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This chapter begins with an overview of the origins and evolution of Operations 
Research in order to understand its current and future interest in Business Administration 
and Management studies. Due to the lack of a generally accepted definition for the 
discipline, several definitions are presented in section two of this chapter, in an attempt 
to cover the traditional approach as well as some more recent approaches. Section three 
describes some applications in Business Administration and Management. Lastly, the 
methodology of Operations Research is presented, including an in-depth analysis of the 
problem formulation, modelling and implementation. 

1.1. THE ORIGIN AND EVOLUTION OF OPERATIONS RESEARCH  

The term “Operations Research” or “Operational Research” (OR) was first used in 
the UK, when in 1936 a group of RAF scientists was established to study how to operate 
radar. This group was called the Operational Research Section, as it was more concerned 
with the operations of the new equipment than with the development of radar itself. This 
first section was so successful that by the time World War II was over other allied nations 
already had similar support groups for their military operations decision making (Keys, 
1995). However, Kirby (2000) places the formal birth of Operations Research in 1938. 

The positive impact of Operations Research during World War II brought about its 
subsequent smooth introduction into the industrial and commercial sectors on both sides 
of the Atlantic. In England it was concentrated in two industries, coal mining and the iron 
and steel industry. Paradoxically, the teaching of Operations Research started in the 
United States sooner than in England. The first textbook on the subject was written in the 
USA: Churchman, C. W., R.L. Ackoff and E.L. Arnoff (1957): Introduction to 
Operations Research. John Wiley, New York. In the 1960s American industry was 
therefore receptive to Operations Research techniques due to the preparation of its 
managers (Kirby, 2000).  

It should be noted that these origins of Operations Research represent the official 
history accepted by the majority. Other authors such as Professor Bueno (1971) expand 
on this and argue that there are three basic sources that influenced the appearance of 
Operations Research: economic models, military operations and mathematics. Thus, he 
finds evidence in, amongst others, Walras’s general balance model, which outlines the 
production balance with a system of linear equations, the Tableau Économique of 
Quesnay (1758) and in Input-Output Analysis by Leontiev (1936). However, the special 
relevance of Operations Research to 20th century economic thinking becomes evident as 
many Nobel Prizes of Economy (which started in 1969) have been awarded to authors 
who published works in the area of linear programming and other quantitative techniques 
and nonlinear programming and games theory. Among these Nobel prizewinners are 
Samuelson (1970), Leontiev (1973), Kantorovich (1975), Simon (1978), Solow (1987), 
Markowich and Sharpe (1990), Selten, Nash and Harsanyi (1994), Aumann (2005) and 
Hurwicz (2007). 
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Keys (1995) considers the period 1945-1975 as a period of growth and stability that 
he calls the “Golden Age” of classic Operations Research. During this period the 
institutionalization of Operations Research is seen in three aspects: as a support to 
management in industry and other organizations, in the creation of professional 
associations and in the establishment of academic programs. 

The historical work carried out by Kirby (2000) emphasizes the rapid dissemination 
of Operations Research techniques after the revolution of information and 
communications technologies during the 1980’s. Thus, in the early 1990’s, spreadsheets 
implemented linear and nonlinear programming codes, and their performance has 
improved a lot since then. This situation of Operations Research offers new challenges 
and opportunities for business administration and management. For example, nowadays 
millions of Microsoft Excel users can create and solve models that allow them to improve 
business decision making at operative, tactical and strategic levels. Moreover, the 
Operations Research techniques are and will continue to be part of the applications for 
helping decision making techniques known as Decision Support Systems (DSS) and 
expert systems. 

1.2. THE NATURE OF OPERATIONS RESEARCH 

From its beginning, there has not been a generally accepted and precise definition of 
Operations Research and, throughout its evolution, its methodology has been extensively 
discussed. The main characteristics of Operations Research appeared in the first OR 
textbook published in 1957. Specifically, there is an  emphasis on the scientific method, 
the interdisciplinary teams, the decision making, obtaining the best solution and the global 
approach. 

For Assad, Wasil and Lilien (1992) Operations Research - Operations Research/ 
Management Science (OR/MS) - is the application of the scientific method to decision 
making or to professions that approach the best way to design and operate systems, 
usually under conditions where allocation of scarce resources is required. 

Keys (1995) considers Operations Research as a technology. Operations Research 
uses the scientific method on which its observation, modeling, thinking, experimentation 
and logical and systematic investigation are based. However, it does not use these 
methods with the same purpose as science. Science is descriptive, Operations Research 
is prescriptive. The objective of Operations Research is to provide information and to 
design ways to improve the effectiveness of organizations.  

The two basic characteristics of this technology seen from this new model are their 
objectives and their methods. The objective of Operations Research is the production of 
information about the systems that facilitate improvement in the effectiveness of the 
organization. The methods used to produce this information are of a scientific nature. 
That is to say, they are based on measures, analysis and validation rather than likes, 
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intuitions and opinions. If we consider that technology is in charge of designing systems, 
physical as well as abstract, Operations Research is a technology that designs abstract 
systems that consist of useful information for the planning, the control and the other 
necessary activities to manage an organization. 

According to Keys, Operations Research is a technology that designs abstract 
systems, by scientific means, to improve the effectiveness of organizations. The 
implications for teaching and learning Operations Research take into consideration two 
components. On the one hand, formal means must be used to teach useful working ways, 
such as quantitative analysis and application of scientific methods. On the other hand, it 
is necessary to complement this education with the application of the previous skills to 
real problems. This textbook considers this approach as the most appropriate in areas 
where Operations Research is taught, which are, Business Administration and 
Management studies.  

Robinson (2000) defines Operations Research as the application of the scientific 
method to improve the effectiveness of operations, decisions and management. Robinson 
considers that one of the reasons for the discipline to remain invisible or visible but not 
well understood, is because it has been practiced under different names. Besides 
Operations Research, other almost synonymous terms have been used such as 
Management Science, Decision Technology, Decision Support, Policy Science, Systems 
Analysis (with relative applications to administration and decisions), Management 
Technology and Management Analytics. Business Analytics is another recent name that 
integrates descriptive and prescriptive analytic methodologies. 

An important feature of Operations Research is maintaining a global perspective on 
the projects, analyzing the particular problems in the context in which they occur. In both 
the classical and the most modern definitions of Operations Research the system concept 
is fundamental. Let us see some examples that will illustrate this. 

Many companies calculate the unit production cost at a machine shop or a production 
line, taking into account all of the costs of the resources used. The lower the unit 
production cost the greater the efficiency. This procedure is valid only for production 
processes that consist of a single phase and where there is no trouble in selling the product. 
When the company has complex production processes with several products (e.g. tile 
companies) and each line produces different parts - often in small batches-, which are 
used as inputs in subsequent phases of the production process, this acts as an incentive 
for the machines to be producing all the time. If the next production line in the 
manufacturing process does not require these intermediate stocks immediately, the 
company will need to store them temporarily, incurring a cost for these intermediate 
stocks that are not attributed to the line that generated them. Therefore, the production 
line seems to be efficient, while the company has to deal with excessive costs caused by 
these intermediate stocks.  
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As we have seen in the previous example, the operation efficiency of a particular 
division of a company can impair the overall performance in terms of objectives and 
goals. The efficiency measures how well resources in a given activity are used. Thus we 
can speak of technical efficiency, which does not need to be the same as economic 
efficiency, which maximizes the difference between revenues and costs. However, a 
company is interested in achieving its objectives, which we can evaluate via its 
effectiveness. That the several parts of a system operate efficiently does not necessarily 
mean that the whole system is effective in achieving its objectives. This is not to say that 
efficiency is contrary to effectiveness. Real efficiency is measured in terms of the 
overall objectives of the company. Efficiency and effectiveness are complementary 
concepts. In short, we can say that effectiveness deals with "doing the right thing" and 
efficiency with "doing things right" (Daellenbach and McNickle, 2012). 

Here is another example to illustrate the concept of system in Operations Research. 
In a company with five departments (raw materials procurement, production, marketing, 
finance and personnel) marketing proposes an increase in the duration of the guarantee of 
one of its products to better compete. What forms the system? What forms the 
environment?  

The marketing department consists of distribution, sales and customer services. The 
company assumes that extending the guarantee period will increase sales. However, they 
also increase guarantee costs due to added customer services. Therefore, the system to be 
studied could be reduced to sales and customer services (System 1), with all other 
operations of the company, customers and competitors which form the environment. The 
aim of System 1 is to find out the guarantee period that maximizes the difference between 
benefits from sales and guarantee costs.  

System 1 considers product quality as a part of the environment, but product quality 
will affect both sales and warranty costs. For this reason, System 1 could be expanded to 
include production (System 2). The objective of this system is to determine the optimal 
combination of product quality and the guarantee period to maximize profits. However, 
product quality is also affected by the quality of the raw materials used, which are part of 
the system 2 environment. Thus System 2 could be expanded further to include the 
procurement of raw materials and form System 3. System 3 could also be extended to 
include other company's products, if sales of these products are affected by changes in 
the guarantee period of the first product, leading to System 4.  

In Figure 1.1 we can see how each system is included in a larger one. With this 
example we want to illustrate the fact that the Operations Research always tries to solve 
the conflicts of interest within the company, so that the best result for the company in 
terms of its objectives is achieved. This does not mean that the study should always 
explicitly consider all aspects, but that the objectives sought after have to be consistent 
with those of the company.  
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Figure 1.1. Example to ilustrate the system concept. Source: Daellenbach et al. 1987. 

1.3. APLICATIONS  

After World War II the British as well as the American army maintained active 
Operations Research teams. As a result, nowadays there is a large number of people called 
“military operations researchers” that apply the Operations Research approach to national 
defense problems. Operations Research is also widely used in other types of organization 
and in the business world. In fact, almost all large and many medium sized enterprises 
worldwide have established Operations Research teams.  

Among the industries that apply Operations Research are those dealing with aviation 
and missiles, computer science, electric power generation, electronics, food, metallurgy, 
mining, paper, petroleum, transportation, as well as financial institutions, government 
agencies and hospitals. The companies which were finalists of the Franz Edelman 
INFORMS (Institute for Operations Research and the Management Science) prize 
provide excellent examples of real applications of Operations Research 
(http://www.informs.org). 

Among the finalists in 2012 were Hewlett-Packard (HP), Intel and TNT Express. The 
latter won the award for its "Global Optimization", which uses advanced methods to 
optimize the transport network of the company. This program solves problems in 
warehouse location, optimal routes for trucks, fleet management and personnel 
scheduling.  

In 2011 Midwest Independent Transmission System Operator (Midwest ISO), a non-
profit organization that manages the electricity market in 13 U.S. states (North Central 
region) and one in Canada (Manitoba), won the award. It has operational control of more 
than 1,500 energy production plants and 55,000 miles of power lines. It notifies the plants, 
every 5 minutes, of the amount of energy required to meet the current demand. It uses a 
linear programming model to calculate production levels and establish the market price 
of electricity. The model size is up to 3 million continuous variables and 4 million 

System 4 
Other  
Products 

System 3 
Purchases 

System 2 
Production 

System 1 
Sales and customer services 
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constraints. The solution to the model provides plant production levels and energy prices 
(shadow prices or opportunity costs). It also uses an integer programming model to 
determine when a plant should be producing or not. The individual companies retain 
physical control of the plants and transmission lines. Midwest ISO manages the real-time 
power to bid and buy on demand, manages the market and maximizes the benefit of the 
company which sells the cheapest electricity. In short, using techniques discussed in this 
book, in this example the price at which electricity is bought and sold is determined and, 
what is more important, the electricity is available when and where it is needed and 
provided safely. 

In 2009 HP and the Marriot hotel chain were notable entries with two Operations 
Research tools to manage the product portfolio and with a price optimizer respectively. 
Also in 2009 Zara was among the finalists for applying Operations Research to improve 
its distribution process. Cocacola Enterprises, the world's largest bottler and distributor 
of Coke products (Coke, Fanta, Sprite, Minute Maid, etc) was also recognized in 2007 
for its application to schedule the daily routes of 10,000 trucks. 

We will discuss the application of Zara in a little more detail. Zara´s supply chain 
consists of two main warehouses located in Spain, which regularly receive shipments of 
finished garments from suppliers and replenish all Zara stores twice a week. The key is 
to determine the exact number of each size (up to 8 different sizes) and each item (up to 
3,000 at a time) to be included in each shipment to each store (there are over 1,500). Until 
2005 Zara used a procedure that required a large number of employees to determine 
shipments to each store. The company developed a decision making process based on 
Operations Research methods, including methods of forecasting and a very large mixed 
integer programming model. The implementation of this new process presented many 
technical difficulties. One of them was to include the uncertainty of estimates and 
inventory policies of the stores, and the integration of a complex mathematical model 
with many large databases. They also had to have the software and hardware 
infrastructure necessary to solve optimization of thousands of problems in a couple of 
hours each day. Additionally, it presented challenges related to human resources, because 
the Zara corporate culture highly values intuition and personal judgment in decision-
making. The development of this new process, supported by Operations Research 
techniques, was completed in all stores and articles and it has been used since 2007. 

In general, linear programming and integer programming have been successfully 
used in solving problems related to the allocation of the means of production, material 
mixing, distribution, transportation, investment selection and planning of agriculture, 
among others. A very important application of linear programming in the field of 
economics is Data Envelopment Analysis (DEA), developed by Charnes, Cooper and 
Rhodes (1978). DEA is a linear programming based technique that allows us to 
empirically measure the productive efficiency of decision units such as groups of 
companies in the same sector, financial institutions, hospitals, educational institutions, 
etc. and identify the companies that are on the efficient frontier of production. The 
efficiency is measured by the weighted sum of the outputs on the inputs. The weighting 
structure is calculated using linear programming. Furthermore, the concepts of linear 
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programming guide and facilitate the analysis and interpretation of the results of the DEA 
models. At present this is still a very active field of work, both in the application and in 
the research being conducted. 

Nonlinear programming is also used in certain problems of resource allocation, 
selection of efficient portfolios, new product design, production problems, mixtures in 
chemical processes, etc. Multiobjective programming and goal programming also 
have many applications such as natural resource management (Weintraub et al., 2007), 
scheduling of advertising media, land use management, location of utilities and planning 
of resources in hospitals to name just a few. Other Operations Research techniques such 
as inventory theory, game theory and simulation have been used in a variety of contexts. 

Operations Research shares with Artificial Intelligence the objective of providing 
methods and procedures for solving problems and making decisions. Artificial 
Intelligence is inferential and has expert knowledge and heuristic methods. Operations 
Research is mainly based on mathematical algorithms. A careful integration of these two 
approaches has a bright future ahead for the performance and acceptance of the systems. 
Decision Support Systems for decision making integrate Operations Research and 
Artificial Intelligence techniques in information systems that are very useful in the 
decision making process. This integration can make Operations Research techniques 
more accessible to decision makers and the models can also use Artificial Intelligence 
techniques. We should also highlight heuristic search techniques such as genetic 
algorithms, tabu search and simulated annealing. 

Operations Research models are common in finance, often grouped under the name 
of financial engineering. Similarly marketing engineering usually means Operations 
Research applied to marketing. In this field it is applied to strategic decisions (planning, 
portfolio, etc.) and at the tactical level (product design, advertising, etc.). They also play 
an important role in the analysis of electronic markets. Other opportunities will come 
from electronic trade and investment, from online banking to online insurance. 

With regard to supply chain management, the digital economy provides opportunities 
to use Operations Research in resource planning in companies. Given the information that 
is available online, advanced planning and production scheduling, will improve 
coordination and cooperation between suppliers and customers. The growth of mobile 
computing and communication will increase the aid that applications give to decision-
making in transport trucks. Thus there are companies that optimize loading and truck 
routes using web applications to obtain data and distribute solutions. The Internet also 
facilitates the expansion of supply management towards integrating product design, sales 
and customers. 

Finally, we must emphasize the strengths of Operations Research in the digital 
economy era: it exploits the vast amount of data available, which is of ever increasing 
complexity due to its analytical nature and uncertainty, modeling increases our 
understanding of business processes and virtual experiments can be made without 
risk to business and thus provides decision making technology for the automation of 
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recurring decisions in real time, such as for web applications. In short, the Operations 
Research of the future is Operations Research in real time. Customers often ask when 
their order will be delivered. Providers base their response on their inventory and the 
scheduled production in progress. However, they should now be able to respond after 
performing a scheduling algorithm including the potential order. To achieve the required 
performance in real time sometimes we need to resort to heuristic algorithms such as 
those discussed in the last chapter of the book. 

1.4. METHODOLOGY OF OPERATIONS RESEARCH 

Daellenbach and McNickle (2012) clearly establish three major phases in the 
methodology of Operational Research which are: problem formulation, modelling and 
implementation, which in turn break down into the sub-phases indicated in Figure 1.2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 1.2. Methodology of Operation Research. Source: Daellenbach and McNickle (2012) 
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inputs and outputs of the relevant system. For a problem to exist there must be an 
individual or group of individuals, called decision-makers, who are not satisfied with the 
current situation or who have unsatisfied necessities, such as reaching some goals or 
objectives. They also know when the goals or objectives have been satisfactorily reached 
and they have control over the aspects of the situation that affect the extent to which the 
goals or objectives are achieved. The four elements of a problem are: 

 The decision-maker/s. 
 The decision-maker´s objectives. 
 The measurement of efficiency in order to be able to assess the extent to which 

objectives are achieved. 
 The action alternatives or decision variables to reach the objectives. 

The second step of the formulation of the problem is its identification and consists of 
defining these four elements. The third step consists of defining the relevant system for 
the problem that we have identified in the previous step, including its environment. The 
decision-maker has an esential role in the problem formulation phase. 

In practice, the determination of these four components might not be so easy to obtain 
by simply asking the decision-maker. Sometimes the decision-maker only has a vague 
intuition that things could go better. We should explore and clarify the situation through 
several people involved in the situation. Sometimes, it may happen that the person who 
makes the decisions does not have access to the information needed to make an effective 
decision and the one that has the information does not have enough authority to make 
decisions. In these cases, the first thing to do is to change the structure of the organization, 
re-assigning the roles in the decision making. In most real applications, problem 
formulation is not achieved in these three steps, rather the initial formulation is detailed 
with successive reformulations, as the problem is better understood. In fact, it continues 
until the project concludes. However, it is in this phase where the success or failure of 
many projects occur. 

Once we know the problem and the relevant system well enough, we can decide 
whether Operations Research may provide a solution to the problem. Therefore we should 
ask ourselves the following questions: 

Can the problem be expressed in quantitative terms? 

Are the required data available or can they be obtained at a reasonable cost? 

Does the cost of the analysis justify the possible benefits that will be obtained from  
implementation of the results? To what extent can the decision-maker expectations 

fulfilled? 

If we answer these questions affirmatively, then the formulation phase concludes with 
a proposal that will be the document which the decision-maker will use to decide to 
continue with the project or not. Therefore, the proposal is a key element. We should not 
promise more than we know that we can obtain with the available resources. Since 
Operations Research has much in common with the scientific research, it should be 
guided by the ethics of the scientific method. 
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The following anecdote from Ackoff illustrates both the difficulty of formulating the 
problem in real cases, and the fact that we can not always solve an unsatisfactory situation 
by making models. It is as important to know what models are useful and when we can 
improve decision making, as it is to know how to recognize when they are not the right 
tool. The administration of a large office building received complaints for years about 
excessive staff time spent waiting for the elevators in the main lobby. Several teams of 
Operations Research analyzed this problem of excessive waiting time. Different solutions 
were proposed: to use some elevators for lower floors and others for higher floors only. 
However, it was concluded that a significant reduction would be possible only by 
installing new elevators with a high associated cost. A member of the last team to study 
the problem asked why staff complained and after appropiate inquiries it turned out to be 
because of boredom. The Operations Research team then proposed installing mirrors. 
Some workers used them to make a final check of themselves or to check out other staff 
without being too obvious. When this solution was implemented the complaints 
disappeared (Ackoff, 1987). Nowadays, screens with information of interest to the staff 
can achieve the same effect as the mirrors did then. 

Operations Research, in many cases, does not intend to find the optimal solution, but 
to find some degree of improvement over the previous situation. One of the founding 
fathers of the discipline colloquially explained it as follows: "Operations Research is the 
art of providing bad solutions to problems that otherwise would have worse solutions." 

1.4.2. MODELLING 

This phase distinguishes Operations Research from other methods of solving 
problems. According to Daellenbach and McNickle (2012), Operations Research is often 
seen as a number of techniques and mathematical tools, which do not favour the discipline 
at all to the detriment of its potential. The modelling phase begins by expressing the 
system related to the problem in quantitative terms. A mathematical model expresses in 
quantitative terms the relationships between especially important components of the 
system that have been defined in the formulation phase. These relationships can 
sometimes be represented in a spreadsheet and for some others it is necessary to formulate 
the relationships in terms of mathematical expressions, such as equations, inequalities or 
functions. The term model is used in a broad sense, since it can take the form of a chart 
as well as of mathematical expressions. 

We call the action alternatives or controllable aspects of the problem decision 
variables. The term action alternatives is used when the number is discrete and usually 
small. The measurement of the behaviour or effectiveness is the aspect that measures the 
extent to which the objectives of the company are reached. If this measure of effectiveness 
can be expressed as a function of the variables, we call it the objective function. Our goal 
is to find the values of the decision variables that maximize or minimize the objective 
function. The parameters or coefficients represent the uncontrollable aspects of the 
problem. And the constraints are the mathematical expressions that limit the range of 
values of the decision variables. From the early 50’s, a number of mathematical models 
have been developed with their own resolution procedure, such as linear programming 
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and its numerous extensions, network models such as the critical path, etc.  They are what 
we call general purpose models. Any problem that satisfies the hypotheses of a general 
model can be approached and solved in this way. For those problems that do not adapt to 
any specific technique of Operations Research, a model should be developed for the 
specific purposes, with a unique structure for that particular problem. Likewise, a solution 
procedure has to be created for that specific case. Lastly, when all of the inputs and 
relationships are known, the problem is deterministic, while if some inputs or results are 
subjected to uncertainty, like the probabilistic influences, the model is known as 
probabilistic or stochastic. 

A mathematical model, to be useful, should enable better decisions when you use it 
than when you don't and should also be: 

 Simple: Simple models are easier for the decision-maker to understand. It will be 
easier if the decision-maker follows the logic of a spreadsheet than a set of 
equations. However, when designing complex models it is unavoidable that 
approximations appropriate to the real situation be made.  

 Complete: The model should include all of the significant aspects of the problem 
that affect the measurement of its effectiveness. It may be necessary to design two 
models, one with certain aspects to compare and to decide their relevance and 
another one without them. 

 Easy: It should be possible to obtain responses from the model, such as the 
optimum solution, with a reasonable computational effort. Moreover, it should be 
easy to prepare, update and change the parameters and obtain new answers quickly.  

 Adaptive: Usually, reasonable changes in the structure of the problem do not 
invalidate the model. If the changes invalidate the model, it may be possible to adapt 
the model with slight modifications. An adaptive model is known as a robust 
model. 

In practice, we may find these properties useful in a model, however, users may only 
appreciate some of them. Thus, the decision-maker and the user of the model might be 
more interested in the desirable properties of the modelling process than in those of the 
model itself. The credibility and trust of the user are related more to the process and the 
interaction with the modeller than with the model itself. In this sense, it is important to 
keep in mind the following aspects: 

The model should be appropriate for the situation under study: The model 
produces outstanding results with the smallest possible cost and in the time required by 
the decision-maker. A “good” Operations Research model does not necessarily have to 
show the details or to resemble the physical system that it attempts to optimize. In 
addition, a good model should allow us to measure the progress reached toward the 
decision-maker’s objectives. 

The model has to produce information that is relevant and appropriate to the 
decision-making process. If the model complies with these last two properties and we 
can demonstrate them to both the decision-maker and the user, then it is more likely that 
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they will find the model useful. Lastly, some of the properties of good models are in 
conflict. A simple model cannot take into consideration all of the relevant aspects. A 
robust model cannot be simple. A model that includes all of the significant aspects may 
not be easy to manipulate. The person (or team) that builds the model should balance 
these aspects and adopt a commitment, which should take into consideration the funding 
and the time available for the analysis. It should also take into consideration the possible 
benefits. Thus, the use of simple and quick strategies that provide 50% of the benefits can 
be economically more advantageous than using a sophisticated and expensive model that 
achieves 90% of the potential benefits. The cost of development of the mathematical 
model, data collection, calculation of the best solution, model implementation and 
maintenance, increases more than proportionally with the sophistication of the model, 
while the benefits increase less than proportionally. 

Although the process of mathematical modelling can be considered as a scientific 
process, there are certain aspects that are closer to an art than to a science. It is 
considered an art because it is necessary to develop simple models that are good 
approaches to real life. There is little advice that can be given in this respect, except that 
the ability and necessary skills can be acquired with practice. Experts recommend starting 
with simple models that become richer evolving towards elaborated models by the 
incorporation of additional aspects of the problem. Another tip is to work with numeric 
examples, as well as graphics and charts. 

The construction of models in the practice of business administration and 
management is valuable at least for the following reasons (Eppen et al, 1997): 

1. The models require that the objectives be explicity defined. 

2. The models require the identification and recording of the types of decisions that 
influence these objectives. 

3. The models require the identification and recording of the interactions between all 
these decisions and of their respective advantages and disadvantages. 

4. The models require thinking about the variables to include and to define them in 
quantitative terms. 

5. The models require us to consider what data are relevant for the quantification of 
these variables and to determine the interactions between them. 

6. The models require the recognition of the relevant restrictions on the values that 
variables can take. 

7. The models can communicate ideas and expertise, facilitating teamwork. 

After the construction of the model, we manipulate the quantitative model to explore 
the system’s behaviour in response to the changes in the inputs, that is, we explore the 
solution space. The objective is to find the preferred solution in terms of the decision-
maker’s objectives. If the latter is interested in a main objective the optimal solution has 
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to be found. Thus, if the measurement of the efficiency is the benefit, the optimal solution 
is the one which maximizes the benefit.With the validation and evaluation of the solution, 
the credibility of the model is then established, in the sense of being a valid representation 
of the reality. We should ask ourselves what improvement, in terms of benefit or cost 
savings, and what range of potential benefits can be expected. The answers to these 
questions will determine whether we should abandon the project, readdress it or continue 
in the same line. 

In summary, we can conclude that the solution of the model can be found by 
enumeration if the number of alternatives is relatively small (dozens), with search 
methods like those of interval elimination, the algorithm-based methods, classic calculus 
methods, heuristic solution methods and simulation. The most powerful solution methods 
are those based on algorithms. An algorithm is a group of logical and mathematical 
operations that repeat in a certain sequence. Each repetition of these rules is called an 
iteration. An algorithm begins with a solution that improves at each iteration whose 
solution becomes the initial solution of the following iteration. This process repeats until 
the stop rule is met. This may indicate that the optimal solution has been reached or when 
the number of iterations or established computing time has been reached. 

For an algorithm to be a practical method of problem solving it should have several 
properties:  

 Each successive solution must improve the previous one. 
 The successive solutions must converge, being closer and closer to the optimal 

solution. 
 The convergence on the optimal solution must happen within a reasonable number 

of iterations. 
 The computational effort of each iteration has to be sufficiently small in order to be 

economically acceptable. 

The upper bound of iterations depends on the potential benefits of the problem. What 
can be reasonable to find the optimal strategy for expansion in a large company, may be 
excessive to find the optimal route for delivery in a city. A computer is needed in order 
to make these calculations in real problems. Many general Operations Research 
techniques such as linear programming or integer programming use algorithms to find the 
optimal solution.  

When the models are highly complex or impossible to handle with the computer 
equipment available, heuristic methods may be the only possible alternative, as discussed 
in the last chapter of the book (genetic algorithms and other metaheuristics). Heuristic 
methods use ingenuity, creativity, intuition, knowledge or human experience to find 
optimal solutions or to improve an existing one. Sometimes, the explanation of why some 
rules lead to good and even optimal solutions can be found. In other occasions, they are 
used because they have proved that they work well. In general, heuristic methods do not 
guarantee the optimal solution, although they may find it in some cases. According to 
Herbert Simon’s terminology, we could say that heuristic methods are usually more 
associated with the word “satisfy” than with optimize. Lastly, the simulation model is 
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used in complex dynamic systems, especially in those where it is necessary to take into 
consideration stochastic aspects. In this case, as in the heuristic methods, the analyst 
should expect to obtain good policies, rather than the optimal one. 

The last two steps of the modelling phase consist of the validation of the model, the 
evaluation of the solution and carrying out the sensitivity analysis. To be more exact, the 
objective of model validation is to establish whether the model is mathematically correct, 
logically robust and describes the reality well enough. Model validation has two facets, 
the internal validation known as verification and the external validation that is called 
validation. Verification involves analyzing whether the model is mathematically correct 
and logically robust. The best method to verify a model is to analyze the results obtained 
by testing the model using numerical data with a wide range of values. This involves 
verifying whether the expressions are dimensionally homogeneous. We should verify the 
correction of the numerical constants. We should also verify the model during its 
development, in order to find out the possible overlapping mentioned above between the 
different phases of the methodology. In complex models with many interrelated 
expressions the logical consistency should be verified. 

The external validation is much more complex than the verification. Whether the 
model is or not an adequate approximation of the actual situation is a matter of judgement. 
This will depend on the purpose of the model and the use of the solution. One approach 
will be enough for an exploratory, while a model used to make decisions daily will have 
to reflect the reality better. Therefore, validation is a phase that overlaps with the 
definition of the relevant system and with the construction of the model. We should keep 
in mind that the validity of the model cannot be proven, but only seen as non valid. This 
has to do with the credibility of the model. If the model is credible, the user will trust it. 
Therefore, the decision-maker and the user play an important role in the external 
validation. Model verification and validation are often seen as phases that are carried out 
when the modelling phase has been completed. This is an erroneous position. If it is done 
at this time, errors or questionable hypothesis will waste time and effort. The evaluation 
of all aspects of the model is a continuous process. 

With regard to the evaluation of the solution, the main objective is to determine the 
prospective benefits, such as benefits or net savings obtained by implementing the 
solution. Model evaluation is usually carried out by means of computer simulations, by 
comparing the current situation and the proposed one with the same data set. If the system 
is not yet in operation, it can be evaluated by estimating the potential benefits from 
artificially generated data. Among the rules for the evaluation of the solution are: 

 The evaluation of the proposed solution should be based on observations of the real 
(simulated) behaviour within a sufficient period of time. 

 Data should be independent of the data used in order to obtain the best policy.  

 The trials should not only provide the expected behaviour, but also some measurement 
of their variability. 
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 Lastly, we would like to emphasize the similarity between the Operations Research 
projects and the research and development projects of new products. It is necessary to 
invest a certain amount of funds before it is possible to know the potential success of 
the project. 

The last step of modelling consists of carrying out what is called "What-if" analysis. 
How do the individual or simultaneous changes of the non controllable inputs of the 
system affect the selected solution or the optimal solution? How much does the use of the 
model with incorrect parameters cost in terms of reduction of benefits? The sensitivity 
analysis allows us to answer these questions and it is, without doubt, one of the most 
important steps in the Operations Research method. The knowledge of the problem from 
sensitivity analysis may be more valuable than the solution itself. In short, sensitivity 
analysis consists of the systematic evaluation of the optimal solution response to the 
modifications of the input data. This analysis allows us: 

 To determine the necessary accuracy of the input data for the model. 

 To establish control intervals for modifications in the parameters and input data for 
which the optimal solution remains almost optimal. 

 To evaluate the dual price of scarce resources. 

It is known that some techniques, especially linear programming, provide a certain 
quantity of sensitivity analysis, either as a by-product of the algorithmic calculations or 
with little additional effort. In other cases, the sensitivity analysis requires that the 
problem be solved for several combinations of the input data. 

When the modelling phase ends we prepare a detailed report of the analysis carried 
out, including achievements and recommendations for its implementation. This document 
is as important as the proposal, since the implementation will be decided on this basis. 

1.4.3. IMPLEMENTATION 

In the implementation phase, we should first prepare a detailed plan of the different 
tasks, who they should be assigned to and how they should be coordinated. Next, the 
procedures for the establishment and maintenance of controls for the recommended 
solution are proposed. For example, to specify the range of values of the model 
parameters for which the current solution remains valid and the exact updating procedure 
when they exceed these limits.  

In the implementation of the solution the required changes are made in order to move 
from the current situation to that of the proposal. Part of this step comprises the 
preparation of complete documentation for the model, the software developed for its use 
and the corresponding user manuals. Finally, after the solution has been checked during 
a reasonable period of time we should revise it again. In this phase the extent to which 
the solution satisfies the expectations in terms of benefits achieved and costs incurred 
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must be verified, as well as a check on whether it is being used as it should be used and 
whether there are recommendations for improving the model and the software which have 
arisen out of the use of the system and the experience acquired. This step may lead to a 
final report. 

The implementation process is full of difficulties that are due to human nature. 
This is especially the case in projects that attempt to improve existing operations. 
Implementation problems may come from three sources: 

Firstly, the problems related to the implementation of physical tasks will be the 
complexity of the solution, the sensitivity of the benefits or the costs to deviations from 
the rules set forth and the extent to which the proposed solution deviates from current 
solutions. Secondly, problems related to users and other individuals affected by the 
solution, such as their personalities, their motivation and their pride in their work. Thirdly, 
problems related to the project environment, such as support for the project and its 
solution by higher authorities (where management support is not visible and explicit, the 
users will not collaborate and support the project as much as when management is clearly 
behind the project) and the organizational implications of the solution (if the user's 
department is more dependent on another or if the users perceive that the solution 
threatens the security of their positions they will provide less support). 

We generally concentrate more on the first factor, which is a matter of technology, 
devoid of human aspects. The second and third factors are of a qualitative nature and they 
are usually neglected and overlooked. However, they can be serious restrictions to the 
model implementation. From this point of view, we can see implementation as a 
problem of relaxing human restrictions versus the adjustments of the technical 
solution. A way to relax these restrictions is to further involve the user from the beginning 
of the project and train them so that they understand and feel themselves to be a part of 
the solution. The success of the implementation may be guaranteed if the decision-maker 
and the user feel that they are the owners of the results of the analysis. They can develop 
this feeling of ownership if they can contribute to the project in different ways, with their 
experience and deep knowledge of the operations. Therefore, the analyst should keep 
them informed and ask for their opinion and advice regarding many ideas. If they feel 
that they have contributed significantly to the project, they will want to see the solution 
in operation and they will have an active role in the implementation process. 

We have already said that the planning of model implementation should begin with 
the start of the project, when the first contact with the sponsor is established. A general 
guide to planning the implementation is the following: 

 To identify all those stakeholders involved in the problem, in particular, decision-
makers and users. The former because they have to approve the model implementation 
and the latter because their cooperation is necessary for the continued use of the 
solution. 
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 To establish effective lines of communication with the decision-makers and users. 

  To explore and to manage the previous expectations of the project. 

 To keep owners and users regularly informed. 

 To check the availability and sources of all the necessary data. 

 To order the required equipment and software, if necessary. 

 To develop all the necessary software for the implementation and use of the new 
solution. 

 To plan and perform the real process of implementation, such as the preparation of all 
data in the required form, user manuals, training sessions, etc. 

 To hold regular monitoring sessions with users. 

Project management techniques may help us to carry out the planning of the 
implementation appropriately. With regard to the control and maintenance phase of the 
solution, the following should be done: 

    For each parameter and constraint we should indicate the quantitative changes for 
which the solution remains optimal or almost optimal.  

 Point out the structural relationships between inputs, variables and results that are 
assumed by the model. 

 Specify how to measure the inputs and with what frequency to see if the changes are 
significant and, if so, what measures should be taken. 

 Assign the responsibilities for the control of each item and identify the person to be 
notified about the detected changes. 

 Specify how to adjust the solution in  response to quantitative changes in the inputs 
and who is responsible for these changes, who else should be informed and what 
actions should be taken in case of possible structural changes. 

The work is not finished with the model implementation, as it is essential to monitor 
the behavior of the model for some time. If there is a misunderstanding or incorrect 
application, measures must be taken. For example, correcting the manuals, scheduling 
training sessions, etc. One of the last things to be done is to audit the solution. This 
involves evaluating the extent to which the expected benefits of the project have been 
obtained. For the comparison between the benefits before and after the project to be valid, 
as we have already stated previously, we should use the same data. If important 
discrepancies are found between the real benefits and those expected in the project we 
should analyze and explain the causes. This is not only important for the sponsor of the 
project, but also for the analyst, who can obtain a quantitative and qualitative feedback 
from his own performance. Lastly, as Daellenbach and McNickle (2012) point out, the 
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implementation of all of the recommendations of an Operations Research project is not 
usual. Therefore, the analyst's goal should be to achieve a sufficiently high level of model 
implementation so as to be able to obtain most of its potential benefits. 

As seen in the previous section, Operations Research attempts to improve the 
effectiveness of the system at a global level. This is only possible if the solution is 
implemented as completely as possible. Assuring the implementation of the solution is 
one of the first things to consider during the formulation and modelling phases. All 
measures that increase the possibilities of a complete implementation should be planned 
from and start with the beginning of the project and continue throughout all phases. 
Although we have already mentioned it, we would like to emphasize that the natural order 
in which the phases of an Operations Research project have been described is the order 
in which they usually start, but that each step overlaps with the previous and 
subsequent steps. As for the selection of the most appropriate model, the cost of the 
model development as well as model implementation should be considered. For example, 
if the required personnel qualifications are higher than those currently available, it might 
be preferable to choose a simpler model. We would certainly obtain less benefit, but 
greater possibilities of implementation. 

The methodology of Operations Research is also iterative, which implies that the 
analyst may have to revise previous steps and redo or modify analysis already carried out. 
We sometimes discover during the process of resolution of the model that it is very 
expensive in terms of computing. We should then return to the model construction phase 
and build another model with fewer requirements. It is also possible that during the model 
implementation phase we notice serious errors that mean we need to start again with a 
new model formulation, provided that the decision-maker agrees. According to 
Daellenbach and McNickle (2012), it is important to have complete documentation for 
the project, thus it is advisable that the analyst keeps a project log in which the hypotheses 
and simplifications which have been taken into consideration are recorded for further 
analysis and validation. It is easy to overlook or forget these decisions unless they are 
completely documented. Documentation is also required to establish effective 
maintenance procedures for the solution. This is related to professional ethics. 

1.4.4. DATA 

A very important activity of the Operations Research methodology is the collection 
of data, which does not appear in any of the eleven phases described because it does not 
take place at any specific point of the analysis as an independent step. We begin to collect 
data and to identify their sources from the moment we make contact with the case to be 
studied. As we move on, we may need more data to describe the relevant system. For 
some projects most of the data are available when the mathematical model is built. The 
specific form of the quantitative relationships can only be determined if we know the 
main characteristics of the data, such as whether the relationships are linear or nonlinear. 
In some cases data have to be integrated to mathematical relationships. In other cases, the 
main part of the data can wait until the model is ready for implementation.  
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In summary, the identification of the data sources, data collection and evaluation are 
activities that may happen parallel to any of the eleven steps of the methodology 
described, even in the last step of the revision of the solution. In some cases data may not 
be available in the required form or may even not exist. In these cases, actions should be 
aimed at the collection of data in the required form. 

Lastly, we would also like to emphasize the importance of the analyst’s skills 
regarding personal relationships and their ability to obtain information from interviews. 
Open interviews are recommended to perform, showing curiosity and interest in what 
others know, rather than giving the image of an expert who knows everything. 

 1.5. SUMMARY  

This chapter approaches the basic nature and methodology of Operations Research in 
order to understand and assess the role of Operations Research in the education and 
training of Graduates in Business Administration and Management. Operations Research 
is a technology whose purpose is the production of information about systems to improve 
the efficiency of companies and other organizations. The construction and the solving 
techniques of mathematical models are only a part of a real Operations Research 
project. The Problem formulation and solution implementation phases are also key, so 
we should not lose sight of the role played by the model and the solution within the 
methodology of Operational Research. 

The aim of the remaining chapters is to facilitate learning of the formulation and 
solving linear programming models, integer, nonlinear and multiple criteria using 
Microsoft Excel Solver and LINGO and other professional software (Expert Choice and 
D-Sight). We will focus on the key concepts and the necessary techniques for the correct 
interpretation of the results of the models, in order to improve decision-making and 
ultimately the effectiveness of companies. We recommend that the student read this 
introductory chapter again at the end of the course, when they will better understand some 
of the issues discussed. 
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Linear Programming is the most important technique used in Operations Research 
and is considered to be as one of the most significant scientific advances of the 20th 
century. It is a standard tool for solving optimization problems that has had an 
extraordinary impact since 1950 and currently saves millions of dollars for many 
companies and businesses. Some of the most common applications include problems such 
as allocating production resources, material blending, distribution, transportation, food 
planning and radiation therapy design. 

In linear programming real problems are represented by mathematical models subject 
to a number of conditions, such as the linear nature of the functions. Similar to what 
happens with other Operations Research techniques, model construction is an essential 
stage and it is mainly the fruit of experience and the correct application of some basic 
principles. We begin this chapter by formulating a problem and then a linear 
programming model in order to solve it step by step. In this way all the assumptions of 
linear programming models will be explained. We will also see that the meaning of 
programming in this context is rather different from the term "programming", as used in 
computer science to refer to software implementation. 

Further, we will solve graphically one problem to help the intuitive understanding of 
the main basic concepts, such as feasible solution, feasible region and optimal solution. 
The concept of slack variables and the effects of changing the parameters of the model 
through sensitivity analysis are also presented. 

Next, we will solve the problem as we would in practice, using spreadsheets or 
optimization software and we will interpret the results. The chapter includes other 
problems that will facilitate learning the modelling and subsequent resolution and 
interpretation of the solution to improve decision-making in business. Finally, selected 
references on this topic are given as a guide to provide students with extra reading 
material. The chapter includes case studies; some of which will be used in laboratory 
sessions and solved by the students with the help of the teacher, and other case studies 
will serve as self-assessment exercises. 

2.1. THE PROBLEM: PRODUCTION IN A POWER PLANT AND 
POLLUTION CONTROL 

The management of a coal-fueled thermal power plant is analyzing the operational 
configuration of the plant to adapt to new environmental pollution control regulations. 
The maximum emission rates of the thermal power plant are 

 Maximum emission of sulphur oxide: 3000 parts per million (PPM) 

 Maximum emission of particles (smoke): 12 kilograms/hour (kg/h) 

The coal is transported to the plant by train and is unloaded into containers close to the 
plant. A conveyor belt takes it to the pulverizer, in which it is handled and fed directly to 
the combustion chamber at the correct speed. The heat generated in the combustion 
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chamber is used to produce steam, which, in turn, serves to drive the turbines. 

Two types of coal are used: type A, a hard, clean-burning coal with low sulphur 
content (rather expensive); and type B, a cheap, relatively mild coal with high sulphur 
content that causes smoke, as shown in Table 2.1. The thermal value in terms of the 
steam generated is greater for coal type A than for type B, which are 24000 and 20000 
lb per ton respectively. 

Table 2.1. Emission of polluting agents 

Coal Sulphur oxide in fuel gases Particles (kg emission/ton) 

A 1800 PPM 0.5 Kg/ton 

B 3800 PPM 1.0 Kg/ton 

 

As coal type A is hard, the pulverizer can only handle 16 tons of coal A per hour; 
however, it can handle up to 24 tons of coal B per hour. The loading system of the 
conveyor belt has a capacity of 20 tons per hour independent of the type of coal. 

One of the many questions the plant's management has given is the emission limits of the 
polluting agents and the types of coal available, what is the maximum possible amount of 
electricity that can be generate in the power plant? The answer will allow managers to 
determine the safety range in order to cover peak power demands. 

2.2. THE MODEL: VARIABLES, OBJECTIVE FUNCTION AND 
CONSTRAINTS 

2.2.1. VARIABLES: DIVISIBILITY AND NONNEGATIVITY HYPOTHESIS 

In the short term, the installations of the power plant are fixed. The only aspect of the 
problem that can be changed and used to modify the production of the power plant is the 
amount of each type of coal to burn. Therefore, the decision variables of the problem are 

  Amount of coal A used per hour, referred to as X1 (ton/h) 

  Amount of coal B used per hour, referred to as X2 (ton/h) 

Linear programming often refers to the controllable aspects of decision-making 
problems as activities. Therefore, X1 and X2 represent the burning activity levels of coal 
A and coal B, respectively. 

LINEAR PROGRAMMING HYPOTHESIS 1: DIVISIBILITY 

All variables can take any real value 
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Many activities of the real world vary in a continuous way, i.e., they are divisible 
infinitely. For example, the amount of coal burnt per hour can be adjusted within certain 
limits. However, there are real activities that can only take integer values, for example, 
the number of truck trips necessary to move a certain load from one place to another or 
the number of computers required by a company. 

When the real activity is not divisible in a finite way, but the normal level of the 
activity is a high number, then divisibility conditions can be used as a convenient 
approach. This means that the value of the solution is ten or higher. Fractional values are 
rounded up to the closest integer value. However, if the normal level of the activity is less 
than 10, integer programming will be necessary. 

 

LINEAR PROGRAMMING HYPOTHESIS 2: NONNEGATIVITY CONDITIONS 

All variables are nonnegative 

This hypothesis reflects the nature of most real activities, since negative activity levels 
hardly ever occur in economic or engineering contexts. However, this consideration does 
not involve a loss of generalization. Any number (positive, zero or negative) can be 
expressed as the algebraic difference between two nonnegative numbers. If an activity 
can occur in both positive and negative levels (for example, buying or selling bonds), two 
variables are introduced for this activity, X+ for nonnegative levels, and X- for nonpositive 
levels. Their difference X = X+- X- represents the real level of the activity. With this 
method, both X+ and X- are subject to be nonnegative. Optimization software allows users 
to define directly these variables as free variables with a variation range between negative 
and positive infinity. 

2.2.2. OBJECTIVE FUNCTION AND CONSTRAINTS: LINEARITY HYPOTHESIS 

The objective of the plant's management is to maximize power generation in the plant. 
Since electric power is generated from steam there is a direct relationship between steam 
and electric power generation, maximizing steam generation is equivalent to maximizing 
electric power generation. Therefore, the management objective can be restated as 
"finding the combination of fuels that maximizes steam generation ". 

How much steam is produced for any given amount of coal used? A simple and 
systematic way of determining this is shown in Table 2.2. 

Let us express the amount of steam generated in thousands of pounds. Therefore, coal 
A produces 24 steam units and coal B 20 steam units per ton of coal. Thus, the amount of 
steam generated per hour is 

(1)  24 X1 + 20 X2 = Z 
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Table 2.2. Building the objective function 

Coal Stream 
(lb/ton) 

Coal used 
(ton/hour) 

Stream generated 
(lb/hour) 

A 24000 X  24000 X1 

B 20000 X2 20000 X2 

Total amount of stream lb/h = 24000 X1 + 20000 X2 

 

The first term in (1) is called the objective function and Z is the value of the objective 
function. The variable coefficients are called objective function coefficients. The problem 
requires determining values of X1 and X2 that maximize Z value. Figure 2.1. shows that 
(1) is a family of parallel straight lines and that for each value of Z we obtain a straight 
line, whose points represent the possible combinations of X1 and X2 that generate the 
same amount of steam and thus, of energy. For this reason, they are known as 
isoproduction lines (isoprofit or isocost, in the case that the objective function 
corresponds to profit or cost respectively). It can also be noted that the objective function 
is linear. 

LINEAR PROGRAMMING HYPOTHESIS 3: LINEARITY 

All relationships between variables are linear. In linear programming this implies: 

1. Proportionality of the contributions. The individual contribution of each 
variable is strictly proportional to its value, and the proportionality factor is 
constant for the range of values that the variable may take. 

2. Additivity of the contributions. The total contribution of the variables is equal 
to the sum of the individual contribution, regardless of the value of the variables. 

A relationship such as Z = 5 X1 + 3 X1
2 + 2 X2 or Z = 24 X1 + 20 X2 for X1  5 and 

10 + 22 X1 + 20 X2 for X1 > 5 would violate the condition of proportionality; whereas Z 
= 24 X1 for X2 = 0, 20 X2 for X1 = 0 and 22 X1 + 18 X2 for X1 > 0 and X2 > 0 would 
violate the condition of additivity. 
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Figure 2.1. Objective function 

Hypothesis 3 implies constant scale profits and prevents scale economies. In practice, 
this condition probably does not strictly hold; in particular, for very low or very high 
activity values. However, if this condition is fulfilled in an approximate way within the 
normal range of solution values, a linear programming model would be a good approach. 
This consideration also excludes the problem of fixed costs when they are presented for 
positive values of the variable, but not for zero values. 

In addition to the nonnegativity conditions, the values of the variables should fulfill 
certain constraints that may be of a physical, economic or legal nature. 

Constraint of particle emissions 

The maximum amount of smoke emissions per hour in power plants is limited to 12 
kg. According to Table 2.1, one ton of coal A produces 0.5 kg smoke and one ton of coal 
B produces 1 kg smoke. If the plant burns X1 tons of coal A and X2 of B, the total amount 
of smoke emitted by both types of coal is equal to the sum of both, which cannot exceed 
12 kg/h. 
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The coefficients of the variables in the constraints are called technical coefficients and 
the second term of the inequality or independent term is known as right-hand side (RHS) 
constraint parameter. 

Constraint of loading installations 

The system of the conveyor belt that transports the coal from the containers to the 
pulverizer has a capacity of 20 ton/h. Therefore, the load constraint will be: 

Constraint of the pulverizer capacity 

The maximum capacity of the pulverizer is 16 ton/h for coal A or 24 ton/h for coal B. 
That is, it takes 1/16 h to handle one ton of coal A and 1/24 h to pulverize one ton of coal 
B. If the solution demands the combination of both types of coal, the time required to 
pulverize a mixture of X1 ton of A and X2 of B is (1/16)X1 + (1/24) X2. This constraint is 
expressed as a combination of X1 and X2 for 1 hour. Therefore, the constraint of the 
pulverizer is: 

1
24
1

16
1

21 XX  

or 

Note how the difficulty arising from the different maximum rates has been solved. 
The rates have been converted to required time per ton and the constraint is expressed 
terms of time rather than capacity. 

Constraint of sulphur oxide emissions 

Maximum sulphur oxide emissions should not exceed 3000 PPM at any time. Since 
both types of coal are burnt simultaneously, the combination of X1 ton of coal A, and X2 
tons of coal B per hour that feeds the combustion chamber is considered as an 
homogeneous mixture. 

X1/(X1 + X2) of the mixture is coal A with a sulphur oxide emission rate of 1800 PPM 
and X2/(X1 + X2) of the mixture is coal B, with a sulphur oxide emission rate of 3800 
PPM. The emission rate of the mixture will be the weighted mean value of the individual 

(2)    0.5 X1 + X2  12 

 (3)    X1 + X2  20     

(4)  1.5 X1 + X2  24 
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emission rates, using the fractions of each type of coal as weighting values. The weighted 
mean value should not exceed 3000 PPM: 

300038001800
21

2

21

1

XX
X

XX
X

 

By multiplying both sides of the inequality by (X1 + X2) and reordering the terms, we 
obtain the constraint: 

 

Figue 2.2. Feasible Region  

Figure 2.2 illustrates these four constraints. Thus, to draw the smoke constraint, we 
just have to put a variable to zero, for example X1 in the equation of line (2) and obtain 
the value of X2 = 12. In the same way, X2 = 0 in the smoke constraint line and by solving 
the equation we obtain X1 = 12/0.5 = 24. We represent the line for the smoke constraint 
connecting the points (0, 12) and (24, 0). 
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2.2.3. GENERAL FORMULATION OF A LINEAR PROGRAMMING MODEL: 
CERTAINTY HYPOTHESIS 

To sum up the mathematical model that we have formulated to represent the problem 
stated above is the following: 

  To determine the values of the variables: X1   0 and  X2   0   

  These optimize, maximize in this case (in other cases, minimize) the objective 
function: 

Max 24 X1+ 20 X2 

  and that they meet the constraints: 

0.5 X1 + X2  12 (smoke)  

X1 + X2  20 (load) 

1.5 X1 + X2  24 (pulverizer) 

1200 X1 - 800 X2 0 (sulphur) 

The general formulation of a linear programming model is the following: 

Determine the values of the decision variables Xj  0 for j = 1, 2, ..., n  which optimize 
(maximize or minimize) the objective function: 

 

Subject to 

 

Where n is the number of variables and m is the number of constraints.They can be 
equalities or inequalities of type  or . cj, aij and bi  are the parameters of the model. 

 
LINEAR PROGRAMMING HYPOTHESIS 4: CERTAINTY 

All parameters of the model cj, aij and bi are known constants. 
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2.3. FEASIBLE REGION AND GRAPHICAL SOLUTION 

For a solution to be possible, the combination of activity levels must simultaneously 
satisfy all the constraints, including the nonnegativity conditions. This solution is called 
the feasible solution for the problem. The set of all feasible solutions forms the feasible 
region or set of possible solutions. Observe in Figure 2.2 that the set of possible solutions 
does not depend on the objective function. This is an interesting property of most 
Operations Research models and has important consequences on the resolution method 
and the properties of the optimal solution. 

If the boundary of a certain constraint has no points in common with the feasible 
region, then this constraint is redundant and can be removed from further consideration, 
since it will never limit the values of the variables. Is there a redundant constraint in our 
problem? 

In practice when a problem presents hundreds of constraints and hundreds of 
variables, it is difficult to identify whether a constraint is redundant or not. Fortunately, 
the resolution algorithm known as the simplex method works efficiently, even if the 
formulation of the problem contains redundant constraints. 

Since the main purpose is to maximize the generation of steam in the power plant, we 
will have to determine the highest line containing at least one possible solution. This line 
is the line corresponding to Z = 408 and the activity levels of the variables in the optimal 
solution are X1 = 12 and X2 = 6, as shown in Figure 2.3. The combination of 12 tons of 
coal A and 6 tons of coal B per hour maximizes the production of steam in the power 
plant within the physical and legal constraints of the variables. 

From an intuitive point of view, it seems obvious that the optimal solution will always 
occur at the limits of the feasible region, either at a corner-point or on one side of the 
polygon. As explained in sensitivity analysis, the slope of the objective function 
determines the location of the optimal solution. 

If the problem demanded the minimization of the objective function, how would the 
graphical method change to find the optimal solution? For example, we want to determine 
the solution of minimum cost to obtain a steam production of at least 216 units per hour 
with a cost per ton of 24 euros for coal A and 15 for B. Formulate and solve this problem 
graphically. 

To sum up we can say that an optimal solution is a feasible solution with the best 
value of the objective function. The best value of the most suitable values of the 
objective function is the highest value in maximization problems or the lowest value in 
minimization problems. 

Not all linear programming problems present a happy ending. On the one hand, it may 
happen that the constraints are inconsistent in the sense that there is no feasible solution. 
On the other hand, the feasible region can be open in one direction so that the objective 
function may increase indefinitely without a finite solution (unbounded solution). These 
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cases are not frequent in practice. These solutions often appear as a result of errors or 
incorrect representations of the problem in the mathematical formulation. Therefore, 
when solving a linear programming model we may find four cases: 

1. Unique solution. 

2. Alternative solutions (infinite solutions). In a model with two variables it 
always happens that the objective function cuts the feasible set on one side of 
the polygon, for the best value. In practice we will see in following chapters 
that this is a rather common case in real problems. 

3. There is no solution, because none of the combinations of the variables 
fulfills all the constraints. 

4. Unbounded solution. 
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Figura 2.3. Optimal solution 
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2.4. SLACK VARIABLES 

For any feasible solution, the difference between the value of the constraint and the 
coefficient of the second member is called slackness (for inequalities ) or surplus (for 
inequalities ). It is often convenient to show this difference explicitly, introducing an 
additional variable to each constraint. These variables are called slack or surplus 
variables. In short, the term slack variable is used to express both variables. These 
variables are subject to the same conditions of divisibility and nonnegativity as the 
decision variables. Thus, each constraint becomes equality. Introducing the slack 
variables in our example: 

 0.5 X1 +     X2 + X3 = 12(smooke) 

     X1 +     X2  + X4 = 20(load) 

 1.5 X1 +     X2  + X5 = 24(pulverizer) 

1200 X1 - 800X2 - X6 = 0(sulphur) 

Why is the slack variable subtracted in the sulphur constraint, instead of added as in 
the other constraints?  

Slack variables can often be interpreted as non-used resources or non-used capacity 
for a given solution. For example, X3 is the amount of non-used smoke emission capacity, 
and X4 the amount of non-used load capacity. Which is the interpretation corresponding 
to X5? Due to the way in which the sulphur constraint was obtained there is no simple 
interpretation for X6. Check that X3 and X5 are zero in our example, whereas X4 = 2 and 
X6 = 9600. 

2.5. SENSITIVITY ANALYSIS 

2.5.1. SENSITIVITY ANALYSIS OF THE OBJECTIVE FUNCTION COEFFICIENTS 

We mentioned earlier that the slope of the objective function determines the place where 
the optimal solution is located. The slope of the objective function is given by its coefficients. 
What happens if one of these coefficients changes? Suppose that the thermal value of coal A 
is 36000 pounds of steam, instead of 24000, all other coefficients remaining constant. Then, 
the objective function will be 

MAX 36 X1 + 20 X2 

This new objective function is shown in Figure 2.4, together with the new optimal 
solution, which consists of using only one type of coal, specifically 16 ton/h of coal A 
that produces 576 thousand pounds of steam. Therefore, a change in the value of one 
coefficient of the objective function (with all other coefficients remaining constant) 
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causes changes in the objective function slope, and if this change is large enough, the 
optimal solution moves to another corner-point of the feasible set. In this particular case, 
it has shifted from point A to point B. 

Let us see this effect in more detail. What is the highest possible value of the original 
coefficient of X1 in the objective function C1, prior to the change in the optimal solution 
from point A to point B? It can be observed that as C1 increases, the objective function 
slope comes closer to the slope of the pulverizer constraint line until they finally coincide. 
For this value of C1, any point along the line going from A to B is optimal; that is, 
alternative optimal solutions are obtained, all of them with the same Z value. In many real 
problems alternative optimal solutions occur naturally. If C1 increases a little more, then 
the optimal solution will only be point B. 

