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Abstract 

Nano-SAPO-34 zeolite catalyst (20 nm crystal size) has been stabilized by 

hydrothermal treatment.  After steamed at high temperatures (T≥550ºC), its textural 

properties and high lifetime during the reaction of methanol to olefins (MTO) are 

preserved, despite the decrease in acidity, even after months of contact with moisture. 

The stabilization effect is attributed to the migration of silicon to larger silicon islands in 

which the contribution of silicon on the edge is lower after steaming. Stabilization is not 

successful by a thermal treatment in air in the absence of water. Steaming at 

temperature >400ºC is required for achieving hydrothermal stabilization. A stability test 

for SAPO-34 in MTO reaction is proposed. 
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1. Introduction 

Nowadays, the high industrial demand for ethylene and propylene has renewed the 

interest on the reaction of methanol to olefins (MTO). In fact, more than 20 units are 

expected to operate in China in the next 2-3 years with an overall olefin capacity of 

more than 11 million Ton/year [1]. The feed methanol is obtained from reaction of 

synthesis gas on appropriate catalysts, being the synthesis gas obtained by gasification 

of coal or biomass and by steam-reforming of natural gas. The increasing amount of gas 

reserves due to the upcoming of shale gas have led to cheaper methane [2] and are 

expected to affect the market of methanol, renewing the interest for the MTO process 

[3]. If propylene is desired the catalyst used is based on high silica ZSM-5 (MTP 

process), which has a lifetime of 650 h in between the regeneration steps [4]. Another 

possibility is to use a catalyst based on silicoaluminophosphate SAPO-34 that can yield 

different C2=/C3= ratios depending on reaction conditions [5-7]. However, the latter 

catalyst has a much shorter lifetime than ZSM-5 due to the extension of coking 

reactions inside the cages of the CHA structure, and a continuous catalyst regeneration 



process is required. Lifetime of SAPO-34 can be extended by using mesoporous SAPO-

34 [8-12], by decreasing the size of the crystal [13-18] or by including metal oxides in 

the catalyst composition [19]. Smaller crystallites of SAPO-34 were achieved recently 

by heating the synthesis gel in a microwave apparatus [20, 21]. In this way, crystallites 

of 20nm sizes were obtained, and the resultant SAPO-34 presented much longer 

lifetimes than standard SAPO-34 samples. However, due to the small size of crystallites 

and the high external surface area, the material was very sensitive to hydrolysis by 

moisture at room conditions and suffered complete hydrolysis after months of storage. 

This behavior was already reported in the literature for more conventional SAPO-34 

samples [22-25]. Briend et al. [22] related the lack of long-term stability to the presence 

of silicon islands, favored by the use of morpholine as template. Other authors [23, 26] 

showed that the structural deterioration can be prevented if after removing the template 

the acid sites are covered with ammonia.  

In the present work we started from the hypothesis that it could be possible to 

increase the stability of SAPO-34 samples by performing a controlled hydrolysis of a 

part of the silicon, in an analogous way as it occurs with high aluminum zeolites that 

can be stabilized by controlled partial dealumination [27]. Therefore, we will present 

here the effect of the hydrothermal treatment at different temperatures on the long-term 

stability of nano and standard SAPO-34 materials. We will show how by an appropriate 

steaming temperature, nano-SAPO-34 becomes stabilized towards moisture. In addition, 

we will show that hydrothermal stability tests for SAPO-34, which are normally 

performed at very high temperatures (800°C) [1, 28, 29], should also include stability 

tests at reaction temperatures close to the reaction temperature used for MTO, to better 

ascertain the viability of this type of catalyst for the mentioned catalytic process. 

