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Abstract

The stupefying success of Artificial Intelligence (AI) for specific problems, from
recommender systems to self-driving cars, has not yet been matched with a
similar progress in general AI systems, coping with a variety of problems. This
dissertation deals with the long-standing problem of creating more general AI
systems, through the analysis of their development and the evaluation of their
cognitive abilities.

Firstly, this thesis contributes with a general-purpose learning system that
meets several desirable characteristics in terms of expressiveness, comprehen-
sibility and versatility. The system works with approaches that are inherently
general: inductive programming and reinforcement learning. The system does
not rely on a fixed library of learning operators, but can be endowed with new
ones, so being able to operate in a wide variety of contexts. This flexibility,
jointly with its declarative character, makes it possible to use the system as an
instrument for better understanding the role (and difficulty) of the constructs
that each task requires. The learning process is also overhauled with a new
developmental and lifelong approach for knowledge acquisition, consolidation
and forgetting, which is necessary when bounded resources (memory and time)
are considered.

Secondly, this thesis analyses whether the use of intelligence tests for AI
evaluation is a much better alternative to most task-oriented evaluation ap-
proaches in AI. Accordingly, we make a review of what has been done when AI
systems have been confronted against tasks taken from intelligence tests. In
this regard, we scrutinise what intelligence tests measure in machines, whether
they are useful to evaluate AI systems, whether they are really challenging
problems, and whether they are useful to understand (human) intelligence.
Finally, the analysis of the concepts of development and incremental learn-
ing in AI systems is done at the conceptual level but also through several of
these intelligence tests, providing further insight for the understanding and
construction of general-purpose developing AI systems.

Keywords: artificial intelligence, general-purpose learning systems, induc-
tive programming, reinforcement learning, forgetting, task difficulty, cognitive
development, evaluation of artificial systems, intelligence tests.





Resumen
El éxito abrumador de la Inteligencia Artificial (IA) en la resolución de tareas
específicas (desde sistemas de recomendación hasta vehículos de conducción
autónoma) no ha sido aún igualado con un avance similar en sistemas de IA
de carácter más general enfocados en la resolución de una mayor variedad de
tareas. Esta tesis aborda la creación de sistemas de IA de propósito general así
como el análisis y evaluación tanto de su desarrollo como de sus capacidades
cognitivas.

En primer lugar, esta tesis contribuye con un sistema de aprendizaje de
propósito general que reúne distintas ventajas como expresividad, comprensi-
bilidad y versatilidad. El sistema está basado en aproximaciones de carácter
inherentemente general: programación inductiva y aprendizaje por refuerzo.
Además, dicho sistema se basa en una biblioteca dinámica de operadores de
aprendizaje por lo que es capaz de operar en una amplia variedad de contex-
tos. Esta flexibilidad, junto con su carácter declarativo, hace que sea posible
utilizar el sistema de forma instrumental con el objetivo de facilitar la com-
prensión de las distintas construcciones que cada tarea requiere para ser re-
suelta. Por último, el proceso de aprendizaje también se revisa por medio de
un enfoque evolutivo e incremental de adquisición, consolidación y olvido de
conocimiento, necesario cuando se trabaja con recursos limitados (memoria y
tiempo).

En segundo lugar, esta tesis analiza el uso de tests de inteligencia humana
para la evaluación de sistemas de IA y plantea si su uso puede constituir una
alternativa válida a los enfoques actuales de evaluación de IA (más orienta-
dos a tareas). Para ello se realiza una exhaustiva revisión bibliográfica de
aquellos sistemas de IA que han sido utilizados para la resolución de este tipo
de problemas. Esto ha permitido analizar qué miden realmente los tests de
inteligencia en los sistemas de IA, si son significativos para su evaluación, si
realmente constituyen problemas complejos y, por último, si son útiles para
entender la inteligencia (humana). Finalmente se analizan los conceptos de de-
sarrollo cognitivo y aprendizaje incremental en sistemas de IA no solo a nivel
conceptual, sino también por medio de estos problemas mejorando por tanto
la comprensión y construcción de sistemas de propósito general evolutivos.

Palabras clave: inteligencia artificial, sistemas de aprendizaje, programación
inductiva, aprendizaje por refuerzo, olvido, dificultad de las tareas, desarrollo
cognitivo, evaluación de sistemas artificiales, tests de inteligencia.





Resum
L’èxit aclaparant de la Intel·ligència Artificial (IA) en la resolució de tasques
específiques (des de sistemes de recomanació fins a vehicles de conducció
autònoma) no ha sigut encara igualat amb un avanç similar en sistemes de
IA de caràcter més general enfocats en la resolució d’una major varietat de
tasques. Aquesta tesi aborda la creació de sistemes de IA de propòsit general
així com l’anàlisi i avaluació tant del seu desenvolupament com de les seues
capacitats cognitives.

En primer lloc, aquesta tesi contribueix amb un sistema d’aprenentatge de
propòsit general que reuneix diferents avantatges com ara expressivitat, com-
prensibilitat i versatilitat. El sistema està basat en aproximacions de caràcter
inherentment general: programació inductiva i aprenentatge per reforç. A més,
el sistema utilitza una biblioteca dinàmica d’operadors d’aprenentatge pel que
és capaç d’operar en una àmplia varietat de contextos. Aquesta flexibilitat,
juntament amb el seu caràcter declaratiu, fa que siga possible utilitzar el sis-
tema de forma instrumental amb l’objectiu de facilitar la comprensió de les
diferents construccions que cada tasca requereix per a ser resolta. Finalment,
el procés d’aprenentatge també és revisat mitjançant un enfocament evolutiu
i incremental d’adquisició, consolidació i oblit de coneixement, necessari quan
es treballa amb recursos limitats (memòria i temps).

En segon lloc, aquesta tesi analitza l’ús de tests d’intel·ligència humana
per a l’avaluació de sistemes de IA i planteja si el seu ús pot constituir una
alternativa vàlida als enfocaments actuals d’avaluació de IA (més orientats a
tasques). Amb aquesta finalitat, es realitza una exhaustiva revisió bibliogràfica
d’aquells sistemes de IA que han sigut utilitzats per a la resolució d’aquest
tipus de problemes. Açò ha permès analitzar què mesuren realment els tests
d’intel·ligència en els sistemes de IA, si són significatius per a la seua avaluació,
si realment constitueixen problemes complexos i, finalment, si són útils per
a entendre la intel·ligència (humana). Finalment s’analitzen els conceptes
de desenvolupament cognitiu i aprenentatge incremental en sistemes de IA
no solament a nivell conceptual, sinó també per mitjà d’aquests problemes
millorant per tant la comprensió i construcció de sistemes de propòsit general
evolutius.

Paraules clau: intel·ligència artificial, sistemes d’aprenentatge, programació
inductiva, aprenentatge per reforç, oblit, dificultat de les tasques, desenvolu-
pament cognitiu, avaluació de sistemes artificials, tests d’intel·ligència.
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1
Introduction

1.1 Motivation

There is no doubt that Artificial Intelligence (AI) is a successful discipline.
Although we are far away from the intelligent systems that proliferate in sci-
ence fiction books and films, the current state of research in AI can claim
some impressive milestones in such complex tasks as winning against the hu-
man chess champion Garry Kasparov [CHH02], winning the Jeopardy! TV
quiz [FBCC+10, FLB+13], wining at several Atari arcade games [MKS+13],
master the ancient game of Go [SHM+16] or building SPAUN, a 2.5-million-
neuron artificial model brain which mimics human behaviour [ESC+12]. AI
can also solve truly awe-inspiring problems in other knowledge-intensive areas
such as developing self-driving cars [Sel], adding intelligent personal assistants
in smartphones (such as Apple’s Siri [Sir], Google’s Google Now [goo], Mi-
crosoft’s Cortana [Cor] or Amazon’s Alexa [Ale]) or even creating robots able
to learn from YouTube videos [YLFA15].

In the light of all these astonishing achievements in recently AI research
boosted by the growing power of machine learning, it is becoming increas-
ingly clear that creating artificial intelligence is much more than “pattern
matching”. However, although it would be unfair to deny that some current
AI systems exhibit some intelligent behaviour (especially those that incorpo-
rate some learning potential), in general terms, most AI research is focused
on designing AI systems for a particular functionality or adapted for a spe-
cific problem. AI systems are able to solve a great amount of tasks without
featuring intelligence and, paradoxically, this is one of the reasons of AI’s suc-
cess. Therefore, and thinking about the purpose of AI, we can say that AI
research is better identified with Minsky’s AI definition [Min82]: “[AI is] the
science of making machines capable of performing tasks that would require
intelligence if done by [humans]” rather than the less pragmatic McCarthy’s
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definition [McC07] : “[AI is] the science and engineering of making intelligent
machines”.

Anyway, it is not the purpose of this thesis to be an in-depth debate be-
tween weak AI and strong AI since1 both are equally important for AI. It is
useful to have specialised AI systems that solve specific tasks, as well as sys-
tems that have more general abilities so that they can solve new problems they
have never faced before (perhaps achieving human level intelligence). This the-
sis is, instead, more interested in the construction of systems able to learn au-
tomatically, not pre-programmed or without fixed handcrafted features. This
a challenging issue that should, furthermore, pervade the evaluation proce-
dures in AI where systems are usually evaluated in terms of task performance,
not really in terms of intelligence. Hence, AI evaluation must necessarily be
linked to the purpose of the discipline: general AI systems should require an
ability-oriented evaluation in the same way that specialised AI systems should
require a task-oriented evaluation [HO14a].

Therefore, in this thesis we will pay attention to both construction and
evaluation aspects of general-purpose learning systems. Given the challenge,
firstly, we will investigate some designing and implementation aspects involv-
ing the abilities of achieving a variety of goals (in different contexts) as well
as generalizing, handling and transferring the knowledge gained. Secondly, we
will also analyse and study specific ability-oriented tools to evaluate AI sys-
tems as well as their cognitive development to better understand what artificial
intelligence is and, hopefully, of human intelligence as well. In the following,
we will go deeper into these both issues raising several questions that we will
try to answer throughout this thesis.

Regarding the former point about construction, the first question we raise
is what we can do in order improve the way AI systems learn. We find the
key in those methods that display learning characteristics based on the way
the human mind works, i.e., general and incremental (and thus developmen-
tal) learning systems that are able to use previous knowledge and context
information to deploy solutions for some unexpected situations.

Starting with generality, this can be stated in terms of versatility, namely,
whether AI systems are specialised in solving very specific tasks or are general
enough to solve a wide variety of problems—not even anticipated during de-
sign. Working towards this goal should imply AI systems to have a minimal,
although extensive, set of capabilities as well as acquiring new capabilities
and improve them through learning [Nil05]. This means that general-purpose

1While a weak AI system is focused one one narrow task, a strong AI system should be
as versatile as a human at solving problems.
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learning systems should not be able to rely on a fixed library of concepts or con-
structs, but they must be dynamic and open, thus making it possible to adapt
to new problems. Furthermore, another fundamental characteristic should be
borne in mind: the environment must be complex, with diverse, interacting
and richly structured objects. Therefore, this sort of systems should have
an appropriate handling of rich data and knowledge thus addressing objects
that have more elaborate (complex) and flexible internal structure (perhaps
abstracted from prior knowledge).

As we said above, generality should work together with an incremental
or cumulative nature of the learning system in order to overcome the limits
of AI approaches (e.g. upper bound accuracy and robustness using all the
training data available). The question then arises as to how an AI system can
accumulate knowledge (or expertise) over time thus incrementally improving
its own ability to learn and solve problems, e.g., avoiding an AI system to
become stagnant after a few concepts learnt because there is a deficient han-
dling of its knowledge base. This is closely related to The Stability-Plasticity
dilemma [CG88], a constraint for artificial and biological neural systems. The
basic idea is that a learning system must be capable of learning new things
(plasticity) without losing previously learnt concepts (stability). Again, in-
cremental or cumulative knowledge acquisition has much to learn from the
study of human cognition in order to overcome the previous dilemma. If we
look at how humans learn, we see some similarities: humans have important
working memory limitations, so complex hypotheses can only be constructed
(or abstracted) over previously learnt or existing concepts [Mil56]. However,
most knowledge bases (and expert systems) are to be improved in these as-
pects: they are still based on sets of rules over some predefined features and
concepts, where an abstract and constructive learning is not fully integrated
(apart from some kind of incrementally learning more rules). Basically, the
constructs and elements the system deals with after a time are the same it
had initially.