 

X2

5 10 15 20 25 30

5

10

15

20

25

30

X10

SMOKE

LOAD

PULVERIZER

SU
LP

HUR

Optimal solution:
X1 = 16
X2 = 0
Z = 576

 
Figure 2.4. Alternative objective function 

To calculate the range of values between which C1can be modified, A being the optimal 
solution (Figure 2.4), we only have to match the slopes of the objective function and 
constraints that intersect point A. The objective function and the constraint of the pulverizer 
are parallel when their slopes are equal. This implies that the ratio between the coefficients 
of X1 on the line of the objective function and the constraint of the pulverizer is equal to the 
ratio of the coefficients of X2 in both equations. 

A 
C 

B 

Optimal solution: B 

X1 =   16 

X2 =     0 

  Z = 576 
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Objective Function:      C1 X1 + 20 X2 

Pulverizer:            1.5 X1 +      X2 = 24 

20
1
20

5.1
1C

 

This gives C1 = 30. For an increase in C1 higher than 30, the optimal solution will 
change from A to B. For C1 = 30 the objective function 30 X1 + 20 X2 takes its maximum 
value of 480 at every point of line AB. Similarly, if C1 decreases to 10 (all other 
coefficients remaining constant) the objective function will be parallel to the smoke 
constraint. If C1 were lower than 10, the optimal solution would change from point A to 
point C (see Figure 2.4). 

In conclusion, we can say that if the coefficient C1 is such, that the slope of the line 
that represents it is between the slope of the constraints of the pulverizer and smoke, the 
initial optimal solution (point A) is optimum. And we have deduced that if the rest are 
constant, the solution X1 = 12 and X2 = 6 will be the optimal solution for any value of the 
X1 coefficient of the objective function for the interval 10  C1  30. Can you determine 
the interval corresponding to C2 without changes in the initial optimal solution, i.e. point 
A in Figure 2.4? 

2.5.2. SENSITIVITY ANALYSIS OF THE RIGHT-HAND SIDE OF THE CONSTRAINTS 

Let us see what happens to the optimal solution when the right-hand side of a 
constraint changes. Suppose that the management is considering the installation of a 
system that reduces the amount of smoke emissions by 25%. This will allow the plant to 
fulfill the legal regulations while emitting up to 15 Kg/h of uncontrolled smoke from the 
combustion chamber. What would be the effect in terms of increasing steam generation? 

Let us first consider that the maximum allowed smoke emissions increase from 12 to 
13 kg/h, all the other coefficients remaining constant. This causes a move upwards in the 
smoke constraint. Figure 2.5 shows how the feasible region increases. In the new feasible 
region Z = 408 is not the optimal value of the objective function, as its best value lies at 
point D. Therefore, the optimal solution changes from A to D. This change occurs due to 
the fact that the smoke constraint is strictly fulfilled in the optimal solution of the original 
problem. Now, the new activity levels of the variables are X1 = 11 and X2 = 7.5. The 
decrease in X1 causes a reduction of 24 steam units, whereas the increase in X2 increases 
steam production by 30 units. The net increase is 6. Thus the new maximum value of the 
objective function will be Z = 408 + 6 = 414. 

The improvement of the optimal value of the objective function due to the unit 
increase in the RHS of a constraint is called opportunity cost or dual price of the 
constraint. In this case the opportunity cost of the smoke constraint is 6. 
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Figure 2.5. Sensitivity analysis of the right-hand side of smoke constraint 

What would happen if the maximum smoke emissions were 14, 15, 16 and 
17 kg/h? Figure 2.5 shows how the area of the feasible region increases with each change 
to a maximum of 16. Check that for each change the objective function increases by 6. 

For an increase higher than 16, the smoke constraint becomes redundant. Now the 
optimal solution will be restricted by the pulverizer, sulphur and load constraints. Thus, 
the opportunity cost of this constraint is zero for values higher than 16. 

The original question required the determination of the increase in the production of 
steam due to the change in the allowable smoke levels from 12 to 15 kg/h. This will be 3 
x 6 = 18 steam units/h. 

What is the opportunity cost of a constraint which is not strictly met in the optimal 
solution? It becomes clear that if one part of the resource is not used, i.e. the slack variable 
is positive, the additional amounts of that resource have no value. They would only 
increase the amount of slack. Therefore, the dual price of that constraint is zero. 
Determine the dual prices of the other constraints. Observe the relationship between the 
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opportunity cost of a constraint and the slack variable associated with it. When one 
resource is completely used its opportunity cost is generally positive (nonnegative to be 
more exact) and its slack variable is zero, whereas when the slack variable is positive the 
dual price is zero. 

Dual prices provide management with valuable information about the profits that can 
be obtained by smoothing the constraints. If the benefits exceed the cost generated by 
smoothing a given constraint, then the changes are attractive. 

2.6. THE EXTENDED PROBLEM: A NEW VARIABLE 

The power plant is offered a third type of fuel, coal type C, that has a sulphur oxide 
emission rate of 2000 PPM, a smoke emission rate of 0.8 kg/ton of burnt fuel, and requires 
1/20 h per ton of the pulverizer and loading capacity. Its thermal value is equivalent to 
21000 lb of steam per fuel ton. Is it profitable to use this fuel in the plant? 

Let us reformulate the problem with this third type of coal. Let X3 be the number of coal 
C tons per hour. Thus 

Max 24 X1+ 20 X2 + 21 X3 

Subject to 

0.5 X1 + X2 + 0.8 X3    12 (smoke) 
X1 + X2 + X3    20                     (load) 
1.5 X1 + X2 + 1.2 X3     24   (pulverizer) 
1200 X1 - 800 X2 + 1000 X3 0        (sulphur) 
X1  0, X2  0 and   X3  0 

 The dual prices of the original problem provide all the information needed to know 
if we are interested in this new coal. If we decide to use one ton of coal C, X3 = 1, we 
must have the required machine capacity (loading systems and pulverizer) and have the 
possibility to emit smoke and sulphur that would be generated with it. This is equivalent 
to reducing the right-hand side of the constraints of the original problem in the following 
way: 

0.5 X1 + X2  (12-0.8) or 11.2                    (smoke) 

X1 + X2  (20-1) or 19                                (load) 

1.5 X1 + X2  (24-1.2) or 22.8               (pulverizer) 

    1200 X1 - 800 X2   (0-1000) or –1000       (sulphur) 
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The loading system allows us to use a ton of the new type of coal, as we have spare 
capacity. We can also emit more sulphur, since the latter constraint also has slack. 
Therefore, the opportunity costs of these two constraints are zero. 

However, as we can not emit more smoke and we do not have more capacity in the 
pulverizer, we can only burn a ton of new coal C if we do not burn any coal A and/or B. 
In this way we have the pulverizer available and the possibility of emitting the smoke 
needed to burn a ton of coal C. 

Specifically, to burn one ton of coal C we need to reduce the use of the pulverizer by 
1.2 (decreases the RHS). As the opportunity cost is 14, the result will cause a decrease of 
1.2 x 14 = 16.8 in the value of the objective function. Similarly, to burn a ton of coal C, 
we have to stop emitting 0.8 kg of smoke from burning coal A and B. A reduction of 0.8 
kg of maximun emission of smoke decreases the value of the objective function by 0.8 x 
6 = 4.8. The total decrease of the objective function value is equal to their sum, 21.6 steam 
units. Futhermore, the additional output per hour obtained by burning one ton of coal C 
is only 21 units. Thus, the net loss in steam production is 0.6 units. Therefore, in these 
conditions it is not advantageous to use coal C and the optimal solution remains the same. 

2.7. LINEAR PROGRAMMING MODEL SOLVING WITH A 
SPREADSHEET 

The graphical solution is only possible if the number of variables is not higher than 2 
(3?). Problems with more variables will have to be solved mathematically; for example, 
by applying the simplex method (an efficient algorithm that will be explained in chapter 
3). As real problems have hundreds or thousands of variables and constraints, in practice 
the problem is solved using optimization software. Since spreadsheets are the most used 
tools in the business environment we will see its performance for solving linear, integer 
and nonlinear programming models. Annex 1 explains in detail the procedure for entering 
data for a linear programming model and solving it in Excel. Table 2.3 presents the data 
of the problem and the optimal solution. The value of the decision variables, the objective 
function and the first member of the constraints in the optimal solution are presented in 
italics. The remaining data are the model coefficients. 

Tables 2.4 and 2.5 are the reports generated by the Excel Solver tool after solving the 
model and pick the optimal solution and sensitivity analysis respectively. In Table 2.4 
you can see the values of the variables and the objective function at the optimal solution, 
and the value of the slack variables for the constraints. The column "Status" shows 
"Binding" to indicate that in this case the constraint is checked strictly, ie the slack 
variable is zero and "Not Binding" when the slack variable is positive. 
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Table 2.3. Model and Optimal Solution of the problem of energy production and pollution 
control 

A B C D E F G 
 
H I 

1 
 ENERGY PRODUCTION AND POLLUTION CONTROL   

 
  

2                  
3 

        Coal A Coal B   
 

  
4 

Steam production in thousands of  lb/ton 24 20   
 

  
5 
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capacity 
LHS  

 

RHS 
6 Emission of smoke 

kg/h   0.5 1 12 
 

12 
7 

Loading installation   1 1 18 
 

20 
8 

Pulverizer capacity   1.5 1 24 
 

24 
9 

Emission of sulphur   1200 -800 9600 
 

0 
10                  
11 

        

Coal A 
 ton/h 

Coal B 
 ton/h 

  

 Total 
Steam 
Production 
thousand 
lb/h 

12 
        12 6   

 
408 

 

Table 2.4. Optimal solution to the problem of energy production and pollution control 

Microsoft Excel 14.0 Answer Report 
Objective Cell (Max) 

Cell Name Original Value Final Value 

$I$12 TotalSteamProduction 0 408 

Variable Cells 

Cell Name Original Value Final Value Integer 

$E$12 Coal A (ton/h) 0 12 Contin 

$F$12 Coal B (ton/h) 0 6 Contin 

Constraints 

Cell Name Cell Value Formula Status Slack 

$G$6 Emission of smoke kg/h  12 $G$6<=$I$6 Binding 0 
$G$7 Loading installation  18 $G$7<=$I$7 Not Binding 2 
$G$8 Pulverizer capacity  24 $G$8<=$I$8 Binding 0 

$G$9 Emission of sulphur oxide 9600 $G$9>=$I$9 Not Binding 9600 
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Table 2.5. Sensitivity analysis for the problem of energy production and pollution control 
Microsoft Excel 14.0 Sensitivity Report 
 
Variable Cells 

    Final Reduced Objective Allowable Allowable 
Cell Name Value Cost Coefficient Increase Decrease 

$E$12 Coal A (ton/h) 12 0 24 6 14 
$F$12 Coal B (ton/h) 6 0 20 28 4 

Constraints 
    Final Shadow Constraint Allowable Allowable 

Cell Name Value Price R.H. Side Increase Decrease 
$G$6 Emission of smoke kg/h  12 6 12 4 4 
$G$7 Loading installation  18 0 20 1E+30 2 
$G$8 Pulverizer capacity  24 14 24 4 6 
$G$9 Emission of sulphur oxide 9600 0 0 9600 1E+30 

 

       Table 2.5 is the sensitivity analysis. Firstly it indicates the range over which each 
coefficient in the objective function can vary without changes to the optimal solution. For 
example, the coefficient of X1, which can increase by 6 and decrease by 14, ie, can be 
between 10 and 30. It also gives us the reduced cost of variables, which is an important 
concept and can be interpreted as the amount that should improve the objective function 
coefficient of the variable sufficiently for it to take a nonzero value in the optimal 
solution. In this case, as the variables have a positive value, its reduced cost is zero. When 
the variable has a positive value, because it has a lower bound greater than zero, the 
interpretation of the reduced cost is penalty, in terms of the objective function to introduce 
the variable in the solution. 

     Secondly the sensitivity analysis provides the range of variation of the right-hand side 
of the constraint that does not change the value of the opportunity cost. For example, the 
RHS of the restriction of smoke worth 12 kg/hour can be between 8 and 16, as it can 
increase by 4 and decrease by 4, without changes in the value of 6 for its opportunity cost. 
6 is the increase in steam production (objective function) for additional unit on the RHS, 
i.e. per each kg/hour more of smoke that can be generated. Please read Annex 1 for 
detailed information. 
 
      In summary, to solve a linear programming model with Excel, we introduce the 
problem data in data cells, which correspond to the technical coefficients (aij), the 
objective function coefficients (Cj) and the right-hand side of the constraints (bi or 
RHS). After variable cells are defined, where we have the values of decision variables, 
the linear functions are introduced that represent the constraints and the objective 
function. The SUMPRODUCT function of the spreadsheet is useful to introduce linear 
functions of the model (objective function and constraints). The use of range names in 
formulas is also interesting to simplify the data entry process and improve the 
understanding of the model (see Annex 1). 
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The features of Excel for solving optimization models have improved greatly in recent 
years. In fact, they have incorporated latest and advanced methods such as genetic 
algorithms that we explain in the last chapter of the book. However, its use is currently 
recommended for solving small or medium sized models. For models with thousands of 
variables and constraints we consider it more appropriate to use more powerful 
optimization software, including essential modelling languages to generate large models. 
LINGO and CPLEX are good choices, they also have the ability to import and export data 
from spreadsheets and databases. 

2.8. SOLVING LINEAR PROGRAMMING MODEL WITH 
OPTIMIZATION SOFTWARE 

In this section we highlight the LINDO Systems company that has sold a marketing 
optimization software for more than two decades, such as LINGO which incorporates a 
model generation language and optimizers to solve linear, integer, nonlinear and 
stochastic programming models. Furthermore, LINDO Systems has a program called 
What's Best which is an add-in to Excel and can solve linear, integer, nonlinear and 
stochastic programming models with spreadsheets, useful for companies that prefer to use 
this software environment. Students can download the latest version of LINGO and 
solving examples and case studies of the book (www.lindo.com). In this website manuals 
and training material such as the book of Linus Schrage are also available. 

The data input of the energy production and pollution control problem, the solution 
and sensitivity analysis obtained using LINGO are the following: 

MODEL: 

!EXAMPLE 1: ENERGY PRODUCTION AND POLLUTION CONTROL; 

[OBJ] MAX = 24 * X1 + 20 * X2; 

[SMOKE] 0.5 * X1 + X2 <= 12; 

[LOAD] X1 + X2 <= 20; 

[PULVERIZER] 1.5 * X1 + X2 <= 24; 

[SULPHUR] 1200 * X1 - 800 * X2 >= 0; 

END 

 
Global optimal solution found at step:           5 
Objective value:                   408.0000 

 
      Variable           Value        Reduced Cost 
            X1        12.00000           0.0000000 
            X2         6.00000           0.0000000 
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           Row    Slack or Surplus      Dual Price 
           OBJ        408.0000            1.000000 
         SMOKE          0.0000            6.000000 
          LOAD          2.0000            0.000000 
    PULVERIZER          0.0000           14.000000 
       SULPHUR       9600.0000            0.000000 

 
Ranges in which the basis is unchanged: 
 
                      Objective Coefficient Ranges 
                  Current        Allowable        Allowable 
Variable      Coefficient         Increase         Decrease 
      X1         24.00000         6.000000         14.00000 
      X2         20.00000        28.000000          4.00000 
 
                       Righthand Side Ranges 
         Row      Current        Allowable        Allowable 
                      RHS         Increase         Decrease 
       SMOKE     12.00000         4.000000         4.000000 
        LOAD     20.00000         INFINITY         2.000000 
  PULVERIZER     24.00000         4.000000         6.000000 
     SULPHUR      0.00000      9600.000000         INFINITY 
 

As shown in the input data, we should use the symbol * for multiplication and the 
semi colon (;) to indicate the end of a sentence, which can be a comment, the objective 
function or a constraint. Comments start with exclamation marks (!) and the names of the 
objective function and constraints can be indicated in brackets. 

As in Excel Solver we can get a series of reports after solving the model. First comes 
an overview of the number and type of variables, constraints and coefficients.Then the 
model provides the optimal value of the objective function, which is 408 in this example. 
For each variable it indicates the activity level in the optimal solution (X1 =12 and X2= 6) 
and the reduced cost, which is zero in this case. The reduced cost can be interpreted as 
the amount by which the coefficient of the objective function of that variable should 
improve for it to take a value other than zero in the optimal solution. Another possible 
interpretation is to consider the reduced cost as the penalty cost of introducing the variable 
in the solution. 

Next, we obtain the value of the slack variables (slack or surplus) of the constraints 
and their opportunity cost or dual price. In this section we can observe a result mentioned 
earlier, that is, the relationship between these two concepts. When the slack variable of a 
constraint is zero, i.e., the constraint is strictly met, normally its opportunity cost will be 
other than zero. And when the slack is positive, the associated opportunity cost is zero. 
Note that this is so in all the constraints and that the first row is not a constraint, but the 
objective function of the model. Remember that the opportunity cost is the amount by 
which the objective function improves per unit increase in the RHS of the constraint. 
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Thus, for a maximization problem when we increase the RHS of a constraint, the new 
value of the objective function is given by 

New optimal value of Z = Former optimal value +  RHS* (opportunity cost of constraint) 

In the case of minimization problems, the term "improve" logically involves 
decreasing, thus the new optimal value will be 

New optimal value of Z = Former optimal value -  RHS* (opportunity cost of constraint) 

The last two sections correspond to the sensitivity analysis of the objective function 
coefficients and RHS of the constraints. The first line indicates that the ranges provided 
are those in which the basis does not change. This concept is explained in chapter 3. 

Looking at the first part of the table we can say that the coefficient of X1 in the 
objective function, which is worth 24, may increase by 6 and decrease by 14 units without 
changes in the optimal solution. This is without changes in the value of variables X1 and 
X2. Obviously if these values are the same and C1, which is worth 24, increases or 
decreases, the value of the objective function that is C1*X1 + 20*X2 will change 
accordingly. 

The lower part of the sensitivity analysis refers to the variation of the RHS of the 
constraints. In the first column we have the constraint name and in the second the value 
in the model (RHS). The third column indicates the increase of RHS value and the fourth 
column the decrease, without changing the value of the opportunity cost of the 
constraint. For example, the RHS of the pulverizer constraint is 24 and can increase by 
four and decrease by six. In other words, its value can be between 18 and 28 without 
changing its opportunity cost which is 14 (dual price). Interpret the ranges provided for 
other constraints. 

2.9. MODELLING: SOME EXAMPLES   

2.9.1. COMMON MISTAKES IN MODELLING 

There are two extreme ways of learning to build optimization models, one through 
knowledge of standard examples and other through formulating models creatively. The 
first option requires much less analytical capability than the second, but it is more limited. 
It only serves to solve real problems that fit standard models. Obviously, in practice the 
best approach is to integrate both. The mistakes made in the modelling process can be 
classified into three categories: 

1. Errata or typographical errors 

2. Making basic formulation mistakes 

3. Approximation errors  
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The first two types of errors are easy to solve once identified. Typographical errors 
are harder to find as the model size increases. However, in these cases matrix generators 
or modelling languages are commonly used, reducing their incidence. Error type 2 is far 
more serious because it involves not having understood the problem or the formulation 
of linear programming models. 

Errors of type 3 have a more subtle character. In general in developing a model that 
represents a real situation we need to do some form of approximation. For example, 
certain products are aggregated, the weekdays are grouped or costs that are not 
proportional to the variable values are considered linear. To avoid errors of this type one 
should be able to identify those approximations that are acceptable. 

Optimization software usually has capabilities for providing some data about the 
model, such as the values ranges of the parameters among others. This information is 
useful in the identification of errors type 1. These errors also tend to provide solutions 
that are obviously wrong. 

Formulation errors are much more difficult to systematize because there are many 
types. Among the most common is what is known as dimensional analysis: the units of 
all terms of a restriction must be equal. To avoid this error it is often useful to formulate 
the problem in words and then write the associated algebraic form. 

Another associated error with the measurement units is the use of units in such a way 
that very large or very small numbers can appear in the same model. This can cause 
significant rounding errors. This can be avoided by scaling the model in order to reduce 
the difference between the largest and the smallest coefficient value, and make it as small 
as possible. Good professional optimization software can solve this problem 
automatically. 

Another formulation error is called non-simultaneity error. In linear programming all 
constraints must be satisfied simultaneously. We may want to indicate that, if a product 
is made, it is made to a minimum level, e.g. 20. And the solution indicates if it is made or 
not, and if yes, the solution will give us its manufacture level. As we shall see, to indicate 
these situations we should not write X 20 and X  0. We need to use an integer 
programming model.  LINGO can generate the required integer variables and constraints 
if you indicate that this variable is semicontinuous (See Annex 2).  

Finally, we point out that the fundamental characteristics of a good model to be useful 
in decision-making are the following: simple, complete, easy to handle, adaptable, 
appropriate to the situation and producing relevant information for decision-making. 
It is advisable to re-read the section on Operational Research methodology explained in 
Chapter 1.The next section presents a well-known problem to learn how to formulate and 
solve models, as well as discussing the results obtained. This learning process will 
continue throughout the book with examples and case studies, many of which students 
perform with the help of the teacher in laboratory sessions. 
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2.9.2.  SOME MODELS OF LINEAR PROGRAMMING 

2.9.2.1. TRANSPORT PROBLEM 

It is a frequent problem which arises in the distribution of many products. This 
problem deals with distributing products from a variety of sources, where there is 
available supply, to destinations in order to satisfy demands and minimize the cost of 
transport. In short, the problem is to determine the amount of product to be sent to a 
number of locations (n) whose demand is b1, b2 … bn, from a point of origin (m) where 
the supply is a1, a2 … am. The unit cost of shipping from the point of origin i to destination 
j is known (Cij) and the objective is to minimize the total transport cost. 

Take a simple example. It is distributing a product from three factories, with the 
availability of a1=30, a2=25 and a3=21, to four warehouses, which have requirements of 
b1= 15, b2= 17, b3= 22 and b4=12. The unit costs between each factory and warehouse 
are listed in Table 2.6. 

 

Table 2.6. Unit costs of transport from factories to warehouses 

Factories/Warehouses F1 F2 F3 

W1 6 4 8 

W2 2 9 8 

W3 6 5 1 

W4 7 3 5 

 

The resulting model for this problem is as follows: 

Variables: 

Xij: amount of product to be transported from the factory i to the warehouse j 

Objective function: 

Min Z = 6 X11 + 2 X12 + 6 X13 + 7 X14 + 4 X21 + 9 X22 + 5 X23 + 3 X24 + 8 X31 + 8 X32 + X33 + 5 X34 
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Contraints: 

Supply F1: X11 + X12 + X13 + X14  30 

Supply F2: X21 + X22 + X23 + X24  25 

Supply F3: X31 + X32 + X33 + X34  21 

 

Demand W1: X11 + X21 + X31  15 

Demand W2: X12 + X22 + X32  17 

Demand W3: X13 + X23 + X33  22 

Demand W4: X14 + X24 + X34  12 
 
The model has 12 variables (m=3 x n=4) and 7 contraints, 3 supply constraints and 4 

demand constraints. The matrix of technical coefficients of the model is shown in Table 
2.7. This structure of the technical coefficient matrix of ones and zeros, located in this 
particular way is that what characterizes the problem of transport and not the context of 
being a distribution problem. This model can be solved using the general linear 
programming algorithms that we will see in the next chapter and also another more 
efficient one for this specific type of problem. The structure of a transport problem 
ensures a solution with integer values if the supply and the demand of products are integer 
values too. 

Table 2.7. Technical coefficient matrix in a transportation problem 

X11 X12 X13 X14 X21 X22 X23 X24 X31 X32 X33 X34 bi  

1 1 1 1         30 

Supply 
constraints     1 1 1 1     25 

        1 1 1 1 21 

1    1    1    15 

Demand 
constraints 

 1    1    1   17 

  1    1    1  22 

   1    1    1 12 
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The general formulation of a transport model is as follows. 

Variables 

Xij  0 amount of product to be transported from the factory i to the 
warehouse j 

Objective function 

 

 
The transport problem objective is to minimize the distribution cost. 

Constraints 

Supply: From each source we cannot send more than the available products 

 

Demand: The demand of each destination bj should be met 

 

 

2.9.2.2. OTHER MODELS: LOAD SYSTEMS PLANNING 

In a port three types of loading systems are being used to handle four types of cargo: 
perishable goods, chemicals, minerals and manufactured goods. During the following 
week the cargo volume that is required to be moved is as follows: 

Perishable: 1800 ton 

Chemicals: 1500 ton 

Minerals: 2000 ton 

Manufactured: 1300 ton 

Table 2.8 shows the number of tons that can be handled by each loading system per 
hour, availability of hours of operation system and costs. Loading system 2 cannot 
mobilize chemical products. Formulate a model for the movement of cargo schedule with 
the minimum cost. 
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 Table 2.8. Technical and economic data loading systems 

LOADING 
SYSTEM 

OPERATING EFFICIENCY (ton/h) 
AVAILABILITY 

IN HOURS 
COST 

€/h Perishable 
goods 

Chemicals Minerals Manufactured 
goods 

1 50 100 50 20 500 30 

2 20 - 20 20 500 18 

3 20 50 50 20 1000 36 

 

2.10. SUMMARY 

Linear programming is a tool that allows solving optimization real problems that we 
represent by a mathematical model. First, define the variables of the model, which will 
indicate what the decision makers can control. Then, establish the objectives of the 
problem as a linear function of the decision variables, a function for which we want to 
find the optimal value -maximum or minimum- and the values of the variables which are 
subject to a number of constraints, also represented as linear functions. 

Any combination of the model variable values that fulfills all constraints is a feasible 
solution. The set formed by all feasible solutions constitutes the feasible region, and any 
feasible point with the best value of the objective function is an optimal solution. When 
solving a linear programming model we may encounter four different cases: a unique 
solution, alternative solutions, an unbounded solution and no solution. The last two 
cases normally correspond to incorrect formulations of the problem. The first two cases 
show that the value of the objective function in the optimal solution is unique, but the set 
of values of the variables giving that best value are not necessarily unique. In real 
problems, there are many examples that present alternative optimal solutions. 

In addition to explaining the basics of formulating and solving linear programming 
models by the graphic resolution of a simple example, we solved the model using Excel 
Solver and LINGO optimization software. The former is suitable for solving many small 
and medium sized models and the latter is more recommended for large problems. We 
have also seen frequent mistakes in formulation and how to avoid them and other 
important examples of linear programming, such as the transport problem. The case 
studies are the basis of practical and laboratory classes and a source of self-assessment 
exercises. 
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2.12. CASE STUDIES 

CASE STUDY 1: A DIET PROBLEM 

Among the problems with more practical applications and in which linear 
programming has been proven to be very useful are blending problems. Broadly, we can 
say that a blending problem consists of determining the composition of a product from a 
number of raw materials in order to maximize profit or to minimize the company's costs. 
The product must fulfill a number of conditions which are the constraints of the model, 
together with other constraints that for example may refer to restrictions in the raw 
materials. Among the industries that actually use this kind of models we can mention 
metals, fertilizer, food and animal feed industries. 

Diet problems are a particular case of blending problems. We can also distinguish 
between human and animal feeding problems. At present feeding costs in meat production 
farms for human consumption supposes a high percentage of the overall cost, so that 
competitiveness in this field depends greatly on the correct calculation of the optimal diet.  

For animal breeding, there are two different problems: the calculation of rations and 
the formulation of animal feed. The former consists of determining the composition of 
the minimum cost portion that satisfies the animal's nutritional needs. The latter consists 
of calculating the combination of foods in such a way as to meet a maximum and/or 
minimum need for nutritional principles per weight unit in order to minimize costs. 
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The use of high technology is common in many animal farms, among which we find 
software for calculating optimal feeding. Many of the companies that operate in this 
sector are multinationals that use linear programming software as a basic tool. 

Let us examine a simple example for calculating animal feeding diets that in addition 
to serving as an illustration of standard linear programming model, can also be used to 
apply sensitivity analysis. In this type of model it is necessary to perform postoptimal 
analysis, as the prices of the raw materials usually vary throughout the year. It is also 
interesting to evaluate the effects of changes in the required protein or energy quantities 
on the feeding total cost. 

Table 2.9 presents the characteristics of six types of raw materials that a farmer needs 
to obtain the feeding stuff to feed his calves. Their food needs vary with age. Thus the 
younger calves have different needs than the older calves in the stage prior to 
slaughtering. Therefore, in fact we have two problems: calculation of the diet for rearing 
and fattening calves, depending on the age of animals (C1 and C2). 

The fibre units (FU) and the digestible protein (DP) must be present in the feeding 
ration in the minimum quantity indicated. Dry material (DM) can have any value from 
the range shown in the table. With respect to the amount of concentrated raw materials in 
the feed, there is the following restriction: for the fattening calves (C2) the FU from 
concentrated food (barley, soy and sunflower) must be higher than that from non 
concentrated food (alfalfa, barley and straw); for the baby calves the difference between 
the FU supplied by the concentrated and the non concentrated food should not exceed 10. 
Sunflower is limited to be no higher than 10 for rearing calves and to 0.5 for fattened 
calves due to darkening of the meat. 

The problem consists in determining the minimum cost rations for the two types of 
calves that fulfil the requirements mentioned. The company has formulated two similar 
blending problems because the matrix of technical coefficients is the same for both. Only 
the RHS of the constraints differ, the upper and lower value of one of them and the upper 
bound of one variable. 

Using the Solver tool of Excel: 

1. Determine the minimum cost ration for rearing and fattening calves. 

2. Analyze the sensitivity of the diet for the fattened calves to the prices of raw 
materials and the practical implications of the results. 

3. What would be the composition and price of the fattened calves ration if we want 
it to provide at least 0.65 units of protein? And in the case that the minimum fibre 
units were 7.6? Answer on the basis of the sensitivity analysis results. 
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Table 2.9. Technical characteristics of raw materials and diet requirements 

Characteristics 
Raw materials Needs 

  Alfalfa Barley Wild 
Barley Soy Sunflower Straw C1 C2 

Fibre 
units/kg 0.15 1 0.18 1.05 0.88 0.3 >=6.3 >=8.6 

Digestible 
Protein/Kg 0.02 0.06 0.04 0.4 0.28 0.01 >=0.66 >=0.75 

Dry 
Material/Kg 0.22 0.85 0.25 0.9 0.93 0.9 8.8-11.6 8-13 

COST 
(euros/Kg) 0.14 0.30 0.08 0.60 0.42 0.12  

 

CASE STUDY 2: A FEED PROBLEM 

A multinational company in the food sector has several feed factories in the country. 
The feed formulations which the company manufactures and distributes is calculated 
every month in the central headquarters taking into account the prices and availability of 
raw materials. Table 2.10 shows the data to solve a small example of this real problem. 

The company needs to calculate the optimal formulation in order to minimize the 
cost of feed for a certain type of animal, whose nutritional requirements are the following: 
The feed must have a protein percentage between a minimum of 12% and a maximum of 
15%, while the minimum levels of calcium and phosphorus should be 1 and 0.30% 
respectively. 

Table 2.10. Characteristics of raw materials and feed requirements 

Characteristics Corn Wheat Barley Alfalfa 

Price (euros/ton) 142 134 125 108 

Protein % 8.5 11 11 17 

Phosphorus % 0.27 0.35 0.37 0.30 

Calcium % 0.02 0.04 0.06 1.77 
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1. Propose a model to determine the optimal formulation in order to minimize the 
feed cost 

2. Resolve the model using Solver tool from Excel and LINGO. 

3.  Indicate the formulation and the minimum cost of feed. 

4.  What are the exact percentages of protein, calcium and phosphorus of the 
obtained feed? 

5. The company needs to buy more barley, but the price has increased by 10 
euros/ton. In this situation, should the feed be manufactured with the same raw 
materials which the optimal solution indicates? 

6. The purchasing manager updates market prices and observes that prices of corn 
and wheat have decreased slightly, exactly 4 euros/ton in both cases. Would this 
new situation affect production policy and therefore also the purchase of raw 
materials?  

7. The multinational company has launched an environmental program which is a 
part of the corporate social responsibility, in order to reduce pollution caused by 
meat production. They are committed to manufacturing the feeds with protein 
quantities that are closer to animals’ requirements. Therefore, they have proposed 
reducing the maximum percentage of protein to 14.5%. Would this decision 
affect the formulation and cost of feed? What happens if the proposal is 13%? If 
possible, indicate the formulation and cost of feed in both cases from sensitivity 
analysis. 

8. Analyse the differences if there are any, between the information given by Excel 
and LINGO. 

CASE STUDY 3: PRODUCTION PROBLEM 

A company manufactures three products A, B and C. The three products share four 
machines M1, M2, M3 and M4 in their production process. For product A we need three 
operations on machines M1, M3 and M4, for product B only two operations on machines 
M1 and M3 or on machines M2 and M4 are needed, and product C can be manufactured 
using machines M1 and M3 or machines M2, M3 and M4. 

The time required in minutes per unit produced for each production possibility on each 
machine, the variable cost of production per minute, the daily capacity of each machine 
and the minimum daily demands of the three products are presented in the following 
Table. 

The objective consists of determining the production scheme that minimizes the 
overall variable cost. Solve this problem with LINGO and answer the following 
questions. 
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1.  How many units of each product are manufactured in each process and what is the 
overall cost? 

2. Which machines have idle capacity and what are these capacity? 

3. If it were possible to add an extra time of half an hour per day on machine M1, what 
effect would it have on the overall production cost? 

4. If demand for product B were 40 units, what effect would it have on the overall 
production cost? 

5. What can you say about the effect on the overall cost in the case of an increase in 
demand for C from 10 to 12 daily units? 

6. The company has received an order to produce 5 units per day of a new product, D. 
Each unit of D requires 2 min on machine M1, 12 min on machine M2 and 6 min on 
machine M3. The net profit per unit of D is 25 money units. Should this product be 
manufactured? Justify your answer. In case of an affirmative answer, what would the 
new value of the objective function be without solving the problem again? Please use 
the opportunity cost concept. Finally, check if the result indicated is correct. 

Table 2.11. Technical and economic data 

Product Process 
Time (min/unit) Minimum 

daily demand M1 M2 M3 M4 

A 1 10  6 3 36 

B 
B1 1 8  10  

45 
B2 2  6  9 

C 
C1 1 8  16  

10 
C2 2  10 3 8 

Variable cost per min (mu) 40 50 24 30  
Daily capacity in min 480 480 480 480  

 

CASE STUDY 4: PRODUCTION PROBLEM  

A company is planning the apple picking and production of cider for the next 
season. It manufactures several cider products (natural, extra, brut, black label, etc.) 
that differ in the mixture of apple varieties, which can be grouped as sweet, sour or 
bitter. The production process has several phases: pressing, maceration, slow 
fermentation, clarification and stabilization, bottling and labelling. The process yield 
is high and produces 0.8 litres cider per kilo of apples. 

The company has built a linear programming model to be able to determine how 
many apples of each variety it should buy to produce 40,000 litres of natural cider and 
10,000 litres of extra cider. Table 2 shows the characteristics of the apple varieties 
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and of the cider products. The degree of acidity of the cider must be within the range 
indicated in the table, as must the sugars in the case of the extra cider. The objective 
is to minimize the company production costs. 

Table 2.12 Characteristics of the apple varieties and types of cider 

Characteristics 
Apple variety Cider products 

1 2 3 Natural Extra 

Degrees of 
alcohol % 8 6.5 4.2 7 4.8 

Volatile acidity 
gr / litre 1.3 2.1 1.4 1.2 - 2 0.7 – 1.6 

Total Acidity 
gr / litre 2.2 4 3.5 3 – 4.5 3.5 - 4 

Sugars gr / litre 70 45 55 - 50 - 60 

Price euros/kg. 0.4 0.35 0.3    

 
MODEL: 
 
! Cider production; 
! VARIABLES: V1j, V2j y V3j Kg. Apples of variety 1,2 o 3 needed  
to produce cider j (N=Natural y E=Extra); 
 
[OBJECTIVE_FUNCTION] MIN=0.4*(V1N + V1E) + 0.35*(V2N + V2E) + 
 0.3 *(V3N + V3E); 
 
! Constraints; 
[DegreesA_Natural] 0.8*(8*V1N + 6.5*V2N + 4.2*V3N) = 7*40000; 
[VolatileA_Min_Natural] 0.8*(1.3*V1N + 2.1*V2N + 1.4*V3N) >= 1.2*40000; 
[VolatileA_Max_Natural] 0.8*(1.3*V1N + 2.1*V2N + 1.4*V3N) <= 2*40000; 
[TotalA_Min_Natural] 0.8*(2.2*V1N + 4*V2N + 3.5*V3N) >= 3*40000; 
[TotalA_Max_Natural] 0.8*(2.2*V1N + 4*V2N + 3.5*V3N) <= 4.5*40000; 
[Quantity_Natural] 0.8*(V1N + V2N + V3N) = 40000; 
 
[DegreesA_Extra] 0.8*(8*V1E + 6.5*V2E + 4.2*V3E) = 4.8*10000; 
[VolatileA_Min_Extra] 0.8*(1.3*V1E + 2.1*V2E + 1.4*V3E) >= 0.7*10000; 
[VolatileA_Max_Extra] 0.8*(1.3*V1E + 2.1*V2E + 1.4*V3E) <= 1.6*10000; 
[TotalA_Min_Extra] 0.8*(2.2*V1E + 4*V2E + 3.5*V3E) >= 3.5*10000; 
[TotalA_Max_Extra] 0.8*(2.2*V1E + 4*V2E + 3.5*V3E) <= 4*10000; 
[Sugars_MinExtra] 0.8*(70*V1E + 45*V2E + 55*V3E) >= 50*10000; 
[Sugars_MaxExtra] 0.8*(70*V1E + 45*V2E + 55*V3E) <= 60*10000; 
[Quantity_Extra] 0.8*(V1E + V2E + V3E) = 10000; 
 
END 
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Global optimal solution found. 
  Objective value:                              22246.38 
  Infeasibilities:                              0.000000 
  Total solver iterations:                            10 
 
 
                                Variable           Value        Reduced Cost 
                                     V1N        16666.67           0.000000 
                                     V1E        0.000000           0.1739130E-01 
                                     V2N        33333.33           0.000000 
                                     V2E        3260.870           0.000000 
                                     V3N        0.000000           0.2666667E-01 
                                     V3E        9239.130           0.000000 
 
                                     Row    Slack or Surplus      Dual Price 
                                      FO        22246.38           -1.000000 
                 DegreesA_Natural               0.000000          -0.4166667E-01 
                 VolatileA_Min_Natural          25333.33            0.000000 
                 VolatileA_Max_Natural          6666.667            0.000000 
                 TotalA_Min_ Natural            16000.00            0.000000 
                 TotalA_Max_Natural             44000.00            0.000000 
                 Quantity_Natural               0.000000          -0.1666667 
                 DegreesA_Extra                 0.000000          -0.2717391E-01 
                 VolatileA_Min_Extra            8826.087            0.000000 
                 VolatileA_Max_Extra            173.9130            0.000000 
                 TotalA_Min_Extra               1304.348            0.000000 
                 TotalA_Max_Extra               3695.652            0.000000 

       Sugars_MinExtra                 23913.04            0.000000 
                 Sugars_MaxExtra                76086.96            0.000000 
                 Quantity_Extra                 0.000000          -0.2608696 
 
Ranges in which the basis is unchanged: 
 
                                       Objective Coefficient Ranges: 
 
                                        Current        Allowable        Allowable 
                      Variable      Coefficient         Increase         Decrease 
                           V1N        0.4000000         INFINITY        0.1739130E-01 
                           V1E        0.4000000         INFINITY        0.1739130E-01 
                           V2N        0.3500000        0.1052632E-01     INFINITY 
                           V2E        0.3500000        0.1052632E-01     INFINITY 
                           V3N        0.3000000         INFINITY        0.2666667E-01 
                           V3E        0.3000000         INFINITY        0.2666667E-01 

 
                                           Righthand Side Ranges: 
 
                                        Current        Allowable        Allowable 
                           Row              RHS         Increase         Decrease 
        DegreesA_Natural               280000.0         13333.33         12500.00 
        VolatileA_Min_Natural          48000.00         25333.33         INFINITY 
        VolatileA_Max_Natural          80000.00         INFINITY         6666.667 
        TotalA_Min_ Natural            120000.0         16000.00         INFINITY 
        TotalA_Max_Natural             180000.0         INFINITY         44000.00 
        Quantity_Natural               40000.00         1197.605         1355.932 
        DegreesA_Extra                 48000.00         571.4286         6000.000 
        VolatileA_Min_Extra            7000.000         8826.087         INFINITY 
        VolatileA_Max_Extra            16000.00         INFINITY         173.9130 
        TotalA_Min_Extra               35000.00         1304.348         INFINITY 
        TotalA_Max_Extra               40000.00         INFINITY         3695.652 
        Sugars_MinExtra                500000.0         23913.04         INFINITY 
        Sugars_MaxExtra                600000.0         INFINITY         76086.96 
        Quantity_Extra                 10000.00         1038.576         326.4095 
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1. Indicate the minimum cost of production and the quantity of apples of each variety that 
the company should buy for the next period. 

2. What is the value of alcohol in degrees, the volatile and total acidity in the natural cider, 
produced according to optimal solution of the model?  

3. The natural cider is produced using apple varieties 1 and 2. Why is variety 3 not used 
to make natural cider? Under what conditions which would it be interesting to use variety 
3 to produce natural cider?  

4. What would the optimal solution be if the price of variety 1 was 0.45 euros/kg? And 
what would happen if the price was 0.39 euros/kg?  

5. Will the optimal solution change if the alcohol degree of natural cider decreases to 6.8 
%? What happens if the value is 6%?  What the changes and what values remain the same 
in both cases?  

6. What would be the effect on the optimal solution if the maximum level of sugars is 
55gr/litre in the extra cider?  
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In the previous chapter we graphically solved a linear program with two variables to 
introduce the basic concepts of linear programming in the most comprehensible and 
intuitive way possible. However, in practice, problems usually have more variables and 
constraints and therefore we need some mathematical tools to find the optimal solution. 
Fortunately, we have a very efficient algebraic technique: the Simplex Method developed 
by George Dantzig in 1947. The simplex method is an amazing algorithm which received 
a competitor introduced in 1984 (interior point algorithm of Karmarkar) that seemed to 
replace it. However, this competitor has not so far fulfilled the expectations that it had 
initially raised. Today the simplex method remains the basis of software that solves linear 
programming models in the business sector, both large and small. Only in the case of very 
large models would the interior point algorithm be preferable and then in combination 
with the simplex method. 

This chapter starts with the definitions of the basic concepts of general linear 
programming techniques, that is, convex sets, corner-points and basic solutions. We will 
then explain the Simplex method and the dual phase method as well as techniques with 
bounded variables.   

We will end the chapter with a brief reference to the revised simplex method and the 
latest developments in linear programming. Professional business managers need to know 
the basics of the methods of solving linear programming. This knowledge facilitates the 
formulation of models and the interpretation of the solutions, improving decision making. 
In addition, the simplex algorithm and its extensions are the basis of sensitivity analysis, 
as well as other optimization techniques that we will see in following chapters such as 
integer programming, multiobjective programming and nonlinear programming. 

3.1. BASIC CONCEPTS: CORNER-POINTS AND BASIC SOLUTIONS 

We will continue using the production model of a power plant as described in the 
previous chapter. For now, we will simply consider two of the four original constraints. 
Specifically, the problem will consist of finding the values of the decision variables X1 
and X2 that 

 (1)  Maximize   24 X1+ 20 X2 

and verify the constraints 

X1 0 and X2 0  
0.5 X1   + X2  12      (smoke) 
1.5 X1 + X2  24       (pulverizer) 
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Figure 3.1 shows the nonnegativity conditions of the variables and constraints for this 
problem. As we already know, the set of points (X1, X2) that meet all constraints form the 
feasible region. 

The feasible region of a linear programming model is a convex set. 

A set is convex when, between two given points, all midpoints also belong to the set. 
This is a characteristic of the feasible region of any linear programming model and it is 
the principle for the solution procedure known as simplex algorithm. Another key concept 
is that of corner-points, which are the vertices of the polygon that forms the feasible 
region (in the case of two variables). 

In the previous chapter, we have also intuitively seen that if a linear programming 
model has a finite optimal solution, at least one corner-point of the feasible region will be 
optimal. Figure 3.1 shows that the corner-points of the problem are A, B, C and D. How 
are these points generated algebraically? First, we formulate the linear programming 
model (1) in the standard form by entering the slack variables X3 and X5 to maintain the 
notation of the original problem. 

 
(2) 0.5 X1 + X2 + X3 = 12    (smoke) 

 1.5 X1 + X2 + X5 = 24    (pulverizer) 

Note that now each corner-point of the feasible region can be obtained by setting two 
variables to zero and solving the resulting set of equations (2). For example, point C, 
which corresponds to the optimal solution, is obtained by setting X3 and X5 to zero. When 
solving the resulting system of two equations with two unknown quantities we obtain 
X1=12 and X2=6.  We can verify this result and obtain the values of the variables for 
points A, B and D. 

However, the selection of variables to be set to zero in order to obtain the corner points 
is not arbitrary. If we set X1 and X5 to zero we obtain the point E (X2=24 and X3 = -12). 
This solution is not feasible as X3 is negative and therefore not a corner point. However, 
any feasible solution obtained by this procedure is a corner point and vice versa. 

A simple method to determine the values of the variables in the corner points is as 
follows. If we express the first constraint (2) in terms of X1 and the slack variables, and 
the second in terms of these latter and X2 we obtain the following equations 

 (3) X1 - X3 + X5 = 12 

X2 + 1.5 X3 - 0.5 X5 = 6 
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Figure 3.1. Graphic representation 

 

Thus, the first equation of (3) is obtained by subtracting the first equation of (2) from 
the second.  

When the equations have been transformed in this way, it is known as the canonical 
form.  From the canonical form, the values of X1 and X2 can be determined by setting X3 
and X5 to zero.  Likewise, the values of the variables at B (X1=16 and X 3=4) can be read 
from the following equations when X2 and X5 are zero. 

 
(4) X3 + 2/3 X2 - 1/3 X5 = 4  

 X1 + 2/3 X2 + 2/3 X5 = 16 
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Note that point A is obtained when setting X1 and X2 to zero in equations (2). 
Therefore, we see that the corner points are related to the algebraic structure of the 
solution of equations when only a subset of the variables is used. 

If we consider a linear programming model in standard form with n variables (decision 
and slack variables) and m constraints, we can state that the subset of variables that forms 
a corner-point is found by setting (n-m) variables to zero and solving the resulting system 
of m equations with m variables. This system of equations has only one solution. 

Basic solution of Ax = b is any solution with (n-m) variables set to zero. 

Those (n-m) variables that are set to zero are the nonbasic variables and the 
remaining m are the basic variables. 

A feasible basic solution is a basic solution in which all the variables are 
nonnegative. 

In a linear programming model with m constraints, two basic solutions are 
adjacent if their sets of basic variables have m-1 in common.  

The corner points of the feasible region of a linear programming model are the 
basic feasible solutions of the equations that represent the constraints of the 
problem. If a linear programming model has a finite optimal solution, then at 
least one optimal solution is a corner-point.    

The general idea of the simplex method consists of searching through the basic 
feasible solutions or corner-points until the optimal solution is found. For a standard linear 
programming model with n variables and m constraints we will have a basic solution for 
each group of n-m variables that we eliminate. That is, we will have as many as 
combinations of n elements taken from m in m. 

 

We could think of finding the optimal solution by listing all the feasible basic solutions 
and choosing the one with the best value of the objective function. However, a linear 
program with 20 variables, including slack variables, and ten constraints could have up 
to 184,756 feasible basic solutions. Fortunately, the simplex algorithm is much more 
efficient and it usually finds an optimal solution after examining between m and 3m basic 
solutions, where m is the number of constraints. For the previous case, the simplex 
algorithm would have to evaluate at the most 30 basic solutions. 

Concretely, the simplex starts from a basic solution and passes at each iteration of the 
algorithm to another adjacent basic solution, improving the value of the objective 
function. When it reaches a basic solution that does not have any adjacent solution that 
improves the objective function, then that solution is an optimal solution. 

n n!
m (n-m)!m!

=
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Lastly, we would like to emphasize an issue of practical interest that derives from 
what we have just seen: the optimal solution of a linear programming model is a feasible 
basic solution. In a model of production planning with n activities (not slack ones) and m 
constraints of resources where n>m we will never have more than m activities with 
positive levels in the optimal solution. We may have even less if some of the slack 
variables had positive values. Intuitively, this is not an obvious property and it is difficult 
to understand if the mathematical solution procedure is not known. 

3.2. THE SIMPLEX METHOD 

3.2.1. GENERAL CONCEPTS 

The general idea of the simplex method consists of starting from a feasible basic 
solution or corner point and moving to an adjacent feasible basic solution with a better 
value for the objective function. This process continues until improvements can no longer 
be made and an optimal solution is therefore found. Thus, the simplex algorithm should 
consist of: 

1. Finding an initial basic feasible solution 

2. Finding a basic solution adjacent to the previous one 

3. Ensuring that the new basic solution is feasible and, therefore, corner point 

4. Ensuring that the new solution is better than the previous one 

5. Analysing the simplex method for a maximization problem, that does not imply loss 
of generality, since any minimization problem can become a maximization problem 
in the following way 

Minimizing Z = 2 X1 + 3 X2 

yields the same solution as 

Maximizing (-Z) = - 2 X1 - 3 X2 

3.2.2. THE SIMPLEX METHOD BY SIMULTANEOUS EQUATIONS 

Let us observe equation (2). They represent the corner-point A of Figure 3.1, with X1 
and X2 set to zero and X3 = 12 and X5 = 24. The slack variables X3 and X5 are the basic 
variables, while the decision variables of the model X1 and X2 are the nonbasic variables. 
This solution is an initial basic solution for the simplex algorithm that consists of not 
doing anything, that is, not burning any coal. Therefore, the objective function (the 
quantity of vapor produced) is zero (Z = 0). In addition, equations (2) are already in 
canonical form. 
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We will add the objective function to this set of equations, considering Z as a variable 
and passing of all the decision variables to the first member. The second member will 
give us the value of Z with changed sign (5). 

(5) 0.5 X1 + X2 + X3  = 12 

 1.5 X1 + X2 + X5 = 24 

 - Z + 24 X1 + 20X2 =   0 

 
Is this solution optimal? To answer this question we will have to see if it is possible 

to improve the value of the objective function when increasing the value of any of the 
nonbasic variables. It is only possible to increase the value of Z by increasing the value 
of the nonbasic variables, since the solution in terms of the basic variables is unique. If 
we set X1 = 1 the objective function increases by 24 units, while the increase is by 20 if 
we set X2 = 1. Therefore, corner-points can exist with a better value of Z and point A is 
not an optimal solution. 

We cannot find the optimal corner-point directly, because we do not know which one 
it is. Therefore, the simplex shifts from one corner-point to another, adjacent, one by 
improving the objective function. An adjacent corner-point can be reached by replacing 
one of the basic variables (X3 or X5) with one of the nonbasic variables (X1 or X2). First, 
we choose the nonbasic variable that will be the new basic variable, which is the entering 
basic variable. We then determine which of the basic variables it replaces; that is, which 
variable is the leaving basic variable. One way of selecting the entering basic variable is 
to choose the one that provides the highest increase per unit in the objective function. In 
our case we would choose X1. 

Since each unit of X1 increases Z by 24 units, we should increase X1 as much as 
possible. In fact, the highest value that X1 can take depends on what happens to the basic 
variables, because those nonbasic variables will still be zero. From (5) we can express X1 
depending on the nonbasic variables, because X2 is zero, obtaining (6). 

 (6)  X1 = (12 - X3)/0.5   o  X3 = 12 - 0.5 X1 

 X1 = (24 - X5)/1.5 o X5 = 24 - 1.5 X1 

Note that in (6) as X1 increases, X3 and X5 decrease. Since we allow neither X3 nor X5 
to become negative, X1 should not exceed the value that would set one of them to zero 
first. From (6), the highest value X1 can take is 

(7) X1 = min (12/0.5 and 24/1.5) = 16 

At this point X5 = 0 and X3 = 4. Therefore X5 leaves the basis to become a nonbasic 
variable. The new solution is basic because only two (m) variables are nonnegative and 
therefore it is also feasible. This solution corresponds to the corner-point B of the Figure 
3.1 with X1=16, X3=4 and X2=X5=0. Note that this point is adjacent to point A. 
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The next step consists of finding the set of equations in canonical form for this new 
solution, with X1 and X3 as new basic variables and X2 and X5 as nonbasic variables. For 
this, we start from (5) and we divide the second equation by 1.5, obtaining the second 
equation (8). The first equation (8) is obtained by taking the first equation of (5), from 
which we subtract the second equation of (8) (which we have just obtained) multiplied 
by 0.5.  The new objective function is obtained by taking the previous objective function 
and subtracting the second equation of (8) multiplied by 24. 

 
(8) 2/3 X2 + X3 - 1/3 X5 = 4 

 X1 + 2/3 X2 + 2/3 X5  = 16 

 - Z + 4 X2 - 16 X5  = - 384 
 
Now you can read the values of the basic variables as X1=16 and X3=4. The new value 

of Z is 384, which corresponds to the increase of X1 to 16 with a unitary improvement of 
24 (16*24=384). With this, we have finished an iteration of the simplex algorithm. 

Now we are dealing again with a basic feasible solution in canonical form, but with a 
better value for the objective function. We will have to repeat the same steps. Therefore, 
the second iteration begins by determining whether we can increase the value of the 
objective function by increasing the value of the nonbasic variables. Note that a unitary 
increase of X2 improves the objective function by 4, while a unitary increase of X5 would 
cause a reduction of 16 in Z. Thus, it is clear that it is not advisable to increase the value 
of X5, because in that case the objective function would decrease in value. So the entering 
basic variable will be X2. 

Next we will have to determine the leaving basic variable and with the same procedure 
used in the first iteration we will have  

 
(9) X3 = 4 - 2/3 X2 

 X1 = 16 - 2/3 X2 

 
Thus the highest value that X2 can take is 

 
(10) X2 = min (4/0.666 y 16/0.666) = 6 

and therefore X3 is the leaving basic variable. The final operations of iteration 2 consist 
of finding the canonical form associated with the new basis to determine the values of the 
basic variables and of Z. The first equation of (8) is simply set in canonical form by 
dividing it by 2/3; the result is the first equation of (11). The second equation of (11) is 
obtained by subtracting the previous one (multiplied by 2/3) from the second equation of 
(8). Likewise, the new objective function in (11) is the objective function of (8) from 



Operations research in business administration and management 
 

78 

which the first equation of (11) multiplied by 4 has been subtracted. The result is the 
following set of equations. 

 
 

(11) X2 + 3/2 X3 - 1/2 X5 = 6 

 X1 - X3 + X5 = 12 

    - Z - 6 X3 - 14 X5 = - 408 
 

Note that when we set X3 and X5 to zero we obtain X1 = 12, X2=6 and Z=408. At this 
second iteration the objective function has increased by 6*4=24 units.  

Now we start the third iteration by analyzing if there are any nonbasic variables that 
can improve the objective function. We observe that there are none, since X3 causes a 
unitary decrease of 6 and X5 of 14. Therefore, we have found the optimal solution after 
two iterations. 

3.2.3. APPROACHES OF THE SIMPLEX METHOD: ENTERING BASIC VARIABLE 
AND LEAVING BASIC VARIABLE 

We will now formalize the approaches used in the previous section. Once we have an 
initial basic feasible solution expressed in canonical form, the entering basic variable is 
chosen first. In order to determine this variable, the coefficients of the equation 
corresponding to the objective function are analyzed and the most favourable one is 
chosen. As we are maximizing, we choose the highest coefficient because it is the one 
where Z increases the most. These coefficients are called reduced coefficients of the 
objective function or reduced costs. 

The reduced coefficient of a variable Xj is the unitary variation of the objective 
function per unit of this variable that enters the basis. This variation is the net effect of 
what the variable that enters basis provides and the variation because the basic variables 
change its activity level when introducing units of a nonbasic variable. 

(12) Reduced cost of Xj:  Cj - Zj = Cj -  ij  Ci 
 

where Cj is the coefficient of the variable Xj in the objective function. Similarly for Ci, 
indicating the subindex that is a basic variable located in the equation or row i. The 
coefficient ij is the coefficient of variable j in the equation or row i. Let us see an 
example. 

At the second iteration we choose the only one of those nonbasic variables that could 
improve the objective function as the entering basic variable: X2. Why is the improvement 
of Z only 4, if we increase X2 by one unit when its Cj is 20? In other words, to decide 
from equations (8) to burn a ton of coal B increases the quantity of vapor produced by 
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four thousand pounds. This is the case, because when increasing the value of X2 by one 
unit the objective function increases by 20, but X3 and X1 decrease  by 2/3, which causes 
a decrease of the objective function of (2/3) C3 + (2/3) C1 = (2/3) 24 = 16. Therefore, 20 
- 16 = 4 is the net effect due to the changes of levels of activity of the basic variables 
when a unit of the entering basic variable is increased. 

Regarding our problem, we can add that the basic solution corresponding to (8) 
consists of burning 16 tons of coal A, nothing of B, the full capacity of the pulverizer 
machine has been reached (its slack variable X5 is zero) and we can still increase the 
emission of smoke by 4 more units. When considering whether to burn coal B, we have 
to reduce the quantity of coal A to have the necessary capacity in the pulverizer to burn 1 
ton of coal B. As we can see in (5), 1 ton of coal A only requires 3/2 units of the pulverizer 
and 1 ton of coal B, 1 unit, therefore to pulverize one ton of coal B it is necessary to 
decrease the burning of coal A by 2/3. 

The previous reasoning is based on the use of scarce resources, however, it can be 
generally applied to any type of variables and constraints. The reduced coefficient of the 
objective function (Cj - Zj) always represents the variation of the objective function per 
entering nonbasic variable unit. If it is positive, it will increase the value of the objective 
function and if it is negative it will decrease this value. The reduced cost of the basic 
variables is always zero. 

When there are several nonbasic variables in a basic solution that increase Z (if we 
are maximizing), one approach is to select the entering basic variable with the best unitary 
improvement. When there is no positive reduced coefficient, we will not be able to 
improve Z and therefore, we have reached the optimal solution. 

 
CRITERION TO CHOOSE THE ENTERING BASIC VARIABLE  

The entering basic variable is the variable with the highest (Cj-Zj) value 
(Maximization).  
 

