Document downloaded from:

http://hdl.handle.net/10251/66379
This paper must be cited as:

Mislata Valero, S.; Silla Jiménez, F. (2015). On the Execution of Computationally Intensive
CPU-based Libraries on Remote Accelerators to Increase Performance: Early Experience
with the OpenBLAS and FFTW Libraries. 4th International Workshop on Heterogeneous
and Unconventional Cluster Architectures and Applications (HUCAA'15). IEEE Computer
Society. doi:10.1109/CLUSTER.2015.111.

The final publication is available at

http://dx.doi.org/10.1109/CLUSTER.2015.111

Copyright |EEE Computer Society

Additional Information

©2015IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for

resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

On the Execution of Computationally Intensive CPU-based Libraries
on Remote Accelerators for Increasing Performance:
Early Experience with the OpenBLAS and FFTW Libraries

Santiago Mislata and Federico Silla
Universitat Politécnica de Valéncia, Spain
Email: sanmisva@gap.upv.es, fsilla@disca.upv.es

Abstract—Virtualization techniques have shown to report
benefits to data centers and other computing facilities. In
this regard, virtual machines not only allow reducing the
size of the computing infrastructure while increasing overall
resource utilization but virtualizing individual components of
computers may also provide significant benefits. This is the
case, for example, for the remote GPU virtualization technique,
implemented in several frameworks during the last years.

In this paper we present an initial implementation of a new
middleware for the remote virtualization of another component
of computers: the CPU itself. Our proposal uses remote accel-
erators to perform computations that were initially intended
to be carried out in the local CPUs, doing so transparently
to the application and without having to modify its source
code. By making use of the OpenBLAS and FFTW libraries as
case studies, we carry out a performance evaluation targeting
several system configurations comprising Xeon processors as
well as Ethernet and InfiniBand QDR, FDR, and EDR network
adapters in addition to NVIDIA Tesla K40 GPUs. Results not
only demonstrate that the new middleware is feasible, but
they also show that mathematical libraries may experience a
significant speed up, despite of having to move data forth and
back to/from remote servers.

Keywords-Virtualization, GPUs, mathematical libraries

I. INTRODUCTION

Virtualization technologies, such as virtual machines, have
demonstrated to provide noticeable economic savings to data
centers, the main reason being that they can be concurrently
executed in a real computer, thus sharing its resources and
therefore increasing overall utilization. This is why solutions
such as VMware [1], Xen [2], KVM [3], or VirtualBox [4]
are so popular nowadays. Actually, the benefits reported
by the use of virtual machines has motivated that lead-
ing processor manufacturers such as Intel or AMD have
increasingly incorporated more support for virtualization
into their chip designs [5]. This has also been the case
for network fabric manufacturers. In this regard, not only
the ones at the highest performance end, like Mellanox
Technologies with the InfiniBand cards [6], but also those
for more modest technologies, such as Ethernet [7], have
also included virtualization mechanisms into their designs.
These mechanisms basically allow replicating, at the logical
level, the network card so that each of the replicas can be
assigned to one of the virtual machines. In a similar way,
NVIDIA has recently included desktop virtualization support
within its new GRID K1 graphics processing units (GPUs)
so that a given physical GPU can be shared among up to

eight virtual machines [8]. Intel has also recently introduced
virtualization support for its GPUs within the KVM frame-
work [9]. As can be seen, in order to efficiently support
the virtualization of entire computers, it is also necessary to
virtualize individual components of the computer.

Nevertheless, virtualizing individual components of the
computer that hosts the application making use of them is
not the only option to attain economical savings. External
resources may also be virtualized and shared among several
concurrent users, providing even larger benefits. This is the
case of networked disks, which allow a file system to be
shared among many different computers. Likewise, it is
possible to provide GPU-acceleration services to a cluster
by sharing a networked GPU by means of the remote GPU
virtualization technique, which has been implemented in
frameworks such as rCUDA [10], GVirtuS [11], or DS-
CUDA [12], among others. Furthermore, when remote GPU
virtualization solutions are considered at the cluster level,
they provide noticeable reductions in the total execution
time of a given workload composed of a set of computing
jobs [13] and in the total energy required to execute such
workloads [14].

However, computations on GPUs are not the only ones
that might be offloaded to other cluster nodes. In this regard,
computations initially intended to be carried out in the CPU
cores of a computer might also be offloaded, in a transparent
way, to accelerators located at other cluster nodes. In this
case, however, in addition to the flexibility provided by the
remote virtualization technique, reductions in execution time
may be achieved, as it will be shown later.