 

2. Experimental. 

2.1 Synthesis of materials 

Nano-SAPO-34 was synthesized by microwave heating following the methodology 

of Lin et al. [13] and reported previously [21] by using TEAOH as the structure 

directing agent (SDA). The composition of the synthesis gel was 1 Al(OPri)3 : 2 

H3PO4 : 2 TEAOH : 0.3 SiO2 : 30 H2O : Al(OPri)3. The crystallization was conducted 

in a microwave oven (Milestone ETHOS-D) with pre-programmed heating profiles at 

180°C for 1hour. Then, the solid product was recovered by filtration washed with water 

and ethanol for 3 times and dried overnight at 50°C. The as-synthesized material was 



calcined at 550°C in air for 6h to remove the SDA. A conventional sample of SAPO-34 

was synthesized following hydrothermal method, with a mixture of morpholine and 

TEAOH 1:1 mol/mol as SDA being the composition of the gel  1 Al2O3 : 1.06 P2O5 : 

1.08 SiO2 : 2.09SDA : 66 H2O. The solution was introduced into Teflon-line autoclave 

and heated at 200°C for 24h. Then, the sample was treated following the same 

procedure to remove the SDA. This sample will be called standard-SAPO-34. 

 

2.2 Characterization. 

BET surface area, micropore volume and pore volume distribution were 

determined by N2 adsorption and desorption in an ASAP2000. Crystallinity was 

measured by X-ray powder diffraction (XRD) with a Panalytical CUBIX diffract meter 

with monochromatic CuKα1,2 radiation (λ=1.5406, 1.5444 Å; Kα2 / Kα1 intensity 

ratio=0.5). Chemical composition was analyzed by inductively coupled plasma atomic 

absorption spectroscopy (ICP-OES) using a Varian 715-ES apparatus. Acidity was 

measured by NH3-TPD experiments carried out in a Micromeritics 2900 following the 

procedure reported earlier[17]. The MAS NMR spectra were recorded with a Bruker 

AV400 spectrometer. 29Si MAS NMR spectra were at 79.459 MHz with a 60º pulse 

length of 4µs and 60s repetition time, spinning the sample at 5kHz. Deconvolution 

of 29Si NMR bands corresponding to different Si environments was performed with 

Origin Pro 9.0 software with Gaussian shapes of constant width. 27Al MAS NMR 

spectra were recorded at 104.218 MHz with a spinning rate of 10 kHz at a 90º pulse 

length of 0.5 µs with 1 s repetition time. 31P MAS NMR spectra were recorded at 161.9 

MHz  with a spinning rate of 10 kHz and at a 90º pulse length of 5 µs with 20s 

repetition time. 29Si, 27Al and 31P chemical shifts are reported relative to 

tetramethylsilane, Al(H2O)6, and H3PO4 respectively. 

 

2.3 Catalytic experiments  

50 mg of sample (0.2-0.4 mm) were mixed with 2 g quartz (Fluka) and placed in a 

quartz reactor.  Methanol was fed by saturating N2 (19mL/min) at 25ºC, being the space 

velocity WHSV=7 h-1. The catalyst was first activated with a nitrogen flow of 80 

ml/min for 1 h at 540ºC, and then the temperature was decreased to reaction conditions 

(400ºC).  Analysis of products was done each 5 min with an online gas chromatograph 

(BRUKER 450GC, with a 50m PONA and Al2O3-Plot capillary columns at 37ºC of 

oven temperature, and two FID detectors). After reaction, the catalyst was regenerated 



at 540ºC in 80ml of air for 3h and the reaction was repeated again. Conversion and 

selectivities were calculated in carbon basis being methanol and dimethylether 

considered as feed. 

 

3. Results and discussion  

3.1 Crystallinity and acidity of SAPO-34 samples. 

The XRD patterns of the calcined parent nano-SAPO-34 and steamed at different 

temperatures are shown in Fig.1. The broad shape and low intensity of the XRD of the 

parent material is characteristic of the small size of the crystals [21], which is around 20 

nm (see Fig. 2). After steaming at temperatures of 550ºC and 600ºC, the diffraction 

patterns are still similar to that of nano-SAPO-34 suggesting that the structure of these 

samples is maintained. At 700ºC a slight decrease in the intensity of the peaks is 

observed. However, the sample steamed at 400ºC presents amorphous XRD pattern. In 

agreement with the XRD results, adsorption of nitrogen (Table 1) shows that the nano-

SAPO-34 steamed at 400ºC loses the microporosity while those steamed at higher 

temperatures preserve most of the textural properties with an optimum in microporosity 

for the sample steamed at 600ºC. Even more important is the observation that for 

samples steamed at T≥550ºC and exposed to moisture during days at room temperature, 

their crystallinity and micropore volume are preserved (Table 1 and Fig. 3), while non 

steamed template-free nano-SAPO-34 is negatively affected when exposed to moisture 

at room temperature. On the other hand, standard-SAPO-34 with larger cubic 

crystallites of around 500 nm is much less affected by steaming, with a smaller decrease 

in the BET surface after steaming at low (400) and high (700ºC) temperatures. 