Therefore, the learning process cannot longer be a transformation from
data to knowledge, but a transformation of knowledge (plus data) into new
knowledge (Figure 1.1), i.e., retaining the results learnt in the past, abstract-
ing complex knowledge from them (thus allowing to work in rich scenarios),
focusing on what knowledge to discard and what to keep on long-term memory
(thus avoiding possible information overflow and redundancy, and preserving
important or frequently used knowledge), and using the knowledge to help
future learning and problem solving. As a result, properly representing, revis-
ing, evaluating, organising and retrieving previous knowledge is crucial in this
quest for more complex, insightful, powerful and ultimately cognitive learning
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Figure 1.1: The classical learning process is revisited. New knowledge is abstracted
from new data as well as from previously learnt knowledge.

approaches to make knowledge acquisition an incremental and developmental
process. An important thing here is that general-purpose systems should also
be able to learn from few examples, as this is the way humans handle a new
task: being able to understand what to do, without further instructions. In
fact, much learning in humans and many of the prospective applications that
machines cannot solve today work with small data.The creation of systems
capable of working in this general way is more related to the area of inductive
programming [GHOK+15a], rather than other areas of AI. For that reason,
this thesis vindicates more general learning frameworks as well as highlights
the relevance of using inductive programming and symbolic representation
languages as a learning paradigm.

Regarding the evaluation of general-purpose AI systems, this raises some
questions about the appropriateness of using task-oriented evaluation tools.
Several of the existing AI systems are not designed to cover one particular ap-
plication but are expected to perform a variety of tasks (possibly customised
by the user). Some examples of such cases are presented in cognitive robots,
artificial pets, assistants, avatars, smartbots, smart houses, etc. In order to
cover this wide range of (previously unseen) tasks, these systems must have
some abilities such as reasoning, learning, planning, verbal skills, etc. Hence,
this entails that apart from task-oriented evaluation methods we also need
ability-oriented evaluation techniques. The measurement of the above cogni-
tive abilities (and thus intelligence) in natural systems is the subject of several
disciplines such as psychometrics or comparative psychology (which are based
on the notion of “species”) through the use of, among other tools, intelligence
tests.

Since this kind of tests work reasonably well for humans, their use for
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evaluating machines has been suggested many times. In early AI research, the
intelligence test (or IQ test) approach was considered as a useful approach for
AI systems. This approach moves towards a (more general) ability-oriented
categorisation of problems instead of the classical task-oriented categorisation.
Although this branch of research sank into oblivion for decades, the past ten
(and especially five) years have been blooming with computational models
aimed at solving intelligence tests (with different purposes). However, despite
this increasing trend, there has been no general account of all these works in
terms of how they relate to each other and what their real achievements or
purposes are. Closely linked, there is also a poor understanding about what
intelligence tests measure in machines, whether they are useful to evaluate
AI systems, whether they are really challenging problems, and whether they
are useful to understand (human) intelligence. The key issues to understand
the suitability (or unsuitability) behind the use of psychometric tests for AI
evaluation will be discussed in this thesis.

By the same token, one of the early motivations and applications of intel-
ligence tests (in humans) was the assessment of the so-called mental age. The
progress achieved in several cognitive tests for the same individuals at different
ages would give very valuable information about their cognitive development
and, particularly, about the appropriate cognitive constructs needed to solve
them (concept dependencies). We clearly see that intelligence tests for small
children usually differ in presentation but also in the constructs that are re-
quired. One question that has caught recent interest is whether the same
approach can be used to assess the cognitive development of artificial systems,
namely, the process during which a natural or artificial system develops mental
capabilities. In particular, can we assess whether the intelligence of an artifi-
cial cognitive system depends on the acquisition, learning or development of
different operational constructs? Can we use human intelligence tests for this?

The assessment of these capabilities and concept dependencies is crucial to
determine whether and how the system develops as well as it provides useful
information about the elements that each problem really requires: more com-
putational power (in terms of working memory and combinatorial search) or
some basic operational constructs. In this thesis we are interested in the latter
(problem-dependent characteristics). Furthermore, one can wonder whether
the mechanisms underlying the behaviour of these programs are the same as
or similar to the mechanisms underlying human intelligent behaviour. The
question of how these abilities must be measured has been recurrent in the lit-
erature of autonomous mental development. While several specific approaches
have been attempted for particular tasks, it is still relatively uncommon to use
human intelligence tests for this evaluation (with some notable exceptions, e.g.,
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[SS10, Sch13]).

1.2 Research objectives
This thesis aims at contributing how we could implement better general-
purpose learning and knowledge handling tools. Furthermore, we would also
like to contribute with a better understanding about what intelligence and
mental development is (both in humans and AI systems) and how it can be
assessed, as well as make a careful understanding of what intelligence tests
offer to AI evaluation.

From the previous statement, the main objectives are:

• Propose a general-purpose declarative learning approach following some
inductive programming principles (comprehensibility, expressiveness, high-
order, . . . ) to become a versatile tool for the analysis of learning diffi-
culty in terms of the dependencies on the constructs and operators that
have been defined in the system. Study the increase of generality and
versatility through a flexible redefinition of inductive operators jointly
with a reinforcement learning evaluation paradigm.

• Analyse the use of intelligence tests as an ability-oriented evaluation
paradigm for AI and investigate the recent explosion of computer mod-
els addressing these kinds of tests. Not only do we aim at analysing the
meaning, utility, and impact of these computer models, but also better
understand what these tests measure in machines, whether they are use-
ful to evaluate AI systems, whether they are really challenging problems,
and whether they are useful to understand (human) intelligence.

• Set a parallelism between the cognitive development in humans and ar-
tificial systems through the use of a general-purpose learning approach.
Explore intelligence tests as a possible way to examine concept depen-
dencies in cognitive development in artificial systems by means of the
acquisition and use of general mental operational constructs. Analyse
and determine the complexity of this constructs.

• Implement a rule-based approach for managing, structuring, assessing
and, finally, revising knowledge in incremental and lifelong learning en-
vironments. Study how we can have a precise control of how knowledge
develops during learning through information theory-based principles (to
characterise knowledge) and hierarchical knowledge assessment struc-
tures. Evaluate what happens when the background knowledge grows
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significantly. Try to overcome the problem of having bounded resources
(memory and time) and support knowledge acquisition incrementally
neither discarding the prior knowledge nor retraining the induced model
repeatedly.

1.3 Structure of this dissertation

In the following, we briefly summarise the main contributions of the different
chapters in this thesis. While the first three chapters are devoted to knowl-
edge representation, learning and evaluation approaches in which this work
has focused, the next four chapters will outline the main contributions about
contruction and evaluation of general-purpose learning systems.

• Chapter 2 summarises different knowledge representation paradigms:
propositional, first-order logic and functional. In this chapter we review
the basic features, advantages and limitations of these paradigms, as
well as the most important learning methods and techniques defined for
them. We advocate for the advantages of using functional programming
languages featuring powerful construction, abstraction and/or higher-
order features as a representation language for general-purpose learning
systems. It concludes by giving the standard notions and terminology
for representing knowledge in our rule-based approaches although some
further notation will be introduced “on the fly” if necessary.

• In Chapter 3 we review some of the AI areas and techniques able to
work with complex data environments. From here, we have collected
some ideas for developing our declarative and general-purpose learning
system (called gErl). Furthermore, this chapter is devoted to those areas
of AI that are more related to incremental and cognitive acquisition of
knowledge in which our incremental, lifelong view of knowledge acquisi-
tion approach (called Coverage Graphs) is based.

• Chapter 4 gives a short overview of some techniques and approaches for
assessing the quality of the knowledge learnt both in terms of complex-
ity and compression, and in terms of link-based quantitative assessment
measures. Both approaches have inspired the evaluation procedures of
the settings developed in this thesis (gErl and Coverage Graphs) with
which we address the issue of selecting, arranging and revising knowl-
edge.
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• In Chapter 5, we present and outline our general and declarative learn-
ing system gErl which can be configured with different (possibly user-
defined) learning operators and where the heuristics are also learnt from
previous learning processes of (similar or different) problems. Operators
are applied to rules for generating new rules, which are then combined
with existing or new programs. With appropriate operators, using some
optimality criteria (based on coverage and simplicity) and using a rein-
forcement learning-based heuristic (where the application of an operator
over a rule is seen as a decision problem fed by the optimality crite-
ria) many complex problems can be solved. These results have been
published in [MFHR13b, MFHR13c, MFHR13d, MFHR13a].

• Chapter 6 introduces some theory and techniques of psychological mea-
surement (most common intelligence tests and cognitive development
tests). Furthermore, we make a review of what has been done when
intelligence test problems have been analysed through cognitive models
or particular systems. We make a general account of all these works in
terms of how they relate to each other what their real achievements are.
Overall, the ultimate goal of the chapter is to understand the meaning,
utility, and impact of these computer models taking intelligence tests,
whether these test are useful to evaluate AI systems, and explore the
progress and implications of this area of research. These results have
been published in [HMS+16].

• In Chapter 7, we try to better understand the role of mental capabilities
in cognitive mental development and whether we can evaluate them by
setting a parallelism between the concepts of fluid and crystallised intel-
ligence in humans and artificial systems. We explore fluid intelligence
test tasks as a possible way to examine the development of general in-
telligence in artificial systems. To meet this objective we address several
common intelligence test tasks with our general learning system gErl to
better understand what these IQ test tasks measure, what a system —
human or artificial— requires to solve them, and whether an inability
can be turned into ability through development. These results have been
published in [MFHR16].

• In Chapter 8 we present an incremental, long-life view of knowledge
acquisition which tries to improve task after task by determining what to
keep, consolidate and forget, overcoming the stability-plasticity dilemma
[CG88]. It is formalised as a general assessment setting for knowledge
acquisition in incremental cognitive systems (called Coverage Graphs): a
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hierarchical rule-assessment tool driven by coverage relations and metrics
based on the Minimum Message Length (MML) principle [WB68a]. The
metrics are used to forget some of the worst rules and also to consolidate
those selected rules that are promoted to the knowledge base. These
results have been published in [MFHR14, MFHR15a, MFHR15b].

• The dissertation concludes with Chapter 9, where we summarise the
main contributions of the work and outline several possible directions
for further research.

Finally we add some appendices with additional information.





2
Complex data and knowledge

representation

In this chapter we give a straightforward introduction to a number of paradigms
for knowledge representation in artificial intelligence: propositional, first-order
logic and functional and discuss about their strengths and limitations. These
knowledge representation paradigms are usually associated with techniques
and approaches for reasoning and learning, i.e.: propositional learning, Induc-
tive Logic Programming and Inductive Functional Programming. The purpose
of this chapter is to reflect the need of using expressive knowledge represen-
tation paradigms with highly expressive hypothesis languages when learning
from rich data scenarios.

This chapter is organised as follows. Firstly, in Section 2.1 we motivate
the problem of choosing knowledge representation paradigm in AI. Next, we
briefly introduce both the propositional (Section 2.2) and first-order logic set-
tings (Section 2.3) for knowledge representation in AI and their inherent limi-
tations. To overcome these limitations we advocate for the use of higher-order
mechanisms and types presented in the functional paradigm in Section 2.4.
Finally, we summarise some notions about the functional programming lan-
guage used for developing our general rule-based learning approach in Section
2.5 and we close the chapter with a brief summary and conclusions (Section
2.6).

2.1 Introduction

During our life, we are confronted with a vast amount of data that we per-
ceive from our surroundings through, for instance, seeing, hearing, smelling,
etc. Therefore, our brain is—in a way that is not very well-known yet—in
charge of learning from these complex inputs in order to infer knowledge.
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This ability of learning is what makes us intelligent. For this reason, machine
learning is a central research topic within the field of artificial intelligence.
Its main goal is to explore the construction and study of algorithms that can
learn through the acquisition of knowledge in some environments and make
predictions from experience in them. This knowledge (or data) required as the
input of any learning system consists of descriptions of objects (measurements
of some of their properties) from the universe (observations) and, in the case
of supervised learning, an output value associated with the example. The en-
coding of this knowledge must be done in a suitable way such that it can be
manipulated or understood by a computer. The learner (or learning system) is
required to extract some critical features, or rules, from this data, compressing
the information that the data contain into a generalisation, or hypothesis, so
that correct inferences can be made on unseen observations. More formally,
according with [Mit82], the inductive learning (or generalisation) problem can
be defined as follows:

Definition 1 Given:

1. A language LE for describing observations or evidences (Observation
Language);

2. A language LH for describing hypothesis imposing a bias on the form of
induced rules (Hypothesis Language);

3. A deductive framework that matches generalisations to instances, i.e., a
coverage relation for LH and LE;

4. A set of positive and negative training instances of a target generalisation
to be learnt.

Determine: a plausible solution (hypothesis) belonging to LH and consistent
with the given training instances

Depending on the task of inductive learning, this definition can be extended
to deal with noisy data (relaxing requirements about the quality criterion for
evaluating the hypotheses), or adding some prior knowledge K (background
knowledge) to bias the learning, or learn with only positive examples.

Focusing on the language in which instances and solutions are described,
it should be flexible enough to abstract the essential features of observations
for the particular problem and comprehensible enough to the user providing a
transparent description of the problem. Unfortunately, representational power
comes at a price:
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• The knowledge representation language chosen to express a problem dic-
tates what can and cannot be learnt in terms of the language’s expres-
sivity (types of problems that it can be tackled).

• The speed of learning (in terms of its efficiency) is related the language’s
expressiveness, namely, the richer the language is, the larger the search
space.