In this paper we present a first implementation of a new
middleware that allows offloading to accelerators located
in other nodes of the cluster the computationally intensive
CPU parts of an application. This is done without having to
modify the source code of applications and in a completely
transparent way to them. The rest of the paper is organized as
follows. Section II presents the proposal in detail. After that,
we present in Section III a performance evaluation based on
real executions of the new middleware in several system
configurations. Next, Section IV presents a performance
estimation of the new middleware when the communication
layer is improved. Later, Section V introduces an optimiza-
tion to the offloading process. Finally, Section VI presents
the main conclusions of this work.

II. OFFLOADING CPU COMPUTATIONS TO REMOTE
ACCELERATORS

The idea of the new middleware is simple: it moves the
computationally intensive parts of an application, written to
be executed in the local CPUs, to accelerators installed in
other nodes of the cluster, and doing so without modifying
the application source code. In this way, the computation
to be performed in the local CPU cores by mathematical
libraries such as BLAS, LAPACK, or FFT, among others, is
transparently offloaded to accelerators in other cluster nodes.

The new middleware is organized following a client-server
distributed architecture, as shown in Figure 1. The client
side is automatically contacted by the application as soon
as it makes a call to one of the functions of the replaced
mathematical libraries. Both the application and the client
middleware are executed in the same computer. The client
side of the new middleware presents to applications the
very same interface as the BLAS, FFT, LAPACK, or other
libraries do. This is achieved by creating a different wrapper
for each of the functions in the mathematical libraries. Upon
reception of a request from the application, the client mid-
dleware processes it and forwards the appropriate command,
along with the data, to the remote server, which interprets the
request and performs the required processing by accessing
the real accelerator in order to execute the corresponding
mathematical function. Once the accelerator has completed
the execution of the requested function, results are sent
back to the client middleware, which delivers them to the
demanding application. Notice that the application is not
aware of this process. It made a call to a mathematical
function, according to its original source code, and after
some time the call is completed and execution resumed,
exactly in the same way as if the computation would have
been carried out in the local CPU, as it is intended in the
unmodified application code.

In order to integrate the new middleware with applications
in an automatic and transparent way, the new framework
replaces the mathematical libraries by a library containing a
set of function wrappers that will be called whenever one of
the original mathematical functions is to be executed. These
wrappers will take the arguments of the original function and
forward the input data of the function to the actual node of
the cluster that will perform the requested computation in
the accelerator.

Using the new middleware is straightforward. First, the
library file containing the set of wrappers at the client
side should be copied to the computer executing the ap-
plication, which should additionally be compiled so that it
uses dynamic libraries, which is the common case. Fur-
thermore, several environment variables should be set. In
the case for the Linux operating system, for instance, the
already existing LD_LIBRARY_PATH environment variable
should be set according to the final location of the client

Client side | Server side

1
Application

|
|
|
FFT, BLAS, etc API I
|
|
I

Middleware

Wrapper library daemon

Accelerator
libraries

Software

Hardware

Accelerator

Figure 1: Architecture of the new middleware.

middleware file. After that, a new environment variable
called RCPU_SERVER should be initialized with the IP
address of the computer hosting the server side of the new
middleware and the port number used by the server to
receive requests. The syntax for initializing this variable
is “RCPU_SERVER=IP_address:port”. At the remote node,
the binaries of the middleware server should be executed.
This server is configured as a daemon and waits for compu-
tation requests in a configurable port number. In case other
operating systems are used, a similar procedure should be
followed.

It is important to remark that the proposed middleware
is not limited to certain libraries in the client node neither
in the server computer. On the one hand, in the client node
any library that performs intensive computations in the CPU
is eligible to be remotely accelerated. On the other hand,
any library implemented for an accelerator could be used
in the remote computer in order to serve computations for
the equivalent CPU-based functions (as long as the remote
computer includes such accelerator, obviously). Figure 2
depicts this idea. In the client node several CPU-based
libraries have been replaced by the wrappers of the proposed
middleware. Other libraries not depicted in the figure could
also be considered. In the server side several libraries might
be used to service client requests. For example, if the
server uses the GPU technology in order to provide accel-
eration, then the cuBLAS [19] library by NVIDIA might
be leveraged to accelerate the computations of libraries
such as GotoBLAS [22] or OpenBLAS [18]. Similarly, the
Magma [21] and Plasma [21] libraries could also be used.
It is also possible that the server features several GPUs. In
this case the cuBLAS-XT library [20] by NVIDIA could
be leveraged in the server to distribute the computations
among the available GPUs. Other libraries such as Magma
might also be used to take advantage of multi-GPU servers.
Notice that distributing data among the GPUs would be
transparently done by the middleware server and, therefore,

