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Abstract—SLURM is a resource manager that can be lever-
aged to share a collection of heterogeneous resources among the
jobs in execution in a cluster. However, SLURM is not designed
to handle resources such as graphics processing units (GPUs).
Concretely, although SLURM can use a generic resource plug-
in (GRes) to manage GPUs, with this solution the hardware
accelerators can only be accessed by the job that is in execution
on the node to which the GPU is attached. This is a serious
constraint for remote GPU virtualization technologies, which aim
at providing a user-transparent access to all GPUs in cluster,
independently of the specific location of the node where the
application is running with respect to the GPU node.

In this work we introduce a new type of device in SLURM,
“rgpu”, in order to gain access from any application node to
any GPU node in the cluster using rCUDA as the remote GPU
virtualization solution. With this new scheduling mechanism, a
user can access any number of GPUs, as SLURM schedules the
tasks taking into account all the graphics accelerators available in
the complete cluster. We present experimental results that show
the benefits of this new approach in terms of increased flexibility
for the job scheduler.

Keywords—HPC cluster; job scheduler; resource management;
remote GPU virtualization;

I. INTRODUCTION

Graphics processing units (GPUs) have remarkably evolved
during the last few years, from being just graphics coprocessors
to become powerful general-purpose accelerators, profusely
adopted in high performance computing (HPC) systems. In
addition to the favorable performance/cost ratio of GPUs, this
evolution has been further stimulated by considerable advances
in GPU programmability, with the introduction of frameworks
such as CUDA [1], OpenCL [2] and OpenACC [3]. As a
result, GPU computing (also known as GPGPU) is nowadays
successfully exploited in areas as diverse as finance [4],
chemical physics [5], computational algebra [6], health-care
equipment [7], computational fluid dynamics [8], and image
analysis [9], among others.

On the other hand, the deployment of GPUs is hampered
by their high acquisition and maintenance (including energy)
costs, as well as the limited amount of (GPU-appealing) data-
parallelism for many applications. In this sense, remote GPU
virtualization offers an alluring means to increase utilization
of the GPUs installed in a cluster, which can potentially yield
a faster amortization of the total costs of ownership (TCO)
for this type of equipment. Concretely, GPU virtualization

logically decouples the GPUs in the cluster from the nodes they
are located in, thus opening a path to share the accelerators
among all the applications that request GPGPU services,
independently of whether the node(s) these applications are
mapped to are equipped with a GPU. In consequence, the
GPUs can be accessed from any node in the cluster, the amount
of these accelerators can be reduced, and their utilization rate
can be significantly improved.

Currently, there exist several frameworks for remote GPU
virtualization, based either on the CUDA or OpenCL ap-
plication programming interfaces (APIs): rCUDA [10], [11],
GVirtuS [12], DS-CUDA [13], vCUDA [14], GViM [15],
GridCuda [16], V-GPU [17], SnuCL [18], dOpenCL [19],
VOCL [20], and VCL [21]. In these frameworks, applications
invoking CUDA/OpenCL kernels are not aware that their re-
quests are intercepted by the corresponding GPU virtualization
middleware and redirected to a real GPU, which is generally
located in a remote node of the cluster.

Although remote GPU virtualization has demonstrated very
low overhead with respect to a configuration with a local
GPU [22], due to its novelty, this technology is not yet
supported by the job schedulers that are commonly encoun-
tered in production clusters (e.g., SLURM [23], PBSPro [24],
MOAB [25], TORQUE [26], LSF [27], OAR [28], MAUI [29],
LoadLever [30], Condor [31], and Sun Grid Engine [32]).
In particular, a common job scheduler in production today
only deals with real GPUs so that, when a job requests a
number of nodes equipped with one (or more) GPU(s), the
scheduler will try to map that job to nodes that actually own
the requested number of GPUs, thus impairing the benefits of
GPU virtualization.

Nevertheless, it should be possible to modify the scheduler,
so that it becomes aware of the fact that the assignment should
no longer be constrained by the GPU kernels having to be
executed in the same node where the invoking application is
mapped to. The goal is thus to create a GPU virtualization-
aware job scheduler which in turn allows applications to
leverage all the cluster GPUs, independently of their location.