• The transparency or understandability of the knowledge that is learnt
(in terms of its explanatory power) establishes the comprehensibility for
the user. A representation that is opaque to the user may allow the
program to learn, but a representation that is transparent also allows
the user to learn.

Therefore, the choice of a knowledge representation language depends on the
nature of the problem to be solved. As we have said, learning systems are not
only constrained by the available information in their environment (not ev-
erything can be explained, modelled or predicted) but also they are biased by
the representation framework. For example, in the attribute-values represen-
tation language, the common data representation in AI and machine learning,
relationships between objects are difficult to represent. Whereas, a more ex-
pressive language, such as first order logic, can easily be used to describe
relationships. However, complex data is usually also characterised by exist-
ing relations between features and with the existence of complex structures
such as lists, sets, trees, graphs, etc., so the expressive power of the knowl-
edge representation language is even more important . The importance of the
representation language in the learning process has been stated by different
works [BGCL00a, Fla00, HO14b]. ,

In what follows, we will complete a rapid tour of a variety of declarative
representation paradigms highlighting some of their inherent limitations, and
we will advocate for the use of symbolic languages for AI, particularly fea-
turing functional semantics and the use of notions such as higher-order and
different kinds of abstractions. From our point of view, functional languages
are the most appropriate when learning in complex and rich scenarios due to
its highly expressibility and comprehensibility, as well as attractive knowledge
manipulation mechanisms.

2.2 Propositional logic
The vast majority of machine learning systems are propositional (decision
trees [Mic83], (most of) genetic algorithms [BGH89], artificial neural net-
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works [RMPRG86], Bayesian models [Bun92], support vector machines (SVM)
[Gär05], . . . ), in the sense that they are only able to deal with flat, well struc-
tured data in one table. The use of propositional inputs implies that the
observations are represented as attribute value pairs, or feature vectors. An
instance is described by a fixed collection of attributes: Ai, i ∈ 1, . . . , n. An
attribute can either have a finite set of values (discrete) or take real numbers
as values (continuous or numerical). The set of all possible unlabelled exam-
ples of an specific problem E is composed of all the elements e = 〈v1, v2, ..., vn〉
with n being the number of attributes and vi is the value of attribute Ai. A
labelled dataset D is a set of examples described as pairs 〈e, c〉 where e ∈ E,
C = c1, . . . , ck is the set of classes and c ∈ C is one of the k possible values of
attribute Class. This relative simple representation language has been widely
employed because its high efficiency that allows problems with a great num-
ber of instances to be handled, and it is perfectly adequate for representing
problems (instances) that do not contain any complex relationships.

Figure 2.1: A simple binary classification problem (positive ⊕ and negative 	 class).
Each scene corresponds with one observation or instance and can be decomposed into
two objects: left-side and right-side object. Adapted from [VLDR01].

As an example of an attribute-value classification, Figure 2.1 show two
sets of observations (instances) belonging to two classes (positive and nega-
tive) where the goal is to discriminate between the observations belonging to
the positive class and those belonging to the negative class. Each scene can be
described by a fixed number of attributes describing particular characteristics
of the objects (left and right side) in each instance (shapeleft, sizeleft, colorleft,
shaperight, sizeright, colorright) and this information can be summarised in one
table (see Table 2.1) where each tuple represents one observation and each col-
umn corresponds to one attribute. A typical (incomplete) set of classification
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rules to classify the instances would be:

if colorright = black and colorleft = white then class = ⊕

if colorright = white and shapeleft = square then class = 	

id shapeleft sizeleft colorleft shaperight sizeright colorright class
1 square large white triangle large black ⊕
2 square large black triangle small black ⊕
3 triangle small white square small black ⊕
4 triangle small white triangle small black 	
5 square large black triangle large white 	
6 triangle large black square large black 	

Table 2.1: A simple classification problem. Each scene (instance) consists of two ob-
jects (left and side shape). Each object is represented by its shape ( square or triangle,
its size ( small or big), and its color (white or black). Each scene is tagged/labelled
with a class (⊕ or 	).

Now, consider the more complex Bongard’s analogy problem in Figure 2.2
(adapted from [Bon70]) where each diagram contains a different number of ge-
ometrical objects (such as lines, points, squares, triangles, . . . ), each having a
number of different properties (small, large, white, black, horizontal, . . . ) and
a variable number of relations between them (inside, intersection, cross, . . . ).
Here we can observe that, when objects are structured and consist of several
related parts, we need a richer representation formalism and, therefore, the
propositional representation paradigm presents several and important draw-
backs when rich data comes into the picture [Fla00]:

• Propositional logic requires to select a fixed number of attributes that
could appear for every problem thus limiting its expressiveness power.
Not all the scenes contain the same number of objects and some of the
attributes will have a null value. Note that each possible atomic fact
requires a separate unique propositional symbol. If there are n people
and m locations, representing the fact that some person moved from
one location to another requires n ·m2 separate symbols (combinatorial
problem), therefore being unfeasible to handle each possible combina-
tion and, perhaps, not all the attributes are meaningful for each object.
Moreover, for every available relation between objects, there should be
a propositional attribute for every possible tuple of the relation. Again,
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Figure 2.2: Evidence for a Bongard’s analogy problem. Adapted from [Bon70]

the number of such attributes is polynomial in the number of available
objects.

• One should also order the objects in the examples. Without determining
the order of the objects within a scene, there is an exponential number
of equivalent representations of a problem (with respect to the number
of objects).

• It is not possible to use the previously-known information (background
knowledge) expressed with auxiliary functions (including recursion). For
instance, consider the problem of learning the product of two natural
numbers. This hardly could be solved without the help of a function for
the addition of natural numbers.

• Finally, another important problem is that, intrinsically, propositional
models are unable to capture relational concepts, i.e., the problem of
determining if a number is even or not; or the impossibility of including
variables and thus express general relations among the values of the
attributes, i.e., the popular problem from the UCI repository [AA07]
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which defines the function monks1, such that monks1(_,_,_,_,1,_) and
monks1(X,X,_,_,_,_), where X is a variable, are true.

The above limitations indicate that a more expressive and flexible representa-
tion of data and knowledge should be used.

2.3 First-order logic

First-order logic representation is an extension of the propositional logic form
of knowledge representation, which includes a richer ontology of objects (terms),
properties (unary predicates on terms), relations (n-ary predicates on terms)
and functions (mappings from terms to other terms). By means of a for-
mal language (Horn clauses), first-order logic express the knowledge about a
certain phenomena or a certain portion of the world in a more flexible and
compact way (compared to propositional logic). Furthermore, it uses quan-
tified variables over (non-logical) objects. First-order logic allows the use of
very expressive and comprehensive models for representing complex problems.
In particular, the Logic Programming (LP) language Prolog, which uses first-
order logic and SLD resolution (which stands for “SL resolution with Definite
clauses”)[KK83] as the theorem-proving strategy, has and is being one of the
most widely used knowledge representation languages for complex problems
in databases, medical informatics, bioinformatics research, . . . . Apart from its
expressiveness power due to its mathematical foundation, other reasons why
Prolog is suitable for the development of advanced AI systems include:

• The use of Terms as the single data structure to implement any other
data structure;

• Simple syntax, a Prolog program is actually a collection of atoms;

• Program and data use the same syntax. Thus, we can take data as
programs or programs can be data of other programs;

• Weak typing because types of variables in Prolog do not have to be de-
clared explicitly which, although eases the programmer’s task (program
design decisions can be postponed to the last moment), makes it difficult
to find program bugs;

• Incremental program development, where a program can be developed
and tested incrementally (other language programs need to be developed
almost fully before execution);
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• Extensibility, where a Prolog program can be extended and modified
adapting both its syntax and semantics to the needs.

Let us refer to the Bongard problem (Figure 2.2) presented in Section 2.2.
In that section we illustrated the drawbacks of using propositional languages
for its representation. By using Prolog as knowledge representation language,
each example can be easily described by a fact, using predicates to represent
the different objects, characteristics and relations. In particular, the upper left
scene of the Bongard problem (Figure 2.2), which consists of a small triangle
which is in a circle, can be specified as follows (the other scenes can be encoded
in the same way):

1 positive :- object(o1), object(o2), circle(o1), triangle(
o2), in(o1 ,o2), large(o2).

This representation allows us to add (if necessary) more complex relations or
characteristics to the above definition (such as size, pointing,...). Alternatively,
we can represent the above clause by providing identifiers for each example
adding the corresponding facts from the condition part of the clause to the
background theory (thus avoiding long clauses). For the above example, the
following facts

1 object(e1 ,o1).
2 object(e1 ,o2).
3 circle(e1 ,o1).
4 triangle(e1,o2).
5 in(e1 ,o1 ,o2).

would be added to the background theory and the above positive instance
would then be represented through the fact positive(e1), where e1 is the
identifier. This is a common representation (for examples and hypotheses)
employed in the Inductive Logic Programming (ILP) literature.

Continuing with the Bongard problem and the latter representation, since
the goal is to discriminate between the positive and the negative scenes (in-
stances), the following first-order hypothesis forms a solution to the learning
problem (⊕ class):

1 positive(E) :- object(E,X), object(E,Y), circle(E,X),
triangle(E,Y), in(E,Y,X).

which states that if there exists a circle and a triangle such that the triangle
is inside the circle, the examples is of the class ⊕.

This example has shown the power of representation of first-order lan-
guages. The rich expressiveness was the motivation for many researchers to
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apply first-order logic language for machine learning creating a new area named
Inductive Logic Programming (ILP).

2.3.1 Inductive Logic Programming

ILP [Mug99] can be seen as the dual paradigm of Logic Programing, while
the latter is centred on the deduction of facts from a logic program introduced
by the user, ILP describes the process of generating logic programs from facts
(and probably other logic programs) introduced by the user. ILP is considered
a subfield of Inductive Programming (IP) which allow to address a wider class
of problems, not only the synthesis of recursive logic programs [FS08, FY99],
but also inductive theory revision [RM91, DR92] and declarative program
debugging [Sha83].

The beginning of ILP dates to the 1980s (with the MIS system of Shapiro
[Sha83]) when machine learning researchers started using Horn clauses logic
as their knowledge representation language with the aim of overcoming the
limitations of the propositional learners and advocated for more expressive
and comprehensive models. In the 1990s decade, some ILP systems were
presented as general-purpose approaches to machine learning from relational
data such as the systems PROGOL[Mug95], GOLEM [ALLM94] and FOIL [CJQ94].

ILP can be defined formally as the inference of a theoryH from an evidence
E (which may be only positive E+ or both positive and negative (E+, E−))
possibly using a background knowledge theory K, such that the following
condition hold:

1. K 6|= E+ (prior necessity)

2. ∀e− ∈ E− : K 6|= e− (prior satisfiability)

3. K ∪H |= E+ (posterior sufficiency)

4. ∀e− ∈ E− : K ∪H 6|= e− (posterior satisfiability)

For exploring the space of possible hypotheses, ILP relies (a) on fixed induc-
tive operators [Mug95, MB92, MF90, ALLM94] ; (b) on traditional concept-
learning techniques [CJQ94, QCJ95]; or on (c) applying traditional proposi-
tional systems [LDG91, LD93, BDR98] (we will further discuss about it in the
following chapter).

Because first order logic is very expressive (turing-complete), ILP can
target problems involving structured data and background knowledge. This
makes ILP especially appropriate for scientific theory formation tasks where



20 2. Complex data and knowledge representation

the data are structures, the model may be complex, and the comprehensibility
of the generated knowledge is essential. Some of the domains where ILP has
been applied include drug design for pharmaceutical purposes [KMLS92], nat-
ural language [MC95], learning of medical rules [MODS97], protein primary-
secondary shape prediction [MKS92] and mutagenicity prediction [SMKS94a].
Detailed surveys of ILP are provided by [LD93, MD94]

Despite the fact that first-order logic has represented an important step
beyond the representational limitations of attribute-value paradigms (it pro-
vides understandable and interpretable models and a well-understood theo-
retical framework for knowledge representation and reasoning), this kind of
languages also has some limitations:

• Functions: functions are artificially expressed in first-order languages by
using predicates. If a function is categorical and has only two possible
output values, it is usually represented by predicates using the examples
of one class as positive examples and the examples of the other class
as negative ones. When there are more than two classes, there is only
positive evidence, and each example is expressed like a fact. In these
cases, the attributes and the class are only distinguished through the
use of modes to guide the modelling (rule-induction) process1. This
representation based on modes and facts is not supported by many ILP
systems.

• Types: First-order languages have a limited use of types, i.e., they are
usually untyped or weak typed languages. Constructor types cannot be
defined naturally. The use of complex structures like sets and multisets
is not direct.

• High order: Higher order is not supported by the basic first-order logic
representation. This is a drawback for the learning of complex prob-
lems where higher-order features can be very useful. Instead, some ILP
systems are schema-based, where these schemata cannot be learnt.

• Numerical attributes: The use of numerical types in logic languages is
not direct. Therefore, the learning of problems that contain numerical
attributes is not possible for most of the ILP systems unless they use
some kind of constraint logic programming (CLP) scheme [JL87].