OPTIMALITY CRITERION 

A feasible basic solution is optimal if any (Cj-Zj) 0 for the nonbasic variables 
(Maximization). 

Previously, we have seen that a minimization problem, Min Z, can be expressed as a 
maximization Max (-Z) problem. However, the simplex criterion can also be modified 
conveniently. Thus, the entering basic variable would be the one which has the smallest 
(Cj-Zj), and the optimality criteria that (Cj-Zj)  0. 

Let us now look at what happens with the levels of activity of the basic variables when 
a nonbasic variable enters, for example X2 at the second iteration. We have just seen how 
a unitary increment of X2 causes a decrease of 2/3, in X3 as well as in X1 as can be seen 
in (8). Similarly, an increase of X2=  in (8) will cause some proportional decrease of the 
basic variables. Concretely 
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 (13) X3 = 4 - 1 X2 = 4 - 2/3 X2   

 X1 = 16 - 2 X2 = 16 - 2/3 X2 

 
As X2 is increased, X1 or X3 will gradually decrease until one of them is zero. If we 

continue increasing X2, one or the other or both would be negative, therefore the solution 
would become an infeasible solution and we can never let this happen. Therefore, the 
highest value that X2 can take, maintaining feasibility, is 

(14)  = min (4/ 2/3, 16/ 2/3) = 6 

if any of those i had been negative or zero, we would have not carried out the 
corresponding quotient, since the basic variable would increase its value or would remain 
with the same level of activity. In this case, the basic variable would never be zero and, 
therefore, it could not be replaced by the entering basic variable. 

 

CRITERION FOR THE LEAVING BASIC VARIABLE  

Given i of the entering basic variable, the leaving basic variable is the one that 
satisfies  

 
(15) 

 
  is the value of the new basic variable Xj in the  new solution. 

If there are no positive i,  can be increased without bound because none of the 
variables in the current basis will be zero. As  increases, the value of the objective 
function also increases. If the entering basic variable does not have an upper bound, the 
objective function could increase to infinity. This situation is known as unbounded 
solution. 

 

CRITERION FOR UNBOUNDED SOLUTIONS 

If for some nonbasic variable with (Cj-Zj) >0 all the values i are not positive, the 
linear programming model does not have a finite optimal solution. 

CHANGE OF BASIS:  

When we pass from a basic solution BS0 to an adjacent basic solution BS1 the 
following formulas indicate how the levels of activity of the basic variables and the 
value of the objective function change: 

(value of the basic variable Xi)
i 

= min for any i  >  0
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(16) Xi1 = Xi0 - ij j 

 X j1 = j 

 Z = j (Cj -Zj) 

The first equation tells us the value of Xi1 (basic variable i in the basic solution BS1) 
when units of the nonbasic variable j ( j) enter in the basis. The coefficient of the equation 

ij is thus decreasing the basic variable i in the above solution (Xi0) per unit increase in 
the nonbasic variable j. 

The increase of the objective function Z is the number of units of the entering basic 
variable ( j) by its reduced coefficient (Cj-Zj). 

3.2.4. SIMPLEX TABLEAU 

The calculations of the simplex method are carried out in a more appropriate way by 
using a table structure known as simplex tableau. Table 3.1 represents the initial simplex 
tableau corresponding to the corner-point A of Figure 3.1 and equations (5). 

In the first column of Table 3.1 we specify the name of the basic variables, then we 
have a column for each variable of the linear programming model in the standard form, 
another for the second member of the constraints and finally, a column to specify the 
quotient between the value of the basic variable and the ij coefficient of the entering 
basic variable. Note that the first row of the table, corresponding to X3 as basic variable, 
is the first equation of (5), the second row that has X5 as basic variable is the second 
equation of (5) and, similarly, the third row of Cj-Zj is the equation of the objective 
function as expressed in (5). Therefore, it is as if we left Z as a basic variable in all the 
iterations of the algorithm, but with the sign changed. This is why in the cell of column 
bi and the row (Cj-Zj) of the simplex tableau will appear the value of the objective function 
will appear with the sign changed. Note also that the coefficients of the basic variables 
make up the unit matrix, therefore, the values of these variables are those shown in 
column bi. 

Applying the entering and leaving criteria of the basic variables, we select first X1 as 
entering basic variable, as it produces the highest unitary increase in the objective 
function. As leaving basic variable, the basic variable chosen is the first to be zero, that 
is, X5. Thus, the new basis will be formed by X3 and X1. It is important to note that at this 
precise step the algorithm of the simplex implicitly considers the nonnegativity conditions 
of the variables. 
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Table 3.1. Initial simplex tableau 

BASIC VAR. X1 X2 X3 X5 bi bi/ i 

X3 0,5 1 1 0 12 24 

 X5 1,5 1 0 1 24 16 

Cj - Zj 24 20 0 0 0  

Table 3.2. Second simplex tableau  

BASIC VAR. X1 X2 X3 X5 bi bi/ i 

X3 0 2/3 1 -1/3 4 6 

X1 1 2/3 0 2/3 16 24 

Cj - Zj 0 4 0 - 16 - 384  

 

The following step consists of transforming the first tableau into the canonical form 
corresponding to the new basis. Pivot row is the row of the leaving basic variable and 
pivot column, the column of the entering basic variable. Pivot is the common element of 
the pivot column and the pivot row, while the semipivots are the remaining elements of 
the column of the entering basic variable. 
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Table 3.3. Third simplex tableau: optimal solution 

BASIC VAR. X1 X2 X3 X5 bi 

X2 0 1 3/2 -1/2 6 

X1 1 0 -1 1 12 

Cj - Zj 0 0 -6 -14 -408 

 
To set the corresponding tableau to the following basic solution in canonical form it 

is necessary that the pivot element be 1 and all the other elements of the pivot column, 
zero. This is achieved by applying the following rules when passing from an BS to an 
adjacent BS1: 

 

 

(17)   
 

 

In summary, pivot row IL,j,  is transformed by dividing it by the pivot. The remaining 
lines, 1

 i j, including (Cj-Zj), are transformed by subtracting the pivot row obtained in the 
first place and multiplied by the corresponding semipivot number. Chart 1 shows an 
outline of the steps of the simplex algorithm. 

Table 3.3 is the simplex tableau of the optimal solution. As we already knew and as 
we can see in this table, the optimal solution consists of using 12 ton/h of coal A and 6 
ton/h of coal B, obtaining a vapor production of 408 thousand pounds. Furthermore, this 
table provides additional information such as the opportunity costs of the scarce 
resources. What is the dual price of the constraint of smoke? What is its practical 
meaning? 

 

 

 

1
ij = 1

IL,jij  -  SEMIPIVOT  

IL,j IL,j

IL,JE PIVOT
1

IL,j = =
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CHART 3.1. SIMPLEX ALGORITM (MAXIMIZATION) 

INITIAL FEASIBLE
SOLUTION

BS0

THE ENTERING BASIC
VARIABLE

JE: MAX (Cj-Zj) all j nonbasic var.
(Cj-Zj)=Cj- ij-Ci (i basic var.)

(Cj-Zj) > 0

i JE > 0

NO

NO

OPTIMAL
SOLUTION

UNBOUNDED
SOLUTION

THE LEAVING BASIC VARIABLE
X0

IL: Min
j
+

CHANGE OF BASE

Xi=Xi
0 - j· ij

Xj= j
Z= j(Cj-Zj)

NEW BASE IN CANONICAL FORM
BS1

IL, j = IL, j / PIVOT

ij= ij - SEMIPIVOT · Il,j
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3.3. INITIAL BASIC FEASIBLE SOLUTION AND ARTIFICIAL 
VARIABLES. THE TWO-PHASE METHOD. 

In the previous example we obtained the basic initial solution from the slack variables, 
but many problems do not have an initial solution in canonical form. If there are equality 
constraints, higher or equal or second non positive members (=,  or bi  0), the only 
additional problem outlined is to identify the initial basic feasible solution. In this case, 
there is no guarantee that a feasible solution exists. Therefore, a systematic and efficient 
procedure is required to generate this basic initial and feasible solution, if it exists. 

One of the advantages of the simplex method is that the method itself is able to 
generate its own initial basic feasible solution, provided that one exists. If it does not 
exist, the simplex method specifies that the problem does not have a solution. 

When we have equality constraints in a model, there is no slack variable for this 
constraint that allows us to obtain the initial basic feasible solution. We could consider 
substituting the equality constraint for other two, one with  and the other with . This 
alternative is not very advisable because it increases the number of constraints of the 
problem. The technique of the artificial variable is preferable. This consists of adding, to 
the left side of the constraint, a fictitious variable that will be called artificial variable 
and whose only mission is to be the basic variable of that constraint in the initial basic 
solution. 

In the case of constraints, the slack variable enters to be subtracted, and if we 
multiplied the equation by (-1), we would find the second member negative and therefore 
with an initial infeasible solution. Therefore, in this case we also add an artificial variable. 

In summary, when we have problems with = or  constraints, an artificial variable 
is added for each one of the constraints of this type. This new problem is called the 
augmented problem. From the artificial variables we obtain an initial basic solution that 
is infeasible for the original problem because the artificial variables do not have a 
meaning in it. Therefore, the first thing to do is to find an initial basic feasible solution 
for our real problem, removing all the artificial variables from the basis. From this new 
basic solution we will continue searching for the optimal solution. 

We will see how the two-phase method allows us to find the initial basic feasible 
solution. This method will be explained with the energy generation example reformulated 
as a model of minimization of production costs. The additional constraint of having to 
produce a minimum of 216 thousand pounds of vapor is added.  

 (18) Minimize   24 X1+ 15 X2 

 X1  0 and X2 0  

 0.5 X1 + X2  12       

 1.5 X1 + X2  24  

 24 X1 + 20 X2  216  
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In the process that we follow to find the optimal solution we can distinguish two 
phases. The first corresponds to the iterations required until a feasible solution is found, 
without the artificial variables. The second phase consists of the additional iterations 
performed once a feasible basic solution has been found until the optimal solution is 
reached.  

The Two-phase method uses two different objective functions, one in each phase. The 
algorithm starts by introducing the artificial variables that are required to obtain an initial 
basic solution. 

 
Phase 1: 

The simplex method is used to solve the augmented linear programming whose 
objective function is the following  

(20)  Minimize Z = Sum of all of the artificial variables 

and the constraints are the original constraints of the model plus the artificial variables 
and nonnegativity constraints for all decision and artificial variables. The optimal solution 
obtained for this problem (Z=0) will be a feasible basic solution for the original problem. 

Phase 2: 

The artificial variables are removed, since their value is zero and the simplex is 
applied from the feasible basic solution obtained after phase 1 until the optimal solution 
is found. The objective function of this phase is that of the real problem (minimizing the 
production cost). 

 (21)  Minimize Z = Objective function of the problem = 24 X1+15X2  

Table 3.4 represents the initial simplex tableau for phase 1 of the example of cost 
minimization in energy production. Note that row Cj-Zj should be calculated from (12). 
That is  

 

Reduced cost of nonbasic variable Xj:  Cj - Zj = Cj -  ij  Ci 

where Cj is the coefficient of the nonbasic variable in the objective function (20). Ci is the 
coefficient of the basic variable i in the objective function (20) and ij is the coefficient 
of variable Xj in the row i. For example,  

C1-Z1= C1 – ( 11 C3 + 21 C5 + 31 CArtificial ) = 0 – (0.5*0 +1.5*0 +24*1) = -24 
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Table 3.4. PHASE 1: Initial simplex tableau  

BASIC VAR. X1 X2 X3 X5 X6 Xa bi bi/ i 

X3 0.5 1 1 0 0 0 12 24 

X5 1.5 1 0 1 0 0 24 16 

Xa 24 20 0 0 - 1 1  216  9 

Cj - Zj -24 -20  0 0 1 0 - 216   

Table 3.5. PHASE 1: Second simplex tableau  

BASIC VAR. X1 X2 X3 X5 X6 Xa bi 

X3 0 7/12 1 0 1/48 -1/48 7.5 

X5 0 -1/4 0 1 1/16 -1/16 10.5 

X1 1 5/6 0 0 - 1/24 1/24  9 

Cj - Zj 0 0 0 0 0 1  0  

 

From Table 3.4 the logic of the simplex means that X1 enters in the basis because it 
has the smallest (Cj-Zj) and we are minimizing the sum of the artificial variables. As there 
is only one, we have to set it to zero. When you enter X1 all basic variables decrease in 
value. For example, X3 decreases by 0.5 for each X1 unit that enters and Xa decreases by 
24. The first basic variable that reaches zero exits the basis, being the leaving basic 
variable, in this case it is the artificial variable. Therefore, in one iteration we finish phase 
1 whose optimal solution is shown in Table 3.5.  

Note that Table 3.6, initial chart of phase 2, is nothing more than the final tableau of 
phase 1 except that we have removed the column of the artificial variable and recalculated 
the Cj-Zj row. It is logical that it should be this way because the objective function is now 
different. Specifically the objective function of the problem, i.e. minimize the cost of 
production (18). By applying the two-phase method it may not be possible to find a 
feasible solution to the original problem. However, the technique of the artificial variables 
indicates that we have a situation of this type. In this example, Table 3.7 corresponds to 
the optimal solution because no nonbasic variable can reduce the cost, i.e. decrease the 
value of the objective function. In this case, the optimality criterion is that reduced costs 
are greater than or equal to zero. 
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  Table 3.6. PHASE 2: Initial simplex tableau  

BASIC VAR. X1 X2 X3 X5 X6 bi bi/ i 

X3 0 7/12 1 0 1/48 7.5 12.86 

X5 0 -1/4 0 1 1/16 10.5  

X1 1 5/6 0 0 - 1/24  9 10.8 

Cj - Zj 0 -5 0 0 1 - 216   

   

Table 3.7. PHASE 2: Second simplex tableau: optimal solution 

BASIC VAR. X1 X2 X3 X5 X6 bi 

X3 -0.7  0  1 0 0.05 1.2 

X5 0.3 0 0 1 0.05 13.2 

X2 6/5  1 0 0 -0.05  10.8 

Cj - Zj 6 0 0 0 0.75 - 162 

   

If the original problem does not have feasible solutions, then any optimal solution 
obtained in phase 1 of the Two-phase method leads to a final solution that contains 
at least one artificial variable higher than zero. Otherwise, all of them are equal to 
zero. 

OPTIMALITY CRITERION 

The optimal solution for the augmented problem is also optimal for the original 
problem if there are no artificial variables with non-zero values. 

If not all of the artificial variables are eliminated from the basis, the original problem 
does not have a feasible solution. 
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3.4. SIMPLEX ALGORITHM WITH BOUNDED VARIABLES 

In many real problems the decision variables of the model are lower or upper bounded. 
For example, in problems of production planning the amount to manufacture can be 
restricted by minimum demands to cover for some clients or for maximum demands 
according to market studies. We might think that by increasing the number of constraints 
of the model we will complicate the resolution, increasing the number of iterations 
necessary to reach the optimal solution. However, the consideration of this type of 
constraints does not necessarily involve increasing the matrix of technical coefficients of 
the problem. These conditions are considered in a special way, so that the efficiency of 
the algorithm increases, as we will see in the following example. Because of this, 
optimization software usually recommends that users bound the variables of the model, 
if possible, although they might not have real bounds. Let us look at the operation of the 
simplex technique with bounded variables. 

3.4.1. LOWER BOUND TECHNIQUE 

One of the best known applications of linear programming is the allocation of limited 
production resources. We will see an example of this type that will allow us to 
demonstrate its use in the identification of bottlenecks that a company may have and will 
also explain the lower bound technique. Later, we will also use this example to explain 
the foundations of the dual price and the dual simplex algorithm. 

Suppose that a company manufactures three products A, B and C that must be 
processed through five departments. Table 3.8 displays the data for the problem. The 
objective is to find out the weekly production of A, B and C that maximizes profits. 

To formulate the model, we first define the nonnegative variables: 

A  0   manufactured units of product A per week 

B  0   manufactured units of product B per week 

C  0   manufactured units of product C per week 

The objective function will be to maximizing the total profit 

MAX 20 A + 18 B + 21 C 
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Table 3.8. Production problem by departments 

Product Minimum 
demand 

Unitary 
benefit  

Number of processing hours per product unit 

Dep1 Dep2 Dep3 Dep4 Dep5 

A 100 20 0.2 0.50 0.1 0.02 0.05 

B 180  18   0.1 - 0.3 0.02 0.06 

C 75 21 0.3 0.07 0.1 0.02 0.05 

Capacity of the departments 
 (weekly hours) 160 80 80 40 40 

 
 

The constraints of the model refer to the minimum demands and the capacities of the 
different departments: 

 (21) DemA: A  100 
 DemB: B  180 

 DemC: C  75 
 Dept1: 0.2 A + 0.1 B + 0.3 C  160 
 Dept2: 0.5 A + 0.07 C  80 
 Dept3: 0.1 A + 0.3 B + 0.1 C  80 
 Dept4: 0.02 A + 0.02 B + 0.02 C  40 
 Dept5: 0.05 A + 0.06 B + 0.05 C  40 

The last two constraints are redundant and we could remove them, but we will keep 
them for pedagogical purposes. 

The optimization software does not include the variable bounds as constraints and 
encourages the user to identify them as special constraints to use a more efficient 
algorithm. How does it solve a problem with lower bound variables? The simplex method 
uses an implicit lower bound of zero for all the variables. This is achieved by setting all 
the nonbasic variables to zero and all the basic ones to be nonnegative. The nonnegativity 
of basic variables is maintained by the rule of choosing the leaving basic variable. 
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When we have an Xj variable with an Lj lower bound, we should enter a constraint Xj 
 Lj. We can avoid it by defining a new variable Yj that represents the amount by which 

Xj exceeds its lower bound: 

(22) Yj = Xj - Lj   being Yj  0 

Yj substitutes Xj in all of the constraints and in the objective function. This change of 
variable modifies the right-hand side of the constraints from bi to (bi - ai j Lj) and gives 
the objective function an initial value of Z0 = Cj Lj. 

The linear programming software automatically carries out these transformations and 
it undoes them again before showing the optimal solution. We will check this procedure 
in LINGO. 

For a better understanding of this technique we will apply it to our previous example. 
We define, 

(23) Ya =  A - 100 Ya  0 

Yb =  B - 180 Yb  0 

Yc =  C - 75 Yc  0 
the problem being as follows 

 (24) Max 20 (Ya + 100) + 18 (Yb + 180) + 21 (Yc + 75) 

 0.2 (Ya + 100) + 0.1 (Yb + 180) + 0.3 (Yc + 75)  160 

 0.5 (Ya + 100) + 0.07 (Yc + 75)     80 

 0.1 (Ya + 100) + 0.3 (Yb + 180) + 0.1 (Yc + 75)             80 

 0.02 (Ya + 100) + 0.02 (Yb + 180) + 0.02 (Yc + 75)       40 

 0.05 (Ya + 100) + 0.06 (Yb + 180) + 0.05 (Yc + 75)       40 

and simplifying 

 (25) Max   6815 + 20 Ya + 18 Yb + 21 Yc 

 0.2 Ya + 0.1 Yb + 0.3 Yc   99.5 

 0.5 Ya + 0.07 Yc   24.75 

 0.1 Ya + 0.3 Yb + 0.1 Yc    8.5 

 0.02 Ya + 0.02 Yb + 0.02 Yc  32.9 

 0.05 Ya + 0.06 Yb + 0.05 Yc     20.45 
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By introducing the slack variables X1, X2, X3, X4 and X5, passing inequalities to 
equalities and applying the simplex algorithm we obtain Tables 3.9 and 3.10. The initial 
table corresponds to the initial basic feasible solution that represents the production of the 
minimum demands required for the three products. This solution has a value of Z = 6815, 
as obtained in (24) and (25) (see bold numbers).  

At the first iteration the entering basic variable is the variable that most increases the 
objective function per nonbasic variable unit, in this case, Yc. After carrying out the basis 
change and obtaining the second tableau we see that this corresponds to an optimal 
solution, because any modification in a nonbasic variable would worsen the value of the 
benefit (all the Cj-Zj 0). 

Therefore the optimal solution is the following: 

 
(26) A = Ya + 100  =    100 

 B = Yb + 180  =    180 
 C = Yc + 75  =    160 
 Benefit = Z =  8600  
 
In the tableau corresponding to the optimal solution of this problem, we can see that 

department 3 is the bottleneck of the company, since it is limiting its productive capacity, 
while the other four departments maintain idle resources. This example shows the utility 
of linear programming in production planning problems for identifying bottlenecks. 

Table 3.9. Initial simplex tableau  

BASIC 
VARIABLE Ya Yb Yc X1 X2 X3 X4 X5 bi bi/ ij 

X1 0.20 0.10 0.30 1 0 0 0 0 99.50 331.6 

X2 0.50 0.00 0.07 0 1 0 0 0 24.75 353.6 

X3 0.10 0.30 0.10 0 0 1 0 0 8.50 85 

X4 0.02 0.02 0.02 0 0 0 1 0 32.90 1645 

X5 0.05 0.06 0.05 0 0 0 0 1 20.45 409 

Cj-Zj 20 18 21 0 0 0 0 0 - 6815  
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Table 3.10. Second simplex tableau: optimal solution  

BASIC 
VARIABLE Ya Yb Yc X1 X2 X3 X4 X5 bi 

X1 -0.10 -0.8 0 1 0 -3 0 0 74 

X2 0.43 -0.21 0 0 1 -0.7 0 0 18.8 

Yc 1 3 1 0 0 10 0 0 85 

X4 0 -0.04 0 0 0 -0.2 1 0 31.2 

X5 0 -0.09 0 0 0 -0.5 0 1 16.2 

Cj-Zj -1 -45 0 0 0 -210 0 0 -8600 

 

Is the company using its resources appropriately? How could it improve? What would 
happen if the demand for A or B increased? And which would be preferable? 

3.4.2. UPPER BOUND TECHNIQUE 

When the variables have upper bound constraints, a simple transformation of the 
variables is not enough for considering these restrictions. Some modification of the rules 
of the simplex method are also necessary. 

If the variable Xj has an upper bound with the value Uj 

 (27) Xj  Uj 

we define a new Xj´ variable so that Xj + Xj´ = Uj  

Xj´ is the complementary variable of Xj. 

1) If Xj is at its upper bound Uj, then Xj´ will be at its lower bound and vice versa. 

2) The technical coefficients of Xj´ are the negative of Xj. 
 

The upper bound routine uses these two properties to eliminate the upper bound 
constraints. We will see how Xj is used as a nonbasic variable when Xj=0 and Xj´ is used 
as a nonbasic variable when Xj is at its upper bound. If the value of the variable is between 
the two limits, Xj or Xj´ both can be basic. 
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Let us solve the following model 

 (28) Max 4X1 + 5X2 
 2X1 + 3X2  9 
 2X1 + X2  9 
 1  X1  4 
 0  X2  1 

 
Both variables of the model have upper bound constraints and in addition, one of them 

has a lower bound higher than zero. Therefore, we will begin by defining a new variable 
Y1 that expresses X1 value that is above its lower bound 1. 

(29) Y1 = X1 - 1    X1 = Y1 + 1 

And we will also define a complementary variable Y1' which is the difference between 
the value of Y1 and its upper bound, which is 3. Similarly X2' is defined in association to 
the variable X2. The sum of both must be the upper bound, in this case 1. 

(30) Y1 + Y1´ = 3 

X2 + X2´ = 1 

Table 3.11 shows the initial tableau. Previously we have substituted X1 for Y1+1 in 
the equations of the model (28). Therefore, in this table Y1 appears instead of X1. Table 
3.11 corresponds to an initial basic feasible solution where Y1 is the nonbasic variable 
and therefore X3 =7, X4 = 7 and Z=4, when X1= Y1+1 in (28). That is, we start with a 
solution where X1=1, which is equivalent to Y1= 0. 

The entering basic variable at the first iteration is the variable which has the highest 
reduced cost Cj-Zj that is X2. Applying the simplex method, X3 would be the leaving basic 
variable, because it is the first basic variable that reaches the zero value. However, 2.33 
units of X2 are necessary to be set to zero X3 and they cannot be introduced because X2 
is upper bounded with the value 1. As X2 reached its upper bound before any basic 
variable reaches zero, a variable change is carried out. X2 is replaced by X2´ so that the 
only necessary changes in the tableau to obtain the next tableau, table 3.12, consist of 
upgrading the column bi with the formula of the basis change (16) and changing the sign 
to the coefficients of column X2´. 

From table 3.12 we choose variable Y1  to be the entering basic variable because is 
the only one that increases the value of Z, and X3 would leave the basis, because is the 
first basic variable to reach zero. The table corresponding to the following basic solution, 
Table 3.13, is calculated by applying the simplex standard rules, that is, with the pivot 
and semi pivot formulae (17).   
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For the basic solution to table 3.13,  the only variable which increases the objective  
function is X2' and,  by increasing its value,  Y1 increases by 3/2 and X4 decreases by 2 
for each additional unit in X2'.  Thus X4 can reach zero and Y1 can reach its upper bound. 
The latter is what happens first and the table corresponding to the next feasible basic 
solution is a little more complicated than in previous cases as, in addition to applying the 
formulae to change the basis (17), other considerations must be taken into account. 

In table 3.14 the value of the entering basic variable X2' is 2/3. This value is not 
obtained by dividing bi by the i coefficient. In particular, 2/3 is what has to enter in the 
basis of X2' for the basic variable Y1 to reach its upper bound of 3. Moreover as the basic 
variable Y1 reaches its upper bound, it is substituted by Y1´as a nonbasic variable. 
Therefore, the coefficients of column Y1´are multiplied by (-1).  

Table 3.11. Initial simplex tableau  

BASIC VAR. Y1 X2 X3 X4 bi bi/ i 

X3 2 3 1 0 7 7/3=2.33 

X4 2 1 0 1 7 7/1=7 

Cj - Zj 4 5 0 0 - 4  

Table 3.12. Simplex tableau: first iteration 

BASIC VAR. Y1 X2' X3 X4 bi bi/ i 

X3 2 - 3 1 0 4 4/2=2 

X4 2 - 1 0 1 6 6/2=3 

Cj - Zj 4 - 5 0 0 - 9  

Table 3.13. Simplex tableau: second iteration 

BASIC VAR. Y1 X2' X3 X4 bi bi/ i 

Y1 1 -3/2 1/2 0 2 1/3/2=2/3 

X4 0 2 - 1 1 2 2/2=1 

Cj - Zj 0 1 - 2 0 - 17  
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Table 3.14. Simplex tableau third iteration: optimum solution 

BASIC VAR. Y1' X2' X3 X4 bi 

X2' 2/3 1 - 1/3 0 2/3 

X4 - 4/3 0 - 1/3 1 2/3 

Cj - Zj - 2/3 0 - 5/3 0 - 17.66 

 

From Table 3.14 and taking into consideration (29) and (30) the optimal solution is  

X1  =  4 

X2  =  0.33 

Z  =  17.66 
 

In brief, the upper bound technique applies the following criteria: 

VALUE OF THE INCREASING NONBASIC VARIABLE 

(31) Xj = j = min  [ , Uj, j] 
 

Uj = upper bound of the entering basic variable 
 

 

Therefore, the basis change can take place due to three different situations: 

1.  The entering basic variable substitutes the leaving basic variable which 
reaches zero as in the standard simplex algorithm. 

2. Uj The entering basic variable reaches its upper bound before a basic variable 
reaches zero or its upper bound. In this case, Xj has to be replaced by Xj´ or vice 
versa. The corresponding column must be multiplied by (-1) to obtain the 
following simplex tableau, in addition to upgrading the values of the basic 
variables (bi) and of the objective function. The new values of the variables are 

  

X i

i
min i  > 0

base value Xi - upper bound Xi 
i

MIN i  < 0
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(32) Xi
1 = Xi - Uj i 

Xj = Uj     Xj´= 0  

3.  When increasing the entering basic variable, one of the basic variables reaches 
its upper bound. For this reason, in the following table the complementary 
variable Xk´ will appear instead of Xk or vice versa and its column will be 
multiplied by (-1). The nonbasic variable which is increased, Xj substitutes the 
basic variable Xk. The new values of the variables are 

(33) Xk = Uj  Xk´= 0 

 Xi
1 = Xi -   i 

 Xj =    

In this case, in order to obtain the new table of the basic solution, it is necessary 
to apply the formulae of the simplex method, except when calculating the new 
value of the entering basic variable ( ) and change the variable, and therefore the 
sign of its corresponding column. 

 
Chart 3.2 outlines the steps of the simplex algorithm with upper bound constraints. 

Note that the only difference with the simplex method is in the rule for selecting the 
leaving basic variable. In the simplex method we choose the one which first reaches zero 
as the leaving basic variable, to avoid an infeasible solution due to a negative variable. In 
the upper bound technique we select the variable which first becomes infeasible, due to a 
negative value of the basic variable, exceeding the upper bound of the entering basic 
variable or the leaving basic variable.  
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CHART 3.2. UPPER BOUND TECHNIQUE (MAXIMIZATION) 
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3.5. THE REVISED SIMPLEX METHOD, THE INTERIOR POINT 
ALGORITM AND THE OPTIMIZATION SOFTWARE 

 

If the simplex algorithm in its form of complete tableau is analyzed in detail, as we 
have described in sections 3.2 onwards, we will realize that in problems with many more 
variables than constraints, we are upgrading data at each iteration that are in fact useless. 
Concretely the only nonbasic variable of interest at each step is the entering basic variable. 

The revised simplex method maintains the same fundamental logic as the described 
simplex method and is nothing other than a simplified version that only calculates and 
stores the required data at each moment. It is therefore a more efficient implementation 
and the one which is in fact used by optimization software. 

The revised simplex method has also another important aspect in addition to the 
advantages of requiring less storage and often less calculation. The computer can have 
significant rounding problems after performing many iterations. This affects the values 
Cj-Zj and the ratio of the leaving basic variable. We could, therefore, pick a wrong 
variable to enter or leave the basis. We reduce these rounding errors to within reasonable 
limits by determining the inverse of the matrix forming the basis vectors in any iteration. 
Professional software typically inverts this matrix every few iterations and when the 
optimality test is met. Special procedures are used to store and update the matrix formed 
by the coefficients of the basic variables or its inverse, which take into account the 
dispersion of the matrices helping to correct errors, streamline inversions and reduce 
storage requirements. 

The importance of linear programming at the moment is due to the existence of an 
extraordinarily efficient algorithm: the simplex algorithm, developed by George Dantzig, 
and the availability of computers that can carry out the large amount of necessary 
calculations. The theoretical properties of the algorithms can be evaluated through the 
computational complexity and counterexamples have been created to demonstrate that the 
simplex algorithm is not polynomial, but rather it is an exponential algorithm. Although 
in practice the simplex performs very well, researchers have continued to look for 
polynomial algorithms to solve linear programming models. 

Narendra Karmarkar, from the ATT Company, published an article in 1984 in which 
he announced a new algorithm to solve large linear programming models that had the 
property of being polynomial. Firstly, he claimed that the algorithm could solve large 
models up to 50 times faster than the simplex method. As no details of the algorithm were 
given, for copyright reasons, it could not be verified if this claim was true. Later on, some 
details were made public and, meanwhile, other researchers have developed applications 
of the algorithm that, so far, have produced contradictory results.  

At the moment, it is not clear which of the two algorithms is more efficient, although 
it seems that in the future both will be complementary in linear programming. The biggest 
advantage of the interior-point algorithm is that the increase in the required computational 
time becomes greater at a smaller rate than the simplex when the size of the problem 
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increases. On the other hand, the high preparation time of Karmarkar’s method prevents 
it from becoming a strong competitor when dealing with relatively small models (dozens 
or hundreds of functional constraints).  

In addition, as we will see in the following chapter, the simplex method is excellent 
for carrying out the postoptimality analysis, while the interior-point algorithm does not 
enable one to carry out this analysis efficiently, although it obtains dual prices. In 
summary, in the future it is foreseen that the simplex will continue to be used as a standard 
linear programming method and Karmarkar’s or one of its versions for very large 
problems. As the interior-point algorithm converges on the best solution, it is possible 
that a feasible solution close to the optimal becomes an initial solution for the simplex 
algorithm, which would allow us to find the optimal solution and carry out the sensitivity 
analysis. 

Next we will demonstrate with an example the approach of the interior-point 
algorithm. The main concepts of the algorithm are the following. 

Concept 1: To obtain a feasible solution that leads to the optimal solution from the 
interior of the feasible region. 

Concept 2: To move in the direction that improves the value of the objective function 
as fast as possible. 

Concept 3: To transform the feasible region in order to place the current trial solution 
near the center thus allowing a large improvement when concept 2 is 
carried out. 

We will see the previous ideas with the following linear programming model and its 
graphical representation: 

Max Z = X1 + 2 X2 

X1 + X2  8 

X1  0   X2  0 

The algorithm starts with an initial trial solution that should be in the interior of the 
feasible region as in all of the following. Thus, the initial solution should not be in any of 
the three straight lines that form the boundary of the feasible region (X1 + X2 = 8, X1 = 0, 
X2 = 0). (X1, X 2) = (2, 2) are randomly chosen as an initial trial solution. Next, we have 
to move in the direction that improves the value of the objective function as fast as 
possible. This direction is that of the gradient of the objective function and it is given by 
the vector of partial derivatives, that is (1, 2). Note that the components of this vector are 
the coefficients of the objective function, as this is a linear function. 
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The algorithm begins with the linear programming model in the standard form 

Max Z = X1 + 2 X2 

X1 + X2 + X3 = 8 

X1  0  X2  0     X3  0 

and the matrix 

Max  Z = CT X 
A X = b 
X  0 

Figure 3.2 shows the feasible region of the problem, as well as the path that the trial 
solutions follow until finding the optimal solution (Hillier and Lieberman, 2010). 

In this example we have seen that the interior-point algorithm requires more iterations 
and more calculations than those performed by the simplex algorithm and in the end it 
only obtains an approximation to the optimal solution. However, we should take into 
consideration that this algorithm is designed for large problems with many thousands of 
functional constraints. In this case the simplex would carry out thousands of iterations, 
while Karmarkar’s algorithm would need a lot less, although with more work per 
iteration. Currently, the optimization software LINGO incorporates this method (Barrier 
Solver), in addition to the simplex algorithm. 

In this section we have seen that the linear programming software does not use the 
full tableau simplex method.  The revised simplex method is used because of the lower 
storage and computation effort. Furthermore, the revised simplex method also allows the 
periodic avoidance of rounding errors accumulated over many iterations. The accuracy 
of the final solution depends on the tolerances of the program or is specified by the user. 
Errors are possible due to the way in which the computer manipulates and stores decimal 
numbers. Thus, small differences from zero, for example 10 -6, are considered equal to 
zero. These limits are called tolerances. The choice is not easy, as the small tolerances 
are difficult to meet and can promote errors. The large tolerances can treat many non-zero 
data as if they were zero. 

The accuracy of the solution can be improved by appropriately scaled input data. 
Whenever possible, very large and very small data in the same model should be avoided, 
because that increases the risk of accumulation of errors. The software may have options 
to scale the data of the problem and eliminate internal scaling before presenting the 
results. 
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Figure 3.2. Path of the interior-point algorithm 

3.6. SUMMARY 

In this chapter we have studied general methods for solving any model that adapts to 
the structure of linear programming as defined in chapter 2. First, we have defined the 
basic concepts of the solution algorithm par excellence of Operations 
Research/Management Science, the simplex method. The feasible region of a linear 
programming model is a convex set and if it has a finite optimal solution, at least one 
optimal solution is a corner-point (feasible basic solution). 

The simplex method starts from a feasible basic solution and it moves to another 
adjacent feasible basic solution and improves the value of the objective function. When 
it cannot find a better adjacent basic solution, it means that it has found the optimal 
solution. The criteria used by the simplex method are choosing the most efficient for the 
entering basic variable and the first basic variable that reaches zero for the leaving basic 
variable. 
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When all of the constraints of the model have a smaller than or equal to sign ( ), the 
first feasible basic solution is found from the slack variables. If this is not the case, we 
can apply the artificial variable technique to obtain an initial solution and later use the 
two-phase method to find the optimal solution. 

In many models the variables are upper and lower bounded. By applying the simplex 
techniques with bounded variables we avoid having to increase the number of 
functional constraints of the problem. In the case of lower bounds, it is only required to 
make a change in the variable, while for variables with upper bounds it is also necessary 
modify the selection of the variable that leaves the basis at each iteration. The increase in 
efficiency is so considerable that the optimization software recommends identifying the 
bound constraints as this special type for as many variables as possible. 

We have also commented on the most efficient way of implementing the simplex, the 
revised simplex, which is nothing other than a version of the simplex in which only the 
necessary data are calculated and stored at each iteration. In addition, this method allows 
the reduction of rounding errors. Lastly, the basic concepts of the latest developments 
regarding linear programming solving techniques have been described, in particular the 
interior-point algorithm.  This starts from a point in the interior of the feasible region 
and it shifts in the direction in which the objective function is improved the quickest way, 
while maintaining feasibility. This process converges to the optimal solution. It is 
predicted that it will be used in combination with the simplex for large models with many 
thousands of functional constraints. Currently, the optimization software LINGO 
incorporates it (Barrier Solver).  
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3.8. CASE STUDIES 

CASE STUDY 1 

Solve the production planning model of section 3.4.1 without considering the constraints 
of minimum demand, and applying the simplex algorithm. Then answer the following 
questions from the final simplex tableau. 

1. Indicate the optimal solution. 

2. Are all resources completely used? If there are idle resources, indicate which ones 
and in what quantity. 

3. The company is considering redistributing the resources between different 
departments. Analyze the convenience of the following alternatives and if you 
consider that there is a better one, indicate it. Explain your reasoning. 

a)  Transfer 25 h/week from department 4 and 5 h/week from department 5 to 
department 3. 

b)  Transfer 25 h/week from department 4 and 5 h/week from department 5 to 
department 1. 

c)  Reduce the hours in departments 2 and 5. 

4. Indicate the reduced costs of the variables and dual price of the constraints, and 
analyze the relationship of these with the slack variables. 

 

CASE STUDY 2 

Given the following linear programming model 
Max Z = 24 X1 + 20 X2 

0.5 X1 + X2  12 

1.5 X1 + X2  24 

0  X1  15 

0  X2  10 

1. Obtain the optimal solution by means of the graphic method. 

2. Obtain the optimal solution by means of the simplex algorithm. 

3. Find the optimal solution by applying the upper bound technique. 
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4. Identify each simplex tableau obtained in sections 2 and 3 with the corresponding 
corner-point in the graph carried out in the first section. Analyze the analogies and 
differences between the upper bound technique and the simplex algorithm. 

5. Why is the upper bound technique more efficient? 

CASE STUDY 3 

Production planning models are among the best known applications of linear 
programming. However, as we know, what characterizes a linear programming model is 
not the context, but its mathematical structure. Although linear programming models are 
quite frequent in those problems in which the benefit of the company is maximized or the 
costs are minimized, the possibilities of linear programming are much wider and now we 
will see an example that illustrates this fact. This case study also serves as an example 
that allows you to graphically and algebraically solve a linear model where we minimize 
the objective function (in this chapter we explain the simplex algorithm for a 
maximization problem) and it contains the three types of constraints that can appear in a 
linear programming model ( ,   , =). 

 
The problem: design of a radiation therapy (Hillier and Lieberman, 2010)  

When cancer is diagnosed in a very advanced stage, the only alternative with any 
expectancy of success is to apply radiation therapy in combination with chemotherapy 
and surgery. Radiation therapy consists of the use of a machine that passes ionizing 
radiation through the patient's body and damages both cancerous and healthy tissues.  

Normally, the beams are administered accurately from different angles in a two-
dimensional plane. Due to the attenuation, each beam delivers more radiation on the tissue 
near the entry point than on the point closer to the exit. Scatter also causes the tissues 
outside the trajectory of the beam to receive radiation. Because tumor cells are almost 
always microscopically spread among the healthy cells, the radiation dosage throughout 
the tumor region must be large enough to kill the malignant cells that are a little more 
sensitive to this, but small enough to avoid killing the healthy cells. 

Simultaneously, the radiation dosage delivered to the critical tissues (vital organs) 
should not exceed the established levels of tolerance in order to prevent complications 
that can be more serious than the illness itself. For the same reason, the dosage that a 
healthy anatomy should receive has to be minimized. 

The need to achieve a balance between all of these factors is what makes the design 
of a radiation therapy difficult. The main objective of the design is to choose the 
combination of beams to be used and their intensity to generate the best dose distribution 
possible. The strength of the dose at any point of the body is measured in kilorads. Once 
the treatment has been designed, it is administered in many sessions over several weeks. 
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For every beam with a given intensity the analysis of resulting radiation absorption in 
different parts of the body requires a complicated process. In summary, based on a careful 
anatomical analysis, the energy distribution within a two-dimensional cross section can 
be graphed in an isodose map in which the curves represent the strength of the dose as a 
percentage at its entry point. Then, a fine mesh is placed on the isodose map. If the 
radiation absorbed in the squares that contain each type of tissue is added, the average 
dose absorbed by the tumor, the healthy anatomy and the critical tissues can be calculated. 
The radiation absorption is additive when more than one beam is administered. 

After such an exhaustive analysis, the medical team estimates, in detail, the necessary 
data for the design of the treatment. The summary is presented in Table 3.15, whose first 
column shows the areas that must be considered and the next two columns give the 
fraction of the dose of each beam that is absorbed on average in the respective areas. For 
example, if the dose level at the entry point for beam 1 is 1 kilorad, then 0.4 kilorads will 
be absorbed in the whole healthy anatomy in the two-dimensional plane, an average of 
0.3 kilorads in the near critical tissues, an average of 0.5 kilorads in the different parts of 
the tumor and 0.6 will be absorbed in the center of the tumor. The last column gives the 
constraints on average on the total dose of both beams in different parts of the body. Thus, 
the dose received by the critical tissues should not exceed 2.7 kilorads, the average on the 
complete tumor should be approximately 6 kilorads and it should be at least 6 kilorads in 
the center of the tumor.  In particular, the absorption average of the dose for the healthy 
anatomy should be as small as possible. 

Table 3.15 Data for the design of the radiation therapy  

Area 

Fraction of the entry dose absorbed by area 
(average)  Restriction on the 

total average dose 
Beam 1 Beam 2 

Healthy anatomy 0.4 0.5 Minimize 

Critical tissue 0.3 0.1  2.7 

Region of the 
tumor 0.5 0.5 = 6 

Center of the 
tumor 0.6 0.4 6 

 

1. Formulate a linear programming model to solve this problem. 

2. Obtain the optimal solution by means of the graphical method.  
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3.  Solve the model by means of the Two-phase method. 

4.  Graphically, what is the effect of adding artificial variables to the  and = constraints? 
Identify each simplex tableau obtained with its corresponding corner-point in the 
graphical method. 

5. Which is the optimal dose? How much radiation does each one of the types of tissue 
under consideration receive? What would be the dose and the radiation received in 
each type of tissue if we wanted to the radiation received by the critical tissues to be 
reduced to 2.5 kilorads? What happens if you want to reduce to 2 kilorads? Answer 
these questions from the optimal simplex tableau. 

The Memorial Sloan-Kettering Cancer Center located in New York City received the 
first prize of the Franz Edelman Award by INFORMS Society in 2007. This award 
recognized the application of mixed integer programming (with some binary variables) 
to optimize brachytheraphy (a procedure that involves placing radioactive material inside 
your body, sometimes called internal radiation) in prostate cancer that can be applied to 
other types of cancer. 

 

CASE STUDY 4 

Solve the following linear programming model using the upper bound technique and 
identify the Uj,  and  at each iteration, and explain in detail all of the steps of the 
algorithm. What computational consequences does this procedure have when compared 
to the consideration of the variable bounds as functional constraints? 

Max 10 X1 + 15 X2 - 10 X3 + 25 X4 
2 X1 + 2 X2 + X3 +2 X4  5 
X1 + 2 X2 - 3 X3 + 4 X4  5 

Xj  1 for any j = 1, 2, 3, 4 

CASE STUDY 5 

Given the following linear programming model of production, where X1 and X2 
represent two products in thousands of units and R1 and R2 are the productive resources. 
Solve the model using the upper bound simplex technique. Explain in detail the selection 
of the entering and leaving basic variables in each iteration. 

Max 7X1 + 10 X2 

R1:  4X1 + 6 X2  15 

R2:   3X1 + 2 X2  10 

Maximum demand:        X1  2 
Minimum demand:         X2  1 
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CASE STUDY 6: SOLID WASTE RECYCLING (Hillier and Lieberman, 2010)  

A recycling plant includes 4 types of solid waste material and treats them to 
amalgamate them into a product that can be brought to market. The treatment and the 
amalgamated treatment are two different processes. Three different types of product can 
be obtained depending on the resultant mixture of materials which are used (Table 3 16.). 

Quality standards require that there are minimum and maximum amounts of materials 
allowed in each type of product, expressed as a percentage of total product weight. These 
specifications are listed in Table 3.16, together with the cost of amalgamating and the 
selling price. 

The plant collects waste materials from reliable sources so that stable production rates 
can be maintained to treat them. Table 3.17 shows the available weekly quantities, and 
the treatment cost. 

The plant is owned by an environmental organization that has made contributions of 
€30,000 per week to be used only to cover the cost of full treatment of solid waste. The 
guidelines of the environmental organization are that the plant distributes the funds 
among plant materials so as to collect and treat at least half of each type of material. 

Table 3.16. Specifications and amalgamated cost and sale price of the products  

TYPE OF 
PRODUCT SPECIFICATIONS AMALGAMATION 

COST /KG. 
SALE PRICE 

€/KG. 

A 
Material 1  30 % 
Material 2  40 % 
Material 3  50% 
Material 4 = 20 % 

3 8,5 

B 
Material 1  50 % 
Material 2  10 % 
Material 4  = 10 % 

2,5 7 

C Material 1  70 % 2 5,5 

Table 3.17. Availability and cost of material treatment  

MATERIALS MATERIAL 1 MATERIAL 2 MATERIAL 3 MATERIAL 4 

AVAILABILITY KG/WEEK 3,000 2,000 4,000 1,000 

COST €/KG 3 6 4 5 
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The plant manager wants to determine how much of each product type to produce and 
what mix of materials to maximize weekly profit (total revenue less cost of sales of the 
amalgamated product). The 30,000 euros per week that come from donations received by 
the environmental organization should be used to treat the materials. Formulate and solve 
the model for this problem. Also, explain in detail the information that provides the 
reduced costs in the optimal solution. 

 

CASE STUDY 7  

Solve the production planning model from section 3.4.1 with the additional constraints 
of maximum demands for the three products indicated. 

Max 20 A + 18 B + 21 C 
0.2 A + 0.1 B + 0.3 C  160 
0.5 A + 0.07 C  80 
0.1 A + 0.3 B + 0.1 C  80 
0.02 A + 0.02 B + 0.02 C  40 
0.05 A + 0.06 B + 0.05 C  40 
0  A  90 
0  B  150 
0  C  400 
 

1. Analyze and explain the differences between the optimal solutions of the three versions 
of the production planning model:  
 

1.1. Without demand constraints, solved in section 1.1 of case study1. 

1.2. With minimum demand constraints from section 3.4.1 of this chapter. 

1.3. With the maximum demand constraints from this section. 

2. What is the best/worst for the company to increase the minimum or maximum demand 
in case of product A by 10 units? Why? Explain the reasoning from the optimal 
solution. 

2.1. Explain the information provided by the reduced costs of products A, B and C in 
the three versions of the problem. 

2.2. Identify the bottlenecks of the company in the three situations defined in section 
1. 

2.3. Explain the value of the benefit obtained by the company from the concepts of 
dual price and reduced cost. 
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One hypothesis in linear programming is the certainty with respect to model parameters. 
In practice, model parameters are usually estimates. Therefore, when we have found the 
optimal solution for a problem, we have to analyze the effects of modifying the 
coefficients on the problem solution. For example, prices change with time and we may 
have used average prices in the model. In such a case, it would be necessary to evaluate 
whether the optimal solution would change if the price changed within the estimated 
limits. Fortunately, in linear programming it is very easy to carry out this study from 
optimal simplex tableaux.  

This chapter focuses on how to carry out and interpret a sensitivity analysis. However, 
before studying sensitivity analysis we will introduce the concept of duality and the dual 
algorithm, which have important applications in economics. Finally, we will study 
parametric linear programming, since on many occasions the chosen values of some 
coefficients are only managing decisions. In this case, it is convenient to analyze the 
response of the problem solution to these decisions. 

4.1. THE DUAL PROBLEM AND PRIMAL-DUAL RELATIONSHIPS 

The problem of determining the opportunity cost of resources is also a linear 
programming model, which is actually the dual problem of the original problem. Duality 
is not only an interesting theoretical relationship. Let's describe it, as it is the basis of the 
concept of opportunity cost, of the dual simplex algorithm and of sensitivity analysis. 

Every linear programming problem has another linear programming problem 
associated with it, and between them there are very special relationships. Each is the dual 
of the other. We shall illustrate it using the problem of production planning presented in 
section 3.4.1 of chapter 3, without regarding the demand constraints, i.e. the lower bound 
constraints of the variables. 

4.1.1. THE PRIMAL PROBLEM AND THE DUAL PROBLEM 

  Each problem constraint is associated with one variable of the other problem and 
vice versa. 

 The technical coefficients of each problem constraint are the same as the technical 
coefficients of the corresponding variable in the other problem. 

 The constraint's right-hand sides are the objective function coefficients of the 
corresponding variables in the other problem and vice versa. 

 If we minimize in one problem with  constraints and nonnegative variables, then 
in the other problem we maximize with constraints  and nonnegative variables. 
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The dual problem associated with the production planning problem is shown in Table 
4.1. In this Table we see that the original problem is referred to as the primal problem. 
Note that the dual problem has 5 variables, one for each constraint of the primal problem. 
It also has 3 constraints, one for each variable of the original problem, however, the 
objective function of the primal is to maximize and the corresponding objective function 
of the dual is to minimize. Note that the signs of the constraints are different in both 
problems and that the technical coefficients aij of a constraint in one problem are the 
associated variable in the other. 

Table 4.1. The primal problem and the dual problem 

ORIGINAL PROBLEM 
 Resource allocation 

Primal Problem  

NEW PROBLEM 
Resource price allocation 

Dual Problem  

A, B, C  0 
 

Max 20 A + 18 B + 21 C 

  0.20 A + 0.10 B + 0.30 C  160 
     0.50 A +               0.07 C     80 
     0.10 A + 0.30 B + 0.10 C    80 

 0.02 A + 0.02 B + 0.02 C    40 
 0.05 A + 0.06 B + 0.05 C    40 

W1, W2, W3, W4 ,W5  0 
 

Min 160 W1 + 80 W2 + 80 W3 + 40 W4 + 40 W5 

 

0.20 W1 + 0.50 W2 + 0.10 W3 + 0.02 W4 + 0.05 W5  20 
      0.10 W1                    +0.30 W3 + 0.02 W4 + 0.06 W5  18 

0.30 W1 + 0.07 W2  + 0.10 W3 + 0.02 W4 + 0.05 W5  21 

4.1.2. PRIMAL-DUAL RELATIONSHIPS 

The general relationships between the structures of the primal and dual problems are 
summarized in Table 4.2. There are also relationships between the solutions of both 
problems, as indicated below. 

 If both the primal and dual problems have feasible solutions, then both have finite 
optimal solutions and the optimal Z values are equal. 

  Complementary slackness theorem: If one constraint of either of the two 
problems has slack in any optimal solution of that problem, then in the other problem 
the variable associated with that constraint is zero for any optimal solution. If one 
variable of either of the two problems is not zero, then in the other problem the 
associated constraint is strictly fulfilled. This theorem indicates that a resource 
which is not used completely has a dual price of zero and a resource with a dual 
price different from zero is scarce. 
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Table 4.2. Relationships between primal and dual problems 

PRIMAL PROBLEM DUAL PROBLEM 

  

Coefficients of Objective Function RHS Coefficients 

Coefficients Row i Coefficients Colum j 

Constraint  

  

Nonnegative Variable  

w1    0 

Constraint  

  

No positive Variable  

w2    0 

Constraint = 

  

Free Variable  

-      w3       

Free Variable  

-      x1       

Constraint = 

  

No positive Variable  

x2    0 

Constraint  

  

Nonnegative Variable  

x3    0 

Constraint  
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 4.2. DUAL SIMPLEX ALGORITHM 

The simplex algorithm starts from a basic feasible solution in which every Xj  0. It 
approximates the optimal solution maintaining feasibility at each iteration. When all (Cj-
Zj)  0 an optimal solution for maximizing is found ((Cj-Zj)  0 for minimizing). 

 Sometimes we have initial solutions that are infeasible in the primal and feasible in 
the dual. That is, we have some Xj  0, but all (Cj-Zj)  0 for maximizing ((Cj-Zj)  0 for 
minimizing). The dual simplex algorithm leads to primal feasibility, maintaining dual 
feasibility ((Cj-Zj)  0). 

It is important to emphasize the fact that the dual simplex algorithm is a method used 
to solve any kind of problem, regardless of whether it is primal or dual, although we have 
explained the algorithm using the dual problem of the production planning model. The 
only requirement is to have a infeasible primal and a feasible dual solution. 

Let's consider the dual problem of the production planning model, which is the 
following: 

Min  160 w1 + 80 w2 + 80 w3 + 40 w4 + 40 w5 

0.20 w1 + 0.50 w2 +0.10 w3 + 0.02 w4 + 0.05 w5  20 

0.10 w1 +               0.30 w3 + 0.02 w4 + 0.06 w5  18 
0.30 w1 + 0.07 w2 +0.10 w3 + 0.02 w4 + 0.05 w5  21 

w1, w2, w3, w4, w5  0 

We denominate w6, w7 and w8 to the slack variables of the three constraints. Table 4.3, 
corresponding to the first simplex tableau, shows that the slack variables do not form the 
unity matrix. By multiplying the three constraints by (-1) we obtain that matrix, but the 
initial solution is infeasible, because on setting to zero, w1=w2=w3=w4=w5=0, the slack 
variables take negative values. We know that in this type of situation we can apply the 
artificial variable technique. However, in this case we are going to apply the dual simplex 
algorithm, which results from applying the criteria of the primal algorithm to the 
dual problem. 

CRITERION OF THE SIMPLEX DUAL ALGORITHM 1: LEAVING BASIC 
VARIABLE  

The leaving basic variable Xi is the basic variable with the most negative value 

OPTIMALITY CRITERION 

The solution associated with a basic variable is optimal if every Xi   0 
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CRITERION OF DUAL SIMPLEX ALGORITHM 2: ENTERING BASIC 
VARIABLE  

The entering basic variable is the variable with the lowest quotient (Cj-Zj)/ - -j if 
we minimize and the highest quotient if we maximize. 

Minimization: Min (Cj-Zj)/ - -j 

Maximization: Max (Cj-Zj)/ - -j 

 
As opposed to the simplex algorithm, first we have to select the leaving basic variable 

(the most negative) and then the entering basic variable, i.e. the variable capable of 
increasing the value of the basic variable in the most efficient way. In the illustrating 
example, w8 leaves and w1 enters because w1 is the variable that involves the lowest 
increase in the objective function per unit increase in w8. When comparing Table 4.3 with 
the first simplex tableau of the primal problem (case study 1 in chapter 3), we can see that 
the column of the entering basic variable corresponds to the row of the leaving basic 
variable. In the same way, the row of the leaving basic variable in the first iteration of the 
primal problem solution now corresponds to the column of the entering basic variable. 
The pivot element is the same, with its sign changed. Table 4.4 and following are obtained 
applying the same basic change procedures as in the simplex algorithm, given by 
equations (17) in chapter 3. 

Table 4.3. Dual algorithm: initial simplex tableau  

BASIC V.  W1 W2 W3 W4 W5 W6 W7 W8 bi 

W6 -0.20 -0.50 -0.10 -0.02 -0.05 1 0 0 -20 

W7 -0.10 0,00 -0.30 -0.02 -0.06 0 1 0 -18 

W8 -0.30 -0.07 -0.10 -0.02 -0.05 0 0 1 -21 

Cj-Zj 160 80 80 40 40 0 0 0 0 

Cj-Zj/- -ij 
160/0.30  
= 533.33 

80/0.07 
 = 1142.8 

80/0.1 
= 800 

40/0.02 
= 2000 

40/0.05 
= 800 

    

Table 4.4. Dual algorithm: second simplex tableau  

BASIC V.  W1 W2 W3 W4 W5 W6 W7 W8 bi 

W6 0 -0.45 -0.034 -0.01 -0.02 1 0 -0.66 -6.14 

W7 0 0.02 -0.27 -0.01 -0.04 0 1 -0.33 -11.07 

W1 1 0.23 0.33 0.07 0.17 0 0 -3.33 69.93 

Cj-Zj 0 42.66 26.67 29.33 13.33 0 0 533.33 -11200 

Cj-Zj/- -ij   
26.67/0.27 

= 98.77 
29.3/0.01 
= 2933 

13.3/0.04 
= 333.25 

  
533.3/0.3 
= 1616.5 
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Table 4.5. Dual algorithm: third simplex tableau  

BASIC V.  W1 W2 W3 W4 W5 W6 W7 W8 bi 

W6 0 -0.45 0 -0.01 -0.02 1 -0.12 -0.62 -4.81 

W3 0 -0.07 1 0.04 0.15 0 -3.70 1.22 40.96 

W1 1 0.25 0 0.06 0.12 0 1.22 -3.73 56.42 

Cj-Zj 0 44.63 0 28.34 9.38 0 98.77 500.73 -12293.38 

Cj-Zj/- -ij  99.17  2834 469  823.08 807.63 
 

Table 4.6. Dual algorithm: optimal simplex tableau  

BASIC V.  W1 W2 W3 W4 W5 W6 W7 W8 bi 

W2 0 1 0 0.02 0.04 -2.22 0.27 1.37 10.58 

W3 0 0 1 0.04 0.15 -0.15 -3.68 1.3 41.68 

W1 1 0 0 0.05 0.11 0.55 1.15 -3.94 53.77 

Cj-Zj 0 0 0 27.42 7.39 99.17 86.80 439.14 -12770.38 

 

If the tables obtained are compared with the tables that result from applying the primal 
simplex algorithm to the original problem, it can be noted that the dual algorithm comes 
from applying the simplex criteria to the dual problem. However, we must take into 
account that the dual algorithm serves to solve either of the two problems, as long as the 
initial solution is infeasible primal and feasible dual. We know that we can also use the 
two-phase method for infeasible initial solutions, but in this case it is not necessary for it 
to be feasible dual. 

