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ABSTRACT 

Nowadays turbocharging the internal combustion engine has 
become a key point in the reduction on pollutant emissions 
and the improvement on engine performance. The matching 
between the turbocharger and the engine is vital due to the 
highly unsteady flow the turbocharger works with. In the 
present paper the importance of the heat transfer phenomena 
inside small automotive turbochargers will be analyzed. This 
phenomenon will be studied from the point of view of both the 
turbine and the compressor in one-dimensional modelling. The 
goodness of the model will be demonstrated predicting turbine 
and compressor outlet temperatures. An accurate prediction of 
these parameters will be key designing the intercooler and the 
after treatment devices. A series of tests in a gas stand with 
steady and pulsating hot flow in the turbine side will be 
modeled to show the good agreement in turbocharger 
enthalpies prediction. 

INTRODUCTION 

Traditionally heat transfer effects have been neglected in 
turbomachinery studies due to the relative small exchange 
surface and the occurring high flows. Nevertheless this 
assumption is only valid for large turbomachines, but not true 
for the small turbochargers used in passenger car applications, 
mainly at low load operative points and transient conditions 
[1,2]. Such conditions correspond to urban traffic conditions 
according to NEDC tests (New European Driving Cycle) 
where the turbocharger speed is less than 90,000 rpm. In such 
conditions heat transfer to the compressor (from the turbine 
and oil) can be equal to the energy transferred by the 
compression process [3]. Improvement in turbocharger 
simulation codes and engine matching becomes vital in the 
automotive division since turbocharging the downsized 
engines is the only feasible way to reduce fuel consumption 
and pollutant emissions [4,5]. Nevertheless, the information 
provided by turbocharger manufacturers is not usually 
measured under adiabatic conditions due to the difficulties and 
limitations of such testing procedure. So the efficiency given 
in a turbocharger map is not the one defined as isentropic as it 
also contains the influence of heat. Nonetheless if the overall 
simulation of the turbocharger wants to be improved it will be 
desirable obtaining information about isentropic efficiency. It 
is due to it will remain the same for any given configuration 
(in a gas stand or in an engine) because it is subject only to the 
internal gas dynamic processes occurring in the machine. If a 

direct parameterization of the turbocharger using extrapolation 
from turbocharger maps information is used, unsatisfactory 
modeling results will be obtained as showed by [6].  

For the aforementioned reasons having a turbocharger Heat 
Transfer Model (HTM) would be crucial when manufacturer 
maps are used. That case is the standard for engine simulation 
codes. In such conditions the HTM will provide the 
turbocharger isentropic efficiency by discounting the heat 
fluxes occurring when the map was measured.  

Looking insight of the heat transfer phenomena in 
turbochargers, several studies have shown that the 
turbocharger is part of a complex thermal system containing 
different heat flows between compressor, turbine, engine 
housing, lubrication oil and environment [7,8]. In normal 
operative conditions heat flows from the turbine to the 
turbocharger housing and later arrives to the compressor 
worsening its efficiency [9,10,11,12]. For instance when 
turbine inlet temperature increases from 50ºC to 500ºC a 
nearly 15% lower compressor efficiency is measured for 
turbocharger speeds lower than the 50% of the maximum tip 
speed [13]. In the housing the heat is partially removed by the 
lubricating oil and the coolant circuit in case it exists. In 
addition the turbocharger exchanges energy to the 
surroundings by means of radiation and a mixed convection 
(free and forced depending on the set-up). A schematic 
diagram of these fluxes of energy can be observed in Figure 1. 
Several methodologies to characterize heat transfer 
phenomena in turbochargers have been proposed in the 
literature survey. They range from fast one-dimensional 
models for the whole turbocharger to the accurate conjugated 
FEM-CFD models that analyze the separated components of 
the turbocharger. One-dimensional models to characterize 
both the internal and external heat transfer of turbochargers 
are based in the thermodynamic analysis of adiabatic and 
diabatic processes of the turbocharger. Figure 2 shows both 
processes compared with the ideal one (isentropic).  
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one and the adiabatic efficiency traditionally defined would be 
higher than one. 

