, wL̇, µ) + FD2(πs, πr,Πo, wL̇, µ)+

+ FD3(πs, πr,Πo, wL̇, µ) + FD4(πs, πr,Πo, wL̇, µ)} =

= 2
2

1

1

2

1

2

1

4
{1 + 1 + 1 + 1} = 1

Note that we avoided to calculate both FDi(a, b,Πo, wL̇, µ) and FDi(b, a,Πo, wL̇, µ), since they
provide the same result, by calculating only FDi(a, b,Πo, wL̇, µ) and multiplying the result by
2.

Since 1 is the highest possible value for the fine discrimination property, therefore predator-
prey has Generalmax = 1 for this property.

Proposition 56. Leftmax for the fine discrimination (FD) property is equal to 0 for the
predator-prey environment.

C.3. Fine Discrimination 205

Proof. To find Leftmax (equation 8.4), we need to find a Πe that maximises the property value
as much as possible while Πo minimises it. Using Πo = {πchase} (a πchase agent tries to be
chased when interacting as the prey and tries to perfectly coordinate with the other predators
to chase the prey when interacting as a predator) we find this situation no matter which Πe we
use.

Following definition 26 we obtain the FD value for this ⟨Πe,Πo⟩ (where Πe is instantiated
with any permitted value). Since the multi-agent environment is not team symmetric, we need
to calculate this property value for every agent slot. Also, we do not know which Πe we have, so
we use a figurative pair of evaluated agents π1, π2 from Πe. Following definition 25 we calculate
the FD value for these figurative evaluated agents π1, π2 ∈ Πe and each agent slot. We start
with agent slot 1:

FD1(π1, π2,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−1 (Πo)

wL̇(l̇)∆Q(R1(µ[l̇
1← π1]), R1(µ[l̇

1← π2])) =

=
1

1
∆Q(R1(µ[π1, πchase, πchase, πchase]), R1(µ[π2, πchase, πchase, πchase]))

The predators perfectly coordinate to always chase the prey (as seen in lemma 3), obtaining
both agents in agent slot 1 (any pair π1 and π2) the same expected average reward (−1). So,
for any pair π1 and π2 we obtain the same result:

FD1(π1, π2,Πo, wL̇, µ) =
1

1
0 = 0

For agent slot 2, the prey is always chased by the two perfectly coordinated predators5,
obtaining both agents in agent slot 2 (any pair π1 and π2) the same expected average reward
(1). So again, for any pair π1 and π2 we obtain the same result:

FD2(π1, π2,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−2 (Πo)

wL̇(l̇)∆Q(R2(µ[l̇
2← π1]), R2(µ[l̇

2← π2])) =

=
1

1
∆Q(R2(µ[πchase, π1, πchase, πchase]), R2(µ[πchase, π2, πchase, πchase])) =

=
1

1
0 = 0

For agent slot 3, both agents in agent slot 3 (any pair π1 and π2) also obtain the same
expected average reward (1). So again, for any pair π1 and π2 we obtain the same result:

FD3(π1, π2,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−3 (Πo)

wL̇(l̇)∆Q(R3(µ[l̇
3← π1]), R3(µ[l̇

3← π2])) =

=
1

1
∆Q(R3(µ[πchase, πchase, π1, πchase]), R3(µ[πchase, πchase, π2, πchase])) =

=
1

1
0 = 0

5Note that two predator trying to chase the prey is enough to chase a prey which wants to be chased.

C.3. Fine Discrimination 206

And for agent slot 4, both agents in agent slot 4 (any pair π1 and π2) also obtain the same
expected average reward (1). So again, for any pair π1 and π2 we obtain the same result:

FD4(π1, π2,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−4 (Πo)

wL̇(l̇)∆Q(R4(µ[l̇
4← π1]), R4(µ[l̇

4← π2])) =

=
1

1
∆Q(R4(µ[πchase, πchase, πchase, π1]), R4(µ[πchase, πchase, πchase, π2])) =

=
1

1
0 = 0

And finally, we calculate the FD value generalising for any possible pair of evaluated agents:

FD(Πe, wΠe ,Πo, wL̇, µ, wS) = ηΠ2

∑
π1,π2∈Πe|π1 ̸=π2

wΠe(π1)wΠe(π2)

N(µ)∑
i=1

wS(i, µ)×

× FDi(π1, π2,Πo, wL̇, µ) =

= 2× ηΠ2

∑
π1,π2∈Πe|π1 ̸=π2

wΠe(π1)wΠe(π2)
1

4
×

× {FD1(π1, π2,Πo, wL̇, µ) + FD2(π1, π2,Πo, wL̇, µ)+

+ FD3(π1, π2,Πo, wL̇, µ) + FD4(π1, π2,Πo, wL̇, µ)} =

= 2× ηΠ2

∑
π1,π2∈Πe|π1 ̸=π2

wΠe(π1)wΠe(π2)
1

4
{0 + 0 + 0 + 0} = 0

Note that we avoided to calculate both FDi(a, b,Πo, wL̇, µ) and FDi(b, a,Πo, wL̇, µ), since they
provide the same result, by calculating only FDi(a, b,Πo, wL̇, µ) and multiplying the result by
2.

So, for every Πe we obtain the same result:

∀Πe : FD(Πe, wΠe ,Πo, wL̇, µ, wS) = 0

Therefore, predator-prey has Leftmax = 0 for this property.

Proposition 57. Rightmin for the fine discrimination (FD) property is equal to 0 for the
predator-prey environment.

Proof. To find Rightmin (equation 8.5), we need to find a Πe that minimises the property value
as much as possible while Πo maximises it. Using Πe = {πu1, πu2} (a πu agent always performs
Up) we find this situation no matter which Πo we use.

Following definition 26 we obtain the FD value for this ⟨Πe,Πo⟩ (where Πo is instantiated
with any permitted value). Since the multi-agent environment is not team symmetric, we
need to calculate this property value for every agent slot. Also, since |Πe| = 2 we just need
to calculate this property value for one pair of evaluated agents. Following definition 25 we
calculate the FD value for the evaluated agents πu1, πu2 ∈ Πe and each agent slot. We start
with agent slot 1:

FD1(πu1, πu2,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−1 (Πo)

wL̇(l̇)∆Q(R1(µ[l̇
1← πu1]), R1(µ[l̇

1← πu2]))

C.3. Fine Discrimination 207

We do not know which Πo we have, so we use a figurative agent line-up pattern l̇ =
(∗, π1, π2, π3) from L̇

N(µ)
−1 (Πo):

∆Q(R1(µ[l̇
1← πu1]), R1(µ[l̇

1← πu2])) = ∆Q(R1(µ[πu1, π1, π2, π3]), R1(µ[πu2, π1, π2, π3]))

The other agents (any trio π1,π2 and π3) are not able to differentiate with which agent they
are interacting, so they are not able to change their distribution of action sequences depending
on the behaviour of the agent in agent slot 1, obtaining both agents in agent slot 1 (πu1 and
πu2) the same expected average reward. So:

∆Q(R1(µ[πu1, π1, π2, π3]), R1(µ[πu2, π1, π2, π3])) = 0

We generalise FD1 for any possible agent line-up pattern:

FD1(πu1, πu2,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−1 (Πo)

wL̇(l̇)∆Q(R1(µ[l̇
1← πu1]), R1(µ[l̇

1← πu2])) =

=
∑

l̇∈L̇N(µ)
−1 (Πo)

wL̇(l̇)0 = 0

For agent slot 2, the other agents (any trio π1,π2 and π3) are also not able to change
their distribution of action sequences depending on the behaviour of the agent in agent slot 2,
obtaining both agents in agent slot 2 (πu1 and πu2) the same expected average reward. So:

FD2(πu1, πu2,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−2 (Πo)

wL̇(l̇)∆Q(R2(µ[l̇
2← πu1]), R2(µ[l̇

2← πu2])) =

=
∑

l̇∈L̇N(µ)
−2 (Πo)

wL̇(l̇)0 = 0

For agent slot 3, the other agents (any trio π1,π2 and π3) are also not able to change
their distribution of action sequences depending on the behaviour of the agent in agent slot 3,
obtaining both agents in agent slot 3 (πu1 and πu2) the same expected average reward. So:

FD3(πu1, πu2,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−3 (Πo)

wL̇(l̇)∆Q(R3(µ[l̇
3← πu1]), R3(µ[l̇

3← πu2])) =

=
∑

l̇∈L̇N(µ)
−3 (Πo)

wL̇(l̇)0 = 0

And for agent slot 4, the other agents (any trio π1,π2 and π3) are also not able to change
their distribution of action sequences depending on the behaviour of the agent in agent slot 4,
obtaining both agents in agent slot 4 (πu1 and πu2) the same expected average reward. So:

FD4(πu1, πu2,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−4 (Πo)

wL̇(l̇)∆Q(R4(µ[l̇
4← πu1]), R4(µ[l̇

4← πu2])) =

=
∑

l̇∈L̇N(µ)
−4 (Πo)

wL̇(l̇)0 = 0

C.4. Strict Total Grading 208

And finally, we calculate the FD value:

FD(Πe, wΠe ,Πo, wL̇, µ, wS) = ηΠ2

∑
π1,π2∈Πe|π1 ̸=π2

wΠe(π1)wΠe(π2)

N(µ)∑
i=1

wS(i, µ)×

× FDi(π1, π2,Πo, wL̇, µ) =

= 2
2

1

1

2

1

2

1

4
{FD1(πu1, πu2,Πo, wL̇, µ) + FD2(πu1, πu2,Πo, wL̇, µ)+

+ FD3(πu1, πu2,Πo, wL̇, µ) + FD4(πu1, πu2,Πo, wL̇, µ)} =

= 2
2

1

1

2

1

2

1

4
{0 + 0 + 0 + 0} = 0

Note that we avoided to calculate both FDi(a, b,Πo, wL̇, µ) and FDi(b, a,Πo, wL̇, µ), since they
provide the same result, by calculating only FDi(a, b,Πo, wL̇, µ) and multiplying the result by
2.

So, for every Πo we obtain the same result:

∀Πo : FD(Πe, wΠe ,Πo, wL̇, µ, wS) = 0

Therefore, predator-prey has Rightmin = 0 for this property.

C.4 Strict Total Grading

We arrive to the strict total grading (STG) property. As given in section 7.5.2, we want to
know if there exists a strict ordering between the evaluated agents when interacting in the
multi-agent environment. We use an average of rewards as the utility function to calculate an
agent’s result.

To simplify the notation, we use the next table to represent the STO: Ri(µ[l̇
i,j← π1, π2]) <

Rj(µ[l̇
i,j← π1, π2]), Ri(µ[l̇

i,j← π2, π3]) < Rj(µ[l̇
i,j← π2, π3]) and Ri(µ[l̇

i,j← π1, π3]) < Rj(µ[l̇
i,j←

π1, π3]).

AS i AS j
π1 < π2

π2 < π3

π1 < π3

where AS stands for agent slot.

Proposition 58. Generalmin for the strict total grading (STG) property is equal to 0 for the
predator-prey environment.

Proof. To find Generalmin (equation 8.1), we need to find a pair ⟨Πe,Πo⟩ that minimises the
property value as much as possible. We can have this situation by selecting Πe = {πs1, πs2, πs3}
and Πo = {πx} (a πs agent always stays in the same cell6, and a πx agent acts stochastically

6Note that every cell has an action that leads to a block or a boundary, therefore an agent performing this
action stays at its current cell.

C.4. Strict Total Grading 209

with a probability of 1/
√
2 to do not reach the upper left corner and a probability of 1− 1/

√
2

to reach this corner).
Following definition 30 we obtain the STG value for this ⟨Πe,Πo⟩. Since the multi-agent

environment is not team symmetric, we need to calculate this property value for every pair of
agent slots. Also, since |Πe| = 3 we just need to calculate this property value for one trio of
evaluated agents. Following definition 29 we calculate the STG value for the evaluated agents
πs1, πs2, πs3 ∈ Πe and each pair of agent slots. We start with agent slots 1 and 2:

STG1,2(πs1, πs2, πs3,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−1,2 (Πo)

wL̇(l̇)STO1,2(πs1, πs2, πs3, l̇, µ) =

=
1

1
STO1,2(πs1, πs2, πs3, (∗, ∗, πx, πx), µ)

The following table shows us STO1,2 for all the permutations of πs1, πs2, πs3.

AS 1 AS 2 AS 1 AS 2 AS 1 AS 2
πs1 < πs2 πs1 < πs3 πs2 < πs1

πs2 < πs3 πs3 < πs2 πs1 < πs3

πs1 < πs3 πs1 < πs2 πs2 < πs3

AS 1 AS 2 AS 1 AS 2 AS 1 AS 2
πs2 < πs3 πs3 < πs1 πs3 < πs2

πs3 < πs1 πs1 < πs2 πs2 < πs1

πs2 < πs1 πs3 < πs2 πs3 < πs1

It is not possible to find a STO, since for every permutation the agents in agent slots 3 (πx)
and 4 (πx) have a probability of (1/

√
2)× (1/

√
2) = 1/2 to do not chase the prey (any πs) and

the same probability 1−1/2 = 1/2 to chase the prey (any πs), making the agents in agent slots
1 (any πs) and 2 (any πs) to obtain the same expected average reward (0). So:

STG1,2(πs1, πs2, πs3,Πo, wL̇, µ) =
1

1
0 = 0

For agent slots 1 and 3, the following table shows us STO1,3 for all the permutations of
πs1, πs2, πs3.

AS 1 AS 3 AS 1 AS 3 AS 1 AS 3
πs1 < πs2 πs1 < πs3 πs2 < πs1

πs2 < πs3 πs3 < πs2 πs1 < πs3

πs1 < πs3 πs1 < πs2 πs2 < πs3

AS 1 AS 3 AS 1 AS 3 AS 1 AS 3
πs2 < πs3 πs3 < πs1 πs3 < πs2

πs3 < πs1 πs1 < πs2 πs2 < πs1

πs2 < πs1 πs3 < πs2 πs3 < πs1

It is also not possible to find a STO for any permutation, making again the agents in agent
slots 1 (any πs) and 3 (any πs) to obtain the same expected average reward (0). So:

C.4. Strict Total Grading 210

STG1,3(πs1, πs2, πs3,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−1,3 (Πo)

wL̇(l̇)STO1,3(πs1, πs2, πs3, l̇, µ) =

=
1

1
STO1,3(πs1, πs2, πs3, (∗, πx, ∗, πx), µ) =

=
1

1
0 = 0

For agent slots 1 and 4, the following table shows us STO1,4 for all the permutations of
πs1, πs2, πs3.

AS 1 AS 4 AS 1 AS 4 AS 1 AS 4
πs1 < πs2 πs1 < πs3 πs2 < πs1

πs2 < πs3 πs3 < πs2 πs1 < πs3

πs1 < πs3 πs1 < πs2 πs2 < πs3

AS 1 AS 4 AS 1 AS 4 AS 1 AS 4
πs2 < πs3 πs3 < πs1 πs3 < πs2

πs3 < πs1 πs1 < πs2 πs2 < πs1

πs2 < πs1 πs3 < πs2 πs3 < πs1

It is also not possible to find a STO for any permutation, making again the agents in agent
slots 1 (any πs) and 4 (any πs) to obtain the same expected average reward (0). So:

STG1,4(πs1, πs2, πs3,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−1,4 (Πo)

wL̇(l̇)STO1,4(πs1, πs2, πs3, l̇, µ) =

=
1

1
STO1,4(πs1, πs2, πs3, (∗, πx, πx, ∗), µ) =

=
1

1
0 = 0

For agent slots 2 and 1, the following table shows us STO2,1 for all the permutations of
πs1, πs2, πs3.

AS 2 AS 1 AS 2 AS 1 AS 2 AS 1
πs1 < πs2 πs1 < πs3 πs2 < πs1

πs2 < πs3 πs3 < πs2 πs1 < πs3

πs1 < πs3 πs1 < πs2 πs2 < πs3

AS 2 AS 1 AS 2 AS 1 AS 2 AS 1
πs2 < πs3 πs3 < πs1 πs3 < πs2

πs3 < πs1 πs1 < πs2 πs2 < πs1

πs2 < πs1 πs3 < πs2 πs3 < πs1

It is also not possible to find a STO for any permutation, making again the agents in agent
slots 2 (any πs) and 1 (any πs) to obtain the same expected average reward (0). So:

C.4. Strict Total Grading 211

STG2,1(πs1, πs2, πs3,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−2,1 (Πo)

wL̇(l̇)STO2,1(πs1, πs2, πs3, l̇, µ) =

=
1

1
STO2,1(πs1, πs2, πs3, (∗, ∗, πx, πx), µ) =

=
1

1
0 = 0

For agent slots 2 and 3, it is not possible to find a STO, since both agents obtain the same
expected average reward due they are in the same team. So:

STG2,3(πs1, πs2, πs3,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−2,3 (Πo)

wL̇(l̇)STO2,3(πs1, πs2, πs3, l̇, µ) =

=
1

1
STO2,3(πs1, πs2, πs3, (πx, ∗, ∗, πx), µ) =

=
1

1
0 = 0

For agent slots 2 and 4, it is also not possible to find a STO, since again both agents obtain
the same expected average reward due they are in the same team. So:

STG2,4(πs1, πs2, πs3,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−2,4 (Πo)

wL̇(l̇)STO2,4(πs1, πs2, πs3, l̇, µ) =

=
1

1
STO2,4(πs1, πs2, πs3, (πx, ∗, πx, ∗), µ) =

=
1

1
0 = 0

For agent slots 3 and 1, the following table shows us STO3,1 for all the permutations of
πs1, πs2, πs3.

AS 3 AS 1 AS 3 AS 1 AS 3 AS 1
πs1 < πs2 πs1 < πs3 πs2 < πs1

πs2 < πs3 πs3 < πs2 πs1 < πs3

πs1 < πs3 πs1 < πs2 πs2 < πs3

AS 3 AS 1 AS 3 AS 1 AS 3 AS 1
πs2 < πs3 πs3 < πs1 πs3 < πs2

πs3 < πs1 πs1 < πs2 πs2 < πs1

πs2 < πs1 πs3 < πs2 πs3 < πs1

It is also not possible to find a STO for any permutation, making the agents in agent slots
3 (any πs) and 1 (any πs) to obtain the same expected average reward (0). So:

STG3,1(πs1, πs2, πs3,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−3,1 (Πo)

wL̇(l̇)STO3,1(πs1, πs2, πs3, l̇, µ) =

=
1

1
STO3,1(πs1, πs2, πs3, (∗, πx, ∗, πx), µ) =

=
1

1
0 = 0

C.4. Strict Total Grading 212

For agent slots 3 and 2, it is also not possible to find a STO, since both agents obtain the
same expected average reward due they are in the same team. So:

STG3,2(πs1, πs2, πs3,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−3,2 (Πo)

wL̇(l̇)STO3,2(πs1, πs2, πs3, l̇, µ) =

=
1

1
STO3,2(πs1, πs2, πs3, (πx, ∗, ∗, πx), µ) =

=
1

1
0 = 0

For agent slots 3 and 4, it is also not possible to find a STO, since again both agents obtain
the same expected average reward due they are in the same team. So:

STG3,4(πs1, πs2, πs3,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−3,4 (Πo)

wL̇(l̇)STO3,4(πs1, πs2, πs3, l̇, µ) =

=
1

1
STO3,4(πs1, πs2, πs3, (πx, πx, ∗, ∗), µ) =

=
1

1
0 = 0

For agent slots 4 and 1, the following table shows us STO4,1 for all the permutations of
πs1, πs2, πs3.