If we analyze the tables of the optimal solution, both for the primal problem and the 
dual problem, we verify that the opportunity costs of the resources in the production 
planning problem are given by the dual variables. We can also see that only the 
completely consumed resources, i.e. the scarce resources have a non-zero opportunity 
cost in the optimal solution. 

When analyzing the structure of both linear programming models, we can see that in 
the primal problem we determine the utilization of resources to know what and how much 
to produce in order to maximize the company's benefits. That is, we can approach the 
problem from the point of view of business production or returns. On the other hand, the 
dual problem considers the distribution or sharing of that income. Therefore, the dual 
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objective function consists of minimizing the value of the resources used by the company. 
The constraints make the value of the resources employed in manufacturing one product 
unit exceed or equal the product unit margin. Does this mean that the evaluation of the 
resources obtained by the dual program forces the company's benefit to be zero or 
negative? No, not at all. The complementary slackness theorem allows us to know that if 
one of the constraints takes a value higher than the second member, then the associated 
product would not occur. Therefore, if it costs more for a company to manufacture a 
product than the benefits obtained from it, the company will not be interested in 
manufacturing that product. 

Dual variables can be interpreted as a mechanism that allows us to assign the gross 
margins of the products in the different resources. Verify that the unitary benefit of A can 
be attributed as 54 % to department 1, 25.6 % to department 2 and 20.4 % to department 
3. In nonlinear programming, a similar result is obtained with the economic interpretation 
of Kuhn-Tucker conditions. 

Finally, we have to take into account that dual variables do not always present a simple 
interpretation. Their interpretation will depend on the problem under analysis.  

4.3. SENSITIVITY ANALYSIS OF THE COEFFICIENTS OF THE 
OBJECTIVE FUNCTION 

The sensitivity analysis of the coefficients of the objective function consists of 
analyzing the effects of the changes in parameters Cj on the optimal solution. In chapter 
2 we studied this effect graphically with the problem of energy generation in a thermal 
power plant. Remember that changes in one of these coefficients causes changes in the 
isoproduction slope. If the modification is large enough, the optimal solution may be 
another corner point of the feasible region (Figure 2.4). Therefore, changes in the Cj 
parameters may affect the optimality of the present solution, yet not affect its feasibility. 
How will a change in a Cj parameter affect the optimal simplex tableau? Only (Cj-Zj) will 
change. 

Chapter 2 presents the optimal solution and sensitivity analysis for the energy 
production model. The results indicate the range of values within which a coefficient of 
the objective function can be changed without changing the basis. The analysis is made 
by changing one coefficient each time, and maintaining all other coefficients constant. 

Let's see how these ranges are determined with the simplified example of energy 
production, i.e. using only the smoke and pulverizer constraints, as we did in chapter 3 to 
explain the simplex algorithm. Figure 4.1 represents the feasible region and the optimal 
solution of this problem. It is necessary to emphasize that the optimal solution is the same, 
but the feasible region is now the polygon OABC. This feasible region is different from 
that of the original problem because two constraints have been eliminated.  
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As we have already mentioned, when changing a Cj the only elements that are affected 
in the optimal simplex tableau are the values of the Cj-Zj. In order to determine the interval 
of Cj we have to take into account whether the parameter corresponds to a basic or non-
basic variable. 

Figure 4.1. Feasible region and optimal solution for the simplified problem of energy 
production 

4.3.1. MODIFICATION OF A Cj CORRESPONDING TO A NONBASIC VARIABLE 

Let's see what happens if we modify C3 in Table 3.3. No Zj would change, since this 
variable is non basic. The only element affected will be its own Cj-Zj, i.e. C3-Z3, due to 
the modification of C3. Therefore, C3 can be modified without changes in the optimal 
solution, as long as C3-Z3  0. As Z3=6, then C3  6. Thus, the range required is -   C3 

 6. 
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4.3.2. MODIFICATION OF A Cj CORRESPONDING TO A BASIC VARIABLE 

For example, C1. A modification to C1 will affect all Zj and, therefore, the values of 
the reduced values Cj-Zj, except for the values of the basic variables, which are always 
zero. The interval of C1 will determine the values for which (Cj-Zj)  0 for all nonbasic 
variables. 

C3-Z3 = 0 - (3/2) 20 + C1  0     C1  30 

C5-Z5 = 0 + (1/2) 20 - C1  0    C1  10 

Graphically, when C1=30, the objective function will run parallel to the pulverizer line 
and point B, point C and all midpoints will be optimal solutions (Figure 4.1). For C1>30 
only C will be optimal. Similarly, when C1=10, the objective function will run parallel to 
the smoke constraint and point A, point B and all the points in the segment joining these 
two points will be optimal solutions. When C1 < 10, only point A will be an optimal 
solution. 

In terms of the problem, C1 represents the steam production with coal A in thousands 
of pounds/ton, therefore, as the combustion of coal A generates between 10,000 and 
30,000 lb/ton, all the other parameters of the model being constant, the optimal solution 
will be to burn 12 ton/hour of coal A and 6 ton/hour of coal B. Obviously, the optimal 
value of the objective function will change in function of C1. This interval for C1 is very 
high; therefore it is unlikely that real steam generation lies outside the interval. Since 
measurement errors may occur, it becomes useful to know the range of values for the 
coefficients of the objective function in which the basis does not change. Determine the 
interval for coefficients C2 and C5. 

4.3.3. SIMULTANEOUS MODIFICATIONS OF SEVERAL COEFFICIENTS 

Let's now see simultaneous modifications of more than one coefficient of the objective 
function. The thermal plant engineers discovered an important error in the measurement 
of the steam generated, for both coal A and coal B. The valid coefficients are C1=28 and 
C2=18. Is the optimal solution of Table 3.3 still optimal? In this case, we cannot use the 
intervals for each coefficient individually, but we can apply the same procedure.  

Since X1 and X2 are basic variables, changes in C1 and C2 can affect the (Cj-Zj) of the 
nonbasic variables. Let's see if they are still non positive. 

C3-Z3 = 0 - (3/2) 18 + 28 = - 27 +28 = 1 

C5-Z5 = 0 + (1/2) 18 - 28 = - 19 

Therefore, the solution X1 = 12 and X2 = 6 is no longer optimal. By introducing the 
new values for Cj in Table 3.3 we get Table 4.7. From this table, we apply the simplex 
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algorithm entering basic variable X3 because it improves the objective function. X2 leaves 
the base because it is the only variable that can be eliminated. The result is Table 4.8 
which corresponds to the optimal solution for the new situation. This solution consists of 
burning only coal A, specifically 16 ton/hour, the steam generated is 448 thousand 
pounds, the pulverizer is made to work at its maximum capacity and the maximum level 
allowed for smoke emissions is not reached. 

Table 4.7. Determination of the optimal solution after changing several Cj  

BASIC VAR. X1 X2 X3 X5 bi 

X2 0 1 3/2 -1/2 6 

X1 1 0 -1 1 12 

Cj - Zj 0 0 1 -19 -444 

Table 4.8. Optimal Solution 

BASIC VAR. X1 X2 X3 X5 bi 

X3 0 2/3 1 -1/3 4 

X1 1 2/3 0 2/3 16 

Cj - Zj 0 -2/3 0 -18,66 -448 

 

In practice it is very useful to apply the 100% rule for simultaneous changes in the 
coefficients of the objective function. If changes are made simultaneously in several Cj, 
for each change, the percentage represented on the allowable change (increase or 
decrease) for the values of variables in the optimal solution not to change, is estimated. If 
the sum of the percentage of change does not exceed 100%, the original optimal solution 
will remain optimal and if the sum exceeds 100% there is no certainty that it will still be 
optimal. 

When applying the 100% rule to the previous case where C1 = 28 and C2 = 18 we have 
the following percentages: 

 ((28-24) / 6) *100 = 66 % 

((20-18) / 4) * 100= 50 % 

C1 is increased by 66% without changing the values of the variables in the optimum 
value and C2 decreases by 50%, as the sum exceeds 100% we cannot be sure that the 
values of the variables are kept at the optimum. In fact, we checked with the formulas of 
the reduced costs that the optimal solution changes. 
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4.4. SENSITIVITY ANALYSIS OF THE RIGHT-HAND SIDE OF THE 
CONSTRAINTS 

It is also important to determine the sensitivity of the optimal solution to changes in 
the independent terms of the constraints, because on many occasions its values represent 
a managerial decision. Let's remember that in section 2.5.2 the advisability of installing a 
system to reduce smoke emissions by 25% was mentioned. This means that the smoke 
constraint in this case would be  

(1) 0.5 X1 + X2  15 

We also saw graphically, that modifying the second members of the constraints means 
shifting their lines in parallel (Figure 2.5). In particular, increasing the capacity of smoke 
emissions in one unit moves the constraint up, so that the optimal solution changes from 
point A to point D in Figure 2.5. The objective function experiences a variation equal to 
the opportunity cost of the smoke constraint. 

Figure 2.5 shows us that there is an interval for the values of bi, in which we can 
change this parameter without affecting the basic variables and, therefore, the associated 
opportunity cost remains constant. Over this interval, the opportunity cost of the smoke 
constraint is 6 and the activity levels of the variables change linearly along the pulverizer 
line. 

To illustrate how the ends of the interval for bi are calculated, we will again use the 
simplified energy production problem using only the smoke and pulverizer constraints. 
Therefore, the resulting range need not necessarily coincide with the range determined 
for the original problem. Why? 

The range of values that b1 can take without modifying the basis is obtained from the 
optimal simplex tableau, shown in Table 3.3. The modification of a bi does not affect the 
optimality, since it does not modify the Cj-Zj, but it can cause non feasibility. From Table 
3.1 the smoke constraint will be  

 0.5 X1 + X2 + X3 = b1                   (2) 

In the problem b1=12 and for this value the optimal solution is X1=12, X2=6 and 
X3=X5=0 with Z=408. As b1 increases, the optimal solution changes, moving up along 
the pulverizer constraint (Figure 4.1). The intersection between the smoke and pulverizer 
constraint lines indicates the optimal solution. This causes changes in the activity levels 
of the variables in the optimal solution, but the basis does not change. The same would 
happen if the second member of the smoke constraint decreased. There is an interval for 
which the basic variables are the same and their activity levels change linearly along the 
pulverizer line. 
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Since the smoke emission limit is 12, (2) it can be written as  

 0.5 X1 + X2 + X3 = 12               (3) 

In the optimal solution X3 = 0, thus  

 0.5 X1 + X2 = 12 +                 (4) 

when b1 increases or decreases. Equation (4) is equal to (3) with X3 =- . 

 We can then analyse the modification of the right-hand parameter of a constraint, 
by analysing the change in the corresponding slack variable. If the equation does not 
present a positive slack variable, the artificial variable has the same effect. 

From Table 3.3 the equations of the optimal tableau are: 

 X2 + 3/2 X3 - 1/2 X5 = 6            (5) 

X1 - X3 + X5 = 12 

- Z - 6 X3 - 14 X5 = - 408 

setting X3 = - , with  X5 = 0 the new values of the basic variables are then 

 X2 - 3/2  = 6  X2 = 6 + 3/2     (6) 

X1 = 12 -  

Since a modification of a bi does not modify the Cj-Zj, the current solution will be the 
optimal solution if feasible, i.e. all Xj  0. Therefore, if we consider - as the maximum 
decrease and + as the maximum increase, from (6) we get that 

 - = 4                 (7) 
+ = 12 

To summarize, if b1 lies between 8 and 24 the opportunity cost of the smoke constraint 
will be 6. 

In a general sense, the intervals for the second members of the constraints are 
calculated in the following way. If bi is the i-th element of the column for the optimal 
simplex tableau solution and i is the i-th element of the column corresponding to the 
slack or artificial variable for constraint k, then 

+ i in bk = Min (- bi/ i) for any i < 0   and +  if every i  0              (8) 

- in bk = Min  (bi/ i)  for any i > 0   and  +   if every i  0 
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Now suppose that the regulations for polluting emissions are tightening and b1=7 is 
established. What would the optimal solution be now? Upgrading column bi of the 
optimal simplex tableau we get table 4.9 with X3 = 5. 

Table 4.9 Resulting simplex tableau after decreasing b1 to 7 units 

BASIC VAR. X1 X2 X3 X5 bi 

X2 0 1 3/2 -1/2 -1,5 

X1 1 0 -1 1 17 

Cj - Zj 0 0 -6 -14 -378 

 

Applying the dual algorithm to Table 4.9, X2 leaves and X5 enters.  The resulting 
tableau is table 4.10 

Table 4.10 Optimal simplex tableau  

BASIC VAR. X1 X2 X3 X5 bi 

X5 0 -2 -3 1 3 

X1 1 2 2 0 14 

Cj - Zj 0 -28 -48 0 -336 

 

Note that by changing the basic variable the opportunity cost has changed as well, a 
fact to take into consideration when analyzing whether it is interesting to change bi when 
this involves changes in the basic variable. In this case, the optimal opportunity cost may 
not be valid for all the increases or decreases studied. 

We can also apply the 100% rule for simultaneous changes in the second members 
of the constraints. If changes are made simultaneously in several bi, for each case the 
represented changes are calculated on the allowed range (increase or decrease) so that it 
remains feasible. The change is calculated as if only one bi would vary at a time. If the 
sum of all percentages of changes does not exceed 100%, opportunity costs will remain 
the same and if the sum exceeds 100% there is no certainty that this is the case 
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4.5. PARAMETRIC LINEAR PROGRAMMING 

Parametric programming consists of obtaining the sequence of optimal solutions when 
we change the parameters of a model over a wide range. Continuing with the simplified 
problem of energy production, considering only the smoke and pulverizer constraints, 
suppose that we want to change C1 from zero to infinity.  

We have seen in section 4.3.2 how, when we vary C1, the optimal solution to the 
problem will be point A, B or C in Figure 4.1.  Table 4.11 shows the values of the 
variables in each case.  When C1 is less than 10, it is of interest to use only the second 
type of coal and when it is greater than 30, only the first type. 

Table 4.11.  Results of the parametric programming of C1.  

VARIABLE 0  C1  10 10  C1  30 30  C1   

X1 0 12 16 

X2 12 6 0 

 
In the parametric programming of independent terms of constraints the right-hand 

parameters are made to change over a wide range. The sequence of optimal solutions can 
be obtained by applying the dual simplex algorithm. 

If in Figure 4.1 we changed b1 from zero to infinity, the smoke constraint line would 
move parallel from the origin upwards. The optimal solution would hen change in a 
continuous manner first along segment OC, then along segment CD. In the section OC 
the basic variables are X1 and X5, while in the CD segment, X1 and X2 are basic. If we 
could increase the amount of smoke to more than 24 kg/hour, this constraint would not 
have an opportunity cost, because of the left over smoke emission capacity. The spraying 
machine has become a scarce resource (see Table 4.12). 

Table 4.12. Results for the parametric programming of b1 

b1 OPPORTUNITY COST BASIC VARIABLES  

0 - 8 48 X1, X5 

8 - 24 6 X1, X2 

 24 0 X2, X3 
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Figure 4.2. Parametric Programming of b1: change in the objective function and 
activity levels of the variables 
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The results of the parameterization are shown in Figure 4.2. Both graphs display the 
three segments for the independent term of the smoke constraint. The only element which 
remains constant in each of them is the opportunity cost, as the objective function 
changes linearly, as does the activity level of the variables. Observe carefully the 
evolution of the objective function. This linear form by segments and concave is 
characteristic of parametric programming and highlights the law of decreasing marginal 
profits of the resources.  

4.6. SUMMARY 

We have seen that duality is the theoretical basis of the opportunity cost and of other 
important techniques in Operations Research, such as the dual simplex algorithm and 
sensitivity analysis. It allows us to evaluate which modifications the parameters of the 
model can experience without affecting the optimal solution. 

The optimal simplex tableau allows us to calculate, with little computational cost, the 
range of values of the coefficients of the objective function that can be changed 
individually without changing the optimal activity levels of the variables. We have only 
to take into account that the Cj-Zj must remain negative (maximization). Similarly, the 
ranges for the second members of the constraints are determined subject to the condition 
that the variables be nonnegative. When the changes cause non feasibility, the dual 
algorithm allows us to determine the optimal solution in an efficient manner. 

Finally, we have seen that parametric analysis is just a generalization of sensitivity 
analysis that determines how the optimal solution evolves when the parameters of the 
model vary over a wide range. The dual simplex algorithm is a basic tool for this kind of 
analysis. 
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4.8. CASE STUDIES 

CASE STUDY 1: DUAL PROGRAM AND DUAL ALGORITHM 

1.  Develop the dual program associated with the following primal program. 

Max 3 X1 + 4 X2 + X3 

X1 + 3 X2 + 2 X3  10 
6 X1 + 2 X2  + X3    30 

X1 +  X2  +  X3  = 5 

X1, X2, X3   0 

2.  Solve the primal problem of the previous section through the dual simplex 
algorithm. 

3.  Obtain the optimal solution of the dual program from the results obtained in point 
2. 

CASE STUDY 2: SENSIBILITY ANALYSIS 

1.  Determine the variation interval for coefficients C2 and C5 in the energy 
generation problem presented in chapter 2.  

2. In the production planning problem solved in case study 1 in chapter 3 the benefits 
per unit of the three products have been revised.  The new values are CA = 40, CB 
= 30 and CC =12. Is the current solution still optimal? If not, determine the new 
optimal solution from the optimal simplex tableau.  

3.  Determine the ranges over which b1 and b3 can change individually in the energy 
generation problem presented in chapter 2. Compare the result obtained for b1 with 
the result obtained in section 4.4 and explain why they are different. 

4.  Determine the ranges over which the bi of the following linear program can change 
individually (chapter 3-case study 2): 

Min Z = 0.4 X1 + 0.5 X2 

X1, X2  0 

0.3 X1 + 0.1 X2  2.7 
0.5 X1 + 0.5 X2 = 6 
0.6 X1 + 0.4 X2  6 
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CASE STUDY 3: SENSIBILITY ANALYSIS 

From the corresponding simplex table to the optimal solution of the model results of 
the case study 5 of Chapter 3, answer the following questions. 

1. Indicate the optimal solution, the opportunity cost of resources and the variables 
reduced cost and their meaning. 

2. By how much can the unitary profit of X2 vary without changing the optimal 
solution? Does the total profit vary? What does the sensitivity analysis of the objective 
function coefficients tell us?  

3. By how much can the second member of the R1 constraint vary without changing 
the base? What changes and what remains constant while varying b1? Why is the 
sensitivity analysis of the secondary members of the constraints important when 
making decisions on production problems?   

 

CASE STUDY 4: FEED MANUFACTURING AND DISTRIBUTION  

A multinational feed manufacturing and distribution company has 9 factories in the 
country. The factory located in Valencia produces183 formulas for 8 different species of 
animals. Every day, 43 trucks leave the factory to distribute 783,000 Kg. of feed. There 
are two types of feed: feed flour and feed granule. Feed is also sold in two different ways: 
in bulk or in sacks. The distribution of the different types of feed is shown in Table 4.13. 

Of the quantity produced, two of the most important formulas represent a third of the 
total and the first six imply 55% of the total production. On the factory’s premises an 
average of 30 T of feed in sacks and all of the feed in bulk is sold directly to clients. The 
factory has 647 clients and it receives an average of 80 orders per day, of which 6 are 
filled directly on site and 74 are sent by truck.  

At the moment, the nearest farm to which feed is distributed is located 15 Km from 
the factory and the most distant is 340 Km.  35% of the trucks delivering in bulk serve 
only one client, while this percentage is 7% for the trucks that deliver feed in sacks. The 
average number of deliveries for trucks which distribute to more than one client is 2-3. 
For the trucks that distribute sacks, the average is 4-5.  

The average delivery time of orders is 1.25 days, measured as the difference between 
the date on which the order is received and the real date of delivery. The person in charge 
of logistics takes 6 hours each day to prepare the routes for the following day, including 
checking stocks, availability of trucks, etc. 
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Table 4.13. Type of products and quantities sent from the factory 

TYPE 
NUMBER OF 

PRODUCTS IN the 
CATALOG 

AMOUNT SENT 
DAILY (Kg) 

NUMBER OF 
DAILY TRUCKS 

Bulk Flour feed 1 2,000  

Bulk Granule feed  98 600,000 32 

Flour in sacks 6 1,000  

Granule in sacks 78 180,000 11 

 

Currently, production is scheduled according to an established production plan, taking 
pending orders into account.  60% of the daily production is immediately loaded onto the 
trucks. 

There are three working shifts in the factory: from 6-14, from 14-22 and from 22-6. 
Production capacity is 37,000 Kg/hour and packaging 375 sacks/hour. The factory has 12 
of 36,000Kg capacity containers and 17 of 17,000Kg capacity containers for bulk storage. 
The storage capacity for sacks is 4 cells of 32,000 Kg capacity.  The real amount of stock 
available is checked twice a day. 

Tables 4.14 and 4.15 show the information related to the technical characteristics of 
the raw materials, cost, as well as the nutrition needs of each type of feed according to 
the species and the age of the animal. 

Outline a linear programming model that allows to determine the formulation and cost of 
100 T of feed for lambs P1 and 100 T of feed for lambs P3. 

1. Do you consider that the optimal formulation that you can obtain with optimization 
software could be composed of 20 raw materials? Explain your answer. 

2.  Solve the previous problem and indicate the optimal composition and the cost of 
feeds P1 and P3. 

3.  Barley is not part of any of the two previous formulations. Do you believe that it 
would be part of one of them if its price were 25 m.u./Kg? And  if its price were 
22.5? What would happen if the prices of barley and wheat decreased by 1 m.u./Kg? 
First, answer without solving the model again and then check if your answer is 
correct. 

4.  Analyze the sensitivity of the optimal to the prices of the remaining raw materials 
and the utility of this information to the company. 
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5. If the price of corn were increased by 0.2 m.u./Kg. and that of soy decreased by 0.5 
m.u./Kg., would the optimal formulation and the cost of feed P1 change? What 
about if soy were decreased by 1 m.u./Kg? Why? Check what changes and how 
different it is from the initial solution. 

6.  What would be the effect if feed P1 had a minimum level of gross protein of 18.5 
and of 1.10 of calcium? Answer applying the 100% rule. 

7. Calculate the optimal formulation of minimum cost that takes into consideration 
that feed P3 cannot have more than 40% corn, 10% gluten and 5% sunflower. 

8. This type of company usually has to face limited stocks of raw materials. Determine 
the cost and the formulations of P1 and P3 from the previous section in the following 
cases: 

8.1. There is only a stock of corn of 50 T. 

8.2. The price of the 50 T of corn in stock is 26.2 m.u./Kg and the company can buy 
in the market as much corn as they wish at 27 m.u./Kg. 

8.3. The company has 50 tons of corn in stock that it has to consume. The company 
can also acquire all the corn they want at 24 m.u. /Kg. 

Evaluate in each section the consequences there could be for the company to solve the 
problem by means of simple formulation instead of using a multiformulation model, 
supposing that half of the production were P1 and the other half P3. 

9. Obtain the formulation and the cost of P1 and P3 in such a way that if tapioca, gluten 
and molasses are part of any of the feed they have a minimum level of 10%. Use 
the semi-variable option of LINGO. How would you solve it with Solver Excel 
spreadsheet? Integer variables are needed to incorporate such a situation to a model. 
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Table 4.14. Nutritional limits of feed for lambs 

CHARACTERISTICS P1 P2 P3 P4 P5 P6 P7 P8 

U.F.V/Kg Min 1.07 1.02 1.00 1.02 1.02 1.04 0.78 0.98 

GROSS PROT. % Min 18.0 17.6 17.2 17.6 17.6 18.0 14.0 16.5 

GROSS PROT. % Max 19.0 18.6 18.2 18.6 18.6 19.0 15.0 17.5 

GROSS FIBR. % Min - - - - - 14.0 - 

GROSS FIBR. % Max 4.40 4.30 4.40 4.4 4.5 15.0 - 

FAT MAT  % Min - - - - - - - - 

FAT MAT  % Max 5.30 4.40 4.30 4.40 4.4 4.50 - - 

STARCH % Min - 35.0 35.0 35.0 35.0 35.0 - 30.0 

CALCIUM % Min 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

CALCIUM % Max 1.30 1.10 1.10 1.10 1.10 1.10 1.10 1.10 

PHOSPHORUS T.% Min 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 

PHOSPHORUS T.% Max 0.44 0.35 0.35 0.35 0.35 0.35 0.35 0.35 

M.N.D. % Min - - - - - - - - 

P.D.I.E. % Min 13.0 12.1 11.9 12.1 12.1 12.3 - 11.2 

P.D.I.N. % Min 13.0 12.1 11.9 12.1 12.1 12.3 - 11.2 

- 

10 
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In linear programming all variables are continuous and if they represent quantities such 
as time, Kg. of raw material or Euros, it is an optimal representation. However, when the 
variables which need to be rounded to the next integer refer to discrete elements such as 
machines or people, we can move a long way from the optimal, except in those cases in 
which the variables present high values this procedure is acceptable. In short, the 
divisibility hypothesis limits the field of application of linear programming, since in many 
real-life problems the variables only make sense if their value is integer. 

After noting the need to turn to integer programming with a simple example, in this 
chapter we will learn to formulate integer programming models for solving problems with  
yes-or-no decisions, in which there are decisions such as to make an investment or not, 
locating an industry/warehouse/service at a particular site or not or when the cost function 
is nonlinear, among many other cases. We will also address one of the resolution 
techniques currently most used by optimization software: the Branch-and Bound 
algorithms that use the simplex method discussed in Chapter 3. These techniques are now 
being integrated with a technique from computer science known as constraint 
programming that promises to expand the capacity to formulate and solve integer 
programming problems. 

5.1. INTRODUCTION 

The mathematical model of integer programming is similar to that of linear 
programming with the additional constraints that some or all variables must be integer. It 
is called pure integer programming if all variables are integer; mixed integer 
programming if only some variables are integer and binary integer programming when 
all variables of the model are binary or (0-1) variables. 

The additional condition that the variables have to be integer makes solving the 
problem considerably more difficult. Why? After all, it is nothing more than linear 
programming with fewer solutions to consider. In pure integer programming with a 
limited set of possible solutions, like that in Figure 5.1, we have guaranteed the existence 
of a finite number of solutions. However, this fact does not mean that the problem can be 
solved, since finite numbers can be astronomically large. Thus, in a binary programming 
problem with n variables there are 2n solutions (some of them can be discarded as they 
violate the functional constraints). Every time that n increases by one, the number of 
solutions is doubled. This pattern is called exponential growth of problem difficulty. With 
n=10 there are more than one thousand solutions (1024), with n=20 more than one 
million, with n=30 more than one thousand million and so forth. Therefore, even the most 
efficient computers are unable to carry out an exhaustive enumeration, verifying first that 
the solution is feasible and then calculating the value of the objective function. 

If we look at Figure 5.1, which represents the set of feasible solutions for a linear 
programming model with two integer variables, we see that the feasible region is not a 
convex set. We know that this property is basic in linear programming theory and the fact 
that it is not present in integer programming hinders the solving method. Nevertheless, as 
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we will see in this chapter, many techniques widely use the simplex algorithm or dual 
simplex algorithm. 

 

 

 

 

 
 

 
 

 

Figure 5.1. Feasible set in integer programming 

 

5.2. A SIMPLE PROBLEM TO DISTRUST OF ROUNDINGS 

A department has received €250,000 to acquire new equipment and it is impossible to 
increase this amount with funds from other sources. Several studies point out that only 
two types of machines are appropriate and that any number or combination of those 
machines would be acceptable. Some tests have been carried out to evaluate the load 
capacity in units of “average number of jobs” per hour for both types of equipment. 

Table 5.1. Cost and capacity of equipment 

Equipment 
Cost 

In thousands € 

Capacity 

Number of jobs/hour 

1 140 28 

2 60 11 
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The objective of the department is to maximize the potential working capacity. It is 
evident that the equipment can only be acquired in integer units. 

If X1 is the number of equipment type 1, and X2 the number of type 2, the capacity of 
the number of jobs per hour is 28 X1 + 11 X2. Therefore, the objective function is  

 

Max Z = 28 X1 + 11 X2 

The constraints will refer to the available resources, nonnegativity conditions and the 
variables have to be integer. 

Available resources:   140 X1 + 60 X2  250 

Nonnegativity conditions:   X1, X2  0 

Integer conditions: X1, X2 integers 

This problem has to be solved by integer programming because of the small values 
that the variables will take in the optimal solution. In Figure 5.2 we can see that the 
continuous optimal solution is X1 = 25/14, X2 = 0 and the value of the objective function 
is 50. If we applied the naive practice of rounding up to the nearest integer, we would 
obtain X1 = 2, X2 = 0 and Z = 56, that is, a solution that is  infeasible. By testing the next 
feasible integer solution X1 = 1, X2 = 0 and Z = 28 are obtained. However, this solution 
is much worse than the optimal integer solution which is: 

X1 = 0 
X2 = 4 
Z = 44 

Note that this solution has a jobs per hour capacity of 88% of the value obtained in 
the continuous solution, while the rounding to the next feasible integer result only gave 
us a working potential of 56%. 
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Figure 5.2. Feasible region and optimal solution for model of equipment acquisition  
 

5.3. SOME APPLICATIONS OF INTEGER PROGRAMMING 

Integer programming is used in all those problems that can be represented by means 
of a model that complies with all linear programming hypotheses, except for that of 
divisibility. We have already said that rounding to integers can be acceptable when the 
variables take high values, but this will not usually be the case in problems like the one 
shown in section 5.2 where the values of the variables are small. 

There is another area of application, which is more important, that comprises all those 
problems in which yes-or-no decisions are presented. For example, should a specific 
project be started? Should an investment be made? Should an industry be located in a 
particular site? We will represent these situations by means of binary variables, that is, 
(0-1) variables. In such cases these variables are decision variables. However, binary 
variables are also used in integer programming as “auxiliary” variables whose objective 
is to formulate difficult problems so that they can be easily handled. Thus, we can present 
logical propositions as linear constraints or nonlinear functions can be handled as if they 
were linear. 
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5.3.1. CAPITAL BUDGETING DECISIONS 

An automobile manufacturing company wants to calculate the optimal distribution of 
its capital budget for the next years. The future investments that it is considering are the 
following: 

a)  Renovating its current factory in order to increase its production capacity by 10,000 
units per year. 

b)  Constructing a new factory, with a production capacity of 15,000 units per year. 

c) Putting into practice the results that have been obtained from a survey on workers' 
motivation at work, which will increase the production by 5,000 units per year. 

d)  Purchasing more productive and technologically more advanced equipment, with 
which an increase of production of 2,000 units per year will be achieved. 

Investments a and b are mutually exclusive, and investment d is conditional on the 
realization of investment a. The company seeks to increase its installed productive 
capacity, but considers that, due to the maximum sales forecasts, it should not exceed an 
increase of 16,000 units per year. 

The Net Present Value (NPV) of the investments, as well as the expenditure and the 
financial availability are those shown in table 5.2. 

Table 5.2. Investment data 

Investment NPV 
Cash-flow 

Year 1 Year 2 

I1 50 60 70 

I2 80 100 70 

I3 40 30 40 

I4 30 20 50 

 

The problem consists of finding out which investments should be carried out in order 
to optimize their net present value, knowing that the financial availabilities for the first 
and second period are 150 and 120 m.u. respectively. 

The integer programming model to solve this problem is the following: 

Variables 
We define four binary variables Xj = (0, 1) for j = 1, 2, 3, 4 that will take the value 1 
when the investment j is carried out and 0 otherwise. 
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Objective function 
The objective is to maximize the Net Present Value of all investments. 

Max 50 X1 + 80 X2 + 40 X3 + 30 X4 

Constraints 
The expenditure during the first and second year cannot exceed the availability: 

60 X1 + 100 X2 + 30 X3 + 20 X4  150 

70 X1 + 70 X2 + 40 X3 + 50 X4  120 

Investments a and b are mutually exclusive alternatives: 

X1 + X2  1 

Investment d is conditional on the realization of investment a, that is, d can only be 
carried out if a has been done. These variables are known as contingent decisions, 
which are decisions that depend upon previous decisions. 

X4  X1   

The increase of the productive capacity should not exceed the maximum sales 
forecast: 

10000 X1 + 15000 X2 + 5000 X3 + 2000 X4  16000 

5.3.2. SETUP COST PROBLEM 

A company can manufacture four products on a production line that goes through 
three different departments. Table 5.3 shows the manpower/hour needed in each 
departments per one thousand product units, as well as the availability of hours per month, 
the gross profit (sale price - variable cost) and the fixed cost of conditioning the 
production line for each product, i.e. setup costs. The company wants to program the 
production to maximize the benefits. 

The linear programming approach does not work when we have setup costs. In linear 
programming all costs are considered to be variable costs, that is, proportional to the value 
of the variable, while in this case there is a fixed cost only when the variable value is 
positive, but zero when the variable value is also zero. It should be emphasized that the 
setup cost problem only arises when the fixed cost is charged if there is production and is 
not charged if the production level is zero. When the fixed cost is always charged, the 
continuous linear programming is valid. Why? 
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Table 5.3. Technical and economical data  

Product 

Manpower-hour needed per one 
thousand units of product 

Gross profit 

€/unit 

 

Setup Cost 

€ 
Dep 1 Dep 2 Dep 3 

P1 160 120 50 80 200,000 

P2 150 200 50 85 200,000 

P3 100 180 50 98 90,000 

P4 200 175 50 100 150,000 

Availability of 
manpower-hours/ 

month 
4,000 4,800 1,600   

 

Let´s see the formulation of an appropriate mixed integer programming model to solve 
the previous problem. We define the variables P1, P2, P3 and P4 to be the size of each 
production batch in thousands of units. 

Pj  0   for j = 1, 2, 3, 4 

The profit of producing P1 is  

B1 = 80,000 P1 - 200,000   for P1 > 0 and 

B1 =0 for P1 = 0 

The profits of the other three products present a similar structure. To represent this by 
means of a linear function we define some binary variables Yj which have a value of 1 
when Pj > 0 and zero when Pj = 0. 

The objective function is as follows: 

MAX 80,000 P1 + 85,000 P2 + 98,000 P3 + 100,000 P4 

- 200,000 Y1 - 200,000 Y2 - 90,000 Y3 - 150,000 Y4 

The constraints will refer to availability of man-hours in the three departments and 
they will have to guarantee that the setup cost is charged when there is production. 

Dep1: 160 P1 + 150 P2 + 100 P3 + 200 P4  4,000 

Dep2: 120 P1 + 200 P2 + 180 P3 + 175 P4  4,800 

Dep3: 50 P1 + 50 P2 + 50 P3 + 50 P4  1,600 
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P1  100 Y1  

P2  100 Y2 

P3  100 Y3 

P4  100 Y4 

The last four constraints ensure that the setup cost is considered whenever the 
corresponding level of production is positive. The coefficient of the binary variables has 
to be a number large enough not to limit the level of activity of the Pj, in this case 100 is 
big enough to not limit the production values. 

5.3.3. SITE SELECTION OF INDUSTRIES AND SERVICES 

Another important application of mixed integer programming is found in problems 
where the objective is to determine the location and optimal size of a series of factories 
that produce high consumption goods. The demand and their clients' location are known. 

The model for a product and one period could be the following: 

Coefficients 

b1, b2..., bn:  known demands for n clients (j=1, 2 …n) 

a1, a2..., am:  production capacities to install in m factories (i=1, 2 …m) 

 

f1, f2..., fm: construction cost of the factories (i=1, 2 …m) 

Cij: transport cost of a unit of goods from the i-th factory to the j-th client 

Variables 

Xij: Number of transported units from factory i to client j 

yi: Binary variables, 1 indicates that the factory i is built and 0 otherwise for i 
= 1,2,...,m 

Objective Function  

The objective consists of minimizing the total cost (fixed cost of construction of the 
factories plus the distribution variable costs) satisfying the demand. 

ij

n

j
iji

m

i
i XCyfMIN

11
 

 



Chapter 5. Integer programming  
 

147 

Constraints 

Clients demand 

j

m

i
ij bX

1
  j=1, 2… n 

Production capacity of the factories 

ii

n

j
ij yaX

1
  i=1, 2…m 

This type of model has been applied to problems such as location of milk 
pasteurization centers, slaughterhouses, feed warehouses, waste treatment plants, etc... 

5.3.4. A DISTRIBUTION PROBLEM WITH NONLINEAR COSTS 

In this section we present a real problem of decision-making and mixed integer 
programming model that reduces the distribution costs of the company (Maroto, C.; 
Aliaga, S. and A. Torres, 2000). 

The operation process of the company is represented in Figure 5.3. The company 
manages the broiler production process providing farmers with one-day-old chickens, 
feed and other resources such as technical and sanitary assistance. It is also responsible 
for collecting and marketing the fattened chicken. Broiler farmers provide the labor and 
equipped warehouses, and they are paid on the basis of average costs of breeding and 
production results. Given the economic importance of feed costs, the company is thinking 
of reducing transport costs from the factory to the farms. The distribution of shipments 
was carried out with subjective criteria and manually. Therefore, the company was also 
interested in planning shipments of feed by objective criteria, minimizing costs. 

The company is responsible for estimating the feed required by each farm and placing 
orders to the feed factory. This offers prices with a cost structure shown in Table 5.4. As 
shown in the table, transport prices depend both on the weight of the order and the 
distance from the factory to the farm. Thus, the company is facing a nonlinear 
transportation cost structure. The previous method used by the company was to assess 
the needs for each type of feed on each farm and place as many large orders as possible 
and the difference with another order. The company is aware that these remaining orders 
increase the total cost. 
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Figure 5.3. Operation process of the company 

Table 5.4. Feed transport costs structure 

Distance 
Km 

20-24 Tons 
€/Tons 

16-19.9 Tons 
€/Tons 

12-15.9 Tons 
€/Tons 

8-11.9 Tons 
€/Tons 

4-7.9 Tons 
€/Tons 

0-10 1.94 1.95 1.99 2.36 3.25 

10.1-15 2.20 2.28 2.36 2.74 3.67 

…      

100.1-105 6.94 8.17 9.02 9.30 11.06 

…      

340.1-345 19.57 23.87 26.80 27.07 30.68 

345.1-350 18.83 24.19 27.17 27.44 31.10 

 

To solve this problem we proposed the following integer programming model. There are 
many models, at least one for each farm and each batch of broilers. All models have the 
same structure. Firstly we define the parameters which will have a specific value in each 
model. 

COMPANY 

One-day-old 
broilers 

Technical and 
sanitary assistance 

Broilers Broiler 
farmers 

Feed factory 

Sales and 
distribution 
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Parameters 

The feed orders depend on three factors: the capacity of the silos installed on the 
farms, the access road to them and the feed intake. The latter is based on the number of 
chickens, mortality, age, sex, season and type of warehouse. Large orders of 24 tons, 
which are the ones with lower cost, cannot always be considered if the size of the silo of 
the farm is smaller or if the accesses prevent the passage of trucks of that size. 

The problem arises because transport costs are nonlinear, they depend on the 
distance from the farm to the factory, and on the shipping amount. Thus, for a given 
farm the most economical rate is that corresponding to 20-24 ton shipments (T1 € / ton). 
The second most economical rate is the shipping fee from 16 to 19.99 tons (T2), the third 
from 12 to 15.99 tons (T3), the fourth from 8 to 11.99 tons (T4) and the fifth, and most 
expensive, is the fee for the smallest shipping, from 4 to 7.99 tons (T5). We can state that 
the cost is nonlinear, but is constant within each of the five intervals. 

Three types of feed must be provided throughout the animals’ growth process and 
the total amount in breeding (P1, P2 and P3) depends on the number and sex of the chicks, 
as well as other factors such as race, season and type facilities. When the company 
planned the deliveries manually they made all possible shipments of a larger size, 
generally leaving a small residue of shipping in tons, but with a very high unit cost. The 
model should minimize the cost of transportation of P1, P2 and P3 tons of feed to a 
particular farm. 

Another parameter affecting the order quantity is what we have called CSi for i = 1, 
2, 3, which is the total capacity of the silo except the safety margin for the feed Pi. 
Finally, Ac is the maximum truck load in terms of the access roads to the farm. 

1. Variables 

We defined two types of variables, continuous variables Xijk representing tons of feed 
i (i = 1, 2, 3) at the rate j (1, 2 ... 5) in the shipping k (1, 2 ... K) necessary for broiler 
production on a given farm. K is estimated as the maximum number of shipping for each 
type of feed needed to supply the larger farm, during each period of consumption. The 
other type of variables is binary Yijk, which will take value 1 if the rate j is used in shipping 
k for feed type i and 0 otherwise. These binary variables are necessary due to the nonlinear 
structure of transport costs and permit us to formulate this problem using linear functions. 

Xijk       tons of feed  i=1, 2, 3 at rate j=1,2,…5  in the shipping k = 1,2…K 

Yijk (0, 1) binary, 1 indicates that the rate j is used  in the shipping k for the type of 
feed i and 0 otherwise. 
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2. Objective Function 

The objective function consists of minimizing the transport cost of the feed needed 
for raising chickens on a specific farm and is given by the cost of all shipments to the 
farm. All 20-24 tons orders will be charged at price T1, 16 to 19.9 tons at price T2, 12 to 
15.9 tons at price T3, 8 to 11.9 at price T4 and the orders between 4 and 7.9 tons at price 
T5 which is the most expensive. The Tj are fixed for each farm and vary from one to 
another depending on the distance to the factory. 
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3. Constraints 

Demand for each type of feed: we have a restriction for each type of feed that 
indicates that the sum of all the sent amounts must be equal to the total required. 
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Silo capacity: no order may exceed the capacity of the silo on the farm minus the 
estimated safety margin (CSi). The safety margin varies depending on the number of 
broilers and their period of growth. 

Xijk   CSi   for i=1,2,3;  j=1,…5; K=1,…K 

Truck access: the size of the orders is limited by the tonnage of the trucks that can 
access the farm. 

Xijk    Ac   for i=1,2,3; j=1,…5; K=1,…K 

Price list (nonlinear costs): the following restrictions represent the structure of 
transport costs that the company has to pay to the feed factory. Thus, the first constraint 
indicates that all orders of feed i with the cheapest rate T1 will have between 20 and 24 
tons. There will be as many constraint groups of this type as there are types of feed and 
possible deliveries. 
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20 Yi1k    Xi1k   24 Yi1k 
16 Yi2k    Xi2k    19.9 Yi2k 
12 Yi3k    Xi3k    15.9 Yi3k 
8 Yi4k     Xi4k    11.9 Yi4k 
4 Yi5k     Xi5k     7.9 Yi5k 

 
     All the constraints of the price tariff for i = 1, 2, 3 and   k = 1, 2,…K 

The solution to this model gives the number of orders that we should place to the feed 
factory and the measured quantity in tons for each batch of chickens and farm, minimizing 
the cost, which is the largest production cost of the company and improving its decision-
making. This model not only reduces the costs of their activities, but it also reacts 
appropriately to any unforeseen needs such as reduction of necessities due to animal death 
on hot days, electricity failures, diseases, etc. by simply re-running the model with the 
updated data. 

Let us consider a simple example of a similar problem. A company needs  85 tons of 
product 1 and 90 tons of product 2 for next month. The provider has a price that depends 
on the size of the order. Determine the number of orders to be placed in order to minimize 
the cost of the product. 

Table 5.5. Transport cost´s structure  

Amount of order in tons Cost of Transport Euros/ton 

16-20 8 

12-15.9 12 

5-11.9 16 

 
The variables are Xijk = tons of product i at price j in shipment k; 

The objective function  

MINIMIZE          8*(X111 + X112 + X113 + X114 + X115 + X211 + X212 + X213 + X214 + X215) + 

                           12*(X121 + X122 + X123 + X124 + X221 + X222 + X223 + X224) + 

                           16*(X131 + X132 + X133 + X134 + X231 + X232 + X233 + X234); 
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 Constraints:  
Demand of product P1 
X111 + X112 + X113 + X114 + X115 + X121 + X122 + X123 + X124 + X131 + X132 + X133 + X134= 85; 

Demand of product P2 
X211 + X212 + X213 + X214 + X215 + X221 + X222 + X223 + X224 + X231 + X232 + X233 + X234= 90; 

 
Currently we can solve this nonlinear cost problem by substituting equations linking the 

amount of the product with the corresponding binary variable using a type of variable 
known in LINGO as semi-continuous. For example, to indicate that if the variable X111 
has a nonzero value in the optimal solution then this is between 16 and 20, we add to the 
model the following 

 @SEMIC (16, X111, 20) 

In this case LINGO generates the necessary binary variables and constraints to take this 
situation into account. However, in Excel this is not possible and you have to enter all the 
restrictions, define the binary variables and take into account that in Excel we have to put 
all variables on the left-hand-side and in the right-hand-side of the constraints only the 
independent term. 

5.3.5. A PROBLEM OF TRANSPORT ROUTES 

Case study 3 of chapter 4 is a problem of feed manufacturing and distribution for a 
multinational company in the food industry which has one of its factories in Valencia. In 
the aforementioned case a linear programming model was formulated to minimize 
manufacturing costs. In this section we will explain an integer programming model to 
solve the feed distribution problem to customers, which differs from the theoretical route 
models presented in Operations Research books. 

In short, the company manufactures about 150 animal feed products and distributes 
800,000 kg per day to an average of 70 clients. The company has a portfolio of 700 clients, 
whose distance from the factory varies from 15 to 450 km. The company has hired a fleet 
of trucks with capacities of between 12 and 24 tons, with compartments of 4 tons. 
Therefore, each delivery route can visit at most six customers. The person responsible for 
calculating the routes dedicates six hours per day to this activity. In addition, between 5-
30 rush orders are received every day, which means that the routes cannot be recalculated 
to include these orders. The cost of the routes is a complex function dependent on the 
distance to the last customer served and the truck loading, which has a minimum cost 
even if there is no transport of goods. For example, if a 24-ton truck carries 20 tons, the 
company pays as if 23 tons were transported. 
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Theoretical route models do not resolve this real problem because, amongst other 
reasons, the objective function does not seek to minimize the distance driven, but rather 
the cost according to the company's contract with the carriers. 

To solve this problem we first generate all feasible routes by an implicit enumeration 
algorithm. A priori one might think that the high number of clients to be served will give 
us astronomical figures. However, taking into account all of the real problem limitations 
only a small percentage of all theoretical routes are feasible. Thus, a 24-ton truck cannot 
visit more than 6 clients, a truck cannot fulfill orders totalling more than its capacity, 
routes cannot be more than 450 km and certain trucks cannot serve some customers due 
to restrictions on the accesses such as bridges, tunnels or narrow roads. The implicit 
enumeration method gives us all feasible routes and for each customer to be visited, the 
total distance driven, the route cost and the type of truck used. 

The integer programming model that selects routes that minimize the cost of feed 
distribution is as follows. 

Parameters:  

N = Number of possible routes 

C= Number of orders 

Costn  = Cost of route n 

PPnc  is 1 if the route n serves the order of client c and 0 otherwise 

Where n = [1, 2…N] and c = [1…C] 

 

Variables:  

Xn binary, are 1 if we take route n and 0 otherwise 

Objective Function: 

n

N

n
n XCostMin

1
 

Constraints: 

CiXPP n

N

n
ni ,...,1,1

1
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LINGO solves this model in less than 1 minute for regular size models and in less 
than five minutes for models with more than 35,000 binary variables. By using the model 
the company has reduced the cost of transportation by between 9-11%. The distance 
driven by the trucks has also decreased by between 7-12% thereby also reducing pollution 
due to transport of goods. 

5.3.6. OTHER FORMULATION POSSIBILITIES WITH BINARY VARIABLES 

1. Either one constraints 

This situation is presented when we have to choose between two constraints in such 
a way that at least one of them is fulfilled, but not necessarily both, for example  

3 X1 + 2 X2  18 

or  

X1 + 4 X2  16 

This condition has to be reformulated as a mixed IP model in which all constraints 
specified have to be met. This can be achieved by adding a large M number to the right-
hand-side, as any solution that satisfies the other constraints of the problem will 
automatically meet this. This formulation entails that the set of feasible solutions of the 
complete problem be a bound set and that M is large enough not to eliminate any of those 
feasible solutions. 

This formulation is equivalent to: 

3 X1 + 2 X2  18 + Y M 

X1 + 4 X2  16 + (1 - Y) M 

Y being an auxiliary binary variable (0, 1). If two variables were used instead of a 
binary variable, the condition Y1 + Y2 = 1 would have to be added. 

K out of N constraints (K < N) have to be met 

The objective is to choose which combination of K constraints allows the objective 
function to have the best possible value. This case is a direct generalization of the previous 
case for which K = 1 and N = 2. 

f1 (X1, X2... X n)  d 1 

f2 (X1, X2... X n)  d 2 

. 

 fN (X1, X2... X n)  d N 
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The procedure would be the following: 

f1 (X1, X2,... X n)  d 1 + M Y1 

f2 (X1,X2,... X n)  d 2 + M Y2 

. 

fN (X1,X2,... X n)  d N + M YN 

and also 

KNY
N

i
i

1
 

2. Functions with N possible values 

 f (X 1,X 2,..., X n) = d 1, or d 2,... or d N 

The procedure would be the following:   i

N

i
in YdXXf

1
1,...  

1
1

i

N

i
Y  

where Yi is a (0,1) variable, i.e. auxiliary binary variable. 

There are other types of problems that can be solved by means of integer 
programming, where this enters in competition with other possible solving techniques. It 
happens thus, for example, with those of "Knapsack type" and the scheduling problems. 

There are two versions of the Knapsack problem. In the first one, a certain space is 
provided with certain volume or capacity that should be filled with valuable items and 
volume or specified capacity. The problem consists of filling that space with the most 
valuable group of objects, without exceeding the physical limits of this space. The second 
version consists of dividing an object into several portions with different values and trying 
to find the division with the greatest value. When the number of variables of a problem 
with this structure is small, the dynamic programming is quite appropriate, but if the 
number of variables is higher than 15 or 20, dynamic programming competes 
unfavourably with the Branch-and-Bound algorithms. Knapsack problem are used to 
solve investment problems and problems of determination of the size of a fleet of vehicles. 

With regard to scheduling problems, they refer to situations in which it is necessary 
to provide the sequence of a certain number of jobs in a series of machines, with the 
purpose of minimizing the cost or the time. This type of problems arises, for example, in 
tile and textile companies that work on demand. 



Operations research in business administration and management  

156 

Finally, note that the optimization models of transport, assignment and 
optimization networks are integer programming models.  However, due to their special 
structure they have more efficient specific algorithms. In certain situations the alternative 
to integer programming is the use of metaheuristic algorithms, as in the case of obtaining 
a sequence of activities so that the total time is minimum and keeping in mind the 
limitations of resources (chapter 9). 

5.4. INTEGER PROGRAMMING TECHNIQUES: BRANCH-AND-
BOUND ALGORITHMS 

5.4.1. INTRODUCTION 

Gomory was the author of the first cutting-plane algorithm to solve integer 
programming models (1958) and soon afterwards, in 1960, Land and Doig presented 
another more promising method than the algorithms based on cutting planes. This method 
was the first one of what is known today as the “Branch-and-Bound” algorithm. Then, in 
the 80s Branch-and-Cut algorithms were developed, which are nothing more than an 
integration of both types of methods. 

Gomory’s algorithm consists of solving the problem without considering the 
constraints of the integer variables and if the optimal solution is not integer it adds 
constraints that reduces the feasible region of the linear programming model, without 
excluding any integer solution. 

The Branch-and-Bound algorithms are based on a similar idea, in the sense that in the 
first place they solve the continuous linear programming model and later they add 
constraints. The main difference is that the effect of such constraints is now to divide the 
feasible region in two. When making this division, no feasible integer solution is 
eliminated. These two subproblems are solved and if we find an integer solution, we can 
see the value of the objective function. If this is better than the value of the objective 
function of the other subproblem, we have finished and that will be the integer optimal 
solution. Otherwise, each one of the subproblems is divided into other two and so forth. 

How are these constraints generated? Let us see this with an example analyzing the 
algorithm procedure in a graphical way. 
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5.4.2. GRAPHICAL SOLUTION  

Let the integer programming model P0: 

MAX    3 X1 + 4 X2 

With the following constraints: 

2 X1 + X2  6 

2 X1 + 3 X2  9 

X1, X2  0 and integers 

In the first step, the corresponding linear programming model is solved without 
considering the constraints that X1 and X2 have to be integer. If the solution has  integer 
values it would be the optimal one. When it is not so, as in this case, since the continuous 
solution is X1 = 2.25, X2 = 1.5 and Z = 12.75, one of the variables that should be integer 
but is not, is taken, for example X1, and two new problems are generated. 

Each one of the subproblems generated is the previous one plus one constraint that 
forces this variable to have a minimum value of the higher integer or a maximum of the 
lower integer. These two new subproblems are P1 and P2. 

P1: Max 3 X1 + 4 X2 

 2 X1 + X2  6 
 2 X1 + 3 X2  9 

 X1  3 

P2: Max 3 X1 + 4 X2 

 2 X1 + X2  6 
 2 X1 + 3 X2  9 

 X1  2 

In Figure 5.4 we can see the graphical solution of problem P0 and that of the sub 
problems P1 and P2. In the case of sub problem P1 the feasible region is formed by only 
one point, in which the variables X1 and X2 are integer. However, we cannot say yet that 
this is the optimal solution, since the solution of P2, although not integer has a better value 
for the objective function. What we can guarantee is that P1 provides a lower bound for 
the value of the objective function of the optimal integer solution. 

Therefore, the next step is to divide P2 into two new problems: P3 and P4. Since only 
X2 is not integer, the only constraints to add are those that force X2 to take the higher or 
lower integer value X2  2 and X2  1. Figure 5.4 shows the graphical solution of these 
models and we can see that P4 has an integer solution with objective function equal to 10 
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and better than P1. Thus, 10 will now be the lower bound for the value of Z of the integer 
programming model. 

We have to continue by dividing P3 into two other models, P5 and P6, since the value 
of Z is better than the lower bound. Also in figure 5.4 (continuation) we can see that the 
model P5 does not have a feasible solution as there is no point that satisfies all of the 
constraints. P6 has a solution indeed, and as it is not an integer we have to create another 
two new linear programming models: P7 and P8. In Figure 5.4 (continuation) we can see 
that in the first of them the feasible region is formed by only one point, where the levels 
of activity of the variables are integer. In the second, P8, the optimal solution is also 
integer. Subproblem P7 is the one with the best value of Z of the last integer solutions, 
therefore it is the optimal integer solution of problem P0. The optimal solution is X1 = 0, 
X2 = 3 and Z = 12. 
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Figure 5.4. Graphical solution of the problem  

SOLUTION: 

X1 =   2.25 
X2 =   1.5 

Z   =  12.75 

MAX  3X1 + 4X2 
2X1 +  X2 6 

2X1 + 3X2  9 
 

               X1 3 

SOLUTION: 
 
X1 = 3 
X2 = 0 

Z   = 9 

MAX  3X1 + 4X2 
2X1 +  X2 6 

2X1 + 3X2  9 
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Figure 5.4. Graphical solution of the problem (continuation) 

MAX  3X1 + 4X2 
2X1 +  X2 6 

2X1 + 3X2  9 
 

                   X1 2 

SOLUTION: 

X1 =  2 
X2 =  1.66 

Z   = 12.66 

MAX  3X1 + 4X2 
2X1 +  X2 6 

2X1 + 3X2  9 
   

X1 2 
  X2 2 

SOLUTION: 

X1 =  1.5 
X2 =  2 

Z   = 12.5 
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Figure 5.4. Graphical solution of the problem (continuation) 

MAX  3X1 + 4X2 
2X1 +  X2 6 

2X1 + 3X2  9 
 

                        X1 2 
  X2  

SOLUTION: 

X1 =  2 
X2 =  1 

Z   = 10 

MAX  3X1 + 4X2 
2X1 +  X2 6 

2X1 + 3X2  9 
 

                        X1 2 
    X2 2 
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Figure 5.4. Graphical solution of the problem (continuation) 

MAX  3X1 + 4X2 
2X1 +  X2 6 

2X1 + 3X2  9 
 

                        X1 2 
  X2 2 

                 X1 1 

SOLUTION: 

X1 =  1 
X2 =  2.33 

Z   = 12.33 

MAX  3X1 + 4X2 
2X1 +  X2 6 

2X1 + 3X2  9 
 

                    X1 2 
  X2 2 
  X1 
  X2 3 

OPTIMAL 
SOLUTION: 

X1 =  0 
X2 =  3 

Z   = 12 
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Figure 5.4. Graphical solution of the problem (continuation)  

 

5.4.3. SELECTION CRITERIA OF THE NODE  

In the previous sections we have seen the procedure of the Branch-and-Bound 
algorithm for a simple integer problem. We have just subdivided the problem in two 
subproblems and bound variables. In the upper part of Figure 5.5 we present the process 
followed in our example in tree form. What nodes have we chosen to make the following 
branching? The selection has been to continue the branch with the best value of the 
objective function. The possible criteria in this respect are: 

1. Technique of the best bound 

It consists of choosing the node with the best continuous optimal value, seeking to 
find optimal feasible solutions. However, in large problems, this approach usually leads 
to having to store too many data and it generates computer memory problems. 

  

 
                        X1 2 

  X2 2 
  X1 
  X2 2 

SOLUTION: 

X1 =  1 
X2 =  2 
Z   = 11 
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2. Technique of the most recent bound 
This criterion consists of choosing the node that was created more recently. Thus, you 

advance quicker down the tree and, although you have to examine more nodes than with 
the previous approach, it is easier to eliminate them during the process. 

In both cases we should keep the node with the best integer solution obtained so far. 
This allows us to eliminate all those that have a worse value of the objective function and 
even those with a smaller better percentage in which the variables are not integer, since 
if you continue along these nodes it will imply new losses in Z. If we operate in this way 
we will not have a guarantee of finding the best solution, but we will find a “quasi-
optimal” solution. 

In the lower part of Figure 5.5 we represent the tree obtained when applying the 
approach of the most recent node to the same example. Compare this tree with that 
obtained when applying the best bound technique. 