In this paper we present an extension to the SLURM
resource manager in order to support remote GPU virtualiza-
tion. The choice of SLURM is motivated by this scheduler
being distributed as open-source as well as its portability
and interconnect independence, which makes it suitable for
a variety of cluster architectures. Moreover, its scalability



and robustness, as well as its administrator-friendly charac-
teristics further improve SLURM’s appeal. We finally note
the widespread of SLURM in HPC clusters. Indeed, this job
scheduler is currently used in five of the ten top systems in
the Top500 list, including the system currently ranked in the
first position [33].

SLURM has been extended many times in order to integrate
new features, some of them related to GPUs. For example, an
integer programming-based heterogeneous CPU-GPU cluster
scheduler was introduced in SLURM in [34]. The authors also
propose there the use of GPU ranges. Such a feature can be
very useful to runtime autotuning applications and systems that
can make use of a variable number of GPUs. However, that
work does not consider the use of virtual GPUs, decoupled
from the CPU cores.

Our remote GPU virtualization support for SLURM can be
easily adapted to any GPU virtualization framework. In this
paper we focus on rCUDA, since this package supports the
most up-to-date CUDA version and, in addition, it has been
reported to offer remarkable high performance [10] [11].

The rest of the paper is organized as follows. Section II
briefly introduces SLURM and rCUDA. The main contribu-
tions of this work follow next, with the description of the
tools in Section III, and the evaluation of the framework in
Section IV. Finally, Section V outlines a few conclusions.

II. BACKGROUND

In this section we review the most relevant characteristics
of rCUDA and SLURM.

A. The rCUDA architecture

rCUDA is a framework that provides transparent access to
any GPU installed in a cluster, independently of the location
of the application requesting GPGPU services. Thus, rCUDA
is useful in a number of scenarios: i) in a cluster equipped with
rCUDA, the designers can reduce the total number of GPUs
in the system, improving the utilization rate of the power-
hungry hardware accelerators; ii) rCUDA can also be leveraged
to significantly accelerate the data-parallel computations of
a conventional cluster, by adding only a reduced pool of
accelerators to the system, much smaller than the total number
of nodes; and iii) rCUDA increases the number of GPUs
that can be accessed by an application, from only the local
accelerators to all GPUs available in the cluster. In summary,
in many practical cases, in exchange for a slight increase of
the execution time of GPU-enabled applications, considerable
savings can be achieved in energy consumption, maintenance,
space, and cooling with rCUDA.

The rCUDA framework is split into two major software
modules, as depicted in Figure 1:

• The client middleware consists of a collection of
wrappers that replace the NVIDIA CUDA Runtime
(provided by NVIDIA as a shared library) in the client
(GPU-less) node, and some accelerated libraries such
as cuBLAS, cuFFT and cuSPARSE. These wrappers
are in charge of forwarding the API calls from the
applications requesting acceleration services to the

Fig. 1. Overview of the general architecture of the rCUDA virtualization
solution.

server middleware, and retrieving the results, provid-
ing applications with the illusion of a direct access to
a local GPU.

• The server middleware runs as a service on one
or more cluster nodes, equipped with one or more
GPUs each. The middleware receives, interprets, and
executes the API calls from the clients over a real
GPU, employing a different process to serve each
remote execution over an independent GPU context,
thus enabling GPU multiplexing.

rCUDA is organized as a client-server distributed architec-
ture; see Figure 1. The client middleware runs in the same
cluster node as the application demanding GPU acceleration
services, while the server middleware runs in the cluster node
where the physical GPU resides.

rCUDA accommodates several underlying client-server
communication technologies, thanks to its modular, layered
architecture, which supports runtime-loadable network-specific
communication libraries.

This software currently provides communication modules
for Ethernet and InfiniBand based networks. Furthermore,
regardless of the specific communication technology, data
transfers between rCUDA clients and servers are pipelined for
performance, using preallocated buffers of pinned memory.