1Mode declarations state the target predicate to be modelled (“head” mode declarations)
as well as other attributes and relationships in the data and the way these will be used in
the rules to be constructed (“body” mode declarations)



2.4. Higher-order and Types 21

2.4 Higher-order and Types
In the previous sections we have discussed the limitations of propositional and
first-order logic learning approaches for knowledge representation (and learn-
ing) in complex scenarios, where not only the structure of each individual
but also the treatment of types and functions are important. Although most
researchers use an (untyped) first-order logic for knowledge representation
(such as Prolog), we advocate for the use of type theories and higher-order
mechanisms in Functional Programming (FP) as the knowledge representa-
tion formalism for declarative programming languages and learning systems.
The main differences between functional and logical paradigms lie in (a) how
knowledge is represented: in LP it is represented as a database of clauses (facts
or rules) while in FP the individuals are represented as equations; and in (b)
how the programs are defined: logic programming uses logic expressions (pred-
icates which do not have a return value) and functional programming defines
programs through mathematical expressions (functions).

Functional programming has its origins in λ-calculus which was defined
in the 1930s by Church [Chu33] as a mathematical notation for functions, its
application and recursion. Variable binding and substitution are central parts
in λ-calculus: variables are bound when a function is formed by abstraction
and, when a function is applied, the formal parameters are replaced by their
actual counterparts by replacement (matching). From the very beginning,
the functional programming community has used the elegance of higher-order
functions jointly with dynamic or static typed systems, depending on the
freedom given to the programmer. The functional style of programming has
been growing in popularity over the last thirty years, from its beginnings in
early dialects of LISP (Common Lisp or Clojure), to the up-to-date functional
programming languages such as Haskell, Erlang, Clean, and the ML family
of languages. Despite some differences between them, it is clear that all of
them provide the following facilities (for a complete introduction to functional
programming we refer the reader to [BW88, Rea89, Wik87]):

• The use of algebraic types, both basic (integers, floats, characters, strings,
tuples, sets, lists, tree, graphs, . . . ) and user defined (recursive) types im-
plies that not only the representation is compact (all information about
an individual is contained in one place), but it also provides a straight-
forward mechanism for manipulating such representations.

• This representation can be used to guide the induction of suitable def-
initions allowing to apply machine learning directly obtaining compre-
hensible hypotheses (providing insight into the nature of the data).
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• The evaluation mechanism is based on matching and reduction (following
ordinary mathematical practice). It can be a strict evaluation, where the
arguments of the functions are first evaluated (before the (instantiated)
function itself) and components of data types are fully evaluated on
object formation; or lazy evaluation, where function arguments and data
type components are only evaluated when their become necessary for
function evaluation.

• Higher-order, where functions are first-class objects, i.e., they may be
passed as arguments to and returned as results of other functions or
they may form components of composite data structures and so on.

• Modularity, where the languages allow for the use of modules (set of
functions) of varying degrees of complexity by means of which large
systems can be developed more easily.

Therefore, functional knowledge representation languages have several ad-
vantages over other approaches. Knowledge is not only supervisable and com-
prehensible thus allowing for introspection (as with first-order logic), but they
also facilitate the handling of complex and deep knowledge structures by using
notions such as higher-order and other kinds of abstractions. The field that
has worked on these ideas in the past decades is precisely Inductive Functional
Programming (IFP), aimed for the synthesis of programs or algorithms having
a precise control over the hypothesis spaces generated.

2.4.1 Inductive Functional Programming

Inductive Functional Programming (IFP), as a subfield of IP, is concerned with
the synthesis of (recursive) functional programs or algorithms from incomplete
specifications (positive and negative examples) by using no side-affects func-
tional languages such as LISP, Miranda, ML or Haskel. The inferred program
must be correct w.r.t. the provided evidence generalising it (it should be
neither equivalent to it, nor inconsistent).

IFP research started in the 1970s in the seminal THESIS system of Sum-
mers [Sum77] and the work of Biermann [Bie78] which addressed the synthesis
of linear recursive LISP programs by inferring computation traces from exam-
ples, and then using a trace-based programming method to fold these traces
into a recursive program. There seemed to be some disillusion in the IFP
community in the following decades ([Smi84] surveys the main results until
the mid 1980s) as the research activities decreased significantly while the ad-
vent of logic programming brought a research direction in the early 1980s.
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Currently, IFP has revived over the last years with analytical approaches in
term-rewriting frameworks such as IGOR I and IGOR II [KS06, Kit07] based
on analysis of the input-output example pairs; and by the search-based ap-
proaches ADATE [Ols95] and MAGICHASKELLER [Kat05], that generate a set of
programs and selects those that satisfy the given condition. Depending on
the approach followed, the algorithms behind IFP systems rely on different
inductive searching methods and operators. For instance, analytical systems
such as THESIS or IGOR I[Sum77, KS06] are schema-guided, while IGOR II
[Kit07] is based on constructor-term rewriting techniques (including predicate
invention). On the other hand, search based approaches such as ADATE [Ols95]
uses evolution operators (mutation and crossover), whereas MAGICHASKELLER
[Kat05] relies on higher-order functions (as some kind of program pattern or
scheme) jointly with breadth-first search. Currently, many AI and machine
learning areas have shown to be successful application niches for IFP, includ-
ing knowledge acquisition [SHK09], artificial general intelligence [CKHS09],
reinforcement learning and theory evaluation [HO00b], cognitive science in
general [SK11], intelligent agents, games, robotics, personalisation, ambient
intelligence and human interfaces.

As we have seen, there is no single prominent approach to inductive pro-
gram synthesis. Instead, research is scattered over the different approaches
mainly in the areas of ILP and IFP, but also in others such as ILFP (induc-
tive logic functional programming), program synthesis, AI, cognitive science,
etc. Nevertheless, IP is a research topic of crucial interest for AI in general
because of its operational ability to generalize a program —containing control
structures as recursion or loops— from examples. This is a challenging prob-
lem which calls for approaches going beyond the requirements of algorithms
for concept learning. Pushing research forward in this area can give impor-
tant insights in the nature and complexity of learning. Furthermore, IP is the
right approach for a series of fundamental problems to make machines learn
from experience in a more incremental and constructive way. In the following
chapter we will put more emphasis on the appropriateness of IP as a learn-
ing paradigm that may facilitate the integration, modification, maintainance,
application and, finally, the incremental acquisition of complex knowledge.

2.4.2 Alternatives for knowledge representation

As an alternative to the use of logic (LP) or functional (FP) paradigms for
knowledge representation, the last two decades, several proposals have been
proposed to amalgamate both paradigms. The need for an improved and gen-
eral logic programming paradigm has led to hybrid approaches such as func-
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tional logic programming languages (FLP) [HORQ98, Fla00, FHR01, Llo01] as
an extension of logic programming which increases the first order expressive-
ness with a rich representation (types and higher-order constructs, constraints,
probabilities, etc.). On the other hand, we find the domain-specific languages
(DSL), which are usually better suited for the application at hand. A DSL is a
computer language specialised to a particular application domain in contrast
to a general-purpose language (GPL) (e.g. Prolog, Haskell, C or Java), which
is broadly applicable across domains. Therefore, DSLs allow to express com-
plicated data structures and model a particular type of problems or solutions
more clearly than with other existing languages [Gul11, LG14, PG15].

2.5 Knowledge representation in Erlang
As we have seen in the previous section, not only do functional programming
languages provide a highly expressive and comprehensible knowledge repre-
sentation framework, but also appropriate knowledge manipulation mecha-
nisms such as higher-order for biasing, explicitly or implicitly, the induction
of programs. For these reasons, among some others such as reflection and
meta-programming, we have chosen the functional programming language Er-
lang [VWW96] as unique representation language for all the knowledge and
development of our general-purpose learning system gErl (see Appendix A for
specific advantages of using Erlang and for further information). Briefly, Erlang
is a strict, dynamically typed2 functional language that comes with built-in
support for, as commented, reflection, higher-order and meta-programming,
but also for lightweight concurrency, transparent distribution, hot code re-
placement and effortless scalability. Although Erlang is dynamically typed, it
is possible to declare types and annotate functions in order to both document
them and help to formalise the implicit expectations about types put in the
code.

Let us see how to represent the previous Bongard problem in Erlang. We
start with the appropriate type definitions. A Bongard diagram (type dia-
gram) consists of a undefined list of tuples ({}) each of which consists of a
shape (circle, triangle or a square) together with the number of times that
shape occurs in the diagram. Furthermore, the shape data type has the tuple
constructor inside for representing this relation between shapes. Therefore,
we need to declare the types for the diagram, the shape and, finally, the inside
relation as follow:

2Type checks are performed mostly at run time. It is opposed to Static Typing.
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1 -module(Bongard).
2 % S y n t a x f o r t y p e d e c l a r a t i o n : %
3 % - t y p e T y p e N a m e ( ) : : T y p e D e f i n i t i o n . %
4 -type inside () :: {shape(), shape()}.
5 -type shape () :: circle | triangle | square | inside ().
6 -type diagram :: list({ shape(), Integer }).
7

8 % S y n t a x f o r t y p e s i g n a t u r e : %
9 % - s p e c F u n c t i o n N a m e ( A r g u m e n t T y p e s ) - > R e t u r n T y p e s . %

10 -spec c la s s (diagram ()) -> positive | negative

Code 2.1: Type definitions in Erlang for the Bongard problem 2.2

Furthermore, we can also specify the type signature of different functions
in order to define the input/output arguments accepted. In the previous type
specification (Algorithm 2.1) we see the type signature for the function called
as class() which returns if the given diagram belongs to the positive or the
negative class. In the specification above we say that this function accepts
diagrams as input arguments, according to type definition of diagram(), and
either returns the atom positive or negative. Therefore, calling, for in-
stance, class/1 with a wrong diagram, i.e., class([{cirle},{triangle}]),
is not syntactically valid according to our specifications.

Here are a few syntactically correct examples:
1 c la s s ([{{ triangle ,circle },1}]) -> positive;
2 c la s s ([{ circle ,1},{ triangle ,1},{{ triangle ,circle } ,1}]) ->

positive;
3 c la s s ([{{ square ,triangle },1}]) -> negative;

Code 2.2: Examples for the Bongard problem 2.2

Note that the examples are rules (or equations) instead of facts. As it can
be seen, functions are a more natural way for representing learning problems
(in this case, a classification task). Finally, if we were supposed to induce
the definition for the above function, not only could we take advantage of
the built-in-functions from the background user-defined functions, but also
from the higher-order functions from Erlang. Rather than learning a recursive
function, the IP system then only needs to pick the suitable higher-order
function and instantiate it appropriately. For instance, the code for checking
the class of a diagram could be:

1 c la s s (Diagram) ->
2 lists: fo ldr (fun({Shape,_},Class)->
3 if
4 Shape == {triangle ,circle} -> positive;
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5 true -> Class
6 end
7 end , negative , Diagram).

Code 2.3: Possible solution for the Bongard problem 2.2

Here foldr (also known as reduce) is a specific higher-order tail recursive built-
in function which calls fun(Shape,_,Class) (a lambda function declaration,
also known as fun in Erlang terms) on successive elements (from right to left)
of the diagram (list) and returns the final value of an accumulator (Class). If
the diagram contains the relation inside between a triangle and a circle, the
class is positive, otherwise, the class is negative.

We have employed the same example in three different frameworks: propo-
sitional, logic programming and functional programming. It has given a per-
spective of the limitations of each approach. The main advantage of using
a representation of examples that reflects directly their real structure (by
user-defined type declarations, as in the example, or by built-in language
types) is that we can design learning algorithms capable of manipulating such
representation directly and, furthermore, guide the hypothesis construction
[BGCL00a].

In what follows, we will introduce some basic notions of the functional
programming language used in our learning setting.

2.5.1 Basic Notation

In this subsection we briefly summarise some basic notions of the functional
programming paradigm. Note that the notation used matches perfectly with
the Erlang syntax. For a signature, a set of function symbols (together with
their arity) Σ and a countably set of variables X , we denote the set of all terms
over Σ and X by T (Σ,X ) and the (sub)set of ground (variable free) terms by
T (Σ). We distinguish function symbols that denote datatype constructors (C)
from those denoting (user-)defined functions (F). Thus Σ = C ∪F , C ∩F = ∅.
Depending on the arity of symbols in Σ, a function is said to be a constant if
its arity is equal to 0, otherwise it is said to be a functor. The set of variables
occurring in a term t is denoted Var(t). Following Erlang syntax, constant
terms begin with a lower-case letter and variables begin with an upper-case
letter. A term t is a ground term if V ar(t) = ∅.