Once we are in the node for which we will continue branching: Which variable of the 
ones that must be integer and have no integer value in the solution, do we bound? We 
should select the variables with the greatest impact on the model. For example, to make 
a large investment or not will be a more important variable than the number of workers 
needed. Observe in Figure 5.6 the tree that is obtained from the above example if we start 
by delimiting the variable X2. LINGO has options where the user can choose the node 
selection strategy and permits the prioritisation of the binary variables, as explained in 
annex 2. 
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Figure 5.5. Selection criteria of the node: 
 1. Best bound. 2. Most recent bound  
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Figure 5.6.  Solution tree branching variable X2 

 

5.5. BRANCH-AND-BOUND  TECHNIQUES AND OPTIMIZATION  
SOFTWARE 

The optimization software uses the Branch-and-Bound algorithm as seen in the 
previous section. The latest tendencies in the application of this type of algorithm consist 
of adding constraints (cuts) to reduce the set of feasible solutions of the corresponding 
linear programming model, without eliminating any integer solution. For this reason, 
optimization software currently uses the branch and cut methods in a pre-processing 
phase. 

This automatic pre-processing consists of reformulating the model in order to solve it 
easily without eliminating any integer feasible solutions. These reviews can be grouped 
into three categories: 
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1. Set variables: Identify binary variables that may bind themselves to one of its 
two values. For example, if we have the restriction 3Y  2 where Y is binary, it 
is obvious that in the optimal solution Y can only be zero. 

2. Remove redundant constraints. 

3.  Reduce the continuous feasible region without eliminating integer solutions 
using cutting planes. 

LINGO by default uses the branch and cut method, but you can limit the number of 
constraints to be added if you think that the process does not improve in that way. In the 
real case explained in section 5.3.4 we found that we obtained the best results by selecting 
the option of cuts of "Gomory and GUB". LINGO has another option called Hurdle that 
allows us to enter the objective function value of a previously known integer solution. 
This means that the program can shorten the search process, only continuing branches 
whose objective function is better than the indicated value.  

In integer programming the time required to solve the problem depends primarily on 
the number of integer variables rather than the number of functional constraints of the 
problem. It can even be the case that when it is more restricted it is easier to solve. The 
application of branch and bound algorithms on large problems can be computationally 
infeasible due to the required computing time. We can also meet with limitations in 
memory storage. Therefore, the heuristic algorithms constitute a reasonable alternative if 
the above methods are too expensive. 

Some heuristic algorithms are merely modifications of exact algorithms that allow us 
to reduce time and memory requirements needed at the expense of not guaranteeing an 
optimal solution. Thus, we can interrupt the algorithm execution and keep the best integer 
solution obtained so far. Another possibility, common in integer programming software, 
is to indicate to not analyze the nodes whose objective function is worse than a certain 
value or worse than a certain percentage of an integer solution. LINGO has an option that 
permits us to specify a number r between 0 and 1, which is the tolerance used by the 
branch and bound algorithm in the process of searching the integer solution. If the best 
integer solution has Z as the value of the objective function, the software just continues 
the search for branches that are at least r*Z better. In this case we do not necessarily find 
the best solution, but accelerate the resolution process for large models, knowing the 
maximum that we have lost. Other heuristic techniques to solve integer programming 
problems are very different to the branch and bound algorithms, such as genetic 
algorithms explained in Chapter 9. Another interesting option is Relative Integrality 
Tolerance that allows us to enter a number to check the integrity of the variables. X is 
considered integer if X-I  / X  < tolerance, where I is the closest integer to X. 

Finally, we note that the software uses the simplex algorithm to obtain the continuous 
solution and the dual algorithm to reoptimize. Obviously it is not necessary to solve the 
whole problem again on each node of the branch and bound algorithm. We can predict 
that future methods on this topic will be integrated with constraint programming 
techniques. At present, these techniques allow us to formulate models in a more compact 
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manner and find feasible solutions more efficiently than integer programming. However, 
integer programming is a much more powerful technique for finding the optimal solution 
amongst all of the feasible ones than constraint programming. 

5.6. SUMMARY 

In this chapter we have addressed specific integer programming models, such as 
capital budgeting, transport routes and the site selection of industries where binary 
variables are used as decision variables and models with nonlinear cost functions where 
the binary variables, in this case auxiliary variables, allow us to represent the actual costs 
in linear format. 

Regarding solving methods, the general algorithms of integer programming that 
professional software currently uses have been explained, the branch-and-bound 
algorithms-, as well as possible ways to use them  to overcome the difficulties that may 
arise. For example, we have seen the possibilities for node selection and prioritizing 
certain variables in the search process.  
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5.8. CASE STUDIES 

CASE STUDY 1 

1.1. Solve the following problem: 
MAX 16 X1 + 22 X2 + 12 X3 + 8 X4 

5 X1 + 7 X2 + 4 X3 + 3 X4  14 

Xi = (0, 1) binary variables for i=1, 2, 3, 4 

 Draw the resulting solution trees when applying the most recent bound technique and 
the best bound technique. Analyze the advantages and disadvantages of each criterion. 

1.2. Solve the following integer programming model: 

MAX 4 X1 + 3 X2 + X3 

 3 X1 + 2 X2 + X3  7 
 2 X1 + X2 + 2 X3  11 

 X1, X2  0 and integer 

CASE STUDY 2. COVERING MODELS 

The models presented in the problems below have a similar structure. In general, 
minimizing an objective function of the decision variables and constraints ensures that 
the selection of variables covers the requirements of the problem. 

2.1. SHIFT SCHEDULING PROBLEM 

Many industries have the problem of assigning a work schedule to their employees in 
order to cover some known service needs, in such a way that the number of workers is 
the minimum possible. To approach this problem we need to know the necessary 
manpower at each point of the day and the establishment of some types of shift work that 
comply with the legislation in force. 

Supposing a working day of ten hours, in which each shift should complete 8 working 
hours. Table 5.6 shows the minimum number of employees in service in every hour and 
takes into consideration that the incorporation should be carried out at the beginning of 
every hour. The breaks, minimum of one hour, cannot be taken before having worked 
three hours nor after more than five. 

Formulate and solve a model to determine the shifts that cover the needs and require 
the smallest number possible of workers. Add to the previous model the condition that it 
cannot have more than 2 working shifts. 
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Table 5.6. Number of employees required  

HOURS 8-9 9-10 10-11 11-12 12-13 13-14 14-15 15-16 16-17 17-18 

Number of 
employees 20 40 60 80 60 50 40 50 60 30 

 

2.2. PROBLEM OF OPTIMIZATION OF RAW MATERIAL CUTTING 

A machine produces rolls of paper with a standard width of 180 inches. Some orders 
are received for at least 200 rolls of 80 inches wide, 120 rolls of 45 inches and 130 of 27 
inches. Formulate and solve a linear programming model that allows us to decide how to 
cut the 180-inch-wide rolls to cover the orders with a minimum loss of paper. 

2.3. ANOTHER COVERING PROBLEM 

Channel 9 will broadcast the football game of the final of the King's Cup between 
Valencia and Real Madrid. It wants to know the minimum number of cameras that are 
needed in the stadium to cover all points of the field perfectly. The field has been divided 
into 20 sectors, which can be covered from 10 points as shown in Table 5.7. Formulate 
and solve a model to inform this decision-making problem. 

 
Table 5. 7. Sectors covered by the cameras depending on their localization 

Localization point Sectors covered 

1 16 17 18 19  

2 17 18 19 20  

3 16 17 18 19 20 

4 1 2 3 4 5 

5 2 3 4 5  

6 7 8 9 10  

7 12 13 14 15  

8 6 7 8 9  

9 11 12 14 15  

10 7 8 9 13 14 
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CASE STUDY 3. CAPITAL BUDGETING 

A company has € 1,000,000  to invest in 7 different funds. The company wants to 
maximize the total return on investment, taking into account the following conditions: 

1. They will only invest in fund 2 if they invest in fund 1. 

2. If they invest in fund 1 or 4 they do not invest in fund 6. 

3. If they do not invest in fund 2 or 5, they will not invest in fund 7 either. 

4. If they invest in a fund the amount invested in that fund must be between 5 and 40% 
of the total amount. 

 

The return of the individual funds is shown in the following table 5.8. 
 

Table 5.8. Funds return 

 Fund 1 Fund 2 Fund 3 Fund 4 Fund 5 Fund 6 Fund 7 

Return 
% 1 2,5 5,5 1,5 0,5 4,5 3,5 

 

1. Formulate a linear programming model to maximize the total return on investment.  

2. The company has an additional € 500,000 and wish to study whether to invest this whole 
amount in patriotic bonds, which have a return of 5%, or add it to the initial amount to be 
redistributed between the previous funds. Formulate a linear programming model to 
maximize the total return in this new situation. 

CASE STUDY 4. LOCATION PROBLEM 

An international consulting company wants to open two offices in Spain. Potential 
customers, both public and private, have been analyzed as well as the availability of 
qualified personnel and the communication facilities of different Spanish cities. 
Following a previous study four candidate cities: Madrid, Valencia, Bilbao and Seville 
have been selected. 
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Table 5.9. Average cost of serving a customer of an area (column) from the office located in 
the city indicated in the row  

 

Offices Centre East North South 

Madrid 2 5 6 7 

Valencia 4 3 8 6 

Bilbao  5 6 3 8 

Sevilla 6 5 10 4 

Number of 
clients 

40 30 25 15 

 
Formulate a model that allows the company to decide in which two towns to locate the 

offices and from which of them to serve customers located in the other two areas. Each 
office should provide customers with service in the area in which it is located and the area 
or areas assigned. The fixed cost of the office in Madrid is 35 m.u., 25 in Valencia, Bilbao 
15 and 20 in Seville and the company's objective is to minimize the total costs. 

 

CASE STUDY 5 

A multinational company has decided to install four branches on four pieces of land 
that it has in regions A, B, C, D, E and F in the next four years. If two of these branches 
are installed in regions A and C the construction of the necessary facilities should be 
simultaneous. If in the first year, they also install a branch in region B, they will install 
one in region E. 

If they choose to open branches in regions D and E, the facilities shall be constructed 
before the third year. Finally, the facilities in regions F and B cannot be installed during 
the same year. 

The estimated costs in millions of Euros for the construction of the necessary facilities 
to locate the four new branches by region and year of construction is shown in Table 5.10. 

We want to know the best location and the year of construction of the new centers that 
minimizes the cost, considering that management does not want to invest more than three 
million euros in the first year. Formulate an integer linear programming model that allows 
us to make the best decision.  
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Wide
Wire

2 type 1 machines to
manufacture (reduce)

wire

1 combined machine to
reduce and coat wire

1 machine to
coat wire

Uncoated wire, 2
cross-sections

Coated wire, two
cross-sections

DEMAND

Table 5.10. Construction costs of the branches in millions of Euros 
 

Regions Year 1 Year 2 Year 3 Year 4 

A 1.5 1.3 1.8 1.6 

B 1.4 1.5 2 2.5 

C 1.9 2 2.2 2.3 

D 1.4 1.5 1.5 1.6 

E 1.3 1.4 1.8 1.5 

F 1 1.3 1.6 1.8 

 

CASE STUDY 6. A PROBLEM OF RENEWAL OF EQUIPMENT AND 
PRODUCTION PLANNING 

An electric wire manufacturer is revising its machinery. Some of the current machines 
are almost worn out or obsolete, therefore the production costs are becoming 
unacceptably high. At the same time a change in the technology has caused an extension 
in the demand in terms of the wire type that this manufacturer produces. The current plant 
cannot cover the projected demand for the near future (Table 5.11). The following Figure 
shows the product flow and the machine types currently installed. 

 
 

  

 

 

 

 

 

Figure 5.6. Existing plant and production flow 

The coated wire can be manufactured by using either of two different processes. The 
first process manufactures the copper wire with the desired cross-section in a machine 
and it coats it in another machine. The second process uses a single machine to 
manufacture and coat the wire. While this second process is preferable because it implies 
less handling and waste, there is a certain demand for uncoated wire, therefore it is 
necessary to have some wire reduction facilities for uncoated wire. 
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Table 5.11. Planned demand of sales (Km) 

Uncoated wire (Km) Coated wire (Km) 

Num.1 Num.2 Num.1 Num.2 

3,000 2,000 14,000 10,000 

 

Table 5.12. Machine options and data 

Data 
Wire reduction machines Coating wire machines Combined 

machines 
Type 1 

Existing Type 2 New Existing Improve 
existing New 

Machine option 1 2 3 4 5 

Capital costs in 
thousands (mu) 0 200 0 100 500 

Operation costs per hour 
(mu) 5 7 8 8 12 

Fixed cost per year in 
thousands (mu) 30 50 80 100 140 

Production rate:      

Wire Num.1 m/h 1000 1500 1200 1600 1600 

Wire Num.2 m/h 800 1400 1000 1300 1200 

Product waste in % 2 2 3 3 3 

Cost of waste in mu per 
1,000 m 30 30 50 50 50 

 
The company has several options, including the option of keeping and modifying 

some of the existing machines and acquire new machines. Table 5.12 shows these options 
together with the cost and the production data for each one of the possibilities. More than 
one machine can be acquired for options 2 and 5. None of the new or old machines has 
any resale value. 

1. Formulate a model that provides the configuration of machines, as well as the 
proportion of annual time that each type of machine dedicates to produce the different 
types of wire. Suppose that the machines work 20 h/day, that is, 6,000 h per year. 

2.  Solve the model firstly by taking into consideration that the objective is to minimize 
the investment cost and secondly, assume that the objective is to achieve a 
configuration of the factory that minimizes the total operation costs.  
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3. Analyze the advantages and disadvantages of the two previous solutions and indicate 
which one you would implant if you were the decision-maker. 

CASE STUDY 7. PLANNING FOR THE TRAINING OF MEDICAL SPECIALISTS 

This case study presents a real problem consisting of planning the four years of 
training for medical residents of a Radiology Department of a hospital in Valencia. The 
hospital Radiology Department needs to schedule the training of new medical residents 
each year, establishing a rotating sequence. Throughout the four years of training the 
residents must perform the following rotations: Technique, Chest, Ultrasound, Digestive, 
CAT, Muscle-skeletal, Breast, MRI, Vascular, Pediatrics, Nuclear Medicine and Urology. 
Some rotations are fixed and must be made in a given month. For example, all medical 
residents must take Technique during the first month of training. Others such as Thorax 
are essential and should be taken as soon as possible. Some will be taken only after having 
done other certain rotations. Thus, MRI should be scheduled for residents who have taken 
the CAT and Ultrasound rotations. Besides the order and duration of the rotations they 
are characterized by a number of cycles. So, Breast, lasting three months, is done in one 
cycle of three months, while Gastroenterology, which also lasts three months, has to be 
completed in two cycles, the first two months during the first year of training and then a 
further period of one month, to be completed during the third or fourth year. Table 5.13 
presents data cycles, durations and conditions to be met in the Radiology Department, 
regulated by the Specialist Training Guide.  

The Radiology Department was interested in optimizing the planning of the training 
of new medical residents, given the amount of time required and the difficulties involved, 
they contracted the Polytechnic University of Valencia. This is a combinatorial 
optimization problem whose objective is to find the best program for training medical 
residents, taking into account the current legislation and recommendations as to the order, 
duration and number of times to perform the rotation and the limitations of hospital 
resources.  

This problem was solved with a model with the following definition of variables. 
RiXXXj defines a binary variable that will be worth 1 if the resident i (i = 1, 2, 3) starts 
the rotating XXX (XXX = 1, 2, ... 12) in month j (j = 1,2, ... 48) and 0 otherwise. For 
optional rotations other binary variables will be defined (1, 0) RiOPTj which means if the 
doctor does an optional rotation i during the month j (1) or not (0). 

Given the combinatorial nature of the problem only the necessary variables should be 
defined. Binary variables are defined between one starting month and one final month, 
representing the earliest month to start and the latest month when you can start the 
rotation. Thus, for Technique which is fixed we will only have one variable for each 
resident (R1TEC1, R2TEC1 and R3TEC1), while the Chest, Ultrasound, Digestive and 
CAT rotations will have variables defined between months two and 48. For the remaining 
seven rotations we will have variables between months eleven and 48, since the first ten 
months will be occupied by fixed rotations, basic and holidays. The optional rotation will 
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be taken at the end of the training period and therefore we will only define the 
corresponding variables between months 37 and 48. Logically, we should also define the 
variables related to the vacation month, which must be in July, August or September. In 
total, we have 486 variables per resident and therefore 1,458 for the full model, since 
three new doctors enter each year.  

Table 5.13. Cycles, durations and rotation conditions 

Rotatory Cycles and months Conditions 

  1. Technical 1 In the first month 

  2. Chest 2+2+1 Basic 

  3. Ultrasound 2+2+1 Basic 

  4. Digestive 2+1 Basic 

  5. CAT 2+2+1 Basic 

  6. Muscle-Skeletal 2+2 Independent 

  7. Breast 3 Independent 

  8. MRI 2+2 After CAT and ultrasound 

  9. Vascular 2+2 Independent 

10. Pediatrics 3 After CAT and ultrasound 

11. Nuclear Medicine 1 Independent 

12. Urology 1 Independent 

13. Optional 5 4th year 

Formulate the objective function and constraints of a model to solve this problem by 
defining the variables which have been mentioned or using different ones that you may 
define. 
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All the models for linear and integer programming studied in this book up to now have 
one feature in common: optimizing a single objective. We have maximized benefits or 
minimized costs, but always from a single criterion. Selection of this criterion is 
sometimes difficult when we want to take into account different objectives, which can be 
in conflict with each other. In this chapter we will present the most commonly used 
methods to solve problems involving several objectives and goals. 

6.1. BASIC CONCEPTS: OBJECTIVES, GOALS AND CRITERIA 

In a multiple objective context we first have to define the concept of attribute. This 
concept refers to values related to an objective reality and which can be measured 
independently of the decision-maker's ideas. Attributes can usually be expressed as 
mathematical functions of the decision variables. An attribute could be, for example, the 
benefit. The objectives represent addresses to improve the attributes. The improvement 
can be interpreted as more of a better attribute, corresponding to a maximization process. 
In the opposite case we will be dealing with a minimization problem. Thus, maximizing 
profits, maximizing sales, minimizing costs, minimizing risks, etc. are examples of 
objectives. 

We call the acceptable achievement level for the corresponding attribute aspiration 
level. The combination of an attribute with an aspiration level generates a goal. Therefore, 
to obtain a profit of at least 100 million euros is a goal. Summarizing, profit is an attribute, 
maximizing profit is an objective and reaching a profit at least equal to a given aspiration 
level is a goal. Finally, criterion is a concept that comprises the three previous concepts. 
In other words, the criteria constitute the attributes, objectives or goals considered as 
relevant in a decision-making problem. 

What is the difference between objectives, goals and constraints? In this particular 
context the difference between these three concepts is very important. The difference 
between an objective and a goal is clear. While the goal establishes an acceptable 
aspiration level of the attribute, the objective optimizes it, maximizing or minimizing. 
The difference between a goal and a constraint is more subtle. In mathematical terms, a 
goal looks exactly the same as a constraint. However, goals involve more flexibility and 
less stiffness than constraints. For a goal the second member is simply a value we aspire 
to. However, in a constraint we must always fulfil the right-hand side, because otherwise 
the constraint will be violated and we would have a non-feasible solution. In single-
objective mathematical programming the concept of goal does not exist, working only 
with constraints. 

Another important concept is the trade-off rate between criteria. The trade-off rate 
between two criteria means the amount of achievement of a criterion that must be 
sacrificed to obtain a unitary increase in another criterion. The advantages of trade-off 
rates are twofold in the multiple-objective approach. On the one hand, they are a good 
index for measuring the opportunity cost of a criterion in terms of the other criteria we 
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are also considering. On the other hand, the concept of trade-off rate plays an important 
role in the development of interactive multiple-objective methods. The interaction 
becomes a kind of dialogue in which the decision-maker transmits his preferences 
measured by the trade-off rates to the system analyst. 

The conceptual difference between attributes, objectives and goals allows us to make 
a first methodological classification of the different multiple criteria approaches. 
Therefore, when decision making lies within a context with multiple objectives we can 
apply multiobjective programming. If the process of decision making takes place within 
a context with multiple goals, we will then consider goal programming. Both approaches, 
multiobjective and goal programming, can solve continuous and discrete problems. 
Nevertheless, there are multiple criteria methods especially designed for problems with a 
discrete number of feasible solutions, such as AHP and PROMETHEE that will be 
explained in chapter 7.  

6.2. MULTIOBJECTIVE PROGRAMMING 

There are many situations in which it is necessary to consider different characteristics 
that are difficult to combine in a single objective: investment profitability and risk, short-
term benefits and company long-term growth, services costs and quality, etc. Usually, 
multiobjective problems can have intrinsically different or intrinsically similar objectives. 
In the first case the opportunity cost of an objective over the others can sometimes be 
determined and in other cases the criteria can be ordered by importance. Multiobjective 
programming and goal programming are useful techniques for solving problems in this 
context. 

One of the many real problems in which multiobjective programming is applied is 
natural resources management. For example, the administration can decide to include 
profitability, historical, ecological, environmental, hydraulic values, etc. in land 
management and planning. In many occasions the aim is to preserve public lands in their 
natural conditions to provide shelter and food for wild life and domestic animals while 
also considering the recreational use of the land. Many such objectives conflict with each 
other. Farming associations want more land for farming and/or pasture, mining 
companies want exploitation rights and groups for the preservation of the environment 
want to maintain some areas in their natural state. 

Another application is the construction of airports in large cities. Possible objectives 
could be: minimizing the overall costs of construction, maintenance and servicing, 
minimizing the access time to the airport, maximizing safe operations, minimizing the 
effects of noise pollution caused by air traffic and increasing the airport's air traffic 
capacity. 
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We will see the main concepts of multiobjective programming with a simple example. 
This is the problem: a plot of land that is currently devoted to hunting wants to be partially 
transformed to be used for cattle breeding with the objective of increasing benefits 
without totally renouncing its recreational value and trying to maintain in both cases a 
level of exploitation that guarantees the ecological balance. 

The decision variables of the model, X1 and X2, represent the hectares devoted to 
sheep pasture and those left for hunting activities, respectively. The two objectives to 
maximize are profit and recreational value of the plot of land. The function representing 
the latter has been built from an arbitrary relative scale from 0 to 4, giving the maximum 
value when the land is only exploited for hunting, and value 1 when the cattle is 
introduced. For different reasons, it is considered that no more than 1500 ha should be 
devoted to pasture, and that no more than 1000 ha should be exclusively devoted to 
hunting. The total surface area of the plot of land is 2,000 ha. 

 

Max[Benefit Z1 = 30 X1 + 5 X2; Recreational Value Z2 = X1 + 4X2] 
Land surface:     X1 + X2  2000 

X1  1500 
X2  1000 
X1, X 2  0 

Figure 6.1 represents the feasible region and the optimal solution if maximizing only 
one single objective. If the objective is profit, the optimal solution will be point B and if the 
objective is to maximize the recreational value, the optimal solution will be point C. With 
the optimal values of both objective functions we will build the pay-off matrix of Table 6.1. 
Thus, when maximizing benefit, it gives a value of 47,500 monetary units and a recreational 
value of 3,500, while when maximizing the recreational value, its value will be 5,000 and 
the benefit will be lower than in the former case, more specifically 35,000 monetary units. 

The point (Z1=47,500, Z2=5,000) formed by the elements of the pay-off matrix diagonal 
is called ideal point, where the two objectives reach their optimal value and this is usually 
impossible. This point and the anti-ideal point, which is the point at which Z1 is 35,000 
and Z2 is 3,500, are important in the solving methods of multiobjective problems. The anti-
ideal point is a "bad solution", but it is useful, for example, to "standardize" the objectives 
measured in the different units and with different absolute values. In addition, the difference 
between ideal and anti-ideal values defines a range of values for each criterion that it is 
necessary to know when using certain resolution methods for multiobjective problems. 

Table 6.1 Pay-off matrix 

Maximizing Benefit Recreational Value 

Benefit 47,500 3,500 

Recreational value 35,000 5,000 
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Table 6.2 shows the coordinates of the corner-points of OABCD in the decision variable 
space of Figure 6.1, and their corresponding objectives graphically represented in Figure 6.2 
by points O’, A’, B’, C’ and D’. 

Table 6.2  Values of decision variables and objectives at corner-points 

Corner-point 

Decision variables Objectives 

X1 
Ha Pasture 

X2 
Ha hunting 

Z1  Benefit 
(thousands mu) 

Z2 
Recreational 

Value 
O 0 0 0 0 
A 1,500 0 45,000 1,500 
B 1,500 500 47,500 3,500 
C 1,000 1,000 35,000 5,000 
D 0 1,000 5,000 4,000 

 

 

Figure 6.1 Feasible region and optimal solution with single objective 
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Figure 6.2  Efficient set in the objective space 

 

When there are objectives in conflict, as in this case, the ideal point where all the 
objectives reach their optimal solution does not exist. Therefore, what the resolution of a 
multiobjective model does is to find the efficient set. A point belongs to the efficient set 
or boundary when it fulfils the constraints and there is no other possible solution to 
improve one of the objectives without worsening at least another one. As shown in Figure 
6.2, it is evident that the efficient boundary in our problem is segment C’B’. Note that the 
efficient set can be defined in terms of efficient corner-points (B´ and C´) or in terms of 
corner and interior points (segment B´C´). It is also worth noting that the slope of segment 
B´C´ provides the trade-off rate between objectives and is therefore a measurement of the 
opportunity cost of one for the other. 

With the set of efficient points we can select one solution, regarding the subjective 
criteria in small problems. On the other hand, we have been able to graphically solve the 
previous problem because it is a model with two decision variables and two objectives. 
Larger problems can be solved using different methods. Among them we find the 
constraints method and the weight method. 
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6.2.1. CONSTRAINTS METHOD 

This method consists of optimizing one of the objectives, while the other objectives 
are treated as parametric constraints. It has been proved that for each set of values of the 
right-hand sides an efficient point is obtained, either corner or interior point. Therefore, 
to solve the problem linear programming software can be used. The model would be the 
following 

MAX Z1 = 30 X1 + 5 X2 

X1 + X2  2,000 

X1  1,500 

X2  1,000 

X1 + 4 X2  P    the value of P should be between 3,500 y 5,000 

For each value of parameter P an efficient point is generated. The range of P will be 
defined by both values, the ideal and anti-ideal points. Table 6.3 shows some points of 
the efficient boundary. It is important to know that this method provides efficient 
solutions only when the parametric constraints are verified strictly in the optimal solution. 
This happens in all the points presented in Table 6.3 because of that Z2 and P coincide. 

 

POINT X1 X2 Z1 Z2 P 

B 1,500 500 47,500 3,500 3,500 

1 1,416.6 583.3 45,416.6 3,750 3,750 

2 1,333.3 666.6 43,333.3 4,000 4,000 

3 1,250 750 41,250 4,250 4,250 

4 1,166.6 833.3 39,166.6 4,500 4,500 

5 1,083.3 916.6 37,083.3 4,750 4,750 

C 1,000 1,000 35,000 5,000 5,000 
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Generally, the constraints method for n objectives will be 

MAXIMIZING Zk (X) 

Zj (X)  Pj   for j = 1,2,..., k-1, k+1,..., n 

Constraints of the model 

In the objectives to minimize that appear as parametric constraints, the direction of 
the constraint will be reversed. Thus, if we had to minimize Z1 we would set  

Z1(X)  P1 

6.2.2. WEIGHT METHOD 

This technique consists of aggregating all the objectives in a function where a 
nonnegative weight W is assigned to each objective in the following way 

 
 

MAX W1 Z1 (X) + W2 Z2 (X) + ... + Wn Zn(X) 

Constraints of the model 

Where Wi  0 and the constraints of the problem are fulfilled. Parametrically when 
changing weights W the efficient set can be generated or at least approximated. With this 
method only efficient-corner points are generated, contrary to the previous method in 
which corner and interior points are generated. Why? Think about sensitivity analysis of 
right-hand sides of constraints as well as sensitivity analysis of objective function 
coefficients.  

In our example, the model will be the following: 

MAX   W1 (30 X1 + 5 X2) + W2 (X1 + 4 X2) 

X1 + X2  2,000 

X1  1,500 

X2  1,000 

Z1 = 30 X1 + 5 X2 

Z2 = X1 + 4 X2 

For example, for values of W1 = 1 and W2 = 2 efficient corner-point B’ is obtained 
and for W1 = 1 and W2 = 10 point C’ is obtained (Figure 6.2). 
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It is necessary to emphasize that this method, as well as the other multiobjective 
methods, do not take into account the decision-maker's preferences. Therefore, the Wi 
chosen do not have a relationship with those preferences. These weights act as arbitrarily 
changed parameters in order to generate the efficient corner-points of the problem under 
consideration. Finally, both the constraints method and the weight method only guarantee 
approximations to the efficient set. No matter how detailed the parametric analysis which 
has been performed, we can never be sure that some efficient points have been omitted. 

6.2.3. OTHER MULTIOBJECTIVE TECHNIQUES 

Another method is the NISE (Noninferior set estimation) multiobjective method. This 
method consists of the iterative application of the weight method, though in this case the 
weights are not chosen arbitrarily, but the quotient of their values (W1/W2) is equal to the 
slope of the line that joins the efficient points obtained in the previous iteration. With this 
method we can obtain a fast and good approximation to the efficient set. Even for 
medium-size problems it can generate an exact representation of the efficient set. 

The only method that guarantees the generation of all efficient corner-points is the 
simplex multiobjective method. The purpose of this method, first proposed by Philip 
(1972) and Zeleny (1973), consists of finding all efficient corner-points of a 
multiobjective problem, moving from a corner-point to an adjacent corner-point. The 
conventional simplex algorithm constitutes the mechanism suitable for performing this 
type of search. 

Finally, there is an operational problem in all multiobjective methods which consists of 
the high number of efficient points generated. This problem of excessive information can 
be solved by decreasing the efficient point set in a number of ways, among which we find 
pruning and filtering techniques. With these techniques efficient solutions which are not 
very different from other solutions previously obtained are rejected. The generation of 
efficient solutions in a multiobjective problem can become difficult when the number of 
objectives and constraints increases. Even if found, the number of solutions may be so high 
that the selection of the optimal solution may become a difficult task. In these cases, other 
more pragmatic multiple criteria approaches such as goal programming models can be used 
instead.  
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6.3 GOAL PROGRAMMING 

6.3.1. GENERAL STRUCTURE OF A GOAL PROGRAMMING MODEL 

Goal programming is based on quantitatively establishing an acceptable achievement 
level for each of the objectives and then search for the solution that minimizes the 
weighted sum of the deviations for each objective over a fixed numerical value. Goal 
programming follows the philosophy proposed by Herbert Simon (Nobel in Economy, 
1978). According to Simon present decisional context is defined by incomplete 
information, limited resources, multiple objectives, interest conflicts, etc. In this complex 
context, the decision maker tries to approach a set of relevant goals as much as possible 
to some previously fixed aspiration levels. 

In section 6.1 the concepts of attribute, objective, aspiration level and goal have been 
defined. The first step in the formulation of a goal programming model consists of setting 
those attributes considered relevant for the problem under analysis. The next step is to 
determine the aspiration level for each attribute, i.e. the achievement level we wish to 
reach. 

Thus, for the i-th attribute, the goal will be as follows 

fi (x) + Ni - Pi = ti 

Where fi (x) is the mathematical expression of the i-th attribute, ti its aspiration level, 
Ni and Pi are the negative and positive deviation variables, respectively. 

The negative deviation variables quantify the lack of achievement of a goal with 
respect to its aspiration level, whereas the positive deviation variables quantify the surplus 
of achievement of a goal with respect to its aspiration level. Table 6.4 presents the three 
types of goal that we can formulate. The first case is an upper one-sided goal, the second 
is a lower one-sided goal and the third a two-sided goal. 

A goal is not the same as a constraint, although mathematically they are expressed in 
a similar way. A constraint must be always fulfilled; otherwise the model will not have 
any feasible solutions. However, the goal represents the level that we want to reach and 
we can therefore stand above or below that level. Depending on the type of goal, we will 
have to choose the deviation variables to be minimized. For example, if the goal is to 
reach a minimum profit level of 20 million euros, the deviation variable to be minimized 
will be the negative deviation, if we reach more than that level the better. On the other 
hand, if we want our investment to be at most 8 million euros, the variable to be 
minimized in this case, which is an upper one-sided goal, will be the positive deviation. 
We will minimize only the sum of the two deviation variables when we want to reach a 
given level exactly, as in the case of wanting to maintain the work force of the company. 
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Since a goal cannot simultaneously exceed or be below the aspiration level at least 
one of the two deviation variables must be zero. Both deviation variables will take a zero 
value when the goal strictly reaches its aspiration level. 

Table 6.4 Formulation of goals and deviation variables 

Type of goal Formulation of goal Deviation variables to minimize 

fi (x)  ti 

fi (x)  ti 

fi (x) = ti 

fi (x) + Ni - Pi = ti 

fi (x) + Ni - Pi = ti 

fi (x) + Ni - Pi = ti 

Pi 

Ni 

Ni + Pi 

 

We will learn the main concepts of goal programming using a simple example of 
production planning (Ballestero and Romero, 1998). A public paper company 
manufactures two types of products, cellulose pulp obtained by mechanical systems, and 
cellulose pulp obtained by chemical processing. The maximum production capacities are 
estimated at 300 and 200 ton/day for each type of cellulose pulp. One worker is required 
to produce one ton of cellulose pulp. The company has of a work force of 400 workers, 
and does not want to take on more personnel. 

The gross margin (income minus variable costs) per ton of cellulose paste obtained 
mechanically is estimated at 1,000 m.u. and that obtained chemically at 3,000 m.u.  The 
fixed costs of the paper company are estimated at 400,000 m.u./day. The company would 
like, to cover fixed costs at least. The preferences of the company are the maximization 
of the gross margin (economic objective) and the minimization of the damage to the river 
which the paper company spills its wastes into (environmental objective). It is estimated 
that the production waste generated per ton of mechanically and chemically obtained 
cellulose paste generate biological demands for oxygen in the river water of 1 and 2 units, 
respectively. 

Let's consider an aspiration level of 300 units for the biological demand of oxygen. 
The right-hand side of the corresponding constraint will be the aspiration level associated 
with the attribute. We will suppose a value of 400,000 m.u. for the gross margin.  

Thus, the company goals are the following: 

Biological demand for oxygen: X1 +2 X2 + N1 - P1 = 300 
Gross margin: 1000 X1 + 3000 X2 + N2 - P2 = 400,000 
Employment: X1 + X2 + N3 - P3 = 400 
Production capacity X1: X1 + N4 - P4 = 300 
Production capacity X2: X2 + N5 - P5 = 200 
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Let's see what the undesirable deviation variables are. For the first goal, the 
undesirable variable would be P1, since the lower the biological demand for oxygen better. 
For the second goal, gross margin, the variable to be minimized will be N2 since, it is 
better if we reach a gross margin higher than the established one. For the goal of 
employment, for which the idea is to maintain current levels, we have to minimize both 
the positive and the negative variables. Finally, we do not wish to exceed the production 
capacities, which would involve working extra shifts, therefore the undesirable variables 
are P4 and P5. 

6.3.2. WEIGHTED GOAL PROGRAMMING 

The goal programming model is solved by minimizing the sum of the undesirable 
deviation variables. In our example we would have 

MIN P1 + N2 + N3 + P3 + P4 + P5 (1) 

This expression is the sum of the variables measured in different units, which is 
meaningless. In addition, the absolute values of the aspiration levels are highly different. 
Therefore, we could have solutions shifted towards the goals with high aspiration levels. 
We can avoid these problems, if instead of minimizing the sum of absolute deviations we 
minimize the sum of the deviations measured as a percentage. Thus, (1) becomes 

 
As percentages are dimensionless, the sum in the previous expression does not present 

any problems of homogeneity. Furthermore, the standardization procedure used removes 
any bias to the fulfilment of goals with high aspiration levels. However, in expression (2) 
it is assumed that we place the same importance on all of the goals, which is not 
necessarily always the case. This problem can be solved by replacing expression (2) by 

 

 
Where the Wi coefficients are the relative importance we wish to give to each goal. 

This method consists of minimizing the weighted sum of the undesirable deviation 
variables, expressed in percentage; this is known as weighted goal programming. In our 
example, the overall formulation of the weighted goal model is the following: 

 

 

P 1 N2 N3 + P3 P4 P5
300 400000 400 300 200

+ (2)MIN + + +

P 1 N 2 N 3  + P 3 P 4 P 5

300 400000 400 300 200
MIN      W 1 + + + + (3)W 2 W 3 W 4 W 5

P 1 N 2 N 3  + P 3 P 4 P 5

300 400000 400 300 200
MIN      W 1 + + + + (3)W 2 W 3 W 4 W 5
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Subject to 

Biological demand for oxygen: X1 +2 X2 + N1 - P1 = 300 

Gross margin: 1,000 X1 + 3,000 X2 + N2 - P2 = 400,000 

Employment: X1 + X2 + N3 - P3 = 400 

Production capacity X1: X1 + N4 - P4 = 300 

Production capacity X2: X2 + N5 - P5 = 200 

This is a linear programming model and thus we can solve it through the simplex 
algorithm. For different weights different solutions will be generated. If we give the same 
importance to all goals, all Wi will equal 1. The solution obtained through LINGO is the 
following. 

MODEL: 

! Production planning 

Xi= Ton/day, cellulose pulp obtained by mechanical systems (1) and 
chemical processing (2); 

[OF] MIN = 33.33*P1 + 0.025*N2 + 25*N3 + 25*P3 + 33.33*P4 + 50*P5; 

! Constraints: GOALS; 

[GOAL_BDO] X1 + 2*X2 + N1 = 300 + P1; 

[GOAL_GMARGIN] 1000*X1 + 3000*X2 + N2 = 400000 + P2; 

[GOAL_ EMPLOYMENT] X1 + X2 + N3 = 400 + P3; 

[GOAL_PCX1] X1 + N4 = 300 + P4; 

[GOAL_PCX2] X2 + N5 = 200 + P5; 

[BDO] X1 + 2*X2 = VBDO; 

[GM] 1000*X1 + 3000*X2 = VGM; 

[EMPLOYMENT] X1 + X2 = VEMPLOYMENT; 

END 
 
Global optimal solution found. 
  Objective value:                3888.66 

         
  VARIABLE           VALUE         REDUCED COST 
        P1       66.666664             0.000000 
        N3       66.666664             0.000000 
        X1      300.000000             0.000000 
        X2       33.333332             0.000000 
        N5      166.666672             0.000000 
      VBDO      366.666656             0.000000 
      VGM    400000.000000             0.000000 
    EMPLOYMENT  333.333344             0.000000 
 
 
  



Chapter 6. Multiobjective programming and goal programming 
 

191 

In this solution we can see that we get the gross margin established as goal 
(400,000 m.u.) exactly, exceed the goal of biological demand for oxygen by 66.6 and 
obtain a level of employment lower than the goal. Similarly, the production of cellulose 
paste obtained by mechanical systems completely reaches the goal established in terms 
of production capacity, whereas the production of cellulose paste obtained by chemical 
processes is very small. In the model solved with LINGO the mathematical expressions 
for the biological demand for oxygen, the gross margin and employment have been 
included to see the levels reached in the optimal solution. Note that the right-hand side 
of these three expressions are VBDO, VGM and VEMPLOYMENT, variables for 
whose only purpose is to show the value of biological demand for oxygen, gross margin 
and the employment level in the optimal solution. Variables which are not shown in the 
optimal solution are zero. Analysis based on goal programming can be improved by 
using sensitivity analysis for the weighted coefficients. 

6.3.3 PREEMPTIVE GOAL PROGRAMMING 

In weighted goal programming all goals are supposed to have comparable importance. 
However, there are situations in which some goals have priority over other goals; in this 
case we have preemptive goal programming or lexicographic goal programming, and 
the goals are first classified into first-priority, second-priority, third priority, etc. The 
goals with the highest priority are satisfied as much as possible, only after this the possible 
satisfaction of goals with lower priorities will be considered. In other words, preferences 
are ordered in the same way as the words in a dictionary which is why this type of 
programming is also referred to as lexicographic goal programming. 

In order to illustrate this approach we are going to modify the example used in the 
previous section. Supposing that first priority Q1 consists of the goals of the factory's 
production capacities. The second priority Q2 consists of the goal that states that the 
biological demand for oxygen be at most 300 units. Priority Q3 is gross margin and the 
forth priority Q4 is the employment goal. Therefore, the overall process of lexicographic 
minimization of the undesirable deviation variables is given by the following vector: 

Lex min a = [(P4 + P5), (P1), (N2), (N3 + P3)] 

This vector is known as an achievement function and replaces the conventional 
objective function. Each component of the achievement function represents the deviation 
variables to be minimized, with the purpose of obtaining the maximum possible 
achievement of the goals in the corresponding priority. Generally, the achievement 
function is represented as 

Lex min a = [h1 (N, P), h2 (N, P),...,hk (N,P)] 

Or in abbreviated form 

Lex min a = [a1, a2... ak] 
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Where ak = h (N, P) is a function of the undesirable deviation variables. The 
lexicographic minimization of the previous vector involves the ordered minimization of 
its components. That is, first the smallest value of component a1 is found, then the smallest 
value of component a2, compatible with the value of a1, and so on. 

The preemptive goal programming model for our example will be: 

Lex min a = [(P4 + P5), (P1), (N2), (N3 + P3)] 

Q2: Biological demand for oxygen: X1 +2 X2 + N1 - P1 = 300 

Q3: Gross margin: 1,000 X1 + 3,000 X2 + N2 - P2 = 400,000 

Q4: Employment: X1 + X2 + N3 - P3 = 400 

Q1: Production capacity X1: X1 + N4 - P4 = 300 

Production capacity X2: X2 + N5 - P5 = 200 

This preemptive goal programming model can be solved with algorithms based on the 
simplex algorithm. The fundamental difference between linear programming and 
preemptive goal programming is that in the first we seek one point (corner-point) that 
maximizes a single objective, whereas in goal programming we seek a region that 
provides a commitment between a set of conflicting goals. 

We solve this preemptive goal programming model using a sequence of linear 
programming models. Firstly, we solve the linear programming model with the first level 
goals. 

 

 

 

 

 

 

 

 

 

 

MODEL: 
! Chapter 6. Preemptive goal programming; 
Production planning 
Xi= Ton/day, cellulose pulp obtained by mechanical systems (1) and 
chemical processing (2); 
[OF_Q1] MIN = P4 + P5; 
! Constraints: GOALS; 
[GOAL_BDO] X1 + 2*X2 + N1 = 300 + P1; 
[GOAL_GMARGIN] 1000*X1 + 3000*X2 + N2 = 400000 + P2; 
[GOAL_ EMPLOYMENT] X1 + X2 + N3 = 400 + P3; 
[GOAL_PCX1] X1 + N4 = 300 + P4; 
[GOAL_PCX2] X2 + N5 = 200 + P5; 
[BDO] X1 + 2*X2 = VBDO; 
[GM] 1000*X1 + 3000*X2 = VGM; 
[EMPLOYMENT] X1 + X2 = VEMPLOYMENT; 
 END 
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The deviation variables P4 and P5 are zero, so we set these values into the model to 
minimize the deviation variables of the second-priority goals. 

 

 

 

 

 

 

 

 

We obtain an optimal solution with P1= 0 by solving the model for the second-priority 
goal. That means that we achieve the goal of biological demand for oxygen. The next step 
is to solve a model by minimizing the negative deviation of the gross margin goal (N2), 
being P1=0 and we obtain N2=0 in the optimal solution. Note that the latter variable does 
not appear in the next linear programming model, because N2=0. 

MODEL: 
! Chapter 6. Preemptive goal programming; 
Production planning 
Xi= Ton/day, cellulose pulp obtained by mechanical systems (1) and 
chemical processing (2); 
[OF_Q3] MIN = N2; 
! Constraints: GOALS; 
[GOAL_BDO] X1 + 2*X2 + N1 = 300; 
[GOAL_GMARGIN] 1000*X1 + 3000*X2 + N2 = 400000 + P2; 
[GOAL_ EMPLOYMENT] X1 + X2 + N3 = 400 + P3; 
[GOAL_PCX1] X1 + N4 = 300; 
[GOAL_PCX2] X2 + N5 = 200; 
[BDO] X1 + 2*X2 = VBDO; 
[GM] 1000*X1 + 3000*X2 = VGM; 
[EMPLOYMENT] X1 + X2 = VEMPLOYMENT; 
END 

 
Finally, we solve the linear programming model that minimizes the deviation 

variables of employment goals. The objective function is the summation of N3 and P3 
because we prefer to maintain the employment level, without increasing or decreasing the 
number of workers. 

  

MODEL: 
!Chapter 6. Preemptive goal programming; 
Production planning 
Xi= Ton/day, cellulose pulp obtained by mechanical systems (1) and 
chemical processing (2); 
[OF_Q2] MIN = P1; 
! Constraints: GOALS; 
[GOAL_BDO] X1 + 2*X2 + N1 = 300 + P1; 
[GOAL_GMARGIN] 1000*X1 + 3000*X2 + N2 = 400000 + P2; 
[GOAL_ EMPLOYMENT] X1 + X2 + N3 = 400 + P3; 
[GOAL_PCX1] X1 + N4 = 300; 
[GOAL_PCX2] X2 + N5 = 200; 
[BDO] X1 + 2*X2 = VBDO; 
[GM] 1000*X1 + 3000*X2 = VGM; 
[EMPLOYMENT] X1 + X2 = VEMPLOYMENT; 
END 
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MODEL: 
! Chapter 6. Preemptive goal programming; 
Production planning 
Xi= Ton/day, cellulose pulp obtained by mechanical systems (1) and 
chemical processing (2); 
[OF_Q4] MIN = N3 + P3; 
! Constraints: GOALS; 
[GOAL_BDO] X1 + 2*X2 + N1 = 300; 
[GOAL_GMARGIN] 1000*X1 + 3000*X2 = 400000 + P2; 
[GOAL_ EMPLOYMENT] X1 + X2 + N3 = 400 + P3; 
[GOAL_PCX1] X1 + N4 = 300; 
[GOAL_PCX2] X2 + N5 = 200; 
[BDO] X1 + 2*X2 = VBDO; 
[GM] 1000*X1 + 3000*X2 = VGM; 
[EMPLOYMENT] X1 + X2 = VEMPLOYMENT; 
END 

 
Global optimal solution found. 
 
  Objective value:                            200.0000 
 
                       Variable      Value            Reduced Cost 
                             N3      200.00            0.000000 
                             X1      100.00            0.000000 
                             X2      100.00            0.000000 
                             N4      200.00            0.000000 
                             N5      100.00            0.000000 
                           VDBO      300.00            0.000000 
                        VMARGEN   400000.00            0.000000 
                        VEMPLEO      200.00            0.000000  

 
 
 
We see that the optimal achievement vector is a = [0, 0, 0, 200]. Therefore, the solution 

allows the total achievement of the first-, second- and third-priority goals, whereas for 
the fourth priority, there is a negative deviation of 200 units. 

Although variables P4 and P5 are measured in the same units (ton/day) and their sum 
is meaningful, the aspiration levels are different, and therefore the term P4 +P5 of the 
achievement function should be replaced by (P4/300) + (P5/200) as indicated in the 
previous section. It is also useful to compare the results obtained in the weighted goal 
model and in the preemptive goal model. Analyse their differences. The results obtained 
with goal programming models can be improved by analysing the influence of priority 
hierarchy on the solution. 

  

  



Chapter 6. Multiobjective programming and goal programming 
 

195 

6.4. SUMMARY 

Firstly, we defined the basic concepts of the multiple criteria approaches: attributes, 
objectives and goals. Secondly, we have illustrated the multiobjective programming 
approach with a simple example, consisting of two decision variables and two objectives, 
to be solved graphically. This allowed us to understand the concept of efficient solution 
or Pareto optimum, which is the solution in which we cannot improve one objective 
without worsening at least another objective. Multiobjective programming establishes the 
set of efficient solutions. Although this approach is different from conventional 
mathematical programming for optimizing a single objective, operational practice is 
similar in the sense that it consists of solving models using the well-known simplex 
algorithm if we have a linear programming model. The efficient set of solutions is 
approximated or generated optimizing one of the objectives and parameterizing the 
others. Nevertheless, when the number of objectives and constraints increases, the 
decision making becomes more complex. In these cases goal programming could be a 
more pragmatic approach. Thus, in this chapter we have explained the general structure 
of a goal programming model as well as weighted and preemptive goal programming 
models. The fundamental difference between linear programming and preemptive goal 
programming is that in the first we seek one point (corner-point) that maximizes a single 
objective, whereas in goal programming we seek a region that provides a commitment 
between a set of conflicting goals. 
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6.6. CASE STUDIES 
 

CASE STUDY 1:  PRODUCTION PLANNING PROBLEM  

A public paper company manufactures two types of products, cellulose pulp obtained 
by mechanical systems, and cellulose pulp obtained by chemical processing. The 
maximum production capacities are estimated in 300 and 200 ton/day for each type of 
cellulose paste. Each ton of cellulose paste requires one worker. The company has a work 
force of 400 workers, and does not want to take on more workforces. 

The gross margin (income minus variable costs) per ton of cellulose paste obtained 
mechanically is estimated at 1,000 m.u. and that obtained chemically at 3,000 m.u. The 
fixed costs of the paper company are estimated at 300,000 m.u. /day. The company would 
like, to cover fixed costs at least. 

The preferences of the company are to maximize the gross margin (economic 
objective) and minimize the damage to the river into which the paper company pumps its 
production waste (environmental objective). It is estimated that the production waste per 
ton of mechanically and chemically obtained cellulose paste generates biological 
demands for oxygen in the river water of 1 and 2 units, respectively.  

1. Formulate a model that allows the company to decide its production, taking into 
account the objective of maximizing the gross margin, and of minimizing the 
environmental damage caused. 

2. Graphically solve the previous model, representing the feasible set in the decision 
variable space and the efficient set in the objective space.  

3.Calculate the trade-off rate between objectives. 

4.Calculate the pay-off matrix.  

5.Generate at least five efficient points using the constraints method. 

6.Generate two efficient points with the weight method. 

 

CASE STUDY 2:  MULTIPLE LAND USE MANAGEMENT  

A consulting company has to write a report on the best decisions that can be taken by 
the management of a natural park. There are several production values that are desired. Two 
of the productive activities that can be carried out are coal mining and sheep herding. Two 
recreational activities that can be considered for the park are hunting and track vehicle 
usage. The board of directors consider that adequate forest management is needed in order 
to avoid erosion (desertification), to facilitate the absorption of water and CO2, and to 
improve the recreational and landscaping value of the natural park. 
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The natural park is divided into two zones; A and B. Zone A, which is 1,200 hectares, 
can be dedicated to coal mining, sheep herding, hunting and forestry. Zone B (5,400 
hectares) can be dedicated to sheep herding, hunting, vehicle and forestry. 

Some activities are not mutually compatible and cannot be carried out on the same land 
surface. For example, forestry is not compatible with mining and sheep herding. In other 
words, these three activities are mutually and collectively exclusive. Furthermore, coal 
mining is also incompatible with hunting and sheep herding. Lastly, sheep herding and 
hunting are compatible, but sheep production is reduced if hunting is allowed in the same 
area. Similarly, the recreational value of an area dedicated to hunting and sheep herding is 
less than when there is only hunting in the area. As a result of all this we differentiate the 
following simultaneous activities over areas: 1) Sheep herding, 2) Hunting, 3) Sheep 
herding and hunting. All the data is collected in the following table. 

1. Formulate a multiobjective linear programming model that would allow the consulting 
firm to complete a report.  

2. Calculate the complete pay-off matrix with the five objectives. 

3. Calculate at least two efficient points. State the solution and the values of all objectives 
for the two efficient points. 

4. Propose a management plan for the natural park based on the previous analysis. 

Table 6.5 Productions for each type of land used per hectare 

Production 
Sheep 

herding 

Coal 

mining 

Sheep 

herding 

and 

hunting 

 

Hunting Forestry Vehicle  

Animals/year 3 0 2.5 2 0 0 

Coal (thousands of 

tons/year) 
0 4 0 0 0 0 

Recreational value 0 -5 1 0 0 3 

Erosion avoidance -1 -3 0 1 5 -3 

NPV (m.u.) 300 1,000 320 20 -50 -40 
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CASE STUDY 3  

A company is considering the production of three new products to replace the current 
models and wants to know how many of the new products it should manufacture. The 
management wants to give primary consideration to three factors: Net Present Value, 
work force stability and capital investment required for the new equipment. 

The established goals are: 

1. Achieving a NPV of at least 125 million euros.  

2. Maintaining current employment level of 4,000 employees 

3. Holding the capital investment to less than 55 million euros. 

However, the management realizes that it will probably not be possible to attain all of 
these three goals simultaneously, so they have discussed their priorities. This discussion 
has led to setting penalty weights of 15 for missing the NPV goal (per million euros 
below), 2 for going over the employment goal (per hundred workers), 4 for going under 
the same goal and 5 for exceeding the capital investment goal (per million euros above). 

 The contribution of each new product to NPV, employment level and capital 
investment level are proportional to the rate of production. Table 6.6 shows the 
contributions per production unit, and the goals and penalties. 

1. Formulate and solve with LINGO or Excel the weighted goal programming model 
that allows the company to decide the quantity of new products to manufacture, as 
well as the achievement level for each goal. 
 

2. As the optimal solution obtained has not convinced the company, the management 
has decided that a very high priority should be placed on avoiding an increase in the 
work force. Furthermore, the management knows that raising capital of more than 55 
million euros to invest in the new products would be extremely difficult, so a very 
high priority should also be placed on avoiding capital investment above this level. 

Based on these considerations, the management has concluded that a preemptive goal 
programming approach should be used, where the two goals, just discussed, should be the 
first-priority goals, and the other two original goals (exceeding 125 million euros in NPV 
and avoiding a decrease in the employment level) should be the second-priority goals. 
The relative penalty weights should still be the same as given in Table 6.6. 

  



Chapter 6. Multiobjective programming and goal programming 
 

199 

Formulate the corresponding model and obtain the optimal solution with LINGO or 
Excel, analysing the results obtained. 

Table 6.6  Attributes, product contribution and goals 

Attribute 
Unit Contribution 

Goal Penalty  weight 
product 1 product 2 product 3 

PNV 12 9 15  125 15 

Employment 5 3 4 = 40 2(+), 4(-) 

Investment 5 7 8  55 5 

 

Table 6.7  Revised formulation: preemptive goal programming 

Priority level Attribute Goal Penalty Weight 

First priority 
Employment 
 
Investment 

 40 
 55 

2 
5 

Second Priority 
NPV 
 
Employment 

125 
40 

15 
4 

 

CASE STUDY  4: SELECTION OF PUBLICITY MEDIA  

A company manufactures and distributes a seasonal product in a region that comprises 
a large metropolitan area. The product is especially attractive for families with children. 
The company has offered a discount promotion on the product before the season and is 
planning a marketing campaign. It is considering an advertisement with full page colour 
ads in the supplements of the Sunday editions of the two most important newspapers. The 
slogan and copy have been prepared. The only aspect to determine is the time planning 
of the mass media; that is, the number of consecutive inserts in each newspaper. 
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From an ideal point of view, this should be related to the profit obtained for each 
insert. However, it is very difficult to measure the profit of time planning in a mass media. 
Therefore, in practice, alternative measurements are used which have proved to be 
positively related with profit. Examples of these measurements include scope of the time 
programming of the mass media (defined as the fraction of people in a given population 
of clients exposed to the advertisements at least once) and the time planning frequency 
(defined as the average number of exposures among the members of the population who 
have paid attention to the advertisement at least once). It would also be convenient to 
reach different sectors of the population in a different extent. Let us consider that for this 
problem scope is the most suitable criterion and that we want to distinguish between a 
primary group formed by all of the people having at least one elementary schoolchild 
(goal 1) and a secondary group that covers all the families with annual income higher 
than 8,000 euros (goal 2). 

From the newspapers some data can be obtained about the scopes of the Sunday 
newspaper supplements, corresponding to the different population groups. For example, 
for newspaper X and the primary group, they indicate the following average fraction of 
people reached in the group as a function of the number of inserts: 

Table 6.8 Scope of time programming for newspaper X (primary group) 

Number of inserts x 1 2 3 4 5 6 

Accumulated fraction  y 0,54 0,66 0,75 0,83 0,87 0,89 

 

Unfortunately, this is a nonlinear relationship with a significant drop of accumulated 
scope after 4 inserts. The same holds for the secondary group in newspaper X. Therefore, 
it seems unprofitable to exceed four inserts in newspaper X. During the first four inserts 
it is possible to approach the previous relationship closely through equation 

y = 0, 49 + 0, 08 x for  1  x  4 

If this procedure is applied to similar data (this is not shown) with respect to the scope 
for other combinations of groups and mass media, we obtain the following equations in 
Table 6.9. 
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Table 6.9  Scope of time programming 
 

Newspaper Group Equation 

X primary 0,49 + 0,08 x 

Y primary 0,47 + 0,12 x 

X secondary 0,44 + 0,12 x 

Y secondary 0,37 + 0,09 x 

 

For newspaper Y the decrease occurs after 5 inserts. The estimates indicate that both 
newspapers share the primary group equitably, but newspaper X has 60 % of the 
secondary group. The management wishes to reach at least 80 % of the primary group 
(goal 1) and 70 % of the secondary group (goal 2). Furthermore they wish to maintain 
their previous tradition of having at least twice the numbers of inserts in newspaper X as 
in Y (goal 3). Newspaper X is paid 3,000 euros per insert. The management has allocated 
a budget of 16,000 euros for the marketing campaign (budget constraint). 

Formulate and solve a goal programming model that allows the company to decide 
the number of inserts in newspapers X and Y, considering that management places the 
highest priority on achieving the scope desired for the primary group (goal 1), the second 
priority on achieving scope desired for the secondary group (goal 2) and the lowest 
priority on the relationship between the number of inserts in X and in Y (goal 3). In this 
last goal not reaching the goal is twice as important as exceeding it. 
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Multiobjective programming and goal programming are applicable to both continuous 
and discrete problems. In other words, they can be used for making decisions when the 
number of alternatives is infinite but also when the number is finite and usually small. 
However, there are a number of methods specifically designed for this latter case that 
have been applied in many decision problems. In this chapter we will see the Analytical 
Hierarchy Process (AHP) and the PROMETHEE method.  

