

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

 ©2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7121393

http://hdl.handle.net/10251/66682

IEEE

Granda Juca, MF.; Condori Fernández, ON.; Vos, TE.; Pastor López, O. (2015). What do we
know about the Defect Types detected in Conceptual Models?. 9th IEEE International
Conference on Research Challenges in Information Science (RCIS 2015). IEEE.
doi:10.1109/RCIS.2015.7128867.

What do we know about the Defect Types detected in

Conceptual Models?

Maria Fernanda Granda*

Department of Computer Science

University of Cuenca

Cuenca, Ecuador

fernanda.granda@ucuenca.edu.ec

Nelly Condori-Fernández

 Department of Computer Science

VU University

Amsterdam, Netherlands

n.condori-fernandez@vu.n l

Tanja E.J. Vos, Oscar Pastor
*Departamento de Sistemas

Informáticos y de Computación

Universitat Politècnica de València

Valencia, Spain

{tvos, opastor}@dsic.upv.es

Abstract—In Model-Driven Development (MDD), defects are

managed at the level of conceptual models because the other

artefacts are generated from them, such as more refined models,

test cases and code. Although some studies have reported on defect

types at model level, there still does not exist a clear and complete

overview of the defect types that occur at the abstraction level.

This paper presents a systematic mapping study to identify the

model defect types reported in the literature and determine how

they have been detected. Among the 282 articles published in

software engineering area, 28 articles were selected for analysis. A

total of 226 defects were identified, classified and their results

analysed. For this, an appropriate defect classification scheme was

built based on appropriate dimensions for models in an MDD

context.

Keywords— Conceptual Schema Defects, Defect Classification

Scheme, Systematic Mapping Study, Model-Driven Development

I. INTRODUCTION

Unlike in traditional Software Development where the
software is the main artefact, in Model-Driven Development
(MDD) the main artefact is a model (conceptual schema -CS1).
Instead of building and rebuilding software through
programming, during MDD the Conceptual Schemas are
extended and transformed into other models to build the
software product using code-generation strategies.

CSs are developed using a modelling language. The de-facto
standard for analysis and design of object-oriented software
systems is the Unified Modelling Language (UML) [1] [2],
which is extended with OCL (Object Constraint Language)
constraints [3]. The variety of UML diagrams provide flexibility
and applicability to modellers to create CSs in the different
spaces where they can be used (problem, solution and
background) [4]. However, since the modelling process is a
human task, it is difficult to avoid introducing defects into the
CSs (e.g. inconsistency, incorrect, redundant and imprecise
elements).

Although defects may be inevitable, we should minimize
their number and impact on software quality through testing
and/or inspecting the CS. Information on the defect types that

1 A conceptual schema is a description, representation or definition of

the knowledge that is needed by an information system (requirements) to
perform its functions [25]. In this work the terms "conceptual schema",

“conceptual model” and "model" are considered similar.

occur in the earlier stages of the software development life cycle
can be used to give feedback to stakeholders (e.g. modellers,
developers, testers) about detecting defects and how they can be
tracked, reduced and resolved. Moreover, if the purpose is to get
a good quality CS, the information on each defect must be
related to the quality goals affected, according to an appropriate
quality model for models in a MDD context, as proposed in [5].

Defect classification schemes define a set of attributes2,
attribute values and a process to classify the defects. Freimut [6]
claims that “Defect classification schemes can differ in the way
different attributes or attribute values relate to each other”. For
example, for indicating the location of a defect in code, a
program line number will suffice. For a UML model, the defect
is recognized by referring to the element (i.e. class name) and
the diagram name. So far, existing defect classification schemes
(e.g. HP scheme [7], Orthogonal Defect Classification (ODC)
by Chillarege [8] and IEEE std. 1044 [9]) are not appropriate for
CSs because they were designed for other contexts (e.g. for
defects at implementation and code level), giving rise to the need
for adaptations [10], [9]. Few attempts can be found in the
literature to classify defects in CSs [11], [12], [13], [14], [15],
[PS1]3 and [PS21]. However, none of these uses a defect
classification scheme to systematically capture the defect
information (e.g. description, affected quality goal, technique
type) in order to classify the defects and identify the group to
which it belongs.

The objective of the study described in this paper is to get an
overview of the type of defects that are reported in the literature
at the conceptual schema level and determine how they have
been detected. Therefore, we first build a classification scheme
for CS defects based on standard classification schemes to
extract clear and complete information on defect types that occur
in CSs. Subsequently, we executed a mapping study to obtain an
overview and categorize the information published in relation to
defect classifications and/or taxonomies. In this paper, we
present the results of our systematic mapping study based on
guidelines proposed by Kitchenham et al. [16] and Petersen et
al. [17]. This work is part of a more extensive research study,
whose main goal is to develop an approach for testing-based
conceptual schema validation in a Model-Driven Environment

2 In this paper, the term attribute is used to refer to a feature or property

of a defect.
3 References beginning with ‘‘P” refer to primary studies covered in

this mapping study as given in Appendix II.

[18], [19]. This work particularly focuses on CSs in UML-based
systems.

The remaining parts of this paper are organized as follows:
Section 2 presents the background on CS quality models.
Section 3 summarizes the process of building a classification
scheme for CS defects. Section 4 describes the method used in
conducting the mapping study. Section 5 discusses the results of
this review and defect classification. Section 6 presents the
limitations of this study. Finally, Section 7 presents the
conclusions and future work.

II. BACKGROUND: QUALITY MODELS FOR CONCEPTUAL

SCHEMAS

Different quality models can be found in the literature for
describing the quality of CSs (e.g. [20], [21], [4] and [22]). In
the present paper we have chosen Mohagheghi et al. [5] as a
reference because they describe a quality model oriented to
Model Driven Engineering (MDE). Their model takes into
account that an MDD approach automates many activities in
software development, and consequently CSs in MDD are
expected to get progressively more complete, precise and
executable such that in the end they can be used to generate the
code and other artefacts such as test cases. MDD therefore adds
new requirements to the development process such as
consistency between models, technical comprehension by tools
and support changes. They perform a combination of several
quality models and identify the following six classes (6C) of CS
quality goals, as follows (see Table I).

TABLE I. QUALITY GOALS (BASED ON 6C QUALITY MODEL FROM

MOHAGHEGHI ET AL. [5])

Quality Goal (QG) Description

Correctness

QG1

Including correct elements and relations between

them, and including correct statements about the

domain; not violating rules and conventions; for
example adhering to language syntax. Thus it

covers both syntactic correctness (right syntax or

well-formedness) and semantic correctness (right
meaning and relations relative to the knowledge

about the domain).

Completeness QG2 Having all the necessary information that is

relevant and being detailed enough according to the
purpose of modelling. It is a semantic quality.

