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Abstract

This paper discusses the application of the Virtual Reference Tuning (VRT) techniques to tune neural controllers from experimental
input-ouput data, by particularising nonlinear VRT and suitably computing gradients backpropagating in time. The flexibility of
gradient computation with neural networks also allows alternative block diagrams with extra inputs to be considered. The neural
approach to VRT in a closed loop setup is compared to the linear VRFT one in a simulated crane example.
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1. Introduction

Current industrial development imposes an increasing de-
mand of advanced control techniques which guarantee pro-
cesses optimal working. Most of the available controlling al-
gorithms are based on the existence of a model of the plant to
be controlled. In these cases, the accuracy of this model is a
deciding factor in the final performance. Many industrial pro-
cesses are nonlinear and data are corrupted by significant noise;
these issues usually hinder the modelling process both in data-
based identification and in first-principle modelling.

The delivery of a reliable mathematical representation of the
plant behaviour, which accurately models the important dynam-
ics around the operating range, is a difficult task. In some cases,
the system can be represented by a linear model, as complex
as the controller design methodology needs. The term Identi-
fication for Control (Gevers, 1993; Van den Hof and Schrama,
1995) arose to deal with several issues concerning identification
as a tool for control design: which is the frequency range of in-
terest, what is the optimal complexity of the model, which is
the optimal experiment (open/closed loop, on-line/off-line, se-
lection of plant input), etc. This is also a field of active research
at present (see, for example (Gevers, 2005; Hjalmarsson, 2005;
Bombois et al., 2006; Hildebrand and Solari, 2007)). However,
most of the above contributions are focused on linear systems,
so they may fail when the issue is to obtain a model for a non-
linear plant.

Apart from the above difficulties in plain identification, us-
ing arbitrary nonlinear models to compute controllers might
also encounter difficulties unless they are expressed in partic-
ular canonical forms.
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Neural networks (Narendra and Parthasarathy, 1990; Hagan
et al., 2002; Hunt et al., 1992) are widely used in industrial
applications both for identification (Gregorcic and Lightbody,
2008) and control purposes (Kumar et al., 2009; Uraikul et al.,
2007; Yue et al., 2007; Li and Deng, 2006; Haber and Alique,
2004). Neural networks have the ability to approximate com-
plex non-linear relationships without prior knowledge of the
model structure (black-box models), what makes them an at-
tractive alternative to the classical modeling and control tech-
niques.

Given the above-mentioned difficulties in obtaining a suit-
able process model, plus the difficulties of finding a nonlinear
controller for the found model, a tempting alternative is to use
the available experimental data to directly tune some controller
parameters. This gives rise to the Direct Data-Based Controller
Design approaches. Some of the most popular ones are the It-
erative Feedback Tuning (IFT) for linear systems (Hjalmars-
son et al., 1998) or nonlinear ones (Sjöberg et al., 2003), the
Correlation-based tuning (Miskovic et al., 2003; Karimi et al.,
2007) and the Virtual Reference Feedback Tuning (VRFT).

Virtual Reference Feedback Tuning (VRFT) is a model-free
one-shot direct controller tuning methodology, introduced by
Campi et al. (2002) for the linear case and extended to nonlin-
ear systems in (Campi and Savaresi, 2006). It is ‘model free’
because it does not need any mathematical description of the
plant to be controlled (under some assumptions and approxima-
tions). It is ‘one-shot’ because it can be applied using a single
set of data generated by the plant (a second one is needed if the
data are collected in closed loop and corrupted by significant
noise, see (Campi et al., 2002)), with no need for specific ex-
periments or iterations (which makes VRFT different and easier
to apply than IFT). Enhancements and remarks to the basic set-
ting were proposed in (Sala and Esparza, 2005a; Sala, 2007). If
several experiments are possible, performance-improving itera-
tions can be set up (Campi and Savaresi, 2006; Sala, 2007).
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The model-free nature of VRFT makes it appealing for prac-
tical cases, even if it is, from a theoretical point of view, approx-
imate: a plant model is needed to propagate gradients in order
to achieve unbiased convergence (Campi and Savaresi, 2006) if
the controller parameterisation is not powerful enough. In fact,
correct application of the methodology would require simulta-
neous plant and controller identification (Sala, 2007). However,
as models are only an instrument to compute gradients, if the
nonlinear controller parameterisation is flexible enough, large
modelling errors will still lead to almost-optimal controller pa-
rameters.

The objective of this contribution is to adapt the recent VRFT
results to controllers incorporating neural networks. Prior ex-
periments with nonlinear VRFT and neural networks are re-
ported in (Previdi et al., 2004). However, the correct compu-
tation of the gradients requires backpropagation through time
(Werbos, 1990), which was not carried out in the cited refer-
ence, which also used a very simple linear-in-parameter neural
network with least-squares fit.

This paper considers a generic Virtual Reference Tuning
(VRT) methodology, which includes open loop (Virtual Refer-
ence Feedforward Tuning or VRFFT) and closed loop (Virtual
Reference Feedback Tuning or VRFT) setups. It discusses the
computation of some required gradients via backpropagation
throught time and, additionally, shows the achieved improve-
ments over the standard 1-degree of freedom control loop when
auxiliary sensors are used. The methodology is tested by sim-
ulation on a crane model. An approximate linear model of the
plant will be used to improve gradient computations, identified
from the same available input-output data which will later be
used to identify the controller.