When the acidity of the samples was measured by TPD of ammonia (Table 1 and 

Figure 4) the results indicate that, in general, steaming reduces the acidity of the 

samples when compared to the parent sample. This decrease is stronger in the case of 

the steaming at 700ºC, while the samples steamed at 550 and 600ºC present very similar 

acidity. When comparing the shape of the TPD desorption curves, it can be seen that all 

samples present a main component with a maximum in the range from 314 to 381ºC, 

and a shoulder ca. 230ºC (Fig. 3). The peak at higher temperature of desorption 

corresponds mainly to Brönsted acidity and the differences in the temperature of the 

maxima are better related to the amount of acid sites than to differences in acidity 

strength. The shoulder at low temperatures corresponds to physisorption of ammonia 



and not to adsorption on catalytically active sites [30]. From the amounts of adsorbed 

ammonia given in Table 1, it can be seen that the decrease in acidity is proportionally 

larger than the decrease in micropore volume when increasing steaming temperatures 

(see Fig. 4). The results suggest that the hydrolysis of the acid sites when steaming do 

not necessarily imply a loss of crystallinity, i.e., a partial collapse of the structure but, as 

it occurs during a controlled steam dealumination process for high Al content zeolites in 

which silicon is reinserted in the framework, in the case of SAPO-34 can occur a 

migration of phosphorus to fill up some of the nests left by silicon. Let’s investigate 

now by solid NMR the physicochemical transformations occurring in SAPO-34 upon 

steaming. 

 

3.2 Solid NMR characterization. 

The 27Al MAS NMR spectra of nano-SAPO-34 given  in Fig. 5 show an intense 

peak at 36 ppm and other two signals at -11 and 14 ppm for calcined nano-SAPO-34, 

that correspond to tetrahedrally coordinated aluminum in local structures of Al(PO)4, 

and octa and pentacoordinated aluminum, respectively.  After exposing the calcined 

sample to moisture at room temperature at increasing times, the octahedral Al signal at -

14 ppm continuously increases, indicating hydration of the Al(PO)4 species [24, 31]. 

Meanwhile, the signal of tetrahedral aluminum is shifted to 41 ppm, due to the 

distortion of the structure by interaction with water [32]. The 27Al MAS NMR spectra of 

nano-SAPO-34 sample steamed at 700ºC presents band intensities which are 

independent of the time of exposure and only a slight increase of octahedral aluminum 

is observed, indicating an increasing hydration effect with time. 

The hydration effect is also evidenced through the 31P NMR spectra. Nano-

SAPO-34 exhibits an asymmetrical signal at -30 ppm corresponding to tetrahedral 

P(OAl)4.  After 21 days of hydration, another signal at -16 ppm appears, which can be 

attributed to P(OAl)x(H2O)y formed by P atoms coordinated with water [24, 26, 33].         

After steaming the fresh nano-SAPO-34 sample at 700ºC, the shoulder at -16 ppm 

appears, and slightly increases after long contact with moisture. This result correlates 

well with the increase in the signal of Al NMR at -14 ppm assigned to the hydration of 

the Al(PO)4 species.   