AS 4 AS 1 AS 4 AS 1 AS 4 AS 1
πs1 < πs2 πs1 < πs3 πs2 < πs1

πs2 < πs3 πs3 < πs2 πs1 < πs3

πs1 < πs3 πs1 < πs2 πs2 < πs3

AS 4 AS 1 AS 4 AS 1 AS 4 AS 1
πs2 < πs3 πs3 < πs1 πs3 < πs2

πs3 < πs1 πs1 < πs2 πs2 < πs1

πs2 < πs1 πs3 < πs2 πs3 < πs1

It is also not possible to find a STO for any permutation, making the agents in agent slots
4 (any πs) and 1 (any πs) to obtain the same expected average reward (0). So:

STG4,1(πs1, πs2, πs3,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−4,1 (Πo)

wL̇(l̇)STO4,1(πs1, πs2, πs3, l̇, µ) =

=
1

1
STO4,1(πs1, πs2, πs3, (∗, πx, πx, ∗), µ) =

=
1

1
0 = 0

For agent slots 4 and 2, it is also not possible to find a STO, since both agents obtain the
same expected average reward due they are in the same team. So:

C.4. Strict Total Grading 213

STG4,2(πs1, πs2, πs3,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−4,2 (Πo)

wL̇(l̇)STO4,2(πs1, πs2, πs3, l̇, µ) =

=
1

1
STO4,2(πs1, πs2, πs3, (πx, ∗, πx, ∗), µ) =

=
1

1
0 = 0

And for agent slots 4 and 3, it is also not possible to find a STO, since again both agents
obtain the same expected average reward due they are in the same team. So:

STG4,3(πs1, πs2, πs3,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−4,3 (Πo)

wL̇(l̇)STO4,3(πs1, πs2, πs3, l̇, µ) =

=
1

1
STO4,3(πs1, πs2, πs3, (πx, πx, ∗, ∗), µ) =

=
1

1
0 = 0

And finally, we calculate the STG value:

STG(Πe, wΠe ,Πo, wL̇, µ, wS) = ηΠ3

∑
π1,π2,π3∈Πe|π1 ̸=π2 ̸=π3

wΠe(π1)wΠe(π2)wΠe(π3)ηS2
1

N(µ)∑
i=1

wS(i, µ)×

×

 i−1∑
j=1

wS(j, µ)STGi,j(π1, π2, π3,Πo, wL̇, µ) +

N(µ)∑
j=i+1

wS(j, µ)STGi,j(π1, π2, π3,Πo, wL̇, µ)

 =

= 6
9

2

1

3

1

3

1

3

4

3

1

4

1

4
{STG1,2(πs1, πs2, πs3,Πo, wL̇, µ)+

+ STG1,3(πs1, πs2, πs3,Πo, wL̇, µ)+

+ STG1,4(πs1, πs2, πs3,Πo, wL̇, µ)+

+ STG2,1(πs1, πs2, πs3,Πo, wL̇, µ)+

+ STG2,3(πs1, πs2, πs3,Πo, wL̇, µ)+

+ STG2,4(πs1, πs2, πs3,Πo, wL̇, µ)+

+ STG3,1(πs1, πs2, πs3,Πo, wL̇, µ)+

+ STG3,2(πs1, πs2, πs3,Πo, wL̇, µ)+

+ STG3,4(πs1, πs2, πs3,Πo, wL̇, µ)+

+ STG4,1(πs1, πs2, πs3,Πo, wL̇, µ)+

+ STG4,2(πs1, πs2, πs3,Πo, wL̇, µ)+

+ STG4,3(πs1, πs2, πs3,Πo, wL̇, µ)} =

= 6
9

2

1

3

1

3

1

3

4

3

1

4

1

4
{12× 0} = 0

Note that we avoided to calculate all the permutations of π1, π2, π3 for STGi,j(π1, π2, π3,Πo, wL̇, µ),
since they provide the same result, by calculating only one permutation and multiplying the
result by 6 (the number of permutations).

C.4. Strict Total Grading 214

Since 0 is the lowest possible value for the strict total grading property, therefore predator-
prey has Generalmin = 0 for this property.

Proposition 59. Generalmax for the strict total grading (STG) property is equal to 1
2
for the

predator-prey environment.

Proof. To find Generalmax (equation 8.2), we need to find a pair ⟨Πe,Πo⟩ that maximises the
property value as much as possible. We can have this situation by selecting Πe = {πx, πy, πz}
and Πo = {πs} (a πs agent always stays in the same cell7 and πx, πy and πz behave as shown
in figures C.2, C.3 and C.4 respectively).

♦ 3 2 1⃝ 3
2
1
⃝

6
5
4 3 2

1⃝

Figure C.2: Behaviour of πx when interacting on each of the agent slots. Numbers represent
the position of πx on each time step.

♦
1 2

3 2 1⃝ 3
2
1
⃝

6
5
4 3 2

1⃝

Figure C.3: Behaviour of πy when interacting on each of the agent slots. Numbers represent
the position of πy on each time step.

♦
1 2

5 2 1⃝
4 3

5
4 3
1 2
⃝

6
5 4

3 2
1⃝

Figure C.4: Behaviour of πz when interacting on each of the agent slots. Numbers represent
the position of πz on each time step.

Following definition 30 we obtain the STG value for this ⟨Πe,Πo⟩. Since the multi-agent
environment is not team symmetric, we need to calculate this property value for every pair of
agent slots. Also, since |Πe| = 3 we just need to calculate this property value for one trio of
evaluated agents. Following definition 29 we calculate the STG value for the evaluated agents
πx, πy, πz ∈ Πe and each pair of agent slots. We start with agent slots 1 and 2:

STG1,2(πx, πy, πz,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−1,2 (Πo)

wL̇(l̇)STO1,2(πx, πy, πz, l̇, µ) =

=
1

1
STO1,2(πx, πy, πz, (∗, ∗, πs, πs), µ)

7Note that every cell has an action that leads to a block or a boundary, therefore an agent performing this
action stays at its current cell.

C.4. Strict Total Grading 215

The following table shows us STO1,2 for all the permutations of πx, πy, πz.

AS 1 AS 2 AS 1 AS 2 AS 1 AS 2
πx < πy πx < πz πy < πx

πy < πz πz < πy πx < πz

πx < πz πx < πy πy < πz

AS 1 AS 2 AS 1 AS 2 AS 1 AS 2
πy < πz πz < πx πz < πy

πz < πx πx < πy πy < πx

πy < πx πz < πy πz < πx

It is possible to find a STO for the first permutation. In agent line-up (πx, πy, πs, πs), πx

stays at the upper left corner and πy chases it in that cell in the 3rd time step, obtaining the
expected average rewards of −1 and 1 respectively. In agent line-up (πy, πz, πs, πs), πy reaches
the 2nd row 2nd column cell and πz chases it in that cell in the 3rd time step, obtaining the
expected average rewards of −1 and 1 respectively. In agent line-up (πx, πz, πs, πs), πx stays at
the upper left corner and πz chases it in that cell in the 5th time step, obtaining the expected
average rewards of −1 and 1 respectively. So:

STG1,2(πx, πy, πz,Πo, wL̇, µ) =
1

1
1 = 1

For agent slots 1 and 3, the following table shows us STO1,3 for all the permutations of
πx, πy, πz.

AS 1 AS 3 AS 1 AS 3 AS 1 AS 3
πx < πy πx < πz πy < πx

πy < πz πz < πy πx < πz

πx < πz πx < πy πy < πz

AS 1 AS 3 AS 1 AS 3 AS 1 AS 3
πy < πz πz < πx πz < πy

πz < πx πx < πy πy < πx

πy < πx πz < πy πz < πx

It is also possible to find a STO for the first permutation. In agent line-up (πx, πs, πy, πs),
πx stays at the upper left corner and πy chases it in that cell in the 3rd time step, obtaining the
expected average rewards of −1 and 1 respectively. In agent line-up (πy, πs, πz, πs), πy reaches
the 2nd row 2nd column cell and πz chases it in that cell in the 3rd time step, obtaining the
expected average rewards of −1 and 1 respectively. In agent line-up (πx, πs, πz, πs), πx stays at
the upper left corner and πz chases it in that cell in the 5th time step, obtaining the expected
average rewards of −1 and 1 respectively. So:

STG1,3(πx, πy, πz,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−1,3 (Πo)

wL̇(l̇)STO1,3(πx, πy, πz, l̇, µ) =

=
1

1
STO1,3(πx, πy, πz, (∗, πs, ∗, πs), µ) =

=
1

1
1 = 1

For agent slots 1 and 4, the following table shows us STO1,4 for all the permutations of
πx, πy, πz.

C.4. Strict Total Grading 216

AS 1 AS 4 AS 1 AS 4 AS 1 AS 4
πx < πy πx < πz πy < πx

πy < πz πz < πy πx < πz

πx < πz πx < πy πy < πz

AS 1 AS 4 AS 1 AS 4 AS 1 AS 4
πy < πz πz < πx πz < πy

πz < πx πx < πy πy < πx

πy < πx πz < πy πz < πx

It is also possible to find a STO for the first permutation. In agent line-up (πx, πs, πs, πy),
πx stays at the upper left corner and πy chases it in that cell in the 6th time step, obtaining the
expected average rewards of −1 and 1 respectively. In agent line-up (πy, πs, πs, πz), πy reaches
the 2nd row 2nd column cell and πz chases it in that cell in the 4th time step, obtaining the
expected average rewards of −1 and 1 respectively. In agent line-up (πx, πs, πs, πz), πx stays at
the upper left corner and πz chases it in that cell in the 6th time step, obtaining the expected
average rewards of −1 and 1 respectively. So:

STG1,4(πx, πy, πz,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−1,4 (Πo)

wL̇(l̇)STO1,4(πx, πy, πz, l̇, µ) =

=
1

1
STO1,4(πx, πy, πz, (∗, πs, πs, ∗), µ) =

=
1

1
1 = 1

For agent slots 2 and 1, the following table shows us STO2,1 for all the permutations of
πx, πy, πz.

AS 2 AS 1 AS 2 AS 1 AS 2 AS 1
πx < πy πx < πz πy < πx

πy < πz πz < πy πx < πz

πx < πz πx < πy πy < πz

AS 2 AS 1 AS 2 AS 1 AS 2 AS 1
πy < πz πz < πx πz < πy

πz < πx πx < πy πy < πx

πy < πx πz < πy πz < πx

It is also possible to find a STO for the first permutation. In agent line-up (πy, πx, πs, πs), πy

reaches the 2nd row 2nd column cell and πx never chases it in that cell, obtaining the expected
average rewards of 1 and −1 respectively. In agent line-up (πz, πy, πs, πs), πz reaches the 2nd
row 2nd column cell and πy never chases it in that cell, obtaining the expected average rewards
of 1 and −1 respectively. In agent line-up (πz, πx, πs, πs), πz reaches the 2nd row 2nd column
cell and πx never chases it in that cell, obtaining the expected average rewards of 1 and −1
respectively. So:

C.4. Strict Total Grading 217

STG2,1(πx, πy, πz,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−2,1 (Πo)

wL̇(l̇)STO2,1(πx, πy, πz, l̇, µ) =

=
1

1
STO2,1(πx, πy, πz, (∗, ∗, πs, πs), µ) =

=
1

1
1 = 1

For agent slots 2 and 3, it is not possible to find a STO, since both agents obtain the same
expected average reward due they are in the same team. So:

STG2,3(πx, πy, πz,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−2,3 (Πo)

wL̇(l̇)STO2,3(πx, πy, πz, l̇, µ) =

=
1

1
STO2,3(πx, πy, πz, (πs, ∗, ∗, πs), µ) =

=
1

1
0 = 0

For agent slots 2 and 4, it is also not possible to find a STO, since again both agents obtain
the same expected average reward due they are in the same team. So:

STG2,4(πx, πy, πz,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−2,4 (Πo)

wL̇(l̇)STO2,4(πx, πy, πz, l̇, µ) =

=
1

1
STO2,4(πx, πy, πz, (πs, ∗, πs, ∗), µ) =

=
1

1
0 = 0

For agent slots 3 and 1, the following table shows us STO3,1 for all the permutations of
πx, πy, πz.

AS 3 AS 1 AS 3 AS 1 AS 3 AS 1
πx < πy πx < πz πy < πx

πy < πz πz < πy πx < πz

πx < πz πx < πy πy < πz

AS 3 AS 1 AS 3 AS 1 AS 3 AS 1
πy < πz πz < πx πz < πy

πz < πx πx < πy πy < πx

πy < πx πz < πy πz < πx

It is possible to find a STO for the first permutation. In agent line-up (πy, πs, πx, πs), πy

reaches the 2nd row 2nd column cell and πx never chases it in that cell, obtaining the expected
average rewards of 1 and −1 respectively. In agent line-up (πz, πs, πy, πs), πz reaches the 2nd
row 2nd column cell and πy never chases it in that cell, obtaining the expected average rewards
of 1 and −1 respectively. In agent line-up (πz, πs, πx, πs), πz reaches the 2nd row 2nd column
cell and πx never chases it in that cell, obtaining the expected average rewards of 1 and −1
respectively. So:

C.4. Strict Total Grading 218

STG3,1(πx, πy, πz,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−3,1 (Πo)

wL̇(l̇)STO3,1(πx, πy, πz, l̇, µ) =

=
1

1
STO3,1(πx, πy, πz, (∗, πs, ∗, πs), µ) =

=
1

1
1 = 1

For agent slots 3 and 2, it is not possible to find a STO, since again both agents obtain the
same expected average reward due they are in the same team. So:

STG3,2(πx, πy, πz,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−3,2 (Πo)

wL̇(l̇)STO3,2(πx, πy, πz, l̇, µ) =

=
1

1
STO3,2(πx, πy, πz, (πs, ∗, ∗, πs), µ) =

=
1

1
0 = 0

For agent slots 3 and 4, it is also not possible to find a STO, since again both agents obtain
the same expected average reward due they are in the same team. So:

STG3,4(πx, πy, πz,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−3,4 (Πo)

wL̇(l̇)STO3,4(πx, πy, πz, l̇, µ) =

=
1

1
STO3,4(πx, πy, πz, (πs, πs, ∗, ∗), µ) =

=
1

1
0 = 0

For agent slots 4 and 1, the following table shows us STO4,1 for all the permutations of
πx, πy, πz.

AS 4 AS 1 AS 4 AS 1 AS 4 AS 1
πx < πy πx < πz πy < πx

πy < πz πz < πy πx < πz

πx < πz πx < πy πy < πz

AS 4 AS 1 AS 4 AS 1 AS 4 AS 1
πy < πz πz < πx πz < πy

πz < πx πx < πy πy < πx

πy < πx πz < πy πz < πx

It is possible to find a STO for the first permutation. In agent line-up (πy, πs, πs, πx), πy

reaches the 2nd row 2nd column cell and πx never chases it in that cell, obtaining the expected
average rewards of 1 and −1 respectively. In agent line-up (πz, πs, πs, πy), πz reaches the 2nd
row 2nd column cell and πy never chases it in that cell, obtaining the expected average rewards
of 1 and −1 respectively. In agent line-up (πz, πs, πs, πx), πz reaches the 2nd row 2nd column
cell and πx never chases it in that cell, obtaining the expected average rewards of 1 and −1
respectively. So:

C.4. Strict Total Grading 219

STG4,1(πx, πy, πz,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−4,1 (Πo)

wL̇(l̇)STO4,1(πx, πy, πz, l̇, µ) =

=
1

1
STO4,1(πx, πy, πz, (∗, πs, πs, ∗), µ) =

=
1

1
1 = 1

For agent slots 4 and 2, it is not possible to find a STO, since again both agents obtain the
same expected average reward due they are in the same team. So:

STG4,2(πx, πy, πz,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−4,2 (Πo)

wL̇(l̇)STO4,2(πx, πy, πz, l̇, µ) =

=
1

1
STO4,2(πx, πy, πz, (πs, ∗, πs, ∗), µ) =

=
1

1
0 = 0

And for agent slots 4 and 3, it is also not possible to find a STO, since again both agents
obtain the same expected average reward due they are in the same team. So:

STG4,3(πx, πy, πz,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−4,3 (Πo)

wL̇(l̇)STO4,3(πx, πy, πz, l̇, µ) =

=
1

1
STO4,3(πx, πy, πz, (πs, πs, ∗, ∗), µ) =

=
1

1
0 = 0

And finally, we calculate the STG value:

STG(Πe, wΠe ,Πo, wL̇, µ, wS) = ηΠ3

∑
π1,π2,π3∈Πe|π1 ̸=π2 ̸=π3

wΠe(π1)wΠe(π2)wΠe(π3)ηS2
1

N(µ)∑
i=1

wS(i, µ)×

×

 i−1∑
j=1

wS(j, µ)STGi,j(π1, π2, π3,Πo, wL̇, µ) +

N(µ)∑
j=i+1

wS(j, µ)STGi,j(π1, π2, π3,Πo, wL̇, µ)

 =

= 6
9

2

1

3

1

3

1

3

4

3

1

4

1

4
×

× {STG1,2(πx, πy, πz,Πo, wL̇, µ) + STG1,3(πx, πy, πz,Πo, wL̇, µ)+

+ STG1,4(πx, πy, πz,Πo, wL̇, µ) + STG2,1(πx, πy, πz,Πo, wL̇, µ)+

+ STG2,3(πx, πy, πz,Πo, wL̇, µ) + STG2,4(πx, πy, πz,Πo, wL̇, µ)+

+ STG3,1(πx, πy, πz,Πo, wL̇, µ) + STG3,2(πx, πy, πz,Πo, wL̇, µ)+

+ STG3,4(πx, πy, πz,Πo, wL̇, µ) + STG4,1(πx, πy, πz,Πo, wL̇, µ)+

+ STG4,2(πx, πy, πz,Πo, wL̇, µ) + STG4,3(πx, πy, πz,Πo, wL̇, µ)} =

= 6
9

2

1

3

1

3

1

3

4

3

1

4

1

4
{6× 0 + 6× 1} = 1

2

C.4. Strict Total Grading 220

Note that we avoided to calculate all the permutations of π1, π2, π3 for STGi,j(π1, π2, π3,Πo, wL̇, µ),
since they provide the same result, by calculating only one permutation and multiplying the
result by 6 (the number of permutations).

Since 1
2
is the highest possible value that we can obtain for the strict total grading property,

therefore predator-prey has Generalmax = 1
2
for this property.

Approximation 2. Leftmax for the strict total grading (STG) property is equal to 1
4
(as a

lower approximation) for the predator-prey environment.

Proof. To find Leftmax (equation 8.4), we need to find a Πe that maximises the property value
as much as possible while Πo minimises it. Using Πe = {πchase1, πchase2, πchase3} (a πchase agent
tries to be chased when interacting as the prey and tries to perfectly coordinate with the other
predators to chase the prey when interacting as a predator) we find a lower approximation of
this situation no matter which Πo we use.

Following definition 30 we obtain the STG value for this ⟨Πe,Πo⟩ (where Πo is instantiated
with any permitted value). Since the multi-agent environment is not team symmetric, we need
to calculate this property value for every pair of agent slots. Also, since |Πe| = 3 we just need
to calculate this property value for one trio of evaluated agents. Following definition 29 we
calculate the STG value for the evaluated agents πchase1, πchase2, πchase3 ∈ Πe and each pair of
agent slots. We start with agent slots 1 and 2:

STG1,2(πchase1, πchase2, πchase3,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−1,2 (Πo)

wL̇(l̇)STO1,2(πchase1, πchase2, πchase3, l̇, µ)

We do not know which Πo we have, so we use a figurative agent line-up pattern l̇ =
(∗, ∗, π1, π2) from L̇

N(µ)
−1,2 (Πo):

STO1,2(πchase1, πchase2, πchase3, l̇, µ) = STO1,2(πchase1, πchase2, πchase3, (∗, ∗, π1, π2), µ)

The following table shows us STO1,2 for all the permutations of πchase1, πchase2, πchase3.

AS 1 AS 2 AS 1 AS 2 AS 1 AS 2
πchase1 < πchase2 πchase1 < πchase3 πchase2 < πchase1

πchase2 < πchase3 πchase3 < πchase2 πchase1 < πchase3

πchase1 < πchase3 πchase1 < πchase2 πchase2 < πchase3

AS 1 AS 2 AS 1 AS 2 AS 1 AS 2
πchase2 < πchase3 πchase3 < πchase1 πchase3 < πchase2

πchase3 < πchase1 πchase1 < πchase2 πchase2 < πchase1

πchase2 < πchase1 πchase3 < πchase2 πchase3 < πchase1

It is possible to find a STO for every permutation, since the prey is always chased8, obtaining
the agents in agent slots 1 (any πchase) and 2 (any πchase) the expected average rewards of −1
and 1 respectively. So:

STO1,2(πchase1, πchase2, πchase3, (∗, ∗, π1, π2), µ) = 1

8Note that only one predator trying to chase the prey is enough to chase a prey which wants to be chased.

C.4. Strict Total Grading 221

We generalise STG1,2 for any possible agent line-up pattern:

STG1,2(πchase1, πchase2, πchase3,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−1,2 (Πo)

wL̇(l̇)STO1,2(πchase1, πchase2, πchase3, l̇, µ) =

=
∑

l̇∈L̇N(µ)
−1,2 (Πo)

wL̇(l̇)1 = 1

For agent slots 1 and 3, the following table shows us STO1,3 for all the permutations of
πchase1, πchase2, πchase3.