One of the discrepancies between proposed one-dimensional 
models in the literature to characterize heat transfer 
phenomena in turbochargers is whether the heat flux is 
removed from the system after or before the extraction of 
power, or even a combination of both possibilities. Baines et 
al. [17] assumes that the heat transferred from the compressed 
air to the surroundings and to the rest of the turbocharger unit 
occurs after the compression process, placed in the diffuser 
and the volute. This explanation is justified by the larger 
surface exposed to the air in this place compared to the 
impeller area. Although heat transfer must exist in the impeller 
due to conduction along the shaft, it will be small due to the 
lubrication oil and the small diameter of the shaft. That 
hypothesis is also confirmed by the fact that  compressor 
constant speed lines are not modified when the turbine inlet 
temperature increases, what ensures that aerodynamic losses 
do not depend on the heat fluxes [18]. However efficiency 
lines show important changes what confirms the existence of a 
heat flux from the hot turbine to the cold compressor. Those 
differences are bigger at the low load area, where the 
compressor is far away from the hypothesis of adiabatic 
machine. As the heat transfer only occurs after the impeller, 
the mechanical power measured in adiabatic conditions will be 
the same whatever will be turbine inlet temperature. The 
model proposed by Baines et al. [17] is only focused in heat 
transfer phenomena of the turbocharger based on convection 
process. Using the same argument of comparing exposed 
areas, in the turbine the bigger heat transfer will take place up 
to turbine tongue and at volute and so before extracting power 
in the rotor. In this case heat transfer will affect the work 
transfer process. The main advantage of this technique is the 
simplicity for latter programming in an engine computational 
code, as the whole heat transfer takes place only in one place. 
In addition experimental instrumentation will be easier and so 
the validation of the model. Models proposed by Bohn [19] 
and Shaaban [15,20] make a distinction between the heat 
transfer that takes place after and before the rotor. With this 
level of detail, difficulties in instrumentation for experimental 
characterization increases. Values from literature about 
thermal conductivity of all casing materials and surface 
emissivity were used by Bohn et al. [21] instead of a global 
turbocharger characterization. Internal convection between 
each of the working fluids (exhausted gases, air and oil) to the 
corresponding cases (turbine, compressor and housing case) 
was characterized by means of a general equation based on 
Nusselt number but fitting constants from that equation using 
experimental data. The study of Bohn et al. [21] revealed the 
importance of the lubricating oil working as a sink removing 
part of the internal heat transfer from the turbine side to the 
compressor side. The importance of the lubricating oil is also 
confirmed as compressor heat flux is not so strong dependent 
with turbine inlet temperature. Similar results were obtained 
by Yamagata [22] but only focusing in high turbocharger 
speeds without thermal insulation. The study concludes that 
metal temperatures of compressor components (back plate, 

impeller back and impeller hub) varied proportionally to the 
compressed air temperature released by compressor, being the 
effects of turbine inlet temperature relatively small.  

Models presented by Sidorow et al. [23] and Romagnoli et al. 
[24] propose the division of compression and expansion 
processes into three stages. For the compressor it is considered 
that the heat transfer takes place at two locations on the flow 
path according to [8]. A first heat flux increases compressor 
temperature before the compression process. After that the 
adiabatic compression occurs. Finally a heat flux source after 
the compression will increase the adiabatic outlet temperature 
up to the measured temperature. The same approach is 
considered for the turbine, assuming that the diabatic 
expansion process is divided into three stages. Firstly a heat 
flux is released at turbine inlet conditions, next adiabatic 
expansion occur; finally another release of heat flux occurs.  

In the present paper the importance of internal heat transfer 
inside automotive turbochargers will be analyzed. For that 
purpose two different turbochargers in size and configuration 
will be studied under steady and pulsating hot flow conditions 
at the turbine side. The importance of including a HTM in 1D 
engine simulation code will be observed in the prediction of 
turbocharger power balances and also in compressor and 
turbine outlet temperatures prediction.  

TURBOCHARGER HEAT TRANSFER 
MODEL DESCRIPTION  

In order to study heat transfer phenomena inside the 
turbocharger it has been divided into several measurement 
planes. Those planes are introduced according to the big 
temperatures differences between the hot turbine, the “cold” 
compressor and the lubricating oil passing through the central 
housing  [19,21]. Those differences force a heat flux from the 
hot side (the turbine) to the cold side, typically the oil but also 
to the compressor for low load regions.  Differences in radial 
surface temperature are small compared to the axial 
distribution what allows the simplification of the internal heat 
transfer problem into the 1D hypothesis [20]. 