The 29Si MAS NMR spectra give further information, and clear differences are 

observed with the hydrated-parent and steamed samples (Figure 5 and Table 2). The 

different silicon species of nano-SAPO-34 have been described elsewhere [21]. This 



sample shows a large amount of silicon in silicon islands, Si3Al, Si2Al, Si1Al and 

Si0Al,  which corresponds to the -95,-100, -,105 and -110 ppm bands respectively, and 

isolated silicon which is related to the band at -89 ppm. The fresh nano-SAPO-34 

sample was shown to hydrolyze in contact with moisture by transforming silicon at the 

edge of the silicon islands (-95 ppm) into defective sites at -78-85 ppm. As we will see 

later this has an effect in activity, selectivity and deactivation of the catalyst during the 

reaction of methanol to olefins. However, when the fresh calcined sample is steamed, 

the population of isolated silicon Si4Al decreases which is in agreement with the 

reduction in acidity shown by TPD of ammonia. At the same time, the signals 

corresponding to silicon within silicon islands, especially Si0Al at -110 ppm, increases 

together with a reduction of silicon on the edge (Si3Al at -95) with no raise in defects (-

78 to -85 ppm). In addition, the distribution of silicon species is not importantly affected 

when the steamed samples are contacted with moisture at room temperature. The above 

described effects are qualitatively similar for the sample steamed at 600 and 700ºC, 

being the decrease of isolated silicon Si4Al species higher for the sample steamed at 

700ºC.  

The results obtained here are in line with those previously reported for SAPO-34 

and other SAPO’s [31, 34, 35], in the sense that when they were thermally treated at 

high temperatures in the absence of added steam, part of silicon migrates to silicon 

islands while phosphorus healed the framework vacancies with no formation of defects. 

However, we have seen clear differences in the population of the different Si species 

and an impact on stability when the samples were steamed. The question then is what is 

the effect of steaming on the framework composition and its implication on stability to 

moisture, acidity, activity and selectivity for MTO. 

Wilson and Barger [7, 36] studied the effect of hydrothermal treatment on the 

activity and selectivity of SAPO-34 and they observed no degradation of the structure 

and a longer lifetime. Recently, Aramburo et al. [25] reported no difference with the 

purely thermally treated samples [31, 34, 35], i.e., a reduction in acidity with migration 

of silicon species to silicon islands. However, in  an earlier contribution Park et al. [37] 

showed that SAPO-34 thermally treated at 750ºC loses more crystallinity after reaction 

with water than the fresh sample indicating that only thermal treatment does not 

stabilize SAPO-34 samples. If our original hypothesis on the positive effect of water on 

the mobility of silicon and phosphorus through the framework of SAPO-34, in a similar 

way as it occurs with aluminum and silicon during ultrastabilization without generation 



of defects in zeolites, was possible in SAPO-34, a controlled steaming of the SAPO 

should stabilize towards the negative effect of moisture at room conditions on 

crystallinity. In this case, steam at high temperatures should facilitate the formation of 

larger silicon islands together with an easier reallocation of phosphorus occupying the 

vacancies left by silicon. This hypothesis is supported by a smaller amount of silicon 

species on the edge of the silicon islands found in steamed samples, as deduced from 

silicon NMR with an increase in the signals of silicon islands upon steaming. 

Theoretical calculations on the role of steaming on clusters of isomorphous zeolite SSZ-

13 and SAPO-34 [38] also to support our hypothesis on the effect of steaming on 

SAPO-34 stability. 

In summary, we can say that steaming produces a decrease of isolated Si species 

and its migration to silicon islands which grow in size, as suggested by the decrease of 

silicon species at the edge of silicon islands. The effect of steaming on lowering the 

amount of Si at the border of Si islands can explain the lower extension of hydrolysis in 

the steamed samples upon exposure to moisture at room temperature. This, in turn, 

would be responsible for the higher stability of the steamed samples. 

 

3.3 Catalytic activity. 

3.3.1 Influence of stabilization on catalyst activity and lifetime. 

The activity of calcined and steamed nano-SAPO-34 is shown in Fig. 7. The 

experiments were performed at WHSV=7h-1 and 400ºC of reaction temperature. Nano-

SAPO-34 samples steamed at 550, 600 and 700ºC present a lifetime close to fresh nano-