Consistency

QG3

Having no contradictions in the models, related to

syntactic quality. It covers consistency between
views that belong to the same level of abstraction

or development phase (horizontal consistency), and

between views that model the same aspect, but at
different levels of abstraction or in different

development phases (vertical consistency). It also

covers semantic consistency between models; i.e,
the same element does not have multiple meanings

in different diagrams or models.

Comprehensibility

QG4

Being understandable by the intended users, either

human users or tools. It is related with the
pragmatic quality.

Confinement

QG5

Being in agreement with the purpose of modelling

and the type of system, and being restricted to the
modelling goals; such as including relevant

diagrams and being at the right abstraction level. It

is related with the semantic quality.

Changeability

QG6

Supporting changes or improvements so that

models can be changed or revolved rapidly and

continuously. It is related with the pragmatic
quality.

Our paper considers the aforementioned quality goals and
relations between them to classify CS defects and analyse the
results.

III. CLASSIFICATION SCHEME FOR CONCEPTUAL SCHEMA

DEFECTS

In order to address the goal of our work we first needed to
define a defect classification scheme (DCS) previously to data
extraction of the literature. This process was conducted in the
following three stages:

A. Establish a list of Defect Causes

 First, we needed to establish a list of defect causes that
enables the classification and documentation of a found defect.

We decided to define the defect causes at a coarse-grained
level by taking the modes from the IEEE standard [9], i.e.
missing, wrong and unnecessary. Then, in order to relate the
cause of the defects with affected quality goals proposed by
Mohagheghi et al. [5], we specified sub modes (types) of the
defects related to the quality goals affected by them (see Table
II). These sub modes are based on definitions from [9], [7], [23],
[11], [PS8] and [PS26], and have been adapted to CSs.

TABLE II. DEFECT TYPES BY MODE AND THEIR RELATION WITH THE

QUALITY GOALS

Mode

(defect cause)

Sub modes Affected

QG

MISSING
Something is

absent that should

be present [9].

Missing QG2,
QG4

WRONG
Something is

incorrect,
inconsistent or

ambiguous [9].

Inconsistent: There are contradictions
in the models (vertical and horizontal

inconsistency) [9], [PS8], [PS26].

QG1,
QG3,

QG4,
QG5

Incorrect: There is a misrepresentation

of modelling concepts, their attributes

and their relationships, as well as the
violation of the rules by combining of

these concepts at the time of building

partial or complete models [9], [7], [11],
[23].

QG1,

QG4

Ambiguous (wrong wording): The

representation of a concept in the model
is unclear, and could cause a user

(modeller, low-level designer, etc.) to

misinterpret or misunderstand the

meaning of the concept [9], [23], [11].

QG1,

QG3

UNNECESSARY

(Extra)

Something is
present that need

not be [9].

Redundant: If an element has the same

meaning that other element in the

model.

QG5

Extraneous: If there are items that

should not be included in the model

because they belong to another level of
abstraction (e.g. details of

implementation) [23], [11].

QG5,

QG6

B. Construct a Defect Classification Scheme

Following a slight adaptation of the process proposed by
Freimut [6], we started by identifying those attributes that were
considered important to register and classify, once a defect was
found in a CS. We used terminology aligned with UML concepts

[2] (modelling language used for building the CSs) and based on
the standard IEEE classification [9] and its guide [24].

First, we adjusted the description of the scope of the
relationships between conceptual entities proposed by the
standard IEEE on the one side, with the conceptual entities of
our study (UML-based conceptual models) on the other. This
resulted in Fig. 1, where these relationships are depicted
graphically. The red frame directly corresponds to the IEEE
standard.

Looking at Fig. 1, a conceptual schema represents the
(software) systems requirements at an abstract level. It may
consist of several UML diagrams (structural and behavioural),
where each diagram type contains different type (modelling
element) of information about the system. Additionally, the
conceptual schema has associated quality properties that support
the representation or description of the requirements. These
quality properties usually are threatened by defects that occur at
the diagrams elements level of the conceptual schema.

A defect may be associated with a single Corrective Change
Request of the Conceptual Schema, which attempts to resolve
the defect and each Corrective Change Request may be
associated with, at the most, a single Conceptual Schema
Release. The Fig. 1 also represents the other two causes of
Conceptual Schema Changed Request (CSCR), perfective
change request of conceptual schema and adaptive change
request of conceptual schema.

Additionally, the defects at conceptual level can be located
in several ways through V&V techniques, which use a detection

mechanism (based on rules, metrics, and modelling
conventions) for this purpose. According to the technique
nature, this can be static or dynamic supported by a tool and they
can have different scope depended on its purpose (i.e. detect,
prevent and resolve).

Finally, the defects have insertion activity, severity, priority
and probability of occurrence. They are detected at any specific
time by noticing specific description (symptom), using detection
mechanism. Each of these aspects is relevant for the purpose of
required analysis and also allows a classification of defects.

Based on this analysis, we took some attributes from the
standard IEEE and adapted them to the context of UML-based
models, then added attributes required in this study (i.e.
technique purpose, technique type and tool support and
detection mechanism). Table XI (see Appendix I) documents the
mapping between attributes of the proposed classification
scheme and provided by the standard IEEE. Once we finished
this mapping, we could document the attributes and attributes
values.

The set of values for each attribute was obtained from
definitions of Table II (i.e. defect cause, sub mode), UML
definitions (i.e. modelling element, diagram level and diagram
type), standard IEEE (i.e. priority) and defects found in the
literature (i.e. detection mechanism, tool support and
references).

The final classification scheme was compiled and depicted
in the Table III with the description and attribute values to each
scheme attribute.

Fig. 1. Relationships modeled for understanding the relationships among conceptual entities used in Classification Scheme Structure (adapted from [9])

TABLE III. ATTRIBUTES OF DEFECT CLASSIFICATION SCHEME

Attribute Description Attribute Values

Defect

Cause
(Mode)

A categorization based on

Table II.

Missing, wrong or

unnecessary (see Table II).

Sub mode A categorization at a fine-

grained level of the defect
causes.

Missing, inconsistent,

incorrect, ambiguous,
redundant or extraneous (see

Table II).

Defect ID Unique identifier for the

defect.

DX.Y, X=sub mode (1-6),

Y=sequential number that
identifies the defect within the

sub mode.

Description The term or phrase used
to describe the defect of

the CSs.

Short phrase using words
according to defect causes (see

Table II)

Modelling

Element

The design entities

involved in the defect.

Element of UML diagrams

(e.g. classes, relationships,

operations, objects, messages).

Diagram

Level

These levels are

according the UML
diagrams [2].

Specification= This level

contains elements that
represent specifications for

instances, such as classes,

associations and messages.
Instance= The instance level

contains instances for

diagrams elements such as
objects and links.