B. SLURM

SLURM consists of a daemon that runs on each computing
node (slurmd), a central daemon that runs on the manage-
ment node (slurmctld), and several command line utilities
(srun, scancel, sinfo, squeue, and scontrol). The
daemons manage nodes, the compute resource in SLURM;
partitions, which group nodes into logical disjoint sets; jobs
or allocations of resources assigned to a user for a specified
amount of time; and job steps, which are sets of (possibly
parallel) tasks within a job. Each job in the priority-ordered
queue is allocated nodes within a single partition. Once an
allocation request fails, no lower priority jobs for that partition
will be considered for a resource allocation. Once a job is
assigned a set of nodes, the user is able to initiate parallel
work in the form of job steps in any configuration within the
allocation. For instance, a single job step may be started that
utilizes all nodes allocated to the job, or several job steps may
independently use a portion of the allocation.



III. INTEGRATION OF GPU VIRTUALIZATION VIA RCUDA
INTO SLURM

We next describe the main code modifications that were
added to SLURM in order to accommodate GPU virtualization
via rCUDA, and how SLURM runs after these changes.

A. Changes to SLURM and rCUDA

The following list of modifications were necessary to
extend the SLURM-rCUDA suites with the sought-after func-
tionality:

1) New attributes were added to several data structures
in SLURM, in order to maintain certain information
about the GPUs which is required by jobs, partitions
and nodes.

2) The GRes module of SLURM was modified to allow
that all cluster GPUs were accessible to all nodes,
which implies that GPUs are to be shared among
the nodes. This module manages the allocations and
deallocations of generic resources such as the GPUs.

3) Two new SLURM plug-ins were implemented: The
GRes plug-in "gres/rgpu" declares remote GPUs
as a new generic resource in the system. The select
plug-in "select/cons_rgpu" is responsible for
job resource selection and scheduling. The code of
this plug-in is based on the "select/cons_res"
plug-in, and therefore similar behaviour can be ex-
pected from it.

4) The job submission commands were augmented with
new parameters in order to specify new features to
configure rgpu options.

5) Additional fields were introduced in the RPC pack-
ages in order to transfer the rGPU information used
by SLURM to schedule the jobs.

6) Finally, two rCUDA environment variables had now
to be set during the scheduling, in order to enable the
use of rCUDA software:
• RCUDA DEVICE COUNT, used by an

rCUDA client to learn how many GPUs
exist.

• RCUDA DEVICE X, used by an rCUDA
client to acquire the IP of the nodes where
the rGPUs are installed.

With these changes, SLURM allows the user to submit jobs
to the system queue(s) under three different working modes:

• Original (SLURM): The behavior of SLURM is
analogous to version 2.6.2.

• Exclusive (rCUDAex): SLURM decouples GPUs
from nodes, but they remain accessible only to one
job at a time.

• Shared (rCUDAsh): Nodes and GPUs are decoupled
and the graphics accelerators can now be shared
by several jobs. This mode is automatically selected
whenever a certain amount of GPU memory is re-
quested.

B. Operation of the GPU virtualization-aware SLURM

Once the controller (slurmctld) is launched, this pro-
cess checks the total amount of configured rGPUs in each
partition of the cluster. After this initial step, SLURM awaits
for jobs to be scheduled. We will show the operation using
srun as a workhorse, but the behaviour is also common for
salloc and sbatch. For example, consider the command:

srun -N1 --gres=rgpu:4:1G job.sh

which submits a request to SLURM to allocate 1 node (prefer-
ably with a local GPU) and 4 remote GPUs with 1 Gbyte of
memory each, in order to run the script job.sh.

The request could also be more precise, and ask for a
specific node of the cluster:

srun -w "node3" --gres=rgpu:4:1G job.sh

In this example, SLURM is requested to allocate node node3,
no matter whether it is equipped with GPUs: In case it is not,
the node will thus have to access remote GPUs to execute the
job.