SAPO-34, though clear differences appear in the slope or the time at which catalyst 

deactivation starts to be observed. Here we have fitted the experimental data to the 

kinetic model developed by Janssens [39]. This model is able to separate the 

contribution of activity (K) from the deactivation rate (a) on ZSM-5 and was also 

successfully applied to SAPO-34 [21]. By doing that, the effect of steaming temperature 

is clearly visible. Indeed, the results in Table 3 indicate that activity (K) decreases when 

increasing the steaming temperature and that decrease correlates well with the decrease 

of acidity measured by TPD of ammonia. On the other hand, the rate of deactivation, 

which is also a measure of the catalyst half lifetime, is maintained despite the decrease 

of overall acidity due to steaming. Therefore, steaming decreases the activity of the 

catalyst while deactivation rate does not increase. However, the most important 

observation is that the samples steamed at temperatures ≥550ºC present a similar 



activity and lifetime after days, and even months, of contact with moisture at room 

temperature. This result would be consistent with the preservation of micropore volume 

and acidity of steamed samples observed upon exposure to moisture for long periods of 

time. The long-term stability must be related to the decrease of silicon at the edge of 

silicon islands due to both, migration of silicon and merging of small to larger islands in 

which the contribution of edges is less important. In addition, the decrease of Si species 

at the edge (Si3Al) is also responsible for the longer lifetime of the remaining acid sites 

since those sites have been considered strongly acid [40-42] and thus, more prone to 

deactivation by coking. 

When the micropore volume of steamed samples of nano-SAPO-34 was plotted 

versus the temperature of steaming, it appears that an optimum steaming temperature 

may exist between 600 and 700ºC. In fact, at lower steaming temperatures samples are 

hydrolyzed as shown by BET measurements, while at higher temperatures the decrease 

in acidity produced is larger with the correspondent loss of activity observed (Fig. 4).  

Finally, a sample of nano-SAPO-34 which was only thermally treated in air at 

750ºC was also tested when fresh and after being in contact with moisture at increasing 

times. It can be clearly seen in Figure 8 that despite the high initial lifetime of the fresh 

thermally treated sample, this strongly decreases when contacted with moisture. This 

result is in clear contrast what it occurs with the samples steamed at T≥550ºC that retain 

their microporosity, acidity and activity upon exposure to moisture. 

 

3.3.2 Influence of stabilization on catalyst selectivity 

Selectivity at constant conversion of the steamed samples is shown in Fig. 9. 

Notice that in the case of MTO it is mandatory to compare the selectivities at the same 

level of conversion. By doing that, the effect of thermodynamic equilibrium among 

olefins at high methanol conversion, can be isolated from the true selectivity of the 

hydrocarbon pool in SAPO-34. In fact, it was shown recently [21] that as the 

hydrocarbon pool forms through the catalytic bed, its selectivity is modified by further 

secondary reaction on the fresh portion of the catalyst, approaching thermodynamic 

equilibrium and masking therefore the selectivity obtained.  

When comparing different selectivities of steamed samples at constant 

conversion it can be seen that C2
=/C3

= ratio decreases after steaming when compared 

with calcined nano-SAPO-34, being the decrease more marked at 700ºC of steaming 

temperature (Fig. 10). More specifically, the results show an effective decrease of the 



selectivity to ethylene, while the distribution among the other olefins is not affected. 

This effect on the selectivity of ethylene must be related to the decrease in the strength 

of the acid sites due to the formation of larger silicon islands and the consequent 

decrease in the density of silicon species located at the edge, when compared with the 

calcined parent sample, as it is supported by 29Si NMR results (Table 2).  

Previously, when the parent nano-SAPO-34 (20 nm) was compared with a 

standard SAPO-34 of similar total acidity and much larger crystal size (500nm), nano-

SAPO-34 presented much higher C2
=/C3

= ratio [17], indicating that this ratio is not 

controlled by a faster diffusion of ethylene vs. propylene [5, 43, 44] but it would support 

the fact that with a higher acid strength, the olefin selectivity is produced through 

aromatic intermediates by the side-chain methylation mechanism [45]. If this is so, then 

a SAPO-34 with higher acid strength should yield more ethene since the formation from 

a hexa or tetramethylbenzene reaction center is less energetically favoured [46]. In our 

case, after steaming of nano-SAPO-34, the C2
=/C3

= ratio also decreases when compared 

with the parent sample, in line with a decrease in the distribution of silicon species at 

the edge of silicon islands. We can conclude from the experimental data that selectivity 

is governed by silicon distribution, (which has been modified by steaming) and not by 

shape selectivity effects, due to preferential diffusion of ethene or deactivation by coke. 