Application

Set of wrappers

BLAS | APACK
FFTW OpenBLAS

GotoBLAS MKL

Figure 2: Architecture of the new middleware from a library
perspective.

the application will still perform a single call to the CPU-
based original function, without requiring any change in its
source code. In a similar way, in order to accelerate libraries
such as FFTW [23], the NVIDIA cuFFT [24] library might
be used in the server. Other libraries implementing the FFT
computation in GPUs could also be employed. It would even
be possible to use one library or the other according to the
exact performance of each of them depending on problem
size. In case the remote server includes the Intel Xeon Phi
accelerator, the MKL library [25] by Intel could be used to
accelerate the computations requested by the client node.

Regarding the initial implementation of the new mid-
dleware presented in this paper, it makes use of TCP/IP
based communications between clients and servers, although
a more sophisticated communication layer based on the
InfiniBand Verbs API will be developed in the future. Also,
the new middleware currently supports only NVIDIA GPUs,
but the use of Intel Xeon Phi accelerators is intended to be
supported in future versions. Finally, this initial implementa-
tion of the new middleware provides partial support for the
BLAS library whereas some support for the FFTW library
is also implemented. Support for the LAPACK library will
be addressed in future versions.

III. PERFORMANCE EVALUATION

In this section we analyze the benefits that the new
middleware might provide to applications. For so, we start
with an initial analysis based on three representative func-
tions of the BLAS [15] library: DGEMM, DGEMYV, and
DDOT. These three functions, which use double precision
data in our experiments, present different computational
complexity. DGEMM basically performs a matrix-matrix
product, denoted by the formula C' = «AB + SC being A,
B, and C matrices whereas « and [are scalars. DGEMM
presents a complexity O(n?). Because of this complexity, it
is said that the DGEMM function belongs to the Level 3
subset of BLAS functions. On the other hand, DGEMV
performs a matrix-vector product, according to the formula
y = aAx+ [y being A a matrix, x and y vectors, and finally
« and f3 are scalars. DGEMYV presents a complexity O(n?),

thus belonging to the Level 2 subset of BLAS. Finally, the
DDOT function performs the dot product of two vectors,
given by the formula z”y being x and y vectors. DDOT
has complexity O(n), being classified as a Level 1 function.

Another interesting point of view to analyze these func-
tions is the amount of computations performed per input
data element. Assuming the use of square matrices in order
to simplify this analysis, the DGEMM function requires 3n?
input elements, being n the matrix dimension, and performs
in total n® + 2n? multiplications and n3 4+ n? additions.
Therefore, the amount of computations per input data ele-
ment is (n + 2)/3 multiplications and (n + 1)/3 additions,
what might be simplified, given the higher complexity of
multiplications, to (n + 2)/3 operations. In the case for
DGEMV, it performs n? + 2n multiplications and n? + n
additions, involving n? 4+ 2n data elements (n being both the
matrix dimension and also the vector length). Thus, making
a similar simplification as before, the DGEMV function
performs 1 operation per data element. Finally, the DDOT
function performs n multiplications and n additions with
2n data elements, thus accounting for a total of 0.5 opera-
tions per input data element. As can be seen, the different
computation complexity of these functions translates into
a different amount of computations per data element. In a
similar way, it also translates into a different computation-
to-communication ratio, which will be used later to explain
some of the results obtained in this section.