Diagram

Type

It is a categorization

based on the diagram
within which the defect is

found. A distinction

between behaviour
diagrams and structure

diagrams is performed.

e.g. Use Case (UC), class

diagram (CD), object diagram
(OD), sequence diagram (SD),

communication diagram

(CoD), activity diagram (AD),
state machine diagram

(STMD) and package diagram

(PD).

Priority Describes the defect
priority.

High (H), Medium (M) and
Low (L).

Severity Describes the severity of

a resulting or potential
failure with respect to CS.

Various levels of severity

can be found in the
primary studies. A

translation to the

following terms is
required.

Critical = a defect that will

cause the model execution to
crash, stop or close abruptly.

Medium = a defect, which will

cause an observable failure or
breach of requirements.

Low = a defect that will not

cause a failure in execution of
the CS.

 Technique

Type

Whether to detect the

defect execution of the

CS is required or not.

Static (S) = execution is not

required.

Dynamic (D) = execution is
required.

Detection

Mechanism

Detection mechanism

name used by the
detection technique.

The word o words used to

name the detection
mechanism.

Tool

Support

Tool name used for

detecting process.

The word o words used to

name the tool support.

References List of references Source ID =[PSn]

C. Definition of the Defect Classification Process

To classify the defects found in the selected literature, we
made a list of questions based on the defect classification
process adapted from IEEE [24]. This process basically consists
of three steps: (a) identifying the attribute information, (b)
classifying the attribute information, and (c) recording the
attribute values of the defect. Our process basically defines a
user guide with questions previously formulated for the person

4 www.scopus.com

recording the defect and that can be conducted along the
classification process by answering each question and at the end
get the possible location of the defect within the structure of the
scheme classification (see Table IV). The attributes defect
identifier (Defect ID) and mode (defect cause) are assigned later
based on the sub mode value of the defect.

TABLE IV. QUESTIONS FOR CLASSIFYING THE DEFECT

Steps of Defect

Classification

Process

Attribute Name Question

Defect
Recognition

Sub mode

What is missing, inconsistent,
incorrect, ambiguous,

redundant, or extraneous?

Description How did the defect manifest
itself? (e.g. missing class)

Modelling Element Which diagram element

contains the defect? (e.g. class,
association, message)

Diagram Level What does level of the diagram

is affected? (specification or

instance)

Diagram Type Which diagram contained the

defect? (e.g. CD, SD)

References Where (paper) was reported

the defect? (e.g. PS8)

Impact

Identification

Priority What is the importance of

resolving the defect?

Severity How severe is the defect with

respect to quality of conceptual
schema? (e.g. high, medium)

Detection

Investigation

Technique Type Which type of technique can

detect it? (e.g. static)

Detection
Mechanism

Which is the detection
mechanism used by the

technique? (e.g. automated

inspection, checking
consistency rule)

Tool Support What does tool can

detect/resolve/prevent it? (i.e.
tool name)

IV. DESIGN OF THE MAPPING STUDY

The main steps in conducting a mapping study are discussed
in the following subsections.

A. Defining the Research Questions

As mentioned in Section 1, this paper focuses on
summarizing and classifying the CS defects reported in the
literature. The CSs we consider are focussed on information
systems design based on UML. Therefore, this work answers the
following research questions (RQs):

 RQ1: What defects in UML-based CSs are reported in
the literature?

 RQ2: How and where have these defects been detected?

B. Search Strategy for Selection of Primary Studies

A Systematic mapping was conducted for a period of three
months (October to December/2014). SCOPUS™4 was used as
the search engine, as it provides access to well-known
bibliographic-databases such as IEEExplore, SpringerLinks and

ACM Digital Library, etc. A search string was created based on
keywords extracted from the research questions and augmented
with synonyms. After iterative refinement, the definitive search
string was:

SS: (defects OR faults) AND (UML model OR UML design
OR UML diagram)

Executing the search string in SCOPUS™ on article title,
abstract and keywords the result was an extensive list of
candidate papers for the review.

We restricted these preliminary search results by limiting the
subject area to computer science and the document type to
conference paper, article and book chapter in English. To ensure
that only relevant studies were included, sets of inclusion and
exclusion criteria were defined (see Table V).

TABLE V. INCLUSION AND EXCLUSION CRITERIA

Inclusion criteria Exclusion Criteria

I1. Papers about defects

or faults in CSs based on

UML in particular and
how or where defects

have been detected.

E1. Papers that do not comply with the

inclusion criteria presented.

I2. Studies available

online.

E2. Informal literature e.g. editorials,

keynotes, introductions to/abstract, posters and
slides alone.

I3. Studies written in

English.

E3. Duplicated reports (the most complete

version of the work was included in the
review).

A two-phase selection process was performed as follows:

1) In the first search phase, based on the titles,

keywords and abstracts, irrelevant papers were excluded. A

total of 28 papers were identified in this phase.

2) In the second search phase, we read the

remaining papers and eliminated any that were not related to the

research question and identified 11 papers. However, in this

phase 53 additional studies were located by scanning the

references and grey literature (e.g. technical reports and theses)

for any other candidate primary sources. The two selection

phases were again applied and a further 17 papers were added

the list.

We identified a total of 28 primary studies (see Table VI).

TABLE VI. SELECTED PAPERS IN EACH PHASE OF SYSTEMATIC MAPPING

Search #

of

hits

Phase 1

(titles,

keywords

and

abstracts)

Phase

2

(full

text)

Papers selected

SS 282 28 11 [PS2] [PS3] [PS4] [PS15]
[PS16] [PS21] [PS22] [PS24]

[PS25] [PS27] [PS28]

Additional

from
References

 53 17 [PS1] [PS5] [PS6] [PS7]

[PS8] [PS9] [PS10] [PS11]
[PS12] [PS13] [PS14] [PS17]

[PS18] [PS19] [PS20] [PS23]

[PS26]

Total 282 81 28

Table XII, provides a list the selected studies numbered from
PS1 to PS28. This table is given in Appendix II. These results
include 5 journal papers, 3 workshops, 19 conference papers and
1 Ph. D thesis. There are 4 primary studies on industrial
evaluation, i.e. [PS15], [PS16], [PS17] and [PS18], the others
were generated in the academic area.

Fig. 2 shows the yearly distribution of primary studies found
in the literature, where 2006 is the year with more papers
reporting CS defects.

Fig. 2. Papers reported in the literature by years.

C. Data Extraction

In this step we used the proposed classification scheme (see
section III) to classify the CS defects reported in the literature.

In this way 226 reported defects were identified and
classified in 100 different defects.

All the rows of Table III were stored on a spreadsheet, which
was used as the prototype tool for storing and analysing defect
data.

An overview of this defect list is given in Table XIII (see
Appendix III) in which some attributes (i.e. sub mode, diagram
level, severity, detection mechanism and tool support) were
omitted due to space restrictions.