Alternatively, the request can ask for all the memory of a
GPU ensuring that the job will be executed exclusively. An
easy way to achieve this behaviour is:

srun --rcuda-mode=excl
--gres=rgpu:4 job.sh

Let us illustrate the new capabilities with an additional
example. Assume we have a small cluster with 4 nodes
(node[0-3]) in which only node0 and node1 are equipped with
one GPU each, and each GPU has 4 Gbytes of memory; node2
and node3 are thus GPU-less. Moreover, consider we want to
run two different jobs on this small cluster, each requesting
2 nodes and 2 GPUs, but only 1 Gbyte of memory per GPU.
Submitting the jobs in exclusive mode, the 2 available GPUs
will be assigned to one job, while the other will be enqueued
until the first one finalizes. On the other hand, with the shared
mode both jobs will run concurrently sharing the two GPUs.
In the first case, two nodes will be idle while executing the
jobs (one after another). In the second case, the four nodes
are simultaneously used. These alternative configurations thus
allow to share the GPU and increase the number jobs in
execution (throughput), or boost the performance of a single
job.

Upon encountering a new submission, SLURM com-
mences the scheduling procedure. First, the select plug-in
"select/cons_rgpu" checks whether the job requires
rGPUs. If that is the case, the "rgpu_mode" will be activated
for this job. (Otherwise, SLURM just proceeds as usual; i.e.,
without the GPU virtualization-aware modification.)

Depending on the resources available in the cluster and the
job characteristics, it will be then enqueued or executed. When
a job is submitted, it is immediately enqueued and its require-
ments are checked. If the cluster has enough resources for it,
the scheduler eventually submits the job to execution. When
the job is running, the resources that were requested need to
be allocated. This is carried out by the new GRes module,



where the implied data structures are updated with scheduling
information. Currently our selection algorithm implements a
policy which prioritizes rGPUs located on the execution node
itself. If it is impossible to fulfil this request, the algorithm
looks for more rGPUs in the rest of the nodes of the cluster.
This search is performed by iterating an ordered list with all
the nodes hosting rGPUs, until the request is satisfied.

Upon completion of the execution, all resources allocated
to it are released, becoming then available for other jobs.

IV. PERFORMANCE EVALUATION

In this section we perform an evaluation of the new
SLURM module and report the results obtained with it. For
this purpose we have configured a cluster with the upgraded,
GPU-aware version of SLURM; we have studied the scala-
bility of several scientific applications; we have executed the
application in two different ways, focusing our attention on
the performance and the throughput; and we have tested the
system while reducing the number of resources in order to
compare the results between physical GPUs and virtualized
remote GPUs.

A. Setup

All the tests were executed on a 9-node cluster, where 8 of
them are compute nodes while the last one is used as a front-
end. Each node is equipped with a Supermicro 1027GF-TRF
motherboard, two Intel Xeon E5-2620 (Ivy Bridge) hexacore
processors at 2.1 GHz, and 32 Gbytes of DDR3 SRAM
memory at 1.6 GHz. Each node is also endowed with an
NVIDIA Tesla K20 GPU connected trough a PCIe 2.0 x16
to the motherboard. The cluster nodes communicate via a
Mellanox SX6025 (Infiniband FDR-compatible) switch, and
each node is equipped with a Mellanox ConnectX-3 VPI
single-port (InfiniBand FDR-compatible) card. The theoretical
bandwidth for this network configuration is 56 Gbytes/s.

In the software stack the testbed system operates under a
CentOS 6.4; the communication network runs the Mellanox
OFED 2.1-1.0.0 driver; and the GPUs use CUDA 5.5 and
the NVIDIA driver 331.62. The GPU virtualization support
is based on rCUDA 4.1.

B. Applications

In order to implement a real heterogeneous workload, we
decided to use the following applications, selected because of
their appealing properties:

1) GPU-Blast: This is one of the most used bioinformatic
tools, implemented as a multi-thread application to be run
using a single process which accesses a single GPU only1.

2) LAMMPS: This is a classic molecular dynamics simu-
lator to model atoms. From the implementation perspective, it
is a multi-thread and multi-process application which needs at
least one GPU to host their processes, but can benefit from the
use of multiple GPUs2.