The equations are applied as simplification (or rewrite) rules from left to
right, i.e., they form a term rewriting system. An equation is an expression of
the form l = r where l (the left hand side, lhs) and r (the right hand side, rhs)
are terms. R denotes the space of all (conditional) functional rules ρ expressed
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as l [when G]→ r, where terms l and r are, respectively, the lhs and the rhs of
ρ, and G is an ordered conjunction (comma-separated) or disjunction (semi-
colon separated) of equality constraints (Boolean expressions) called guards
gi = hi with gi, hi ∈ T (Σ,X )3. Code 2.4 shows an example of a conditional
rule in Erlang. If G = ∅, then ρ is said to be an unconditional rule. The lhs
l of a rule ρ has the form F (a1, . . . , an), called function head, where F ∈ F
is the defined function symbol, and arguments ai ∈ T (X ) are built up from
constructors and variables only. We call the terms from T (C,X ) constructor
terms. The sequence of the argument(s) ai is called pattern. This format of
rules or equations is known as constructor-based in functional languages. If
we apply a defined function to ground constructor terms F (i1, . . . , in), we call
the ij inputs of F .

1 adult(X) when X >= 18, X =< 288 -> True;
2 adult(_) -> false.

Code 2.4: Conditional rule in Erlang

Let P = 2R be the space of all possible functional programs (modules in
Erlang) formed by sets of rules ρ ∈ R. Given a program ω ∈ P, we say that
term t reduces to term s with respect to ω, t →ω s, if there exists a rule
l [when G] → r ∈ ω such that a subterm of t at occurrence u matches l with
substitution θ, all conditions (gi = hi)θ hold, for each equation li = ri ∈ r, liθ
and riθ have the same normal form (that is, liθ →∗ω σ, and rirθ →∗ω σ and σ
can not be further reduced) and s is obtained by replacing in t the subterm
at occurrence u by rθ.

2.6 Summary

The actual choice of knowledge representation paradigms (or languages) de-
pends on what information is to be processed and on what functions are needed
to manipulate, transform and discover knowledge from it. For a machine to
perform these tasks, knowledge must be encoded in a suitable way, namely:

• The representation should adequately reflect the types of knowledge
needed.

• The representation should allow new knowledge to be added and existing
knowledge to be updated easily.

3One negative point about guards in Erlang is that they will not accept user-defined
functions because of side effects.
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• The representation should permit the derivation of new knowledge not
explicitly represented in the knowledge base.

• The representation should promote efficient processing of the informa-
tion.

Therefore, the kind of knowledge representation chosen to express a prob-
lem dictates the concepts that an algorithm can and cannot learn, in addition
to its expressiveness, comprehensibility, speed of learning and efficiency.

The main motivation of this chapter has been to put emphasis on the
idea that in order to learn from rich data scenarios we need to use expressive
knowledge representation paradigms (for the background knowledge, evidence
and hypotheses). We thus advocate for the use functional programming lan-
guages which provide not only highly expressive hypothesis languages (sup-
porting a variety of data types with complex structure), but also higher-order
mechanisms for their manipulation thus allowing learning algorithms to have
precise control over the hypothesis spaces generated. An attractive feature
of this approach is that the induced definitions in such hypothesis languages
are comprehensible, thus providing insight into the nature of the application
data. In the following chapter we will go deeper into the discussion about
the techniques for learning from complex structures as well as the problem
of learning from experience in incremental and constructive scenarios which
entail an inductive programming approach and those which not.



3
Learning in complex and

incremental scenarios

In the previous chapter we introduced some of the most used knowledge rep-
resentation paradigms in AI. Furthermore, we reflected the advantages of us-
ing symbolic approaches (featuring powerful construction, abstraction and/or
higher-order features) over non-symbolic approaches, especially when knowl-
edge becomes complex, which is one of the desirable characteristics in general-
purpose learning systems. Now it is the turn to revisit the issue of learning in
incremental scenarios, adding to it the problem of addressing complex struc-
tured data. We suggest that inductive programming can be the right approach
for that.

The chapter is organised as follows. Section 3.1 motivates the need of in-
cremental learning approaches able to appropriately deal with complex struc-
tured knowledge. Sections 3.2 and 3.3 give a short account of, respectively, the
many approaches able to deal with complex structures (input or output), and
some of those that exhibit incremental, cumulative and cognitive characteris-
tics. Finally, a summary of the chapter and a more comprehensive analysis is
discussed in Section 3.4. .

3.1 Introduction

Some important challenges for AI systems lie in the construction of systems
that are able to (incrementally) acquire and use both previous learnt knowl-
edge and context information. Lifelong learning, transfer learning, meta-
learning, incremental or cumulative learning are some of the approaches in
which research and advances in incremental knowledge acquisition have in-
creased steadily over the years. In fact, these approaches stand apart from
classical in that they are able to retain the knowledge gained from past learn-
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ing experiences and use it to aid future learning and new problem solving,
i.e., once a small piece of knowledge is integrated or consolidated into the
knowledge base, new inference processes can take place by using this prior
knowledge. However, apart from some simple incremental learning of knowl-
edge (e.g.,rules), most of these approaches for knowledge acquisition do not
fully integrate an abstract and constructive learning: those constructs and
elements the system deals with after a time are the same it had initially.

Additionally, when dealing with complex data scenarios, these approaches
are limited by a still inappropriate handling of knowledge: as knowledge be-
comes more complex and abstract, it is no longer processed in a completely
automatic way. In fact, while the capability of automatically storing and
handling factual, textual, numerical and statistical information has increased
exponentially over the years, this has not been the case for knowledge bases
of arbitrary complexity and sophistication [HO14b]. As we saw in he previ-
ous chapter, flattened data is the most common data representation used in
AI, where data is organised as a table. Each row in the table corresponds
to an example (evidence or observed items) and each column represents a
scalar (or numerical) attribute of the examples. It is assumed that there are
no given relations between attributes (or between examples), neither complex
structures (such as lists, sets, trees or graphs) can be directly represented. In
the same way, the learnt knowledge usually have a predefined flat structure
(even complicated or incomprehensible), thus, being unable to capture the
underlying complex patterns behind the data examples. Furthermore, most
AI systems and knowledge bases are still based on sets of (propositional) rules
over some predefined features and concepts (although the use of ontologies
have made impressive increases in this respect), e.g., as those extracted from
many association rule algorithms.

More often than not, the above problems have nothing to do with large
amounts of data. In fact, much learning in humans and many of the promising
applications [GHOK+15a] that machines cannot solve today work with small
amounts data where each particular inference is not performed from a large
number of examples, but just a few. Once a new example is added to the
knowledge base, this may may force an increment or revision of the existing
knowledge with generalisation or abstraction mechanisms. It should be no-
ticed that this issue is closely related to the deep learning approach [Ben09]
that attempt to model high-level abstractions in data by using multiple non-
linear transformations and complex structures, as architectures, concepts and
features are said to be hierarchical. However, the disadvantage of most deep
learning approaches is that it is not clear how knowledge can be accessed,
revised and integrated with other sources of knowledge due to they are based
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on artificial neural networks and other statistical approaches.
All of these uses (complex data and knowledge, incremental learning and

comprehensibility) are basically the knowledge acquisition, handling and ap-
plication problem [Kid87, ZCC+13] but where depth (and not necessary size
or diversity) is the change. Therefore, much more needs to be done on knowl-
edge acquisition and reuse. Not only do some problems require the efficient
induction of small but conceptually complex programs (including different
data types, structures, variables and recursion), but also crave for a cumu-
lative and developmental nature of learning which facilitate the acquisition,
integration, modification, maintainance and application of this complex knowl-
edge, where new constructs and concepts can be developed and, ultimately,
examined and evaluated. In this chapter we will give a comprehensive (nor
exhaustive) review of some of the areas and techniques in AI able to tackle,
firstly, complex structured data and knowledge and, secondly, continuous and
incremental learning, discussing on the appropriateness of inductive program-
ming to address the knowledge acquisition problem.

3.2 Learning from complex data

Over the last years, several AI areas have become able to (automatically) deal
with rich data and knowledge representations. Rich data scenarios in AI in-
volve predicting sophisticated and possibly complex or recursively structured
objects, rather than scalar values. Focusing on the literature of inductive pro-
gramming, some complex data (toy) examples have been used: the East-West
trains dataset [MMPS94], mutagenesis [SMKS94b], block towers [SHK09], the
rectangle problems [Ols95], Bongard problems [DR10], to name a few. In par-
ticular, there is also a wide variety of application domains containing rich or
structured data including bioinformatics, natural language processing, speech
recognition, and computer vision.

Regarding to knowledge, the typical example of a complex theory or model
is a program or algorithm. Handling knowledge bases that are composed of
programs and algorithms is not an easy task, such as software repositories
(to be precise, knowledge usually has some truth connotations, while soft-
ware repositories are operational). We are interested in knowledge that can
be learnt semi-automatically. Examples of learning complex knowledge are
any model that is able to capture the underlying patterns behind complex
data examples (such as those above or others). Inductive programming (IP)
[Kit10, GHOK+15a] and some related areas such as relational data mining
[DL01] are arguably the oldest attempts to handle this kind of knowledge.
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IP systems can be considered general-purpose AI systems, because any prob-
lem can be represented, preserving its structure, with the use of the Turing-
complete languages underneath (as seen in the previous chapter): logic (ILP
[Mug99]), functional (IFP [HKS09] ) or functional-logic (IFLP [HORQ98]). IP
is particularly useful when the number of examples is small but the hypothesis
space is large.

The current state of IP research is constituted by two different but comple-
mentary kind of approaches (both in functional and logic program induction):
search-based (or generate-and-test based) approaches, where candidate pro-
grams are generated independently from the given specification (i.e., evidence)
and then tested against it thus selecting the best evaluated candidate(s) to be
developed further; and analytical approaches, where candidate programs are
constructed in an example-driven way by inspecting the examples and detect-
ing recurrent structures in them. Analytical approaches (such as [KS06, Kit07]
in IFP or [Mug95, ALLM94] in ILP) are limited to structural problems (such
in list reversing), where only the structures of the arguments matters (not the
content), and where the induction of problems is efficient due to a bias on the
control and data flow of the synthesised programs. On the other hand, search-
based approaches (such as [Ols95, Kat05] in IFP or [CJQ94, QCJ95, Qui96]
in ILP) can also handle semantic problems where the values of the arguments
matter (such in list sorting) due to the more general methods used. Further-
more, these two approaches can also be coupled [Fle97, Kit07].

ILP, for instance, has been found especially appropriate for scientific the-
ory formation tasks where data are structured, models may be complex, and
comprehensibility of the generated knowledge is essential. Learning systems
using higher-order features (see, e.g., [Llo95, Llo99, Llo01]) were one of the
first approaches to deal with complex structures, which were usually flat-
tened in ILP. Since this approach solve defects found by first-order logic
in complex structures, it is very suitable for the study of complex struc-
ture domain knowledge discovery such as structure data decision tree learn-
ing [BGCK+97, Bow98, BGCL00b], nuclear learning [Mon95], genetic pro-
gramming [Ken98, KGC99] drug design [KMLS92], natural language [MC95],
learning of medical rules [MODS97], protein primary-secondary shape predic-
tion [MKS92] and mutagenicity prediction [SMKS94a]. Despite the power of
higher-order functions to explore complex structure, this approach has never
become mainstream.

Consider that, for searching the space of possible hypotheses, almost all
the IP systems and approaches rely on the use of different fixed inductive
operators and mechanisms for arrange the hypothesis space. These opera-
tors are developed, among others, by inverting well formalised deductive rules
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(unification, resolution, implication) leading to bottom-up and top-down ap-
proaches, where generalisation and specialisation operators, respectively, are
used [MDRP+12]. Some examples include Plotkin’s lgg [Plo70, Plo72] oper-
ator which works well for a specific-to-general search. The ILP system Pro-
gol [Mug95] combines the Inverse Entailment with general-to-specific search
through a refinement graph. The inverse operator constitutes also the base
of the algorithm employed in the systems Cigol [MB92], Crustacean [MF90]
and Golem (jointly with lgg) [ALLM94]. The Aleph system [Sri04] is based
on Mode Direct Inverse Entailment (MDIE). The Antiunification operator is
used to obtain the least general generalization of the set of the I/O examples in
IGOR II [Kit07]. In inductive functional logic programming, the FLIP system
[FHR01] includes two different operators: inverse narrowing and a consistent
restricted generalisation (CRG) operator [HORQ99]. Other IP systems are
based on traditional concept-learning techniques (FOIL [CJQ94, QCJ95]) or
on applying traditional propositional systems like decision tree learners or rule
learns after converting a (restricted) set of relational problems onto proposi-
tional problems (Linus [LDG91, LD93], TILDE [BDR98]). In any case, the set
of inductive operators configures and delimits the performance of each learning
system.