The complete list of defects can be accessed through the
URL http://users.dsic.upv.es/~nelly/defects.htm.

V. REVIEW RESULTS

This section deals with the results of the systematic mapping
study based on the 28 papers selected. The results are structured
based on the Research Questions given in Section IV.

A. RQ1: What defects in UML-based CSs are reported in the

literature?

By using the attributes of our defect classification scheme
(e.g. defect cause, modelling element), several groups of defects
were identified. In order to answer this question, we counted the
number of papers that reported each defect type. The frequency
by defect type is given in Table VII.

From these results we can see that the most commonly
reported defect is the “Wrong” type, with 182 defects (81%), the

most frequently reported sub-types (modes) are: Incorrect (95
defects, 42%) and Inconsistent (75 defects, 33%). Extraneous is
the least frequently reported (6 defects). The least reported
defect type is “Missing”, with 18 defects (8%). In the
“Unnecessary” defect type, the sub mode Extraneous is the least
reported (6 defects, 3%) in comparison to the redundant sub-type
(mode).

TABLE VII. NUMBER OF DEFECT TYPES OF CSS RELATED TO AFFECTED

QUALITY GOAL

Mode Sub modes Affected

Quality Goal

MISSING = 18

defects

Missing = 18

defects

QG2, QG4

WRONG = 182

defects

Inconsistent = 75

defects

QG1, QG3,

QG4, QG5

Incorrect = 95

defects

QG1, QG4

Ambiguous = 12

defects

QG1, QG3,

UNNECESSARY = 26
defects

Redundant = 20
defects

QG5

Extraneous = 6

defects

QG5, QG6

TOTAL 226
defects

 226
defects

We also analysed the relation of these defect types to the
quality goals proposed by Mohagheghi et al. [5]. Fig. 3 shows
an overview of these results, in which Correctness (QG1) and
Comprehensibility (QG4) are the quality properties with most
types of identified defects in the mapping study. This could
possibly be due to the fact that these quality properties are the
most defect-prone at the conceptual schema level, and their
correction could reduce the number of other defects such as
Completeness (QG2), Consistency (QG3), Confinement (QG5)
and Changeability (QG6). However, it could also be due to the
support tools used in these papers mostly covering only these
defect types.

Finally, since a paper could report more than one defect, we
found that the paper from which most defects could be extracted
was [PS1] (25 defects) and the least was [PS27] with 1 defect.

B. RQ2: How and where have these defects been detected?

We have identified 12 different defect detection mechanisms
(DM) in the primary papers:

 M1: Analysis based on descriptive logic

 M2: Analysis of the dependency graph + reasoning

procedure based in logic

 M3: Automated inspection

 M4: Checking consistency rules

 M5: Checking OCL constraints

 M6: Manual inspection of the models

 M7: Analysis on graph transformation rules

 M8: Cardinalities algorithm

 M9:Testing by model simulation

 M10:Testing executable forms

 M11:Testing of Testable Design Under Test

 M12: Black-box testing

In Table VIII the input and steps needed for each detection

mechanism are summarized. From this table we can see that
there is an approach [PS6] that uses two mechanisms (automated
and manual inspection) for detecting defects.

In Table IX the found defect detection mechanisms are
categorized according to type (Automated or Manual), tools that
were used for the automated techniques and CS components.

 Most of the defects reported in the CSs (82%) were detected
by static techniques (i.e. where model execution is not required).
From the static techniques that were used, 61% were automated
by tools, while the rest were done manually.

The defect data also reveals that M6 (Manual inspection) is
the mechanism with the most reported defects (62), followed by
M3 (Automated inspection) (58) (see Fig. 4). On the other hand,
M8 (Testing of Testable Design Under Test) found the lowest
number of defects (2). These results could be due to the primary
studies mostly focusing on a detection mechanism rather than
reporting a complete list of defects. To further locate where the
defects were found, we analysed the diagrams used to detect
them.

Fig. 3. Classification of defect types based on quality goals

TABLE VIII. STEPS OF THE MECHAMISMS FOR DETECTING CS DEFECTS

DM Prerequisites Steps (high level)

M1 Input: CS

Oracle based on: a

collection of predefined

Description Logics
predicates that represent

structural and behavioural

inconsistencies
[PS26]

1. Translate the CS into DL

2. For structural inconsistencies,
simply query this DL

representation of the CS.

3. For behavioural inconsistencies,
before querying, use the UML

meta-model to obtain concrete

test data to trigger behaviour.

M2

Input: CS with OCL

constraints [PS23].

Oracle based on:

 the OCL constraints that
come with the CS to

assess external

correctness, i.e. w.r.t.
requirements.

 a set of predefined
properties for internal

correctness like

satisfiability, class
liveness, non-

redundancy, etc.

1. The CS with its external OCL

constraints is translated into a
logic representation.

2. Questions are formalized as

derived predicates to assess the
CS on these external and

predefined internal properties.

3. Checking any property on a
schema is reduced to checking

the satisfiability of derived

predicates.

M3 Input: a CS

Oracle based on: a set of

heuristics that are necessary
for the construction of

verifiable models and

the programmatic extraction
of requirements gathered

from practical experience

(defined in [PS6])

Automated inspection of these
heuristics with a dedicated tool,

which internal functioning is not

further described in the paper
[PS6].

Input: a CS

Oracle based on: a set of
rules taken from the UML

specification, SDMetrics5 y

particularidades de C#
[PS9]]

1. Transform the CS into C# code.
2. Execute the framework for

eXecutable UML (FXU) to
evaluate the CS behaviour

according to the rules.

Input: a CS

Oracle based on: List of
common defects described

in [PS14]

Evaluate the CS by executing the

UMLint tool that is presented in the

paper [PS14] and is basically a
syntactic UML checker.

Input: a CS

Oracle based on: The

SDMetrics5.

Using a dedicated static UML
checker tool named SAAT

described in [PS16].

Input: a CS

Oracle based on:

 common interactive
behavior, like e.g. on all
traces, if a message X

has been sent, then

somewhere in the future
on that trace message Y

will be received [PS25].

 frequently occurring
syntactic defects.

1. Use model checking techniques
to analyze the possible

interaction traces and identify

patterns of common interactive
behaviour.

2. During this process, detect

possible ambiguities in the CS
sequence diagram.

3. Apply a series of checks to

identify other syntactic defects
in the CS.

M4 Input: a CS

1. Check well-formedness of each
individual CS entity using the

consistency rules.

5 http://www.sdmetrics.com/

Oracle based on:

consistency rules for

individual design entities

and consistency rules that

trace relations across
various design entities. In

the paper [PS5] these are

defined.