AS 1 AS 3 AS 1 AS 3 AS 1 AS 3
πchase1 < πchase2 πchase1 < πchase3 πchase2 < πchase1

πchase2 < πchase3 πchase3 < πchase2 πchase1 < πchase3

πchase1 < πchase3 πchase1 < πchase2 πchase2 < πchase3

AS 1 AS 3 AS 1 AS 3 AS 1 AS 3
πchase2 < πchase3 πchase3 < πchase1 πchase3 < πchase2

πchase3 < πchase1 πchase1 < πchase2 πchase2 < πchase1

πchase2 < πchase1 πchase3 < πchase2 πchase3 < πchase1

It is also possible to find a STO, since again the agents in agent slots 1 (any πchase) and 3
(any πchase) obtain the expected average rewards of −1 and 1 respectively. So:

STG1,3(πchase1, πchase2, πchase3,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−1,3 (Πo)

wL̇(l̇)STO1,3(πchase1, πchase2, πchase3, l̇, µ) =

=
∑

l̇∈L̇N(µ)
−1,3 (Πo)

wL̇(l̇)1 = 1

For agent slots 1 and 4, the following table shows us STO1,4 for all the permutations of
πchase1, πchase2, πchase3.

AS 1 AS 4 AS 1 AS 4 AS 1 AS 4
πchase1 < πchase2 πchase1 < πchase3 πchase2 < πchase1

πchase2 < πchase3 πchase3 < πchase2 πchase1 < πchase3

πchase1 < πchase3 πchase1 < πchase2 πchase2 < πchase3

AS 1 AS 4 AS 1 AS 4 AS 1 AS 4
πchase2 < πchase3 πchase3 < πchase1 πchase3 < πchase2

πchase3 < πchase1 πchase1 < πchase2 πchase2 < πchase1

πchase2 < πchase1 πchase3 < πchase2 πchase3 < πchase1

It is also possible to find a STO, since again the agents in agent slots 1 (any πchase) and 4
(any πchase) obtain the expected average rewards of −1 and 1 respectively. So:

STG1,4(πchase1, πchase2, πchase3,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−1,4 (Πo)

wL̇(l̇)STO1,4(πchase1, πchase2, πchase3, l̇, µ) =

=
∑

l̇∈L̇N(µ)
−1,4 (Πo)

wL̇(l̇)1 = 1

C.4. Strict Total Grading 222

For agent slots 2 and 1, the following table shows us STO2,1 for all the permutations of
πchase1, πchase2, πchase3.

AS 2 AS 1 AS 2 AS 1 AS 2 AS 1
πchase1 < πchase2 πchase1 < πchase3 πchase2 < πchase1

πchase2 < πchase3 πchase3 < πchase2 πchase1 < πchase3

πchase1 < πchase3 πchase1 < πchase2 πchase2 < πchase3

AS 2 AS 1 AS 2 AS 1 AS 2 AS 1
πchase2 < πchase3 πchase3 < πchase1 πchase3 < πchase2

πchase3 < πchase1 πchase1 < πchase2 πchase2 < πchase1

πchase2 < πchase1 πchase3 < πchase2 πchase3 < πchase1

It is not possible to find a STO for any permutation, since the agents in agent slots 2 (any
πchase) and 1 (any πchase) obtain the expected average rewards of 1 and −1 respectively. So:

STG2,1(πchase1, πchase2, πchase3,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−2,1 (Πo)

wL̇(l̇)STO2,1(πchase1, πchase2, πchase3, l̇, µ) =

=
∑

l̇∈L̇N(µ)
−2,1 (Πo)

wL̇(l̇)0 = 0

For agent slots 2 and 3, it is also not possible to find a STO, since both agents obtain the
same expected average reward due they are in the same team. So:

STG2,3(πchase1, πchase2, πchase3,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−2,3 (Πo)

wL̇(l̇)STO2,3(πchase1, πchase2, πchase3, l̇, µ) =

=
∑

l̇∈L̇N(µ)
−2,3 (Πo)

wL̇(l̇)0 = 0

For agent slots 2 and 4, it is also not possible to find a STO, since again both agents obtain
the same expected average reward due they are in the same team. So:

STG2,4(πchase1, πchase2, πchase3,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−2,4 (Πo)

wL̇(l̇)STO2,4(πchase1, πchase2, πchase3, l̇, µ) =

=
∑

l̇∈L̇N(µ)
−2,4 (Πo)

wL̇(l̇)0 = 0

For agent slots 3 and 1, the following table shows us STO3,1 for all the permutations of
πchase1, πchase2, πchase3.

AS 3 AS 1 AS 3 AS 1 AS 3 AS 1
πchase1 < πchase2 πchase1 < πchase3 πchase2 < πchase1

πchase2 < πchase3 πchase3 < πchase2 πchase1 < πchase3

πchase1 < πchase3 πchase1 < πchase2 πchase2 < πchase3

AS 3 AS 1 AS 3 AS 1 AS 3 AS 1
πchase2 < πchase3 πchase3 < πchase1 πchase3 < πchase2

πchase3 < πchase1 πchase1 < πchase2 πchase2 < πchase1

πchase2 < πchase1 πchase3 < πchase2 πchase3 < πchase1

C.4. Strict Total Grading 223

It is also not possible to find a STO for any permutation, since the agents in agent slots 3
(any πchase) and 1 (any πchase) obtain the expected average rewards of 1 and −1 respectively.
So:

STG3,1(πchase1, πchase2, πchase3,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−3,1 (Πo)

wL̇(l̇)STO3,1(πchase1, πchase2, πchase3, l̇, µ) =

=
∑

l̇∈L̇N(µ)
−3,1 (Πo)

wL̇(l̇)0 = 0

For agent slots 3 and 2, it is also not possible to find a STO, since both agents obtain the
same expected average reward due they are in the same team. So:

STG3,2(πchase1, πchase2, πchase3,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−3,2 (Πo)

wL̇(l̇)STO3,2(πchase1, πchase2, πchase3, l̇, µ) =

=
∑

l̇∈L̇N(µ)
−3,2 (Πo)

wL̇(l̇)0 = 0

For agent slots 3 and 4, it is also not possible to find a STO, since again both agents obtain
the same expected average reward due they are in the same team. So:

STG3,4(πchase1, πchase2, πchase3,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−3,4 (Πo)

wL̇(l̇)STO3,4(πchase1, πchase2, πchase3, l̇, µ) =

=
∑

l̇∈L̇N(µ)
−3,4 (Πo)

wL̇(l̇)0 = 0

For agent slots 4 and 1, the following table shows us STO4,1 for all the permutations of
πchase1, πchase2, πchase3.

AS 4 AS 1 AS 4 AS 1 AS 4 AS 1
πchase1 < πchase2 πchase1 < πchase3 πchase2 < πchase1

πchase2 < πchase3 πchase3 < πchase2 πchase1 < πchase3

πchase1 < πchase3 πchase1 < πchase2 πchase2 < πchase3

AS 4 AS 1 AS 4 AS 1 AS 4 AS 1
πchase2 < πchase3 πchase3 < πchase1 πchase3 < πchase2

πchase3 < πchase1 πchase1 < πchase2 πchase2 < πchase1

πchase2 < πchase1 πchase3 < πchase2 πchase3 < πchase1

It is also not possible to find a STO for any permutation, since the agents in agent slots 4
(any πchase) and 1 (any πchase) obtain the expected average rewards of 1 and −1 respectively.
So:

STG4,1(πchase1, πchase2, πchase3,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−4,1 (Πo)

wL̇(l̇)STO4,1(πchase1, πchase2, πchase3, l̇, µ) =

=
∑

l̇∈L̇N(µ)
−4,1 (Πo)

wL̇(l̇)0 = 0

C.4. Strict Total Grading 224

For agent slots 4 and 2, it is also not possible to find a STO, since both agents obtain the
same expected average reward due they are in the same team. So:

STG4,2(πchase1, πchase2, πchase3,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−4,2 (Πo)

wL̇(l̇)STO4,2(πchase1, πchase2, πchase3, l̇, µ) =

=
∑

l̇∈L̇N(µ)
−4,2 (Πo)

wL̇(l̇)0 = 0

And for agent slots 4 and 3, it is also not possible to find a STO, since again both agents
obtain the same expected average reward due they are in the same team. So:

STG4,3(πchase1, πchase2, πchase3,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−4,3 (Πo)

wL̇(l̇)STO4,3(πchase1, πchase2, πchase3, l̇, µ) =

=
∑

l̇∈L̇N(µ)
−4,3 (Πo)

wL̇(l̇)0 = 0

And finally, we calculate the STG value:

STG(Πe, wΠe ,Πo, wL̇, µ, wS) = ηΠ3

∑
π1,π2,π3∈Πe|π1 ̸=π2 ̸=π3

wΠe(π1)wΠe(π2)wΠe(π3)ηS2
1

N(µ)∑
i=1

wS(i, µ)×

×

 i−1∑
j=1

wS(j, µ)STGi,j(π1, π2, π3,Πo, wL̇, µ) +

N(µ)∑
j=i+1

wS(j, µ)STGi,j(π1, π2, π3,Πo, wL̇, µ)

 =

= 6
9

2

1

3

1

3

1

3

4

3

1

4

1

4
{STG1,2(πchase1, πchase2, πchase3,Πo, wL̇, µ)+

+ STG1,3(πchase1, πchase2, πchase3,Πo, wL̇, µ)+

+ STG1,4(πchase1, πchase2, πchase3,Πo, wL̇, µ)+

+ STG2,1(πchase1, πchase2, πchase3,Πo, wL̇, µ)+

+ STG2,3(πchase1, πchase2, πchase3,Πo, wL̇, µ)+

+ STG2,4(πchase1, πchase2, πchase3,Πo, wL̇, µ)+

+ STG3,1(πchase1, πchase2, πchase3,Πo, wL̇, µ)+

+ STG3,2(πchase1, πchase2, πchase3,Πo, wL̇, µ)+

+ STG3,4(πchase1, πchase2, πchase3,Πo, wL̇, µ)+

+ STG4,1(πchase1, πchase2, πchase3,Πo, wL̇, µ)+

+ STG4,2(πchase1, πchase2, πchase3,Πo, wL̇, µ)+

+ STG4,3(πchase1, πchase2, πchase3,Πo, wL̇, µ)} =

= 6
9

2

1

3

1

3

1

3

4

3

1

4

1

4
{9× 0 + 3× 1} = 1

4

Note that we avoided to calculate all the permutations of π1, π2, π3 for STGi,j(π1, π2, π3,Πo, wL̇, µ),
since they provide the same result, by calculating only one permutation and multiplying the
result by 6 (the number of permutations).

C.4. Strict Total Grading 225

So, for every Πo we obtain the same result:

∀Πo : STG(Πe, wΠe ,Πo, wL̇, µ, wS) =
1

4

Therefore, predator-prey has Leftmax = 1
4
(as a lower approximation) for this property.

Approximation 3. Rightmin for the strict total grading (STG) property is equal to 1
4
(as a

higher approximation) for the predator-prey environment.

Proof. To find Rightmin (equation 8.5), we need to find a Πe that minimises the property value
as much as possible while Πo maximises it. Using Πe = {πchase1, πchase2, πchase3} (a πchase agent
tries to be chased when interacting as the prey and tries to perfectly coordinate with the other
predators to chase the prey when interacting as a predator) we find a higher approximation of
this situation no matter which Πo we use.

Following definition 30 we obtain the STG value for this ⟨Πe,Πo⟩ (where Πo is instantiated
with any permitted value). Since the multi-agent environment is not team symmetric, we need
to calculate this property value for every pair of agent slots. Also, since |Πe| = 3 we just need
to calculate this property value for one trio of evaluated agents. Following definition 29 we
calculate the STG value for the evaluated agents πchase1, πchase2, πchase3 ∈ Πe and each pair of
agent slots. We start with agent slots 1 and 2:

STG1,2(πchase1, πchase2, πchase3,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−1,2 (Πo)

wL̇(l̇)STO1,2(πchase1, πchase2, πchase3, l̇, µ)

We do not know which Πo we have, so we use a figurative agent line-up pattern l̇ =
(∗, ∗, π1, π2) from L̇

N(µ)
−1,2 (Πo):

STO1,2(πchase1, πchase2, πchase3, l̇, µ) = STO1,2(πchase1, πchase2, πchase3, (∗, ∗, π1, π2), µ)

The following table shows us STO1,2 for all the permutations of πchase1, πchase2, πchase3.

AS 1 AS 2 AS 1 AS 2 AS 1 AS 2
πchase1 < πchase2 πchase1 < πchase3 πchase2 < πchase1

πchase2 < πchase3 πchase3 < πchase2 πchase1 < πchase3

πchase1 < πchase3 πchase1 < πchase2 πchase2 < πchase3

AS 1 AS 2 AS 1 AS 2 AS 1 AS 2
πchase2 < πchase3 πchase3 < πchase1 πchase3 < πchase2

πchase3 < πchase1 πchase1 < πchase2 πchase2 < πchase1

πchase2 < πchase1 πchase3 < πchase2 πchase3 < πchase1

It is possible to find a STO for every permutation, since the prey is always chased9, obtaining
the agents in agent slots 1 (any πchase) and 2 (any πchase) the expected average rewards of −1
and 1 respectively. So:

STO1,2(πchase1, πchase2, πchase3, (∗, ∗, π1, π2), µ) = 1

9Note that only one predator trying to chase the prey is enough to chase a prey which wants to be chased.

C.4. Strict Total Grading 226

We generalise STG1,2 for any possible agent line-up pattern:

STG1,2(πchase1, πchase2, πchase3,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−1,2 (Πo)

wL̇(l̇)STO1,2(πchase1, πchase2, πchase3, l̇, µ) =

=
∑

l̇∈L̇N(µ)
−1,2 (Πo)

wL̇(l̇)1 = 1

For agent slots 1 and 3, the following table shows us STO1,3 for all the permutations of
πchase1, πchase2, πchase3.

AS 1 AS 3 AS 1 AS 3 AS 1 AS 3
πchase1 < πchase2 πchase1 < πchase3 πchase2 < πchase1

πchase2 < πchase3 πchase3 < πchase2 πchase1 < πchase3

πchase1 < πchase3 πchase1 < πchase2 πchase2 < πchase3

AS 1 AS 3 AS 1 AS 3 AS 1 AS 3
πchase2 < πchase3 πchase3 < πchase1 πchase3 < πchase2

πchase3 < πchase1 πchase1 < πchase2 πchase2 < πchase1

πchase2 < πchase1 πchase3 < πchase2 πchase3 < πchase1

It is also possible to find a STO, since again the agents in agent slots 1 (any πchase) and 3
(any πchase) obtain the expected average rewards of −1 and 1 respectively. So:

STG1,3(πchase1, πchase2, πchase3,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−1,3 (Πo)

wL̇(l̇)STO1,3(πchase1, πchase2, πchase3, l̇, µ) =

=
∑

l̇∈L̇N(µ)
−1,3 (Πo)

wL̇(l̇)1 = 1

For agent slots 1 and 4, the following table shows us STO1,4 for all the permutations of
πchase1, πchase2, πchase3.

AS 1 AS 4 AS 1 AS 4 AS 1 AS 4
πchase1 < πchase2 πchase1 < πchase3 πchase2 < πchase1

πchase2 < πchase3 πchase3 < πchase2 πchase1 < πchase3

πchase1 < πchase3 πchase1 < πchase2 πchase2 < πchase3

AS 1 AS 4 AS 1 AS 4 AS 1 AS 4
πchase2 < πchase3 πchase3 < πchase1 πchase3 < πchase2

πchase3 < πchase1 πchase1 < πchase2 πchase2 < πchase1

πchase2 < πchase1 πchase3 < πchase2 πchase3 < πchase1

It is also possible to find a STO, since again the agents in agent slots 1 (any πchase) and 4
(any πchase) obtain the expected average rewards of −1 and 1 respectively. So:

STG1,4(πchase1, πchase2, πchase3,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−1,4 (Πo)

wL̇(l̇)STO1,4(πchase1, πchase2, πchase3, l̇, µ) =

=
∑

l̇∈L̇N(µ)
−1,4 (Πo)

wL̇(l̇)1 = 1

C.4. Strict Total Grading 227

For agent slots 2 and 1, the following table shows us STO2,1 for all the permutations of
πchase1, πchase2, πchase3.

AS 2 AS 1 AS 2 AS 1 AS 2 AS 1
πchase1 < πchase2 πchase1 < πchase3 πchase2 < πchase1

πchase2 < πchase3 πchase3 < πchase2 πchase1 < πchase3

πchase1 < πchase3 πchase1 < πchase2 πchase2 < πchase3

AS 2 AS 1 AS 2 AS 1 AS 2 AS 1
πchase2 < πchase3 πchase3 < πchase1 πchase3 < πchase2

πchase3 < πchase1 πchase1 < πchase2 πchase2 < πchase1

πchase2 < πchase1 πchase3 < πchase2 πchase3 < πchase1

It is not possible to find a STO for any permutation, since the agents in agent slots 2 (any
πchase) and 1 (any πchase) obtain the expected average rewards of 1 and −1 respectively. So:

STG2,1(πchase1, πchase2, πchase3,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−2,1 (Πo)

wL̇(l̇)STO2,1(πchase1, πchase2, πchase3, l̇, µ) =

=
∑

l̇∈L̇N(µ)
−2,1 (Πo)

wL̇(l̇)0 = 0

For agent slots 2 and 3, it is also not possible to find a STO, since both agents obtain the
same expected average reward due they are in the same team. So:

STG2,3(πchase1, πchase2, πchase3,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−2,3 (Πo)

wL̇(l̇)STO2,3(πchase1, πchase2, πchase3, l̇, µ) =

=
∑

l̇∈L̇N(µ)
−2,3 (Πo)

wL̇(l̇)0 = 0

For agent slots 2 and 4, it is also not possible to find a STO, since again both agents obtain
the same expected average reward due they are in the same team. So:

STG2,4(πchase1, πchase2, πchase3,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−2,4 (Πo)

wL̇(l̇)STO2,4(πchase1, πchase2, πchase3, l̇, µ) =

=
∑

l̇∈L̇N(µ)
−2,4 (Πo)

wL̇(l̇)0 = 0

For agent slots 3 and 1, the following table shows us STO3,1 for all the permutations of
πchase1, πchase2, πchase3.

AS 3 AS 1 AS 3 AS 1 AS 3 AS 1
πchase1 < πchase2 πchase1 < πchase3 πchase2 < πchase1

πchase2 < πchase3 πchase3 < πchase2 πchase1 < πchase3

πchase1 < πchase3 πchase1 < πchase2 πchase2 < πchase3

AS 3 AS 1 AS 3 AS 1 AS 3 AS 1
πchase2 < πchase3 πchase3 < πchase1 πchase3 < πchase2

πchase3 < πchase1 πchase1 < πchase2 πchase2 < πchase1

πchase2 < πchase1 πchase3 < πchase2 πchase3 < πchase1

C.4. Strict Total Grading 228

It is also not possible to find a STO for any permutation, since the agents in agent slots 3
(any πchase) and 1 (any πchase) obtain the expected average rewards of 1 and −1 respectively.
So:

STG3,1(πchase1, πchase2, πchase3,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−3,1 (Πo)

wL̇(l̇)STO3,1(πchase1, πchase2, πchase3, l̇, µ) =

=
∑

l̇∈L̇N(µ)
−3,1 (Πo)

wL̇(l̇)0 = 0

For agent slots 3 and 2, it is also not possible to find a STO, since both agents obtain the
same expected average reward due they are in the same team. So:

STG3,2(πchase1, πchase2, πchase3,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−3,2 (Πo)

wL̇(l̇)STO3,2(πchase1, πchase2, πchase3, l̇, µ) =

=
∑

l̇∈L̇N(µ)
−3,2 (Πo)

wL̇(l̇)0 = 0

For agent slots 3 and 4, it is also not possible to find a STO, since again both agents obtain
the same expected average reward due they are in the same team. So:

STG3,4(πchase1, πchase2, πchase3,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−3,4 (Πo)

wL̇(l̇)STO3,4(πchase1, πchase2, πchase3, l̇, µ) =

=
∑

l̇∈L̇N(µ)
−3,4 (Πo)

wL̇(l̇)0 = 0

For agent slots 4 and 1, the following table shows us STO4,1 for all the permutations of
πchase1, πchase2, πchase3.