The structure of the paper is as follows: Section 2 presents
a brief exposition of control structures using neural networks,
with the objective of comparing them with VRT approach.
Then, VRT principles, both in the open and closed loop se-
tups are exposed in section 3. Sections 4 and 5 are the main
contributions, as they present a nonlinear VRT approach using
neural networks, developing a simulated application example
using two particular neural network controller structures, one
of them with an additional sensor. The contribution ends with
the conclusions drawn from this work.

2. Preliminaries: Neural Networks for control

The main property of neural networks is their ability to
approximate complex nonlinear relationships without prior
knowledge of the model structure. Fig. 1 shows the use of
neural networks as function approximators. The objective is to
adjust the network’s parameters in such a way that, using the
same input, its output (predicted output) is as close as possible
to the output of the unknown function to be modelled. Neu-
ral networks have been used not only for identifying nonlinear
plants but also for controlling them.

There are two basic network architectures, namely the feed-
forward networks (FFNN), also called multilayer networks, and
the recurrent ones (RNN) (Narendra and Parthasarathy, 1990;
Liu, 2001; Hagan et al., 2002). In the former the signals are

NN
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function
Input Prediction error
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-

Adaptation

Output

Predicted
output

Figure 1: Neural network as a function approximator

transmitted in one direction throughout all the layers, from the
network input towards its output. The latter have some feed-
back connections between its layers. FFNN represent static
nonlinear maps between signals. They are easy to train, as stan-
dard backpropagation algorithms can be used (Werbos, 1990).
FFNN have been successful in many applications as, for exam-
ple, pattern recognition (Bishop, 1995).

RNN (Hopfield, 1982) are inherently dynamic networks and
therefore they can be thought to approximate in a more nat-
ural way the relationship among signals in dynamic feedback
systems. However, their main drawback is the need of dy-
namic backpropagation adaptation algorithms (Narendra and
Parthasarathy, 1990; Hagan et al., 1999; Wan and Beaufays,
1996), which are more complex than simple backpropagation
ones and have a high computational cost. Note, however, that in
many cases, such as the VRT one in this paper, dynamic back-
propagation may be needed even with FFNN when they are part
of a larger dynamic system.

In the literature (see for example (Hagan et al., 2002; Naren-
dra and Parthasarathy, 1990; Kasparian and Batur, 1998)), sev-
eral are the structures used to control a nonlinear system by
means of neural networks. The neural controller can either act
as a feedforward controller or as a feedback one. Some of the
most popular proposals on both situations will be briefly re-
viewed next.

2.1. Feedforward structures: Neural Inverse Control

The main idea of Inverse Control is to determine the inverse
of the plant and then use it as a controller. Two are the ap-
proaches that can be followed to account for this: Direct Inverse
Control and Feedforward Direct Control (Narendra, 1996).

Figure 2 shows the structure of the so called Direct Inverse
Control using neural networks. The neural network NNC is
trained to model the inverse plant dynamics, as seen in Fig. 3,
using the error signal eIM , which stands for the ‘inverse model
error’. Once this is done, NNC is placed in series with the plant,
being its input the desired behavior yd (see Fig. 2).

NNC G
u yyd

M
r

Figure 2: Direct Inverse Control using neural networks

The Feedforward Inverse Control scheme is depicted in Fig.
4. In this case, two neural networks are used. NN1 is first
trained to mimic the plant behaviour, using the prediction er-
ror eM for this. Then the neural controller NN2 is trained so
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Figure 3: Training the neural network NNC

that (NN2)(NN1) approximates the identity. Note that the error
signal eC can be used to adapt online the controller NN2.

NN2 G
u yyd

M
r

eM-

+

NN1

eC+

-

Figure 4: Feedforward Inverse Control using neural networks

The feedforward scheme has several disadvantages. Of
course, the first one is that it can not be used with open-loop
unstable plants. Furthermore, if the nonadaptive scheme is the
one to be used, as the control is carried out in open loop, distur-
bances and modelling errors will degrade the system’s perfor-
mance.

2.2. Feedback Neural Model Reference Control

Neural Model Reference Control structure is depicted in Fig.
5. Its adaptive version (i.e., updating the controller at every
sample) is a particular case of Model Reference Adaptive Con-
trol (MRAC). In Fig. 5, the signal eC is used either to train or
adapt online the weights of the neural controller NNC . From
a theoretical point of view, two are the approaches used to de-
sign a MRAC control for an unknown plant: Direct and Indirect
Control.

+
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yd

+
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Figure 5: Model Reference Control using neural networks

Direct Control. This procedure aims at designing a controller
without having a plant model. As the knowledge of the plant (or
at least of an approximation of its mathematical description) is
needed in order to train the neural network which corresponds
to the controller (NNC), the problem of directly training NNC

is a complex one. Indeed, the closed-loop stabilization of the
(unknown) plant must be first assured. In (Lightbody and Ir-
win, 1995), for example, this is carried out by placing a linear

fixed-gain controller in parallel with the neural network to be
trained. More recently, Kumar et al. (2009) have dealt with
this problem, developing a particular direct neural model ref-
erence adaptive control, the structure of which is depicted in
Fig. 6. In this particular case, the stabilization of the plant has
been carried out by training off-line the neural network, using
Lyapunov-based synthesis and the data collected from the ref-
erence model and the unknown plant. Once trained, the neural
controller NNC is adapted on-line to improve performance.
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Figure 6: Direct Model Reference Adaptive Neural Control