2. Check relationships across

entities, e.g. if an entity X

requires some other entity Y, the

entity Y should be defined some

where in the design, else the
design is inconsistent

Input: a CS

Oracle based on: 24

consistency rules chosen
based on the needs of

industrial partners [PS11].

1. If a CS element is created, for
every rule related to the element,

a new instance of the rule is

created and evaluated.
2. If a CS element was deleted, all

intances of the element rule are

destroyed.
3. For every rule instance of a

changed element, an evaluation

of the rules is performed.

M5 Input: a CS

Oracle based on:
Predefined OCL constraints

for quality of CS and/or

wellformedness (syntax,
basic properties, naming,

best practices [PS1, PS12,

PS13]

Compare the CS class diagram with

the OCL constraints for detecting

defects.

Input: a CS

Oracle based on: OCL
invariant constraints for

general well-formedness of

CSs[PS7]

1. For each constraint, create an

ATL transformation rule.

2. Then, check the constraints by
using ATL transformation

Input: a CS with OCL
constraints

Oracle based on: the
properties that come with

the CS [PS8, PS27]

Class diagrams and OCL
constraints of the CS are translated

into a constraint satisfaction

problem and solved with different
tools.

M6 Input: a CS

Human oracle using:

Requirement specifications
[PS2], set of heuristics based

on practice experience [PS6,

PS17], faults in the source
code [PS15], defined

collection of rules and/or

metrics [PS17, PS18, PS22],
list of previously identified

defects [PS19]

Realize a manual inspection (or

alike) on the determined artefact.

M7 Input: a CS

Oracle based on: graph

transformation rules that
express CS inconsistency

detection and resolution

[PS20].

1. Generate graphs from CS.

2. Apply the technique of critical

pair analysis by using the

transformation rules.
3. Analyse potential dependencies

between detection and resolution

of the possible inconsistencies
found in the CS.

M8 Input: CS class diagram

with constraints [PS24].

Oracle based on:

 minimum cardinalities to
evaluate the consistency

of UML class.

 cardinality is inconsistent

if it can have differing

1. Transform the CS class diagram

in a graph with nodes (class),

edges (relationships) and a set of
edge information (relation type

and constraints).

2. Then, divide the graph into
subgraphs in order to evaluate

the relation cardinality.

values within the same

subgraph.
M9 Input: CS with associated

constraints [PS4].

Oracle based on:
multiplicities,

generalizations and OCL

constraints to assess the
inconsistencies between

class diagram and

collaboration diagrams.

1. Set the test criteria (i.e.
association-end multiplicity,

generalization, class attributes).

2. Create a test set in a formal
semantic.

3. Determine variables values from

class diagrams.
4. Determine paths from

collaboration diagrams.

5. Exercise scenarios to evaluate
the constraints.

M10 Input: CS with constraints

[PS10].

Oracle based on: test input

constraints generates from
the paths of a Variable

Assignment Graph to assess

the consistency between
different views and

constraints based on

requirements.

1. Set the test adequacy criteria (i.e.

all message coverage, condition
coverage and all message path

coverage)

2. Transform the CS in a
executable form (DUT) by using

Java-like Action Language

format.
3. Test inputs are derived from

DUT by using a Variable

Assignment Graph.
4. Exercise the executable form of

a DUT with test inputs.

M11 Input: CS with OCL
constraints [PS21] .

Oracle based on:

 OCL pre-conditions,

post-conditions and

invariants that come with
the CS to assess

inconsistencies.

 a set of heuristics that are
necessary for the
construction of verifiable

OCL expressions

1. Build a Testable Aggregate
Model (TAM) by combining

information from the class

diagram, sequence diagram and
OCL information of the CS.

2. Generate the test cases and input

values.
3. Then, the TAM is evaluated by

using a symbolic execution.

4. Finally, the tool USE is used for

parsing and validating OCL

expressions.

(defined in USE6 tool)
Input: a CS activiy diagram

[PS28]

Oracle based on: path

conditions and input values
are used to find the

inconsistency between the

design and implementation.

1. CS activiy diagram is parsed and

initialized semantically with
concrete data.

2. The model is symbolically

executed, to collect paths, input
variables, and their path

conditions.

3. Then, the path conditions are
passed to a constraint solver to

generate a set of concrete value

of possible input variables.
4. Finally, the generated concrete

input variables are semantically

executed on the model to
identify the defects.

M12 Input: a CS with OCL

constraints [PS3].

Oracle based on: the OCL

constraints that come with
the CS to assess if the CS

meets the user’s

requirements.

1. Transforms a CS class diagram

into test data for the logical
animation.

2. The constraints defined in a class

diagram are transformed into
SQL queries into a Java class

called TestCases.

3. JUnit tool is used to run these
test cases.

In Table IX, we can see that the class diagram (CD) is used

in most primary studies (86%), which suggests that the structural
part of the CS is the part most often used for detecting defects.
The second most used is the sequence diagram (SD) in 46% of
the primary studies, followed by the state machine (STDM) and
activity diagrams (AD) that are used in 36% and 25% of the
primary studies respectively (see Fig. 5). This confirms that
these four diagrams are the most frequently used to specify both
the structural and behavioural part of a CS Techniques used as
defect detection mechanism.

Fig. 4. Number of defects grouped by Detection Mechanism and Sub mode of the QGs

6 http://sourceforge.net/projects/useocl/

TABLE IX. TECHNIQUES USED AS DEFECT DETECTION MECHANISM

Tech-

nique
DM Type Tool UML Diagrams Ref.

Struc
tural

Behaviou
ral

S
ta

ti
c

M1 A

RACOoN CD SD, CoD,

STMD

PS26

M2 EinaGMC CD - PS23

M3 M/A Design

Advisor

CD UC, AD,

CoD, SD

PS6

A
u

to
m

at
ed

 (
A

)

FXU CD STMD PS9

UMLint CD UC PS14

SDMetrics,
SAAT

CD UC, SD PS16*

SquAT CD SD PS25

M4 Eclipse plug-

in

CD,

DD

Com

pD

UC, SD,

STMD

PS5

UML/
Analyzer

CD SD,
STMD

PS11

M5 Eclipse-based

Plug-in

CD - PS7

UMLtoCSP CD - PS8

USE CD,
OD

UC, SD,
CoD,ST

MD, AD

PS13

Executable
OCL checker

- AD PS27

M
an

u
al

 (
M

)