Discrete multiple criteria decision problems can be classified into three groups. First, 
those in which we want to select only one of the alternatives. For example, which car or 
mobile phone to purchase, based on economic, technical and design criteria. Another 
group of problems consists of those in which we want to classify the alternatives, such as 
grouping the suppliers of a company as good, acceptable and bad, through various 
attributes (cost, technical, delivery time, etc.). Other problems are those in which our 
interest is focused on ordering alternatives by priority. For example, to prioritize 
investment projects for budget allocation. 

7.1. ANALYTIC HIERARCHY PROCESS 

7.1.1. INTRODUCTION  

The Analytic Hierarchy Process, known as AHP, developed by Thomas L. Saaty 
(1980) has been successfully applied to a wide variety of decision making problems in 
companies and public administration. Amongst its applications we find strategic 
planning, resource allocation and selection, market share, production, business ethics, 
energy, health, education, environment and politics. It is also used to determine the 
weights in other techniques such as multiobjective and goal programming, as well as 
PROMETHEE and multi-attribute utility analysis. 

As we have seen in the previous chapter, in a multiple criteria context the optimal 
concept does not exist. In general, we can say that the multiple criteria techniques are 
helpful in the decision making process, which seeks to integrate the behaviour of the 
objectives with the judgment of the decision maker/s, so as to be able to manage and 
make that subjectivity explicit. 

In practice, many decision problems are not presented in a structured way with a list 
of objectives and alternatives, ready to make a systematic analysis. The choice of the 
criteria on which we will base our decision is subjective so we must make them explicit 
and the process transparent. This is particularly important for group or collaborative 
decision-making. An example would be when you have to select the best suppliers, taking 
into account the opinion of several people in the company. The AHP method considers 
the preferences of the decision maker/s through judgments about the relative importance 
of the criteria and the alternatives taken "in pairs". To apply this approach, quantitative 
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information on the outcome of each alternative on each of the criteria considered is not 
required, but only the value judgments of the decision maker/s. 

7.1.2. BUILDING A HIERARCHICAL MODEL  

The first phase of the AHP method consists of building the decision hierarchy that 
represents the multiple criteria decision problem. There are few rules for building 
hierarchies. The upper level consists of only one element, which is the overall aim of the 
problem. Successive levels may have multiple elements, all of the same order of 
magnitude, otherwise they must be at different levels. There is no limit to the number of 
levels in a hierarchy. If we cannot compare elements in relation to the next level above, 
one must determine search terms by which they can be compared and put them into an 
intermediate level. At this stage it is important to identify the actors involved in decision-
making, and in particular its objectives and preferences. A widely used technique to 
design the hierarchy of a decision problem is brainstorming. 

Let us take a simple example. A student of Business Administration and Management 
decides to study their final year degree in another European country through the Erasmus 
program. After reviewing the possible destinations he/she determines that his/her choices 
are Aarhus Universitet (Denmark), Universitet Gent (Belgium) and Radboud Universiteit 
Nijmegen (Holland). 

Assuming that the cost of living in different countries is not considered, since the grant 
already takes that into account, the criteria to consider when making the decision are 
related to education and leisure. One of the student's objective is to improve his/her 
English. The prestige of the university is important for his/her Curriculum Vitae, as is the 
quality of teaching and the number of subjects available in English. Entertainment is also 
very important because relations with people from different cultures give a lifetime 
experience. The friendliness of the people, the possibility of going out and travelling 
through Europe are also relevant issues to the student. 

Figure 7.1 shows the decision hierarchy of the student that intends to prioritize the 
Erasmus destinations that best suit his/her objectives. In general, the approach to building 
a hierarchy depends on the kind of decision to be made. If it comes to selecting or 
prioritizing alternatives, we can start from the lower level, choosing the alternatives first. 
Previous levels would include criteria for evaluating these alternatives and on the upper 
level there would be a single element, which is the overall goal. Sometimes the hierarchy 
is designed from top to bottom. In many real problems criteria and objectives that must 
inform the decision making are not known and the AHP method helps us identify them. 
There is no limit to the number of levels in a hierarchy. The question to be answered is: 
"Is it possible to compare the items that are placed on the same level in terms of any of 
the elements of the next higher level?”. If the answer is no, we should decide in what 
terms they can be compared and create an intermediate level. 
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Figure 7.1. Decision hierarchy to prioritize the Erasmus destinations 

The student must design the hierarchy that best represents the criteria to be taken into 
account and alternatives, i.e. all Erasmus destinations that he/she wants to evaluate. One 
should not consider more than nine destinations, and with not more than nine criteria in 
the same group in the hierarchy, as it has proven very difficult for people to make pairwise 
comparisons with such a large number of elements. Another rule to remember is that the 
elements of the same group must have the same order of magnitude. 

7.1.3. SETTING PRIORITIES 

In our example, the student's problem is to select in which university he/she should 
undertake his/her final year of studies. However, the number of places that are offered by 
the universities is small and other students may also apply for the same destination. 
Therefore, a prioritized list of the destinations he/she wishes to attend should be made. 

The second phase of the AHP method consists of setting priorities between the 
elements of the hierarchy, then synthesizing our judgments to obtain global priorities to 
allow us to reach a final decision. For that, we perform pairwise comparisons of elements 
of the same level regarding the element of the next higher level. In our example, at the 
second level, the student would ask, how much more important is education compared to 
leisure when choosing an Erasmus destination? or, on the third level, how much more 
important is the prestige of the university with respect to the quality of teaching in 
education? 
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We can represent the results of pairwise comparisons in a matrix. The matrix is a 
simple method that enables us to collect information about the judgments and analyze 
their consistency. To complete the comparison matrix we will use numbers that represent 
the importance of one element over another. Table 7.1 presents the fundamental scale 
pairwise comparisons in the AHP method. 

Table 7.1. Fundamental scale for pairwise comparisons in the AHP method 

Intensity of importance or 
contribution of one activity 
over the other 

Definition Explanation 

1 Equal 
importance 

The two elements contribute equally to the 
objective  

2  Intermediate importance between 1 and 3 

3 Weak 
importance of 
one over another 

Experience and judgment slightly favour 
one element over another 

4  Intermediate importance between 3 and 5 

5 Essential or 
strong 
importance 

Experience and judgment strongly favour 
one element over another 

6  Intermediate importance between 5 and 7 

7 Demonstrated 
importance 

An element is strongly favoured and its 
dominance is demonstrated in practice 

8  Intermediate importance between 7 and 9 

9 Absolute 
importance 

The evidence favouring one element over 
another is of the highest possible order of 
affirmation 

1/2 1/3  ...  1/8   1/9 If the first element has a strong importance when compared to 
the second element, we assign a 5 on the scale. 
If we make the comparison of the second element in relation to 
the first, the value assigned on the scale is 1/5 
 

 
 

In our example to compare the three universities located in Aarhus, Gent and 
Nijmegen, with relation to the number of subjects available in English that we can take, 
we will fill a 3x3 matrix, whose values are shown in Table 7.2. The criterion "number of 
courses available in English" is written in the upper left corner and destinations are written 
in the first row and first column in the same order. This matrix has nine elements and all 
elements of the main diagonal are 1, since they represent the comparison of each 
university with itself. Of the remaining six elements, you have to complete only the three 
judgments above the main diagonal. The judgments below are their reciprocals. 

Then students should ask themselves: How much greater is the number of subjects 
available in English at one university than in another? In Denmark all college degrees are 
taught in both English and Danish. In Holland college teaching also is performed in 
English. By contrast, in Gent, Flemish is the main language used in higher education, so 



Chapter 7. Discrete multiple criteria decision making techniques 
 

209 

the availability of courses in English is lower. Note that the value assigned to an element 
ij in the matrix is the one resulting from the comparison of the element of row i with the 
column j. For example, we have assigned a 7 to indicate the comparison between the 
number of subjects in English from the University of Aarhus and Gent, as there are many 
more courses available in the first university. If the element of the row is less important 
than the value of the column its value is a fraction. For example, 1/7 when comparing 
Gent with Nijmegen. 

Table 7.2. Comparison Matrix for Erasmus destinations by number of subjects in English 

Number of subjects in 
English Aarhus Gent Nijmegen 

Aarhus 1 7 1 

Gent 1/7 1 1/7 

Nijmegen 1 7 1 

 
In summary, the matrix of Table 7.2 and any pairwise comparison matrix satisfy the 

following properties: 

1.       

2.      

3.            

The AHP method requires that each matrix element aij takes one of the values of the 
fundamental scale comparisons 1/9, 1/8…1/2, 1, 2, 3… 9.  
 

Once the pairwise comparison matrix has been obtained we can set the relative 
priorities of the Erasmus destinations on the number of courses available in English. The 
following method provides a rough estimate of the priorities that we will use in making 
the decision. 

When calculating priorities, we first add the values in each column (Table 7.3). We 
then divide each cell in each column by the total of the column, in order to obtain a 
normalized matrix (Table 7.4). 
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Table 7.3. Calculation of the priorities of the Erasmus destinations by number of subjects in 
English 

Number of subjects in English Aarhus Gent Nijmegen 

Aarhus 1 7 1 

Gent 1/7 1 1/7 

Nijmegen 1 7 1 

Column Total 15/7 15 15/7 

Table 7.4. Normalized matrix for Erasmus destinations by number of subjects in English  

Number of subjects in English Aarhus Gent Nijmegen 

Aarhus 7/15 7/15 7/15 

Gent 1/15 1/15 1/15 

Nijmegen 7/15 7/15 7/15 

 
Finally, we calculate the average of the rows by adding all of the values in each row 

of the normalized matrix and dividing the sum by the number of cells that are in a row, 
obtaining local priorities of Erasmus destinations for the criterion "number of subjects 
in English". 

 

 

 

The sum of local priorities should be equal to 1. We follow the same procedure to 
complete all matrices needed to solve the problem and calculate local priorities of the 
elements considered in our decision hierarchy. After calculating all local priorities of all 
pairwise comparison matrices in the hierarchy we can obtain the global priorities, the 
sum must also be equal to 1. 
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Assuming that local priorities for a student are the values shown in Figure 7.1, we 
calculate the global priorities of the alternatives weighting their local priorities with the 
priorities of the objectives. The results are as follows 

 

 

 

 

 

 

Taking into account these global priorities the best Erasmus destination for the student 
of business administration and management in our example is Aarhus Universitet. The 
second option would be Nijmegen and lastly Gent. 

There are two ways to synthesize the priorities, the distributive mode and the ideal 
mode. In the distributive mode the sum of the priorities of the alternatives equals one. It 
is used when there is dependence between the alternatives and the unit must be distributed 
between them. However, the ideal mode is the one that should be used when the objective 
is to select only one of the alternatives. In this case the local priorities of the alternatives 
are divided by the largest value and this is done for each criterion in such a way that for 
each criterion there is an alternative that is considered ideal. In both modes the priorities 
are weighted in the same way with the weights of the objectives. The difference between 
the two methods is more interesting in theory than in practice. 

7.1.4. LOGICAL CONSISTENCY 

In the decision making processes it is important to know the consistency of the 
judgments contained in the comparison matrices, since we do not want our decisions to 
be based on very inconsistent judgments. For example, it would not be logical that our 
student knows that the universities of Aarhus and Nijmegen have the same number of 
courses available in English, and, that when comparing these two universities with Gent, 
one university has moderate and the other strong importance. 

When a matrix is consistent, the average of the sum of each row of the normalized 
matrix indicates how much the element of the row dominates the others in relative terms. 
On the other hand, the sum of the columns of the pairwise comparison matrix determines 
the degree to which each element is dominated by the other elements, so that the product 
of the two values is equal to one. When a matrix is consistent the elements of any column 
of the normalized matrix give the same priorities that we obtain by calculating the average 
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of the rows. This means that they are identical to the priorities of  pairwise comparison 
matrix. 

Multiplying the sum of the pairwise comparison matrix columns by the average of the 
sum of each row of the normalized matrix is 1, since they are reciprocal numbers. The 
sum of all these multiplications is equal to n, if the matrix is consistent. In our example 
the sum is equal to 3 which represent the three universities considered as alternatives for 
the destination of the Erasmus student. 

As we have seen in the example, the pairwise comparison matrix, A, is formed through 
the comparison of each element to another. If we have n elements (criteria, objectives, 
alternatives), where their weights or priorities are w1, w2… wn the pairwise comparison 
matrix has the following structure: 

 

 

 

 

 

where . This is the relative weight of element i to element j. 

The consistency of the judgments is related to the transitivity of preferences in the 
comparison matrix. In summary, a matrix A is consistent if 

  . 

Other notable properties are as follows: 
 

 The rank of matrix A is 1 as all the rows are multiples of the first row. 

 The eigenvalues of matrix A ({   R: det (A – I) = 0}) are all zero except for 1 

as the rank of the matrix is 1. 

 The trace of matrix A is equal to n, as the diagonal consists of values that are all 

1. Therefore, the only nonzero eigenvalue is n, since the sum of the eigenvalues 

of the matrix coincides with the trace. 
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 The eigenvector associated to n coincides with the priority vector  

 w = (w1, w2… wn). This is w the nontrivial solution of the system. 

 A w =  w 
 
Only the priority vector whose values sum to 1 is considered. 
 

 If we use priorities which sum 1, any column of the normalized matrix A  

coincides with the priority vector. 

Priorities are calculated from judgments of pairwise comparison, which are given on 
a numerical scale. The values of pairwise comparison matrix  can be considered as an 
estimation of the true values of wi/wj. In this situation n cannot be an eigenvalue of the 
matrix and therefore we must find the largest eigenvalue max of the obtained matrix. 

In summary, a pairwise comparison matrix A is consistent if and only if 

max = n. 

max  n and there is a positive components vector wmax. 

There are several methods to obtain the weights vector wmax and max, both exact and 
approximate. An exact method is calculated directly with the spreadsheet. 

The approximate method that we used in the example is based on the property number 
5. First we normalize each column of matrix A, by adding all  values in each column and 
dividing each cell by the total. Thus we obtain Anorm. We then calculate the average of 
each row of Anorm, with the sum of the values in each row and divide this by the number 
of rows, obtaining in this way the weight vector w. We then calculate the product Aw and 
in the last step we calculate max. 

Inconsistencies can occur for two reasons: One because the decision maker establishes 
intransitive relationships in pairwise comparisons or because it changes the sense of 
preference. Although we cannot be so confident in our judgments as to force consistency 
in the pairwise comparison matrix, we need some degree of consistency in setting 
priorities for the elements with respect to some criterion to obtain valid results in real 
applications. 

The eigenvalue is used to measure the degree of inconsistency, since, if the 
comparison matrix is consistent, the largest eigenvalue is equal to n. We define 
Consistency Index (CI) as follows: 

CI = ( max – n)/ (n-1) 
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This index represents the cumulative average of inconsistency of the matrix. To find 
out if it is large or small it is compared to the Random Consistency Index (RCI), which 
is the average value of CI of pairwise comparisons matrices of the same order randomly 
obtained. RCI values for the most common sizes of matrices are: 

Table 7. 5. Random Consistency Index values for n size of matrices  

n 2 3 4 5 6 7 8 9 10 

RCI 0.00 0.58 0.90 1.12 1.25 1.35 1.41 1.45 1.51 

 

Inconsistency Index (II) is defined as the ratio of the matrix CI and RCI, 

II = CI/RCI. 

The consistency of the comparison matrix is considered to be acceptable if the ratio is 
less than or equal to 0.10. 

7.1.5. SOFTWARE 

We can apply the AHP using a spreadsheet. However there are computer programs 
with graphics capabilities that allow us to enter, display the results and make sensitivity 
analysis, e.g. Expert Choice (expertchoice.com) and Super Decisions 
(http://www.superdecisions.com). In particular, the latter software allows us to solve 
decision problems using AHP and its generalization ANP (Analytic Network Process). 
ANP is used when the problem cannot be structured hierarchically because there are 
dependencies and interactions between its components, thus the problem can be best 
represented by a network than by a hierarchy. 

In Expert Choice once we have defined the decision hierarchy, the software allows 
us to enter data for the comparison matrix verbally, numerically or graphically and it 
also generates the questionnaire. With Expert Choice one can see the necessary degree of 
detail, the local and global priorities and graphical reports for the sensitivity analysis. In 
other words, we can look at how the global priorities of the alternatives change when 
criteria weights change. In the following figures some of the possibilities which are 
offered by the program are represented using the Erasmus destination example. 

In Figures 7.2 and 7.3 we can see the different ways of entering data for our example 
in Expert Choice Comparion Suite. We can introduce data graphically, numerically or 
verbally. The software generates the questionnaire for pairwise comparisons (Figure 7.2). 
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Figure 7.2. Entering data graphically/numerically in Expert Choice for Erasmus destination 
example  

 

 

Figure 7.3. Entering data verbally in Expert Choice for Erasmus destination example  

In Figure 7.4 we see the results and different types of graphs that can be used to 
perform sensitivity analysis. For example, by changing the bars that represent the weights 
that the student gives to the education and leisure criteria, we immediately see the effect 
on the global priorities of the alternatives. Thus, if we modify the importance that student 
gives to these two criteria we see how the choice of Erasmus destination would be 
different, considering the global priorities that are obtained in this case, as seen in Figure 
7.5. 
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Figure 7.4.  Results and sensitivity analysis graphs in Expert Choice for Erasmus destination 
example 

 
 
Figure 7.5. Sensitivity Analysis in Expert Choice Erasmus for destination example: modification of 

the weight of education 
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7.2. PROMETHEE METHOD 

7.2.1. INTRODUCTION 

Brans developed the PROMETHEE (Preference Ranking Organisation Methods for 
Enrichment Evaluations) in 1982 and its methodology has been successfully applied in 
finance, investment planning, industrial location, tourism, hospital management and 
water management among many other fields. 

 
A discrete multicriteria problem is characterized by a finite set of alternatives (a1, 

a2…ai… an) and a set of evaluation criteria (g1, g2…gi… gk). We can be interested in  
maximizing some criteria  and minimizing others. As we saw in the previous chapter, in 
general there is no alternative that optimizes all criteria. Suppose you wanted to buy a car. 
The criteria that may be important for you are the price, design, consumption, security, 
etc. No car optimizes all criteria at the same time: the cheapest does not imply the least 
consumption, better security and better design. Thus we need to choose the best 
compromise solution, which depends not only on the basic data, represented in an 
evaluation table (Table 7.6), but also on our individual preferences. Therefore, we need 
additional information to represent these preferences. 

 

Table 7.6. Evaluation table 

Alternatives 
Evaluation criteria 

g1 g2 … gj … gk 

a1 

a2 

… 

ai 

... 

an 

g1(a1) 

g1(a2) 

… 

g1(ai) 

… 

g1(an) 

g2(a1) 

g2(a2) 

… 

g2(ai) 

… 

g2(an) 

… 

… 

… 

… 

… 

… 

gj(a1) 

gj(a2) 

… 

gj(ai) 

… 

gj(an) 

… 

… 

… 

… 

… 

… 

gk(a1) 

gk(a2) 

… 

gk(ai) 

… 

gk(an) 

 
 

Suppose we have a problem in which we have to prioritize five investments I1, I2 ... 
I5. The evaluation criteria are the Net Present Value (NPV), Internal Rate of Return 
(IRR), employment, sales and environmental impact. It is of interest to maximize the first 
four criteria and minimize the latter.  
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In Figure 7.6 we present the evaluation table for this problem, which was obtained 
with D-Sight, the software with which we have made the calculations and presented the 
results in the remaining figures in this section. 

 

 
 

Figure 7.6. Evaluation table for prioritizing investments  
 

Dominance relations associated with multicriteria problem are defined as follows: 
 
For each pair of alternatives a and b, a is preferred to b (aPb) if for all considered 

criteria their value for a is equal to or better than their value for b and there is at least one 
criterion for an alternative a is better than b. 

 
Two alternatives a and b are indifferent (aIb) if the value of all the criteria is the 

same for a and for b. 
 
Two alternatives a and b are incomparable (aRb) if the value of some criterion is 

better for a than b and there is at least one criterion that is better for b than for a. 
 
What dominance relations are there between alternatives in Figure 7.6? The 

alternatives that are not dominated by any other solutions are efficient solutions, a 
concept we saw in the previous chapter. In real problems many alternatives are 
incomparable, so we need additional information to make the decision. This information 
can be: trade-offs between criteria, weights that indicate the relative importance of 
criteria, a value function that adds all the criteria in a single function and therefore with a 
single criterion for which we can find the optimal preferences associated to each pairwise 
comparison within each criteria, thresholds for the boundaries of preferences, etc. 

 
Many multiple criteria methods have been proposed that need a table like Table 7.6 

and they differ in the additional information required. The purpose of the methods is to 
reduce the incomparability number. All methods should meet a number of requirements 
such as: 
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1. They should take into account the size of the difference in the behaviour of 
the alternatives for each objective: dj(a,b)  = gj (a) - gj (b) 

2. Remove the scale effect as the valuation of the criteria is measured in units 
that may be different. 

3. In pairwise comparisons, an appropriate method should inform if an 
alternative a is preferred to b, if it is indifferent or if it is incomparable. 

4. As each multiple criteria method requires distinct information and calculation 
procedures, the solutions obtained can be different. Therefore, it is important 
that the decision makers understand the methods. It is also convenient to 
analyse the problem using various techniques to propose robust solutions. 

5. Methods should provide information about the conflicts between criteria. 

6. Most methods require the weights of the relative importance of the criteria. 
The weights can be assigned directly or using AHP. In any case it is desirable 
to have tools to do sensitivity analyses that allow us to see the impact of the 
weights in the solution. 

Bernard Roy proposed building improvement relationships, enriching the dominance 
relationships which are based on ELECTRE (ELimination Et Choix Traduisant la REalité/ 
ELimination and Choice Expressing Reality). PROMETHEE belongs to a group of 
multiple criteria methods, known as Outranking methods. In both cases there are several 
versions of the method, depending on the type of problem to be solved (PROMETHEE I, 
II, III, IV, V, VI). 

7.2.2. INFORMATION FOR PREFERENCES MODELLING 

In addition to an evaluation table, PROMETHEE requires information on the weights 
of the relative importance of the criteria, we call these w1, w2…wk. The sum of all is the 
unit: 

 

 
The preference structure of PROMETHEE is based on pairwise comparisons, as in 

AHP. However, in this case comparisons are based on the difference between the 
valuations of two alternatives of a particular criterion. The larger the difference between 
evaluations of the alternatives, the greater is the preference for the alternative which 
behaves better. When the difference is small, the decision maker can consider it to be 
negligible. These preferences are represented by real numbers between 0 and 1. Figure 
7.6 shows that investment I5 is 50 units better than I4 and 150 units better than I1 for 
NPV. 
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In general, for each criterion j, the decision maker has the preference function 
between a and b, Pj (a,b), a function that depends on the difference between the behaviour 
of the alternatives: 

 
Pj (a,b) = Fj [dj(a,b)] for all alternatives of the problem, where  
 
dj (a,b)  = gj (a) - gj (b) and   
 
0  Pj (a,b)  1 
 
In case the criterion is maximized, the preference will be a to b for criterion 

evaluations and the preference can have the shape of Figure 7.7. When the deviation is 
negative, the preference is 0, and therefore 

 
if Pj (a,b) > 0 then Pj (b,a) =0 
 
When we want to minimize the criterion it would be the other way round or we 

consider the preference function as follows: 
 

Pj (a,b) = Fj [-dj(a, b)] 
 

Pj
(a

,b
)

1

dj (a,b)  
 

Figure 7.7. Preference function 
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Figure 7.8. D-Sight Preference Functions 
 
 
 

 
Pj

(a
,b

)

dj (a,b)

1

A)

usual

 

Pj
(a

,b
)

dj (a,b)

1

C)

v-shape

p  

Pj
(a

,b
)

1

E)

linear

dj (a,b)
pq  

Pj
(a

,b
)

dj (a,b)

1

B)

u-shape

q

Pj
(a

,b
)

1

D)

level

dj (a,b)
pq

Pj
(a

,b
)

1

F)

gaussian

dj (a,b)s



Operations research in business administration and management 

222 

For each criterion, we must propose a preference function. The most common 
functions are those presented in Figure 7.8, and they are the ones that you can choose 
from the D-Sight software. But in the former case, usual (A), where the preference is 1 if 
the difference between a and b is positive, and zero otherwise. In other cases we have to 
define one or two parameters. We call q the indifference threshold, p the strict 
preference threshold and s is an intermediate value between them. q is the value of the 
largest deviation that the decision maker considers negligible, while the preference 
threshold p is the smallest value of the deviation between alternatives to be considered 
sufficient for a strict preference of one alternative to another. In case B parameter q must 
be set, which is p in case C and, in cases D and E the two parameters must be set, the 
indifference threshold and strict preference threshold. And in the Gaussian preference 
function (F) s must be set, which will be between p and q. In all cases, when the difference 
in the behaviour of the alternatives is negative, the preference will be zero (Figure 7.8).  

 
Figure 7.9 shows that we have chosen a type of linear preference function for all 

objectives, indifference thresholds and preference for each case and the weights of the 
criteria. 
 

 
 

Figure 7.9. Preference functions and parameters 

7.2.3. PROMETHEE I AND II 

To apply the method we need to know the evaluation table, the weights of the criteria 
and the preference functions. First we define the Aggregated Preference Indices for 
each pair of alternatives a and b: 

 

 

 

 

 
Where  (a, b) expresses the degree to which the alternative a is preferred over b 

and  (b, a) the degree to which the alternative b is preferred over a. In most cases there 
are criteria for which a is preferred to b and others for which b is preferred to the 
alternative a. These indices have the following properties: 
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 (a, a) = 0 
 
0   (a, b)  1 
 
0   (b, a)  1 
 
0   (a, b) +  (b, a)  1 
 

If the aggregated preference index of a over b, (a, b) is close to zero, then there is a 
weak global preference for a over b, and if it is close to 1, there is a strong global 
preference. Figure 7.10 shows the aggregated preference indices for the investments 
example. 
 

Thus, using the data in Figures 7.6 and 7.9 (weights of objectives and preference 
functions) we obtain 
 

 (I5, I2) = = 1*0.25+0*0.25+1*0.2+1*0.1+0*0.2 = 0.55 
 

 (I4, I2) = 0*0.25 + 1*0.25 + 1*0.20 + 0.666*0.10 + 0*0.20 = 0.5166 
 

Calculate the aggregated indices for other pairs of investments. Check the results in 
Figure 7.10. Analyse the preferences of some investments over others as well. 
 

As each alternative is compared with the other (n-1) positive and negative outranking 
flows are defined. Positive outranking flow expresses to what extent an alternative 
outranks all the others. The higher the positive outranking flow, the better the alternative. 
The value of this expresses the strength of the alternative. 

 

In contrast, the negative outranking flow indicates to what extent an alternative is 
overcome by the other. It is therefore an indicator of weakness and the alternative is better 
when its negative flow is smaller.   

 

 
For the investment example  
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Calculate positive and negative flows of other investments. Check the results in 
Figure 7.11. 

 

 
 
 

Figure 7.10. Aggregated preference indices between alternatives 
 
 
In the PROMETHEE I we obtain the partial ranking PI, II and RI of the alternatives 

from the positive and negative flows. We do not usually get the same rankings from the 
two kinds of flows. 

 
Alternative a is preferred to b, a PI b, if a positive flows are greater than b, and the 

lower negative or the positive of a and b are equal, or a lower negative or a positive flows 
are higher than b and the negatives are equal in both alternatives. 

 
Alternative a is indifferent to b, a II b if both positive and negative flows are equal 

in a and b. 
 
Alternative a is incomparable to b, a RI b, if a positive flows are greater than b and 

the negative also or a positive flows are lower than b and  the negative are also lower than 
b. This usually happens when the alternative a is good for a group of criteria where b is 
weak and the alternative b is good for criteria in which a is not. 

 
 

 
 

Figure 7.11. Positive, negative and net flows of the alternatives 
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Figure 7.12. Representation of the partial ranking (positive and negative flows) 
 
 

 
 

Figure 7.13. Profile of alternatives Investment 4 (I4) and Investment 5 (I5) 
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In Figure 7.14 we have the matrix of net flows for all alternatives of the decision 
problem that is obtained when the whole weight (100%) is given to a criterion. 

 

 
 

Figure 7.14. Net flows matrix 
 
The PROMETHEE II provides a complete ranking of alternatives (PII, III). In this 

case we define net flow of alternative a as the balance between positive and negative 
flows: 

 (a) = + (a) – - (a) 
 
The higher the net flow, the better the alternative and therefore, in this method, all 

alternatives are comparable. The values of net flows of the alternatives are between -1 
and 1 and the sum of all of them is 0. If the net flow of alternative a is positive, it is 
better than all alternatives for all criteria and when the net flow is negative then it is worse 
than the other alternatives. See in Figure 7.11 the values of net flows in score column for 
investment example. 

 
PROMETHEE II is easy to use, but the incomparability analysis can help us make 

decisions in real problems. As the net flow gives us full ranking, it may be compared with 
a utility function. Figure 7.15 shows the net flow of each investment, which provides us 
with the ranking of the alternatives. 

 

 
 

Figure 7.15. Net flows of investment alternatives 
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The net flow of the alternative a for criterion j, j (a), is obtained when only this 
criterion is considered, i.e. 100% of the weight is given to that criterion. This concept 
expresses how this alternative outranks the other alternatives for this criterion ( j (a) > 0) 
or how it is outranked by the other alternatives for criterion j ( j (a) < 0). The profiles of 
the alternatives show their quality in all considered criteria. Figure 7.13 presents profiles 
for I4 and I5 investments. We can see how alternative I5 has the greater NPV and sales 
than I4; however the negative environmental impact is greater in I5 than in I4. 

 
The net flow of an alternative is the scalar product between the vector of weights and 

the profile vector of this alternative. This property is used to construct the GAIA plane, 
which is a graphical tool for analysing multiple criteria problems (Global Visual Analysis, 
GVA) and can be seen in Figure 7.16. The alternatives are represented as points and the 
criteria are the axes. The red axis is the decision. The GAIA plane shows the 
discriminating power of the criteria, the conflicting aspects and the quality of the 
alternatives on different criteria. This plane has a number of interesting properties to 
interpret the results. For example, the longer the axis of a criterion the more discriminant 
is that criterion. The criteria with similar preferences have axes oriented approximately 
in the same direction. The conflict criteria are oriented in opposite directions. The criteria 
that are not related to others in terms of preferences are represented by orthogonal axes. 
Similar alternatives are represented by close points and good alternatives with regard to 
a criterion are represented by points located in the direction of the axis of this criterion 
(see Figure 7.16). 

 

 
 

Figure 7.16. GAIA drawing 
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The D-Sight software provides a variety of graphics that we can use as a tool for 
analysis and presentation of results as Figures 7.17 and 7.18. The spider web graph 
represents multiple profiles of alternatives, criterion by criterion. The centre of the graph 
represents the value -1 and the end point of the axes represents +1 (Figure 7.17). It also 
allows sensitivity analysis such as that in Figure 7.19, which shows that the best choice 
is insensitive to the weights of the criteria. 

 

 
 

Figure 7.17. Spider web graph of the selected alternatives (I2, I4 e I5) 
 
 

 
 

Figure 7.18. Graphical representation of the alternatives for the environmental impact  
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Figure 7.19. Sensitivity analysis  
 

 
7.3. COLLABORATIVE DECISION MAKING  

We can also apply AHP when the decision is made in a group. In this case we can 
distinguish two fundamental aspects. Firstly, how to add individual preferences into a 
collective judgment and secondly, how to build a group preference from individual 
preferences. 

If a group of people are involved in making decisions, we have to determine consensus 
matrices and local and global weights or priorities that represent the preferences and 
priorities of the group. We can use different techniques to obtain them. One of the most 
used technique is the geometric mean of all pairwise comparisons, as defended Saaty 
and others (Saaty and Peniwati, 2008; Xu, 2000). Saaty considers that the geometric mean 
is necessary because of comparison between two elements j and i, aji, should give us the 
reciprocal value assigned to aij the original comparison. The arithmetic mean does not 
satisfy this reciprocal relationship. Moreover, given a group of inconsistent individuals, 
the inconsistency of the group by adding individual judgments by the geometric mean is 
at most equal to the largest individual inconsistency. Another alternative to add 
preferences or judgments and to obtain consensus matrices in group decision making is 
to use the goal programming models developed by González-Pachón and Romero (2004, 
2007). 
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Both AHP and goal programming models are suitable techniques for group decision 
making. However AHP has several advantages. The first is the simplicity of the method, 
easily understandable by all members of the group who do not need to be experts in 
decision making techniques. The second advantage is the use of the geometric mean for 
adding preferences/judgments of pairwise comparison, where we always obtain 
consistent consensus matrices from consistent individual matrices. However, one of the 
most frequent criticisms of AHP is that when adding a new option, the ranking can change 
(rank reversal). Saaty usually argues by saying that it would be a different decision 
problem. 

The goal programming models developed by González-Pachón and Romero have an 
advantage compared with AHP, they do not require that preferences or individual 
judgments are consistent. However, these models have the drawback that the consensus 
matrix obtained by adding preferences can be inconsistent in theory. It is possible to 
develop a model to avoid this, but a nonlinear goal programming model would have to be 
solve. Also note that the method is difficult for participants without previous training in 
optimization techniques to understand. 

In Annex 3 we explained, with an example, how to use the Expert Choice Comparion 
Core software for collaborative decision making that allows us to aggregate the 
preferences of a working group and schedule sessions for making collective decisions in 
real time. Finally, note that we can also use PROMETHEE for collaborative decision 
making. For this purpose there is D-Sight software web platform. 

7.4. SUMMARY 

In this chapter we have seen two widely used methods to solve multiple criteria 
decision problems when we have a small number of decision alternatives. AHP is based 
on designing a decision hierarchy that represents the problem and allows the weights of 
objectives and priorities of alternatives from the pairwise comparison of elements to be 
obtained. In this case, the decision-maker expresses value judgments about the 
importance or preference of one element over another, using the Saaty scale. The 
judgments must be consistent in order to select or prioritize the alternatives. Expert 
Choice software and Super Decision help address the multiple criteria decision problems, 
both individually and at the group level. PROMETHEE is another method that is also 
based on pairwise comparison of alternatives. However, in this case it is necessary to 
know the behaviour of the alternatives for each criterion quantitatively or qualitatively. 
In this method the preferences of the decision maker are incorporated through preference 
functions. This approach compares the alternatives by using the net flow, which is an 
independent concept of the units in which the criteria are measured. D-Sight is a tool for 
solving discrete multiple criteria problems with the PROMETHEE method for individual 
and collaborative decision making using a web platform. 
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7.6. CASE STUDIES  

CASE STUDY 1: SELECTION OF ERASMUS/LEONARDO DESTINATION 

Each student must design a hierarchy that represents the personal criteria and objectives 
to consider in the destination selection where you would attend a year or a semester at 
another university, either within the Erasmus, Leonardo or any other programme of your 
interest. The case study can be done with Excel and/or Expert Choice. 
 

1. Carry out the hierarchy that represents the criteria and objectives you would 
consider at your personal level. 

2. Obtain the matrices of pairwise comparisons. 

3. Calculate local and global priorities. 

4. Carry out the sensitivity analysis. 

5. Write a brief report to support the choice. 

6. Choose a destination for a group of friends through collaborative decision making. 

 

CASE STUDY 2: PREFERENCE AGGREGATION AND CALCULATION OF 
PRIORITIES THROUGH GOAL PROGRAMMING  

González-Pachón and Romero (2007) have developed a goal programming model for 
obtaining the consensus matrix, for example for a group of students that choose the same 
Erasmus destination. 

Decision variables of the model that allows us to obtain the consensus matrix for a 
group are: 

= the consensus value ratio that quantifies the aggregated judgment when 
comparing the criterion/alternative i with j. 

= positive and negative deviation variables from the goal when the 
student K compares the criterion/alternative i with j 

Upper and lower limits of consensus ratios due to the application of the 
fundamental Saaty scale: 
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In the case that the consensus ratio between two criteria and the value of ratio of the 
student K are different, this difference will be positive or negative deviation variables as 
indicated by the model goals. 

 

The achievement function is to minimize the sum of the deviation variables for all 
students in the group. 

 

In a second phase we obtained the weights of relative importance that the group of 
students i give to the criterion r from the consensus matrix obtained with the previous 
model, using another goal programming model also developed by González-Pachón and 
Romero (2004). 

In the latter model  decision variables are the weights of the student group i for 
criterion r. In the same way as for the previous model, we define the variables of positive 
and negative deviation for goals and student group i (i = 1, 2... m). 

  

It is also necessary to add the constraint that the sum of all weights is 1 for each group 
of students i: 

  

The achievement function is to minimize the sum of all positive and negative 
deviation variables for all criteria. 

 

1. Develop the goal programming models that address the problem of group 
decision making of the case study 1 and obtain the solution. 

2. Compare the results obtained from applying the AHP method. 
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CASE STUDY 3: CAR SELECTION 

Develop a multiple criteria model that allows you to choose which car to buy from 
the five models on the market that are the most interesting to you. Please consider at least 
the criteria of price, consumption, pollution and design. 

1. Develop a model, obtain the necessary data and the solution by the AHP method. 

2. Solve the problem by using the PROMETHEE method. Write a report comparing 
the data required and the solution obtained with those from the AHP method. 

CASE STUDY 4: PHONE SELECTION 

Develop a multiple criteria model that allows you to prioritise which phone to buy 
taking into account several criteria. Obtain the necessary data and the solution by using 
AHP and PROMETHEE methods. Finally, write a report comparing the data required and 
the solution obtained with both methods. 
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In previous chapters we have dealt with decision making in a great variety of problems 
by building and solving linear programming models, using Excel spreadsheets or LINGO 
optimization software. In general, optimization models are no more than an 
approximation to the real problem as we explained in chapter 1. Thus, in production 
planning with the objective of minimizing variable cost, costs per unit were considered 
constant, independent of production levels. In other words, we did not take into account 
the situation of increasing marginal costs. Nevertheless, in integer programming we saw 
how to express a certain type of nonlinearity in a linear form by using binary variables. 
For example the discounts applied to the acquisition of raw materials depending on the 
amount bought. 

Nonlinear programming occurs when the objective function and/or some or all the 
constraints in a mathematical model are nonlinear. Nonlinear models are used to represent 
real problems from a wide range of fields, such as financial engineering or mixes in 
chemical processes. There are also problems in which we have to find the values of the 
variables that optimize a given nonlinear function. Applications in business 
administration and management appear in resource allocation, investment portfolio 
selection and inventory models, amongst others. 

This chapter first presents the main characteristics of nonlinear optimization methods 
which are relevant for building and solving models for business administration and 
management. Secondly, we deal with some applications by building and solving models 
using Solver from Excel, with special emphasis on models of investment portfolio 
selection by Markowitz and Sharpe, Nobel Prize for economy in 1990, which are the basis 
of modern financial theory taking into account asset returns and risk. 

8.1. INTRODUCTION: BASIC CONCEPTS 

Nonlinear programming solving techniques use some concepts from differential 
calculus and algebra. Let us refresh some basic concepts which are necessary to 
understand this chapter. 

Function f in figure 8.1 has local maxima in X0, X3 and a, where X3 is the global 
maximum. The local minima are X1, X2 and b, where X2 is the global minimum. 

Observe in figure 8.1 that on the right hand of X0 the curve slope at a point is positive 
and increasingly smaller. By contrast, on the right hand of X0 the slope is negative. At 
point X0 the slope is horizontal or zero. In mathematical terms, the curve slope of a 
function f is given by its first derivative [d f(x)/ dx = f'(x)]. Therefore, in X0 the derivative 
must be zero. Using a similar procedure, we can see that if the function has a local or 
global minimum at point X2 its derivative is also equal to zero. 
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a) Local and global maximum and minimum

Figure 8.1. Local and Global maximum and minimum 

A necessary condition for function f to have a maximum or minimum value in an 
interior point X0 of interval [a, b] is that X0 be a stationary point, i.e., f'(x) = 0 at X0. 

Unfortunately, the function has a stationary point at X4, which is an inflection point. 
Therefore, the fact that the first derivative is eliminated at one point is not a sufficient 
condition for that point to be a maximum or a minimum. The sufficient condition for a 
stationary point to be a maximum or minimum value can be obtained by examining 
Taylor's development of f around X0 for small h: 

f(X0 + h) = f(X0) + h f'(X0) + h2/2 f''(X0) + R2 

where f'(X0) is the first derivative evaluated in X 0, f''(X0) the second derivative 
evaluated in X0 and, for small h, the remaining term R2 is lower, in absolute value, than 
the term containing f''(X0). 

At the stationary point X0, the term containing f'(X) is zero and h2 is positive for all 
values of h, negative or positive. Therefore, f (X0 + h) will be lower than f(X0) if f''(X0) 
< 0 (X0 will be a local maximum) and higher than f(X0) if f''(X0) > 0 (X0 will be a local 
minimum). 

x1 x0 x4x3x2a b

f(x)
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If X0 is a stationary point, function f has a maximum at X0 if f''(X0) < 0 and a minimum 
if f''(X0) > 0. 

If f''(X0) = 0, the first derivative of higher level different from zero at X0 is found. If 
the order of the derivative is odd, f has an inflection point at X0. If the order of the 
derivative is even it is replaced by f''(X0) in the previous sufficient condition. 

Observe that neither the sufficient nor the necessary condition allow determining 
whether a stationary point will be a local or global extreme value of function f. It will 
have to be determined by evaluating the function in all the stationary points of interest, 
as well as points a and b of the interval for X. 

b) Convex and concave functions for one variable

Figure 8.2. Convex and concave functions 

Function f of variable x is convex if the line between two arbitrary points on the graph 
lies above or on the graph of the function. The function is strictly convex if the line 
between any two points always lies above the function graph. A function f is concave if - 
f is convex. A linear function is both concave and convex. The second derivative of a 
function represents the change of the function slope. It is easy to see graphically that:  

if f''(x)  0 for every x, f is convex 

and if f''(x)  0 for every x, f is concave 

Observe the analogy between these two properties and the sufficient conditions for a 
extreme point of f. 

f(x)

x x

f(x)
Concave functionConvex function
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Figure 8.3. Convex and concave functions 

8.2. CHARACTERISTICS OF NONLINEAR OPTIMIZATION METHODS 

The most important characteristic of nonlinear programming methods is that there is 
no method that can be considered as "the best" to solve all types of nonlinear problems. 
Many different algorithms have been developed to solve particular types of nonlinear 
problems, but none of them can be compared to the simplex method for nonlinear 
programming, in the sense that it is a very efficient algorithm that allows one solve any 
type of problem formulated in linear programming form. 

Why are nonlinear problems more difficult to solve than linear problems? The optimal 
solution can not lie at a corner point of the feasible region. For example, suppose that the 
profit of a company is 

B = 750 - 0.1 (X1 - 50)2 - 0.2 (X2 - 50)2 

where X1 and X2 are the quantities of the two products it manufactures. The firm wants 
to maximize this profit taking into account its resource constraints. Thus, the model will 
be: 

Max   750 - 0.1 (X1 - 50)2 - 0.2 (X2 - 50)2 

with the constraints 

X1, X2  0 

5 X1 + 1 X2  200 (work force) 

1 X1 + 2 X2  90 (machinery) 

f(x)

No convex neither concave

Convex
and

concave

Concave

Convex
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Figure 8.4 shows that the optimal solution lies in a point of the machinery constraint 
that is not a corner point.It can also be the case that the optimal solution lies inside the 
feasible region. This would occur in this problem if the work force available was 400 and 
the machinery were 200. 

Another drawback of nonlinear optimization methods is that they generally find a 
local optimum but not the global optimum. All linear programming methods (simplex), 
as well as those of integer programming generate a global optimum. Finally, another 
difficulty arises from the fact that nonlinear constraints can generate non-convex feasible 
regions. 

FIGURE 8.4. Nonlinear objective function 

8.3 SOME APPLICATIONS 

8.3.1. DETERMINATION OF TIME INTERVALS BETWEEN MACHINE 
ADJUSTMENTS 

A machine produces parts at a constant rate of 120 units per hour. Each part generates 
a net income (sales price minus material cost) of 6 euros. The rate of defective parts per 
hour is proportional to time-period X between the adjustments of the machine, i.e., 27 X, 
where X=1 is one hour. Whenever the machine is adjusted it stops for 1 minute, i.e., the 
time required to manufacture two parts. The defective parts have to be mended in a 
different machine with a cost of 4 euros per part.  

30

30

50

X2

X1

B = 630

B = 700

Machinery

Work force
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Profit per hour is equal to the number of parts manufactured by net profit per part 
minus the cost of mending the defective parts. 

B = f(X) = (120 - 2/X) 6 - (27X) 4 = 720 - (12/X) - 108 X 

The objective is to determine the time-length interval between adjustments to 
maximize profit. If we consider that there is at least one adjustment per hour, variable X 
is restricted to interval [0, 1]. 

The optimization problem is as follows: 

Maximize f(X) = 720 - (12/X) – 108 X 

Where 0  X  1 

This model can be solved with LINGO. Below you will find the model and the 
solution obtained with LINGO software, which allows one to solve nonlinear 
programming models, in addition to linear and integer programming models. 

MODEL: 
! Determination of time interval between machine adjustments; 
[PROFIT] max = 720 - (12/X) - 108*X; 
X  0; 
X  1; 
END 

Local optimal solution found at step: 8 
 Objective value: 648.0000 

Variable Value Reduced Cost 
X 0.3333332 0.0000000 

Row    Slack or Surplus Dual Price 
BENEFICIO 648.0000 1.000000 

2 0.3333332 0.0000000 
3 0.6666668 0.0000000 
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8.3.2. PRODUCTION PLANNING 

A company produces three products. The volume of sales of each product depends on 
its price, and in the case of product 3, the volume of sales also depends on the price of 
another product. 

The marketing department estimates the following relationship between monthly sales 
turnover Xj (thousands of units) and unit price Pj per product: 

X1 = 10 - P1 

X2 = 16 - P2 

X3 = 6 - 1/2 P3 + 1/4 P2 

The variable cost for each product is 6, 7, and 10 euros/unit respectively. 

Production is limited by the machine's available time and human resources. Each 
month the firm has 1000 machine hours and 2000 worker hours. The consumption of 
these resources is shown in the following table. 

Table 8.1. Resource requirements 

Resource 
Products 

1 2 3 

h-machine/unit 0.4 0.2 0.1 

h-worker/unit 0.2 0.4 0.1 

The firm wants to determine the monthly sales programming that maximizes profits, 
considering the resources available. 

Gross profit per product is the income minus variable cost. For product 1 income is I1 
= P1 X1 and since X1 = 10 - P1, working out the value of P1 we get: 

I1 = (10 - X1) X1= 10 X1 - X1
2 

The variable cost of product 1 is C1 = 6X1. The profit obtained is: 

B1 = I1 - C1 = 10 X1 - X1
2 - 6X1 = 4X1 - X1

2 
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Similarly for product 2: 

B2 = I2 - C2 = 9X2 - X2
2 

The sales of product 3 depend on its price P3 and also on P2. 

I3 = P3 X3 

X3 = 6 - 1/2 P3 + 1/4 P2  P3 = 2(6 - X3 + 1/4 P2) and 
P2 = 16 - X2   therefore 

I3 = 20 X3 - 2 X3
2 - 1/2 X3 X2 and 

B3 = I3 - C3 = 10 X3 - 2 X3
2 - 1/2 X2 X3 

Total profit will be 

B = B1 + B2 + B3 = 

  = 4 X1 - X1
2 + 9 X2 - X2

2 + 10 X3 - 2 X3
2 - 1/2 X2 X3 

Therefore, the nonlinear problem to solve will be: 

Max  4 X1 - X1
2 + 9 X2 - X2

2 + 10 X3 - 2 X3
2 - 1/2 X2 X3 

X1, X2, X3  0 (nonnegativity constraints) 

4 X1 + 2 X2 + X3  10 (hours-machine) 

2 X1 + 4 X2 + X3  20 (hours-worker) 

Another situation in which we may find nonlinear production planning problems is 
when marginal costs vary with the production level. The constraints can also be nonlinear, 
when the consumption of one resource is not strictly proportional to the amount produced. 

The model and solution obtained with LINGO are the following: 

MODEL: 

! Production planning; 

[PROFIT] max = 4*X1-X1^2+9*X2-X2^2+10*X3-2*X3^2-0.5*X2*X3; 

[MACHINE] 4*X1 + 2*X2 + X3 < 10; 

[WORKERS] 2*X1 + 4*X2 + X3 < 20; 

END 
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Local optimal solution found at step: 10 
 Objective value: 28.82051 

Variable Value Reduced Cost 
X1 0.4102567 0.0000000 
X2 3.230769 -0.1716926E-07 
X3 1.897436 -0.3105690E-08 

Row    Slack or Surplus Dual Price 
   PROFIT 28.82051 1.000000 

MACHINE 0.0000000 -0.7948716 
 WORKERS 4.358976 0.0000000 

8.3.3. SOME CHARACTERISTICS OF NONLINEAR OPTIMIZATION METHODS 

Solving problems such as those in previous section, where the maximum or minimum 
of a nonlinear function should be found, is based on approximation function methods. At 
each iteration, these algorithms find the optimal solution of X by approximating the 
function through a simpler function, for example, quadratic at each iteration. The 
optimum of the approximating function is found analytically. By repeating the procedure 
the methods will converge in an optimum to the original function. The different methods 
differ with respect to the data required and the type of approximation performed. Thus, 
Newton's method uses the first and second derivatives at a point to generate a quadratic 
approximation. Figure 8.5 shows Newton's method for the problem of section 8.3.1. 

MAX f(X) = 720 - (12/X) - 108 X 

Where 0  X  1 

Newton's method rapidly converges to the optimal if the starting point is close to it. 
Unfortunately, it does not always converge. It may diverge or shift without converging or 
it may find a minimum rather than a maximum. 

Another weak point of this algorithm is that it requires us to know the second 
derivative of the function. It may happen that the second derivatives do not exist or are 
costly to evaluate. "Quasi" Newton methods overcome this drawback by estimating the 
values of the second derivatives.  

Many nonlinear optimization techniques follow this algorithmic structure: 

1.The algorithm is initiated with a solution X1 = (X1
1, X1

2, ..., X1
n) 

2. Find a movement direction away from current solution that improves the objective
function value f(X) = f (X1, X2... Xn)
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3. Determine how far the current solution should shift in the direction of the improved
objective function, in other words, find the size of the modification.

4. Repeat steps 2 and 3, always using the last solution obtained in 3, until no other
improvement direction of the objective function can be found or until improvement
is lower than a fixed quantity. The optimal solution is the last solution obtained in
this procedure.

650

640

630

.20

.305

.45.40.35.30.25

.33
x

x(k) x(k+1) x(k+2)

Quadratic approximation
 at x(k)

Quadratic approximation at 
x(k+1)

Figure 8.5. Newton's method for maximizing f(X) 
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Most techniques based on this structure differ in the method of developing steps 2 and 
3. In particular, the gradient search method selects the gradient vector in a solution X as
the moving direction at step 2 of the general algorithmic structure. The gradient vector of 
f, f is the vector whose components are the partial derivatives of f with respect to the 
Xi: f = ( f/ X1, f/ X2, ... f/ Xn ). f(X) is a vector that indicates the direction in which 
f values change more rapidly from point X. Therefore, it is locally the best moving 
direction.  

An analogy can illustrate the gradient search procedure. Suppose that a shortsighted 
person wants to climb to the top of a hill, so he cannot see the top of the hill in order to 
walk directly in that direction. However, when he stands still he can see the ground around 
his feet well enough to determine the direction in which the hill is sloping upward most 
sharply. Then he starts walking in that fixed direction and continue as long as he is still 
climbing. He eventually stops at a new trial location when the hill becomes level in this 
direction, at that point he prepares to do another iteration in another direction. He 
continues this procedure, following a zigzag path iteration up the hill, until he reaches a 
trial location where the slope is essentially zero in all directions. Under the assumption 
that the hill is concave, he must be at the top of the hill. 

There is no one method which is the best to solve the majority of problems. This is the 
main challenge for nonlinear programming. In general, the algorithms are appropriate for 
solving particular types of problems.  In some cases, it is possible to solve nonlinear 
programming problems approximating them through linear programming models. This is 
the essence of separable programming. Another case of particular relevance is when the 
constraints are linear and the objective function is a second order function: quadratic 
programming. In the next section we deal with a real application, such as portfolio 
selection. 

This brief and intuitive explanation of nonlinear programming methods helps us to 
understand the options which LINGO and Solver in Excel have and, especially, to use 
them better in order to improve decision making. See options in the annexes 1 and 2. In 
particular LINGO uses sequential linear programming and the generalized reduced 
gradient method. LINGO also includes an optimizer to obtain the global optimum in non-
convex models (Global Solver). Finally, it is interesting to point out that interior point 
methods are based on the ideas explained in previous sections. 
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8.4. EFFICIENT PORTFOLIOS 

8.4.1. THE MARKOWITZ MODEL 

Markowitz and Sharpe won the Nobel Prize in 1990 due to their portfolio selection 
models. The Markowitz model permits the generation of optimum portfolios, which is the 
basis of modern theory of portfolios and is opening a new phase in financial analysis.  

The problem is as follows: The asset return is a random variable which can be 
characterized by its mean and variance. Investors are usually interested in total return 
(expected value) as well as in the associated risk of their investments. This is an example 
of a problem with two conflicting objectives. The investor wants the maximum return and 
the minimum risk. In addition, the objective function is nonlinear. Therefore, portfolio 
managers use nonlinear programming models as decision making tools to determine the 
investment portfolio with the best combination of total return and risk. This is the 
portfolio that best fits the preferences and characteristics of investors. 

According to Markowitz the expected rate of return of a portfolio is found by taking 
the weighted sum of the individual expected rates of return from the n assets that compose 
it, while the risk of the portfolio depends on three components: the assets proportion of 
the portfolio, the variance of asset returns and the covariance of the returns for each pair 
of assets. 

The sources that contribute to the return variability of stock assets (price and dividend) 
are risk elements. Risk can be divided in two parts: systematic and non-systematic risk. 
The former depends on causes external to the company (political changes, inflation, 
interest, etc.), while the latter – non-systematic risk - depends only on factors internal to 
the enterprise (leadership, indebtedness, markets in which it competes, etc.). 

Diversification also allows us to reduce the risk of the portfolio. Naive diversification 
is based on combining values from different sectors, whereas scientific diversification of 
Markowitz model is based on combining values having a correlation or covariance that 
allows the reduction of risk without sacrificing profitability. In general, the smaller the 
correlation between the values of the portfolio, measured by the covariance, the lower the 
its risk. In short, the essence of the scientific diversification is to combine values whose 
covariance is negative. 

As non-systematic risk is unique and particular to each company, the investor can 
avoid this type of risk by diversifying and investing in stocks of companies whose 
covariance or correlation is adequate. Several studies have shown that the diversification 
of risk permits the avoidance of non-systematic risk and that it is achieved by including 
12-15 values in the portfolio, no improving the results if we increase this value. 

In short, efficient portfolios are those from which the non-systematic risk has been 
removed and the risk is defined exclusively by the movements of the market. In practice 
there are holding companies, investment and pension funds, etc. who invest their funds 
in a wide range of values, which are well above those considered necessary. Therefore, 
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the profitability of their portfolios is lower due to the level of risk they take, primarily for 
two reasons: excessive increased management costs and resorting to values with low 
returns, having many types of securities in its portfolio. Therefore, the portfolios formed 
by the scientific method of Markowitz dominate the feasible region of portfolios formed 
by traditional methods.  

Firstly, we shall see the general formulation of the Markowitz model for portfolios 
selection and secondly, its application to an example by using Excel spreadsheets and the 
Solver tool to solve the resulting nonlinear programming model. 

Suppose that we want to form a portfolio from n assets. The decision variables xi 

(i=1, 2…n) represent the proportion of each asset in the portfolio. 

And ri is the average return of the asset i and ii2 the estimated variance of return 
on asset i. We measure asset risk by this variance. ij2 for i, j=1, 2,…n (i j) is  the 
covariance of returns of assets i and j. 

The expected rate of return of a portfolio is the weighted sum of the individual 
average returns from the n assets that compose it, where the weights are the proportion of 
each asset and represent the decision variables of the model 

xr i

n

i
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1
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And the variance of portfolio total return V(X) is as follows. 
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In matricial form: 

The portfolio selection model can be formulated as follows: Find the values of the 
decision variables xi (i = 1, 2... n) representing the proportion of each value in the 
portfolio that minimises the total risk. 
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As constraints of the model we include one in order to obtain a minimum return and 
another that represents the sum of proportions of each asset that should be 1: 

Rxr TFOLIOMINIMUMPORi

n

i
i

1

1
1

xi

n

i
 

And also nonnegativity constraints of the variables: 

niforxi ,...2,10  

It is also usual to consider the upper and lower bounds of the variables. In a 
multiobjective problem you obtain efficient solutions by optimising an objective 
(minimizing the risk of the portfolio) and considering another objective as a parametric 
constraint (return on the portfolio). By modifying the minimum return on the portfolio 
and solving the resulting quadratic programming model (the objective function is second 
grade nonlinear) we obtain efficient portfolios, which are those in which we cannot 
improve one objective without worsening the other. The concept of efficient solution is 
explained in chapter 6. 

We can see the practical application of this model in Excel, since this tool allows us 
to easily calculate all the coefficients, solve the nonlinear model with Solver, and draw 
the efficient frontier which represents the combinations of return and risk, measured by 
the standard deviation of the portfolio. The efficient frontier permits us to decide on the 
best composition of portfolio taking into account the preferences of investors. 

Figure 8.6 shows the annual return of three types of securities between 2008 and 2012. 
The data are not real and for pedagogical reasons the data series is small, as well as the 
number of assets that can be part of the portfolio. In practice we take monthly series to 
calculate the covariance. Instead of only using historical data current data can be used on 
the expected return of an asset. We have calculated average returns for securities, their 
standard deviation and variance-covariance matrix in Figure 8.6. These data are used in 
the portfolios model presented in Figure 8.7.  

“Make Unconstrained Variables Non-Negative” should be selected to solve the model 
with all nonnegative variables. Otherwise all of these constraints should be introduced. 