Indirect Control. This approach uses two neural networks: one
for modelling the plant dynamics (NNM), and another one
(NNC) adjusted to control the real plant so as its behavior is
as close as possible to the reference model M. This scheme is
represented in Fig. 7. As a first step, the neural network NNM is
trained to approximate the plant input/output relation using the
signal eM . It is habitual to use a FFNN architecture to model
the plant dynamics, as simple backpropagation algorithms can
be used to train the network. This is usually done off-line, using
a batch of data collected from the plant in open loop. Once the
model network NNM is trained, it is used to train the network
NNC which will act as the controller. NNC can be either FFNN
or RNN, as in both cases dynamic backpropagation is needed.
The output predicted by the model NNM ŷ is used instead of
the actual output y because the real plant dynamics is unknown,
and therefore the loop’s error eC could not be backpropagated.
In this way, the control error eC is calculated as the difference
between the desired reference model output yd and ŷ. Then, as
NNM is fixed, its derivatives with respect to any parameter are
known and easy to compute when training NNC .

NNC G

M

NNM

r

eC

eM

+ -

+ -

u y

yd ŷ

Figure 7: Indirect MRAC
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There are other neuro-control paradigms, such as rein-
forcement learning (Sutton and Barto, 1998), sliding con-
trollers (Baruch, 2007; Kar and Behera, 2009), neural feedback-
linearisation, internal model control, model predictive control
(Hagan and Demuth, 1999; Hagan et al., 2002), etc. Neu-
ral networks appear as well as elements in higher-level learn-
ing frameworks. There are also other NN topologies (CMAC,
neuro-fuzzy, Elman, etc.). Liu (2001), for example, provides a
more extensive description of the different structures and appli-
cations of neural networks and a larger amount of references.
As the aforementioned options are unrelated to the proposals
in this paper, the reader is referred to the cited references for
further details.

3. Virtual Reference Tuning

Virtual Reference Tuning (VRT) is a data-based direct con-
troller design methodology, which, under certain assumptions,
does not need a plant model to obtain a controller which aims
at achieving a control loop’s performance as close as possible
to a reference model. The tuning may be for open-loop, closed-
loop or even other block-diagram structures. The bibliography
is quite extensive concerning a closed-loop setup (known as
VRFT methodology), both for the linear and nonlinear cases.
The reader is referred to the references provided in section 1
(some by the authors) for full detail on the methodology. In this
section, a generic framework of VRT will be outlined.

Let us denote by G the unknown plant to be controlled and
let us consider that a first open-loop experiment carried out on
it gives a set of input/output data named {uex, yex}. The “virtual
reference” trick consists in, given a (usually linear) invertible
reference model M, generating the following “virtual” signal:

rv = M−1yex (1)

Using this signal, called virtual reference, a virtual “perfect”
loop can be constructed1. The idea can be applied both in feed-
forward and feedback loops. Figures 8a and 9a show its ap-
plication in open and in closed loop, respectively. These two
particular structures will be named Virtual Reference Feedfor-
ward Tuning (VRFFT) and Virtual Reference Feedback Tuning
(VRFT), respectively.

G
uex yexrv

C*

(a) Virtual open loop

G
uq yqrv

Cq

(b) Actual open loop

Figure 8: Virtual and actual open loops in VRFFT

In both cases, C∗ stands for an unknown controller, the output
of which is uex itself (and therefore, the plant’s output will be
yex). In the virtual closed loop (Fig. 9a) appears an additional
signal, called virtual error, which is defined as:

ev = (M−1 − 1)yex (2)

1If M were not invertible, due to non-minimum-phase components, some
refinements are needed Sala and Esparza (2005b). If the non-invertibility is due
to delay, trivial forward-shifting some sequences will solve the issue.

+
ev

C
*

-

uex
G

yexrv

(a) Virtual closed loop

+ eq
Cq

-

uq G
yqrv

(b) Actual closed loop

Figure 9: Virtual and actual closed loops in VRFT

These loops are called virtual because they do not exist and
therefore they are not used to generate the data {uex, yex}. Ob-
viously, both virtual loops achieve yex = Mrv, i.e., they work
“perfectly as desired”, and the input signals to the controller
(rv in open loop and ev in closed loop) and the plant (uex) are
known. Within this environment, the controller design reduces
to an identification problem between the signals rv and uex – in
VRFFT – or ev and uex – in a VRFT setup –. Identification
is usually carried out considering a parameterised controller
u = C(θ, ξ), where θ ∈ Rp stands for the parameter vector (be-
ing p its length) and ξ is the controller’s input (rv in a feedfor-
ward loop or ev in a feedback one).

On the sequel, the parameterised controller will be denoted
by Cθ(ξ). The ideal controller C∗ fulfills uex = C∗(ξ), with
ξ = rv in VRFFT and ξ = ev in VRFT, but it will be, possibly,
nonlinear and high-order. As Cθ , C∗ (actually, at startup Cθ

will likely be very different from C∗), the actual output of the
loop in Fig. 8b or 9b when a particular θ is used, yθ, will differ
from the ideal one Mrv = yex.