- CD UC , SD,

STMD

PS12

- CD - PS1

M6 - - STDM PS2

- - AD PS15

- CD UC, SD,

STMD

PS17

- CD SD,
STMD

PS18

- CD - PS19

- CD SD PS22

M7 A AGG CD STMD PS20

M8 M - CD - PS24

D
y

n
a
m

ic

M9 - CD CoD PS4

M10 A Eclipse Plug-

in, USE

CD SD, AD PS10

M11 USE,
ADAPTUML

CD SD PS21

ADSim - AD PS28

M12 JUnit CD - PS3

Fig. 5. Diagrams reported in the pimary studies

In order to compare the coverage of the detection
mechanisms, the defect data was grouped by detection
mechanism and by the causes at fine-grained level (sub modes)
for CSs defects. From this data (see Fig. 4) we can see (by
column) that M3, M5 and M6 to some extent tried to cover all
the causes (six sub modes) of the defects reported in the papers
analysed, while this is not the case for M8 and M12, which cover
only one defect cause. The figure also reveals (by row) that the
cause of the Incorrect sub-mode is covered by almost all
mechanisms (11), followed by Inconsistent (8) and Missing (6).
This is not surprising, as the main QGs pursued in such artefacts
are Correctness, Completeness and Consistency [5]. Finally,
whereas the primary studies analysed mainly report both
correctness and consistency defects in CSs by assessing their
structural properties, the dynamic mechanisms are not being
fully exploited (few defects reported with these mechanisms) as
testing and debugging tools in the quality assurance process of
conceptual schemas.

In order to answer the second part of our research question
(location of the defects) we identified the modelling element it
was located in. For this we used the UML terminology [2] to
distinguish 100 different elements. In Table X we can see that
the modelling elements most reported in the primary studies (i.e.
number of references per element) are Operation (33 references,
8%) and Class (27 references, 10%).

TABLE X. MODELLING ELEMENTS

Modelling Element # Defects # Refs

Action 1 1

Activity 1 1

Actor 2 2

Association 6 7

Class 10 27

Comment 1 2

Connector 3 6

Constraint 5 14

ControlNode 1 1

DecisionNode 1 2

Diagram 3 3

Feature 1 2

Generalization 12 21

InstanceSpecification 2 10

Interface 2 3

Lifeline 1 1

Link 1 1

Message 1 1

MessageOccurrenceSpecification 1 1

MultiplicityElement 3 7

NamedElement 3 19

Operation 8 33

Package 1 1

Property 11 16

ProtocolTransition 1 3

Pseudostate 1 1

Region 1 2

RelationShip 1 5

State 4 8

Transition 3 10

UseCase 2 5

ValueSpecification 2 2

VisibilityKind 4 8

Total 100 226

The study also found that Generalization is the most affected
modelling element (12 defects, or 12%) by defects reported,
followed by the Property and Class elements with 11 and 10
defects, respectively. This is possibly because these are the
modelling elements that most occur in a structural diagram.

VI. LIMITATIONS OF THE STUDY

In the process of conducting our mapping study, we faced
various limitations related to the selection of relevant studies and
accuracy of the data extraction, such as the following:

Other terms such as “bug”, and “error” were not considered
because they are most used at code level. This was confirmed
by including the terms in the search string and confirming that
the papers contained no defects.

Since primary studies are mostly focused on presenting a
detection mechanism rather than reporting a complete list of the
defects found by this mechanism, the defect list most frequently
reported in the literature is not entirely equivalent to the number
of defects found in CSs. Another limitation could arise from our
categorizations and its completeness for analysis, a validity
threat common to mapping studies. We follow a methodology
proposed in the literature [5] to create the classification scheme
and the scheme attributes are based mainly on the IEEE standard
[8].

Regarding the accuracy of the data extraction; several
articles did not given sufficient information regarding the
attributes considered for describing defects (e.g. severity and
priority).

VII. CONCLUSIONS AND FUTURE WORK

This paper describes a systematic mapping study of the
defect types reported on in CSs represented with UML and the
techniques used to detect them. The results are summarized
below.

RQ1: What defects in UML-based CSs are reported in the
literature? We identified the defect types relevant to CSs by a
defect classification scheme. This classification is clearly
differentiated from others (e.g. defects at level code) by not
considering problems related for instance to user interface and
input/output crash.

Although several categories can be obtained (e.g. by
severity, by defect cause, by priority), in this study our analysis
was mainly carried out based on defect causes that affected
quality goals defined for CSs in an MDD context [4]. We found
there is a tendency to report only defect types related to the
“Wrong” type (e.g. incorrect) rather than the ”Missing” or
“Unnecessary” types.

On the other hand, few papers reported other important
aspects of the defects, such as severity (i.e. [PS7], [PS9]). No
paper reported the priority of defects, which could be due to
several reasons. It is possible that the complexity of managing
the impact of defects on the quality of the different CS makes it
difficult to specify values for these attributes, i.e. the lack of a
history of defects makes it difficult to establish their severity and

7 Verification is to check that the CS meets its stated functional and

non-functional requirements [26].

priority. These findings indicate that more research is needed to
better understand the severity and priority of defects with respect
to their impact on the quality properties.

RQ2: How and where have these defects been detected? We
identified some of the techniques used for detecting defects.
However, the evidence from this review suggests that the main
emphasis is on the use of techniques based on static analysis of
the CS, which does not require the execution of the model, so
that only part of the specification can be analysed.

Performing a systematic mapping study is time-consuming
and interpreting the results is not easy. However, the main
benefits are that it provides conclusions, new insights and
identifies research gaps.

After analysing the results of the review, we can draw the
conclusion that although there are several studies aimed at
reporting defect types at the CS level, a complete, well-
documented (e.g. based on defect classification scheme) and
evaluated list is still lacking. This information should include an
analysis of the severity of the defects with respect to their impact
on the quality properties of CS and the priority in solving them.

To date, defect types appear to be poorly used since most of
them are used primarily to verify the Correctness and
Comprehensibility of a CS by static detection techniques.
Therefore, more efforts (e.g. by using dynamic techniques such
as testing) are required to detect other defect types at the
conceptual schema level and to exploit the information
contained in them e.g. to measure the efficiency and
effectiveness of verification7 & validation8 tools with respect to
the number and type of defects that they manage. Additionally,
with this information the defects detected in an MDD
environment could be tracked, reduced and resolved.

One of the challenges involved in this review was
developing an appropriate defect classification scheme for CSs.
Although we have gone through a couple of revisions
throughout the study, we found that our final classification
scheme is highly usable and complete for our mapping.

This systematic mapping study is a part of a more extensive
research work, whose principal goal is to propose an approach
for testing-based conceptual schema validation in a Model-
Driven Environment [18], [19]. To reach that goal, further
research is needed. First, we need to clarify which defect types
can be found with testing techniques. Second, we need to know
which parts of a CS are expected to be most defect-prone. Third,
we need to prioritize defects types that are expected to appear
most often during testing activities. Finally, we need to develop
a testing solution and evaluate it by and deploying it in an MDD
environment.

ACKNOWLEDGMENT

This work has been supported by the Secretary of Higher
Education, Science and Technology (SENESCYT: Secretaría
Nacional de Educación Superior, Ciencia y Tecnología), of the
Republic of Ecuador.