AS 4 AS 1 AS 4 AS 1 AS 4 AS 1
πchase1 < πchase2 πchase1 < πchase3 πchase2 < πchase1

πchase2 < πchase3 πchase3 < πchase2 πchase1 < πchase3

πchase1 < πchase3 πchase1 < πchase2 πchase2 < πchase3

AS 4 AS 1 AS 4 AS 1 AS 4 AS 1
πchase2 < πchase3 πchase3 < πchase1 πchase3 < πchase2

πchase3 < πchase1 πchase1 < πchase2 πchase2 < πchase1

πchase2 < πchase1 πchase3 < πchase2 πchase3 < πchase1

It is also not possible to find a STO for any permutation, since the agents in agent slots 4
(any πchase) and 1 (any πchase) obtain the expected average rewards of 1 and −1 respectively.
So:

STG4,1(πchase1, πchase2, πchase3,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−4,1 (Πo)

wL̇(l̇)STO4,1(πchase1, πchase2, πchase3, l̇, µ) =

=
∑

l̇∈L̇N(µ)
−4,1 (Πo)

wL̇(l̇)0 = 0

C.4. Strict Total Grading 229

For agent slots 4 and 2, it is also not possible to find a STO, since both agents obtain the
same expected average reward due they are in the same team. So:

STG4,2(πchase1, πchase2, πchase3,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−4,2 (Πo)

wL̇(l̇)STO4,2(πchase1, πchase2, πchase3, l̇, µ) =

=
∑

l̇∈L̇N(µ)
−4,2 (Πo)

wL̇(l̇)0 = 0

And for agent slots 4 and 3, it is also not possible to find a STO, since again both agents
obtain the same expected average reward due they are in the same team. So:

STG4,3(πchase1, πchase2, πchase3,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−4,3 (Πo)

wL̇(l̇)STO4,3(πchase1, πchase2, πchase3, l̇, µ) =

=
∑

l̇∈L̇N(µ)
−4,3 (Πo)

wL̇(l̇)0 = 0

And finally, we calculate the STG value:

STG(Πe, wΠe ,Πo, wL̇, µ, wS) = ηΠ3

∑
π1,π2,π3∈Πe|π1 ̸=π2 ̸=π3

wΠe(π1)wΠe(π2)wΠe(π3)ηS2
1

N(µ)∑
i=1

wS(i, µ)×

×

 i−1∑
j=1

wS(j, µ)STGi,j(π1, π2, π3,Πo, wL̇, µ) +

N(µ)∑
j=i+1

wS(j, µ)STGi,j(π1, π2, π3,Πo, wL̇, µ)

 =

= 6
9

2

1

3

1

3

1

3

4

3

1

4

1

4
{STG1,2(πchase1, πchase2, πchase3,Πo, wL̇, µ)+

+ STG1,3(πchase1, πchase2, πchase3,Πo, wL̇, µ)+

+ STG1,4(πchase1, πchase2, πchase3,Πo, wL̇, µ)+

+ STG2,1(πchase1, πchase2, πchase3,Πo, wL̇, µ)+

+ STG2,3(πchase1, πchase2, πchase3,Πo, wL̇, µ)+

+ STG2,4(πchase1, πchase2, πchase3,Πo, wL̇, µ)+

+ STG3,1(πchase1, πchase2, πchase3,Πo, wL̇, µ)+

+ STG3,2(πchase1, πchase2, πchase3,Πo, wL̇, µ)+

+ STG3,4(πchase1, πchase2, πchase3,Πo, wL̇, µ)+

+ STG4,1(πchase1, πchase2, πchase3,Πo, wL̇, µ)+

+ STG4,2(πchase1, πchase2, πchase3,Πo, wL̇, µ)+

+ STG4,3(πchase1, πchase2, πchase3,Πo, wL̇, µ)} =

= 6
9

2

1

3

1

3

1

3

4

3

1

4

1

4
{9× 0 + 3× 1} = 1

4

Note that we avoided to calculate all the permutations of π1, π2, π3 for STGi,j(π1, π2, π3,Πo, wL̇, µ),
since they provide the same result, by calculating only one permutation and multiplying the
result by 6 (the number of permutations).

C.5. Partial Grading 230

So, for every Πo we obtain the same result:

∀Πo : STG(Πe, wΠe ,Πo, wL̇, µ, wS) =
1

4

Therefore, predator-prey has Rightmin = 1
4
(as a higher approximation) for this property.

C.5 Partial Grading

Now we arrive to the partial grading (PG) property. As given in section 7.5.2, we want to
know if there exists a partial ordering between the evaluated agents when interacting in the
multi-agent environment. We use an average of rewards as the utility function to calculate an
agent’s result.

To simplify the notation, we use the next table to represent the PO: Ri(µ[l̇
i,j← π1, π2]) ≤

Rj(µ[l̇
i,j← π1, π2]), Ri(µ[l̇

i,j← π2, π3]) ≤ Rj(µ[l̇
i,j← π2, π3]) and Ri(µ[l̇

i,j← π1, π3]) ≤ Rj(µ[l̇
i,j←

π1, π3]).

AS i AS j
π1 ≤ π2

π2 ≤ π3

π1 ≤ π3

where AS stands for agent slot.

Proposition 60. Generalmin for the partial grading (PG) property is equal to 1
2
for the

predator-prey environment.

Proof. To find Generalmin (equation 8.1), we need to find a pair ⟨Πe,Πo⟩ that minimises the
property value as much as possible. We can have this situation by selecting Πe = {πx, πy, πz}
and Πo = {πs} (a πs agent always stays in the same cell10 and πx, πy and πz behave as shown
in figures C.5, C.6 and C.7 respectively).

♦
1 2

2 1⃝
4 3
5 1

⃝
4 3 2

1⃝

Figure C.5: Behaviour of πx when interacting on each of the agent slots. Numbers represent
the position of πx on each time step.

Following definition 31 we obtain the PG value for this ⟨Πe,Πo⟩. Since the multi-agent
environment is not team symmetric, we need to calculate this property value for every pair of
agent slots. Also, since |Πe| = 3 we just need to calculate this property value for one trio of
evaluated agents. Following definition 29 (for PG) we calculate the PG value for the evaluated
agents πx, πy, πz ∈ Πe and each pair of agent slots. We start with agent slots 1 and 2:

10Note that every cell has an action that leads to a block or a boundary, therefore an agent performing this
action stays at its current cell.

C.5. Partial Grading 231

♦ 5 2 1⃝
4 3

5 4
3

1 2
⃝

6
5 4

3 2
1⃝

Figure C.6: Behaviour of πy when interacting on each of the agent slots. Numbers represent
the position of πy on each time step.

♦ 1
3 2
4

3 2 1⃝ 3
2
1
⃝

6
5
4 3 2

1⃝

Figure C.7: Behaviour of πz when interacting on each of the agent slots. Numbers represent
the position of πz on each time step.

PG1,2(πx, πy, πz,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−1,2 (Πo)

wL̇(l̇)PO1,2(πx, πy, πz, l̇, µ) =

=
1

1
PO1,2(πx, πy, πz, (∗, ∗, πs, πs), µ)

The following table shows us PO1,2 for all the permutations of πx, πy, πz.

AS 1 AS 2 AS 1 AS 2 AS 1 AS 2
πx ≤ πy πx ≤ πz πy ≤ πx

πy ≤ πz πz ≤ πy πx ≤ πz

πx ≤ πz πx ≤ πy πy ≤ πz

AS 1 AS 2 AS 1 AS 2 AS 1 AS 2
πy ≤ πz πz ≤ πx πz ≤ πy

πz ≤ πx πx ≤ πy πy ≤ πx

πy ≤ πx πz ≤ πy πz ≤ πx

It is not possible to find a PO, since for every permutation we have either the agent line-
up (πx, πz, πs, πs), (πy, πx, πs, πs) or (πz, πy, πs, πs). In the three cases the prey is never chased,
obtaining the agents in agent slots 1 and 2 the expected average rewards of 1 and−1 respectively.
So:

PG1,2(πx, πy, πz,Πo, wL̇, µ) =
1

1
0 = 0

For agent slots 1 and 3, the following table shows us PO1,3 for all the permutations of
πx, πy, πz.

AS 1 AS 3 AS 1 AS 3 AS 1 AS 3
πx ≤ πy πx ≤ πz πy ≤ πx

πy ≤ πz πz ≤ πy πx ≤ πz

πx ≤ πz πx ≤ πy πy ≤ πz

C.5. Partial Grading 232

AS 1 AS 3 AS 1 AS 3 AS 1 AS 3
πy ≤ πz πz ≤ πx πz ≤ πy

πz ≤ πx πx ≤ πy πy ≤ πx

πy ≤ πx πz ≤ πy πz ≤ πx

It is also not possible to find a PO, since for every permutation we have either the agent
line-up (πx, πs, πz, πs), (πy, πs, πx, πs) or (πz, πs, πy, πs). Again, in the three cases the prey is
never chased, obtaining the agents in agent slots 1 and 3 the expected average rewards of 1 and
−1 respectively. So:

PG1,3(πx, πy, πz,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−1,3 (Πo)

wL̇(l̇)PO1,3(πx, πy, πz, l̇, µ) =

=
1

1
PO1,3(πx, πy, πz, (∗, πs, ∗, πs), µ) =

=
1

1
0 = 0

For agent slots 1 and 4, the following table shows us PO1,4 for all the permutations of
πx, πy, πz.

AS 1 AS 4 AS 1 AS 4 AS 1 AS 4
πx ≤ πy πx ≤ πz πy ≤ πx

πy ≤ πz πz ≤ πy πx ≤ πz

πx ≤ πz πx ≤ πy πy ≤ πz

AS 1 AS 4 AS 1 AS 4 AS 1 AS 4
πy ≤ πz πz ≤ πx πz ≤ πy

πz ≤ πx πx ≤ πy πy ≤ πx

πy ≤ πx πz ≤ πy πz ≤ πx

It is also not possible to find a PO, since for every permutation we have either the agent
line-up (πx, πs, πs, πz), (πy, πs, πs, πx) or (πz, πs, πs, πy). Again, in the three cases the prey is
never chased, obtaining the agents in agent slots 1 and 4 the expected average rewards of 1 and
−1 respectively. So:

PG1,4(πx, πy, πz,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−1,4 (Πo)

wL̇(l̇)PO1,4(πx, πy, πz, l̇, µ) =

=
1

1
PO1,4(πx, πy, πz, (∗, πs, πs, ∗), µ) =

=
1

1
0 = 0

For agent slots 2 and 1, the following table shows us PO2,1 for all the permutations of
πx, πy, πz.

AS 2 AS 1 AS 2 AS 1 AS 2 AS 1
πx ≤ πy πx ≤ πz πy ≤ πx

πy ≤ πz πz ≤ πy πx ≤ πz

πx ≤ πz πx ≤ πy πy ≤ πz

C.5. Partial Grading 233

AS 2 AS 1 AS 2 AS 1 AS 2 AS 1
πy ≤ πz πz ≤ πx πz ≤ πy

πz ≤ πx πx ≤ πy πy ≤ πx

πy ≤ πx πz ≤ πy πz ≤ πx

It is also not possible to find a PO, since for every permutation we have either the agent line-
up (πz, πx, πs, πs), (πx, πy, πs, πs) or (πy, πz, πs, πs). In agent line-up (πz, πx, πs, πs), πz reaches
the 3rd row 1st column cell and πx chases it in that cell in the 5th time step, obtaining the
expected average rewards of −1 and 1 respectively. In agent line-up (πx, πy, πs, πs), πx reaches
the 2nd row 2nd column cell and πy chases it in that cell in the 3rd time step, obtaining the
expected average rewards of −1 and 1 respectively. In agent line-up (πy, πz, πs, πs), πy stays at
the upper left corner and πz chases it in that cell in the 3rd time step, obtaining the expected
average rewards of −1 and 1 respectively. So:

PG2,1(πx, πy, πz,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−2,1 (Πo)

wL̇(l̇)PO2,1(πx, πy, πz, l̇, µ) =

=
1

1
PO2,1(πx, πy, πz, (∗, ∗, πs, πs), µ) =

=
1

1
0 = 0

For agent slots 2 and 3, it is possible to find a PO, since both agents obtain the same
expected average reward due they are in the same team. So:

PG2,3(πx, πy, πz,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−2,3 (Πo)

wL̇(l̇)PO2,3(πx, πy, πz, l̇, µ) =

=
1

1
PO2,3(πx, πy, πz, (πs, ∗, ∗, πs), µ) =

=
1

1
1 = 1

For agent slots 2 and 4, it is also possible to find a PO, since again both agents obtain the
same expected average reward due they are in the same team. So:

PG2,4(πx, πy, πz,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−2,4 (Πo)

wL̇(l̇)PO2,4(πx, πy, πz, l̇, µ) =

=
1

1
PO2,4(πx, πy, πz, (πs, ∗, πs, ∗), µ) =

=
1

1
1 = 1

For agent slots 3 and 1, the following table shows us PO3,1 for all the permutations of
πx, πy, πz.

AS 3 AS 1 AS 3 AS 1 AS 3 AS 1
πx ≤ πy πx ≤ πz πy ≤ πx

πy ≤ πz πz ≤ πy πx ≤ πz

πx ≤ πz πx ≤ πy πy ≤ πz

C.5. Partial Grading 234

AS 3 AS 1 AS 3 AS 1 AS 3 AS 1
πy ≤ πz πz ≤ πx πz ≤ πy

πz ≤ πx πx ≤ πy πy ≤ πx

πy ≤ πx πz ≤ πy πz ≤ πx

It is not possible to find a PO, since for every permutation we have either the agent line-up
(πz, πs, πx, πs), (πx, πs, πy, πs) or (πy, πs, πz, πs). In agent line-up (πz, πs, πx, πs), πz reaches the
3rd row 1st column cell and πx chases it in that cell in the 4th time step, obtaining the expected
average rewards of −1 and 1 respectively. In agent line-up (πx, πs, πy, πs), πx reaches the 2nd
row 2nd column cell and πy chases it in that cell in the 3rd time step, obtaining the expected
average rewards of −1 and 1 respectively. In agent line-up (πy, πs, πz, πs), πy stays at the upper
left corner and πz chases it in that cell in the 3rd time step, obtaining the expected average
rewards of −1 and 1 respectively. So:

PG3,1(πx, πy, πz,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−3,1 (Πo)

wL̇(l̇)PO3,1(πx, πy, πz, l̇, µ) =

=
1

1
PO3,1(πx, πy, πz, (∗, πs, ∗, πs), µ) =

=
1

1
0 = 0

For agent slots 3 and 2, it is possible to find a PO, since both agents obtain the same
expected average reward due they are in the same team. So:

PG3,2(πx, πy, πz,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−3,2 (Πo)

wL̇(l̇)PO3,2(πx, πy, πz, l̇, µ) =

=
1

1
PO3,2(πx, πy, πz, (πs, ∗, ∗, πs), µ) =

=
1

1
1 = 1

For agent slots 3 and 4, it is also possible to find a PO, since again both agents obtain the
same expected average reward due they are in the same team. So:

PG3,4(πx, πy, πz,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−3,4 (Πo)

wL̇(l̇)PO3,4(πx, πy, πz, l̇, µ) =

=
1

1
PO3,4(πx, πy, πz, (πs, πs, ∗, ∗), µ) =

=
1

1
1 = 1

For agent slots 4 and 1, the following table shows us PO4,1 for all the permutations of
πx, πy, πz.

AS 4 AS 1 AS 4 AS 1 AS 4 AS 1
πx ≤ πy πx ≤ πz πy ≤ πx

πy ≤ πz πz ≤ πy πx ≤ πz

πx ≤ πz πx ≤ πy πy ≤ πz

C.5. Partial Grading 235

AS 4 AS 1 AS 4 AS 1 AS 4 AS 1
πy ≤ πz πz ≤ πx πz ≤ πy

πz ≤ πx πx ≤ πy πy ≤ πx

πy ≤ πx πz ≤ πy πz ≤ πx

It is not possible to find a PO, since for every permutation we have either the agent line-up
(πz, πs, πs, πx), (πx, πs, πs, πy) or (πy, πs, πs, πz). In agent line-up (πz, πs, πs, πx), πz reaches the
3rd row 1st column cell and πx chases it in that cell in the 4th time step, obtaining the expected
average rewards of −1 and 1 respectively. In agent line-up (πx, πs, πs, πy), πx reaches the 2nd
row 2nd column cell and πy chases it in that cell in the 4th time step, obtaining the expected
average rewards of −1 and 1 respectively. In agent line-up (πy, πs, πs, πz), πy stays at the upper
left corner and πz chases it in that cell in the 6th time step, obtaining the expected average
rewards of −1 and 1 respectively. So:

PG4,1(πx, πy, πz,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−4,1 (Πo)

wL̇(l̇)PO4,1(πx, πy, πz, l̇, µ) =

=
1

1
PO4,1(πx, πy, πz, (∗, πs, πs, ∗), µ) =

=
1

1
0 = 0

For agent slots 4 and 2, it is possible to find a PO, since both agents obtain the same
expected average reward due they are in the same team. So:

PG4,2(πx, πy, πz,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−4,2 (Πo)

wL̇(l̇)PO4,2(πx, πy, πz, l̇, µ) =

=
1

1
PO4,2(πx, πy, πz, (πs, ∗, πs, ∗), µ) =

=
1

1
1 = 1

For agent slots 4 and 3, it is also possible to find a PO, since again both agents obtain the
same expected average reward due they are in the same team. So:

PG4,3(πx, πy, πz,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−4,3 (Πo)

wL̇(l̇)PO4,3(πx, πy, πz, l̇, µ) =

=
1

1
PO4,3(πx, πy, πz, (πs, πs, ∗, ∗), µ) =

=
1

1
1 = 1

And finally, we calculate the PG value:

C.5. Partial Grading 236

PG(Πe, wΠe ,Πo, wL̇, µ, wS) = ηΠ3

∑
π1,π2,π3∈Πe|π1 ̸=π2 ̸=π3

wΠe(π1)wΠe(π2)wΠe(π3)ηS2
1

N(µ)∑
i=1

wS(i, µ)×

×

 i−1∑
j=1

wS(j, µ)PGi,j(π1, π2, π3,Πo, wL̇, µ) +

N(µ)∑
j=i+1

wS(j, µ)PGi,j(π1, π2, π3,Πo, wL̇, µ)

 =

= 6
9

2

1

3

1

3

1

3

4

3

1

4

1

4
×

× {PG1,2(πx, πy, πz,Πo, wL̇, µ) + PG1,3(πx, πy, πz,Πo, wL̇, µ)+

+ PG1,4(πx, πy, πz,Πo, wL̇, µ) + PG2,1(πx, πy, πz,Πo, wL̇, µ)+

+ PG2,3(πx, πy, πz,Πo, wL̇, µ) + PG2,4(πx, πy, πz,Πo, wL̇, µ)+

+ PG3,1(πx, πy, πz,Πo, wL̇, µ) + PG3,2(πx, πy, πz,Πo, wL̇, µ)+

+ PG3,4(πx, πy, πz,Πo, wL̇, µ) + PG4,1(πx, πy, πz,Πo, wL̇, µ)+

+ PG4,3(πx, πy, πz,Πo, wL̇, µ) + PG4,2(πx, πy, πz,Πo, wL̇, µ)} =

= 6
9

2

1

3

1

3

1

3

4

3

1

4

1

4
{6× 0 + 6× 1} = 1

2

Note that we avoided to calculate all the permutations of π1, π2, π3 for PGi,j(π1, π2, π3,Πo, wL̇, µ),
since they provide the same result, by calculating only one permutation and multiplying the
result by 6 (the number of permutations).

Since 1
2
is the lowest possible value that we can obtain for the partial grading property,

therefore predator-prey has Generalmin = 1
2
for this property.

Proposition 61. Generalmax for the partial grading (PG) property is equal to 1 for the
predator-prey environment.

Proof. To find Generalmax (equation 8.2), we need to find a pair ⟨Πe,Πo⟩ that maximises the
property value as much as possible. We can have this situation by selecting Πe = {πs1, πs2, πs3}
and Πo = {πx} (a πs agent always stays in the same cell11, and a πx agent acts stochastically
with a probability of 1/

√
2 to do not reach the upper left corner and a probability of 1− 1/

√
2

to reach this corner).
Following definition 31 we obtain the PG value for this ⟨Πe,Πo⟩. Since the multi-agent

environment is not team symmetric, we need to calculate this property value for every pair of
agent slots. Also, since |Πe| = 3 we just need to calculate this property value for one trio of
evaluated agents. Following definition 29 (for PG) we calculate the PG value for the evaluated
agents πs1, πs2, πs3 ∈ Πe and each pair of agent slots. We start with agent slots 1 and 2:

PG1,2(πs1, πs2, πs3,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−1,2 (Πo)

wL̇(l̇)PO1,2(πs1, πs2, πs3, l̇, µ) =

=
1

1
PO1,2(πs1, πs2, πs3, (∗, ∗, πx, πx), µ)

The following table shows us PO1,2 for all the permutations of πs1, πs2, πs3.