The cost index to minimise in the identification procedure is,
then, chosen to be the squared Euclidean norm (denoted by ‖·‖2)
of the (possibly filtered) difference between the actual output of
the loop yθ, and the ideal yex:

J =
1
2
‖F(yθ − yex)‖2 (3)

In expression above F is a frequency-weighting filter chosen
by the designer (which, in the remainder, will be considered the
identity, for simplicity) and yθ is the actual plant output which,
in an open loop setting (see Fig. 8b) is defined as:

yθ = G(Cθ(rv)) (4)

and in a closed-loop setting (Fig. 9b):

yθ = G(Cθ(eθ)) (5)

In this latter expression eθ = rv−yθ is the (non-virtual) track-
ing error.

As the plant G is not known, it is not possible to minimise
(3). So, the VRT methodology proposes the following data-
based cost indexes for VRFFT and VRFT, respectively:

VRFFT : JVRFFT =
1
2
‖L(Cθ(rv) − uex)‖2 (6)

VRFT : JVRFT =
1
2
‖L(Cθ(ev) − uex)‖2 (7)
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where L is a linear time-variant filter designed so as to make the
solution to the minimization of (6) and (7) as close as possible
to that of (3). Note that indexes (6) and (7) only use avail-
able data uex, rv and ev, contratily to (3) which uses the non-
computable yθ.

In a general framework, which accounts both for linear and
nonlinear cases, in order to minimise a cost index, under differ-
entiability assumptions, most optimization algorithms use its
gradient with respect to its parameters. In particular, the gradi-
ents of J, JVRFFT and JVRFT with respect to the vector of pa-
rameters θ (considering F = I and the availability of {uex, yex})
are given by:

dJ
dθ

=< yθ − yex,
dyθ
dθ

> (8)

dJVRFFT

dθ
=< L(Cθ(rv) − uex), L

(
∂Cθ

∂θ

)
> (9)

dJVRFT

dθ
=< L(Cθ(ev) − uex), L

(
∂Cθ

∂θ

)
> (10)

where < ·, · > represents the scalar product and ∂Cθ

∂θ
is the partial

derivative of the controller with respect to its parameters. Then,
the minimisation of JVRFFT (in an open loop setting) or JVRFT

(in a closed loop setup) will be closer to that of J as the gra-
dient in (9) or (10), respectively, approximates more accurately
the gradient in (8). As it was carried out for the linear case in
(Campi et al., 2002), an expression for the filter L in (9) or (10)
should be derived so as to make the gradient of JVRFFT or JVRFT

a good approximation of the gradient of J.
Neither of both sides of the scalar product of expression (8)

are computable, as the plant model G is not known. So it is nec-
essary to express this gradient as a function of both the actually
recorded signals (uex, yex) and the virtual ones (rv, ev). Assum-
ing the existence of an ideal θ∗, which is the vector of parame-
ters which makes uex = C(θ∗, rv) in VRFFT, or uex = C(θ∗, ev),
in VRFT, for θ close to θ∗, the following approximations of the
left part of expressions (8), (9) and (10) can be considered:

yθ − yex ' dyθ
dθ

(θ − θ∗) (11)

VRFFT : L(Cθ(rv) − uex) ' L
(
∂Cθ

∂θ

)
(θ − θ∗) (12)

VRFT : L(Cθ(ev) − uex) ' L
(
∂Cθ

∂θ

)
(θ − θ∗) (13)

Then, the problem will be solved if we find a filter L which
approximates

dyθ
dθ
' L

(
∂Cθ

∂θ

)
(14)

Considering a system G, which can be linear or nonlinear, its
output, when the plant’s input is uθ, can be calculated as yθ =

G(uθ). Then, the derivative of yθ with respect to the controller
parameters can be expressed as:

dyθ
dθ

= Ḡ
duθ
dθ

(15)

where Ḡ is an operator used to express the (possibly time-
variant) plant model partial derivative with respect its input,
which in this particular case is uθ, i.e.:

Ḡ =
∂G
∂uθ

(16)

Usually, plants and controllers are recurrent, so dynamic
backpropagation (Narendra and Parthasarathy, 1990) must be
used to compute both Ḡ and duθ

dθ . As backpropagation through
time requires the knowledge of both the plant model and the
controller structure, its derivation will be tackled in next sec-
tion, where we will particularise it to a neural network con-
troller in a pre-defined block-diagram.

4. Neural Virtual Reference Tuning

VRT applications have been largely in linear cases (under
the assumption of a linear plant and controller, an approxima-
tion to the filter L in (9) or (10) can be found which does not
depend on the model) and in closed loop setups. Successful
applications of purely linear VRFT are reported, for instance,
in (Campi et al., 2003). Furthermore, linear VRFT has proven
to work even when the plant is nonlinear, whenever the nonlin-
ear plant’s dynamics is not strongly relevant (see, for example
(Previdi et al., 2004, 2005)).

Obviously, when significantly nonlinear behaviour of the
plant is strongly excited, a nonlinear controller can likely
achieve a better performance.

In this section we will consider the nonlinear VRT setup,
using neural networks for the controller. The reasons for the
choice of neural networks are well-known: their capability to
approximate nonlinear functions (universal function approxi-
mation property) along with the ease of computing its deriva-
tives for parameter adjustment.