1http://archimedes.cheme.cmu.edu
2http://lammps.sandia.gov

TABLE I. MAXIMUM PERFORMANCE ON APPLICATIONS

Application Configuration Execution time (s)

GPU-Blast 1 process with 6 threads 21

LAMMPS 5 single-thread processes in 5 different nodes 15

MCUDA-MEME 4 single-thread processes in 4 different nodes 165

GROMACS 2 processes, with 12 threads each one, in 2 nodes 167

3) MCUDA-MEME: This a bioinformatic application
based on the MEME algorithm. With properties similar
to LAMMPS, MCUDA-MEME is multi-thread and multi-
process, though in this code each process needs a GPU. In
consequence, they must run in different nodes3.

4) GROMACS: As LAMMPS, GROMACS is a molecular
dynamics simulator, but this application does not need GPU
acceleration4. This multi-thread and multi-process application
that contributes a higher degree of heterogeneity to our exper-
imental workload.

All the GPU-requesting applications are in the NVIDIA’s
applications catalog [35].

C. Workloads

The combination of rCUDA and SLURM allows the GPU
to be shared by several jobs. In order to do this, it is necessary
to provide the maximum amount of GPU memory requested
for each job. This corresponds to the memory requested by the
job, the GPU memory needed by the GPU driver, and the GPU
memory needed for the rCUDA daemon. Thus, the maximum
amount of memory that our application consumes will be
given by: AppMaxMem + NV IDIA Driver + (rCUDAd ·
number of threads).

In our concrete case, the driver occupies around 10 Mbytes
and the rCUDA daemon 63 Mbytes. This number is multiplied
by 6 when GPU-Blast is running though. The third column
of Table III shows the configuration of a job prepared to
use rCUDA. The last field of the gres clause indicates the
amount of memory requested by the job, taking into account
the operators.

We have generated three workloads of different theoretical
duration. The workloads have been generated randomly, but
reproducible by setting the same seed to the random function.
The generator is given a quantity of theoretical minutes and
it appends a new random job that will be in charge of one
of the four applications. The application chosen each time, is
a random process where the probability of being selected is
0.25. Notice that the theoretical time should be similar to that
obtained by executing a workload in a sequential mode. In
our case jobs are overlapped so the execution time, as will be
shown in the next section, is considerably lower. As reported
in Table I, each application has its own execution time, and
this value is used to add jobs to the workload until the sum of
the times exceeds the previous given time.

Table II contains a detailed description, for each duration,
of the quantity of instances of each application. The order
of the jobs is independent of the type of workload. The

3http://sites.google.com/site/yongchaosoftware/Home/cuda-meme
4http://www.gromacs.org

http://archimedes.cheme.cmu.edu
http://lammps.sandia.gov
http://sites.google.com/site/yongchaosoftware/Home/cuda-meme
http://www.gromacs.org


TABLE II. WORKLOAD COMPOSITION

App
Workload

2 hours 4 hours 8 hours

GPU-Blast 12 43 81

LAMMPS 18 47 90

MCUDA-MEME 18 36 77

GROMACS 23 42 79

Total 71 168 327

modifications only affect the launching parameters depending
on the nature of the experiment.

To sum up, there are 4 scenarios established with 6 work-
loads in each one. Moreover, these workloads are divided into
2 groups, depending on whether they request GPUs or rGPUs.
Both groups include 3 different workload volumes with respect
to the theoretical time.

D. Experimentation

Let us start by stating that SLURM was configured with
the scheduling policy backfill so that jobs can overtake
others. Furthermore, the selection of consumable resources has
been performed with the cons_rgpu policy, which allows the
request of remote GPUs.

We leveraged MPI implementation MVAPICH2, specially
tuned for InfiniBand technology. We used salloc command
to submit multiprocess jobs, since srun needs the application
linked to SLURM’s implementation of PMI library.

In the experiments carried out in this work, we designed
three distinguishable types of experiments, each with a differ-
ent purpose.

In the first one jobs are expected to attain the highest
possible performance. The data have been extracted from
a scalability analysis, carried out in order to estimate the
maximum performance during the execution of each appli-
cation in our system. This analysis involved the execution
of applications with a variety of configurations regarding
number of processes, when possible. Although, our cluster
is equipped with 8 GPUs, we restricted the MCUDA-MEME
application to work with only 4 GPUs because our goal was
to reduce the resources of our cluster to 4 GPUs or less, and
launch experiments with this hardware configuration. On the
contrary, LAMMPS is configured with 5 GPUs because of its
implementation. Table III summarizes the best configuration
and execution time for each application. Note that looking for
the highest performance rate is understandable when there are
few jobs to execute. However, our workloads are composed
of a considerable quantity of jobs, and therefore, with this
configuration a lot of resources are wasted due to some jobs
having to wait for the rest of the resources requested.