11Note that every cell has an action that leads to a block or a boundary, therefore an agent performing this
action stays at its current cell.

C.5. Partial Grading 237

AS 1 AS 2 AS 1 AS 2 AS 1 AS 2
πs1 ≤ πs2 πs1 ≤ πs3 πs2 ≤ πs1

πs2 ≤ πs3 πs3 ≤ πs2 πs1 ≤ πs3

πs1 ≤ πs3 πs1 ≤ πs2 πs2 ≤ πs3

AS 1 AS 2 AS 1 AS 2 AS 1 AS 2
πs2 ≤ πs3 πs3 ≤ πs1 πs3 ≤ πs2

πs3 ≤ πs1 πs1 ≤ πs2 πs2 ≤ πs1

πs2 ≤ πs1 πs3 ≤ πs2 πs3 ≤ πs1

It is possible to find a PO for every permutation, since the agents in agent slots 3 (πx) and
4 (πx) have a probability of (1/

√
2)× (1/

√
2) = 1/2 to do not chase the prey (any πs) and the

same probability 1− 1/2 = 1/2 to chase the prey (any πs), making the agents in agent slots 1
(any πs) and 2 (any πs) to obtain the same expected average reward (0). So:

PG1,2(πs1, πs2, πs3,Πo, wL̇, µ) =
1

1
1 = 1

For agent slots 1 and 3, the following table shows us PO1,3 for all the permutations of
πs1, πs2, πs3.

AS 1 AS 3 AS 1 AS 3 AS 1 AS 3
πs1 ≤ πs2 πs1 ≤ πs3 πs2 ≤ πs1

πs2 ≤ πs3 πs3 ≤ πs2 πs1 ≤ πs3

πs1 ≤ πs3 πs1 ≤ πs2 πs2 ≤ πs3

AS 1 AS 3 AS 1 AS 3 AS 1 AS 3
πs2 ≤ πs3 πs3 ≤ πs1 πs3 ≤ πs2

πs3 ≤ πs1 πs1 ≤ πs2 πs2 ≤ πs1

πs2 ≤ πs1 πs3 ≤ πs2 πs3 ≤ πs1

It is also possible to find a PO for every permutation, making again the agents in agent
slots 1 (any πs) and 3 (any πs) to obtain the same expected average reward (0). So:

PG1,3(πs1, πs2, πs3,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−1,3 (Πo)

wL̇(l̇)PO1,3(πs1, πs2, πs3, l̇, µ) =

=
1

1
PO1,3(πs1, πs2, πs3, (∗, πx, ∗, πx), µ) =

=
1

1
1 = 1

For agent slots 1 and 4, the following table shows us PO1,4 for all the permutations of
πs1, πs2, πs3.

AS 1 AS 4 AS 1 AS 4 AS 1 AS 4
πs1 ≤ πs2 πs1 ≤ πs3 πs2 ≤ πs1

πs2 ≤ πs3 πs3 ≤ πs2 πs1 ≤ πs3

πs1 ≤ πs3 πs1 ≤ πs2 πs2 ≤ πs3

AS 1 AS 4 AS 1 AS 4 AS 1 AS 4
πs2 ≤ πs3 πs3 ≤ πs1 πs3 ≤ πs2

πs3 ≤ πs1 πs1 ≤ πs2 πs2 ≤ πs1

πs2 ≤ πs1 πs3 ≤ πs2 πs3 ≤ πs1

C.5. Partial Grading 238

It is also possible to find a PO for every permutation, making again the agents in agent
slots 1 (any πs) and 4 (any πs) to obtain the same expected average reward (0). So:

PG1,4(πs1, πs2, πs3,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−1,4 (Πo)

wL̇(l̇)PO1,4(πs1, πs2, πs3, l̇, µ) =

=
1

1
PO1,4(πs1, πs2, πs3, (∗, πx, πx, ∗), µ) =

=
1

1
1 = 1

For agent slots 2 and 1, the following table shows us PO2,1 for all the permutations of
πs1, πs2, πs3.

AS 2 AS 1 AS 2 AS 1 AS 2 AS 1
πs1 ≤ πs2 πs1 ≤ πs3 πs2 ≤ πs1

πs2 ≤ πs3 πs3 ≤ πs2 πs1 ≤ πs3

πs1 ≤ πs3 πs1 ≤ πs2 πs2 ≤ πs3

AS 2 AS 1 AS 2 AS 1 AS 2 AS 1
πs2 ≤ πs3 πs3 ≤ πs1 πs3 ≤ πs2

πs3 ≤ πs1 πs1 ≤ πs2 πs2 ≤ πs1

πs2 ≤ πs1 πs3 ≤ πs2 πs3 ≤ πs1

It is also possible to find a PO for any permutation, making again the agents in agent slots
2 (any πs) and 1 (any πs) to obtain the same expected average reward (0). So:

PG2,1(πs1, πs2, πs3,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−2,1 (Πo)

wL̇(l̇)PO2,1(πs1, πs2, πs3, l̇, µ) =

=
1

1
PO2,1(πs1, πs2, πs3, (∗, ∗, πx, πx), µ) =

=
1

1
1 = 1

For agent slots 2 and 3, it is also possible to find a PO, since both agents obtain the same
expected average reward due they are in the same team. So:

PG2,3(πs1, πs2, πs3,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−2,3 (Πo)

wL̇(l̇)PO2,3(πs1, πs2, πs3, l̇, µ) =

=
1

1
PO2,3(πs1, πs2, πs3, (πx, ∗, ∗, πx), µ) =

=
1

1
1 = 1

For agent slots 2 and 4, it is also possible to find a PO, since again both agents obtain the
same expected average reward due they are in the same team. So:

C.5. Partial Grading 239

PG2,4(πs1, πs2, πs3,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−2,4 (Πo)

wL̇(l̇)PO2,4(πs1, πs2, πs3, l̇, µ) =

=
1

1
PO2,4(πs1, πs2, πs3, (πx, ∗, πx, ∗), µ) =

=
1

1
1 = 1

For agent slots 3 and 1, the following table shows us PO3,1 for all the permutations of
πs1, πs2, πs3.

AS 3 AS 1 AS 3 AS 1 AS 3 AS 1
πs1 ≤ πs2 πs1 ≤ πs3 πs2 ≤ πs1

πs2 ≤ πs3 πs3 ≤ πs2 πs1 ≤ πs3

πs1 ≤ πs3 πs1 ≤ πs2 πs2 ≤ πs3

AS 3 AS 1 AS 3 AS 1 AS 3 AS 1
πs2 ≤ πs3 πs3 ≤ πs1 πs3 ≤ πs2

πs3 ≤ πs1 πs1 ≤ πs2 πs2 ≤ πs1

πs2 ≤ πs1 πs3 ≤ πs2 πs3 ≤ πs1

It is also possible to find a PO for any permutation, making the agents in agent slots 3 (any
πs) and 1 (any πs) to obtain the same expected average reward (0). So:

PG3,1(πs1, πs2, πs3,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−3,1 (Πo)

wL̇(l̇)PO3,1(πs1, πs2, πs3, l̇, µ) =

=
1

1
PO3,1(πs1, πs2, πs3, (∗, πx, ∗, πx), µ) =

=
1

1
1 = 1

For agent slots 3 and 2, it is also possible to find a PO, since both agents obtain the same
expected average reward due they are in the same team. So:

PG3,2(πs1, πs2, πs3,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−3,2 (Πo)

wL̇(l̇)PO3,2(πs1, πs2, πs3, l̇, µ) =

=
1

1
PO3,2(πs1, πs2, πs3, (πx, ∗, ∗, πx), µ) =

=
1

1
1 = 1

For agent slots 3 and 4, it is also possible to find a PO, since again both agents obtain the
same expected average reward due they are in the same team. So:

PG3,4(πs1, πs2, πs3,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−3,4 (Πo)

wL̇(l̇)PO3,4(πs1, πs2, πs3, l̇, µ) =

=
1

1
PO3,4(πs1, πs2, πs3, (πx, πx, ∗, ∗), µ) =

=
1

1
1 = 1

C.5. Partial Grading 240

For agent slots 4 and 1, the following table shows us PO4,1 for all the permutations of
πs1, πs2, πs3.

AS 4 AS 1 AS 4 AS 1 AS 4 AS 1
πs1 ≤ πs2 πs1 ≤ πs3 πs2 ≤ πs1

πs2 ≤ πs3 πs3 ≤ πs2 πs1 ≤ πs3

πs1 ≤ πs3 πs1 ≤ πs2 πs2 ≤ πs3

AS 4 AS 1 AS 4 AS 1 AS 4 AS 1
πs2 ≤ πs3 πs3 ≤ πs1 πs3 ≤ πs2

πs3 ≤ πs1 πs1 ≤ πs2 πs2 ≤ πs1

πs2 ≤ πs1 πs3 ≤ πs2 πs3 ≤ πs1

It is also possible to find a PO for any permutation, making the agents in agent slots 4 (any
πs) and 1 (any πs) to obtain the same expected average reward (0). So:

PG4,1(πs1, πs2, πs3,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−4,1 (Πo)

wL̇(l̇)PO4,1(πs1, πs2, πs3, l̇, µ) =

=
1

1
PO4,1(πs1, πs2, πs3, (∗, πx, πx, ∗), µ) =

=
1

1
1 = 1

For agent slots 4 and 2, it is also possible to find a PO, since both agents obtain the same
expected average reward due they are in the same team. So:

PG4,2(πs1, πs2, πs3,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−4,2 (Πo)

wL̇(l̇)PO4,2(πs1, πs2, πs3, l̇, µ) =

=
1

1
PO4,2(πs1, πs2, πs3, (πx, ∗, πx, ∗), µ) =

=
1

1
1 = 1

And for agent slots 4 and 3, it is also possible to find a PO, since again both agents obtain
the same expected average reward due they are in the same team. So:

PG4,3(πs1, πs2, πs3,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−4,3 (Πo)

wL̇(l̇)PO4,3(πs1, πs2, πs3, l̇, µ) =

=
1

1
PO4,3(πs1, πs2, πs3, (πx, πx, ∗, ∗), µ) =

=
1

1
1 = 1

And finally, we calculate the PG value:

C.5. Partial Grading 241

PG(Πe, wΠe ,Πo, wL̇, µ, wS) = ηΠ3

∑
π1,π2,π3∈Πe|π1 ̸=π2 ̸=π3

wΠe(π1)wΠe(π2)wΠe(π3)ηS2
1

N(µ)∑
i=1

wS(i, µ)×

×

 i−1∑
j=1

wS(j, µ)PGi,j(π1, π2, π3,Πo, wL̇, µ) +

N(µ)∑
j=i+1

wS(j, µ)PGi,j(π1, π2, π3,Πo, wL̇, µ)

 =

= 6
9

2

1

3

1

3

1

3

4

3

1

4

1

4
×

× {PG1,2(πs1, πs2, πs3,Πo, wL̇, µ) + PG1,3(πs1, πs2, πs3,Πo, wL̇, µ)+

+ PG1,4(πs1, πs2, πs3,Πo, wL̇, µ) + PG2,1(πs1, πs2, πs3,Πo, wL̇, µ)+

+ PG2,3(πs1, πs2, πs3,Πo, wL̇, µ) + PG2,4(πs1, πs2, πs3,Πo, wL̇, µ)+

+ PG3,1(πs1, πs2, πs3,Πo, wL̇, µ) + PG3,2(πs1, πs2, πs3,Πo, wL̇, µ)+

+ PG3,4(πs1, πs2, πs3,Πo, wL̇, µ) + PG4,1(πs1, πs2, πs3,Πo, wL̇, µ)+

+ PG4,2(πs1, πs2, πs3,Πo, wL̇, µ) + PG4,3(πs1, πs2, πs3,Πo, wL̇, µ)} =

= 6
9

2

1

3

1

3

1

3

4

3

1

4

1

4
{12× 1} = 1

Note that we avoided to calculate all the permutations of π1, π2, π3 for PGi,j(π1, π2, π3,Πo, wL̇, µ),
since they provide the same result, by calculating only one permutation and multiplying the
result by 6 (the number of permutations).

Since 1 is the highest possible value for the partial grading property, therefore predator-prey
has Generalmax = 1 for this property.

Approximation 4. Leftmax for the partial grading (PG) property is equal to 3
4
(as a lower

approximation) for the predator-prey environment.

Proof. To find Leftmax (equation 8.4), we need to find a Πe that maximises the property value
as much as possible while Πo minimises it. Using Πe = {πchase1, πchase2, πchase3} (a πchase agent
tries to be chased when interacting as the prey and tries to perfectly coordinate with the other
predators to chase the prey when interacting as a predator) we find a lower approximation of
this situation no matter which Πo we use.

Following definition 31 we obtain the PG value for this ⟨Πe,Πo⟩ (where Πo is instantiated
with any permitted value). Since the multi-agent environment is not team symmetric, we need
to calculate this property value for every pair of agent slots. Also, since |Πe| = 3 we just need
to calculate this property value for one trio of evaluated agents. Following definition 29 (for
PG) we calculate the PG value for the evaluated agents πchase1, πchase2, πchase3 ∈ Πe and each
pair of agent slots. We start with agent slots 1 and 2:

PG1,2(πchase1, πchase2, πchase3,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−1,2 (Πo)

wL̇(l̇)PO1,2(πchase1, πchase2, πchase3, l̇, µ)

We do not know which Πo we have, so we use a figurative agent line-up pattern l̇ =
(∗, ∗, π1, π2) from L̇

N(µ)
−1,2 (Πo):

PO1,2(πchase1, πchase2, πchase3, l̇, µ) = PO1,2(πchase1, πchase2, πchase3, (∗, ∗, π1, π2), µ)

C.5. Partial Grading 242

The following table shows us PO1,2 for all the permutations of πchase1, πchase2, πchase3.

AS 1 AS 2 AS 1 AS 2 AS 1 AS 2
πchase1 ≤ πchase2 πchase1 ≤ πchase3 πchase2 ≤ πchase1

πchase2 ≤ πchase3 πchase3 ≤ πchase2 πchase1 ≤ πchase3

πchase1 ≤ πchase3 πchase1 ≤ πchase2 πchase2 ≤ πchase3

AS 1 AS 2 AS 1 AS 2 AS 1 AS 2
πchase2 ≤ πchase3 πchase3 ≤ πchase1 πchase3 ≤ πchase2

πchase3 ≤ πchase1 πchase1 ≤ πchase2 πchase2 ≤ πchase1

πchase2 ≤ πchase1 πchase3 ≤ πchase2 πchase3 ≤ πchase1

It is possible to find a PO for every permutation, since the prey is always chased12, obtaining
the agents in agent slots 1 (any πchase) and 2 (any πchase) the expected average rewards of −1
and 1 respectively. So:

PO1,2(πchase1, πchase2, πchase3, (∗, ∗, π1, π2), µ) = 1

We generalise PG1,2 for any possible agent line-up pattern:

PG1,2(πchase1, πchase2, πchase3,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−1,2 (Πo)

wL̇(l̇)PO1,2(πchase1, πchase2, πchase3, l̇, µ) =

=
∑

l̇∈L̇N(µ)
−1,2 (Πo)

wL̇(l̇)1 = 1

For agent slots 1 and 3, the following table shows us PO1,3 for all the permutations of
πchase1, πchase2, πchase3.

AS 1 AS 3 AS 1 AS 3 AS 1 AS 3
πchase1 ≤ πchase2 πchase1 ≤ πchase3 πchase2 ≤ πchase1

πchase2 ≤ πchase3 πchase3 ≤ πchase2 πchase1 ≤ πchase3

πchase1 ≤ πchase3 πchase1 ≤ πchase2 πchase2 ≤ πchase3

AS 1 AS 3 AS 1 AS 3 AS 1 AS 3
πchase2 ≤ πchase3 πchase3 ≤ πchase1 πchase3 ≤ πchase2

πchase3 ≤ πchase1 πchase1 ≤ πchase2 πchase2 ≤ πchase1

πchase2 ≤ πchase1 πchase3 ≤ πchase2 πchase3 ≤ πchase1

It is also possible to find a PO, since again the agents in agent slots 1 (any πchase) and 3
(any πchase) obtain the expected average rewards of −1 and 1 respectively. So:

PG1,3(πchase1, πchase2, πchase3,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−1,3 (Πo)

wL̇(l̇)PO1,3(πchase1, πchase2, πchase3, l̇, µ) =

=
∑

l̇∈L̇N(µ)
−1,3 (Πo)

wL̇(l̇)1 = 1

For agent slots 1 and 4, the following table shows us PO1,4 for all the permutations of
πchase1, πchase2, πchase3.

12Note that only one predator trying to chase the prey is enough to chase a prey which wants to be chased.

C.5. Partial Grading 243

AS 1 AS 4 AS 1 AS 4 AS 1 AS 4
πchase1 ≤ πchase2 πchase1 ≤ πchase3 πchase2 ≤ πchase1

πchase2 ≤ πchase3 πchase3 ≤ πchase2 πchase1 ≤ πchase3

πchase1 ≤ πchase3 πchase1 ≤ πchase2 πchase2 ≤ πchase3

AS 1 AS 4 AS 1 AS 4 AS 1 AS 4
πchase2 ≤ πchase3 πchase3 ≤ πchase1 πchase3 ≤ πchase2

πchase3 ≤ πchase1 πchase1 ≤ πchase2 πchase2 ≤ πchase1

πchase2 ≤ πchase1 πchase3 ≤ πchase2 πchase3 ≤ πchase1

It is also possible to find a PO, since again the agents in agent slots 1 (any πchase) and 4
(any πchase) obtain the expected average rewards of −1 and 1 respectively. So:

PG1,4(πchase1, πchase2, πchase3,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−1,4 (Πo)

wL̇(l̇)PO1,4(πchase1, πchase2, πchase3, l̇, µ) =

=
∑

l̇∈L̇N(µ)
−1,4 (Πo)

wL̇(l̇)1 = 1

For agent slots 2 and 1, the following table shows us PO2,1 for all the permutations of
πchase1, πchase2, πchase3.

AS 2 AS 1 AS 2 AS 1 AS 2 AS 1
πchase1 ≤ πchase2 πchase1 ≤ πchase3 πchase2 ≤ πchase1

πchase2 ≤ πchase3 πchase3 ≤ πchase2 πchase1 ≤ πchase3

πchase1 ≤ πchase3 πchase1 ≤ πchase2 πchase2 ≤ πchase3

AS 2 AS 1 AS 2 AS 1 AS 2 AS 1
πchase2 ≤ πchase3 πchase3 ≤ πchase1 πchase3 ≤ πchase2

πchase3 ≤ πchase1 πchase1 ≤ πchase2 πchase2 ≤ πchase1

πchase2 ≤ πchase1 πchase3 ≤ πchase2 πchase3 ≤ πchase1

It is not possible to find a PO for any permutation, since the agents in agent slots 2 (any
πchase) and 1 (any πchase) obtain the expected average rewards of 1 and −1 respectively. So:

PG2,1(πchase1, πchase2, πchase3,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−2,1 (Πo)

wL̇(l̇)PO2,1(πchase1, πchase2, πchase3, l̇, µ) =

=
∑

l̇∈L̇N(µ)
−2,1 (Πo)

wL̇(l̇)0 = 0

For agent slots 2 and 3, it is possible to find a PO, since both agents obtain the same
expected average reward due they are in the same team. So:

PG2,3(πchase1, πchase2, πchase3,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−2,3 (Πo)

wL̇(l̇)PO2,3(πchase1, πchase2, πchase3, l̇, µ) =

=
∑

l̇∈L̇N(µ)
−2,3 (Πo)

wL̇(l̇)1 = 1

C.5. Partial Grading 244

For agent slots 2 and 4, it is also possible to find a PO, since again both agents obtain the
same expected average reward due they are in the same team. So:

PG2,4(πchase1, πchase2, πchase3,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−2,4 (Πo)

wL̇(l̇)PO2,4(πchase1, πchase2, πchase3, l̇, µ) =

=
∑

l̇∈L̇N(µ)
−2,4 (Πo)

wL̇(l̇)1 = 1

For agent slots 3 and 1, the following table shows us PO3,1 for all the permutations of
πchase1, πchase2, πchase3.