Regarding the testbed used in this section, both the
client and server nodes feature two Intel Xeon hexa-core
E5-2620v2 processors (Ivy Bridge) operating at 2.1 GHz
and 32 GB of DDR3 memory at 1600 MHz. The server
also includes an NVIDIA Tesla K40 comprising 12 GB
of GDDRS5 memory. The Linux CentOS release 6.4 was
used. With respect to the network fabric we have considered
InfiniBand QDR and FDR network adapters delivering a
maximum theoretical bandwidth, respectively, of 40 and 56
Gbps. Additionally, the widely available 1 Gbps Ethernet
fabric was also considered. Furthermore, notice that TCP/IP
communications between the client and server nodes are
leveraged over Ethernet and InfiniBand. In this regard, no
kind of optimization has been implemented in the commu-
nication layer of the new framework, which in this initial
implementation is quite simple: the client side sends all the
input data of the outsourced function to the remote server
using the standard TCP socket API and, once all the matrices
and vectors involved in the requested computation have
arrived at the server, they are copied to the GPU memory
using the appropriate CUDA commands. In this way, there
is no parallelism nor pipeline in the data movement from
main memory in the client node to the GPU memory in the
remote server. Actually, this is the worst scenario for the new
middleware given that these non-optimized communications
cause the biggest possible overhead.

Figure 3 depicts the performance attained by the DGEMM

= =« Xeon Local Xeon QDR

Xeon ETH === Xeon FDR

2,500
m

é 2,000
]

g 1,500
Lo
c

.2 1,000
=
>
(%]

£ 500
[¥7]

0

2800
3200
3600
4000
4400
4800
5200
5600
6000

Figure 3: Performance of the DGEMM function.

function. Execution time when using the local CPU has
been included as the reference. In order to perform a fair
comparison, a powerful BLAS library should be selected
for the local executions. In this regard, there are several
good candidates, such as the GotoBLAS implementation,
the OpenBLAS software, or the MKL library. Among these
candidates we have selected the OpenBLAS library given
its superior performance with respect to the other two
incarnations of the BLAS library [18]. However, selecting
a different candidate would not significantly modify the
discussion in this section.

Execution times when using the local CPUs are referred
by the curve labeled “Xeon Local”. Notice that the 12
available CPU cores in the system have been used in the
local experiments. Figure 3 also depicts the execution time
when using the new middleware along with an Ethernet
network as well as the Infiniband QDR and FDR network
fabrics (curves labeled “Xeon ETH”, “Xeon QDR”, and
“Xeon FDR”, respectively). Results in Figure 3 clearly show
that the performance of the network connecting the client
and server nodes is crucial. In this regard, when 1 Gbps
Ethernet is used, execution time is noticeably increased with
respect to the execution time in the local CPUs. When the
InfiniBand network is used, execution time for the new
middleware is only slightly larger than the time required
for the executions in the local CPU cores. Nevertheless,
notice that times become similar for the largest matrix sizes.
These results seem to point out that when the communication
between client and server nodes is improved (next section),
the new middleware may provide some performance gains.

There is an interesting detail in Figure 3 that is worth
a comment. Notice that, surprisingly, both the QDR and
FDR networks perform similar when using TCP/IP over
InfiniBand. In order to verify this issue, we used the well
known iperf tool [16] to gather bandwidth results. This
tool showed that for the systems used in the experiments
both interconnects provide basically the same performance,

O Server @ From Server

100%

80%
i I - l l l

60%

20%

0%

o O o
o O O
N O O
— — N

W To Server

% of total time
N
o
x

400
800

o O o o
o O O O
< 0 N O
N N ™ ™

* 4000
4400

Matrix dimensi
(a) Ethernet network

o

n

% of total time

o O o
o O o
N O O
— «— N

400
800

Matrix dimension
(b) InfiniBand FDR network

Figure 4: DGEMM execution time breakdown.

around 1190 MB/s.

Figure 4 presents the breakdown of the execution time
when using the new middleware. Time is broken down into
three components: (1) time required to move the input data
of the DGEMM function to the main memory of the remote
server, (2) time spent in the server (which includes the actual
computations as well as moving data from main memory
to GPU memory and also moving results back from GPU
memory to main memory), and (3) time required to return
back the results to the client node. Labels “To Server”,
“Server”, and “From Server” refer, respectively, to each
of these components. It can be seen that when using the
Ethernet network (Figure 4a), most of the total time is
spent in moving data to/from the remote server, thus causing
a noticeable increment in total execution time despite of
using a powerful GPU to accelerate computations. The large
time for data movement is diminished for the InfiniBand
fabrics (Figure 4b), although communications still represent
an important fraction of the total time, thus increasing total
execution time with respect to local executions in the CPU
cores, as shown in Figure 3.

Finally, in a similar way to the DGEMM function,
where no performance gain was obtained due to the large
communication overhead, in the case for the DGEMV
and DDT functions, which present a smaller computation-
to-communication ratio, no execution time reduction was
achieved in our experiments.