The second configuration adds several degrees of freedom
in order to avoid the restriction of each process having
to be run in a different node. We recognize that this will
likely cause a non optimal mapping of resources to the jobs
but, on the other hand, it will also yield a higher global
throughput. Table IV shows how applications, such as GPU-
Blast and LAMMPS, do not force their processes to run in
different nodes (the argument -N was removed). However,

TABLE III. SLURM LAUNCHING PARAMETERS TO GET THE UNITARY
MAXIMUM PERFORMANCE

Application Launch with CUDA Launch with rCUDA

GPU-Blast -N1 -n1 -c6 –gres=gpu:1 -N1 -n1 -c6 –gres=rgpu:1:1686M

LAMMPS -N5 -n5 -c1 –gres=gpu:1 -N5 -n5 -c1 –gres=rgpu:5:3275M

MCUDA-MEME -N4 -n4 -c1 –gres=gpu:1 -n4 -c1 –gres=rgpu:4:163M

GROMACS -N2 -n2 -c12 -N2 -n2 -c12

TABLE IV. SLURM LAUNCHING PARAMETERS TO IMPROVE THE
GLOBAL THROUGHPUT

Application Launch with CUDA Launch with rCUDA

GPU-Blast -n1 -c6 –gres=gpu:1 -n1 -c6 –gres=rgpu:1:1686M

LAMMPS -n5 -c1 –gres=gpu:1 -n5 -c1 –gres=rgpu:5:3275M

MCUDA-MEME -N4 -n4 -c1 –gres=gpu:1 -n4 -c1 –gres=rgpu:4:163M

GROMACS -N2 -n2 -c12 -N2 -n2 -c12

the MCUDA-MEME and GROMACS configurations remain
without change. The explanation for MCUDA-MEME is that
this application needs 4 GPUs (one per process); LAMMPS
is able to use the same GPU for different processes, while
MCUDA-MEME is not. GROMACS boosts its execution time
if two or more instances share a node due to the pinning
configuration between threads and cores. That is why we
decided that each instance is given the exclusive access to
the two requested nodes. After these changes, we observe a
higher throughput of jobs per minute.

The second row of Table V reveals that some resources
are underutilized. Hence, we planned to reduce the number
of GPUs in the cluster progressively, from 8 to 4–6 GPUs.
For this purpose, we modified the command to submit an
application in order to match the new “platform”. This was a
minor change in the submission of LAMMPS instances using
rCUDA on a 4-GPU cluster. In particular, as our cluster no
longer has 5 GPUs, we cannot request 5 rGPUs so that the
launching parameters for LAMMPS in this scenario was -n5
-c1 --gres=rgpu:4:3275M.

Finally, we experienced an overflow of SLURM’s con-
troller daemon when submitting such a huge burst of jobs in
a very short period of time. To tackle this, we delayed the
submissions in order to avoid the saturation. The delay was
increased as the workload grew, so during the submission of
the first jobs the delay was close to zero.

E. Results

The following charts show the whole execution time using
bars, while the lines represent the throughput (number of jobs
per minute) of the system.

Figure 2 compares the results obtained in a cluster of 8
GPUs, for jobs submitted with two different objectives. The
first one (left) aims to get the maximum unitary performance
(see Table III), whilst the second (right) looks for throughput
(see Table IV). The chart on the left reflects a similar behaviour
in both modes. Although the rCUDA mode can share GPUs,
this overloading with the restriction of using a specific number
of nodes to execute a job, delays the global progress. For
example, the parallel execution of 12 instances (because of
the 12 cores of a node) in the same 4 nodes takes about 1,884
seconds. On the contrary, the serial execution requires 165



Fig. 2. Comparation between CUDA and rCUDA in a 8-GPU cluster configuring the launch of the jobs at maximum performance (see Table III) (left) and
configuring the launch to improve the throughput (see Table IV) (right).

