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Abstract 

This paper studies approaches to improving the convergence properties of nonlinear 

stiffness equations. A space truss is large structure that must be built to be quite thin, and 

for this reason a structure stability review is a critical part of the structural design process. 

The stability of the shelled structure is sensitive to diverse conditions. This leads to a 

nonlinear problem with concomitant large deformation. To examine structural stability, the 

accuracy of nonlinear stiffness equations must be improved. In this study, the space truss is 

an analysis model. Tangent stiffness equation and nonlinear stiffness equation is using 

nonlinearity analysis program. The study compares analysis results to investigate the 

accuracy and the improvement in the convergence properties of nonlinear stiffness 

equations. 
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1. Introduction 

In large space structures, a space truss structure, in which a stiffness structure system is 

dispersed, is made in the form of a shell in order to maintain stability by lowering the 

weight of a roof. As the structure must be thin, a structural stability review is an important 

step in the structural design of a large space structure. The structural stability of a shelled 

structure is sensitive to a diversity of conditions. This paper aims to examine the 

improvement in the accuracy and the convergence of the nonlinear stiffness equation that 

considers geometric nonlinearity. For this research goal, nonlinear analysis will be 
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performed, using the space truss as its analysis model.  For nonlinear analysis, the nonlinear 

stiffness equation will be made into a program and its result will be compared using NASS, 

the analysis program for spatial structures that is made on the basis of the tangential 

stiffness equation. The analysis results of the two theories will be comparatively examined, 

through which we will examine improvement in the accuracy and the convergence of the 

nonlinear stiffness equation. 

2. Nonlinear FE formulation 

  2.1 Tangent FE formulation 

Figure 1 shows the element coordinates of the tangent truss element in the local 

coordinate system. 

 

 

 
x, y, z ∶ element coordinate system

 u, v, w ∶  displacement                         
  

Figure 1 : Coordination system and nodal displacements 

Using the principle of virtual work, the tangent stiffness equation of element is, 

 

 f (0) + f = Al  A1
Tσx

 0 
 + Al  σx

 0 
BTB d + AlE A1

TA1 d +Higher order terms (1) 

 

In Eq. (1), the residual force arising from the elimination of higher-order terms on d is, 

 

 r = AlA1
Tσx

 0 
− f (0)       (2) 

 

Using Eq. (2), the incremental equation can be expressed as,  

 

 f − r = AlE A1
TA1 d + Al  σx

 0 
BTB d =  kE + kG d     (3) 
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where 

 kE =  AlE A1
TA1 ∶ Elastic stiffness matrix of element  

 kG =  Al  σx
 0 

BTB ∶ Geometric stiffness matrix of element 

 

Using transformation matrix T, the tangent stiffness matrix can be expressed in terms of 

the global coordinate system as, 

 

 F − R =  KE + KG D       (4) 

where 

 KE =  TTkET ∶  Elastic stiffness matrix 

 KG =  TTkGT ∶  Geometric stiffness matrix 

 

 

2.2 Nonlinear FE formulation 

Choose a local coordinate system (xyz) and a global coordinate system (XYZ) as shown 

in Figure 2, and express the nodal force vector {f} and the nodal displacement vector {d} of 

the local coordinate system, and the nodal force vector {F} and nodal displacement vector 

{D} of the global coordinate system as follows: 

 

 

Figure 2 : Coordination system and nodal displacements 
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T is transformation Matrix, and in the coordinate system of Figure 2, it becomes as 

follows: 

 

 T =  
Ti 0
0 Tj

 ,  Ti =  Tj =

 
 
 
 
 
 a1 = l0

a2 =
m0

 l0
2+m0

2
a3 =

l0n0

 l0
2+m0

2

b1 = m0

c1 = n0

b2 =
l0

 l0
2+m0

2
b3 =

m0n0

 l0
2+m0

2

       c2 = 0           c3 =  l0
2 + m0

2 
 
 
 
 
 

  (6) 

  where, 

 l0 = cos(X. x),  m0 = cos(Y. y),  n0 = cos(Z. z) 

 

Introduce non-dimensional quantity ξ, which is ξ =
x

l
(0 ≤ ξ ≤ 1), and assume that the 

displacement in elements is changed in a linear manner. 

 

 u(ξ) = α1 + α2ξ,  v(ξ) = α3 + α4ξ,  w(ξ) = α5 + α6ξ   (7) 
 

Using the secondary nonlinear item of strain, the strain-displacement equation becomes as 

follows: 

 

 ϵ =
du

dx
+

1

2
 

du

dx
 

2

+
1

2
 

dv

dx
 

2

+
1

2
 

dw

dx
 

2

,  δϵ =
dδu

dx
+

du

dx

dδu

dx
+

dv

dx

dδv

dx
+

dw

dx

dδw

dx
 (8) 

where, 

 
du

dx
=

1

l

du

dξ
=

1

l
(uj − ui),  

dv

dx
=

1

l

dv

dξ
=

1

l
(vj − vi),  

dw

dx
=

1

l

dw

dξ
=

1

l
(wj − wi) 

 
It can be expressed in the form of a matrix, as follows: 

 

 
du

dx
=

1

l
 −1 0 0 1 0 0 ∙ d = UTtD = A1,   U =

1

l
 −1 0 0 1 0 0  

 
dV

dx
=

1

l
 0 −1 0 0 1 0 ∙ d = VTtD = A2,   V =

1

l
 0 −1 0 0 1 0  (9) 

 
dw

dx
=

1

l
 0 0 −1 0 0 1 ∙ d = WTtD = A3,  W =

1

l
 0 0 −1 0 0 1  

 
Mark δϵ, the increment of , in the matrix also. 