IV. PERFORMANCE WHEN COMMUNICATIONS ARE
IMPROVED

In the previous section we have presented performance
results of the new middleware, which makes use of the
TCP/IP protocol stack to move data between client and
server nodes. The communication layer currently available
in the new middleware is very simple: data is moved from
the client node to the server memory without any kind of
optimization and, after receiving all the input data, they are
moved to the GPU memory and then computation starts.
However, it is possible to optimize such data movement in
order to noticeably increase its performance. For example,
the InfiniBand Verbs API may be used instead of the
TCP/IP protocol stack, boosting network throughput. Also,
an efficient communication pipeline could be leveraged, as
in the rCUDA remote GPU virtualization framework [10].
Another possibility is using the GPU Direct RDMA mecha-
nism provided by NVIDIA and Mellanox [17]. Moreover,
notice that in these two options, data is directly moved
from the main memory in the client node to the GPU
memory in the remote node, thus not only making use of
a higher network bandwidth, but also using an improved
communication architecture. In this regard, it is important
to remark that data in the previous section was sent from
the client memory to the server memory and once all data
arrived at the server memory, then it was moved to the GPU
memory. Thus, data was moved in a stop&wait fashion, what
introduced a large communication overhead. On the contrary,
with the improved communication layer, data is directly
moved from the client’s main memory to the GPU memory
at the server, avoiding the stop at the server’s main memory.
Additionally, data transmission is pipelined and therefore
performance is not only improved because a higher network
bandwidth is attained thanks to the use of the InfiniBand
Verbs API, but also due to the fact that data transmission
is not following a stop&wait approach but it is done in a
cut-through way, thus also reducing communication latency.

Given that moving data from the memory in the client
node to the GPU in the remote server is the main concern in
the new framework, in this section we present an estimation
of which would be the performance when an optimized
communication larger is used. The performance estimation
methodology consists in replacing, in the results presented
in the previous section, the communication time between
main memory in the client and the GPU memory in the
server (including the intermediate stop at the server’s main
memory) by the time that an optimized communication layer
would attain. Notice that for estimating the time required to
move data to and from the remote server, which depends
on the volume of input and output data and also on the
network bandwidth attained for each transfer size, the band-
width achieved by the rCUDA remote GPU virtualization
framework [10] has been used instead of using the raw

—Xeon FDR
Speed Up FDR

---Xeon EDR
mm Speed Up EDR

- - = Xeon Local

5
2,000
m /| lla
E ,
< 1,500 12 a
£ , F3 3
s 1 k-]
< 1,000 & @
2 4 2 8
-
=1 g (7]
@ 500 . S
g Ry » =t It
w PE ,gfc"—
oAl A TN NN RANNAAR o
O O O O O O O O O O O oo O o o
O O O O O O O O O O O O O O o
< 0O N O O < 0N O O < 0 N O O
T 4 N N N OON T T NN O
Matrix dimension
(a) Execution time
BToGPU OComputation @ From GPU
100%
o 80%
£
¥ 60%
£ ..l
= 40%
L
o
X 20%
0%
o o o o o o o o o o o o o o o
o o o o o o o o o o o o o o o
< o0 o~ () o < 0 N (o) o <] o~ o o
L] Ll o~ o~ o~ (321 (321 < < < wn wn o

Matrix dimension
(b) Time breakdown for InfiniBand EDR

Figure 5: DGEMM estimated performance.

bandwidth of the network fabric. This approach is more
accurate than using the raw InfiniBand bandwidth because
software layers always impose some loss to theoretical
performance numbers. Additionally, we have considered in
this section the use of InfiniBand FDR (56 Gbps) and also
InfiniBand EDR (100 Gbps) network adapters.

Figure 5a presents the estimated performance for the
DGEMM function. The label “Xeon Local” refers to the
execution of the DGEMM function in the local CPU cores.
The label “Xeon FDR” refers to the system configuration
used in the previous section, whereas the label “Xeon EDR”
refers to the same system configuration where the network
adapter has been replaced by the Mellanox InfiniBand EDR
card attaining 100 Gbps in total.