Additionally, we need to consider that complex structured (in the form of
structured data types or structured prediction) do not entail an inductive pro-
gramming approach. Kernels, distances or other notions [Gär03, EFHORQ05]
can be used to convert a structured problem into a scalar feature represen-
tation (thus leading to incomprehensible patterns/models described in terms
of the transformed (hyper-)space). Even the field of Statistical Relational
Learning [Get07] goes beyond what inductive (logic) programming has been.
Focusing only on structured outputs, the family of generic techniques for this
kind of problems are generally known as Structured Prediction (SP) [Bak07]
algorithms and include problems such as sequence labeling, parsing, collective
classification, bipartite matching (word alignment in NLP or protein structure
prediction in computational biology), entity detection and tracking, automatic
document summarisation, machine translation and question answering. These
techniques include, but are not limited to, Conditional Random Fields (CRFs)
[LM01], which are an alternative extension of logistic regression (maximum en-
tropy models) to structured outputs by using a log-linear probability function
to model the conditional probability of an output y given an input x (Markov
assumptions are considered in order to make inference tractable); and kernel-
based approaches such as the Maximum Margin Markov Networks (M3N)
or the Support Vector Machines (SVM) for Interdependent and Structured
Output spaces (SVM-ISO, also known as SVM struct). The former consid-
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ers the structured prediction problem as a quadratic programming problem
incorporating (a) kernels (which efficiently deal with high-dimensional fea-
tures) and (b) probabilistic graphical models to capture correlations in struc-
tured data. On the other hand, SVM struct, which is strikingly similar to
the M3N formalism, can be seen as a SP evolution of [Gär05] (Kernels) or
[EFHR06, THJA04, EFHR12]. On the other hand, hierarchical classification
can also be viewed as a case of SP where taxonomies and hierarchies are asso-
ciated with the output [KS97]. Finally, the recurrent neural networks (RNN),
a special type of artificial neural networks (ANN) where connections between
units form a directed cycle (thus exhibiting a dynamic temporal behavior),
have also been used in SP achieving the best known results in handwriting
recognition [GLF+09].

What is clear from the those previous approaches is that the number and
performance of AI techniques dealing with rich, complex or structured data
have considerably increased in the past decades. However, this review have
only strengthened our conviction about the appropriateness of the symbolic
approaches such as inductive programming to approach complex structured
learning.

3.3 Incremental learning

Incremental acquisition or the reuse of previously learnt knowledge is of crit-
ical importance in the majority of knowledge-intensive application areas. Al-
though one-shot learning approaches can still be improved, there exists an
upper limit in terms of performance (e.g. upper bound on full-training ac-
curacy and robustness). The question is, therefore, how we can go beyond
classical algorithms to improve learning and knowledge acquisition much fur-
ther. We find the answer in those methods which display human mind-based
learning characteristics as the ability of learning continuously: humans retain
the knowledge gained from past learning experiences and use it to aid fu-
ture learning and problem solving. However, to follow this designing principle
implies a well-known constraint for AI systems (mainly artificial neural net-
works): The Stability-Plasticity dilemma [CG88]1. Although there are several
AI areas where this issue of incremental learning is undertaken (as we will
briefly review in the following), we will argue again that inductive program-

1The Stability-Plasticity dilemma is the problem whereby the brain learns new knowledge
(plasticity) without forgetting its past knowledge (stability). The complete forgetting of
previously learnt information when exposed to new information is known as catastrophic
forgetting [MC89]
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ming is also good way to address this challenge.
Starting with the area of lifelong learning [Thr96b], this is concerned with

the persistent and cumulative nature of learning and, thus, it aims to design
and develop AI systems that must be: (a) capable of retaining and using prior
knowledge, and (b) capable of acquiring new knowledge over a series of predic-
tion tasks, in order to improve the effectiveness (more accurate hypotheses)
and efficiency (shorter training times) of learning. Although current research
in lifelong learning is still in its infancy, several lifelong learning approaches
have been proposed. Thrun was one of the first authors that addressed on
lifelong learning from the point of view of transferring learning2 in a series
of works [TO96, MT93, Thr96a, Thr96b] but, unlike other previous transfer
learning approaches (see [PY10] for a survey on transfer learning for clas-
sification, regression, and clustering problems), he used a measure of task
relatedness, for transferring knowledge from the most related set of learning
tasks. Thrun et al. [Thr96a] also worked on a lifelong learning approach called
explanation-based neural networks where previously learnt networks are used
to guide the subsequent learning of tasks.

Multiple Task Learning3 (MTL) [Bax00, Car93, Thr96b] has also been
considered to incremental learning. Motivated by the limitations of the ap-
plication of MTL networks to continuous or lifelong learning systems (several
outputs of the network, task relatedness measure required, contextual cues,
etc.) there have been some approaches that try to overcome them. Silver et
al. proposed variants of sequential learning and consolidation systems using
standard back-propagation neural networks [SM02, SP04]. They introduced
the task rehearsal method (TRM), that uses the representation of previously
learnt tasks (virtual training examples generated by previous learnt hypoth-
esis) as a source of inductive bias and overcomes the problem of retaining
specific training examples of early learning. Furthermore, Silver et al. [SP06]
presented the context-sensitive multiple task learning (csMTL) , a method
that uses standard back-propagation single-output neural network and addi-
tional contextual inputs (attributes to distinguish task examples) for learning
multiple tasks. MTL research has also considered the use of a shared basis for
all task models to improve learning over a set of tasks. By using a common
basis, these approaches share information between learning tasks and account
for task relatedness as the models are learnt in tandem with the basis. For
instance, Ruvole et al. [ER13] proposed Efficient Lifelong Learning Algorithm

2The transfer of learning is the ability of a AI system to recognize and apply knowledge
and skills learnt in previous domains/tasks to novel domains/tasks

3Multiple Task Learning is well recognized as a method of inductive transfer that is able
to maximise performance across several related tasks through shared knowledge.
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(ELLA) that incorporates aspects of both transfer and multi-task learning.
Learning incrementally has also be approached from the point of view

of reinforcement learning. Ring in [Rin97] presented the continual learn-
ing theory that stands for the constant development of increasingly complex
behaviors. He developed CHILD, an agent capable of Continual, Hierar-
chical, Incremental Learning and Development with has no ultimate, final
task. CHILD combines the well-known Q-learning [WD92] algorithm with the
Temporal Transition Hierarchies (TTH) [Rin93] learning algorithm, a con-
structive neural-network-based learning system that allows a learning agent
to incrementally build a hierarchy of skills (new behaviours are composed
from variations on old ones) based on the temporal context. Tanaka et al.
[TY97, TY03b, TY03a] also proposed a lifelong ML approach for autonomous-
robots (what they call Lifelong Reinforcement Learning) by treating multiple
environments as multiple-tasks. In this case the tasks to be solved are similar.
The systems uses the stochastic gradient method, a type of memory-less rein-
forcement learning where the policy is modeled by an artificial neural network.
As the bias, the authors focused on the variable range of each weight through-
out the n tasks: the average weight is used as initial bias (in each node); the
dispersion of weights is used as learning bias for the learning rate (α) of each
weigh.

Within the area of cognitive and brain sciences, Grossberg et al. [Gro87]
proposed the Adaptive Resonance Theory (ART), a “cognitive and neural the-
ory of how the brain autonomously learns to attend, categorize, recognize, and
predict objects and events in a changing world”, to overcome the aforemen-
tioned Stability-Plasticity problem of forgetting previous learnt concepts. A
central feature of all ART systems is a pattern matching process that compares
an external input with the internal memory of an active code thus allowing
memories to change only when input from the external world is close enough
to internal expectations, or when something completely new occurs (the neu-
ral network-based model is retrained to hold the a new example). This feature
makes ART systems well suited to problems that require on-line learning of
large and evolving databases

So far, we have seen that in the vast majority of the previous approaches,
the use of neural networks seems to be preferred, as the human and animal
brains are based on (natural) neural networks. In contrast, humans are good
at appropriately handling prior knowledge, both in the way it develops and
is refined, and in the way it is applied to new problems. In fact, in hu-
mans, difficulty depends on how unrelated or non-contextual the solution is
w.r.t. previous knowledge. This way of learning incrementally is closely re-
lated to the construction and contextual application of (large repositories of)
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background and prior knowledge for inductive problems. These have been
a key and recurrent issue in the past in areas such as incrementality (data
[KW92, FHR01] and knowledge [Ols95, Sol02, Sch04, Hen10]), policy reuse
[MFHR13a, MFHR13d, MFHR13c], incremental self-improvement [SZW97],
function and predicate invention [MB92, Ols99, HM12, KMP98], construc-
tive induction [Mug87], constructive reinforcement learning [HO00b], meta-
knowledge [CKM+05, MS95], declarative-bias [BT08], (interactive) theory re-
vision [RM91, DR92], theory completion [MB00], expert and knowledge-based
systems [Mar13, AS10, ZCC+13], etc. Some of these areas are oldies (but
goldies) in ILP, IP, program synthesis, AI, cognitive science and other areas.
Many also have recently had a new revival.

While some of the latter approaches are not in the scope of inductive pro-
gramming, we argue that, although clearly different to the way humans brains
work, inductive programming is appropriate for incremental learning and has
several advantages. First, as knowledge grows but systems do not develop
natural language (non-declarative models), it becomes more and more diffi-
cult to analyse, supervise, fix and understand the knowledge of a system if
it is not represented internally in an intelligible way. Using inductive pro-
gramming does not ensure this introspection, but can make it possible due
to the use of a rich symbolic representation that permits the use of a single
language to represent background knowledge, examples and hypotheses (the
latter being expressed as potentially comprehensible rules). As commented in
the previous chapter, this explanatory power make it possible to extract hu-
man understandable knowledge. In contrast, those previous artificial neural
network-based systems are much more difficult to interpret by humans once
they begin to develop and growing possibly integrating millions of of neurons
in several subsystems. For instance, by using Spaun [ESC+12], an impres-
sive brain model based on millions of neurons that is able to do several tasks,
including some list processing, it is hard to understand and really see how
some problems are solved, i.e., it is difficult to check whether Spaun solves list
problems by capturing the recursive concept of a list structure or because it
uses some shortcuts (such as recognising the first and last element). Increas-
ing model interpretability allows a better acceptance of the results by the
domain users and, in the end, many applications require model understanding
(scientific discovery, multi-agent systems, software engineering, engineering
modelling...). Additionally, cognitive science, development robotics and robot
programming by demonstration are also areas where inductive programming
induced hypotheses are usually related to the solutions that humans would
find for the same problem: we can understand the solutions reached by the
system and we can see explicitly the mental constructs the system has been
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given [SHK09, MCSK06, Bur05b, SS12b]
Secondly, apart from the accessibility of one single language for the (end)user,

knowledge can be easily inspected, revised and integrated with other sources
of knowledge. Many tools for handling knowledge have been developed with
symbolic or rule-based approaches, such as theory revision, consistency check,
adding or removing constraints, etc. In fact, many pieces (or all) of hypothe-
ses, data and background knowledge are comprehensible or understandable.
This can hold in the short, mid and long terms for the background: we can pro-
vide start-up knowledge and, hereinafter, we can revise, evolve and fix their
knowledge. This results in that incremental, cumulative or life-long learn-
ing becomes easier [HO14b]. As a successful example of this we find NELL
[CBK+10], a N ever Ending Language Learner which uses an ILP algorithm for
incrementally learning probabilistic Horn clauses. All this is basically another
vindication of symbolic AI and symbolic learning.

3.4 Summary

Through the previous review we would like to criticise the widespread research
bias in AI over the development of learning systems that learn from data again
and again, and start completely from the scratch (without any knowledge
acquisition and reuse) for each new task or problem. In fact, we wish to
highlight the importance and relevance of developing incremental systems that
need to acquire knowledge and keep this knowledge to improve their (posterior)
learning abilities.

However, current incremental approaches have, in our opinion, two main
drawbacks: (a) they lack of suitable mechanisms for dealing automatically
with complex structured knowledge (both data and knowledge learnt); and
(b) most of them are based on artificial neural networks and other statistical
approaches, where it is not clear how knowledge can be accessed, revised
and integrated with other sources of knowledge. Furthermore, catastrophic
forgetting has emerged as one of the main concerns facing sequential learning
problem with artificial neural networks.

We have (briefly) argued that inductive programming is a good way to ad-
dress the knowledge acquisition problem. We say that, when dealing with the
techniques to incrementally acquire, maintain, revise and use the learnt knowl-
edge, symbolic knowledge representation paradigms (by using declarative pro-
gramming languages featuring powerful typing systems, abstraction and/or
higher-order features) have several advantages over non-symbolic ones, espe-
cially when knowledge becomes complex. Declarative approaches (such ILP,



3.4. Summary 39

IFP or IFLP) permit the use of a single language to represent background
knowledge, examples and hypotheses. Furthermore, induced hypotheses are
not only comprehensible (knowledge can be inspected), but also they are usu-
ally related to the solutions that humans would find for the same problem,
as the constructs that are given as background knowledge are explicit and
shared by users and the inductive programming system. As a result, incre-
mental, cumulative or lifelong learning becomes easier [HO14b]. However,
creating incremental systems that need to acquire and handle complex data
and knowledge and keep this knowledge to improve their learning abilities is
a challenge that requires a more continuous effort and larger teams, as results
can be discouraging initially: newborn baby inductive programming systems
are not expected to be very useful until they can be trained and can fully
develop.