AS 3 AS 1 AS 3 AS 1 AS 3 AS 1
πchase1 ≤ πchase2 πchase1 ≤ πchase3 πchase2 ≤ πchase1

πchase2 ≤ πchase3 πchase3 ≤ πchase2 πchase1 ≤ πchase3

πchase1 ≤ πchase3 πchase1 ≤ πchase2 πchase2 ≤ πchase3

AS 3 AS 1 AS 3 AS 1 AS 3 AS 1
πchase2 ≤ πchase3 πchase3 ≤ πchase1 πchase3 ≤ πchase2

πchase3 ≤ πchase1 πchase1 ≤ πchase2 πchase2 ≤ πchase1

πchase2 ≤ πchase1 πchase3 ≤ πchase2 πchase3 ≤ πchase1

It is not possible to find a PO for any permutation, since the agents in agent slots 3 (any
πchase) and 1 (any πchase) obtain the expected average rewards of 1 and −1 respectively. So:

PG3,1(πchase1, πchase2, πchase3,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−3,1 (Πo)

wL̇(l̇)PO3,1(πchase1, πchase2, πchase3, l̇, µ) =

=
∑

l̇∈L̇N(µ)
−3,1 (Πo)

wL̇(l̇)0 = 0

For agent slots 3 and 2, it is possible to find a PO, since both agents obtain the same
expected average reward due they are in the same team. So:

PG3,2(πchase1, πchase2, πchase3,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−3,2 (Πo)

wL̇(l̇)PO3,2(πchase1, πchase2, πchase3, l̇, µ) =

=
∑

l̇∈L̇N(µ)
−3,2 (Πo)

wL̇(l̇)1 = 1

For agent slots 3 and 4, it is also possible to find a PO, since again both agents obtain the
same expected average reward due they are in the same team. So:

PG3,4(πchase1, πchase2, πchase3,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−3,4 (Πo)

wL̇(l̇)PO3,4(πchase1, πchase2, πchase3, l̇, µ) =

=
∑

l̇∈L̇N(µ)
−3,4 (Πo)

wL̇(l̇)1 = 1

C.5. Partial Grading 245

For agent slots 4 and 1, the following table shows us PO4,1 for all the permutations of
πchase1, πchase2, πchase3.

AS 4 AS 1 AS 4 AS 1 AS 4 AS 1
πchase1 ≤ πchase2 πchase1 ≤ πchase3 πchase2 ≤ πchase1

πchase2 ≤ πchase3 πchase3 ≤ πchase2 πchase1 ≤ πchase3

πchase1 ≤ πchase3 πchase1 ≤ πchase2 πchase2 ≤ πchase3

AS 4 AS 1 AS 4 AS 1 AS 4 AS 1
πchase2 ≤ πchase3 πchase3 ≤ πchase1 πchase3 ≤ πchase2

πchase3 ≤ πchase1 πchase1 ≤ πchase2 πchase2 ≤ πchase1

πchase2 ≤ πchase1 πchase3 ≤ πchase2 πchase3 ≤ πchase1

It is not possible to find a PO for any permutation, since the agents in agent slots 4 (any
πchase) and 1 (any πchase) obtain the expected average rewards of 1 and −1 respectively. So:

PG4,1(πchase1, πchase2, πchase3,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−4,1 (Πo)

wL̇(l̇)PO4,1(πchase1, πchase2, πchase3, l̇, µ) =

=
∑

l̇∈L̇N(µ)
−4,1 (Πo)

wL̇(l̇)0 = 0

For agent slots 4 and 2, it is possible to find a PO, since both agents obtain the same
expected average reward due they are in the same team. So:

PG4,2(πchase1, πchase2, πchase3,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−4,2 (Πo)

wL̇(l̇)PO4,2(πchase1, πchase2, πchase3, l̇, µ) =

=
∑

l̇∈L̇N(µ)
−4,2 (Πo)

wL̇(l̇)1 = 1

And for agent slots 4 and 3, it is also possible to find a PO, since again both agents obtain
the same expected average reward due they are in the same team. So:

PG4,3(πchase1, πchase2, πchase3,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−4,3 (Πo)

wL̇(l̇)PO4,3(πchase1, πchase2, πchase3, l̇, µ) =

=
∑

l̇∈L̇N(µ)
−4,3 (Πo)

wL̇(l̇)1 = 1

And finally, we calculate the PG value:

C.5. Partial Grading 246

PG(Πe, wΠe ,Πo, wL̇, µ, wS) = ηΠ3

∑
π1,π2,π3∈Πe|π1 ̸=π2 ̸=π3

wΠe(π1)wΠe(π2)wΠe(π3)ηS2
1

N(µ)∑
i=1

wS(i, µ)×

×

 i−1∑
j=1

wS(j, µ)PGi,j(π1, π2, π3,Πo, wL̇, µ) +

N(µ)∑
j=i+1

wS(j, µ)PGi,j(π1, π2, π3,Πo, wL̇, µ)

 =

= 6
9

2

1

3

1

3

1

3

4

3

1

4

1

4
{PG1,2(πchase1, πchase2, πchase3,Πo, wL̇, µ)+

+ PG1,3(πchase1, πchase2, πchase3,Πo, wL̇, µ)+

+ PG1,4(πchase1, πchase2, πchase3,Πo, wL̇, µ)+

+ PG2,1(πchase1, πchase2, πchase3,Πo, wL̇, µ)+

+ PG2,3(πchase1, πchase2, πchase3,Πo, wL̇, µ)+

+ PG2,4(πchase1, πchase2, πchase3,Πo, wL̇, µ)+

+ PG3,1(πchase1, πchase2, πchase3,Πo, wL̇, µ)+

+ PG3,2(πchase1, πchase2, πchase3,Πo, wL̇, µ)+

+ PG3,4(πchase1, πchase2, πchase3,Πo, wL̇, µ)+

+ PG4,1(πchase1, πchase2, πchase3,Πo, wL̇, µ)+

+ PG4,2(πchase1, πchase2, πchase3,Πo, wL̇, µ)+

+ PG4,3(πchase1, πchase2, πchase3,Πo, wL̇, µ)} =

= 6
9

2

1

3

1

3

1

3

4

3

1

4

1

4
{3× 0 + 9× 1} = 3

4

Note that we avoided to calculate all the permutations of π1, π2, π3 for PGi,j(π1, π2, π3,Πo, wL̇, µ),
since they provide the same result, by calculating only one permutation and multiplying the
result by 6 (the number of permutations).

So, for every Πo we obtain the same result:

∀Πo : PG(Πe, wΠe ,Πo, wL̇, µ, wS) =
3

4

Therefore, predator-prey has Leftmax = 3
4
(as a lower approximation) for this property.

Approximation 5. Rightmin for the partial grading (PG) property is equal to 3
4
(as a higher

approximation) for the predator-prey environment.

Proof. To find Rightmin (equation 8.5), we need to find a Πe that minimises the property value
as much as possible while Πo maximises it. Using Πe = {πchase1, πchase2, πchase3} (a πchase agent
tries to be chased when interacting as the prey and tries to perfectly coordinate with the other
predators to chase the prey when interacting as a predator) we find a higher approximation of
this situation no matter which Πo we use.

Following definition 31 we obtain the PG value for this ⟨Πe,Πo⟩ (where Πo is instantiated
with any permitted value). Since the multi-agent environment is not team symmetric, we need
to calculate this property value for every pair of agent slots. Also, since |Πe| = 3 we just need
to calculate this property value for one trio of evaluated agents. Following definition 29 (for
PG) we calculate the PG value for the evaluated agents πchase1, πchase2, πchase3 ∈ Πe and each
pair of agent slots. We start with agent slots 1 and 2:

C.5. Partial Grading 247

PG1,2(πchase1, πchase2, πchase3,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−1,2 (Πo)

wL̇(l̇)PO1,2(πchase1, πchase2, πchase3, l̇, µ)

We do not know which Πo we have, so we use a figurative agent line-up pattern l̇ =
(∗, ∗, π1, π2) from L̇

N(µ)
−1,2 (Πo):

PO1,2(πchase1, πchase2, πchase3, l̇, µ) = PO1,2(πchase1, πchase2, πchase3, (∗, ∗, π1, π2), µ)

The following table shows us PO1,2 for all the permutations of πchase1, πchase2, πchase3.

AS 1 AS 2 AS 1 AS 2 AS 1 AS 2
πchase1 ≤ πchase2 πchase1 ≤ πchase3 πchase2 ≤ πchase1

πchase2 ≤ πchase3 πchase3 ≤ πchase2 πchase1 ≤ πchase3

πchase1 ≤ πchase3 πchase1 ≤ πchase2 πchase2 ≤ πchase3

AS 1 AS 2 AS 1 AS 2 AS 1 AS 2
πchase2 ≤ πchase3 πchase3 ≤ πchase1 πchase3 ≤ πchase2

πchase3 ≤ πchase1 πchase1 ≤ πchase2 πchase2 ≤ πchase1

πchase2 ≤ πchase1 πchase3 ≤ πchase2 πchase3 ≤ πchase1

It is possible to find a PO for every permutation, since the prey is always chased13, obtaining
the agents in agent slots 1 (any πchase) and 2 (any πchase) the expected average rewards of −1
and 1 respectively. So:

PO1,2(πchase1, πchase2, πchase3, (∗, ∗, π1, π2), µ) = 1

We generalise PG1,2 for any possible agent line-up pattern:

PG1,2(πchase1, πchase2, πchase3,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−1,2 (Πo)

wL̇(l̇)PO1,2(πchase1, πchase2, πchase3, l̇, µ) =

=
∑

l̇∈L̇N(µ)
−1,2 (Πo)

wL̇(l̇)1 = 1

For agent slots 1 and 3, the following table shows us PO1,3 for all the permutations of
πchase1, πchase2, πchase3.

AS 1 AS 3 AS 1 AS 3 AS 1 AS 3
πchase1 ≤ πchase2 πchase1 ≤ πchase3 πchase2 ≤ πchase1

πchase2 ≤ πchase3 πchase3 ≤ πchase2 πchase1 ≤ πchase3

πchase1 ≤ πchase3 πchase1 ≤ πchase2 πchase2 ≤ πchase3

AS 1 AS 3 AS 1 AS 3 AS 1 AS 3
πchase2 ≤ πchase3 πchase3 ≤ πchase1 πchase3 ≤ πchase2

πchase3 ≤ πchase1 πchase1 ≤ πchase2 πchase2 ≤ πchase1

πchase2 ≤ πchase1 πchase3 ≤ πchase2 πchase3 ≤ πchase1

13Note that only one predator trying to chase the prey is enough to chase a prey which wants to be chased.

C.5. Partial Grading 248

It is also possible to find a PO, since again the agents in agent slots 1 (any πchase) and 3
(any πchase) obtain the expected average rewards of −1 and 1 respectively. So:

PG1,3(πchase1, πchase2, πchase3,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−1,3 (Πo)

wL̇(l̇)PO1,3(πchase1, πchase2, πchase3, l̇, µ) =

=
∑

l̇∈L̇N(µ)
−1,3 (Πo)

wL̇(l̇)1 = 1

For agent slots 1 and 4, the following table shows us PO1,4 for all the permutations of
πchase1, πchase2, πchase3.

AS 1 AS 4 AS 1 AS 4 AS 1 AS 4
πchase1 ≤ πchase2 πchase1 ≤ πchase3 πchase2 ≤ πchase1

πchase2 ≤ πchase3 πchase3 ≤ πchase2 πchase1 ≤ πchase3

πchase1 ≤ πchase3 πchase1 ≤ πchase2 πchase2 ≤ πchase3

AS 1 AS 4 AS 1 AS 4 AS 1 AS 4
πchase2 ≤ πchase3 πchase3 ≤ πchase1 πchase3 ≤ πchase2

πchase3 ≤ πchase1 πchase1 ≤ πchase2 πchase2 ≤ πchase1

πchase2 ≤ πchase1 πchase3 ≤ πchase2 πchase3 ≤ πchase1

It is also possible to find a PO, since again the agents in agent slots 1 (any πchase) and 4
(any πchase) obtain the expected average rewards of −1 and 1 respectively. So:

PG1,4(πchase1, πchase2, πchase3,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−1,4 (Πo)

wL̇(l̇)PO1,4(πchase1, πchase2, πchase3, l̇, µ) =

=
∑

l̇∈L̇N(µ)
−1,4 (Πo)

wL̇(l̇)1 = 1

For agent slots 2 and 1, the following table shows us PO2,1 for all the permutations of
πchase1, πchase2, πchase3.

AS 2 AS 1 AS 2 AS 1 AS 2 AS 1
πchase1 ≤ πchase2 πchase1 ≤ πchase3 πchase2 ≤ πchase1

πchase2 ≤ πchase3 πchase3 ≤ πchase2 πchase1 ≤ πchase3

πchase1 ≤ πchase3 πchase1 ≤ πchase2 πchase2 ≤ πchase3

AS 2 AS 1 AS 2 AS 1 AS 2 AS 1
πchase2 ≤ πchase3 πchase3 ≤ πchase1 πchase3 ≤ πchase2

πchase3 ≤ πchase1 πchase1 ≤ πchase2 πchase2 ≤ πchase1

πchase2 ≤ πchase1 πchase3 ≤ πchase2 πchase3 ≤ πchase1

It is not possible to find a PO for any permutation, since the agents in agent slots 2 (any
πchase) and 1 (any πchase) obtain the expected average rewards of 1 and −1 respectively. So:

PG2,1(πchase1, πchase2, πchase3,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−2,1 (Πo)

wL̇(l̇)PO2,1(πchase1, πchase2, πchase3, l̇, µ) =

=
∑

l̇∈L̇N(µ)
−2,1 (Πo)

wL̇(l̇)0 = 0

C.5. Partial Grading 249

For agent slots 2 and 3, it is possible to find a PO, since both agents obtain the same
expected average reward due they are in the same team. So:

PG2,3(πchase1, πchase2, πchase3,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−2,3 (Πo)

wL̇(l̇)PO2,3(πchase1, πchase2, πchase3, l̇, µ) =

=
∑

l̇∈L̇N(µ)
−2,3 (Πo)

wL̇(l̇)1 = 1

For agent slots 2 and 4, it is also possible to find a PO, since again both agents obtain the
same expected average reward due they are in the same team. So:

PG2,4(πchase1, πchase2, πchase3,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−2,4 (Πo)

wL̇(l̇)PO2,4(πchase1, πchase2, πchase3, l̇, µ) =

=
∑

l̇∈L̇N(µ)
−2,4 (Πo)

wL̇(l̇)1 = 1

For agent slots 3 and 1, the following table shows us PO3,1 for all the permutations of
πchase1, πchase2, πchase3.

AS 3 AS 1 AS 3 AS 1 AS 3 AS 1
πchase1 ≤ πchase2 πchase1 ≤ πchase3 πchase2 ≤ πchase1

πchase2 ≤ πchase3 πchase3 ≤ πchase2 πchase1 ≤ πchase3

πchase1 ≤ πchase3 πchase1 ≤ πchase2 πchase2 ≤ πchase3

AS 3 AS 1 AS 3 AS 1 AS 3 AS 1
πchase2 ≤ πchase3 πchase3 ≤ πchase1 πchase3 ≤ πchase2

πchase3 ≤ πchase1 πchase1 ≤ πchase2 πchase2 ≤ πchase1

πchase2 ≤ πchase1 πchase3 ≤ πchase2 πchase3 ≤ πchase1

It is not possible to find a PO for any permutation, since the agents in agent slots 3 (any
πchase) and 1 (any πchase) obtain the expected average rewards of 1 and −1 respectively. So:

PG3,1(πchase1, πchase2, πchase3,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−3,1 (Πo)

wL̇(l̇)PO3,1(πchase1, πchase2, πchase3, l̇, µ) =

=
∑

l̇∈L̇N(µ)
−3,1 (Πo)

wL̇(l̇)0 = 0

For agent slots 3 and 2, it is possible to find a PO, since both agents obtain the same
expected average reward due they are in the same team. So:

PG3,2(πchase1, πchase2, πchase3,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−3,2 (Πo)

wL̇(l̇)PO3,2(πchase1, πchase2, πchase3, l̇, µ) =

=
∑

l̇∈L̇N(µ)
−3,2 (Πo)

wL̇(l̇)1 = 1

C.5. Partial Grading 250

For agent slots 3 and 4, it is also possible to find a PO, since again both agents obtain the
same expected average reward due they are in the same team. So:

PG3,4(πchase1, πchase2, πchase3,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−3,4 (Πo)

wL̇(l̇)PO3,4(πchase1, πchase2, πchase3, l̇, µ) =

=
∑

l̇∈L̇N(µ)
−3,4 (Πo)

wL̇(l̇)1 = 1

For agent slots 4 and 1, the following table shows us PO4,1 for all the permutations of
πchase1, πchase2, πchase3.

AS 4 AS 1 AS 4 AS 1 AS 4 AS 1
πchase1 ≤ πchase2 πchase1 ≤ πchase3 πchase2 ≤ πchase1

πchase2 ≤ πchase3 πchase3 ≤ πchase2 πchase1 ≤ πchase3

πchase1 ≤ πchase3 πchase1 ≤ πchase2 πchase2 ≤ πchase3

AS 4 AS 1 AS 4 AS 1 AS 4 AS 1
πchase2 ≤ πchase3 πchase3 ≤ πchase1 πchase3 ≤ πchase2

πchase3 ≤ πchase1 πchase1 ≤ πchase2 πchase2 ≤ πchase1

πchase2 ≤ πchase1 πchase3 ≤ πchase2 πchase3 ≤ πchase1

It is not possible to find a PO for any permutation, since the agents in agent slots 4 (any
πchase) and 1 (any πchase) obtain the expected average rewards of 1 and −1 respectively. So:

PG4,1(πchase1, πchase2, πchase3,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−4,1 (Πo)

wL̇(l̇)PO4,1(πchase1, πchase2, πchase3, l̇, µ) =

=
∑

l̇∈L̇N(µ)
−4,1 (Πo)

wL̇(l̇)0 = 0

For agent slots 4 and 2, it is possible to find a PO, since both agents obtain the same
expected average reward due they are in the same team. So:

PG4,2(πchase1, πchase2, πchase3,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−4,2 (Πo)

wL̇(l̇)PO4,2(πchase1, πchase2, πchase3, l̇, µ) =

=
∑

l̇∈L̇N(µ)
−4,2 (Πo)

wL̇(l̇)1 = 1

And for agent slots 4 and 3, it is also possible to find a PO, since again both agents obtain
the same expected average reward due they are in the same team. So:

PG4,3(πchase1, πchase2, πchase3,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−4,3 (Πo)

wL̇(l̇)PO4,3(πchase1, πchase2, πchase3, l̇, µ) =

=
∑

l̇∈L̇N(µ)
−4,3 (Πo)

wL̇(l̇)1 = 1

C.6. Slot Result Dependency 251

And finally, we calculate the PG value:

PG(Πe, wΠe ,Πo, wL̇, µ, wS) = ηΠ3

∑
π1,π2,π3∈Πe|π1 ̸=π2 ̸=π3

wΠe(π1)wΠe(π2)wΠe(π3)ηS2
1

N(µ)∑
i=1

wS(i, µ)×

×

 i−1∑
j=1

wS(j, µ)PGi,j(π1, π2, π3,Πo, wL̇, µ) +

N(µ)∑
j=i+1

wS(j, µ)PGi,j(π1, π2, π3,Πo, wL̇, µ)

 =

= 6
9

2

1

3

1

3

1

3

4

3

1

4

1

4
{PG1,2(πchase1, πchase2, πchase3,Πo, wL̇, µ)+

+ PG1,3(πchase1, πchase2, πchase3,Πo, wL̇, µ)+

+ PG1,4(πchase1, πchase2, πchase3,Πo, wL̇, µ)+

+ PG2,1(πchase1, πchase2, πchase3,Πo, wL̇, µ)+

+ PG2,3(πchase1, πchase2, πchase3,Πo, wL̇, µ)+

+ PG2,4(πchase1, πchase2, πchase3,Πo, wL̇, µ)+

+ PG3,1(πchase1, πchase2, πchase3,Πo, wL̇, µ)+

+ PG3,2(πchase1, πchase2, πchase3,Πo, wL̇, µ)+

+ PG3,4(πchase1, πchase2, πchase3,Πo, wL̇, µ)+

+ PG4,1(πchase1, πchase2, πchase3,Πo, wL̇, µ)+

+ PG4,2(πchase1, πchase2, πchase3,Πo, wL̇, µ)+

+ PG4,3(πchase1, πchase2, πchase3,Πo, wL̇, µ)} =

= 6
9

2

1

3

1

3

1

3

4

3

1

4

1

4
{3× 0 + 9× 1} = 3

4

Note that we avoided to calculate all the permutations of π1, π2, π3 for PGi,j(π1, π2, π3,Πo, wL̇, µ),
since they provide the same result, by calculating only one permutation and multiplying the
result by 6 (the number of permutations).