Contributions (Previdi et al., 2004) and (Previdi et al., 2005)
have also used neural networks along with VRFT. In these
cases, a particular feedforward neural structure, using radial
basis neurons was used and compared to a PID controller, the
parameters of which were tuned using linear VRFT method-
ology. Taking these previous results into account, the contri-
bution proposed in present paper is double: on the one hand,
the usage of recurrent neural networks trained using dynamic
backpropagation of the gradients and, on the other hand, the
proposal of using additional sensors which improve substan-
tially the closed-loop performance. Indeed, any feedback block
diagram is amenable to dynamic backpropagation, so once the
virtual reference is generated, other options apart from the pure
feedforward and pure feedback are possible, as this paper ex-
emplifies.

In this section, VRFFT and VRFT will be tackled separately,
to obtain for each case a particular expression of the linear time-
variant filter L which approximates the gradient of JVRFFT and
JVRFT in (9) and (10), respectively, to the gradient of J in (8).
Next, a discussion about the obtention of Ḡ will follow, finish-
ing the section with an extension of the methodology to other
block diagrams, as, for example, when additional sensors are
available.
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4.1. Virtual Reference Feedforward Tuning
The open loop controller implementation will now be con-

sidered. In this case, the virtual loop is an open loop one (Fig.
8a), where rv is the virtual reference, calculated using expres-
sion (1). In this case, the controller must be directly identified
from rv and uex. To do this, the gradient in (9) must be approx-
imated to the gradient in (8). In previous section it was shown
that this problem will be solved if we find a linear time-variant
filter L which makes the following expression true:

dyθ
dθ
' L

(
∂Cθ

∂θ

)
(17)

Let us consider as the starting point expression (15), where
Ḡ is defined in (16). There are several ways of obtaining Ḡ,
depending on the plant model’s structure. Usually, both plants
and controllers are recurrent mappings, i.e., the actual output
depends not only on the present inputs but also on an amount
of past input and output values:

yk = G(uk, uk−1, . . . , uk−q, yk−1, . . . , yk−v) (18)
uk = C(θ, rk, rk−1, . . . , rk−m, uk−1, . . . , uk−n) (19)

where u, y are the plant’s input and output signals, θ is the con-
troller’s vector of parameters and r, u are the controller’s input
and output signals, respectively. Note that the argument θ has
been removed from u and y to improve clarity.

Considering the plant model in expression (18), to compute
Ḡ, it is necessary to apply the chain rule:

dyk

dθ
=

q∑

j=0

∂G
∂uk− j

duk− j

dθ
+

v∑

j=1

∂G
∂yk− j

dyk− j

dθ
(20)

which is a linear recurrent equation (and time-variant if G is
nonlinear in y or u). This expression can be represented in a
block diagram, as in Fig. 10.

As Ḡ is a linear time-variant system, the derivative in (15)
must be computed at each time instant, i.e.:

dyk

dθ
= Ḡ

(
duk

dθ

)
(21)

where, as before, the argument θ has been omitted. Using this
expression, where Ḡ is defined by the recursive equations in
(20) and represented graphically in Fig. 10, to compute the gra-
dient of J it is then necessary to obtain an expression which
relates duk

dθ
with ∂Cθ

∂θ
. For a recurrent controller (defined in ex-

pression (19)), applying the chain rule (and noting that the con-
troller’s input rv does not depend on θ), we obtain:

duk

dθ
=
∂Cθ

∂θ
+

n∑

j=1

∂Cθ

∂uk− j

duk− j

dθ
(22)

Expressions (20) and (22) are the sensitivity equations defin-
ing a recurrent linear time-variant system, being ∂Cθ

∂θ
and dyθ

dθ
its

input and output, respectively. Fig. 11 represents such sensitiv-
ity equations computed at the instant k. In such figure, both the
block diagram input ∂Cθ

∂θ
and the output dyk

dθ are vectors of size p
(the number of parameters θ) and Ḡ is defined in Fig. 10.
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Figure 10: Block diagram of gradient propagation through the
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Figure 11: Sensitivity block diagram in open loop operation

4.2. Virtual Reference Feedback Tuning

In this subsection, a closed loop setup will be considered.
The virtual closed loop built using the reference model M and
the experimental data {uex, yex} is depicted in Fig. 9a. The
difference between this setting and the previous one is the exis-
tence of feedback, and hence the controller’s input is the closed-
loop error. In the virtual loop this input is the virtual error ev

and in the actual one (Fig. 9b), it is the actual closed-loop er-
ror, defined as eθ = rv − yθ. The plant structure is the same
described in (18), so Ḡ, represented by expression (20) and in
Fig. 10, is the same both for VRFFT and VRFT. However, as
the controller’s input is different, its output is defined as:

uk = C(θ, ek, ek−1, . . . , ek−m, uk−1, . . . , uk−n) (23)

where the argument θ has also been omitted for u and e.
The objective is still finding the linear time-variant filter L

which approximates the gradient of JVRFT in (10) to the gradient
of J in (8). This is the same thing as, starting from expression
(21), expressing duk

dθ as a function of ∂Cθ

∂θ
. Applying the chain
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rule to (23):

duk

dθ
=
∂Cθ

∂θ
−

m∑

j=0

∂Cθ

∂ek− j

dyk− j

dθ
+

n∑

j=1

∂Cθ

∂uk− j

duk− j

dθ
(24)

which are linear recurrent equations (and time-variant if C is
nonlinear in u or e). In expression (24), it has been considered
that the error signal is defined as ei = rv,i − yi and therefore its
derivative with respect to the vector of parameters is dei

dθ = − dyi
dθ ,

as rv does not depend on θ.
Expressions (20) and (24) are therefore the sensitivity equa-

tions defining a recurrent linear time-variant system, whose in-
put is ∂Cθ

∂θ
. Fig. 12 represents such sensitivity equations com-

puted at the instant k. In such figure, both the block diagram’s
input ∂Cθ

∂θ
and output dyθ

dθ are vectors of size p (the number of
parameters θ). Evidently, such a system should be the filter L in
(10).
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Figure 12: Sensitivity block diagram

As it can be seen, this filter is linear time-variant, so its co-
efficients must be updated at each k (k ∈ [1,N], being N the
data length). Expression (20) shows the explicit dependence of
the filter L on Ḡ, which represents the plant model linearised at
each time instant around its operating point.