8 Validation is to ensure that the CS meets the customer's

expectations [26].

APPENDIX I

TABLE XI. COMPLIANCE OF OUR PROPOSED CLASSIFICATION SCHEME

WITH IEEE STD. 1044

IEEE

Std. 1044

Definition Our

Proposal

Defect ID Unique identifier for the failure. Defect ID

Description Description of what is missing, wrong, or

unnecessary.

Description

Status Current state within defect report life cycle. n/a

 Asset The software asset (product, component,
module, etc.) containing the defect.

Diagram
Type

Artefact The specific software work product

containing the defect.

Modelling

Element

Version
Detected

Identification of the software version in
which the defect was detected.

References

Version

Corrected

Identification of the software version in

which the defect was corrected.

n/a

Priority Ranking for processing assigned by the
organization responsible for the evaluation,

resolution, and closure of the defect relative

to other reported defects.

Priority

Severity The highest failure impact that the defect

could (or did) cause, as determined by

(from the perspective of) the organization
responsible for software engineering.

Severity

Probability Probability of recurring failure caused by

this defect.

n/a

Effect The class of requirement that is impacted by
a failure caused by a defect.

n/a

Type A categorization based on the class of code

within which the defect is found or the
work product within which the defect is

found.

Diagram

level

Mode A categorization based on whether the

defect is due to incorrect implementation or

representation, the addition of something
that is not needed, or an omission.

Defect

Cause

Insertion

Activity

The activity during which the defect was

injected/inserted (i.e., during which the
artifact containing the defect originated).

n/a

Detection

Activity

The activity during which the defect was

detected (i.e., inspection or testing).

Detection

Mechanism

Failure
Reference(s)

Identifier of the failure(s) caused by the
defect.

n/a

Change

Reference

Identifier of the corrective change request

initiated to correct the defect.

n/a

Disposition Final disposition of defect report upon
closure.

n/a

- Technique

Purpose

- Technique
Type

- Tool

Support

APPENDIX II

TABLE XII. LIST OF PRIMARY STUDIES INCLUDED IN THE REVIEW

Ref Source

[PS1] Aguilera, D., Gómez, C., Olivé, A., Enforcement of Conceptual

Schema Quality Issues in Current Integrated Development
Environments. In CAiSE 2013, Valencia, Spain (2013).

[PS2] Ali, S., Yue, T., Malik, Z.: Comprehensively evaluating

conformance error rates of applying aspect state machines. In :

Proceedings of the 11th annual international conference on

Aspect-oriented Software Development, pp.155-166 (2012)

[PS3] Aljumaily, H., Cuadra, D., Martinez, P.: Applying black-box

testing to UML/OCL database models. Software Quality Journal

22(2), 153-184 (2014)

[PS4] Andrews, A., France, R., Ghosh, S., Craig, G.: Test adequacy

criteria for UML. Software Testing Verification and Reliability

13(2), 95-127 (2003)

[PS5] Bellur, U., Vallieswaran, V.: On OO design consistency in

iterative development. In IEEE, ed. : in ITNG ’06, pp.46-51

(2006)

[PS6] Berenbach, B.: The evaluation of large, complex UML analysis
and design models. In Society, I., ed. : in Proceedings ICSE ’04,

pp.232-241 (2004)

[PS7] Bezivin, J., Jouault, F.: Using ATL for checking models.
Electronic Notes in Theoretical Computer Science 1(2), 70-118

(2006)

[PS8] Cabot, J., Clarisó, R., Riera, D.: Verification of UML/OCL Class

Diagrams using Constraint Programming. In Proceedings
ICSTW '08, 73-80 (2008)

[PS9] Derezinska, A., Pilitowski, R.: Correctness issues of UML Class

and State Machine Models in the C# Code Generation and
Execution Framework. In Proceedings IMCSIT’2008.

[PS10] Dinh-Trong, T., Ghosh, S., France, B.: A Systematic Approach

to Generate Inputs to Test UML Design Models. In Proceedings

ISSRE, 95-104 (2006)

[PS11] Egyed, A.: Instant consistency checking for the UML. In

Proceedings ICSE '06, Shanghai, China, pp.381-390 (2006)

[PS12] Gomaa, H., Wijesekera, D. : Consistency in multiple-view UML
models: a case study. In IEEE, ed. : in Proceedings of the

Workshop on Consistency Problems in UML-based Software

Development II, San Francisco, Calif, USA, pp.1-8 (2003)

[PS13] Ha, I., Kang, B.: Meta-Validation of UML Structural Diagrams
and Behavioral Diagrams with Consistency Rules.

Communications, Computers and Signal Processing 2, 679-683

(2003)

[PS14] Hasker, R. W., Rowe, M., UMLint: Identifying defects in UML

diagrams, in ASEE’ 2011, Vancouver, BC, Canada, 2011.

[PS15] Holt, N. E., Briand, L. C., Torkar, R.: Empirical evaluations on

the cost-effectiveness of state-based testing: An industrial case
study. Inf. and Software Technology 56(8), 890-910 (2014)

[PS16] Lange, C., Chaudron, M. : Defects in industrial UML models—a

multiple case study. In Proceedings QiM ’07, Nashville, Tenn,
USA, pp.50-79 (2007)

[PS17] Lange, C., Chaudron, M.: An empirical assessment of

completeness in UML designs. In IEEE, ed. : in Proceedings

EASE ’04, pp.111-121 (2004)

[PS18] Lange, C., Chaudron, M., Muskens, J., Somers, L., Dortmans, H.:

An empirical investigation in quantifying inconsistency and

incompleteness of uml designs. In : Proc. Workshop on
Consistency Problems in UML-based Software Development,

6th International Conference on Unified Modelling Language,

UML 2003, San Francisco, USA (2003)

[PS19] Leung, F., Bolloju, N.: Analyzing the Quality of Domain Models

Developed by Novice Systems Analysts. In Proceedings

HICSS’2005, Hawaii, pp.1-7 (2005)

[PS20] Mens, T., Van Der Straeten, R., D’Hondt, M.: Detecting and
resolving model inconsistencies using transformation

dependency analysis. In MoDELS 2006 4199 of LNCS, 200–214

(2006)

[PS21] Pilskalns, O., Andrews, A., Knight, A., Ghosh, S., France, R.:

Testing UML designs. In : Information and Software

Technology, MA, USA (2007)

[PS22] Pilskalns, O., Williams, D., Aracic, D., Andrews, A.: Security
consistency in UML designs. In : COMPSAC '06. 30th Annual

International Computer Software and Applications Conference,

Chicago, IL, pp.351 - 358 (2006)