Lumped Model 

The proposed turbocharger thermal model is based on the 
electrical analogy [25]. In this kind of models, the 
turbocharger is considered as a thermal network consisting in 
a finite number of nodes, whose thermal inertia is 
characterized by a thermal capacitance, and linked with other 
nodes by means of thermal conductance. Once the structure is 
divided into nodes, the energy conservation equation can be 
written for each node. It means the sum of heat fluxes between 
nodes, convective heat fluxes and other heat fluxes in a time 
interval equals the change in sensible energy of the node (1). 
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Writing equation (1) for each of the n nodes gives a set of 
linear, implicit equations of the form, 

1 1
· · · ·t t tK C T Q C T H

t t
       

  (2) 

In stationary conditions (t = t + ∆t), equation (2) reduces to: 

· tK T Q H       (3) 

If boundary conditions are added to equation (3) as 
temperatures, Tbc and rearranging it can be obtained: 

0
·

0
bc bc

unknown

TI T

TH K

    
    

    
   (4) 

The proposed one-dimensional lumped model for the 
automotive turbocharger consists on a thermal resistor 
network presented in Figure 3. There are 5 metal nodes named 
T, H1, H2, H3 and C corresponding to the cases for the 
turbine, housing and compressor [26,27]. Housing case has 
been split into three measurement planes, one near the turbine 
(H1) other near the compressor back plate (H3) and the other 
in the center of the housing (H2). That division is justified by 
the complexity of housing internal geometry and the later 
simplicity of studying the internal heat fluxes with the 
lubricating oil and the coolant circuit in that kind of 
turbochargers. The boundary conditions are represented by 
five convective nodes; turbine gas (IT), lubrication oil (oil), 
and compressed air (IC-OD), ambient and cooling liquid (W) 
in case it exists. These nodes are characterized by their 
average temperatures and film coefficients.  

Model Information 

Metal nodes are connected between them by means of 
conductive conductance Ki,j being calculated the heat flux 
using Fourier’s Law (5). 

 
, , ·

i j

cond
i j i jQ K T T      (5) 

Conductive conductance between adjacent metal nodes in the 
turbocharger will be constant for any operative condition as 
this property only depends on internal geometry and material. 
Metal nodes can store heat energy during transient 
performance introducing thermal capacitances in order to 
simulate that effect. Those properties will be obtained on a 

specific test bench [26,28] following the methodology 
described in [27]. 

 

Figure 3. One-dimensional lumped model for a turbocharger 
with coolant circuit. 

Metal nodes are connected with fluid nodes (working fluids or 
ambient) by means of convective conductance hAl,i being 
calculated the heat flux using Newton’s cooling law (6). 

 
, , ·

i j

conv
i j i jQ hA T T       (6) 

Convective conductance will depend on turbocharger 
geometry (wetted surface) but also on turbocharger operative 
conditions (fluid velocity and temperature). Thermal 
correlations for those heat transfer paths will be wisely 
determined from turbocharger measures under steady hot flow 
conditions. Those correlations will be based on Nusselt’ 
number definition assuming that turbocharger internal cases 
(turbine and compressor volutes,  lubricating ports and cooling 
ports) can be modeled as single pipes. With that assumption 
Nusselt number correlations will be in the form of Dittus-
Boelter (7) and Sieder-Tate (8) correlations [29]. 
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Those expressions are based on the simplicity of forced 
convection inside smooth and long pipes but these 
assumptions cannot be confirmed when studying internal heat 
transfer of the turbocharger (complex geometry, not smoothy, 
short pipes). For that reason the aforementioned expressions 
cannot be used in its original fashion. However it is desided to 
keep generallity in the study and so only the constant 
coefficients and exponents of these correlations will be 
recalculated for any of the convective branches. That 
calculation will be done by a simple fitting using experimental 
data from hot steady flow tests [9]. Figure 4shows the 
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DEFINITIONS/ABBREVIATIONS 

ΔḢ  Enthalpy power drop (W) 

ΔT  Temperature drop (ºC) 

1D  One Dimensional 

bc  Boundary conditions 

C, Com  Compressor 

CFD  Computational Fluid Dynamics 

e  Error 

FEM  Finite Elements Method 

HTM  Heat Transfer Model  

i,j  Consecutive nodes in the lumped model 

IC  Inlet Compressor 

IT  Inlet Turbine 

K  Metal conductance 

Nu  Nusselt number (-) 

OC  Outlet Compressor Case 

OD  Outlet Compressor Diffuser 

OT  Outlet Turbine 

Pr  Prandtl number (-) 

Re  Reynolds number (-) 

Q , Q   Heat Flux (W) 

T  Temperature (ºC) 

T, Tur  Turbine 

W  Cooling liquid 

W   Power 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