4.3. Obtention of Ḡ
The dependence of L on Ḡ (both in VRFFT or in VRFT)

shows the necessity of a plant model to propagate the gradients.
And, indeed, the computation of Ḡ or an approximation of it
( ˆ̄G) is needed. A discussion on how to solve this problem will
be provided in this subsection.

Let us consider a plant with unknown dynamics G, which
could be either linear or nonlinear with smooth nonlinearities.
The objective is to design a controller which minimises the cost
index J defined in (3) through the minimisation of the data-
based one JVRFFT in (6) or JVRFT in (7).

As highlighted in previous subsections, a linear time-variant
filter L is needed both in JVRFFT and JVRFT in order to approx-
imate their gradients to the gradient of J. Such a filter requires
obtaining a time-variant linearization of the plant model at each
time instant and at each input value, i.e., to obtain its Jacobian,
which we have called Ḡ.

As the plant model is not known, the instrumental Ḡ should
be approximated. There are several ways of handling the issue:

• The first approach could be carried out, for example, by
training (off-line) a neural network to accurately approxi-
mate the plant dynamics, which would then adapt the In-
direct Model Reference Control scheme in section 2 to the
virtual reference framework. In this case, the approxi-
mation ˆ̄G of Ḡ can be obtained with relative ease, as the
needed derivatives of the neural network with respect to
its inputs are easy to compute.

• A second possibility involves identification of (purpos-
edly) only an approximate reduced-complexity model of
the plant. An appealing choice is a linearised plant model,
identified using standard linear ID techniques.

• A last possibility would be disregarding the model and as-
suming Ḡ equal to the identity.

Note that ˆ̄G is only needed as part of the filter L, which is
used to make the minimization of JVRFT (JVRFFT ) close to that
of J. If the controller parameterisation is flexible enough and
the real controller is within the controller class (i.e, there exists
a θ∗ such that C(θ∗, ev) = uex), the gradient of JVRFT ( JVRFFT )
will be zero at θ∗ (no bias) irrespective of L: a rich enough con-
troller does not need a model in VRFT (nor it does in VRFFT).
The lower the controller class flexibility is, the more important
role ˆ̄G plays in the accuracy of the identified controller. Given
the above considerations, in practice, some successful applica-
tions have been reported with L = I or simple models of the
plant.

In the proposal of this paper, the second option will be cho-
sen, i.e., an identified LTI model Ĝ of the plant to be controlled
will be used. In this case, ˆ̄G = Ĝ, and then expression (21) turns
into:

dyk

dθ
= Ĝ(z−1)

duk

dθ
(25)

4.4. Using additional measurements in VRFT

The last contribution in this section is to develop a generic al-
gorithm to backpropagate the gradients through the closed loop
when the information from additional sensors is used to im-
prove performance. Let us consider the closed loop depicted in
Fig. 13, where a single-input-multiple-output (SIMO) plant has
been considered, being u its input and {y1, · · · , yNy} its outputs,
where the subindex Ny stands for the number of plant’s outputs.
In this figure, the controller’s inputs are a function (either lin-
ear or nonlinear, time-variant or time-invariant) of the plant’s
outputs. To simplify the development, time-invariant functions
fi(yi) of the plant’s outputs will be considered.
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Cq

fNy(yNy)

y1

u
G

f1(y1)

yN

Figure 13: Generic closed loop with additional measurements

Considering a recurrent controller, its output at a time instant
k is:

uk = C(θ, f1(y1,k), · · · , f1(y1,k−m1 ), · · · , fNy(yNy,k),
· · · , fNy(yNy,k−mNy ), uk−1, · · · , uk−n) (26)

The derivative of the controller’s output with respect to the
vector of parameters is in this case:

duk

dθ
=
∂Cθ

∂θ
+

Ny∑

i=1

mi∑

j=0

∂Cθ

∂ fi

∂ fi
∂yi,k− j

dyi,k− j

dθ
+

n∑

j=1

∂Cθ

∂uk− j

duk− j

dθ
(27)

These linear (possibly) time-variant recurrent equations are
the generalization of (24). Indeed, expression (24) is obtained
from (27) when Ny = 1, y = y1 and f1(y1) = rv − y1. Using this
generalization, and the linear approximation of Ḡ discussed in
previous subsection, expression (20) can be expressed as:



dy1,k

dθ
...

dyNy,k

dθ


= Ḡ

duk

dθ
=



Ĝ1
...

ĜNy


duk

dθ
(28)

where Ĝi is the linearised relationship between the plant’s in-
put u and output yi obtained using common identification algo-
rithms (or, in a general case, the differential map of a nonlinear
model, as discussed before).

5. Case study: Neural VRFT applied to a simulated crane
model

In this subsection, a particularisation of the above explained
methodology will be used to design a controller for a crane
model operating under closed loop.