 

3.3.3 Methodology suggested for performing SAPO-34 stability tests. 

In addition, the results presented in this contribution help to define which are the 

best conditions to perform a SAPO-34 stability test that simulates a long period of a 

working catalyst with many cycles of reactions and regeneration, both in the presence of 

water. This has been done for other petrochemical process using zeolites in the catalyst 

inventory as it is the case of Fluid Catalytic Cracking. In this case, steaming at 

temperatures of 750ºC or higher and high partial pressures of water are used for 

simulating an equilibrium catalyst.  However, this kind of hydrothermal stability test 

does not seem suitable for SAPO-34 since the mechanism of dealumination for zeolites 

is different from the desilication on silicoaluminophosphates [38]. In fact, while 

steaming at high temperature generates wide dealumination in ZSM-5 crystals with 

severe loss of acidity [47-49], in the case of  standard SAPO-34, both, textural and 

acidity properties are preserved  (see Table 1 and ref. [25]). Moreover, if the SAPO-34 

sample presents high mesoporosity, as it is the case of the nano-SAPO-34 sample, 

steaming at 400ºC strongly affects the stability. Our results indicate that SAPO-34 



samples, especially if they are of hierarchical nature, should be submitted to 

hydrothermal stability test at low temperature, similar to the reaction temperature of 

methanol to olefins in order to evaluate their properties as potential MTO catalyst. Then, 

if required, they can be stabilized by steaming at 600-700ºC. 

 

 

4. Conclusions  

Nano-SAPO-34 has been stabilized towards contact with moisture by steaming at 

T≥550ºC. The stabilization effect is attributed to the migration of silicon to larger 

silicon islands in which the overall contribution of Si species on the edge of silicon 

islands has been reduced. The role of steam at high temperature is to facilitate the 

migration of silicon while the vacancies are healed by phosphorus. In the absence of 

steam, thermally treated nano-SAPO-34 is not stabilized and its lifetime decreases after 

contact with moisture. At low temperature of steaming the structure of nano-SAPO-34 

collapses due to the hydrolysis of Si-O-Al bonds. Suitable hydrothermal stability tests 

for nanosized or mesoporous SAPO-34 samples should include steaming at 

temperatures close to the temperature of the reaction of methanol and, if required, 

stabilization by steaming at T≥550ºC should be performed. 
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Table 1. Textural properties of nano-SAPO-34 and standard-SAPO-34 samples fresh 
and steamed at different temperatures after days of exposure to moisture.  

 

Sample Steaming 
temperature 

(ºC) 

Days with 
moisture at 

r.t. 

BET 
(m2g-1) 

t-plot 
Sext 

( m2/g) 

Vmicro 
(cm3/g) 

Vmeso 
(cm3/g) 

Acidity 
(mmol 

NH3 g-1) 
Nano- 

SAPO-34 
fresh 1 646 231 0.20 0.21 1.03 

 fresh 14 616 224 0.19 0.20 0.86 
 fresh 42 561 223 0.18 0.20 - 
 fresh 107 536 223 0.15 0.20 - 
 400 1 120 57 0.03 0.15 - 
 550 1 534 177 0.17 0.21 0.74 
 550 7 534 176 0.18 0.21 - 
 550 14 538 179 0.18 0.21 - 
 600 1 575 172 0.20 0.20 0.77 
 600 12 574 173 0.20 0.20 - 
 600 23 581 180 0.20 0.21 - 
 700 1 490 143 0.17 0.18 0.43 
 700 50 488 160 0.16 0.19 - 
 700 65 491 144 0.17 0.19 - 

Standard-
SAPO-34 

fresh 5 460 63 0.19 0.11 1.01 

 fresh 29 463 62 0.19 0.11 0.97 
 fresh 44 463 64 0.19 0.11 0.95 
 400 1 432 41 0.19 0.10 0.83 
 700 1 443 40 0.20 0.10 0.73 



Table 2  Distribution of silicon species by deconvolution of different  29Si MAS NMR 
signal of samples of nano-SAPO-34 fresh and steamed at 600 or 700ºC followed by 
exposure to moisture (days) at room temperature. 