Fig. 3. Comparation between CUDA and rCUDA in a 6-GPU cluster (left) and in a 4-GPU cluster (right).

seconds × 12 instances = 1,980 seconds, which is quite similar
to the parallel result.

At first glance, in see Figures 2–right and 3–both we
appreciate that rCUDA reduces the execution time, in several
tests in a factor larger than 2×, This is well illustrated with the
execution times on a 4-GPU cluster. Even more remarkably,
the rCUDA mode keeps the throughput index independently of
the GPUs in the cluster being 4, 6 or 8), opposite to the CUDA
mode. Removing GPUs from some nodes of our cluster causes
a very negative effect in the CUDA mode, as shown the same
charts, increasing the execution time and reducing the global
throughput.

We have analysed the percentage of time that the GPUs
were allocated. The percentages have been extracted from the
rCUDA executions and are given in the Table V. The coloured
cells facilitate understanding of the results: the dark green cells
mean that a GPUs has been allocated for a “long” time, and
the red cells have the opposite meaning. Overall, we have a
reliable indication that compaction of the jobs in the available
GPUs is well conducted.

Regarding the execution times and the percentages of
allocation, we can conclude that by reducing the number of
GPUs and using the existing GPUs in a remote way, the
jobs make the most of these resources, while the workload

TABLE V. PERCENTAGE OF ALLOCATED TIME

GPUs Workload GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7

8 GPUs
2 hours 90.12 90.12 90.12 90.12 85.60 55.66 55.22 55.19
4 hours 90.78 90.78 88.12 88.12 62.53 38.74 34.41 9.70

Max Perf 8 hours 93.30 93.30 93.09 93.08 92.14 84.45 84.19 83.64

8 GPUs
2 hours 79.16 79.16 79.16 79.16 76.82 56.31 43.24 25.75
4 hours 94.86 94.86 94.86 91.67 87.72 77.11 44.41 32.67
8 hours 90.27 90.27 90.27 87.03 86.31 78.06 68.54 57.92

6 GPUs
2 hours 86.34 86.34 86.34 86.34 70.69 68.88 - -
4 hours 93.48 93.48 93.48 92.37 77.14 58.44 - -
8 hours 97.09 97.09 97.09 94.40 86.12 85.10 - -

4 GPUs
2 hours 99.57 98.17 98.17 98.17 - - - -
4 hours 99.29 99.04 99.04 99.04 - - - -
8 hours 97.67 97.67 97.67 97.67 - - - -

execution suffers little. The advantage of this technique lies
in that it reduces the costs of hardware, which also implies
a reduction in the energy consumption. Additionally, it can
process more jobs per minute, which implies that our cluster
has a higher profit-earning capacity.

V. CONCLUSIONS

In this paper we have integrated new functionality to
accommodate GPU virtualization in the SLURM job scheduler.



With these modifications, and using a remote GPU virtualiza-
tion tool as rCUDA, the GPUs in an HPC cluster are logically
decoupled from the nodes in which they are installed, so that
they can then be accessed by jobs running in any cluster node.
The additions/changes to SLURM include the definition of
a new SLURM GRes resource, a reduced number of new
resources that the scheduler can manage, and modifications
(mainly in the form of options) to several SLURM commands.

We have also performed an extensive evaluation of the
new functionality on a real cluster. For this purpose, we
have defined a collection of synthetic workloads in order to
demonstrate the functionality of our SLURM version as well as
the real possibilities of reducing the number of GPUs installed
on a cluster and its impact on performance.

Our current version of SLURM adopts scheduling deci-
sions involving remote GPUs based on the amount of GPU
memory required for the job. In a future implementation we
plan to experiment with different scheduling algorithms, in
order to take into account not only the amount of GPU memory
required by a job, but also the actual computational intensity
of the workload jobs, the GPU computational power, and the
network distance between the application nodes and the remote
GPU nodes to be assigned to a job. A detailed study on the
performance-TCO trade-off is part of future work.
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