[PS23] Queralt, A., Teniente, E.: Verification and validation of UML

conceptual schemas with OCL. ACM Transactions on Software

Engineering and Methodology (2012)

[PS24] Satish, S. S., Shashikant, S. R., Sambhe, V. K., Shelke, R. B.,
Kocharekar, G.: A minimum cardinality consistency-checking

algorithm for UML class diagrams. In : Proc. of the International

Conference and Workshop on Emerging Trends in Technology,

pp.222-223 (2010)

[PS25] Van Amstel, M. F., Lange, C. F. J., Chaudron, M. R. V.: Four
Automated Approaches to Analyze the Quality of UML

Sequence Diagrams. In Proc. COMPSAC 2007, pp.415-424

(2007)

[PS26] Van Der Straeten, R.: Inconsistency Management in Model-

Driven Engineering. An Approach using Description Logics

PHD Thesis ed. Faculty of Science, Brussels (2005)

[PS27] Yin, L., Liu, J., Li, X.: Validating requirements model of a B2B
system. In : ICIS 2009. Eighth IEEE/ACIS International

Conference on Computer and Information Science, Shanghai,

pp.1020 - 1025 (2009)

[PS28] Yu, L., X., T., L., W., X., L.: Simulating software behavior based

on UML activity diagram. In : Proceedings of the 5th Asia-Pacific

Symposium on Internetware (2013)

APPENDIX III

TABLE XIII. PARTIAL OVERVIEW OF THE DEFECTS LIST REPORTED IN THE

MAPPING STUDY

Mode Defect

ID

Description Modelling

Element

Tech-

nique

Type

Ref.

M
is

si
n

g
 D1.1 Missing Class

specification

Class Static PS16

W
r
o

n
g

D2.1 Inconsistent
Operation

access

permissions

Visibility
Kind

Static
and

Dyna

mic

PS21
PS22

D3.21 Incorrect

Multiplicity

definition

Multiplicity

Element

Static PS14

PS19

PS24

D4.2 Ambiguous

Discriminator

Constraint

Generalization Static PS19

U
n

n
e
c
e
ss

a
ry

 D5.11 Redundant
Constraint

Constraint Static PS8
PS23

D6.3 Extraneous
Too many

attributes

Property Static PS1

REFERENCES

[1] Y. Labiche, "The UML Is More Than Boxes and Lines," in MODELS,
2008, pp. 375-386.

[2] Object Management Group. Unified Modeling Language (UML) Versión
2.5.

[3] OMG. (2006) Object Constraint Language OMG Available Specification
version 2.0 formal/06-05-01. [Online].
http://www.omg.org/spec/OCL/2.0/PDF/

[4] B. Unhelkar, Verification and Validation for Quality of UML 2.0 Models.
New Jersey: John Wiley & Sons, Inc., 2005.

[5] P. Mohagheghi, V. Dehlen, and T. Neple, "Definitions and approaches to
model quality in model-based software development– A review of
literature," Information and Software Technology, vol. 51, pp. 1646-1669,
2009.

[6] B. Freimut, "Developing and Using Defect Classification Schemes,"
Institut Experimentelles Software Engineering, Sauerwiesen, IESE-
Report No.072.01/E, 2001.

[7] R. B Grady, "Software Failure Analysis for High-Return Process
Improvement Decisions," Hewlett-Packard Journal, 1996.

[8] R. Chillarege, "Orthogonal Defect Classification," in Handbook of
Software Reliability Engineering, IEEE Computer Society Press and
McGraw-Hill ed.: M. R. Lyu, 1996.

[9] IEEE. (2010) IEEE Std. 1044-2009. Standard Classification for Software
Anomalies.

[10] S. Wagner, "Defect Classification and Defect Types Revisited," in
Proceedings of the 2008 workshop on Defects in large software systems,
NY, USA, 2008, pp. 39–40.

[11] R. Conradi et al., "Object-oriented reading techniques for inspection of
UML models – an industrial experiment," in Proceedings of ECOOP’03,
vol. 2749 of LNCS, 2003.

[12] G. H. Travassos, F. Shull, J. Carver, and V. Basili, "Reading Techniques
for OO Design Inspections," UM Computer Science Department,
Technical Report CS-TR-4353 UMIACS; UMIACS-TR-2002-33, 2002.

[13] T. Dinh-Trong, S. Ghosh, R. France, B. Benoit, and F. Fleury, "A
taxonomy of faults for uml designs," in MoDELS’05, Montego Bay,
Jamaica, 2005.

[14] J. P. Simmonds, "Consistency Maintenance of UML Models with
Description Logics," Vrije Universiteit Brussel, Brussel, Thesis of Master
of Science in Computer Science 2003.

[15] A. Tort and A. Olivé, "An approach to testing conceptual schemas," , vol.
69, 2010, pp. 598-618.

[16] B. A. Kitchenham, D. Budgen, and O. P. Brereton, "Using mapping
studies as the basis for further research – A participant-observer," vol. 53,
pp. 638-651, July 2011.

[17] K. Petersen, R. Feldt, S. Mujtaba, and M., Mattsson, "Systematic
Mapping Studies in Software Engineering," in Proceedings EASE 08,
BCS eWIC, 2008.

[18] M. F. Granda, N. Condori-Fernandez, T. E. J. Vos, and O. Pastor,
"Towards the Automated Generation of Abstract Test Cases from
Requirements Models ," in Requirements Engineering and Testing (RET),
2014 IEEE 1st International Workshop on, Karlskrona, Sweden, 2014, pp.
39-46.

[19] M. F. Granda, "Testing-Based Conceptual Schema Validation in a Model-
Driven Environment," in CAiSE'2013, Doctoral Consortium, vol. 1001,
Valencia, 2013. [Online]. http://ceur-ws.org/Vol-1001/

[20] Sindre G., Sølvberg A. Lindland O. I., "Understanding Quality in
Conceptual Modeling," IEEE Software, vol. 11, no. 2, pp. 42-49, 1994.

[21] J. Krogstie, Model-Based Development and Evolution of Information
Systems. A Quality Approach. London: Springer, 2012.

[22] A. Jalbani, M. Memon, I. Qureshi, and A. Yasmin, "A Novel Quality
Model for UML Models," in ICCIT 2012, 2012, pp. 248-252.

[23] F. Shull, G. H. Travassos, and V. Basili, "Towards Techniques for
Improved OO Design Inspections," in Workshop on Quantitative
Approaches in Object-Oriented Software Engineering, Lisbon, Protugal,
1999.

[24] IEEE. (1996) IEEE Std. 1044.1-1995 - Guide to Classification for
Software Anomalies.

[25] A. Olivé, Conceptual Modeling of Information System. Spain: Springer,
2007.

[26] I. Sommerville, Software Engineering, 9th ed. Boston, Mass.: Addison-
Wesley, 2011.