5.1. Preliminaries
This plant has two measured outputs: the hanging mass hor-

izontal position (y1) and its angle with respect to the vertical
axis which passes through the center of the cart (y2) (see Fig.
14). The objective is to control y1. The choices made in this
particular application are the following ones:

• The controller will be operating in closed loop, so the
VRFT methodology will be applied.

• In (Campi et al., 2002; Campi and Savaresi, 2006; Sala,
2007), some approximations are carried out, in order to use
a time-invariant transfer function L′ and make the minimi-
sation process easier. In this work, the implemented filter
L will be the time-variant one defined by equations (28)
and (27), as the required partial derivatives are easily com-
puted for neural networks.

• Ḡ will be approximated by a linear plant model Ĝ, identi-
fied using standard OE prediction error algorithms. It will
only be used as an instrument to build the time-variant fil-
ter L.

• The controller will be implemented by a neural network,
the weights of which have to be adjusted conveniently.

• For the controller, two topologies will be used: C1 =

NN(θ, e, u) and C2 = NN(θ, e, f (y2), u) (Fig. 15 and 17,
respectively). The controller C2 is more powerful, as it has
as an extra input a function of the system’s output y2. The
extra input will provide better performance, when com-
pared to C1, as discussed next.

y1

y2

u
M

m

L

Figure 14: Structure of the crane system

In this particular application, for the controller C1, Ny = 1
and f1(y1) = e = rv − y1. On the other hand, for the controller
C2, Ny = 2, f1(y1) = e = rv − y1 and f2(y2) = s = sin(y2). To
compute the gradient of JVRFT , for the controller’s structure C1
the filter L is depicted in Fig. 12 and defined in equations (25)
and (24). For the controller’s structure C2, expression (28) gets
converted into:


dy1,k

dθ
dy2,k

dθ

 =

(
Ĝ1

Ĝ2

)
duk

dθ
(29)

where Ĝ1 and Ĝ2 are the LTI identified plant models which re-
late the outputs y1 and y2 with the input u, respectively. In the
same way, equation (27) turns into:

duk

dθ
=
∂Cθ

∂θ
−

m1∑

j=0

∂Cθ

∂ek− j

dy1,k− j

∂θ
+

+

m2∑

j=0

∂Cθ

∂s
∂s

∂y2,k− j

dy2,k− j

dθ
+

n∑

j=1

∂Cθ

∂uk− j

duk− j

dθ
(30)

The neural networks to be used are made up of two layers:
the first one has four neurons (one linear and three with hyper-
bolic tangent activation function); the second layer has only one
linear neuron. A bias input to each neuron is also present. For
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the controllers of class C1, the network considered is the one
depicted in Fig. 15. In this figure, the inputs ū and ē stand for
vectors conforming a delay-line input: if the controller order
considered is n and the number of delayed inputs is m, at a time
instant k, ūk = [uk−1, . . . , uk−n] and ēk = [ek, . . . , ek−m+1]. The
block T DLx stands for the tapped delay line of length x. The in-
put to this block is the present value of the signal and its output
is a vector of x elements, made up of the present value and the
past ones, as shown in Fig. 16. In the same way, the network
used for the C2-class controllers is the one in Fig. 17, where
f (y2) = sin(y2) has been added as a new network’s input.

e
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WI4,1
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WO3

WO4

u

bI1

bI2

bI3

bI4

bO

u

e
TDLm

TDLn-1z
-1

Figure 15: Neural network used for controllers of class C1
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z
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z
-1
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z
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Figure 16: Tapped delay line of length x
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bI4
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u

e
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TDLm2

TDLm1

TDLn-1z
-1

Figure 17: Neural network used for controllers of class C2

5.2. Simulation results
As above mentioned, neural VRFT is applied to a crane

model, depicted in Fig. 14, where the plant’s input (u) and
outputs (y1 and y2) are indicated. A first-principle model for
simulation was found in Butler et al. (1991), being the parame-
ters values:

• Mass of the cart (M): 2 Kg.

• Hanging mass (m): 1 Kg.

• Length of the joining bar (L): 0.5 m.

• Linear friction coefficient (fc): 0.05 Ns/m.

• Angular fiction coefficient (fp): 0.01 Ns.

As the actual model equations are not relevant to the data-based
controller tuning procedures here demonstrated, the reader is
referred to the above reference for details.

Using the neural network controller structure depicted either
in Fig. 15 or 17, the control action at an instant k can be com-
puted as:

uk =

4∑

i=1

WOiFi


n×(Ny+1)∑

j=1

WIi jxk + bIi

 + bO (31)

In the above expression, Fi is the hyperbolic tangent for i =

{1, 2, 3} and identity for i = 4 (linear neuron), n is the number of
delays in the inputs (the same value for all the inputs has been
considered), Ny = 1 for the neural network structure of Fig. 15
and Ny = 2 for the one in Fig. 17. In addition, xk is the input
vector, constructed as:

xk =
[

uk−1 . . . uk−n ek . . . ek−n+1

]

for Ny = 1. For Ny = 2, this expression turns into:

xk =
[

uk−1 . . . uk−n ek . . . ek−n+1 sk . . . sk−n+1

]

where sk = sin(y2k), i.e., the sine of the angle y2 at a time instant
k.