4
Complexity, compression and

structure in knowledge
evaluation

In the previous chapters, the importance of the knowledge representation lan-
guage used in AI is stated arguing that symbolic knowledge representation
paradigms and symbolic learning have several advantages over non-symbolic
ones, especially when dealing with complex scenarios. This makes it possi-
ble to deal with a wide variety of problems (which is the main characteristic
of general-purpose learning systems). Furthermore, and following the initial
motivation of designing and developing AI systems that learn as humans do,
we also brushed up some of the most relevant approaches in AI to handle,
firstly, complex structured knowledge and, secondly, cumulative and incremen-
tal learning. In this chapter we move to the evaluation of learnt knowledge and
we review some specific techniques and approaches for assessing the quality of
this knowledge in terms of information theory and the relationships between
its parts. Here we consider the techniques are those in which the learning ap-
proaches developed in this thesis (particularly, their assessment criteria) have
been based and, as we will see in Chapter 8, best suit the incremental learning
view of knowledge acquisition.

This chapter is organised as follows. Section 4.1 introduces the basis for
evaluation in predictive machine learning and motivates the use of complexity
and link-based evaluation measures. Section 4.2 gives a short overview of the
MML principle as an assessment and selection criterion for inductive program-
ming. Section 4.3 introduces link analysis focusing on object ranking and those
algorithms (HITS, PageRank and SALSA) used to exploit hyperlinks of the
web to rank the websites. Finally, Section 4.4 closes the chapter with a brief
summary and some conclusions.
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4.1 Introduction

Mitchell [Mit97][Chapter 5] formalised the goal of predictive models in AI
as the learning of a target function f by considering a space H of possible
hypotheses where a hypothesis h is an approximation of f . In order to induce
h, the learning algorithms employ a set of evidences (observations) formed by
training instances D according to a distribution which defines the probability
of encountering each instance in the space of all instances. Since it is possible to
induce many and diverse hypotheses from the same evidence (by using different
machine learning techniques), it is important to compute “goodness” measures
to rank the hypotheses according to its “distance” with respect to f in order
to know which is the best. The criterion for evaluating the “goodness” of each
of the hypothesis is usually a real value function that takes as parameters
the instances and/or class descriptions, and can be computed either over the
sample data (sample error), or over the whole distribution of instances D (true
error). The sample error of h with respect to a target function f and data
sample S is the proportion of examples that h misclassifies, formally:

errorS(h) ≡ 1
n

∑
x∈S

δ(f(x) 6= h(x))

where n is the cardinality of S and δ(f(x) 6= h(x)) is 1 if f(x) 6= h(x), and 0
otherwise. Meanwhile, the true error of hypothesis h with respect to a target
function f and distributionD is the probability that hmisclassifies an instance
drawn at random according to D, formally:

errorD(h) ≡ Px∈D[f(x) 6= h(x)]

The sample error is the only one possible to compute since the target
function f is only known for the training sample. In order to avoid overfitting,
there are many mechanisms to measure the sample error of a hypothesis with
respect to an evidence. This includes partition, which splits the evidence into
two disjoint subsets (training and test dataset), and k-fold cross validation,
which repeatedly divide the available dataset into k disjoint subsets (the union
of k − 1 subsets for training and the remaining for testing).

However, not always there are just one plausible explanation, model or
theory about a phenomenon. Consider some data D and several hypotheses
over D, all of them having the same sample error (in fact, for each sample error
there are infinity different hypothesis which may take this error), which of them
is the most plausible hypothesis? In this case we need a different from a black-
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box evaluation 1 criteria such as the previous sample error. Since most learning
systems are inductive in principle, involving reasoning from few examples to
a generalisation, and learning by induction is inherently about compressing
observations (the instances) into a theory (the model), we find that making
use of Algorithmic Information Theory (AIT) [Cha70, Kol68, Sol64b, Sol64c]
criteria is an effective and unified framework for selecting the best hypothe-
sis. AIT intuitively allows us to quantify the notion of complexity and com-
pressibility of objects which is crucial for AI systems (and specially cognitive
systems), especially when patterns need to be transmitted. Wallace and Boul-
ton [WB68b], extend this compressibility notion into their Minimum Message
Length (MML) principle, which is intended not just as a theoretical construct,
but as a technique that may be deployed in practice. The MML approach de-
fines a goodness measure for a model in which simpler theories are preferable
to more complex ones, namely, it specifies that the minimal encoding in terms
of length, which includes the model itself (complexity) and the objects cov-
ered by it (compression), is the best one. This approach has been used as a
foundation of a selection (or optimality) criterion for our learning system gErl
as we will see in Chapter 5.

Following with these notions of complexity and compression, an step be-
yond would be taking into account the relationships between the different
pieces of knowledge learnt. This is not a black-box but a piecewise evaluation
approach. While most learning systems rely on stored knowledge primarily in
the form of unrelated rules (observations and hypotheses), these methods are
not effective for a comprehensive analysis of data relations (e.g., coverage rela-
tions). In this regard, we find appropriate and inspirational those techniques
of Link Analysis and Web Search used to evaluate relationships (connections)
between nodes (websites) in networks of interconnected objects (WWW) in
order to determine rankings between them. The analysis of relationships and
information flow between individuals jointly with the idea of using a linking
graph as the basis for structuring knowledge is an appealing idea for extending
the MML principle to a knowledge network (in terms of coverage or general-
ity). The metrics extracted from this knowledge network would be more flex-
ible than actual probabilities and appropriate for AI systems that accumulate
knowledge continuously as we will see in Chapter 8.

Therefore, while in the following sections we will provide an introduction
to both the MML principle and link analysis (in web graphs) as a criteria

1In black-box evaluation we want to measure and compare AI models with different
architectures and mechanisms by comparing their results independently of how they achieve
them.
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to rank diverse kinds of knowledge, in Chapters 5 and 8 we will see how we
could use these approaches as a foundation of selection criteria and optimality
assessment metrics for incremental acquired knowledge.

4.2 Complexity and compression
The relationship between complexity and compression is the foundation of
both the Minimum Message Length (MML) [WB68b, BW70, BW75] and the
closely related Minimum Message Length (MDL) [Ris78a]. They both are
based on AIT and hence lie on the intersection of computer science and statis-
tics. MML is and has been one of the most popular selection criterion in
inductive inference (for a formal justification and its relation to Kolmogorov
complexity and the related MDL principle, see [LV08b, WD99b, Wal05b]) and
provides an interpretation of the Occam’s Razor principle: the model gener-
ating the shortest overall message (composed by the model and the evidence
concisely encoded using it) is more likely to be correct. A Bayesian interpre-
tation of the MML principle [WB68a] asserts that the best conclusion to draw
from data is the theory with the highest posterior probability or, equivalently,
the theory which maximises the product of the prior probability of the theory
and the probability of the data occurring in light of that theory. We quantify
this immediately below.

Given a hypothesis H and an observed E (evidence), we can write the
posterior probability of H given E by application of Bayes’ Theorem:

P (H|E) = P (H) · P (E|H)
P (E) = P (H ∩ E)

P (E) (4.1)

where P (H) is the prior probability of H, P (E|H) is the likelihood, and P (E)
is the probability of the evidence E. Since E and P (E) are given and we need
to infer H, we can regard the problem of maximising the posterior probability,
P (H|E), as one of choosing H such that maximises P (H) · P (E|H).

An information-theoretic interpretation of MML is that a given evidence
E of probability P (E) can be coded (e.g. by a Huffman code or by bet-
ter compression codes) by a message of length L(E) = −log2(P (E)) [Sha48].
Therefore, taking the negative logarithm of expression 4.1, since −log2(P (H) ·
P (E|H)) = −log2(P (H)) − log2(P (E|H)), maximising the posterior proba-
bility, P (H|E), is equivalent to minimising −log2(P (H))− log2(P (E|H)), the
length of a two-part message which represents (describes) both the model H
and data E jointly. Then, the length of a hypothesis H given a fixed evidence
E denoted by L(H|E) can be formally defined as:
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L(H|E) = L(H) + L(E|H)− L(E) (4.2)

By minimising equation 4.2 we maximise the posterior probability, which in-
volves searching for the model that gives the shortest message.

Apart from its connection with Kolmogorov complexity and Solomonoff in-
duction [LV08b], which gives additional support for its use, the MML principle
(and the similar the Minimum Description Length (MDL) principle [Ris78b])
has been successfully applied in many areas of machine learning (including un-
supervised classification, decision trees and graphs, DNA sequences, Bayesian
networks, neural networks, image compression, image and function segmenta-
tion, etc.), inductive programming, AI and cognitive science.

4.2.1 Advantages of MML

Given that the selection of the “right hypothesis” represents an ideal scenario
usually not feasible in classical learning problems, an effective approach is to
use an optimality criteria in order to select an optimal or best program from
all the many possible valid programs. We argue that the MML principle, as
applied to the assessment of models or theories from data has several key
points:

• MML is a purported truth simplicity measure of simplicity: the notion of
simplicity is a virtue in scientific theories where simpler theories should
be preferred to more complex ones.

• As the message length combines both a measure of complexity in the
model and in the data, the MML approach provides a method for simul-
taneously evaluating the trade off between the two, both measured in
bits, preventing over-fitting.

• In regular problems, MML estimators have good properties, such as
asymptotic consistency [Wal05a] (although the amount of data increases,
the estimator converges to the true value). Furthermore, it is scalable
and statistically invariant (for problems where the amount of data per
parameter is bounded above, MML can estimate all parameters with
statistical consistency).

• MML is a method of model comparison that not only can it be used to
compare models of different structure, but also it gives every model a
score.
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• MML can handle continuous-valued parameters by using different ap-
proximations of how accurately to state parameters in a model.

Both The MML and MDL principles helped popularise the view of induc-
tive inference in terms of compression. Actually, this view has extended over
areas such as pattern recognition, machine learning and artificial intelligence
in the past decades [Wat72, VL97, CV05, SB06]

4.3 Link analysis

Structuring knowledge hierarchically in the form of a network or a graph can
provide interesting knowledge about relationships between nodes, information
flow between individuals or groups, generality, relative importance in network,
isolation from other entities, similarity, etc. Based on a branch of mathemat-
ics called “graph theory”, link analysis is the data analysis technique used to
evaluate those relationships between entities belonging to a network or graph
(a collection of entities and links between them). The domain of Link Anal-
ysis encompasses several distinct tasks determined by the different possible
outcomes of analysing link data: Link-based object classification (LOC) is a
technique used to assign class labels to entities according their link charac-
teristics; Link prediction is used to extrapolate the knowledge or the patterns
of links in a given network to infer novel links that are plausible, and may
occur in the future; and Link-based Object Ranking (LOR), which associates
a relative quantitative assessment with each entity using link-based measures.
Object ranking is the focus of this section.

Mainly studied in the development of web search engines (that essentially
are document-level ranking and retrieval engines), the aim of object ranking
is to calculate the scores for the websites based on their “relevance” according
to a given query and the connections through hyperlinks between websites.
Object ranking has intellectual antecedents in the fields of Social Network
Analysis and Citation Analysis (an area of bibliometric research). Since many
standard documents include references or explicit citations to other previously
published documents, by using this citations as links, standard corpora can
be viewed as a graph which can provide interesting information about the
similarity of documents and the structure of information. These disciplines
seek to quantify the influence of scholarly articles by analyzing the pattern of
citations amongst them, thus establishing a (semantic) similarity relationship
between documents (Co-Citation [Sma73] or Bibliographic Coupling [Kes63]),
or grading the importance (quality, influence) of scientific journals by measur-
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ing how often papers in the journal are cited by other scientists (Impact factor
[G+72]).

Notwithstanding, web links are a bit different than citations. Although
link analysis on the Web treats the hyperlinks from one website to another
as a bestowment of authority (such as citations represent the conferral of au-
thority from one article to others), not every citation or hyperlink implies that
and, thus, simply measuring the quality of a web page by the number of in-
links (citations from other pages) is not robust enough. This is because each
individual link may have many possible meanings: it may be off-topic, it may
convey criticism rather than endorsement, or it may be a paid advertisement.
See, for instance, the link spam phenomenon which is an intent of artificially
boosting the score of a target website by setting up multiple web pages point-
ing to it. Furthermore, the Web introduces new kinds of problems such as
the dynamic and constantly-changing nature of Web content. Therefore, it
is hard for search engines to automatically assess the intention of each link
and it is necessary to derive useful aggregate signals for ranking from more
sophisticated link analysis.

During the late 1990s, the two most famous algorithms to exploit the
hyperlinks of the web to rank the pages were proposed: HITS (Hypertext
Induced Topic Search) [Kle99] and PageRank [BP98]. We will see these algo-
rithms (among others) in the following subsections.

4.3.1 Hubs and Authorities

The HITS algorithm produces two rankings of a set of pages: the hub rank-
ing and the authority ranking. The intuitive idea behind hubs and authorities
came from the way how humans analyse a search process, namely, actually un-
derstanding the search query rather than returning the exact (literal) match-
ing. An authority is a website with many ingoing links meaning that its
content is important (authoritative) for some topic and, thus, there are many
other websites linking it. Other websites, known as hubs (websites that have
outgoing links to other websites) serve as organisers of the information on a
topic by linking to authoritative websites. Therefore, a good hub page is one
that points to many good authorities, while a good authority page is one that
is pointed to by many good hub pages. This define a recursive relationship
between websites.