So, for every Πo we obtain the same result:

∀Πo : PG(Πe, wΠe ,Πo, wL̇, µ, wS) =
3

4

Therefore, predator-prey has Rightmin = 3
4
(as a higher approximation) for this property.

C.6 Slot Result Dependency

Next we see the slot result dependency (SRD) property. As given in section 7.3.2, we want to
know how much competitive or cooperative the multi-agent environment is. We use an average
of rewards as the utility function to calculate an agent’s result.

Proposition 62. General range for the slot result dependency (SRD) property is equal to
[0, 0] for the predator-prey environment.

Proof. Following definition 21 we obtain the SRD value for ⟨Πe,Πo⟩ (where Πe and Πo are
instantiated with any permitted values). Since the multi-agent environment is not team sym-
metric, we need to calculate this property value for every pair of agent slots. Also, we do not

C.6. Slot Result Dependency 252

know which Πe we have, so we use a figurative evaluated agent π1 from Πe. Following defini-
tion 20 we calculate the SRD value for this figurative evaluated agent π1 ∈ Πe and each pair of
agent slots. We start with agent slots 1 and 2:

SRD1,2(π1,Πo, wL̇, µ) = corr
l̇∈L̇N(µ)

−1 (Πo)
[wL̇(l̇)](R1(µ[l̇

1← π1]), R2(µ[l̇
1← π1]))

We do not know which Πo we have, so we use a figurative agent line-up pattern l̇ =
(∗, π2, π3, π4) from L̇

N(µ)
−1 (Πo):

corr(R1(µ[l̇
1← π1]), R2(µ[l̇

1← π1])) = corr(R1(µ[π1, π2, π3, π4]), R2(µ[π1, π2, π3, π4]))

When the agent in agent slot 1 (any π1) obtains a reward (r) the agent in agent slot 2
(any π2) obtains the opposite reward (−r), and this relation is propagated to expected average
rewards as well. Since we use a correlation function between expected average rewards, and
the agents in agent slots 1 and 2 always obtain opposite expected average rewards, then the
correlation function always obtains the same value14 of −1. So, for any π1 we obtain the same
result:

corr(R1(µ[π1, π2, π3, π4]), R2(µ[π1, π2, π3, π4])) = −1

We generalise SRD1,2 for any possible agent line-up pattern:

SRD1,2(π1,Πo, wL̇, µ) = corr
l̇∈L̇N(µ)

−1 (Πo)
[wL̇(l̇)](R1(µ[l̇

1← π1]), R2(µ[l̇
1← π1])) =

= corr
l̇∈L̇N(µ)

−1 (Πo)
[wL̇(l̇)] (−1) = −1

For agent slots 1 and 3, the correlation function also always obtains the same value of −1.
So:

SRD1,3(π1,Πo, wL̇, µ) = corr
l̇∈L̇N(µ)

−1 (Πo)
[wL̇(l̇)](R1(µ[l̇

1← π1]), R3(µ[l̇
1← π1])) =

= corr
l̇∈L̇N(µ)

−1 (Πo)
[wL̇(l̇)] (−1) = −1

For agent slots 1 and 4, the correlation function also always obtains the same value of −1.
So:

SRD1,4(π1,Πo, wL̇, µ) = corr
l̇∈L̇N(µ)

−1 (Πo)
[wL̇(l̇)](R1(µ[l̇

1← π1]), R4(µ[l̇
1← π1])) =

= corr
l̇∈L̇N(µ)

−1 (Πo)
[wL̇(l̇)] (−1) = −1

For agent slots 2 and 1, the correlation function also always obtains the same value of −1.
So:

SRD2,1(π1,Πo, wL̇, µ) = corr
l̇∈L̇N(µ)

−2 (Πo)
[wL̇(l̇)](R2(µ[l̇

2← π1]), R1(µ[l̇
2← π1])) =

= corr
l̇∈L̇N(µ)

−2 (Πo)
[wL̇(l̇)] (−1) = −1

For agent slots 2 and 3, the correlation function obtains the value of 1, since both agents
obtain the same expected average reward due they are in the same team. So:

14Provided there is at least one game which is not a tie.

C.6. Slot Result Dependency 253

SRD2,3(π1,Πo, wL̇, µ) = corr
l̇∈L̇N(µ)

−2 (Πo)
[wL̇(l̇)](R2(µ[l̇

2← π1]), R3(µ[l̇
2← π1])) =

= corr
l̇∈L̇N(µ)

−2 (Πo)
[wL̇(l̇)]1 = 1

For agent slots 2 and 4, the correlation function also obtains the value of 1, since again both
agents obtain the same expected average reward due they are in the same team. So:

SRD2,4(π1,Πo, wL̇, µ) = corr
l̇∈L̇N(µ)

−2 (Πo)
[wL̇(l̇)](R2(µ[l̇

2← π1]), R4(µ[l̇
2← π1])) =

= corr
l̇∈L̇N(µ)

−2 (Πo)
[wL̇(l̇)]1 = 1

For agent slots 3 and 1, the correlation function always obtains the same value of −1. So:

SRD3,1(π1,Πo, wL̇, µ) = corr
l̇∈L̇N(µ)

−3 (Πo)
[wL̇(l̇)](R3(µ[l̇

3← π1]), R1(µ[l̇
3← π1])) =

= corr
l̇∈L̇N(µ)

−3 (Πo)
[wL̇(l̇)] (−1) = −1

For agent slots 3 and 2, the correlation function obtains the value of 1, since both agents
obtain the same expected average reward due they are in the same team. So:

SRD3,2(π1,Πo, wL̇, µ) = corr
l̇∈L̇N(µ)

−3 (Πo)
[wL̇(l̇)](R3(µ[l̇

3← π1]), R2(µ[l̇
3← π1])) =

= corr
l̇∈L̇N(µ)

−3 (Πo)
[wL̇(l̇)]1 = 1

For agent slots 3 and 4, the correlation function also obtains the value of 1, since again both
agents obtain the same expected average reward due they are in the same team. So:

SRD3,4(π1,Πo, wL̇, µ) = corr
l̇∈L̇N(µ)

−3 (Πo)
[wL̇(l̇)](R3(µ[l̇

3← π1]), R4(µ[l̇
3← π1])) =

= corr
l̇∈L̇N(µ)

−3 (Πo)
[wL̇(l̇)]1 = 1

For agent slots 4 and 1, the correlation function always obtains the same value of −1. So:

SRD4,1(π1,Πo, wL̇, µ) = corr
l̇∈L̇N(µ)

−4 (Πo)
[wL̇(l̇)](R4(µ[l̇

4← π1]), R1(µ[l̇
4← π1])) =

= corr
l̇∈L̇N(µ)

−4 (Πo)
[wL̇(l̇)] (−1) = −1

For agent slots 4 and 2, the correlation function obtains the value of 1, since both agents
obtain the same expected average reward due they are in the same team. So:

SRD4,2(π1,Πo, wL̇, µ) = corr
l̇∈L̇N(µ)

−4 (Πo)
[wL̇(l̇)](R4(µ[l̇

4← π1]), R2(µ[l̇
4← π1])) =

= corr
l̇∈L̇N(µ)

−4 (Πo)
[wL̇(l̇)]1 = 1

And for agent slots 4 and 3, the correlation function also obtains the value of 1, since again
both agents obtain the same expected average reward due they are in the same team. So:

SRD4,3(π1,Πo, wL̇, µ) = corr
l̇∈L̇N(µ)

−4 (Πo)
[wL̇(l̇)](R4(µ[l̇

4← π1]), R3(µ[l̇
4← π1])) =

= corr
l̇∈L̇N(µ)

−4 (Πo)
[wL̇(l̇)]1 = 1

And finally, we calculate the SRD value generalising for any possible evaluated agent:

C.7. Competitive Anticipation 254

SRD(Πe, wΠe ,Πo, wL̇, µ, wS) =
∑
π∈Πe

wΠe(π)ηS2
1

N(µ)∑
i=1

wS(i, µ)×

×

 i−1∑
j=1

wS(j, µ)SRDi,j(π,Πo, wL̇, µ) +

N(µ)∑
j=i+1

wS(j, µ)SRDi,j(π,Πo, wL̇, µ)

 =

=
∑
π∈Πe

wΠe(π)
4

3

1

4

1

4
×

× {SRD1,2(π,Πo, wL̇, µ) + SRD1,3(π,Πo, wL̇, µ)+

+ SRD1,4(π,Πo, wL̇, µ) + SRD2,1(π,Πo, wL̇, µ)+

+ SRD2,3(π,Πo, wL̇, µ) + SRD2,4(π,Πo, wL̇, µ)+

+ SRD3,1(π,Πo, wL̇, µ) + SRD3,2(π,Πo, wL̇, µ)+

+ SRD3,4(π,Πo, wL̇, µ) + SRD4,1(π,Πo, wL̇, µ)+

+ SRD4,2(π,Πo, wL̇, µ) + SRD4,3(π,Πo, wL̇, µ)} =

=
∑
π∈Πe

wΠe(π)
4

3

1

4

1

4
{6× (−1) + 6× 1} = 0

So, for every pair ⟨Πe,Πo⟩ we obtain the same result:

∀Πe,Πo : SRD(Πe, wΠe ,Πo, wL̇, µ, wS) = 0

Therefore, predator-prey has General = [0, 0] for this property.

C.7 Competitive Anticipation

Then, we follow with the competitive anticipation (AComp) property. As given in section 7.4.1,
we want to know how much benefit the evaluated agents obtain when they anticipate competing
agents. We use an average of rewards as the utility function to calculate an agent’s result.

Proposition 63. Generalmin for the competitive anticipation (AComp) property is equal to
−1 for the predator-prey environment.

Proof. To find Generalmin (equation 8.1), we need to find a pair ⟨Πe,Πo⟩ that minimises the
property value as much as possible. We can have this situation by selecting Πe = {πwin/win′}
and Πo = {πwin} (a πwin agent tries not to be chased when interacting as the prey and tries to
perfectly coordinate with the other predators to chase the prey when interacting as a predator,
and a πwin/win′ agent tries not to be chased when interacting as the prey and tries to perfectly
coordinate with the other predators to chase the prey when interacting as a predator but from
the fifth time step avoids chasing the prey).

Following definition 23 we obtain the AComp value for this ⟨Πe,Πo⟩. Since the multi-agent
environment is not team symmetric, we need to calculate this property value for every pair of
agent slots in different teams. Also, since |Πe| = 1 we just need to calculate this property value
for one evaluated agent. Following definition 22 we calculate the Ant value for the evaluated

C.7. Competitive Anticipation 255

agent πwin/win′ ∈ Πe and each pair of agent slots in different teams. We start with agent slots
1 and 2:

Ant1,2(πwin/win′ ,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−1,2 (Πo)

∑
π∈Πo

wL̇(l̇
2← π)×

× 1

2

(
R1(µ[l̇

1,2← πwin/win′ , π])−R1(µ[l̇
1,2← πwin/win′ , πr])

)
=

=
1

1

1

2

(
R1(µ[πwin/win′ , πwin, πwin, πwin])−

−R1(µ[πwin/win′ , πr, πwin, πwin])
)

In agent line-up (πwin/win′ , πwin, πwin, πwin), the predators perfectly coordinate to always
chase the prey (as seen in lemma 3), obtaining the agent in agent slot 1 (πwin/win′) the expected
average reward of −1, while in agent line-up (πwin/win′ , πr, πwin, πwin), the agent in agent slot 1
(πwin/win′) is almost always able to avoid the predators, almost obtaining the expected average
reward of 1. So:

Ant1,2(πwin/win′ ,Πo, wL̇, µ) =
1

1

1

2
[(−1)− 1] = −1

For agent slots 1 and 3, in agent line-up (πwin/win′ , πwin, πwin, πwin), the agent in agent slot 1
(πwin/win′) obtains the expected average reward of −1, while in agent line-up
(πwin/win′ , πwin, πr, πwin), the agent in agent slot 1 (πwin/win′) almost obtains the expected av-
erage reward of 1. So:

Ant1,3(πwin/win′ ,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−1,3 (Πo)

∑
π∈Πo

wL̇(l̇
3← π)×

× 1

2

(
R1(µ[l̇

1,3← πwin/win′ , π])−R1(µ[l̇
1,3← πwin/win′ , πr])

)
=

=
1

1

1

2

(
R1(µ[πwin/win′ , πwin, πwin, πwin])−

−R1(µ[πwin/win′ , πwin, πr, πwin])
)
=

=
1

1

1

2
[(−1)− 1] = −1

For agent slots 1 and 4, in agent line-up (πwin/win′ , πwin, πwin, πwin), the agent in agent slot 1
(πwin/win′) obtains the expected average reward of −1, while in agent line-up
(πwin/win′ , πwin, πwin, πr), the agent in agent slot 1 (πwin/win′) almost obtains the expected av-
erage reward of 1. So:

C.7. Competitive Anticipation 256

Ant1,4(πwin/win′ ,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−1,4 (Πo)

∑
π∈Πo

wL̇(l̇
4← π)×

× 1

2

(
R1(µ[l̇

1,4← πwin/win′ , π])−R1(µ[l̇
1,4← πwin/win′ , πr])

)
=

=
1

1

1

2

(
R1(µ[πwin/win′ , πwin, πwin, πwin])−

−R1(µ[πwin/win′ , πwin, πwin, πr])
)
=

=
1

1

1

2
[(−1)− 1] = −1

For agent slots 2 and 1, in agent line-up (πwin, πwin/win′ , πwin, πwin), they prey is not chased
due to the miss-coordination of πwin/win′ in the last time steps, obtaining the agent in agent slot
2 (πwin/win′) the expected average reward of −1, while in agent line-up (πr, πwin/win′ , πwin, πwin),
the prey is almost always chased by the predators, almost obtaining the agent in agent slot 2
(πwin/win′) the expected average reward of 1. So:

Ant2,1(πwin/win′ ,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−2,1 (Πo)

∑
π∈Πo

wL̇(l̇
1← π)×

× 1

2

(
R2(µ[l̇

2,1← πwin/win′ , π])−R2(µ[l̇
2,1← πwin/win′ , πr])

)
=

=
1

1

1

2

(
R2(µ[πwin, πwin/win′ , πwin, πwin])−

−R2(µ[πr, πwin/win′ , πwin, πwin])
)
=

=
1

1

1

2
[(−1)− 1] = −1

For agent slots 3 and 1, in agent line-up (πwin, πwin, πwin/win′ , πwin), the agent in agent slot 3
(πwin/win′) obtains the expected average reward of −1, while in agent line-up
(πr, πwin, πwin/win′ , πwin), the agent in agent slot 3 (πwin/win′) almost obtains the expected av-
erage reward of 1. So:

Ant3,1(πwin/win′ ,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−3,1 (Πo)

∑
π∈Πo

wL̇(l̇
1← π)×

× 1

2

(
R3(µ[l̇

3,1← πwin/win′ , π])−R3(µ[l̇
3,1← πwin/win′ , πr])

)
=

=
1

1

1

2

(
R3(µ[πwin, πwin, πwin/win′ , πwin])−

−R3(µ[πr, πwin, πwin/win′ , πwin])
)
=

=
1

1

1

2
[(−1)− 1] = −1

And for agent slots 4 and 1, in agent line-up (πwin, πwin, πwin, πwin/win′), the agent in
agent slot 4 (πwin/win′) obtains the expected average reward of −1, while in agent line-up

C.7. Competitive Anticipation 257

(πr, πwin, πwin, πwin/win′), the agent in agent slot 4 (πwin/win′) almost obtains the expected av-
erage reward of 1. So:

Ant4,1(πwin/win′ ,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−4,1 (Πo)

∑
π∈Πo

wL̇(l̇
1← π)×

× 1

2

(
R4(µ[l̇

4,1← πwin/win′ , π])−R4(µ[l̇
4,1← πwin/win′ , πr])

)
=

=
1

1

1

2

(
R4(µ[πwin, πwin, πwin, πwin/win′])−

− R4(µ[πr, πwin, πwin, πwin/win′])
)
=

=
1

1

1

2
[(−1)− 1] = −1

And finally, we calculate the AComp value:

AComp(Πe, wΠe ,Πo, wL̇, µ, wS) =
∑
π∈Πe

wΠe(π)ηS2
2

∑
t1,t2∈τ |t1 ̸=t2

∑
i∈t1

wS(i, µ)
∑
j∈t2

wS(j, µ)×

× Anti,j(π,Πo, wL̇, µ) =

=
1

1

8

3

1

4

1

4
×

× {Ant1,2(πwin/win′ ,Πo, wL̇, µ) + Ant1,3(πwin/win′ ,Πo, wL̇, µ)+

+ Ant1,4(πwin/win′ ,Πo, wL̇, µ) + Ant2,1(πwin/win′ ,Πo, wL̇, µ)+

+ Ant3,1(πwin/win′ ,Πo, wL̇, µ) + Ant4,1(πwin/win′ ,Πo, wL̇, µ)} =

=
1

1

8

3

1

4

1

4
{6× (−1)} = −1

Since −1 is the lowest possible value for the competitive anticipation property, therefore
predator-prey has Generalmin = −1 for this property.

Proposition 64. Generalmax for the competitive anticipation (AComp) property is equal to
1 for the predator-prey environment.

Proof. To find Generalmax (equation 8.2), we need to find a pair ⟨Πe,Πo⟩ that maximises the
property value as much as possible. We can have this situation by selecting Πe = {π33′/br} and
Πo = {πbr} (a πbr agent always goes to the bottom right corner and a π33′/br agent directly goes
to the 3rd row 3rd column cell, but if it notices that not all the predators are directly going to
the bottom right corner, then it goes to the bottom right corner when interacting as the prey
and always goes to the bottom right corner when interacting as a predator).