Figure 5a shows that the use of an optimized commu-
nication layer increments performance, almost achieving a
4x speed up when using InfiniBand FDR and 4.5x when
InfiniBand EDR is used. Figure 5b presents the breakdown
of the total estimated execution time when using the new
middleware (only results for the EDR network adapter are
shown due to space constraints). Notice that in this case the
time breakdown is slightly different from the ones depicted
in the previous section, where the time “7o Server” denoted
in previous sections the time required to move the input

data from the client node to the main memory of the remote
server and the time “Server” included, in addition to the
actual computation, the time to move the data from main
memory in the server to the GPU memory. However, in
Figure 5b, the time “To GPU” refers to the data movement
from main memory in the client node directly to the GPU
memory in the server whereas the time “Computation” only
considers the actual execution of the DGEMM function in
the GPU, excluding the data movement. It can be seen in
Figure 5b that when an improved communication layer is
used, most of the time is spent on the actual computations
in the GPU instead of using most of the time in moving
data.

Finally, remember that the DGEMM function analyzed
above belongs to the Level 3 of BLAS, which comprises
those functions with complexity O(n?). In this case, the
new framework takes advantage of the high computation-
to-communication ratio ((n + 2)/3 as discussed before).
However, the DGEMYV and DDOT functions present a much
lower computation-to-communication ratio, what explains
that in the estimations carried out with the improved commu-
nication layer (not shown), no performance gain is attained
for these functions. Therefore, from now on we will focus
on the DGEMM function.

V. PERFORMANCE WHEN COMPUTATIONS ARE
PIPELINED

One may think about two possible ways of outsourcing
the computations of the DGEMM function. In the first
one, the naive approach, as soon as the wrapper for the
DGEMM function is called by the application at the client
node, the wrapper moves all the input data to the remote
server and there the cuBLAS library is used to compute the
DGEMM operation in the GPU. Once computations in the
GPU are completed, results are returned back to the client
side of the middleware, which forwards them to the original
application. Although this naive implementation (used in
the previous two sections) provides a 4x acceleration with
respect to performing the DGEMM function in the local
CPU cores, there is a smarter way to carry out the offloading
process, which is based on overlapping data transmission
with computations in a pipelined way. Figure 6 describes
this process with a matrix example.

Figure 6a shows a DGEMM operation applied to 8000 by
8000 square matrices. It can be seen that matrices have been
split into four blocks, each of them with dimensions equal
to 2000x8000 elements. The key point about Figure 6a is
that for computing a given element in the output matrix
only some input data is required, but not the entire set
of input data. For example, for computing those elements
in the “r1” block of the output matrix, only blocks “A1”,
“B1”, and “C1” are required. This allows appropriately
organizing input data transmission so that computation in
the server begins much before than the entire matrices have

arrived, thus partially hiding data transmission time, which
is the main concern in the proposed middleware. This is
shown in the upper part of Figure 6c. In that figure it
is shown that once the server has received blocks “Al”,
“C1”, and “B1” then computation for the “rl” block can
begin. In a similar way, once blocks “A2” and “C2” have
arrived, results for block “r2” can be computed. Notice
that transmission of blocks from the C matrix happens
before than transmission of blocks from the B matrix. This
reordering allows that computations for block “r2” start
before receiving block “B2” from matrix B, thus saving
some additional time. Another possible reordering could be
first to forward block “B2” and then blocks “A2” and “C2”.
This would allow starting the computation of block “r3”
even earlier without causing the gap shown in the figure
after block “r1”. However, this second ordering may cause
a gap after computing “r3”, given that blocks “A2” and
“C2” are required before continuing with the computations.
Finding an optimal transmission order is an open question
that mainly depends on the relationship among transmission
time and computation time, being both times dependent on
block size.

Figure 6b shows a similar example when a smaller block
size is leveraged. In this case, instead of splitting input
matrices into four blocks, they have been divided into eight
blocks. The bottom part of Figure 6¢ depicts the overlap
between data transmission and computations in the GPU
for this smaller block size. It can be seen that although
transmitting each individual block requires less time, given
their smaller size, the overall transmission time for the
three matrices remains the same. However, using a smaller
block size allows starting computations in the remote GPU
earlier. This means that there is a bigger overlap between
transmission of input data and computation. Hence, the main
cause of overhead in the proposed middleware is reduced,
making the proposal more appealing. Notice, however, that
the use of many smaller blocks leads to an increased syn-
chronization complexity and synchronization overhead, what
may cancel part of the benefits of overlapping computations
with transmission.