If we change the desired minimum return on the portfolio and solve the resulting 
model, we can obtain the composition and the risk associated with the optimal portfolio 
for a given total return. In this way it can generate the efficient frontier in which we have 
the minimum risk for each portfolio total return, as we can see in figure. 8.9. This model 
can also be formulated using the LINGO modelling language. The LINGO programming 
capabilities allow us to solve a series of models and draw the efficient frontier. 
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Figure 8.6. Returns and variance-covariance matrix 

Figure 8.7. Markowitz model to obtain efficient portfolios 
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Figure 8.8. Efficient frontier 

4.2 SHARPE MODEL 

A drawback of the Markowitz model is the large amount of data, in particular the 
number of covariances, whose value depends on the number of securities (n) that is (n2-
n) /2. Thus, if we consider 10 securities for the portfolio, we need 45 covariances, 1225
in case of n=50, 4950 when n=100 and nearly half a million data when n=1000. 

The Sharpe model, among others, has tried to simplify the process of obtaining the 
data required for the application of the Markowitz model. Basically, the Sharpe model 
requires n data that is equal to the number of securities considered in the portfolio. This 
model introduces a coefficient beta, which measures the sensitivity of the securities return 
when compared to market movements. It shows us both the risk of an asset and the effect 
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on the risk of the portfolio which includes this asset. This beta coefficient is obtained by 
comparing the return of each asset with an economic or stock market index by applying 
linear regression. 

Sharpe replaced the covariance of each pair of assets with this coefficient beta of the 
relationship between each asset and the market in general, defining the expected return 
on securities as a function of the market profitability and representing it by the following 
regression equation: 

rit= i + i rIt + eit

where: 
rit = return of asset i in period t 

i = alfa coefficient, the point of intersection of the regression line with the axis line 
i = beta coefficient, slope of regression line 

rIt = return of market index I in period t  
eit = random error of regression where E (eit) = 0 y Var (eit) = i

2 

Alpha coefficient is the point of intersection of the regression line with the axis and 
indicates the expected return on i asset when the market return is zero. It is advisable to 
perform the regression on the excess of return, that is, once a constant value for the price 
of money without risk is deducted. 

Beta coefficient: This is the most important coefficient. Beta is the slope of the 
regression line and measures the sensitivity of the i asset return with respect to the 
movements of the market index. If Beta = 1, it indicates a variability of identical return 
for the asset and index. If Beta > 1, it indicates a higher variability for the asset than the 
index and if Beta < 1, it indicates a lower variability of the asset return than the index. 

As we have seen, the systematic risk is the variability in the price of an asset due to 
fluctuations in the market. Therefore, we can measure the systematic risk using the beta 
coefficient. Beta not only shows us the degree of response in the asset price in relation to 
the movements of the market index, but it also quantifies the response to other assets. 

The random error of an asset is the non-systematic risk of that asset. This risk can be 
described by the scatter about the regression line. The greater the dispersion of the point 
cloud the bigger the non-systematic risk of a value. 

The non-systematic risk can be measured by the residual variance eit
2 by using the 

following formula: 

Non-Systematic Risk = eit
2 = Total Risk – Systematic Risk 

The beta of a portfolio is simply the weighted average of the betas of the assets, which 
simplifies the risk calculation of the portfolio a lot, as we do not estimate the covariance 
between each pair of values. If we change the desired minimum return on the portfolio 
and solve the resulting model, we can obtain the composition and the risk associated with 
the optimal portfolio for a given total return. In this way it can generate the efficient 
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frontier in which we have the minimum risk for each portfolio total return, as we can see 
in figure. 8.9. This model can also be formulated using the LINGO modelling language. 
The LINGO programming capabilities allow us to solve a series of models and draw the 
efficient frontier. 

If xi  is the asset weight in the portfolio, the portfolio variance taking into account 
that rit= i + i rIt + eit is as follows:
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Let us solve this model by using Excel Solver with the same data that we used to solve 
the Markowitz model. Figure 8.9 shows data from the annual returns of the three assets 
from 2008 until 2012, as well as the annual returns of the IBEX-35 which is the index of 
the market that we have used. Based on this information, we estimate the data required to 
apply the Sharpe’s model of, presented in Figure 8.10 along with range names and the 
most important formulas for the calculations. 
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Figure 8.9. Data: Returns and beta coefficients of Sharpe 

Figure 8.10. Efficient portfolio model of Sharpe 
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In both Markowitz and Sharpe models, it is common to add constraints in order to 
limit the value of the decision variables so that neither of them represents a very large 
portfolio fraction. Finally, we can say that there are many other possible models and you 
can find finance treatises about them. 

8.5. SUMMARY 

The most important feature of nonlinear programming is that no one method is "the 
best" to solve any nonlinear model. The optimal solution is not a corner point of the 
feasible region and it can even be an interior point. When function objective and/or 
constraints are nonlinear, the procedure to find the optimal solution is more complicated 
than in the linear case. However, there are methods that solve certain types of problems 
efficiently and many applications in business administration and management that need 
these methods to improve decision-making. An especially important one is the efficient 
portfolios of securities investment. Markowitz and Sharpe models are the basis of the 
modern portfolio theory in finance. 
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8.7. CASE STUDIES 

CASE STUDY 1 

Solve the following model which represents a problem of investment portfolio 
graphically. Analyse the differences between this case and graphical solution of a linear 
programming model. 

Min 0.09 X1
2 + 0.04 X1 X2 + 0.06 X2

2 

Constraints: 

X1 + X2 = 1 

0.06 X1 + 0.02 X2   0.03 

X1  0.75 

X2   0.9 

X1  0 

X2  0 

CASE STUDY 2 

Suppose that table 8.2 includes the historical returns of five types of assets and the 
IBEX-35. 

Table 8.2. Annual returns 

YEAR ASSET 1 ASSET 2 ASSET 3 ASSET 4 ASSET 5 IBEX 
1999 12,5 19,9 4,1 12,1 5,6 12,0 
2000 9,4 9,2 2,6 8,3 6,2 8,3 
2001 13,9 19,9 -4,2 10,2 4,5 9,4 
2002 7,7 14,3 7,9 8,4 11,2 10,5 
2003 8,7 19,2 9,9 8,6 0,9 9,8 
2004 11,0 15,8 10,1 6,9 8,6 11,2 
2005 8,8 18,2 6,3 6,5 8,5 8,5 
2006 10,5 18,6 10,0 7,3 11,6 10,9 
2007 12,5 14,5 2,2 8,4 12,9 10,1 
2008 14,0 18,2 6,8 7,2 8,7 12,0 
2009 6,8 13,6 8,5 10,3 8,8 8,9 
2010 14,2 17,1 6,1 12,8 8,4 14,3 
2011 10,9 10,0 6,0 11,3 4,3 8,4 
2012 9,5 8,5 6,0 7,9 7,3 9,3 

Obtain the composition of efficient portfolios for three types of investors, high, 
medium and low return by using Markowitz and Sharpe models. This problem can be 
solved with Excel Solver and LINGO. 
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In recent decades a new group of algorithms has appeared, called metaheuristics, and 
they have been successfully applied to a variety of difficult search and combinatorial 
optimization problems. They are the latest generation of heuristic algorithms, widely used 
for solving optimization problems of all kinds when exact methods are not applicable. A 
metaheuristic algorithm can be defined as an iterative process that guides and/or modifies 
the operations and/or solutions of one or more subordinate heuristic algorithms to produce 
higher quality solutions in a reasonable time (Voss et al., 1999). They manipulate a single 
solution or a combination of these in each iteration, and as the process proceeds the 
solution or solutions improve. 

Among the metaheuristics that have appeared we may include those that mimic the 
behavior of natural systems, both biological and physical, such as the natural evolution 
of the species, thermodynamics, cooperative work in an ant colony or the behavior of 
neurons in the brain. From the wide variety of existing metaheuristics, we can highlight, 
due to their excellent results and the diversity of problems to which they are being applied; 
genetic algorithms, tabu-search and simulated annealing, to which we will devote this 
chapter. We can find a detailed description of these and other metaheuristics in Rayward-
Smith et al. (1996). Among their applications we can cite routing problems, schedule 
management, production scheduling, project scheduling with limited resources and many 
others. Genetic algorithms are explained in detail in the next section, and in the last two 
points of this chapter tabu-search and simulated annealing are outlined. 

9.1. GENETIC ALGORITHMS 

In the '60s the rapid proliferation of computers led to their use as simulation tools by 
the scientific community. In the early '70s, a group of researchers from the University of 
Michigan, led by Professor John Holland (1975), proposed genetic algorithms as 
computer programs that mimicked the natural evolutionary process and behaved robustly 
in a variable and uncertain environment. The main theme of the research focused on the 
robustness of such systems, i.e. how to find the right balance between efficiency and 
effectiveness to suit different environments. The robustness of the systems, both software 
and hardware, was a crucial aspect of their design, as the cost of rehabilitation and 
redesign could be drastically reduced or even eliminated. 

The resolution of a particular complex problem can be viewed as search in a space of 
possible solutions and, since we generally look for the best solution, it can be further 
understood as an optimization problem. Genetic algorithms are algorithms whose search 
mechanisms imitate a natural phenomenon: the evolution of species through genetic 
inheritance. In nature, the problem that each species faces is seeking improvements for 
its own adaptation to the environment. The main idea of genetic algorithms is to do what 
nature does. 

In nature, the members of a population compete with each other for resources such as 
food, water or shelter. At the same time, males compete amongst themselves to attract 
females. Individuals who are better prepared for survival and who attract females will be 
those that get more offspring. The less successful individuals will have fewer offspring 
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or even none. This means that the genes of the fittest will be inherited by a growing 
number of individuals in successive generations. The combination of the good features of 
past generations usually produces individuals that are better adapted than their 
predecessors. In this sense the species evolves into a kind that is better and better adapted 
to their environment. 

Let us take a population of rabbits as an example (Michalewicz, 1996). In this 
population some rabbits are faster and cleverer than the rest. The foxes that feed on these 
rabbits will find it more difficult to catch fast and clever rabbits, so those will surely 
survive and do what rabbits do best: make more rabbits. Of course, some of the slow and 
clumsy rabbits survive due to good luck and may possibly have offspring. The offspring 
population becomes a good mix of genetic material: fast rabbits have crossed with slower 
rabbits, some faster rabbits with other very fast ones, slow rabbits with clever ones, 
clumsy with fast, etc. Additionally, mutations in the genetic material of some individuals 
in the population can be produced, which may introduce different characteristics from 
those inherited from previous generations, i.e. introduces greater variability in the 
population. As a consequence, the resulting rabbit population will be, on average, faster 
and more “intelligent" than the original population, because most of the parents which 
survived the foxes were quick and clever. It is interesting to think that the fox population 
also suffers a similar evolution, since otherwise, the rabbits would become too fast and 
intelligent to be caught by them. 

Genetic algorithms follow nature procedure in the previous example step by step. 
They work on a population of individuals, each of which represents a possible solution to 
the problem they are applied to. Each individual is assigned a fitness value representing 
the quality of the solution. The individuals in the population cross with each other to 
produce new solutions, so that individuals with a better fitness value are more likely to 
be selected for crossover. When two individuals or solutions are selected for crossover, 
they produce one or more solutions (children) who inherit some of the characteristics of 
each of the parents. The least qualified individuals, i.e. the solutions with worse fitness 
value are less likely, but they also have some possibility to cross with other solutions and 
pass their features on to the next generation. 

Figure 9.1 shows, in pseudo code, the general procedure of a genetic algorithm. The 
first step consists of generating the initial population of solutions. One of the main 
differences between the genetic algorithms and other sequential algorithms, such as tabu 
search or simulated annealing, is that the first one manages a set of solutions in every 
iteration and not only one solution as it is the case of the last two. Once we have the initial 
population that may have been obtained in a random way, each individual is evaluated, 
that is, a fitness value is assigned to every individual. 
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Figure 9.1. Genetic Algorithm: general procedure 

After all of the members of the initial population have been evaluated, the following 
steps are repeated until the stopping condition is satisfied. Firstly, the selection of the 
population is carried out. In this process each of the individuals in the population is copied 
a number of times, so that the best individuals generally have a higher number of copies 
than the less skilled individuals. In this way we obtain a new population that replaces the 
previous one. 

After that, the crossover process is carried out. The individuals in the population are 
paired at random and every couple undergoes crossover with a given probability. If the 
operation is carried out by the couple (parents), two new solutions (children) that replace 
the previous ones are created. If not, the parents remain unaltered. Thus, in the resulting 
population individuals from different generations can live together. The effect of the 
selection process which is carried out before the crossover operation is that the best 
individuals in the population participate more actively in such processes. 

Finally, some individuals in the population can mutate, i.e. some solutions can be 
partially altered, allowing the population to introduce new features or material which have 
been lost through evolution. 

The resulting population then is re-evaluated and the termination condition is checked. 
This condition generally refers to the elapsed computation time, the number of 
generations or iterations performed, the number of individuals who have been evaluated, 
the improvement produced in the last iterations, the variability of the population, etc. 

Obviously, we need to design an encoding for the solutions before we can start 
applying a genetic algorithm, this being one of the fundamental aspects of the design and 
therefore the subsequent efficiency of the genetic algorithm. That is, we need to define 
how to represent each of the possible solutions in an appropriate way. 

Genetic Algorithm Procedure 

 Create_initial_population 
 Evaluate_population  
 While not (termination_condition) 

 Select_population 
 Cross_population 
 Mutate_population 
 Evaluate_population 
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9.1.1. SOLUTIONS ENCODING 

The genetic algorithm operates on an encoded representation of the solutions, 
equivalent to the genetic material of the individuals, rather than directly on the given 
solutions. A solution to the problem can be represented as a set of parameters. These 
parameters, known as genes, can be placed one after the other, forming a chain of values, 
which are referred to as a chromosome. In genetic terms, the parameter set represented 
by a chromosome is called a genotype. It contains the information necessary to construct 
an organism, known as a phenotype. 

In the genetic algorithm proposed by Holland each of the solutions is represented by 
a chain on a binary alphabet, i.e. a chain consisting of only zeros and ones. Although the 
simple genetic algorithm (proposed by Holland) used a binary encoding, other types of 
encodings have been developed, such as strings of integers or real numbers and even 
chains in which genes do not contain numbers. That means that the strings can be defined 
using any alphabet. 

Sometimes the chromosome does not directly represent a solution to the problem, but 
the information needed by a particular algorithm to solve the specific problem, such as 
for example, a heuristic algorithm which is able to find good solutions to the problem. In 
this case, we should apply such a procedure using the information represented in the 
chromosome in order to obtain a solution. Regardless of whether they directly represent 
a solution to the problem or not, individuals from the population are generally referred to 
as solutions. An appropriate encoding of the solutions is crucial to the success of the 
genetic algorithm, and the rest of the procedures to be designed that will manipulate and 
act on the solutions will depend on this encoding. 

Once we have defined the encoding, the next step is to create the initial population of 
solutions of a certain size. There are generally two ways to generate the individuals of 
that population: at random or using some heuristic algorithm. The advantages of the first 
mechanism are the required time and the diversity of the generated solutions, but it may 
have the disadvantage of creating a mediocre population which may need a lot of time to 
converge to good solutions. The second method does not have the above mentioned 
drawback, since the solutions are usually of a better quality, so it can converge faster. 
However, we should avoid generating a population with little diversity, because this 
lack of diversity could lead to a premature convergence, by being trapped in a local 
optimum. We must also take into account the time needed to create the population by 
this method because, if it is too high, a random population may be advisable. 

9.1.2. FITNESS FUNCTION 

The fitness function or evaluation function is the one that assigns, to each of the 
individuals in the population, a fitness value which indicates the suitability of that 
individual with respect to other individuals who are part of the population. 
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In some problems it is easy to assess the quality of a given solution with a single value. 
For example, if we are looking for the point that maximizes the value of a function then 
the solutions that produce a greater value will be those that have a better fitness value, 
and the fitness value even could match the value that is produced in the function to 
maximize. However, in certain problems it may not be so easy to evaluate the quality of 
a solution with a single number. In the task of planning and scheduling a project, we may 
have different aspects to optimize, such as to minimize its overall duration, to level the 
demand of resources, to obtain an acceptable ratio cost/duration etc., so it may not be easy 
to evaluate the solutions with a single fitness value. 

Sometimes, once the evaluation process is finished, i.e. once the fitness value has been 
assigned to each of the individuals in the population, it may be recommended to make a 
scaling of these values to avoid premature convergence of the algorithm. The scaling 
technique will be discussed in the next section, after having described the selection 
process. 

9.1.3. SELECTION 

The selection process performed by genetic algorithms is an artificial version of 
natural selection of species, based on the principle of "survival of the fittest". That is, in 
nature the individuals that succeed are the best equipped and better prepared to survive 
the obstacles imposed by nature, such as predators, diseases, lack of resources, etc. The 
rest, less skilled individuals, are not able to overcome such obstacles and die. 

In genetic algorithms, the adequacy and preparation of an individual is represented, 
as mentioned earlier, by the fitness value. Therefore, the individuals with a better fitness 
value are those who are more likely to remain in the population and breed with other 
individuals and pass their genetic material on to future generations. The individuals with 
a worse fitness value are more likely to disappear. 

To simulate this natural process, each individual is copied a number of times to form 
an intermediate population which replaces the previous population and is the same size 
as the latter. That is, the best individuals receive more copies than the worst, who may 
not even receive any copy at all and will therefore disappear.  

There are two important aspects of the behaviour of the genetic algorithm associated 
with the selection process and which are closely interrelated: population diversity and 
selection process pressure. If the selection process is very hard, i.e. if only highly qualified 
individuals survive and the rest die, then the population loses diversity and this fact can 
lead to premature convergence of the genetic algorithm, possibly ending trapped in a local 
optimum.  

If the pressure of the selection process was very weak, i.e., if all individuals in the 
population are always able to survive, the search process would become "blind" because 
it would not be guided by the best individuals. It is therefore an important aspect to find 
a suitable compromise between the diversity of the population and the level of pressure 
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exerted by the selection process. The selection process can be implemented in various 
ways. We will briefly explain some of them in the following lines. 

The simple selection is the simplest mechanism. It consists of simulating a spinner in 
which each solution is assigned a section thereof. The size of the section allocated to a 
solution is in proportion to its fitness value, so that the probability that an individual i is 
selected, is given by: 

sizepop

j
jf

_

1
)(

f(i)Pselect_i

The best solutions will have the biggest sectors and therefore, the worst solutions will 
be assigned the smaller sectors, but every solution in the population will have their sector 
assigned at roulette. The next step is to throw the ball as many times as solutions appear 
in the population, i.e. pop_size times. Every time the ball is released and it falls in a given 
sector, the solution represented by this sector is copied to a new intermediate population, 
so that on average the best solutions get the largest number of copies and the worst 
individuals get less copies or even none. The population thus obtained replaces the 
previous population and these individuals will participate in the crossover process. 

In deterministic sampling, the expected number of copies for each solution to receive 
is given by Ei=Pselect_i * pop_size where Pselect_i is calculated as in the previous case. 
Each solution is directly assigned as many copies as indicated by the integer part of Ei in 
the new population. If the intermediate population has not yet been completed, the 
original population is sorted in descending order of the fractional parts of Ei, and we 
choose solution by solution, in that order, until the new population is completed. 

In either version of stochastic sampling, which  is with or without replacement, each 
solution is directly assigned as many copies as indicated by the integer part of its expected 
value, as in the previously mentioned case. However, they differ in how they treat the 
fractional parts of these expected values. In the version with replacement, fractional parts 
are used to form a wheel, as in simple selection, and the ball will be released as many 
times as solutions are needed to complete the new population. In the version without 
replacement, the fractional part is used as the probability of getting another copy. That is, 
in this type of selection a solution with the expected value of 1.8, would receive a copy 
safely and will have a probability of 80% of obtaining a second copy.  

Previous methods of selection, in which the number of copies that a particular 
individual gets depends on its relative value of adequacy with respect to the rest of the 
population, may present the following problem. During the execution of the genetic 
algorithm, in the first iterations there are usually some super individuals, with a much 
better fitness value than the rest. By applying the above selection processes as such, these 
individuals would represent a large proportion of the population in very few iterations. 
This is undesirable because of the loss of diversity in the population and it would possibly 
result in a premature convergence. Furthermore, in the last iterations, the opposite effect 
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occurs. Once the population has evolved considerably and improved, the average fitness 
value of the population is possibly close to the value of the best and worst individuals. 
That is, since there are no major differences among individuals, the best individuals would 
receive about the same number of copies as the worst ones. In this way the search, which 
based on the principle of survival of the fittest individuals needed to properly steer 
population improvement in one direction, becomes a blind search or random search. 

To avoid the above problem scaling techniques may be used additionally. These 
techniques modify the fitness values of individuals in the population (fitness values are 
scaled) so that the number of copies that the best solutions obtain is limited in the first 
and the latest iterations. The best individuals receive, in ratio, a higher number of copies 
than the less qualified, although their fitness values do not differ significantly. 

A different type of selection mechanism which does not present the above problem is 
given by mechanisms based on the ranking of individuals in the population. The 
individuals in the population are sorted in increasing order of their fitness values. The 
number of copies is assigned to each individual in proportion to their place in the ranking, 
rather than being proportional to its relative fitness value. 

One selection mechanism that combines the ideas of the methods discussed above 
together with the idea of ranking based methods is the so called tournament selection. 
This method selects k individuals in each iteration using the roulette method. Of these k 
solutions, only the one with the best fitness value is copied into the new population. This 
process is repeated pop_size times, i.e. until the new population is complete. Obviously 
higher k values increase the pressure of the selection process. An accepted value which 
has given good results in various problems is k=2. That is, in each iteration we select two 
individuals and only the best of them becomes part of the new population. 

9.1.4. CROSSOVER 

The crossover process is applied to the population resulting from the selection process. 
The solutions are randomly paired and each of these pairs undergoes the crossover 
operation with a certain crossover probability Pc, which is fixed for the entire population. 
If the couple does not participate, both of the individuals in the population remain 
unchanged. By contrast, if the pair performs the crossover, the mechanism creates two 
new solutions which inherit a combination of features of their parents and replace them. 
Thus, after the crossover process, the size of the population remains unchanged. 

Due to the selection process, although such pairs are chosen randomly, the best 
individuals are involved in the crossover process more actively, because they appear in 
the population more often, and they are therefore the ones with the higher probability of 
passing on their genetic material to successive generations. Also, due to the fact that if 
one set of parents does not carry out the crossover, they remain unaltered, individuals 
from different generations can live together in the same population, as occurs in nature. 
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Crossover technique should be designed carefully so that the new solutions, the 
offspring, may be created by combining the characteristics of the two solutions involved 
in the process, that is, the parents. Crossover process should not consist solely of a 
combination of the solutions to form new solutions. In addition this combination should 
be truly beneficial. There are several ways to carry out the crossover process some of 
which we will outline. 

The simplest mechanism which has been applied in a variety of problems providing 
excellent results is the one-point crossover. In this technique, and given two solutions of 
length l, we randomly choose a crossover point k, with 1  k < l, such that in one of the 
resulting solutions, “the daughter”, the first k genes are inherited from one parent, for 
example the mother, and the remaining genes from the other, in this case the father. The 
other solution, “the son”, inherits the first k genes from the father and the rest from the 
mother. 

Figure 9.2 shows how this type of crossover works over a simple example. Let us 
suppose solutions represented by strings of length 10, defined over the binary alphabet 
{0, 1}. The crossover point, selected randomly could be k=4. Thus, the daughter solution 
inherits the first four genes from the mother solution and, the rest of the genes, those 
placed between positions 5 and 10, from the father. In the same way, the son inherits the 
first four genes from the father, and the remaining 6 from the mother. So the two children 
inherit characteristics from both parents. 

1 0 0 1 1 1 0 0 1 1 Mother Daughter 1 0 0 1 1 0 1 0 1 0 

1 1 0 0 1 0 1 0 1 0 Father Son 1 1 0 0 1 1 0 0 1 1 

Figure 9. 2. One-point crossover example 

One problem with this procedure is the following: let us suppose that the following 
combination of genes that the mother presents, is a combination that contributes 
decisively to the good performance presented by this solution: 

1 0 0 1 1 
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Now, with the one-point crossover mechanism, whatever the generated crossover point 
may be, it would be impossible for any child to inherit this gene combination present in 
the mother. That is, there are sets of features that, even though present in the parents 
cannot be inherited by the offspring. 

Therefore, a technique in which the number of crossover points is two instead of one 
has been developed in order to try to remedy this problem. This technique is called 2-
point crossover. In this procedure, the crossover points, k1 and k2, are also randomly 
generated so that 1  k1 < k2  l. Now the daughter solution will inherit the mother´s first 
k1  genes, the ones located between k+1 and k2 from the father, and the genes between 
k2 +1 and l again from the mother. By contrast, the son inherits the father's first k1 genes, 
the genes located between k1+1 and k2 from the mother, and the genes located between 
positions k2+1 and l from the father. 

Let us consider the functioning of this technique applied to the same example that we 
have previously used with the one-point crossover. This example is shown in Figure 9.3. 
Suppose now that the two crossover points generated at random, were k1=4 and k2=7. 

This example shows that the characteristics of the mother that could not be inherited 
by any offspring using the technique of one-point crossover, have been acquired by the 
daughter with this other type of crossover. That is, with the 2-point crossover a solution 
can inherit combinations of genes present in the parents that are not inheritable with the 
one-point crossover. 

1 0 0 1 1 1 0 0 1 1 Mother Daughter 1 0 0 1 1 0 1 0 1 1 

1 1 0 0 1 0 1 0 1 0 Father Son 1 1 0 0 1 1 0 0 1 0 

Figure 9.3. Two-point crossover example 

In the same way, if you apply the 2-point crossover, there could be combinations of 
genes that are present in the parents and are not inheritable by the offspring. For this 
reason, the one-point crossover can be generalized so that there are t crossover points, 
yielding the so-called multi-point crossover. Special cases of multi-point crossover would 
be then the one-point crossover (t=1) and the 2-point crossover (t=2). 
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 A different crossover mechanism is the uniform crossover. To apply it, the technique 
first generates what is called cross mask, which consists of a string of the same length as 
the solutions, with ones and zeros randomly generated. A random mask is created for each 
pair to cross. To generate one offspring, such as the daughter, the way to proceed is: If at 
position i of the mask there is a 1, the daughter inherits the gene from the mother, and if 
there is a 0, the gene is inherited from the father. To generate the son the procedure is 
analogous but the parents are exchanged. An example is shown in Figure 9.4. 

Several authors have compared the behaviour of the 2-point crossover with the 
uniform crossover and none of them seems to always have better behaviour for all 
problems. 

1 0 0 1 1 1 0 0 1 1 Mother Daughter 1 0 0 1 1 0 1 0 1 0 

0 1 0 1 0 0 0 1 1 0 Crossover mask 

1 1 0 0 1 0 1 0 1 0 Father Son 1 1 0 0 1 1 0 0 1 1 

Figure 9.4. Uniform crossover example

There are other crossover techniques that are radically different from the previously 
addressed ones. One of these is the PMX crossover (Partially Matched Crossover) 
proposed by Goldberg and Lingle (1985), indicated for those problems in which the 
fitness value of a solution depends only on the order in which the genes appear, and their 
values are fixed. In this type of problem, the solutions are represented by permutations of 
the elements of the alphabet. An example of this type of problem could be the Traveling 
Salesman Problem (TSP). A traveller must visit n cities so that the distance or the total 
costs are minimized. In this case, the solutions may be represented by chromosomes with 
as many genes as cities, so that if, for example, the value “Madrid” appears at position i, 
it means that Madrid would be the i-th city to be visited. If, in this problem, with the 
coding of the solutions indicated above, we apply any of the techniques previously 
described, the result would probably be a non-feasible solution. 

Consider the application of PMX crossover to a specific example, shown in Figure 
9.5. As in the 2-point crossover, the first step in PMX is to randomly generate two points 
k1 and k2, so that 1  k1 < k2  l. Each child inherits the genes contained between positions 
k1 and k2 from one parent. Both positions define both a set of exchanges which will be 
used later. Let us suppose in our example that k1=4 and k2=7: 

1 3 4 6 2 5 8 7 9 Mother Daughter     2 5 8   
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3 2 5 7 1 9 4 6 8 Father Son     1 9 4   

Figure 9.5(a). PMX crossover example: 1st step 

The defined interchanges have been marked with arrows in the previous figure. These 
are: 

2  1 5  9 8  4 

The next step is to inherit those genes marked by , from the other parent and do not 
produce conflict with each other, i.e. they do not appear repeatedly. It means that the 
daughter now inherits genes from the father and the son from the mother. 

1 3 4 6 2 5 8 7 9 Mother Daughter 3   7 2 5 8 6  

3 2 5 7 1 9 4 6 8 Father Son  3  6 1 9 4 7  

Figure 9.5 (b). PMX crossover example: 2nd step

Finally, the exchanges defined above serve to inherit the rest of the genes, which are 
those that could not be inherited in the previous step by producing conflicts: 

1 3 4 6 2 5 8 7 9 Mother Daughter 3 1 9 7 2 5 8 6 4 

3 2 5 7 1 9 4 6 8 Father Son 2 3 8 6 1 9 4 7 5 

Figure 9.5 (c). PMX crossover example: 3rd step

In the previous step, the daughter should have inherited a "2" in the second position 
from the father, but this would have caused a conflict since the "2" appeared in the 
daughter in the 5th position. Therefore, we used the previously defined set of exchanges 
whereby the "2" has been exchanged for a "1", which is finally displayed on the second 
position of the daughter. The same applies to the third and final positions of the daughter. 
This fact is also given in the first, third and last positions of the son. 
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Another crossover which has been defined for this type of problems is the order 
crossover proposed by Davis (1985). As in the previous crossover, the first step consists 
of randomly generating two crossover points k1 and k2 so that 1  k1  k2  l. In the same 
way as in the PMX, each of the descendants inherits the genes contained between 
positions k1 and k2 from one parent. The difference from the previous crossover is the 
following: the remaining genes are now inherited by the offspring in the relative order in 
which they appear in the other parent. Let us see the application in the next example. 
Suppose again that k1=4 and k2=7: 

1 3 4 6 2 5 8 7 9 Mother Daughter     2 5 8   

3 2 5 7 1 9 4 6 8 Father Son     1 9 4   

Figure 9.6(a). Order crossover example: 1st step

Now the daughter will inherit the genes marked as ?, in the relative order in which 
they appear in the father. That is, the daughter has only inherited the genes "2", "5" and 
"8", so she must inherit the rest. These will be inherited one by one keeping the relative 
order in which they appear in the father. The relative order of these genes in the father is 
3 - 7 - 1 - 9 - 4 - 6: 

1 3 4 6 2 5 8 7 9 Mother Daughter 3 7 1 9 2 5 8 4 6 

3 2 5 7 1 9 4 6 8 Father Son     1 9 4   

Figure 9.6 (a). Order crossover example: 2nd step

The main difference between the first three crossover techniques exposed (one-point 
crossover, two-point crossover and multi-point crossover) with respect to the mentioned 
later (PMX and order crossover) is that the latter ones incorporate problem-specific 
knowledge, while in the former, no reference has been made at all to the type of problem 
they solve. One of the advantages of incorporating problem-specific knowledge is that 
non feasible solutions which are sometimes difficult to manage can be avoided (as could 
have happened in the traveling salesman problem if we had used any of the first three 
techniques). 
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9.1.5. MUTATION 

Once the crossover process has finished the mutation procedure is applied. The 
purpose of this process is to introduce some variability into the population, introducing 
some new features or characteristics in individuals, which were in the population in the 
past, but were lost during the process of evolution. That is, the mutation, unlike the 
process of crossover, is a kind of blind search that seeks to ensure that in the solution 
space there is no point with a zero probability of being examined. 

Mutation affects each of the genes of each of the individuals in the population with a 
certain probability, the mutation probability, Pm, which is usually quite small (much 
smaller than the crossover probability). That is, each and every one of the genes has equal 
probability of being affected by the mutation. Mutating a gene consists of altering its 
value. 

The simple mutation consists of exploring each individual, and for each of its genes, 
generate a random number between 0 and 1, so that if the number is less than or equal to 
Pm, then the value of that gene is chosen randomly among the remaining symbols of the 
alphabet. As with the crossover operator, mutation may also incorporate problem-specific 
knowledge. 

9.1.6. APPLICATIONS: THE TRAVELLING SALESMAN PROBLEM 

Since the metaheuristic techniques in general and the genetic algorithms in particular 
are suitable to be used in combinatorial optimization problems, they have many 
applications in the field of decision making in administration and business management. 
Below there are some examples of genetic algorithms that have been successfully 
designed and applied to solve business and management problems such us: stock 
exchange index prediction, collection routes for freight vehicles, resource allocation in 
project scheduling, allocation of human resources for construction, shifts, inventory 
management, economic predictions, etc. 

The travelling salesman problem is one of the classic problems in Operational 
Research in which a salesman must visit a number of cities and he wants to find the 
optimal path that minimizes the total distance to travel. Take the following simple 
example. 

A travelling salesman of the ADESA company has to plan visits to be made to some 
of his customers over the following week. There are  ten customers to visit and they are 
located in Alicante, Valencia, Sevilla, Cádiz, La Coruña, Santander, Madrid, Barcelona, 
Ciudad Real and Zamora. Figure 9.7 shows the distance between each pair of cities on 
the usual route used by the traveling salesman (road, highway, freeway, etc.). 

We then seek a cyclic route for him to visit every city once and finish in the same city 
where he started. Thus, the same route would be valid for any of the starting cities. For 
example, if the optimal route was 

AL  VLC BCN CR SAN COR SEV CAD ZAM MAD 
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we could choose any of the cities as the starting city. If we start from Alicante, the first 
city to visit will be Valencia and then Barcelona, Ciudad Real, Santander, Córdoba, 
Sevilla, Cádiz, Zamora, Madrid and back to Alicante. If we start from Córdoba instead, 
we will go in the first place to Sevilla and then to Cádiz, Zamora, Madrid, Alicante, 
Valencia, Barcelona, Ciudad Real, Santander and back to Córdoba. Obviously, the total 
distance travelled in both routes is exactly the same. 

Figure 9.7. Distances between cities 

The above problem has many other applications such as the collection of money in 
city phone boxes, the establishment of a fibre optic line between a group of users or the 
delivery of pizzas of a particular dealer. 

There are several alternatives to solve the above problem. The first is to present a 
binary linear programming model. There are different possibilities for its formulation. In 
one of them, the resulting model would have a total of 100 binary variables and 101 
constraints. In general terms, with this formulation, the mathematical model would have 
a total of n2 variables and n2 +1 constraints, where n is the number of cities. In many 
cases, these models are not solvable in practice, making it necessary to employ heuristics 
or metaheuristics. Let us see how to design a genetic algorithm to solve the above 
mentioned problem. 
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Solutions encoding 

To design an appropriate encoding for the solutions to the problem, we have to think 
about how to express a solution to it. In this problem, a solution can be represented by the 
order in which the cities should be visited, for example: 

MAD VAL AL CAD SEV COR CR ZAM SAN BCN 

would be a way of expressing a solution, considering that from Barcelona we would 
finally return to Madrid. 

Thus, any permutation of the cities, represents a feasible solution to the problem. One 
way to represent the solutions would be to encode them using ordered lists in which each 
gene is one of the cities to visit. The above solution can be expressed as: 

MAD VLC AL CAD SEV COR CR ZAM SAN BCN

To simplify the notation, from now on we will represent each city by their order in the 
list of names in alphabetical order, so that the above solution would be represented as: 

6 9 1 3 8 5 4 10 7 2

With the above encoding, any list that consists of a permutation of cities represents a 
feasible solution to the problem. We want to obtain the best, ie the optimal solution among 
all the feasible solutions. There are n! different permutations for a problem with n cities. 
In this case we would have a total of 10!=3,628,800 possible orderings. 

Initial Population 

Since any permutation of the cities represents a solution of the problem, a simple and 
low computational effort method to create the initial population would consist of 
generating random solutions. An alternative could be to apply heuristic algorithms that 
gave us solutions to the problem and use these as initial population. Both methods could 
also be combined to generate the initial population. 

An important parameter to consider in the algorithm is the size of the population that 
we are going to manage. It is common to use a standard size of 50 to 100 individuals, 
although other sizes may be advisable. The size is often determined after some 
preliminary tests. 
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Evaluation 

It is necessary to define a function that assigns a fitness value for each solution, which 
indicates the value of the solution in relation to the objective. In our case, the objective is 
to minimize the total distance travelled along the route, so that the best solution would be 
the one whose total distance is minimal. 

6 9 1 3 8 5 4 10 7 2

Solution represents a route in which the total distance is 3743 kilometres. The total 
distance travelled could be the direct fitness value, so that the best individuals would be 
those who have a lower fitness value. However, many standard mechanisms (mainly 
selection ones) used in genetic algorithms are designed to maximize the fitness values. 
Therefore, we could transform the fitness values of the individuals so that the best 
individuals have the highest fitness values and not the lowest. That is, the optimal solution 
of this problem should have the highest possible fitness value. One way of doing it, 
amongs many others, would be to establish an upper bound on the total distance travelled 
and to subtract the value of this distance bound for each individual in the population. One 
way to establish an upper bound on the distance travelled would be to choose the greatest 
distance from each of the columns of the table and add them. Thus, this upper bound 
would be given by: 

OF_Upper_bound = 815+1284+1284+811+908+663 +1056 +1046 +808 +988=9663 

Now, the fitness value of each individual would be obtained by subtracting, from the 
previous bound, the distance of the route that it represents. Thus, we would get an 
adequacy value of 9663-3743=5920 for the solution shown above, which represented a 
route of 3743 kilometres. The solution 

2 4 6 8 10 1 3 5 7 9 

representing a route of 5511 kilometres, would have a fitness value of 4151 lower than 
the previous one. The optimal solution would have the highest fitness value and the worst 
solution would have the lowest fitness value among all possible. 

Selection 

Any selection mechanism outlined in the previous section could be used in this 
example. 
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Crossover 

For this problem and with the solutions encoded in this way, we could apply any type 
of previously defined crossover mechanism that works for permutations, for example 
PMX crossover or order crossover both presented in section 9.1.4 of this chapter. We 
could also define a specific type of crossover for this problem, taking into account their 
special conditions and incorporating them to generate the offspring in an efficient way. 

We should also set the crossover probability. Values around 80-90% are often used, 
but, as with the population size, it is usually set after performing some tests. 

Mutation 

The mutation involves making random changes to a solution mimicking the mutations 
that occur on the genetic material of living creatures in nature. Such mutations could make 
desirable or undesirable attributes appear in individuals. It moves through the solution 
and each gene is mutated with a certain probability of mutation, which is usually low, at 
around 1%, although it can vary depending on the problem. For this problem, mutating a 
single gene could consist of inserting it at any position of the chromosome, or exchanging 
it directly for the front or rear ones. 

A simple genetic algorithm such as the one described in the preceding paragraphs, is 
able to solve sizable instances of this problem in very reasonable computation times 
obtaining very good solutions which makes these techniques the best alternative to 
solving some real problems. 

To solve this problem with Solver, we have two options. The first is to build a linear 
programming model and use the method "Simplex LP" to solve it. It should be borne in 
mind that the resulting linear model can be large and the time required for solving it can 
be extremely long. Due to its size it may be unsolvable even on high-end workstations. 
Furthermore, we have to take into account the limitation in the number of variables and 
number of constraints of the Solver version employed. In particular, the default version 
in Excel solves linear models with up to 200 variables, with no limit on the number of 
constraints. We could not solve problems with 15 cities or more by formulating the binary 
programming model discussed above with Solver. 

The second option would consist of employing the "Evolutionary" method, that uses 
genetic algorithms and is especially designed for unsmoothed type problems. Let us see 
how to easily define the problem and then find out now to use the "Evolutionary" method 
supported by Excel  Solver to solve it. 

First we define the distance matrix, as shown in Figure 9.7. This matrix is symmetric 
and zeros always appear in its diagonal. Then we should prepare the cells in which the 
solution to the problem will be displayed once solved and how to calculate, based on the 
solution, the value of the objective function, ie, the total distance in kilometres. 
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We will use two columns, ORDER and DISTANCE. The first column is left blank, 
because cells B16: B25 are used to represent the solution once the problem has been 
solved. That is, the value in cell B17 indicates the number of the city to visit after having 
visited the one whose number appears in cell B16 and so on. The second column will 
serve to calculate the total distance travelled by the salesman if you follow the order given 
in the solution indicated by the column ORDER. To obtain this order, we will use the 
INDEX function. 

The syntax of this function is: 

= INDEX (array, row_num, column_num) 

and it returns the value of an item in a table or matrix selected by the row and column 
indices given. Thus, in cell C17 we want to calculate the distance from the city whose 
number appears in cell B16 to the city whose number appears in cell B17, for which we 
write =INDEX ($C$2:$L$11; B16; B17) in that cell and drag the formula to cells C18 to 
C25. 

In cell B16 we write =INDEX (C2:L11; B25; B16). If Column B has been left blank, 
# VALUE! will appear in these cells when writing the formulas, since we are using 
numerical values that do not exist in these formulas. This is not a mistake. If we fill in 
cells B16: B25 with a list of values between 1 and 10 (a feasible solution to the problem) 
we see that in column C the corresponding distance between each pair of cities on the 
route is displayed. 

Finally, in cell C26 we calculate the sum of the distances travelled by typing =SUM 
(C16: C25). The value displayed in the cell is the total distance travelled, which we want 
to minimize. 

We can now press the button to open the Solver dialog box and define the model to 
be solved, based on the sheet set, as shown in Figure 9.8. 

Set Objective: in this case, the total distance travelled is displayed in cell C26. 

To: Our goal is to minimize the total distance. 

By Changing Variable Cells: On the sheet we have reserved space for the variables in 
cells B16 to B25 

Subject to the Constraints: Clicking the Add button, Solver displays the dialog box to 
add constraints: 

Cell Reference: select the range of cells that represent the variables, ie the range B16: 
B25 
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In the centre of this dialog box, which is normally used to indicate the sign of inequality 
or the character of the variables, we select diff, which indicates that in these cells Solver 
must calculate a permutation of the integer values that are consecutive and start at 1, that 
is, a permutation of the integers between 1 and 10 in our case. 

Figure 9.8. Solver Parameters 

Select a solving method: we select "Evolutionary" to apply the mechanism based on 
genetic algorithms. Moreover, the way in which we have defined the problem makes it 
impossible to use the LP Simplex method. Then, before solving the problem, we can 
configure this method, for which we must press the Options button and go to the tab 
"Evolutionary", which displays the dialog box shown in Figure 9.9. 

Next we set the values shown in Figure 9.9 for the different parameters (as an exercise, 
the student could try to change the values of the different parameters and observe the 
effect they have on the solution and the time it takes to find it). 

Once we click Solve, Excel starts the search for the best solution. During the search 
process, in the bottom bar of the screen, the method displays information about the 
process, such as the total number of solutions evaluated and the objective value of the 
best solution found so far. We can interrupt the search process by pressing the Esc key at 
any time. In this case, Solver displays the best solution found so far. The best solution 
found by "Evolutionary" Solver for this example is shown in Figure 9.10, representing a 
total distance of 3142 kilometres. So, if the traveller started, for example, from Valencia 
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(City 9) the route to follow would consist of visiting Barcelona first, and then going to 
Santander, Zamora, Madrid, Ciudad Real, Córdoba, Sevilla, Cádiz, Alicante and 
returning to Valencia. The reverse route would be equivalent, with the same distance 
travelled. As the solution is given by a metaheuristic technique, we cannot generally know 
whether it is the optimal solution to the problem or not. In this case we can ensure that it 
is, because we have optimality solved the problem by other methods and the optimal 
solution is already known. 

If Solver finishes its execution without being interrupted, it permits the user to 
generate two different reports, called Answer and Population, which are presented in 
Figures 9.11 and 9.12. 

In the Answer report, the software shows the options used by the resolution method, 
the total time and the number of solutions evaluated. It also indicates the value of the 
target cell and the best value of the variables. 

Figure 9.9. Options of Evolutionary Solver 
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ORDEN DISTANCIA 
3 125 
1 688 
9 166 
2 349 
7 693 
10 344 
6 248 
4 190 
5 201 
8 138 

TOTAL= 3142 

Figure 9.10. Best solution  

The Population report shows data about the solutions which the method finds during 
the search process until it finds the best solution. In this case it reports the minimum and 
maximum values that are assigned to each of the variables, as well as their mean value 
and standard deviation. 
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Figure 9.11. Evolutionary Solver: Answer report 

Result: Solver cannot improve the current solution.  All Constraints are satisfied.
Solver Engine

Engine: Evolutionary
Solution Time: 8,705 Seconds.
Iterations: 0 Subproblems: 3569

Solver Options
Max Time Unlimited,  Iterations Unlimited, Precision 0,000001
 Convergence 0,0001, Population Size 100, Random Seed 0, Mutation Rate 0,5, Time w/o 
Max Subproblems 10000, Max Integer Sols Unlimited, Integer Tolerance 1%, Assume No

Objective Cell (Min)
Cell Name Original Value Final Value

$C$26 TOTAL= DISTANCE 6061 3142

Variable Cells
Cell Name Original Value Final Value Integer

$B$16 ORDER 1 6 AllDiff
$B$17 ORDER 2 4 AllDiff
$B$18 ORDER 3 5 AllDiff
$B$19 ORDER 4 8 AllDiff
$B$20 ORDER 5 3 AllDiff
$B$21 ORDER 6 1 AllDiff
$B$22 ORDER 7 9 AllDiff
$B$23 ORDER 8 2 AllDiff
$B$24 ORDER 9 7 AllDiff
$B$25 ORDER 10 10 AllDiff

Constraints
NONE

$B$16:$B$25=AllDiff
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Figure 9.12. Evolutionary Solver: Population report 

9.2. TABU SEARCH 

The roots of this technique date back to the 70s, but was first introduced by Fred 
Glover (1986) in its current form and later refined in "Glover and Laguna (1997)". 
Although there is no theoretical evidence of its convergence, many computational 
experiments have shown that this is a technique that can compete with the best existing 
metaheuristics, and due to its flexibility, it has been successfully applied to a wide variety 
of problems. 

Tabu search is a metaheuristic procedure that guides a local search procedure to 
explore the solution space beyond local optima. It uses procedures that are designed to 
push the limits of feasibility (to try to avoid being trapped in local optima), which were 
normally treated as insurmountable barriers. 

A good analogy to this technique could represent the procedure followed by a trained 
climber to reach the top of a mountain. The climber must choose an appropriate path to 
follow at all times. Each of these choices should be based on knowledge gained during 
the ascent. The climber must analyse the different alternatives in relation to the steps 
followed earlier in similar parts of the mountain at all times. Perhaps at some point it 
could be advisable to descend a certain amount if this setback is somehow compensated 
for later on. Also, if the climber does not make use of his memory and remember the 
points that he has gone through, he could be stuck in a cycle: from point "a" he goes to 
"b" from "b" to "c" from " c "to" a "... 

Variable Cells
Best Mean Standard Maximum Minimum

Cell Name Value Value Deviation Value Value
$B$16 ORDER 6 5,55 2,868762447 10 1
$B$17 ORDER 4 4,78 3,066864289 10 1
$B$18 ORDER 5 6,44 2,660295419 10 1
$B$19 ORDER 8 5,41 3,547925842 10 1
$B$20 ORDER 3 5,5 2,231546096 10 1
$B$21 ORDER 1 5,52 2,572111501 10 1
$B$22 ORDER 9 5,7 1,982244417 10 1
$B$23 ORDER 2 5,45 2,875795893 10 1
$B$24 ORDER 7 5,07 2,843582177 10 1
$B$25 ORDER 10 5,58 3,533905042 10 1
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It must be said that not only local information (such as the value of the objective 
function at the point where we are), but also information on the scanning process should 
be used to improve the efficiency of the exploration of the solution space. The systematic 
use of memory is an essential aspect of this technique. Although many methods of 
exploration "remember" the objective value of the best solution found so far, tabu search 
(TS) also holds in memory the path followed by the last visited solutions. 

Tabu search starts in the same way as conventional methods of local search do, 
proceeding iteratively and sequentially from one point to another until a termination 
criterion is satisfied. Each solution has an associated neighbour set of solutions V(s), and 
a solution s’  V(s) is reached from s by an operation m that we call movement. Thus, set 
V(s) is obtained by applying all possible moves to s. The m’s complementary movement 
would be that movement m' that would allow us to go from s’ to s. 

The general idea is to build the set V(s) for the current solution s and choose from this 
set the best individual as the new current solution in every iteration. V(s) can be large and 
therefore expensive to evaluate, so we usually reduce the set to a subset of it, V*(s). Since 
it is possible that the new solution is even worse than the previous one, there is a risk of 
visiting a solution more than once and, more generally cycles can take place. Memory is 
then used to try to avoid this, prohibiting a movement that would lead to recently visited 
solutions. Thus, we can consider that set V(s) depends not only on s, but also on the time 
t of the search process in which we are, so from now on we will refer to it as V(s,t). That 
is, some recently visited solutions that belong to V(s) are removed to form V(s,t). These 
solutions are considered tabu solutions. 

Using a list L of length l, whose elements are the latest solutions visited in each 
iteration, we could build V(s,t) by eliminating from V(s) the solutions found in L. This 
will avoid cycles of length l. As this list may not be manageable in practice, we can 
substitute it with a list L of the movements that are complementary to the recent ones 
performed. Therefore, and using these tabu movements, solutions that are accessed from 
s will not appear in V(s,t). 

The simplification from the list of solutions to the list of movements means a loss of 
information and therefore it has a drawback. Prohibited movements could make it 
impossible to visit solutions that have not been visited so far. For this reason, the process 
allows the application of a tabu movement to obtain a given solution if a certain aspiration 
level is reached. Aspiration levels define desirable conditions in the solutions, so that if a 
particular solution meets any of these levels, it can be transformed from tabu solution to 
allowed solution. Moreover, such aspiration levels may be variable over time. 

Another important aspect of this technique is the relationship between intensification 
and diversification. At certain times of the search process it may be advisable to focus the 
search on the current region of the solution space, because it contains acceptable 
solutions. This enhancement can be achieved by prioritizing the solutions that have 
features in common with the current solution and penalizing those that are farther away. 
At another moment of the search process, maybe we want to move away from the current 
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region and focus on another area, perhaps because the current region contains no more 
acceptable solutions or because the other region seems more promising. This 
diversification can be achieved by penalizing solutions which are similar to the current 
solution and giving priority to those that differ more from it. We can therefore replace the 
original problem objective function f, with a new objective function f  that incorporates 
these features. The weight assigned to intensification and diversification will be variable 
and will be modified depending on the needs that occur during the search process. 

The algorithmic scheme of this technique is presented in pseudocode in Figure 9.13. 

Tabu Search Procedure 

 Generate_initial_solution (s) 
 Best =s 
 t=0 
 while not (termination criterion) 

  Generate V*(s,t)  V(s,t) 
  s*=best of V*(s,t) 
  st=s* 
  if s* is better than Best 

Best=s* 
  t=t+1 

Figure 9.13. Tabu Search: General procedure 

The procedure Generate V*(s_act, t)  V (s_act, t) will take into account the list of 
tabu movements and aspiration levels described above. In addition to choosing the best 
element of a set, and establishing whether a solution is better than another, we also take 
into account function f , which incorporates intensification and diversification 
mechanisms. 

After applying this algorithm, the best solution found is offered as the solution to the 
problem. We can define, among others, the following stopping conditions: 

The set V (s_act, t) is empty.

A number of iterations have been completed.

In the last k iterations the best solution found has not changed.

An acceptable solution has been found.
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Thus, tabu search is defined as a sequential search metaheuristic algorithm, since only 
one solution is chosen in every iteration, and which incorporates a memory element for 
guiding the search process. 

9.3. SIMULATED ANNEALING 

Simulated annealing is considered as a metaheuristic algorithm that can be 
successfully applied to a wide variety of problems. It also has a stochastic component that 
provides the theoretical analysis of its convergence, which has made it become a very 
attractive method. 

The ideas that form the basis of this technique were published by Metropolis et al 
(1953) as part of an algorithm, which simulates the process that a solid material undergoes 
when introduced into a liquid at high temperatures until it melts and then it is allowed to 
cool slowly to solid state. This process is known in physics as "annealing". When the 
solid is heated to melt, and then cooled again to its transformation into a solid, the 
structural features depend on the cooling rate, as during the heating phase the particles 
are arranged at random, and therefore, depending on the time it takes to cool, they can be 
arranged in one way or another. The process of "annealing" can be simulated by 
considering the solid material as an assembly of particles. Metropolis successfully 
simulated this process on a computer using Monte Carlo techniques for this purpose. 

Thirty years later Kirkpatrick et al. (1983) proposed that this type of simulation could 
be used to solve optimization problems. In this technique, which is a sequential technique 
like tabu search, only one solution is obtained from a previous solution at each iteration 
and the process is repeated until a termination condition is satisfied. 

If we denote, as in tabu search, V(s) as the set of solutions that can be obtained from 
the solution s, the process is as follows: starting from an initial solution s, we choose, 
usually at random, any solution s’ V(s). This solution s’ is accepted as a new current 
solution if it is better than s. However, if s’ is worse than s, there is also a chance of it 
being accepted as the current solution. This probability depends on both the objective 
value given by the solution and the parameter t, known as temperature by analogy with 
the physical process described above. In the first moments of the process, the temperature 
is high, and so is the probability of accepting any solution. As the process progresses, the 
temperature decreases, and this probability also decreases. 

That is, in the initial moments of the process, when the temperature is high, the search 
is a kind of random search, since virtually any solution, good or bad, is accepted. In such 
moments the search is dominated by the exploration of the solution space. However, as 
the process progresses and the temperature drops, the exploration of the solution space is 
being replaced by exploitation, since now the search is guided almost exclusively by the 
best solutions. 
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The choice of the parameter t has a significant influence on the behaviour of the 
algorithm. Its initial value and the manner in which this value decreases along the process 
must be set, this is called cooling program. If cooling is too fast, the technique tends to 
behave as a simple local search mechanism and can be trapped in a local optimum or a 
low quality solution. Moreover, if the cooling is too slow, the running time of the 
algorithm can become prohibitive. 

Apart from the temperature parameter definition, the probability of acceptance of a 
new solution s’ V(s) must also be set, where s is the current solution. As discussed 
above, this probability depends on the objective value of the new solution (or its 
difference from the value of the current solution) and the current temperature, t. If we 
denote by  the difference between the objective values of the current solution s and the 
new solution s', defined as =f(s’)-f(s), and assuming that we minimize the objective 
function value, the probability of accepting s' might be defined by: 
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The above formula would be a possible definition of the probability of acceptance. 
There are many other alternatives and the researcher should be  the one responsible for 
choosing it properly, as was the case of the temperature parameter. Figure 9.14 shows the 
basic operation of the technique in pseudocode. 

The first step consists of generating the starting solution either randomly or by some 
heuristic procedure. The temperature parameter, t, must also be initialized with a certain 
value. Then, these steps are repeated until the termination criterion is satisfied. The set of 
solutions accessible from the current one is generated, and a solution is chosen from this 
set. In its simplest form, such a solution is chosen randomly, although another mechanism 
could be used. If this solution is better than the one we had, it is accepted as current 
solution, if not it is accepted with a certain probability of acceptance. Finally the 
temperature is decreased. 

Once the termination condition has been satisfied, the current solution is proposed by 
this technique as the solution to the problem. Some of the completion criterion that can 
be set are: 

The set V(s) is empty.

A number of iterations have been completed.

The temperature reaches the minimum value (usually 0)

An acceptable solution has been found.
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Finally, the most remarkable difference between simulated annealing and tabu search 
is the use of the memory by the latter. Recently, some variations of the technique, known 
as hybrid techniques, have appeared. They incorporate the use of the memory to improve 
the efficiency of the technique in an effective way, among other new features. 

Simulated Annealing Procedure 
 Generate_initial_solution(s) 
 t=init_temp 
 while not (termination_criterion) 

  Generate V(s) 
  s’ =choose solution from V(s) 
  if s’  is better than s 

  s=s’ 
  else 

  P=calculate P(s-->s’,t) 
  s=s’  with probability P 
  update t 

Figure 9.14. Simulated Annealing: general procedure 

9.4. SUMMARY 

This chapter has been dedicated to metaheuristic techniques in general and genetic 
algorithms in particular. Metaheuristic techniques are being successfully applied to a wide 
variety of combinatorial optimization problems, difficult problems, for which exact 
techniques do not allow us to find the solution in many cases due to the enormous 
computational effort required. For many of these problems, heuristic techniques that 
provide good results have been developed. However, metaheuristics improve these results 
since they make a deep search of the solution space with acceptable computational effort. 

Genetic algorithms are based on the mechanisms of natural evolution, guided by the 
principle of survival of the fittest. Starting with an initial population of solutions, 
mechanisms that mimic natural processes affecting the species are applied to it, thus 
evolving populations of a better quality. The main difference between genetic algorithms 
and other metaheuristics such as tabu search or simulated annealing, is that the former 
handles a set or population of solutions at each iteration and the latter ones a single 
solution per iteration. These three techniques are the most used metaheuristics, but there 
is not one that can always offer the best results for any problem. 
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9.6. CASE STUDIES 

CASE STUDY 1 

Solve the travelling salesman model from section 9.1.6 eliminating the cities of Zamora 
and Cádiz and including the city of Badajoz. 

1. What is the minimum total distance travelled?
2. How long did Solver take to solve the problem?
3. Does the solution provided by Solver change if we limit the maximum number of

subproblems solved to 200?
4. What is the route to follow if we want to start and finish in Madrid? And what if

the path should start and end in Zamora?
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CASE STUDY 2: SCHEDULING JOBS WITH DUE DATES WITH EXCEL 
EVOLUTIONARY SOLVER 

Among the combinatorial optimization problems in which metaheuristic techniques 
are the only alternatives in practice, we can mention the job scheduling or sequencing 
operations. In general, we have to decide the order in which a series of tasks or operations 
are performed in order to optimize a certain criterion. The following case presents a 
simple example to be solved with Evolutionary Solver. 

We have a set of 16 jobs that need to be performed sequentially and we know the 
processing time in days, and the delivery date in days from the date on which the 
execution of the first job starts for each of them. These delivery or due dates are 
approximate in the sense that they can be exceeded, but we must also try to ensure that 
the amount of time by which a job exceeds the delivery date is not too long. 

In short, the problem consists of determining the order in which jobs are to be executed 
so as to minimize the total number of days that a delay is incurred in terms of due dates. 