Finally, in expression (31) the indexes i and j stand for the
neuron number and the input position in xk. Therefore, denoting
by N the number of neurons (N = 4 in this example), the vector
of parameters has (n×(Ny+1)+2)N+1 elements, and is defined
as:

θ =
[

W I
1,1 . . . W I

N,1 . . . W I
1,n×(Ny+1) . . . W I

N,n×(Ny+1)

bI
1 . . . bI

N WO
1 . . . WO

N bO
]T

(32)

The objective of the application is to design a controller for
the crane system in such a way that the controlled output y1
follows as closer as possible a reference that goes from 0 to 1
m following a ramp with different slopes: from 0.04 m/s to 1
m/s.

First of all, the linear version of VRFT has been applied,
as this particular system presents a smooth nonlinearity which
allows linear controllers to be used for low angles (slow cart
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speed). Then, in order to compare and to improve the closed-
loop tracking performance, both neural network structures
(Figs. 15 and 17) have been considered as the controller’s class
to be used when applying nonlinear VRFT.

As the main nonlinearity in the system equations comes from
trigonometric expressions depending on the angular position
and speed, two situations have been envisaged:

1. A first simulation tries to adjust VRFT controllers (linear
and neural) based on a set of open-loop data where the
angular displacements are small.

2. A second simulation scenario uses open-loop data where
angular displacements are significantly higher, due to a
larger input amplitude.

Intuitively, it is expected that linear and nonlinear VRFT con-
trollers behave similarly in the first case (the nonlinearity is
barely excited), but nonlinear ones improve in the second one
where the nonlinearity is significant. Let us discuss each of the
simulations.

Low-amplitude training data. A first open-loop experiment
with a white noise input in a range of ±0.1 N produces the sig-
nals depicted in Fig. 18. The observed angle variation is very
low, so the nonlinear effect is not very present.

A linear 6th order controller, as well as a neuronal one (type
C1), also with 6th order delay-line inputs, are trained from the
same data set. It is foreseeable that, as long the reference’s slope
increases, both controllers work worse, as the higher speeds of
movements will demand a larger control action, and this will
produce bigger angle variations. This, of course, will increase
the nonlinear effect, beyond that learnt by the controllers iden-
tified using the weakly exciting signals in Fig. 18.
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Figure 18: First simulated experiment carried out over the plant

Indeed, this is exactly what happens. For the slowest refer-
ence (slope of 0.04 m/s during the transient), both linear and
neural network controllers work well and produce a very simi-
lar output. The linear controller produces a better performance
(in the position of the bottom tip) but a bigger oscillation of
the pendulum (Fig. 19); it seems to have totally canceled the

weakly damped mode. As long the reference’s slope increases,
the linear controller provides a better tracking performance (the
more reduced number of parameters seems to make learning
more effective) until a slope of 1 m/s, when it makes the loop
unstable, whereas the one using a neural network provides the
response in Fig. 20. The stability of the neural controller might
come from pure chance (likely) or from the fact that it might
have learned a somehow relevant representation of the nonlin-
earity.
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Figure 19: Comparison of plant behaviour with linear and neu-
ral network controllers (slow setpoint change speed)
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Figure 20: Plant behaviour with the neural network controller
for a slope of 1 m/s in setpoint change

In order to increase the performance, two 4th-order con-
trollers are designed using the closed-loop error and the sine
of the bar’s angle as inputs (the number of parameters is, hence,
intentionally kept the same as in the previous example). The
linear controller still produces an unstable loop, while the neu-
ral network one does not improve significantly over the one in
Fig. 20 (results not shown for brevity).
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High-amplitude training data. For comparison, the signals
recorded at a second open-loop experiment, with a white noise
input in a range of ±1 N (Fig. 21), are used to design linear and
neural network controllers, using either (a) only the closed-loop
error or, (b) this error together with the sine of the pendulum’s
angle as inputs. All these controllers resulted in unstable loops,
except the 4th-order neural network one with error and angle
feedback (class C2). Figure 22 shows the closed-loop behaviour
when using this neural network controller for a fast-varying ref-
erence of slope 1. It is clearly better than the one obtained with
the controllers from low-amplitude data.
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Figure 21: Signals collected from the second open-loop exper-
iment
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Figure 22: Closed-loop response with the neural network con-
troller designed with 2 sensors and high-amplitude data

Note: the linear controllers have been identified using output
error algorithms available in Matlabr’s Identification Toolbox.
The neural network parameters have been adjusted using the
Levenberg-Marquardt optimisation algorithm, applied to min-
imise the index J by means of the time-varying gradient ex-
pressions derived in previous sections.

6. Conclusions

This paper compares ‘classical’ neural network control struc-
tures with nonlinear VRT ones, both in open and closed loop
setups (VRFFT and VRFT, respectively). It is shown that suc-
cessful application of the VRT paradigm to neural controllers
is possible, by propagating gradients through time using an ap-
proximate linear model of the plant. Such model is instrumen-
tal, only used in a filtering stage and its accuracy becomes less
relevant as the parameterisation of the controller is more flexi-
ble allowing for a lower minimum approximation error.

In simulations, and due to its clear advantages, the closed
loop approach has the only been considered. They show that,
under demanding specifications, linear VRFT controllers yield
unstable loops while nonlinear neural ones plus additional sen-
sory feedback provide a satisfactory response. The results were
achieved without the need of any nonlinear plant modelling or
identification: only a linear output-error estimated model was
used.
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