Figure 7 shows the estimated performance when the
optimization discussed above is used. It can be seen that
splitting the overall DGEMM computations into smaller
operations reduces total execution time by 20% (sub-matrix
dimension 8000 vs 1000). In summary, Figure 7 shows that
by overlapping the transmission of data with computations
the main concern of the proposed middleware, which is
exchanging data with the remote server, is minimized. No-
tice, however, that computing the DGEMM function in the
remote GPU takes longer than data transmission. Hence,
a way to further accelerate the remote computation of the
DGEMM function could be to make use of several GPUs
and distribute the DGEMM computation among them by
using the cuBLAS-XT library. This data and computation

8000

A1 C1 r1|r3]|r7(r13
o A2 Cc2 r2|r4|r8|r14
S X |B1|B2|B3|B4| == =
© A3 C3 56 |r9(|r15
Ad C4 r10(r11|r12|r16
(a) Diagram of DGEMM operation when matrices are split into four blocks.
8000
A1 C1 113]7|13]21|31|43|57|
A2 C2 2|4 |8]|14[22]32]|44|58
o A3 C3 56 |9]15[23]33]|45|59
o A4 C4 m— [10{11]12{16(24]34]|46|60
8 A5 X B1[B2[B3/B41BSB6IBT|BS + C5 mm— |17]18]19]|20]25|35]47|61
A6 C6 26)27|28(29]30|36(48|62
A7 C7 37(38(39]40[41]|42]49|63
A8 C8 50)51|52(53)|54|55(56|64
(b) Diagram of DGEMM operation when matrices are split into eight blocks.
ToServer |A1|C1|B1|A2|C2|B2|A3|C3|B3|A4|C4|B4|
Computation r1 2 |r3|(rd |5 |r6|r7 I r8 | r9 [r10 | r11 [r12|r13(r14(r15(r16

From Server D D D D D

000000

M1 2 M3 r14 5 r16

ggggrﬂ

Additional time saved by

using a smaller blocki} '1:

r1 2 3 r4 15
To Server [<[5]|%]8]22[3[8[%[3[]2[5]825]8[<[5]=[2[5]E]
Computation I:I |:||:|:|| |
M 23 17

r6 0 |13 r|7

From Server

| 1] ﬂllllIIIHIIHHIIHIIIHIIIIllIIIIIlllllﬂllllll|l|]llIlllllllllﬂllllllllﬂlllllllllllll]llllllllllllllIIIHIIHIIH

(c) Diagram of transmission and execution times for DGEMM when matrices are split into four and eight blocks.

Figure 6: Pipelining the DGEMM operation.

Speed up FDR i Speed up EDR —Time FDR ----Time EDR

1200

=

o

o

o
N

Execution time (ms)
(2]
o
o
Speed up

500 800 1000 2000 4000 8000
Sub-matrix dimension

Figure 7: Performance estimation when the DGEMM op-
eration in the remote GPU is pipelined. Square 8000x8000
matrices are used.

distribution is an open research issue still to be analyzed.

Finally, notice that every offloaded function presents a
different behavior and therefore will achieve a different
speed up. In this regard, the DGEMM function has attained
up to 6x acceleration in the previous experiments. How-
ever, which should be the acceleration expected by other
functions? Providing an answer is very difficult, given that
it basically will depend on the exact function considered.
As an example, Figure 8 shows the performance attained
with the new middleware by a very different function: the
discrete Fourier transform (DFT), belonging to the FFTW
library. Figure 8a shows the performance obtained for dif-
ferent transform sizes when this function is offloaded with
the new middleware using TCP/IP based communications,
whereas Figure 8b presents a performance estimation when
the communication layer is improved. It can be seen that

« = Xeon ETH
g Xeon FDR

= === Xeon Local

SpeedUp FDR

40,000 - 3.5
- 35,000 - 4 -3
é'so,ooo /__________‘___2
> v LT
g0 olin EEEE SEEREEREE—_ RS
= /7 - 2
 200004— - - - - -e- - - - - - - -

5 /7 rNemTNY L 1.5
B 150004 - - - - - - - - - - - ol
c 7/ -
§<J 10,000 A
w
5,000 A
0 4
A A ANDN A DD D D DD
A S AT
Size of transform
(a) Execution time with TCP/IP communications.
= = =« Xeon Local g Xeon FDR Xeon EDR
Speed up Xeon FDR mmmmm Speed up Xeon EDR

1E+45 30
= PR IERS? T 1Ay ptutall PA
E 1E+44 _,-,,0‘"'

@ -’ 20
£ o e
e 14342 15
.0
3 10
@ 1E+2
1E+1 I.I 0
A A D D DD ‘b ‘b ‘b % >
X X X X X X X X X X X X X
R R R OO

Size of transform
(b) Estimated performance with improved communications.