Silicon species  
ppm  Fresh Fresh 

(23d) 
St-700 

(8d) 
St-700 
(75d) 

St-700 
(90d) 

St-600 
(1d) 

St-600 
(7d) 

St-600 
(21d) 

Defects  -78-85 5.1 14.3 13.9 11.5 7.9 7.4 3.5 1.5 
Si4Al  -89 16.3 18.7 12.2 12.9 12.8 16.1 9.4 8.5 
Si3Al1Si  -95 25.6 17.2 14.6 15.2 14.9 16.9 16.2 16.7 
Si2Al2Si  -100 18.9 18.8 19.8 19.7 17.0 17.7 16.6 16.8 
Si1Al3Si  -105 13.7 13.6 16.9 17.3 16.8 15.9 18.4 19.3 
Si4Si  -110 20.4 17.4 22.6 23.4 30.6 26.1 35.9 37.2 
Si in silicon islands -100 to -110 53 49.8 59.3 60.4 64.4 59.7 70.9 73.3 
 



Table 3. Kinetic parameters, halflifetime (t0.5), breakthrough time (t0.8), and methanol  
conversion capacity of nano and standard-SAPO-34 samples obtained by fitting of 
Janssen’s kinetic model. 
Sample Days of 

exposure 
to 

moisture 

k (mol/gh) a 
(g/mmol) 

t0.5  
(min) 

t0.8 
(min) 

Methanol 
conversion 

capacity 
(gmetanol/gcatalyst) 

Nano SAPO-34 1 9.98 5.6 147 76.7 15.9 

 28 6.82 3.6 231 70.0 25.1 

Nano SAPO-34 

St. 700ºC 

7 5.51 5.5 149 20.4 16.2 

53 5.47 6.3 131 17.2 14.2 

62 6.86 5.9 138 42.3 15.0 

Nano SAPO-34 

St. 600ºC 

1 5.94 5.3 155 31.1 16.9 

12 7.00 5.8 142 45.7 15.4 

22 8.85 6.8 120 55.5 13.0 

Nano SAPO-34 

St. 550ºC 

1 9.08 5.5 149 71.2 16.2 

7 7.70 4.9 167 63.8 18.1 

14 7.23 4.9 166 56.9 18.1 

 

 
 



Figure 1. XRD patterns of nano-SAPO-34 (a) as calcined, and after steaming at (b)700ºC, (c)600ºC, (d)550ºC, (e)400ºC.
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Figure 2. TEM pictures of standard and nano-SAPO-34.



 

Figure 3. XRD patterns of nano-SAPO-34 steamed at 700ºC after contact with moisture for (a) 1day ( b)67 days.
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Figure 4. NH3-TPD of standard-SAPO-34 (a)fresh, (b)steamed at 400ºC, (c)steamed at 700ºC; and nano-SAPO-34 (a)fresh, and
steamed at (b)550, (c)600 and (d)700ºC.



Figure 5. Micropore volume (circles) and acidity (squares) of nano-SAPO-34 samples steamed at different temperatures.
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Figure 6. 27Al, 31P and 29Si MAS NMR of nano-SAPO-34 samples (a)fresh and steamed at (b)600 or (c)700ºC followed by
exposure to moisture at room temperature for ( ) days.
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Figure 7. Conversion of methanol at 400ºC and WHSV: 7 h-1 on nano-SAPO-34 and standard-SAPO-34 samples fresh, after steaming at
different temperatures and subsequent exposure to moisture. Lines correspond to the fitting following Janssens’s kinetic model.
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Figure 8. Conversion of methanol at 400ºC and WHSV: 7 h-1 on nano-SAPO-34 thermally treated in air at 700ºC for 5h fresh and
after contact with moisture at room temperature up to 40 days.
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b) Nano SAPO-34 steamed at 700oC
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Figure 9. Selectivities to C2, C3, C4 and C5+ hydrocarbons in the conversion of methanol on nano-SAPO-34 fresh and steamed at
550, 600 and 700ºC.



Fig. 10. C2/C3 ratio of products in the conversion of methanol at 400ºC and WHSV = 7 h-1 on nano-SAPO-34
fresh and after steaming at 550, 600 and 700ºC.
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