 

 
dδu

dx
= UTtδD, 

dδv

dx
= VTtδD, 

dδw

dx
= WTtδD     (10) 

 
  

2869



Proceedings of the International Association for Shell and Spatial Structures (IASS) Symposium 2009, Valencia 
Evolution and Trends in Design, Analysis and Construction of Shell and Spatial Structures 

 

Assume that all materials are within the range of elasticity (σ = Eϵ). In order to calculate 

the stiffness matrix of the element, introduce the principle of virtual work. 

 

 δDtF = EAl ∙ δϵtϵ       (11) 
 

Then, substitute equation (8) for equation (11), and the following fundamental equation 

can be obtained. 

 

 F = EAl ∙ [TUtA1 + TUtA1
2 + TVtA1A2 + TWtA1A3 + TUt 1

2
(A1

2 + A2
2 + A3

2 )  (12) 

    +TAUtA1

1

2
(A1

2 + A2
2 + A3

2 ) + TAVtA2

1

2
(A1

2 + A2
2 + A3

2 ) + TAWtA3

1

2
(A1

2 + A2
2 + A3

2 )] 

 
In conclusion, the following nonlinear equation can be obtained. 

 
 𝐅 = 𝐊𝟏𝐃𝟏 + 𝐊𝟐𝐃𝟐 + 𝐊𝟑𝐃𝟑      (13) 

 

  where, 

 K1 =
EA
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3. Numerical example 
  3.1 Making out an analysis program using Fortran  

The program, which was developed on the basis of the tangential stiffness equation 

described in 2.1 above, is called NASS (Nonlinear Analysis for Space Structures). NASS is 

a nonlinear analysis program that was developed using the finite element method 

considering geometric nonlinearity. It is used for the structural analysis of hybrid-type 

spatial structures. It is an analysis program that can handle the nonlinear structural analysis 

of shell structures, space frame structures, membrane structures, space cable structures, and 

hybrid structures. The operation flowchart is shown in Figure 3. Here, α = 0 indicates the 

convergent analysis process based on Newton-Raphson law, and α = 1  indicates the 

sequential analysis process based on the incremental method. 

 

 

Figure 3 : NASS Flow Chart 

 

The program, which was developed on the basis of the nonlinear stiffness equation 

described in 2.2 above, is called NonT (Nonlinear Truss). NonT, a nonlinear analysis 

program, does not omit higher-degree terms and includes third-degree terms of 

displacement.  

 

  3.2 Accuracy of the solution through plane truss model  

Using the unit plane truss of 1-free node as the analysis model, this paper compared the 

tangential stiffness equation with the nonlinear stiffness equation in order to examine the 

accuracy of the nonlinear stiffness equation. The model looks like Figure 4. For the analysis, 

NonT, which was made with Fortran, and NASS described above 3.1, are used. 

Displacement incremental method is performed.  
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Figure 4 : Shape of the plane truss model 

 

The unit plane truss, which is the analysis model, has 3 nodes and is connected with 2 

elements. In consideration of the symmetry of the structural model, it is a 1-free node 

structure. It has been used by many researchers as an aid to understanding the nonlinear 

behaviors of a unit structure. It is known that its path after buckling shows very sensitive 

behaviors, depending on the stress-strain. The boundary conditions of the analysis model 

are that no. 2 node and no. 3 node are fixed, and no. 1 node is free. The load conditions are 

that the vertical node load, P, works on no.1 node. The specifications of the elements are as 

follows: 

 

․  Cross-section of the elements :  A = 96.77 (cm2) 

․  Elasticity :  E = 7.03 ×  106(kgf/cm2) 

 

Perform analysis through displacement-increment for the vertical displacement 50cm at 

intervals of 1mm on no. 1 node of 1-free node plane truss model, and show its result in 

Figure 5. The solid line and the broken line show the relationship between the vertical 

displacement and the load of no. 1 node. 

 

Figure 5 : Changes in the nonlinear behaviors of the plane truss 

model and in determinant values 
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In Figure 5, A and C show the strain status at the first and the second limit points, and B 

and D show the strain status at the point where the load becomes 0. In the shape figure of 

each point, the dotted line shows the first shape and the solid line shows the strained shape. 