Following definition 23 we obtain the AComp value for this ⟨Πe,Πo⟩. Since the multi-agent
environment is not team symmetric, we need to calculate this property value for every pair of
agent slots in different teams. Also, since |Πe| = 1 we just need to calculate this property value
for one evaluated agent. Following definition 22 we calculate the Ant value for the evaluated
agent π33′/br ∈ Πe and each pair of agent slots in different teams. We start with agent slots 1
and 2:

C.7. Competitive Anticipation 258

Ant1,2(π33′/br,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−1,2 (Πo)

∑
π∈Πo

wL̇(l̇
2← π)×

× 1

2

(
R1(µ[l̇

1,2← π33′/br, π])−R1(µ[l̇
1,2← π33′/br, πr])

)
=

=
1

1

1

2

(
R1(µ[π33′/br, πbr, πbr, πbr])−R1(µ[π33′/br, πr, πbr, πbr])

)
In agent line-up (π33′/br, πbr, πbr, πbr), the agent in agent slot 1 (π33′/br) obtains the expected

average reward of 1, while in agent line-up (π33′/br, πr, πbr, πbr), the agent in agent slot 1 (π33′/br)
is almost always chased in the bottom right corner due it almost always notices the random
movement of πr, almost obtaining the expected average reward of −1. So:

Ant1,2(π33′/br,Πo, wL̇, µ) =
1

1

1

2
[1− (−1)] = 1

For agent slots 1 and 3, in agent line-up (π33′/br, πbr, πbr, πbr), the agent in agent slot 1
(π33′/br) obtains the expected average reward of 1, while in agent line-up (π33′/br, πbr, πr, πbr),
the agent in agent slot 1 (π33′/br) almost obtains the expected average reward of −1. So:

Ant1,3(π33′/br,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−1,3 (Πo)

∑
π∈Πo

wL̇(l̇
3← π)×

× 1

2

(
R1(µ[l̇

1,3← π33′/br, π])−R1(µ[l̇
1,3← π33′/br, πr])

)
=

=
1

1

1

2

(
R1(µ[π33′/br, πbr, πbr, πbr])−R1(µ[π33′/br, πbr, πr, πbr])

)
=

=
1

1

1

2
[1− (−1)] = 1

For agent slots 1 and 4, in agent line-up (π33′/br, πbr, πbr, πbr), the agent in agent slot 1
(π33′/br) obtains the expected average reward of 1, while in agent line-up (π33′/br, πbr, πbr, πr),
the agent in agent slot 1 (π33′/br) almost obtains the expected average reward of −1. So:

Ant1,4(π33′/br,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−1,4 (Πo)

∑
π∈Πo

wL̇(l̇
4← π)×

× 1

2

(
R1(µ[l̇

1,4← π33′/br, π])−R1(µ[l̇
1,4← π33′/br, πr])

)
=

=
1

1

1

2

(
R1(µ[π33′/br, πbr, πbr, πbr])−R1(µ[π33′/br, πbr, πbr, πr])

)
=

=
1

1

1

2
[1− (−1)] = 1

For agent slots 2 and 1, in agent line-up (πbr, π33′/br, πbr, πbr), the agent in agent slot 2
(π33′/br) obtains the expected average reward of 1, while in agent line-up (πr, π33′/br, πbr, πbr),
the agent in agent slot 2 (π33′/br) almost obtains the expected average reward of −1. So:

C.7. Competitive Anticipation 259

Ant2,1(π33′/br,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−2,1 (Πo)

∑
π∈Πo

wL̇(l̇
1← π)×

× 1

2

(
R2(µ[l̇

2,1← π33′/br, π])−R2(µ[l̇
2,1← π33′/br, πr])

)
=

=
1

1

1

2

(
R2(µ[πbr, π33′/br, πbr, πbr])−R2(µ[πr, π33′/br, πbr, πbr])

)
=

=
1

1

1

2
[1− (−1)] = 1

For agent slots 3 and 1, in agent line-up (πbr, πbr, π33′/br, πbr), the agent in agent slot 3
(π33′/br) obtains the expected average reward of 1, while in agent line-up (πr, πbr, π33′/br, πbr),
the agent in agent slot 3 (π33′/br) almost obtains the expected average reward of −1. So:

Ant3,1(π33′/br,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−3,1 (Πo)

∑
π∈Πo

wL̇(l̇
1← π)×

× 1

2

(
R3(µ[l̇

3,1← π33′/br, π])−R3(µ[l̇
3,1← π33′/br, πr])

)
=

=
1

1

1

2

(
R3(µ[πbr, πbr, π33′/br, πbr])−R3(µ[πr, πbr, π33′/br, πbr])

)
=

=
1

1

1

2
[1− (−1)] = 1

And for agent slots 4 and 1, in agent line-up (πbr, πbr, πbr, π33′/br), the agent in agent slot 4
(π33′/br) obtains the expected average reward of 1, while in agent line-up (πr, πbr, πbr, π33′/br),
the agent in agent slot 4 (π33′/br) almost obtains the expected average reward of −1. So:

Ant4,1(π33′/br,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−4,1 (Πo)

∑
π∈Πo

wL̇(l̇
1← π)×

× 1

2

(
R4(µ[l̇

4,1← π33′/br, π])−R4(µ[l̇
4,1← π33′/br, πr])

)
=

=
1

1

1

2

(
R4(µ[πbr, πbr, πbr, π33′/br])−R4(µ[πr, πbr, πbr, π33′/br])

)
=

=
1

1

1

2
[1− (−1)] = 1

And finally, we calculate the AComp value:

AComp(Πe, wΠe ,Πo, wL̇, µ, wS) =
∑
π∈Πe

wΠe(π)ηS2
2

∑
t1,t2∈τ |t1 ̸=t2

∑
i∈t1

wS(i, µ)
∑
j∈t2

wS(j, µ)×

× Anti,j(π,Πo, wL̇, µ) =

=
1

1

8

3

1

4

1

4
{Ant1,2(π33′/br,Πo, wL̇, µ) + Ant1,3(π33′/br,Πo, wL̇, µ)+

+ Ant1,4(π33′/br,Πo, wL̇, µ) + Ant2,1(π33′/br,Πo, wL̇, µ)+

+ Ant3,1(π33′/br,Πo, wL̇, µ) + Ant4,1(π33′/br,Πo, wL̇, µ)} =

=
1

1

8

3

1

4

1

4
{6× 1} = 1

C.8. Cooperative Anticipation 260

Since 1 is the highest possible value for the competitive anticipation property, therefore
predator-prey has Generalmax = 1 for this property.

C.8 Cooperative Anticipation

Finally, we follow with the cooperative anticipation (ACoop) property. As given in section 7.4.2,
we want to know how much benefit the evaluated agents obtain when they anticipate coop-
erating agents. We use an average of rewards as the utility function to calculate an agent’s
result.

Proposition 65. Generalmin for the cooperative anticipation (ACoop) property is equal to
−1 for the predator-prey environment.

Proof. To find Generalmin (equation 8.1), we need to find a pair ⟨Πe,Πo⟩ that minimises the
property value as much as possible. We can have this situation by selecting Πe = {πbr′} and
Πo = {π33/br} (a πbr′ agent directly goes to the bottom right corner, but if it notices that not
all the predators are directly going to this corner, then it goes to the 3rd row 3rd column cell,
and a π33/br agent always goes to the 3rd row 3rd column cell when interacting as the prey and
directly goes to the bottom right corner when interacting as a predator).

Following definition 24 we obtain the ACoop value for this ⟨Πe,Πo⟩. Since the multi-agent
environment is not team symmetric and it only has two teams, we need to calculate this
property value for every pair of agent slots in the same team. Also, since |Πe| = 1 we just need
to calculate this property value for one evaluated agent. Following definition 22 we calculate
the Ant value for the evaluated agent πbr′ ∈ Πe and each pair of agent slots in the same team.
We start with agent slots 2 and 3:

Ant2,3(πbr′ ,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−2,3 (Πo)

∑
π∈Πo

wL̇(l̇
3← π)×

× 1

2

(
R2(µ[l̇

2,3← πbr′ , π])−R2(µ[l̇
2,3← πbr′ , πr])

)
=

=
1

1

1

2

(
R2(µ[π33/br, πbr′ , π33/br, π33/br])−R2(µ[π33/br, πbr′ , πr, π33/br])

)
In agent line-up (π33/br, πbr′ , π33/br, π33/br), the predators directly go to the bottom right cell

and the prey goes to the 3rd row 3rd column cell, obtaining the agent in agent slot 2 (πbr′) the
expected average reward of −1, while in agent line-up (π33/br, πbr′ , πr, π33/br), the agent in agent
slot 2 (πbr′) almost always chases the prey in the 3rd row 3rd column cell due it almost always
notices the random movement of πr, almost obtaining the expected average reward of 1. So:

Ant2,3(πbr′ ,Πo, wL̇, µ) =
1

1

1

2
[(−1)− 1] = −1

For agent slots 2 and 4, in agent line-up (π33/br, πbr′ , π33/br, π33/br), the agent in agent slot 2
(πbr′) obtains the expected average reward of −1, while in agent line-up (π33/br, πbr′ , π33/br, πr),
the agent in agent slot 2 (πbr′) almost obtains the expected average reward of 1. So:

C.8. Cooperative Anticipation 261

Ant2,4(πbr′ ,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−2,4 (Πo)

∑
π∈Πo

wL̇(l̇
4← π)×

× 1

2

(
R2(µ[l̇

2,4← πbr′ , π])−R2(µ[l̇
2,4← πbr′ , πr])

)
=

=
1

1

1

2

(
R2(µ[π33/br, πbr′ , π33/br, π33/br])−R2(µ[π33/br, πbr′ , π33/br, πr])

)
=

=
1

1

1

2
[(−1)− 1] = −1

For agent slots 3 and 2, in agent line-up (π33/br, π33/br, πbr′ , π33/br), the agent in agent slot 3
(πbr′) obtains the expected average reward of −1, while in agent line-up (π33/br, πr, πbr′ , π33/br),
the agent in agent slot 3 (πbr′) almost obtains the expected average reward of 1. So:

Ant3,2(πbr′ ,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−3,2 (Πo)

∑
π∈Πo

wL̇(l̇
2← π)×

× 1

2

(
R3(µ[l̇

3,2← πbr′ , π])−R3(µ[l̇
3,2← πbr′ , πr])

)
=

=
1

1

1

2

(
R3(µ[π33/br, π33/br, πbr′ , π33/br])−R3(µ[π33/br, πr, πbr′ , π33/br])

)
=

=
1

1

1

2
[(−1)− 1] = −1

For agent slots 3 and 4, in agent line-up (π33/br, π33/br, πbr′ , π33/br), the agent in agent slot 3
(πbr′) obtains the expected average reward of −1, while in agent line-up (π33/br, π33/br, πbr′ , πr),
the agent in agent slot 3 (πbr′) almost obtains the expected average reward of 1. So:

Ant3,4(πbr′ ,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−3,4 (Πo)

∑
π∈Πo

wL̇(l̇
4← π)×

× 1

2

(
R3(µ[l̇

3,4← πbr′ , π])−R3(µ[l̇
3,4← πbr′ , πr])

)
=

=
1

1

1

2

(
R3(µ[π33/br, π33/br, πbr′ , π33/br])−R3(µ[π33/br, π33/br, πbr′ , πr])

)
=

=
1

1

1

2
[(−1)− 1] = −1

For agent slots 4 and 2, in agent line-up (π33/br, π33/br, π33/br, πbr′), the agent in agent slot 4
(πbr′) obtains the expected average reward of −1, while in agent line-up (π33/br, πr, π33/br, πbr′),
the agent in agent slot 4 (πbr′) almost obtains the expected average reward of 1. So:

C.8. Cooperative Anticipation 262

Ant4,2(πbr′ ,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−4,2 (Πo)

∑
π∈Πo

wL̇(l̇
2← π)×

× 1

2

(
R4(µ[l̇

4,2← πbr′ , π])−R4(µ[l̇
4,2← πbr′ , πr])

)
=

=
1

1

1

2

(
R4(µ[π33/br, π33/br, π33/br, πbr′])−R4(µ[π33/br, πr, π33/br, πbr′])

)
=

=
1

1

1

2
[(−1)− 1] = −1

And for agent slots 4 and 3, in agent line-up (π33/br, π33/br, π33/br, πbr′), the agent in agent slot
4 (πbr′) obtains the expected average reward of −1, while in agent line-up (π33/br, π33/br, πr, πbr′),
the agent in agent slot 4 (πbr′) almost obtains the expected average reward of 1. So:

Ant4,3(πbr′ ,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−4,3 (Πo)

∑
π∈Πo

wL̇(l̇
3← π)×

× 1

2

(
R4(µ[l̇

4,3← πbr′ , π])−R4(µ[l̇
4,3← πbr′ , πr])

)
=

=
1

1

1

2

(
R4(µ[π33/br, π33/br, π33/br, πbr′])−R4(µ[π33/br, π33/br, πr, πbr′])

)
=

=
1

1

1

2
[(−1)− 1] = −1

And finally, we calculate the ACoop value:

ACoop(Πe, wΠe ,Πo, wL̇, µ, wS) =
∑
π∈Πe

wΠe(π)ηS2
3

∑
t∈τ

∑
i,j∈t|i ̸=j

wS(i, µ)wS(j, µ)×

× Anti,j(π,Πo, wL̇, µ) =

=
1

1

8

3

1

4

1

4
{Ant2,3(πbr′ ,Πo, wL̇, µ) + Ant2,4(πbr′ ,Πo, wL̇, µ)+

+ Ant3,2(πbr′ ,Πo, wL̇, µ) + Ant3,4(πbr′ ,Πo, wL̇, µ)+

+ Ant4,2(πbr′ ,Πo, wL̇, µ) + Ant4,3(πbr′ ,Πo, wL̇, µ)} =

=
1

1

8

3

1

4

1

4
{6× (−1)} = −1

Since −1 is the lowest possible value for the cooperative anticipation property, therefore
predator-prey has Generalmin = −1 for this property.

Proposition 66. Generalmax for the cooperative anticipation (ACoop) property is equal to 1
for the predator-prey environment.

Proof. To find Generalmax (equation 8.2), we need to find a pair ⟨Πe,Πo⟩ that maximises the
property value as much as possible. We can have this situation by selecting Πe = {πwin}
and Πo = {πwin} (a πwin agent tries not to be chased when interacting as the prey and tries to
perfectly coordinate with the other predators to chase the prey when interacting as a predator).

C.8. Cooperative Anticipation 263

Following definition 24 we obtain the ACoop value for this ⟨Πe,Πo⟩. Since the multi-agent
environment is not team symmetric and it only has two teams, we need to calculate this
property value for every pair of agent slots in the same team. Also, since |Πe| = 1 we just need
to calculate this property value for one evaluated agent. Following definition 22 we calculate
the Ant value for the evaluated agent πwin ∈ Πe and each pair of agent slots in the same team.
We start with agent slots 2 and 3:

Ant2,3(πwin,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−2,3 (Πo)

∑
π∈Πo

wL̇(l̇
3← π)×

× 1

2

(
R2(µ[l̇

2,3← πwin, π])−R2(µ[l̇
2,3← πwin, πr])

)
=

=
1

1

1

2
(R2(µ[πwin, πwin, πwin, πwin])−R2(µ[πwin, πwin, πr, πwin]))

In agent line-up (πwin, πwin, πwin, πwin), the predators perfectly coordinate to always chase
the prey (as seen in lemma 3), obtaining the agent in agent slot 2 (πwin) the expected average
reward of 1, while in agent line-up (πwin, πwin, πr, πwin), the agent in agent slot 2 (πwin) almost
never chases the prey due the random agent does not coordinate with the other predators,
almost obtaining the expected average reward of −1. So:

Ant2,3(πwin,Πo, wL̇, µ) =
1

1

1

2
[1− (−1)] = 1

For agent slots 2 and 4, in agent line-up (πwin, πwin, πwin, πwin), the agent in agent slot 2
(πwin) obtains the expected average reward of 1, while in agent line-up (πwin, πwin, πwin, πr), the
agent in agent slot 2 (πwin) almost obtains the expected average reward of −1. So:

Ant2,4(πwin,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−2,4 (Πo)

∑
π∈Πo

wL̇(l̇
4← π)×

× 1

2

(
R2(µ[l̇

2,4← πwin, π])−R2(µ[l̇
2,4← πwin, πr])

)
=

=
1

1

1

2
(R2(µ[πwin, πwin, πwin, πwin])−R2(µ[πwin, πwin, πwin, πr])) =

=
1

1

1

2
[1− (−1)] = 1

For agent slots 3 and 2, in agent line-up (πwin, πwin, πwin, πwin), the agent in agent slot 3
(πwin) obtains the expected average reward of 1, while in agent line-up (πwin, πr, πwin, πwin), the
agent in agent slot 3 (πwin) almost obtains the expected average reward of −1. So:

Ant3,2(πwin,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−3,2 (Πo)

∑
π∈Πo

wL̇(l̇
2← π)×

× 1

2

(
R3(µ[l̇

3,2← πwin, π])−R3(µ[l̇
3,2← πwin, πr])

)
=

=
1

1

1

2
(R3(µ[πwin, πwin, πwin, πwin])−R3(µ[πwin, πr, πwin, πwin])) =

=
1

1

1

2
[1− (−1)] = 1

C.8. Cooperative Anticipation 264

For agent slots 3 and 4, in agent line-up (πwin, πwin, πwin, πwin), the agent in agent slot 3
(πwin) obtains the expected average reward of 1, while in agent line-up (πwin, πwin, πwin, πr), the
agent in agent slot 3 (πwin) almost obtains the expected average reward of −1. So:

Ant3,4(πwin,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−3,4 (Πo)

∑
π∈Πo

wL̇(l̇
4← π)×

× 1

2

(
R3(µ[l̇

3,4← πwin, π])−R3(µ[l̇
3,4← πwin, πr])

)
=

=
1

1

1

2
(R3(µ[πwin, πwin, πwin, πwin])−R3(µ[πwin, πwin, πwin, πr])) =

=
1

1

1

2
[1− (−1)] = 1

For agent slots 4 and 2, in agent line-up (πwin, πwin, πwin, πwin), the agent in agent slot 4
(πwin) obtains the expected average reward of 1, while in agent line-up (πwin, πr, πwin, πwin), the
agent in agent slot 4 (πwin) almost obtains the expected average reward of −1. So:

Ant4,2(πwin,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−4,2 (Πo)

∑
π∈Πo

wL̇(l̇
2← π)×

× 1

2

(
R4(µ[l̇

4,2← πwin, π])−R4(µ[l̇
4,2← πwin, πr])

)
=

=
1

1

1

2
(R4(µ[πwin, πwin, πwin, πwin])−R4(µ[πwin, πr, πwin, πwin])) =

=
1

1

1

2
[1− (−1)] = 1

And for agent slots 4 and 3, in agent line-up (πwin, πwin, πwin, πwin), the agent in agent slot
4 (πwin) obtains the expected average reward of 1, while in agent line-up (πwin, πwin, πr, πwin),
the agent in agent slot 4 (πwin) almost obtains the expected average reward of −1. So:

Ant4,3(πwin,Πo, wL̇, µ) =
∑

l̇∈L̇N(µ)
−4,3 (Πo)

∑
π∈Πo

wL̇(l̇
3← π)×

× 1

2

(
R4(µ[l̇

4,3← πwin, π])−R4(µ[l̇
4,3← πwin, πr])

)
=

=
1

1

1

2
(R4(µ[πwin, πwin, πwin, πwin])−R4(µ[πwin, πwin, πr, πwin])) =

=
1

1

1

2
[1− (−1)] = 1

And finally, we calculate the ACoop value:

C.8. Cooperative Anticipation 265

ACoop(Πe, wΠe ,Πo, wL̇, µ, wS) =
∑
π∈Πe

wΠe(π)ηS2
3

∑
t∈τ

∑
i,j∈t|i ̸=j

wS(i, µ)wS(j, µ)×

× Anti,j(π,Πo, wL̇, µ) =

=
1

1

8

3

1

4

1

4
{Ant2,3(πwin,Πo, wL̇, µ) + Ant2,4(πwin,Πo, wL̇, µ)+

+ Ant3,2(πwin,Πo, wL̇, µ) + Ant3,4(πwin,Πo, wL̇, µ)+

+ Ant4,2(πwin,Πo, wL̇, µ) + Ant4,3(πwin,Πo, wL̇, µ)} =

=
1

1

8

3

1

4

1

4
{6× 1} = 1

Since 1 is the highest possible value for the cooperative anticipation property, therefore
predator-prey has Generalmax = 1 for this property.

	Introduction
	Objectives
	Structure

	Background
	Multi-Agent Environment
	Matching Pennies
	Prisoner's Dilemma
	Predator-Prey (Pursuit Game)
	Pac-Man
	RoboCup Soccer

	Reinforcement Learning
	Q-learning
	SARSA
	QV-learning

	Kolmogorov Complexity
	Probability Distribution
	Uniform Distribution
	Geometric Distribution
	Universal Distribution

	Monte Carlo Approximation

	State of the Art
	Evaluation of Intelligence
	Psychometrics
	Animals
	Machines
	Formal Evaluation

	Works Focussed on the Interaction Between Agents

	Extending a General Intelligence Test to Evaluate Social Intelligence
	Universal Intelligence
	Universal Anytime Intelligence Test
	Lambda Environment Class
	A Prototype of a General Intelligence Test

	Evaluation of Social Intelligence Using a General Intelligence Test
	Extending a General Intelligence Test to Consider Several Agents
	Evaluating Agents Isolatedly
	Evaluating Agents in a Competitive Scenario
	Evaluating Agents in a Cooperative Scenario
	Scenario Measuring Both Competition and Cooperation
	Discussion

	Defining Social Intelligence Universally
	Teams
	Multi-Agent Environment Using Teams
	Agents' Setup
	A Formal Definition of Social Intelligence
	Social Intelligence Test

	Experimental Analysis for Several Types of Environments and Agents
	Experiment Configuration
	Prisoner's Dilemma (3-Players Version)
	Lambda Environment
	Predator-Prey (Pursuit Game)
	Aggregation of Results: Towards Social Intelligence Evaluation
	Discussion

	Properties About Social Intelligence Testbeds
	Boundedness
	Interactivity
	Action Dependency

	Non-Neutralism
	Reward Dependency
	Slot Result Dependency

	Anticipation
	Competitive Anticipation
	Cooperative Anticipation

	Secernment
	Fine and Coarse Discrimination
	Strict Total and Partial Grading

	Validity
	Reliability
	Efficiency
	Team Symmetry
	Summary of Properties

	Characterising Several Multi-Agent and Social Scenarios
	Graphical Analysis for the Properties
	Matching Pennies
	Prisoner's Dilemma
	Predator-Prey (Pursuit Game)
	Pac-Man
	RoboCup Soccer
	Discussion

	Conclusions and Future Work
	Bibliography
	Appendices
	Matching Pennies Properties
	Action Dependency
	Reward Dependency
	Fine Discrimination
	Strict Total Grading
	Partial Grading
	Slot Result Dependency
	Competitive Anticipation

	Prisoner's Dilemma Properties
	Action Dependency
	Reward Dependency
	Fine Discrimination
	Strict Total Grading
	Partial Grading
	Slot Result Dependency
	Competitive Anticipation

	Predator-Prey Properties
	Action Dependency
	Reward Dependency
	Fine Discrimination
	Strict Total Grading
	Partial Grading
	Slot Result Dependency
	Competitive Anticipation
	Cooperative Anticipation