Figure 9.15 shows an Excel spreadsheet with the problem data. The jobs have been 
numbered from 1 to 16. The execution times and due dates, in days, are presented in 
columns B and C. 

In the previous sheet we have included three additional columns. The column Order 
is reserved to reflect the solution provided by Solver, ie, it must contain a permutation of 
jobs. In column Finish, the number of days until the end of the execution of a job, if 
executed in the order shown in column D, must be calculated. So, if, as is now shown in 
that column, the first scheduled job were job 16, with a duration of 5 days, and the second 
were job 1, with a duration of nine days, this work would finish after 14 days. In the last 
column we calculate the delay for each job, with respect to the due date, if executed in 
the specified order. If job 1 finishes in 14 days, the delay is 0. Finally, in cell F18 we 
calculate the sum of days overdue, which would be 303 in this case. 

Solve the above problem with Evolutionary Solver and answer the following 
questions: 

1. In what order should the jobs be sequenced?

2. When does job 12 finish? What day should the execution of job number 4 start?

3. How many days will job number 8 be delayed with respect to its due date?

4. What is the sum of the days delayed?

5. Which is the job with the longest delay?
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Figure 9.15. Defining the job scheduling problem with Excel 
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A1.1. FORMULATING AN OPTIMIZATION MODEL 

Spreadsheets are data analysis tools most commonly used in the business 
environment. Among its benefits for improving decisions it is the possibility of solving 
optimization models -linear, integer and nonlinear programming models- with Solver 
tool. To access Solver it is necessary to install it first. For Excel Spreadsheet 2010 and 
2013 you should go to Office button, choose Excel Options, and in the Add-Ins dialogue 
box, check whether Solver is installed or not. If it has not been installed, select Excel Add-
Ins in the Manage window and click the Go button. This brings up a window with the 
add-ins that incorporate by default Excel and the ones you want to install can be selected. 
To install Solver we mark it and click the OK button. Once installed, you can access the 
Solver on the Data tab. 

The Solver tool available in Excel 2010 and 1013 introduces three methods of solving 
optimization models, Simplex LP, GRG Nonlinear and Evolutionary. We will use the 
example of energy production and pollution control described in Chapter 2 to explain the 
input of a linear programming model in the spreadsheet and its resolution by Simplex LP 
method. Chapter 9 describes how to use the Evolutionary method to solve the Traveling 
Salesman Problem (TSP).  

We always start entering the problem data on a sheet. The data of the problem we 
want to solve have been introduced as we can see in Figure A1.1. The data cells are 
shaded in light yellow. To facilitate the building and interpretation of the model it is 
convenient to use range names. So in this case we used SteamProduction as a range 
names for cells E4:F4, RHS for I6:I9 and TechnicalCoefficients is the name of the cell 
range E6:F9. To enter a range name we just have to select the cells and go to 
Formulas/Define name. Range names can not contain spaces. So if you have more than 
one word, it is useful to begin each word with a capital letter and eliminate spaces to 
facilitate understanding. 

As we have already seen, in Chapters 1 and 2, to correctly formulate an optimization 
model in general and a linear programming model in particular, we need to know: 

1. The decisions to make.

2. The constraints we have.

3. How to measure the performance of our decisions.

In this case the decisions are tons of each type of coal that we will use to produce 
steam, which is transformed into energy, i.e. the model variables. Constraints that limit 
the values that can take these decision variables are the firm's technological capacity 
(capacity of the loading system and the pulverizer) and environmental regulatory 
restrictions limiting the release of pollutants (smoke and sulfur oxide). The more energy 
the company can produce with available resources and meeting environmental regulations 
the better our decisions. Therefore, the objective is to maximize the total steam 
production. 
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Table A.1.1. Data of the energy production and pollution control problem 
  (Chapter 2) 

A B C D E F G I 
1 

 ENERGY PRODUCTION AND POLLUTION CONTROL 
2 

3 
Coal A Coal B 

4 Steam production in thousands of 
lb/ton 24 20 

5 
RHS 

6 Emission of smoke 
kg/h 0,5 1 12 

7 
Loading installation 1 1 20 

8 
Pulverizer capacity 1,5 1 24 

9 
Emission of sulphur  1200 -800 0 

10 

The decision variables will appear in cells E12:F12 to which we assigned the range 
name UsedCoal. The cells where Solver must store the value of the variables of the solved 
model should be reserved for that purpose. They are the variable cells, which may initially 
be assigned a zero value and after solving the model we will have the optimal variable 
values. The constraint values are introduced in CapacityUtilization range in the cells 
G6:G9. These cells collect the first member of the constraints of the problem (Chapter 2, 
section 2.2.3). As shown in Figure A.1.2 it is calculated: 

G6= =SUMPRODUCT(E6:F6;UsedCoal) 

G7=SUMPRODUCT(E7:F7;UsedCoal) 

G8=SUMPRODUCT(E8:F8;UsedCoal) 

G9=SUMPRODUCT(E9:F9;UsedCoal) 

For this small example, we could have directly used the product and the sum. 
However, with the SUMPRODUCT function of the spreadsheet we illustrate how to 
introduce constraints of linear models. These cells represent the value of the left hand side 
(LHS) of the constraints in the optimal solution. Therefore, they are result cells which 
contain the values of the left hand of the constraints, i.e. they depend on the value that the 
decision variables have taken. 

In cells H6:H9 we input the signs of the constraints to facilitate understanding the data 
in the spreadsheet. To solve the model these conditions of lower, higher or equal operators 
must be specified in a dialogue box as we will see in section A1.2. 
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Finally we have to enable a cell to calculate the value of the objective function. This 
is what we have done in cell I12 using the SUMPRODUCT function. All this information 
can be seen in Table A1.2. 

I12=MAX (SUMPRODUCT (SteamProduction;UsedCoal)) 

Table A.1.2. Model for the energy production and pollution control problem (Chapter 2) 

A B C D E F G H I 
1 

 ENERGY PRODUCTION AND POLLUTION CONTROL 
2 

3 
Carbón A Carbón B 

4 
Steam production in thousands of  lb/ton 24 20 

5 Used 
capacity 
LHS RHS 

6 Emission of smoke 
kg/h 0,5 1 0 

 
12 

7 
Loading installation 1 1 0 

 
20 

8 
Pulverizer capacity 1,5 1 0 

 
24 

9 
Emission of sulphur 1200 -800 0 

 
0 

10 

11 
Coal A 
 ton/h 

Coal B 
 ton/h 

Total Steam 
Production 
thousand 
lb/h 

12 
0 0 0 

We must emphasize the usefulness of the SUMPRODUCT function of the 
spreadsheet to input linear functions representing the objective function and constraints 
in linear programming models. Also when using range names in formulas we simplify the 
data entry process and improve the understanding of the model. When the coefficients 
multiplied by the decision variables are all 1, we can obviously use the SUM function. 

It is known that the relative references in formulas refer to cells because of its 
position in relation to the cell containing the formula. Absolute references refer to cells 
by their fixed position in the spreadsheet. When we copy and paste the relative references 
they are automatically adjusted while absolute references are not. The ones which include 
range names are treated as absolute references. Another way to indicate an absolute 
reference is to use F4 or insert a $ sign before the letter and number of the cell. 
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Table A.1.2 shows the complete formulation of the model of the energy production. 
To sum up, we first introduce the problem data in the data cells, which correspond to the 
technical coefficients (aij), the objective function coefficients (Cj) and the right hand 
sides (RHS) of the constraints (bi) of the model. After that we define the variable cells 
in which we have the decision variable values. Finally, we introduce the linear functions 
that represent the constraints and the objective function. Then the model can be solved. 
Now, after entering the data of the problem, which may have been made in other ways, 
we must tell Solver how to build the linear programming model to solve on these data. 

A1.2. SOLVING A LINEAR PROGRAMMING MODEL 

As explained in the previous section the Solver tool allows us to solve optimization 
models, linear, integer and non-linear programming. Let us look at how to solve the 
energy production model with Simplex LP method, specific to solve linear programming 
or integer linear programming models. 

In order to solve the model with Solver we need to specify where it is in the 
spreadsheet. First, we double click on Solver and the dialogue box shown in Figure A.1.1 
appears. 

We can select the objective cell and the decision variables simply by selecting them 
in the spreadsheet. The constraints are introduced with the Add button, which allows us 
to select the cell containing the LSH of the constraint, the sign ( ,  or =) and the right 
hand side (RHS). 

In the drop down list that lets us select whether the constraint is ,  or =, int and bin 
also appear to indicate whether the variables are integer or binary in the integer 
programming models. There also appears dif, which may be imposed on a set of variables 
and should require that the set of values of the variables is composed of a permutation of 
integers, all different, which vary between 1 and the number of variables listed. Several 
examples that make use of this option can be found in Chapter 9. 



Annex 1.The Solver of the Excel spreadsheet 

 299 

 

Figure A.1.1. Solver dialogue box: specifying the model  

In the dropdown that appears in the option Select a Solving Method there are three 
possibilities: 

 Simplex LP: to solve models in which both the objective function and the 
constraints are linear. 

 GRG Nonlinear: to solve smooth models in which there are nonlinear 
functions. 

 Evolutionary: to solve  non-smooth models.  

We chose the Simplex LP method because it is a linear programming model. In this 
case Solver applies the Simplex algorithm to find the optimal solution. By checking the 
box Make Unconstrained Variables Non-Negative, we impose the non-negativity 
condition for the model variables. The model is ready to be solved. However, before 
solving it with the method chosen, it is convenient to fix some of the options available. 
To do this, click the Options button, available in the Solver dialogue box, shown in Figure 
A.1.2. As it can be seen in this figure, there are three different tabs to set options, 
depending on the method that we will use to solve the model. The first tab, All Methods, 
provides options that affect all three methods. 

 



Operations research in business administration and management 
 

 300 

 

Figure A.1.2. Solver options dialogue box  

The options that appear on that tab when we are using the Simplex LP method are 
useful, mainly when integer variables appear in the model (or binary, as the binary is a 
particular case of integer). In that case the resolution time of the problem can be quite 
high and we can reduce it by setting values for any of these parameters. In many cases, 
limiting the computation time can thereby mean forcing the method to finish before 
finding the optimal solution. Since, in this case, we have a simple linear programming 
model in which there are no integer variables, options can be left at the default values 
shown, so that the Solver will invest the time needed to solve it and the solution found 
will be optimal, if there is at least one. However, let us comment, the meaning of the 
parameters that can be set in this tab: 

 Constraint Precision 

A constraint is satisfied when it is true within a small tolerance, which can be specified 
in this option. 

 Use Authomatic Scaling 

Select this option to apply a scaling process to the model introduced when there are 
wide differences in magnitude between the inputs and outputs, for example, when 
maximizing the percentage of benefits (the target value will be between 0 and 1, or 0 and 
100) based on investments of millions of dollars. 
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 Show Iterations Results 

Select this option to make Solver display the results of each iteration. 

 Ignore Integer Constraints 

If you check this box Solver solves the problem by assuming that all variables are 
continuous. 

 Integer Optimality 

The Integer Optimality % default setting is a compromise value that often saves a 
great deal of time, and ensures that a solution found by solver is within 1% of the true 
optimal solution. We can change this percentage. If you want to find the optimal solution 
set the Integer Optimality % tolerance to zero. 

Max. Time (seconds) 

Limits the time the solution process takes, so if the set time is reached, the solution 
provided by Solver when solving a linear programming model may not be optimal. 

 Iterations 

Limits the number of iterations that can carry out the solution process, so if the limit 
is reached, the solution provided by Solver to solve a linear programming model may not 
be optimal. 

 Max. Subproblems 

Limits the number of subproblems that can be solved by the resolution process. When 
solving a linear integer programming model, Solver applies an advanced version of the 
branch and bound algorithm studied in Chapter 5, limiting with this parameter the number 
of subproblems solved. 

 Max. Feasible Solutions 

Setting this parameter, Solver limits the number of feasible solutions that can explore 
the process before completion. 

Once you set the options according to your needs, click the OK button and then the 
Solve button in the Solver dialogue box. Having found the optimal solution, the program 
displays the screen, shown in Figure A.1.3, with the three types of reports that can be 
generated. Select Answer and Sensitivity reports, Solver generates those reports in the 
spreadsheet and furthermore, it completes in the sheet of the model the formulas that 
depend on the value found for the variables, as can be seen in Table A.1.3, where we can 
check the optimum value of the decision variables (12 ton/h of coal A and 6 ton/h of coal 
B) and the value that maximizes the objective function (408 thousand pounds per hour). 
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In Tables A.1.4 and A.1.5 we can find the Answer and Sensitivity reports. Table A.1.3 
shows the model and the optimal solution. That is, the values of the decision variables. 

 

Figure A.1.3. Solver results dialogue box 

Table A.1.3. Optimal solution for the energy production and pollution control problem 
(Chapter 2) 

A B C D E F G 
 
H I 

1 
 ENERGY PRODUCTION AND POLLUTION CONTROL   

 
  

2                  
3 

        Coal A Coal B   
 

  
4 

Steam production in thousands of  lb/ton 24 20   
 

  
5 

   
      

Used 
capacity 
LHS  

 

RHS 
6 Emission of smoke 

kg/h   0,5 1 12 
 

12 
7 

Loading installation   1 1 18 
 

20 
8 

Pulverizer capacity   1,5 1 24 
 

24 
9 

Emission of sulphur   1200 -800 9600 
 

0 
10                  
11 

        

Coal A 
 ton/h 

Coal B 
 ton/h 

  

 Total 
Steam 
Production 
thousand 
lb/h 

12 
        12 6   

 
408 
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Table A.1.4. Solver Answer report for the energy production and pollution control problem 
(Chapter 2) 

Microsoft Excel 14.0 Answer Report     
Worksheet: [SteamProduction.xls]Data1     
Report Created:      
Result: Solver found a solution.  All Constraints and optimality conditions are satisfied.  
Solver Engine     
 Engine: Simplex LP     
 Solution Time: 0,016 Seconds.     
 Iterations: 3 Subproblems: 0     
Solver Options     
 Max Time Unlimited,  Iterations Unlimited, Precision 0,000001    
 Max Subproblems Unlimited, Max Integer Sols Unlimited, Integer Tolerance 1%, Assume NonNegative 
       
Objective Cell (Max)     

 Cell Name Original Value Final Value   

 $I$12 TotalSteamProduction 0 408   

       
Variable Cells     

 Cell Name Original Value Final Value Integer  

 $E$12 Coal A (ton/h) 0 12 Contin  

 $F$12 Coal B (ton/h) 0 6 Contin  

       
Constraints     

 Cell Name Cell Value Formula Status Slack 

 $G$6 Emission of smoke kg/h  12 $G$6<=$I$6 Binding 0 
 $G$7 Loading installation  18 $G$7<=$I$7 Not Binding 2 
 $G$8 Pulverizer capacity  24 $G$8<=$I$8 Binding 0 

 $G$9 Emission of sulphur oxide 9600 $G$9>=$I$9 Not Binding 9600 
 
 

Table A.1.4 presents the Answer report, which has three sections, which refer to the 
objective function, variables and constraints. The first section shows the value of the 
objective function, which in our problem is 408, which means that the maximum steam 
production is at 408,000 pounds of steam per hour. The second section displays the 
optimal solution, namely the optimum value for each of the variables, and the nature of 
these (continuous in this case). 

Finally, for each of the constraints of the model it first indicates the value taken by 
the left hand side of the constraint. The status indicates whether the constraint is strictly 
satisfied (binding) or not (non-binding). The last column indicates the slack of that 
constraint. 
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Sensitivity report (Table A.1.5) presents information relating to sensitivity analysis. 
For each variable the report indicates the value taken in the optimal solution, the reduced 
cost (the quantity that should improve the coefficient of the variable, if its value is zero, 
so it could take a nonzero value in the optimal solution) and the possible increase and 
decrease of the coefficient of the variable without changing the optimal solution. 
Regarding the constraints Shadow Price gives its opportunity cost and the interval in 
which its right hand side may differ from the initial value so that the opportunity cost 
remains constant. 

Table A.1.5. Solver Sensitivity report for the energy production and pollution control problem 
(Chapter 2)  

Microsoft Excel 14.0 Sensitivity Report      
Worksheet: [SteamProduction.xls]Data1      
      
Variable Cells      
     Final Reduced Objective Allowable Allowable 
 Cell Name Value Cost Coefficient Increase Decrease 
 $E$12 Coal A (ton/h) 12 0 24 6 14 
 $F$12 Coal B (ton/h) 6 0 20 28 4 
        
Constraints      
     Final Shadow Constraint Allowable Allowable 
 Cell Name Value Price R.H. Side Increase Decrease 
 $G$6 Emission of smoke kg/h  12 6 12 4 4 
 $G$7 Loading installation  18 0 20 1E+30 2 
 $G$8 Pulverizer capacity  24 14 24 4 6 
 $G$9 Emission of sulphur oxide 9600 0 0 9600 1E+30 

 

A1.3. SOLVING OTHER TYPES OF MODELS 

As already discussed above Solver also incorporates, apart from Simplex LP, that 
solves any linear programming model (continuous or integer), two other techniques, GRG 
Nonlinear and Evolutionary that allow us to solve nonlinear models, whether smooth or 
non-smooth. 

Nonlinear models are those in which the objective functions and/or any of the 
constraints contains references to formulas that do not follow the pattern variables 
multiplied by constants. If, for example, x and y are variables of the model, any 
appearance of references to the same formulas as below would make the model nonlinear: 

 x2 
 xy 
 sin x 
 xy 
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If the model only includes functions with ordinary mathematical operators as above, 
we can use the GRG Nonlinear method to solve it. That procedure uses the generalized 
reduced gradient method, based on finding points where the slope is zero, the condition 
met by the maxima and minima. In general, methods for solving nonlinear models start 
searching at a given starting point and they approach the solution in successive iterations, 
so that the solution found may depend on the chosen starting point, particularly in 
functions that may have different local maxima or minima. To avoid this inconvenience, 
GRG Nonlinear features a Multiple Start option, which allows us to specify the number 
of starting points. The process solves the problem starting from each of these points and 
eventually returns the best solution found. This option works best if variables are imposed 
reasonable upper and lower bounds. 

The GRG Nonlinear method is not suitable when in the model references including 
non-smooth functions appear, such as MAX, MIN, ABS, IF, SUMIF, SUMIFS, 
COUNTIF, COUNTIFS. In this case, we recommend using Evolutionary method, based 
on genetic algorithms, described in Chapter 9. The options of this method allows us to, 
among other things, specify the size of the population to be used, set the mutation rate or 
limit the time that can elapse without improving the value of the objective function to 
complete the search process. In Chapter 9 it is described how to use this method to solve 
two optimization problems; the traveling salesman problem and a problem of sequencing 
jobs. 

A1.4. BUILDING GOOD SPREADSHEET MODELS  

There are many ways of representing a model in a spreadsheet and one of the 
advantages is precisely the flexibility it offers. Although Excel has many features such as 
range names, shadows, borders... that create "good" models that are easy to understand, 
debug and modify, it is also easy to create bad models. Here are some tips that will 
facilitate the construction of good models. 

1. Enter, organize and clearly identify the data 

The full model is built on the data structure. We must carefully introduce and present 
all data before the rest of the model. The structure of the model should fit the data as 
much as possible. 

We should group the data conveniently and put labels that clearly identify them. In 
the data presented in a table we should put headers with an overview and each column 
and each row should have the name that identifies the input data. We must also identify 
data units. Enter data oriented in the same way is not only clearer, but also allows us to 
use the SUMPRODUCT function. This function assumes that the two ranges have exactly 
the same number of rows and columns. 
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2. Enter each data only in a single cell, do not repeat data in different cells 

If data is needed in more than one formula, always refer to the original data cell instead 
of repeating the data in different sites. This model could be modified more easily. If the 
data change, we would only need to modify them once. We would not need to search in 
the whole model how many times the data that have changed appear. 

3. Separate data from formulas. The formulas should refer to the data cells 

Avoid using data directly in formulas. You have to enter the numbers in the data cells 
and refer to them where necessary. Separating data from the formulas has a double 
advantage. Firstly, all data are visible in the spreadsheet instead of being hidden in the 
formulas. To view the data makes the model easier to interpret. Secondly, the model is 
easier to modify because changing data only requires modifying the corresponding data 
cell. We do not need to modify formulas. This is important in the sensitivity analysis. 

4. Keep the model simple and as easy to interpret as possible 

Avoid using complicated functions of Excel when there are available functions that 
are simpler and easier to interpret. Use whenever possible SUMPRODUCT or SUM. This 
makes the model easier to interpret and helps to ensure that the model is linear (linear 
models are much easier to solve than nonlinear). 

5. Use range names 

One way to refer to a group of cells or a cell in a formula in the spreadsheet is to 
identify it with a letter and number. A better alternative is to use descriptive range names. 
To do this, select the cells and put the range name. The range names are especially 
important when writing a formula for a cell result. Writing the formula in terms of range 
names makes it easier to interpret. Range names also make that the description in the 
Solver model is easier to understand. In general, it is advisable to name a range for each 
group of data cells, variable cells, objective cell and the two sides of the constraints, LHS 
and RHS. 

As no spaces are allowed in range names, we should start each word with a capital 
letter to enhance understanding. When we modify a model using range names we have to 
ensure that the range names still refer to the correct cells. When rows or columns are 
inserted, it must be done in the middle of the range, and not at the end. 

6. Using absolute and relative references to copy formulas easily 

When we need to use a formula several times, we can introduce it once and then use 
Excel commands to replicate. Using absolute and relative references in the formula not 
only helps building models, but also makes them easier to change. 

  



Annex 1.The Solver of the Excel spreadsheet 

 307 

7. Use borders, shading and colours for different types of data 

It is very important to distinguish the data cells, variable cells, the result cells and the 
objective cell in the spreadsheet. The use of shadows, borders and colours help us 
visualize the model quickly. 

8. View the entire model in the spreadsheet 

The Solver uses a combination of spreadsheet and the Solver dialogue box to specify 
the model to be solved. For example, we can specify the inequalities in the Solver dialogue 
box without putting them into the spreadsheet. However, it is recommended that each 
model element appears on the screen. This is useful for later updates. In particular, all the 
elements of a constraint must appear on the screen. A good test is not using the Solver 
dialogue box in order to understand any model element. We must be able to identify the 
variable cells, the objective cell and constraints only by looking at the spreadsheet. 
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A modelling language and an optimizer are necessary tools to solve real decision 
making problems in practice. Thus they are also essential in teaching and learning the 
techniques that allow us to formulate, model and solve real decision making problems. 
Among software packages available in the market we have chosen LINGO for several 
reasons. First, it is an optimization software that incorporates a modelling language which 
allows generating big optimization models easily. It also permits importing and exporting 
data from and to Excel and databases. Furthermore it is available for Linux platform and 
a wide variety of hardware systems (compatible PC, Macintosh and working stations). As 
well as this for different sizes of models, from student's versions that may solve problems 
with 200 variables and 100 constraints, to more powerful versions that allow solving 
models with an unlimited number of variables and constraints. Evaluation versions can 
be downloaded from the LINDO Systems website (www.lindo.com). 

A2.1. FEATURES OF LINGO 

LINGO is an optimizer that allows us: 

1. To solve direct models consisting of equations with independent variables and 
simultaneous equation systems. 

2. To solve optimization models in which an objective function has to be 
maximized or minimized and whose variables must fulfil a number of constraints. 
It solves linear, integer, nonlinear and stochastic programming models. A Global 
optimizer is also included to find a global optimum in nonlinear programming. In 
addition a new feature is Chance-Constrained Programming. In this case one or 
more sets of constraints are allowed to be violated with a specified probability. 
This tool is useful when certain resources or demands are random. 
 

3. To generate models through a modelling language, particularly useful for large 
models with many equations of similar structure. Furthermore, it allows the 
creation of the structure of the model and keeping it apart from the model's data. 
Data can be loaded from a file or spreadsheet. 

 
When using the modelling language, the system converts the expressions to the 

required form to be solved with the appropriate algorithm. For linear programming 
models the system uses the revised simplex method. It also has the interior point 
algorithm (Barrier Solver), useful for solving linear and quadratic models with a very big 
number of variables and constraints. If the system detects integer variables, it finds the 
solution with the branch and bound algorithm, adding cuts to limit the non-integer 
feasible region. For nonlinear models, it uses the generalized reduced gradient algorithm 
and the sequential linear programming algorithm. A Global optimizer is also included to 
find a global optimum in nonlinear programming. Finally, LINGO also incorporates a 
library with statistical, financial and mathematical formulae. 
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A2.2. ENTERING AND SOLVING MODELS 

The models can be input in the conventional way typing the functions or using the 
modelling language. In both cases the model is between two commands which are 
MODEL: and END. 

For example, the model 

Max 24 X1+ 20 X2 

0.5 X1 + X2  1 

X1 + X2  20 

1.5 X1 + X2  24 

1200 X1 - 800 X2  0 

X1  0    X2  0 

 is indicated in the following way: 

MODEL: 
!EXAMPLE 1: ENERGY PRODUCTION AND POLLUTION CONTROL; 
[OBJ] MAX = 24 * X1 + 20 * X2; 
[SMOKE] 0.5 * X1 + X2 <= 12; 
[LOAD] X1 + X2 <= 20; 
[PULVERIZER] 1.5 * X1 + X2 <= 24; 
[SULPHUR] 1200 * X1   800 * X2 >= 0; 
END 

 
Note that in the input data we have to type the symbol * for multiplication and 

semicolon (;) for the end of a sentence, which may be a comment, the objective function 
or constraints. The comments start with the exclamation mark (!) and the names of the 
objective function and the constraints in brackets. We can also write variables in the 
Right-Hand-Side (RHS) of constraints. 

In LINGO menu, the option Solve displays the optimal solution, and the option 
Range the sensitivity analysis, as shown below for the previous example. To obtain the 
sensitivity analysis, it is necessary to select Prices & Ranges and the model has to be 
solved previously. To do so go to LINGO menu / Options…/ General Solver/ Dual 
computations/ Prices & Ranges. 
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Global optimal solution found at step:           5 
Objective value:                   408.0000 

 
      Variable           Value        Reduced Cost 
            X1        12.00000           0.0000000 
            X2         6.00000           0.0000000 
 
           Row    Slack or Surplus      Dual Price 
           OBJ        408.0000            1.000000 
         SMOKE          0.0000            6.000000 
          LOAD          2.0000            0.000000 
    PULVERIZER          0.0000           14.000000 
       SULPHUR       9600.0000            0.000000 

 
Ranges in which the basis is unchanged: 
 
                      Objective Coefficient Ranges 
                  Current        Allowable        Allowable 
Variable      Coefficient         Increase         Decrease 
      X1         24.00000         6.000000         14.00000 
      X2         20.00000        28.000000          4.00000 
 
                       Right hand Side Ranges 
         Row      Current        Allowable        Allowable 
                      RHS         Increase         Decrease 
       SMOKE     12.00000         4.000000         4.000000 
        LOAD     20.00000         INFINITY         2.000000 
  PULVERIZER     24.00000         4.000000         6.000000 
     SULPHUR      0.00000      9600.000000         INFINITY 

 

After solving the model we first obtain general information about the number and 
type of variables, constraints and coefficients. Then we can see the optimal value of the 
objective function, in this example 408. For each variable it indicates the activity level 
in the optimal solution (X1 =12 and X2= 6) and the reduced cost. The reduced cost may 
be interpreted as the amount that the coefficient of the objective function of that variable 
must improve for it to take a value other than zero in the optimal solution. When the 
variable has a positive value due to a lower bound higher than zero, the reduced cost is 
the penalty of objective function for increasing an additional unit of the variable in the 
solution. 

The solution report provides the value of the slack variables (slack or surplus) of 
the constraints and their opportunity cost or dual price. Note that the first row is not a 
constraint, but the objective function of the model. The dual price is the amount that the 
objective function improves per increasing unit in the RHS of the constraint. 
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A2.3. MODELLING LANGUAGE 

3.1. DEFINITION OF SETS  

In large models it is frequent to have similar sets of variables and constraints. The 
use of "sets" allows us to define and work with classes of objects that have to be processed 
in a similar way. Sets are the basis of LINGO's modeling language through which we can 
write sets of similar constraints in a sentence and express long formulations in a more 
compact form. 

The sets represent groups of similar objects. One set can be, for example, a list of 
products or tasks. Each element of the set may have one or more characteristics, called 
attributes. The attributes may be formed by known or unknown data. Thus a set of 
products may have an attribute such as the price of each product. 

LINGO recognizes two types of sets: primitive and derived. For example, in a 
transport model, the set formed by three factories is a primitive set, like the set formed by 
four warehouses. A derived set may be created from one or more sets or is a subset of 
another set, or the combination of elements of other groups. Thus in the transport problem, 
a derived set is the set formed by the delivery of products from the three factories to the 
four warehouses. 

These sets are defined in an optional section of LINGO called SETS. In this section 
an unlimited number of groups or sets of objects can be defined and starts with SETS: 
and ends with ENDSETS. The definition of a primitive set has the following syntax: 

Name/ members/: attributes; 

The system lets you establish a number of members without explicitly naming them, 
by using the form /1...n/ instead of the members’ names. 

3.2. MODEL DATA 

It is usually necessary to input the values of some given attributes before solving the 
model. Similarly to the sets section, the data section starts with the word DATA: and ends 
with ENDDATA. 

In this section the data of the attributes defined in sets are written with the following 
syntax: 

attribute = list_of_values; 

Logically, the list of values should have the same number of elements as the set to 
which the attribute belongs, each value being separated by spaces or commas. The only 
exception is when the same value is to be given to each element of the vector. In this case, 
only a value is supplied and LINGO assigns it to each element. 
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Sometimes you will only want to supply values to some of the elements of the 
attribute array, leaving the other elements unknown so that LINGO has to find their 
optimal value. In such a case, leave a space in the position of this value, placing it between 
commas. If it is the first value, the sentence starts with a comma, and if it is the last value 
of the array, it ends with a comma. Observe that although LINGO accepts blank spaces 
or commas as delimiting marks for data sentences, the commas should be used to delimit 
unknown data. 

We may want to supply the values of some or all the elements of an attribute each 
time we solve the model. LINGO accepts the question mark instead of the value that we 
have to specify. Later, LINGO will ask for these parameters; only numerical values are 
valid as an answer. 

Furthermore, in nonlinear models an optional section that starts with INIT: and ends 
with ENDINIT can be used.  

INIT: 

attribute = list_of_values; 

ENDINIT 

This section serves to set the initial value of the variables. These data are used as an 
initial point for the algorithm. The list of values should contain as many data as defined 
in the corresponding attribute, except when we want it to have the same value for all the 
elements, indicated only once. In this section, as in the data section, some values can be 
left unspecified typing two commas or starting/ending and a comma if it is the first/last 
element of the array. Similarly, question marks (?) can be used to specify some given 
values when solving the model. 

3.3. FUNCTIONS 

Function @FOR allows us to perform operations with the elements of the sets, whose 
syntax is:  

@FOR (name_set (list_of_índices_of_ set) | conditional qualifier: expression); 

The conditional qualifier is optional and if used, it should be preceded by the 
character |. This function requires at least one expression, but an unlimited number of 
expressions separated by semicolons can be used (;). 

The list_of_índices_of_ set is optional. If not used, LINGO applies the expression to 
all members of the set. When specified, the indices of the list can be used in the 
conditional qualifier. 
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Let us see an example to calculate 1/X from a list of numbers. 
 
MODEL: 
SETS: 
NUM/ 1.. 10/ : VAL, REC; 
ENDSETS 
@FOR (NUM(I)| VAL(I) #NE# 0: REC(I) = 1/ VAL(I) ); 
@FOR (NUM(I)| VAL(I) #EQ# 0: REC(I) = 0); 
DATA: 
VAL = 2, 0, 8, 40, 1, 0, 0.33, 50, 3, 0.2; 
ENDDATA 
END 

 

Other functions that can be applied to sets in a similar way as @FOR, are @SUM, 
@MIN and @MAX. There are also auxiliary functions that allow us to work with sets, 
like @IN, @INDEX, @WRAP and @SIZE. 

The derived sets are sets obtained from other sets. Derived sets can be defined in 
three ways: 

1.  Each derived set is complete and defined using this format 

name_set (set_origin)[: attributes]; 

Example: delivery (factory, warehouse): cost, quantity; 

2. The derived set is little dense or disperse and the members are specified by 

name_set (sets_origin) / explicit_list / [: attributes]; 

For example, a company has two plants (A, B) and manufactures 3 products (X, Y 
and Z). In the first plant it produces X and Y and in the second Y and Z. 

PLPR (PLANTA, PROD)/A, X, A, Y B, Y B, Z/: COSTE_UNITARIO; 

3. The set is little dense and we specify the requirements that the members must fulfill 
as a logical expression using the following format. 

name_set (sets_origin) ½ condition [: attributes]; 

In this case, each potential member of the set must satisfy the condition specified to 
become a member of the derived set 
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Example: A transport problem 
 

 MODEL: 
 !Transport problem with 3 factories and 4 warehouses; 
SETS: 
FACTORY/ F1, F2, F3/: AVAILABILITY; 
WAREHOUSE / A1, A2, A3, A4/: DEMAND; 
DELIVERY(FACTORY,WAREHOUSE): COST, X; 

ENDSETS 
!The variables are the amounts sent from each factory I to each 

warehouse J (XIJ) 
Objective function: Minimize total cost; 
[OBJ] MIN = @SUM(ENVIO: COSTE * X); 
! Constraints 
DEMAND; 

@FOR( WAREHOUSE(J): [RDEMAND] 
@SUM( FACTORY (I): X (I,J)) >= DEMAND (J)); 

! OFFER; 
@FOR(FACTORY(I): [ROFFER] 

@SUM(WAREHOUSE (J): X (I,J)) <= AVAILABILITY(I)); 
! Parameters of the model; 

DATA: 
AVAILABILITY = 30, 25, 21; 
DEMAND = 15, 17, 22, 12; 

COST = 6, 2, 6, 7, 
4, 9, 5, 3, 

  8, 8, 1, 5; 
ENDDATA 

END 
 

As you can see in the previous example, in a model you can distinguish three sections:  

1) The definition of the variables and sets. 

2) The equations of the model. 

3) The data of the model. 

The algebraic format generated with LINGO and the solution are:  

MIN 6 X( F1, A1) + 2 X( F1, A2) + 6 X( F1, A3) + 7 X( F1, A4) + 4 X( F2, 
A1) + 9 X( F2, A2) + 5 X( F2, A3) + 3 X( F2, A4) + 8 X( F3, A1) +  
8 X( F3, A2) + X( F3, A3) + 5 X( F3, A4) 

 
 
SUBJECT TO 
RDEMAND(A1)]  X(F1,A1)+X(F2,A1)+X(F3,A1)>=15 
RDEMAND(A2)]  X(F1,A2)+X(F2,A2)+X(F3,A2)>=17 
RDEMAND(A3)]  X(F1,A3)+X(F2,A3)+X(F3,A3)>=22 
RDEMAND(A4)]  X(F1,A4)+X(F2,A4)+X(F3,A4)>=12 
ROFFERT(F1)]  X(F1,A1)+X(F1,A2)+X(F1,A3)+X(F1,A4)<=30 
ROFFERT(F2)]  X(F2,A1)+X(F2,A2)+X(F2,A3)+X(F2,A4)<=25 
ROFFERT(F3)]  X(F3,A1)+X(F3,A2)+X(F3,A3)+X(F3,A4)<=21 
END 
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Global optimal solution found at step:             7 
Objective value:                            161.0000 
 
Variable                      Value        Reduced Cost 
AVAILABILITY( F1)        30.00000           0.0000000 
AVAILABILITY( F2)        25.00000           0.0000000 
AVAILABILITY( F3)        21.00000           0.0000000 
DEMAND( A1)              15.00000           0.0000000 
DEMAND( A2)              17.00000           0.0000000 
DEMAND( A3)              22.00000           0.0000000 
DEMAND( A4)              12.00000           0.0000000 
COST( F1, A1)            6.000000           0.0000000 
COST( F1, A2)            2.000000           0.0000000 
COST( F1, A3)            6.000000           0.0000000 
COST( F1, A4)            7.000000           0.0000000 
COST( F2, A1)            4.000000           0.0000000 
COST( F2, A2)            9.000000           0.0000000 
COST( F2, A3)            5.000000           0.0000000 
COST( F2, A4)            3.000000           0.0000000 
COST( F3, A1)            8.000000           0.0000000 
COST( F3, A2)            8.000000           0.0000000 
COST( F3, A3)            1.000000           0.0000000 
COST( F3, A4)            5.000000           0.0000000 
X( F1, A1)               2.000000           0.0000000 
X( F1, A2)               17.00000           0.0000000 
X( F1, A3)               1.000000           0.0000000 
X( F1, A4)               0.0000000          2.0000000 
X( F2, A1)               13.00000           0.0000000 
X( F2, A2)               0.0000000          9.000000 
X( F2, A3)               0.0000000          1.000000 
X( F2, A4)               12.00000           0.0000000 
X( F3, A1)               0.0000000          7.000000 
X( F3, A2)               0.0000000         11.00000 
X( F3, A3)               21.00000           0.0000000 
X( F3, A4)               0.0000000          5.000000 
 
                 Row    Slack or Surplus      Dual Price 
                 OBJ        161.0000            1.000000 
        RDEMAND( A1)       0.0000000           -6.000000 
        RDEMAND( A2)       0.0000000           -2.000000 
        RDEMAND( A3)       0.0000000           -6.000000 
        RDEMAND( A4)       0.0000000           -5.000000 
         ROFFER( F1)       10.00000             0.000000 
         ROFFER( F2)       0.0000000            2.000000 
         ROFFER( F3)       0.0000000            5.000000 
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A2.4. VARIABLE DOMAIN FUNCTIONS: BOUND, FREE, INTEGER, 
BINARY AND SEMICONTINUOUS 

By default LINGO restricts variables to nonnegative values if Variables assumed 
non-negatives box is checked in LINGO Menu/ Options/ General Solver. That is, the 
variables can assume any real value from zero to positive infinity. 

@BND (lower_bound, variable_name, upper_bound) assigns lower and upper bounds 
to the variables. It is important to remember that a more efficient algorithm is used to 
solve the model if the bounds are indicated in this way. In addition, bounds do not count 
as constraints and larger models can be solved. 

@FREE(variable_name) allows the variable to take negative values, i.e., between 
negative infinity and positive infinity. 

@GIN (variable_name) makes the variable only take integer values. 

@BIN(variable_name) makes the variable be binary, i.e., take only 0/1 values. 

@SEMIC(lower_bound, variable_name, upper_bound) indicates a semicontinuous 
variable which is zero or lies within nonnegative range. LINGO generates the necessary 
binary variables and constraints that count for the size of models.  

LINGO supports SOS (Special Ordered Sets) and the following types of @SOS functions: 

@SOS1 At most, only one variable belonging to an SOS1 set will be greater than zero. 

@SOS2 At most, only two variables in a SOS2 set can be different from zero. If two 
variables are nonzero, then the variables will be adjacent to one another. 

@SOS3 In the SOS3 set one variable will be equal to 1 exactly and all remaining variables 
will be equal to zero. 

Any variable in SOS sets count as integer variables against the limit of integer 
variable imposed in some versions of LINGO. 

@CARD  

This function is related to cardinality sets of variables. It allows specifying a set of 
variables with at most N variables allowed to be nonzero. This function can improve the 
efficiency of branch & bound algorithm and reduce the number of variables and 
constraints of the model. 
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A2.5. MENUS: FILE, EDIT, LINGO, WINDOW AND HELP 

LINGO for Windows has five menus: File, Edit, LINGO, Windows and Help. We 
will describe some options briefly. 

FILE Menu: 

New (F2)  creates a model. 

Open (Ctrl+O) opens an existing text file. 

Save (Ctrl+S) saves the active window as text. It may save models, reports or commands. 

Save as (F5) saves the active window with the name given by the user in the dialog box. It can save 
models, reports or commands. 

Close (F6) closes the active window. If it is a model with no name or the file has been modified, the 
program asks if you want to save the changes. 

Print (F7) sends the information of the active window to a printer. 

Print Setup (F8) to select a printer. 

Print Preview (Shift+F8) to view the document. 

Log Output (F9) sends all the following screens to a text file. You can select, overwrite on the 
existing file or add the following output. 

Take Commands (F11) Use this option to read batch files with models and commands to execute 
automatic operations. 

Export File (IMPORT and EXPORT). It serves to import and export files in MPS format. This 
format developed by IBM is useful to transfer models to other software or platforms. 

Database User Imp. For entering user ID and password information to access data base with 
@ODBC function. 

License  shows information of software license. 

Exit (F10) to exit LINGO. 

EDIT Menu: 

Undo (Ctrl+Z) undoes the last action. 

Redo (Ctrl+Y) undoes the last command undo. 

Cut (Ctrl+X) cuts the selected text and sends it to the clipboard. 

Copy (Ctrl+C) copies the selected text to the clipboard. 

Paste (Ctrl+V) inserts the selected text at the place indicated by the cursor. 

Paste Special opens a dialog for pasting objects. 

Select All (Ctrl+A) selects all the contents of the edition window. 

Find… (Ctrl+F) searches for a string of text in the active window. 
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Find Next (Ctrl+N) finds the next instance of the text most recently searched. 

Replace (Ctrl+H) permits us to find and replace text; this option is useful, for example, to change 
the names of the variables. 

Go to line (Ctrl+T) to introduce the line number of the active window in which we want to place 
the cursor. 

Match parenthesis (Ctrl+P) to find the closing parenthesis to that selected. It is useful in embedded 
sentences. If no parenthesis has been selected, LINGO chooses the one closest to the position of the 
cursor. 

Paste function to insert functions at the current cursor position. Choose first the category and then 
the function from the menu. 

Select Font... (Ctrl+J) to select the letter font of the active window or printer. Sometimes it is easier 
to display the document with courier font. 

Insert New Object Lets you insert OLE objects in the active window, such as tables, equations, 
charts… 

Links This option allows modifying the properties of the links to the external objects of a LINGO 
document. 

Object Properties (ALT+Enter) If we select this option after selecting an external object, LINGO 
allows us to change the object's options. 

LINGO Menu: 

Solve (Ctrl+U) solves the model stored in the memory. If there is more than one, LINGO solves the 
model of the active window. 

Solution (Ctrl+W) generates a solution report (text or graphical format) for the active window. We 
may want to see only the variables with nonzero values and/or only the constraints that are binding. 

Range (Ctrl+R) generates the report of sensitivity analysis, giving the range of values in which it 
can: 
 

1. Change one coefficient of the objective function without modifying the optimal values of the 
decision variables. 
 
2. Change one coefficient of the RHS without modifying the optimal values of the opportunity 

costs and the reduced costs.  
 

To enable range computations, select the General Solver Tab under LINGO/Options and in the 
Dual Computations list box, choose the Prices & Ranges option. 

 
Options (Ctrl+I) allows us to change some parameters of the LINGO interface, as well as LINGO 
solve the model. 

Interface shows a dialog box to control the appearance of LINGO, the output and the default 
file format. 

General Solver allows us, among many other possibilities, to ckeck the box Variables assumed 
non-negatives to place a lower bound of zero on all variables. Dual computations box permits 
us to select Prices & Ranges to obtain sensitivity analysis report. In General Solver tab we can 
indicate time and number of iterations used to solve the model by Runtime Limits. 
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 Linear Solver provides options that allow configuring the way LINGO solves linear models. 
Among other possibilities we can choose primal simplex, dual simplex or interior point algorithm 
(Method/Primal simplex/Dual Simplex o Barrier). You can check a box to scale a model. The 
box Initial Linear Feasibility.Tol allows changing the tolerance value of the initial linear 
feasibility and by default it is 0.0000003. It is used at the initial stage of linear model solving in 
order to see whether a constraint is satisfied. Violations smaller than tolerance are ignored. 

The box Final Linear Feasibility.Tol controls the tolerance value of the final solution feasibility 
and by default it is 0.00000001. It is used at the final stages of model solving to see if the 
constraints are satisfied. Violations smaller than tolerance are ignored. 

Nonlinear Solver controls options that affect the algorithms to solve nonlinear models.  Inicial 
Nonl Feasibility Tol. box indicates the tolerance of the initial nonlinear feasibility. By default, it 
is 0.001. Similarly, the box Final Nonl Feasibility.Tol provides the tolerance of the final 
nonlinear feasibility. By default, it is 0.000001. The two previous tolerances are used in a similar 
way to those used in linear models. 

Integer Pre-Solver has options to reformulate the model in order to solve it as fast as possible 
with branch and bound algorithm. The integer pre-solver operates only with linear integer 
models. 

Integer Solver tab provides options that allow us to configure the way in which LINGO solves 
integer programming models.  

The Branching box has two options for controlling the branching strategy used in branch and 
bound algorithm. The Direction field controls how LINGO makes branching decisions (up, down 
or both).  

Priority field permits us to decide if binary variables have priority in branching process. 

Due to a round-off error on digital computers, it is not always possible to find integer values for 
integer variables. We can manage several options in Integrality box, such as Absolute Integrality 
and Relative Integrality. The former tolerance is used as a test for integrality in integer 
programming models. This tolerance measures the difference between the variable value and an 
integer value. The latter tolerance is a similar concept measured in relative terms. 

LP Solver box allows us to select the algorithm to use in branch and bound process (primal 
simplex, dual simplex and barrier solver).  

Optimality box is used to control three tolerances. The Absolute Optimality tolerance is a 
positive value r, indicating to the branch and bound solver that it should only search for integer 
solutions with objective values at least r units better than the best integer solutions found so far. 

The Relative Optimality tolerance is a similar concept to the previous tolerance. In this case r is 
ranging from 0 to 1, indicating that branch and bound should only search for integer solutions 
with the objectives values at least 100* r % better than the best integer solution found so far. 

The Time to Relative tolerance is the number of seconds before the branch and bound solver 
begins using the Relative Optimality tolerance. 

Finally the Tolerances box includes some tolerances for controlling the branching strategy: 
Hurdle, node selection and strong branch.  Hurdle allows entering a known value of objective 
function. Then LINGO will only search for integer solution in which the objective is better than 
the hurdle value. The Node Selection option permits controlling the order in which the algorithm 
selects branch nodes in the tree (Depth First, Worst Bound and Best Bound). 

 Global Solver is an additional option of LINGO. It converts non-convex models into smaller 
convex models. It uses techniques such as linear programming and constraint propagation within 
a branch and bound framework to find global solution to non-convex models. 
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Generate generates the current model report, useful for model verification. 

Picture represents the model in matrix form. This allows identifying repetitive structures in the 
model, and finding possible mistakes. 

Debug is a command useful in the search for problems in both infeasible and unbounded linear 
models. 

Model Statistics This option generates model statistics, such as number of variables, number of 
constraints, etc... 

Look (Ctrl+L) generates a report containing the model formulation. You can see all or selected 
rows. 

 
WINDOW Menu: 

Command Window (Ctrl+1) opens an access window to the command line. In general, Windows 
users do not require this window. 

Status Window (Ctrl+2) provides information about: 

Total number of variables in the model, grouped as linear and nonlinear. 

Status of the algorithm with the current status of the solution, the number of iterations performed, 
current sum of non-feasibilities, current value of the objective function, the best integer solution and 
the bound of the integer solution. 

The number of constraints of the model, divided into linear and nonlinear. 

The number of coefficients different from zero, divided into linear and nonlinear. 

Current memory used to store data. 

Time run to obtain the solution. 

Furthermore, this window has an option to stop the solving process. In this case, it provides the best 
solution found up to that moment including the message that it may not be optimal or feasible. There 
is an option to close the window. 

Finally, there is an option to indicate how often (in seconds) we want the window to be updated 
(update interval). In integer programming the window updates whenever a better integer solution 
is found, regardless of the value introduced. On the other hand, updating too often may increase 
solution times.  

Send to back (Ctrl+B) 

To send the active window to the back. For example, to move from the model window to the solution 
window. 

Finally LINGO also has other common options in Windows, applications, such as Close All, Tile, 
Cascade and Arrange Icons.  

Help menu allows us to access LINGO help. 
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A2.6. LINGO FUNCTIONS 

LINGO has several types of functions as follows: 

Standard operators, which are the arithmetic operators, the logical operators and the 
equality and inequality relationships. 

Arithmetic operators: Power^, multiplication*, division /, addition+ and subtraction-. 

Logical operators: #NOT#, #EQ#, #NE#, #GT#, #GE#, #LT#, #LE#, #AND# and #OR#. 

Equality and inequality relations: =,  and . It also accepts < and > for less or equal and 
higher or equal, respectively. These relationships should not be confused with the logical 
operators #EQ#, #LE# and #GE#. 

Variable domain functions: @BIN, @BND, @FREE, @GIN, @SEMIC, @SOS1, 
@SOS2, @SOS3, @CARD.  

File Import: @IMPORT and @FILE. The latter is used when the data are stored in a file 
different from the model. 

Financial functions: @FPA (I, N). @FPL (I,N). 

Mathematical functions: @ABS, @COS, @EXP… 

Set-Looping functions: @FOR, @MAX, @MIN, @SUM. 

Probability functions: @PBN, @PCX… 
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A3.1. MODELLING: DESIGN OF DECISION HIERARCHY 
 

Expert Choice Comparion Suite is a web application designed for multiple criteria 
decision making both for a decision maker and for a working group. It uses the Analytic 
Hierarchy Process (AHP) and other methods to evaluate alternatives of a decision 
problem from the considered objectives (Rating Scale, Utility Curves or Step Function). 
Comparion facilitates tracking the preferences of all participants, their data and 
comments. 
 

The participants or group members can be: Project owner, the only one that can create 
a project in the web application (it is enough to indicate a name), Project manager, who 
can create and modify the structure and options of the project or decision problem and 
the Project evaluator that may only issue the requested value judgments. The project 
director or the manager can collect qualitative and quantitative information from all 
evaluators. 

 
Create a project 
 

Only the Project owner will be able to create a project. To log in into Comparion 
CoreTM as project owner or project manager, use the e-mail address and the password 
and instructions received from Expert Choice. To introduce the data for a new problem, 
click on the New Project button on the main menu. Enter the name and the description of 
the project and click OK.  
 
Decision hierarchy 
 

Structuring the decision problem includes defining criteria and objectives, 
identifying alternatives, mapping alternatives to objectives and defining measurement 
methods.  
 

Click on Structure in the main menu and Objectives on the secondary menu on the 
left of the screen. Select the goal of the project (decision problem). To enter the goal, 
right click on Goal and enter the goal description. Alternatively, you can click the left 
mouse button and enter the goal name. Additionally, you can introduce information about 
the project in the right-handwindow (Edit Information Document). 

 
To add objectives, right click on goal and select “Add (level below)” in “Objectives” 

which is in the hand corner of the window. A window will pop up. Enter your objectives 
in the pop up window. Click OK to add the objectives. Add the description or other 
necesary information. You can also create sub-objectives by selecting the desired 
objective and clicking on Add (level below). 
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Figure A.3.1  Structure of the multiple criteria decision making problem 

 
To add alternatives, right click on the word Alternatives on the main menu Structure 

and select Add to enter the alternatives one by one or select Paste from clipboard. Use 
this command to copy alternatives from another source (Figure A.3.1).  

 
Alternative to objective mapping is useful if you have a structure where certain 

alternatives cannot be measured against some objectives. Full mapping is the default 
mapping, that is, all objectives are related to all alternatives. In other words, all of the 
alternatives contribute to reaching all of the objectives. To define the relation, click on 
Contributions on the left side of the window and uncheck (click the check mark) the box 
next to the alternatives that you do not want to evaluate against the highlighted objective. 
 
A3.2. MULTIPLE CRITERIA METHODS 
 

After introducing the objectives and the alternatives we have to define the evaluation 
multiple criteria methods. This can be done from the main menu, under Measure. The 
measurement method determines how each of the evaluation steps are presented to the 
evaluator or evaluators in the case of collaborative decision making. 

 
The weight of the objectives can be obtained by pairwise comparison or direct 

assignment. Methods for evaluating the alternatives against the objectives of the lowest 
level of the hierarchy are as follows:  
 

1. Rating Scale  

2. Pairwise Comparison  

3. Utility Curves (Simple o Advanced) 

4. Step Function  

5. Direct Input  
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Rating Scale presents a predefined qualitative scale from which evaluators select an 
option. By default, alternatives are evaluated using a rating scale measurement type. One 
example could be a scale which we consider excellent, very good, good and poor. Another 
example of a scale would be to consider the educational level of the staff: Doctorate, 
Master, and high school graduate. Keep in mind that once you have conducted evaluations 
of the alternatives in relation to a specific objective, changing the measurement types for 
that objective clears all of the judgments which have been made for those alternatives. 

 
Pairwise Comparison provides evaluators with two objectives or alternatives that are 

compared to each other to determine their relative preference or importance with respect 
to the parent objective (Figure A.3.2). To select pairwise comparison for an objective, 
simply click on Measurement Methods and from the drop down menu, select For 
Objectives. You will be able to select the comparison method for each objective. The 
same procedure can be used in the case of the alternatives (For Altenatives). 
 

 
 

Figure A.3.2  Objectives Pairwise comparison 

 
Utility Curve presents evaluators with a predefined curve of values to which they 

apply their data. You can use Decreasing/Increasing button to switch between decreasing 
and increasing utility curves.You can also change the values of the X-axis. 
Once you have completed all of the comparisons, for example how to prioritize the 
Erasmus destination, Comparion gives you the option to review the judgements and 
shows the priorities both for the objectives and the alternatives, as we can see in figure 
A.3.3.  
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  Figure A.3.3  Priorities for the objectives and Erasmus destinations for student 2 

 
 
A3.3 COLLABORATIVE DECISION MAKING 
 
Director, manager and evaluator 
 

Once you have completed the decision hierarchy and have defined the evaluation 
method, the next step is to add and manage the participants. To define the evaluators go 
to Structure in the main menu, click on Participants in the secondary menu on the left 
hand side of the window and enter the e-mail address and name of the evaluator. Select 
the option Generate random password and then Send a registration notification to user to 
send the invitation to participate in the project.  

 
Once you have done that, you can decide if this participant can manage the project 

(Project Manager) or only provide judgements. As Project Manager the person will be 
able to change criteria, alternatives, evaluation methods and invite other evaluators. 

 
You can set the role of each evaluator. Setting a role for an evaluator means selecting 

specific objectives and alternatives for which only he/she can provide judgements. To set 
the evaluator role, first choose an evaluator from the dropdown menu. Click on the check 
box Participant Role and in For Objectives to select those objectives that should be 
evaluated by the evaluator. You can also select the alternatives to evaluate in the tab For 
Alternatives.  

 
The director and the project manager can invite evaluators by clicking on the tab 

Anytime Evaluation / Invite Participant and provide their own assessment by clicking on 
the tab Collect my input. 
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Collect assessments 
 

There are several ways to send invitations to participants. The easiest way to send an 
e-mail to all evaluators is by using the Measure/Anytime evaluation/Invite 
Participants/Send Invite menu. If you need to edit the default text you can do so by 
clicking the Edit Invite button and writing in the body of the message that appears on the 
right side of the window. Use the Send Invite button to send invitations to all of the 
selected evaluators. 

 
As a project owner (director or project manager) you can input your judgements by 

clicking on Collect my input. Press Next to proceed. You will be presented a series of 
prompts to collect your judgements. The evaluators simply need to log in to begin the 
evaluation (evaluators may need to select the project if they have been added as an 
evaluator to several projects). 
 
 
A3.4 RESULTS ANALYSIS 
 
View Results  
 

To track the evaluation progress of your evaluators go to the main menu Synthesize, 
secondary menu Overall Results. Overall Results shows you the priorities of the 
objectives and the alternatives. The priorities of objectives shown here are calculated 
using the judgements entered by a single evaluator (clicking on Select users). We can 
make groups or choose all of the evaluators, All participants (Figure A.3.4).  
 
Sensitivity analysis 
 

The sensitivity analysis is to analyze how the priorities of the alternatives vary when 
modifying the weights of the objectives. There are several types of graphs that help us to 
perform this analysis. 
 

 Dynamic Analysis (Dynamic Sensitivity): The priorities of the objectives and 
alternatives are represented by a bar graph. Lengthening or shortening the bars of 
the objectives alters the alternatives bars (Figure A.3.5.) 
 

 Performance SensitivityAnalisys: This analysis is a 3-axis graph. On the X-axis 
are the objective names. On the Y-axis is a 0-100% scale to indicate the priorities 
of the objectives. The bars for each objective are partially filled with light blue to 
indicate the priority of each objective. The priority for the respective objective is 
also printed below each bar. On the Z-axis is a scale that indicates the priorities of 
alternatives. You can drag the bars to change the priorities of the objectives and 
see how the priorities of the alternatives change. 
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Figure A.3.4 Individual and aggregated results of students 
 
 

 
Figure A.3.5  Dynamic sensitivity analysis 

 
 Gradient sensitivity Analysis: You can change the priority of a specific objective 

and see how the priorities of the alternatives change. Select the objective in the 
drop down menu. The points of intersection of other lines with the blue line give 
the priority of alternatives for the specific priority of the selected objective. You 
can drag the blue line to perform the sensitivity analysis. The red line represents 
the base priority of the objective selected in the drop down menu (Figure A.3.6.) 
 

 Graph 2D: represents the alternatives in a two-dimensional graph in which the 
objectives can be chosen, weights of which are shown in the x and y axes. 
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Figure A.3.6  Gradient Sensitivity Analysis 

 
Generate Reports  
 

Comparion Core provides an exhaustive report generating system to reports for every 
judgement entered by each participant (project owner, project manager and evaluator). 
Select Reports in the main menu to see the links Ad-Hoc Reports and Predefined Reports.  
Predefined Reports include the following reports: Objectives and Alternatives 
Contributions of Alternatives to Objectives, Overview of inputs, Priority of Objectives, 
Priority of Alternatives, Objective/Alternative Priorities, and Overall Results. You can 
print them and save them in several formats. 

 
The reports under Ad-Hoc Reports are customizable. For example, if you click on 

Objectives Priorities, you can click User to select/de-select users whose priorities you 
want to see. Similarly, you can choose any objective or alternative whose report you want 
to view. Click on Judgement Overview to see the judgements entered by all participants. 
You can customize this report by selecting a particular set of participants, objectives and 
alternatives to include in reports.  
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Figure A.3.7 Consensus Analysis  
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