Short dash line and the dotted line are the results of the determinant values of the nonlinear 

stiffness matrix and the tangential stiffness matrix, respectively. They show the relation 

between the value, which has generalized the determinant obtained from each increment 

with the determinant obtained from zero-load level, and displacement. The determinant 

becomes zero at the limit point, and the structure can cause the unstable snap-through 

phenomenon. In addition, until the first limit point A is reached after load-giving starts, it 

becomes the balanced path of stability, and from the first limit point A to the second limit 

point C, it becomes an unstable path. After the second limit point C, it becomes the 

balanced path of stability. 

 

 

Figure 6 : Behavioral characteristics of nonlinear structures 

 

Figure 6 shows nonlinear behavioral characteristics and the plane truss structure has 

“softening” characteristics. 

The limit point load obtained from the analysis of this study is 3.318 ×  106  (kgf) for 

NonT and 3.756 ×  106  (kgf) for NASS. At this time, the vertical dispacement of no. 1 

node is 800cm for NonT and 860cm for NASS. The balanced path of Figure 5 includes the 

path after the limit point that cannot be analysis by the load incremental method, in addition 

to the balanced path before the limit point. Therefore, it can be said that the displacement 

incremental method used in this paper can trace even the balanced path after buckling. 

Furthermore, it can be said that as a result of NonT analysis based on the “softening” 

phenomenon, accuracy is improved. 

 

  3.3 Analysis of convergence through the stiffness equation  

In order to examine the convergence of the nonlinear stiffness equation, 1-free node truss 

structure and 2-free nodes truss structure are used as analysis models, and NonT and NASS 

are used for analysis.  
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   3.3.1 One-free node model 

The analysis model is a 1-free node unit structure that has 7 nodes and is connected with 

6 elements. The model is composed of 1 free node and 6 boundary nodes, and the load 

condition is such that compressive force works at node-1 in a vertical direction. The form 

and the node number of the model are as shown in Figure 7. The sectional shape and the 

material properties are the same in all elements, the coefficient of elasticity(E) is 

2.1×106kgf/ cm
2
, and the density (ρ) is 7.85×10-3kgf/ cm

2
.  

 

 

 

 

 

Figure 7 : Shape of a One-free node 

 

Using NonT and NASS for analysis, perform displacement-increment for the vertical 

displacement of node-1 in intervals of 1mm. 

 

 

Figure 8 : Load-displacement curved line based on the number of steps of One-

free node truss (H 250) 
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(a) H 100 (45cm) (b) H 200 (85cm) (c) H 250 (110cm) 

Figure 9 : Convergence curved line based on the number of steps of 

One-free node truss (H 250) 

 

Figure 8 is the load-displacement curved line based on the number of the steps of 1-free 

node truss. The cases in which the numbers of steps are 10, 20, and 100 are analysis and 

compared. The number in parentheses shows the convergence displacement. Figure 9 is the 

convergence curved line based on the increase in the number of steps. The analysis result of 

NonT shows an improvement in the convergence, and also shows that as the height of the 

model (H) increases, convergence is improved further. 

 

  3.3.2 Two-free node model 

This model uses a triangle as the basic module, and is connected by 10 nodes and 11 

elements. The heights of both models are H. The heights of node-1 and node-2 are the same. 

The boundary condition is that node-1 and node-2 are free nodes, while the remaining 

nodes are boundary nodes. The shape of the model is as shown in Figure 10. 

 

 

 

Figure 10 : Shape of a two-free node model 
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The sectional area, the coefficient of elasticity, and the density of the two-free nodes 

structure are the same as those of a one-free node structure. The load condition for the 

structure is such that the same level of load works at node-1 and node-2 in the vertical 

direction. 

 

 

Figure 11 : Load-displacement curved line based on the number of steps of 2-

free nodes truss (H 250) 

 

   

(a) H 100 (45cm) (b) H 200 (80cm) (c) H 250 (100cm) 

Figure 12 : Convergence curved line based on the number of steps of  

2-free nodes truss (H 250) 

 

Figure 11 is the load-displacement curved line based on the number of steps of the 2-free 

nodes truss. The cases in which the numbers of steps are 10, 20, and 100 are analysis and 

compared. The number in parentheses shows the convergence displacement. Figure 12 is 

the convergence curved line based on the increase in the number of steps. The analysis 

result shows that the convergence has improved. 
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4. Conclusion 
This paper made out analysis programs through the tangential stiffness equation and the 

nonlinear stiffness equation, and comparatively examined the analysis results through the 

space truss analysis model, particularly considering the accuracy and the convergence of 

the two equations. The conclusions are as follows: 

 

1. As a result of the analysis of the tangential stiffness equation and the nonlinear 

stiffness equation, softening was rapidly promoted and accuracy was 

improved in the nonlinear stiffness equation. 

2. Through the space truss structural analysis, the nonlinear stiffness equation 

had better convergence than the tangential stiffness equation. When the 

structures were unstable, there was no significant difference in the 

convergence.  

3. NonT (Nonlinear Truss), which was made out with Fortran, could efficiently 

access nonlinear structural behaviors, and could achieve very sensitive 

nonlinear solutions.  
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