Figure 8: Performance of the DFT function from the FFTW
library.

the DFT function behaves in a very different way to the
DGEMM function. Actually, even with the TCP/IP based
communications, this function presents 2.5x acceleration.
Moreover, when the communication layer is enhanced, speed
up grows up to 25x. Therefore, the conclusion is that for
those functions that the computation-to-communication ratio
is high enough, the new middleware may provide important
accelerations.

VI. CONCLUSIONS

In this paper we have presented an early experience of
a new middleware that outsources the CPU-based compu-
tations of mathematical libraries to remote accelerators. We
have also conducted a performance evaluation by applying
this middleware to some functions of the OpenBLAS and
FFTW libraries. Results clearly show that this new frame-
work is feasible and it may provide important reductions
in execution time when the computation-to-communication
ratio is large enough, being the bandwidth of the network
fabric a key component to define the actual performance of
this technique. Results have also shown that those functions,
like DGEMV and DDOT, presenting a low computation-to-

communication ratio should always be executed locally in
the client node.

Future versions of this middleware, which will be made
publicly available when completed, will completely support
the OpenBLAS, FFTW and LAPACK libraries as well as
the use of Intel Xeon Phi accelerators and an optimized
communication layer.

REFERENCES
[11 VMware virtualization, http://www.vmware.com
[2] Xen Project, http://www.xenproject.org
[3] Kernel-based Virtual Machine, http://www.linux-kvm.org
[4] Oracle VM VirtualBox, http://www.virtualbox.org

[5] A.A. Semnanian et al., Virtualization Technology and its Im-
pact on Computer Hardware Architecture, ICIT 2011

[6] Mellanox, ConnectX-3 VPI Single and Dual QSFP+ Port
Adapter Card User Manual, 2013

[7] Intel, Intel Ethernet Server Adapter 1350, 2013

[8] NVIDIA GRID Technology, http://www.nvidia.com/object/grid-
technology.html

[9]1 J. Song et al, KVMGT: a Full GPU Virtualization
Solution, http://www.linux-kvm.org/wiki/images/f/f3/01x08b-
KVMGT-a.pdf, 2014

[10] C. Reafio et al., Boosting performance of GPU virtualization
using InfiniBand Connect-IB and PCle 3.0, CLUSTER 2014

[11] G. Giunta et al., A GPGPU Virtualization Component for
High Performance Computing Clouds, EuroPar 2010

[12] M. Oikawa et al., DS-CUDA: A Middleware to Use Many
GPUs in the Cloud Environment, SCC 2012

[13] S. Iserte et al., SLURM Support for Remote GPU Virtualiza-
tion: Implementation and Performance Study, SBACPAD 2014

[14] F. Silla, rCUDA: Virtualizing GPUs to reduce cost and
improve performance, http://www.rcuda.net, 2014

[15] BLAS (Basic Linear Algebra
http://www.netlib.org/blas/

[16] iperf3: A TCP, UDP, and SCTP network bandwidth measure-
ment tool, https://github.com/esnet/iperf

[17] Mellanox, Mellanox OFED GPUDirect RDMA Product Brief,
2014

[18] Q. Wang et al, Automatically generate high performance
dense linear algebra kernels on x86 cpus, in SC13

Subprograms),

[19] NVIDIA, cuBLAS library 7.0.
https://developer.nvidia.com/cuBLAS/, 2015.
[20] NVIDIA, cuBLAS-XT library 7.0.

https://developer.nvidia.com/cuBLASXT/, 2015.

[21] E. Agullo et al, Numerical linear algebra on emerging
architectures, Journal of Physics, 2009.

[22] T. A. C. Center, GotoBLAS2 https://www.tacc.utexas.edu/
research-development/tacc-software/gotoblas2/, 2014.

[23] FFTW, FFTW (Fast Fourier Transform), http://www.fttw.org/,
2014.

[24] NVIDIA, cuFFT library 7.0.
https://developer.nvidia.com/cuFFT/, 2015.
[25] Intel, Intel Math Kernel Library (Intel ~MKL).

https://software.intel.com/en-us/intel-mkl/, 2014.