The HITS algorithm starts by collecting the set S of relevant websites
for a specific query (returned by the search engine by means of information
retrieval techniques) and, then, it iteratively computes a hub score and an
authority score for every web page in the returned subset of websites (in an
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Figure 4.1: Authority and hub values are defined in terms of one another in a mutual
recursion. An authority value is computed as the sum of the scaled hub values that
point to that page. A hub value is the sum of the scaled authority values of the pages
it points to. Some implementations also consider the relevance of the linked pages.

offline mode). Therefore, HITS does not rank the whole web but a subgraph
of the web according to a query. Then HITS expands S with any website that
links to a page in S and any website that is linked by pages in S. Next, HITS
iterates recursively to generate a hub and an authority value for each page
using the following updating formulas:

auth(pi) =
n∑
j=1

hub(pj)

where n is the total number of pages pj that point to pi (pj → pi).

hub(pi) =
n∑
j=1

auth(pj)

where n is the total number of pages pj that are pointed by pi (pi → pj).
As we will see in the following section, unlike PageRank, HITS is computed
at query time (online) and can therefore significantly affect the response time
of a search engine. See Figure 4.2 for an example of PageRank.
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While the most important feature of HITS is the mutual reinforcement
relationship, its main disadvantage is that the subgraph (on which HITS is
focused) is built “on the fly” and thus it is query dependent, i.e., minor changes
in the web could significantly change the scores; and the response time is slow.
Furthermore, it cannot detect advertisements (the exchange of links between
sites full of commercial advertising sponsors can reduce the accuracy of the
algorithm) and suffers from topic drift [LMF08], i.e, the graph could contain
nodes having high authority scores for a topic unrelated to the original query.

4.3.2 PageRank

PageRank (PR) is the most important part of Google’s ranking system, a
quality metric invented by Google’s founders Larry Page and Sergey Brin at
Stanford University in 1995 [BP98] with the aim of bringing order to the web.
It works on webgraphs: directed graph which a lognormal degree distribution,
namely, there are very few large degree nodes (nodes with a large amount of
incoming/outgoing links). The original idea was that a page is important if it is
pointed to by other important pages: the PR score of a website is determined
by summing the PRs of all pages that point to yours. PR uses a recursive
scheme similar to HITS but in this case it produces and assigns a ranking
(independent of a user’s query) from 0 to 10 (depending on the importance)
to each hyperlinked web page within the WWW. Therefore, if an important
page p points to some pages, the PR score is proportionally distributed to
all its out-linked pages. Hence, a page will have a high PR score if there are
many pages pointing to it, or if there are some high score pages pointing to
it. Figure 4.2 shows an examples of PR scores for a simple network.

The PR score of a web page is defined in a recursive way (until convergence
happens) and only depends on the PR of all the incoming pages, namely, those
which have links to it. Therefore, for a page p, the higher PR score its incoming
web pages have, the higher PR score the page p will obtain. PR is calculated
offline (not at query time) by using the following formula:

PR(pi) = 1− d
N

+ d
∑

pj∈M(pi)

PR(pj)
L(pj)

where p1, p2, . . . pN are the pages under consideration, d is residual probability
(damping) usually set to d = 0.85 which is estimated from the frequency that
a random web-surfer uses their browser’s bookmark feature (85% likelihood of
choosing a random link from the page they are currently visiting, and a 15%
likelihood of jumping to a page chosen at random from the entire web), M(pi)
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is the set of pages that link to pi, L(pj) is the number of outbound links on
page pj , and N is the total number of pages. See Figure 4.2 for an example.
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Figure 4.2: PageRanks for a simple network, expressed as percentages, where nodes
represent websites and edges represent links between them. Page C has a higher
PageRank than Page E, even though there are fewer links to C; the one link to C
comes from an important page and hence is of high value. Without damping, all web
surfers would eventually end up on Pages A, B, or C, and all other pages would
have PageRank zero. In the presence of damping, Page A effectively links to all
pages in the web, even though it has no outgoing links of its own. Adapted from
http: // commons. wikimedia. org/ wiki/ File: PageRanks-Example. svg

The PageRank does not require any analysis of the actual (semantic) con-
tent of the web nor user’s queries. Therefore, PR is a global measure and is
query independent. Furthermore, PR is robust against spam. On the other
hand, the major disadvantage of PR is that it favours older pages (new pages
will not have many in inbound links).

4.3.3 SALSA

Finally, we find the SALSA (Stochastic Approach for Link Structure Analy-
sis) algorithm, a hybrid approach which combines ideas from both HITS and
PAGERANK. SALSA was developed by Lempel and Moran [LM00] and is
used to assign high scores to hub and authority web pages based on the quan-
tity of hyperlinks among them. SALSA uses a bipartite hub-authority graph
(like HITS) and performs a random walk (like PageRank) alternating between

http://commons.wikimedia.org/wiki/File:PageRanks-Example.svg
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hubs and authorities: when it is at a node on the authority side of the bipartite
graph, the algorithm randomly selects one of the incoming links and moves
to a hub node; when it is at a node on the hub side, the algorithm randomly
selects one of the outgoing links and moves to an authority node. Like HITS,
SALSA only works in a subnetwork of pages in an online mode. The Twitter
Social network uses a SALSA style algorithm to suggest the accounts to follow
[GGL+13].

4.4 Summary
The objective of this chapter has been to introduce two vastly different meth-
ods for assessing the “informativeness” or “usefulness” of every single piece
of knowledge learnt by an AI system in different terms: (1) the Minimum
Message Length principle is able to quantitatively assess how good an induced
(from examples) hypothesis is by its relationship between its complexity and
its compression; and (2) the object ranking in link analysis, which, through the
evaluation of the relationships (connections) in linked structures like graphs,
is able to rank objects in the structure based on several factors defining their
importance.

Whereas the MML criterion advocates for the model simplicity, the link
analysis emphasizes relationships between data. While the former will be used
as the selection criterion used in our learning approach gErl (Chapter 5), for
our incremental knowledge acquisition approach (Coverage Graphs) we will see
how we could go one step further by taking advantage of both techniques to
assess the relevance or usefulness of an specific individual (such as a rule)
based not only on the relationship between its own complexity but also on the
complexity of the rest of (related) knowledge. This will lead us to an easy and
general criterion to select and arrange knowledge that takes the MML as a
starting criterion from which it is possible to derive new metrics to associate
relative quantitative measures to individuals using the relationships between
them (whichever the link between individuals is). We see this in detail in
Chapter 8.





5
Towards declarative and
general-purpose learning

approaches

In this chapter we describe our general-purpose learning system gErl which was
born as an advocacy of a more general framework for learning systems. gErl is
a declarative and general-purpose rule-based learning system where learning
operators (inductive mechanisms) can be defined and customised according
to the problem, data representation and the way the information should be
navigated. The learning process is guided by a reinforcement-based rewarding
system where the application of an operator over a rule (in order to generate
a new rule) is seen as a decision problem. gErl has been applied to some
inductive programming problems involving deep structures and recursion. As
a remark, the goal of this chapter is not to evaluate gErl, but to provide a
new perspective or procedure of how through its declarative character and
the use of constructs (learning operators), we can gain some insight into the
characteristics and usefulness of the problems solved. In other words, gErl is
not an end in itself, but an instrument for the analysis of a series of issues
in this and the following chapters. Motivated also by the current increasing
trend of the development of computer models aimed at solving intelligence
tests (we will investigate this in Chapter 6), this versatility and expressibility
features of gErl has allowed us to assess the abilities and concept dependency
(learning operators) of AI systems by solving some fluid intelligence tests, as
we will see in Chapter 7.

This chapter is organised as follows. Section 5.1 introduces our approach
and the need of more flexible, incremental and symbolic approaches for AI.
Section 5.2 introduces gErl and the way operators are expressed and applied.
Section 5.3 describes the heuristics based on reinforcement learning used to



54 5. Towards declarative and general-purpose learning approaches

guide the learning process. Finally, a more comprehensive summary and con-
clusions close the chapter in Section 5.4.

These results have been published in [MFHR13b, MFHR13c, MFHR13d,
MFHR13a].

5.1 Introduction

As we saw in chapter 3, the number and performance of AI systems deal-
ing with complex, structured data have considerably increased in the past
decades. However, the performance of these systems is usually linked to a
transformation of the feature space (possibly including the outputs as well)
to a more convenient, flat, representation, which typically leads to incompre-
hensible patterns in terms of the transformed (hyper-)space. Alternatively,
other approaches do stick to the original problem representation but rely on
specialised systems with embedded operators that are only able to deal with
specific types of data. Despite all these approaches and the vindication of
more general frameworks, in general terms, there is no general-purpose learn-
ing systems which can deal with all of these problems preserving the problem
representation, although some general frameworks are being developed within
ILP (such as METAGOL [MLPTN14, ML13, CM15]) .

In this chapter we present our attempt to address some of the previous
points thus following our initial goals of generality or versatility and expres-
siveness. For that we have developed a general-purpose rule-based learning
system gErl where operators can be defined and customised for each kind of
problem. While one particular problem may require generalisation operators,
another problem may require operators which add recursive transformations
to explore the structure of the data. A right choice of operators can embed
transformations on the data but can also determine the way in which rules
are generated and transformed, so leading to (apparently) different learning
systems. Making the user or the problem adapt its own operators is signif-
icantly different to the use of feature transformations or specific background
knowledge. In fact, it is also significantly more difficult, since operators can
be very complex things and usually embed the essence of a machine learning
system. A very simple operator, such as lgg, requires several lines of code
in almost any programming language, if not more. Writing and adapting a
system to a new operator is not always an easy task. As a result, having a
system which can work with different kinds of operators at the same time is
a challenging proposal beyond the frontiers of the state of the art in machine
learning.
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In addition, learning operators are tools to explore the hypothesis space.
Consequently, some operators are usually associated with some heuristic strate-
gies (e.g., generalisation operators and bottom-up strategies). By giving more
freedom to the kind of operators a system can use, we lose the capacity to
analyse and define particular heuristics to tame the search space. This means
that heuristics must be overhauled, in terms of decisions about the operator
that must be used at each particular state of the learning process. This will be
addressed following a reinforcement learning approach [Sut98] concerned with
how an AI agent ought to take actions in an environment so as to maximise
some notion of cumulative reward. This approach perfectly suits our objective
of developing more general and adaptive AI systems where systems are not
programmed to do things, but trained to do things, e.g., in gErl, the learning
agent cleverly explores and interacts the hypothesis space through the use of
actions, observations and rewards.

Therefore, we propose a learning system where learning operators can be
written or modified by the user. Since operators are defined as functions which
transform patterns, we clearly need a language for defining operators which can
integrate the representation of the examples, patterns and operators. As we
have argued in Chapter 2, functional programming languages, with reflection
and higher-order facilities, are appropriate for this. We also decided to use a
powerful and relatively popular programming language in this family, Erlang
[VWW96] (Appendix A). A not less important reason for using a functional
language is that operators can be understood by the users and properly linked
with the data structures used in the examples and background knowledge, so
making the specification of new operators easier. The language also sets the
general representation of examples as equations, patterns as rules and models
as sets of rules.

Interestingly, different problems using the same operators can reuse the
heuristics. Since the reinforcement system determines which rules and opera-
tors are used and how they are combined, learnt policies can be reused between
similar (or totally different) tasks. The knowledge transferred between tasks
can be viewed as a bias in the learning of the target task using the information
learnt in the source task. In order to do that, we use an appropriate abstract
feature space for describing the kinds of rules and operators that are giving
good solutions (and high rewards), so this history is reused for other problems,
even when the task and operators are different.
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5.2 The gErl System

Our learning paradigm has drawn upon several machine learning areas and
techniques which work with rich data representations and, thus, it collects
ideas from all of them. Some of these areas include inductive programming,
reinforcement learning, evolutionary techniques, meta-learning, or transfer
learning, which have been already reviewed in Chapter 3.

gErl can be described as a flexible architecture (shown in Figure 5.1) which
works with populations of rules (expressed as unconditional / conditional equa-
tions) and programs in the functional language Erlang, which evolve as in an
evolutionary programming setting or a learning classifier system [HB00]. Op-
erators are applied to rules for generating new rules, which are then combined
with existing or new programs. gErl provides some meta-level facilities called
meta-operators which allow the user to define well-known generalisation and
specialisation learning operators. Therefore, with appropriate operators, us-
ing a complexity and compression (based on the MML principle explained in
Chapter 4) as the foundation of an optimality criteria (which feed a reward-
ing module), and using a reinforcement learning-based heuristic (where the
application of an operator over a rule is seen as a decision problem fed by the
optimality criteria) we will eventually find some good solutions to some learn-
ing problem. As a result, this architecture can be seen as a ‘meta-learning
system’, that is, as a ‘system for writing machine learning systems’ or to ex-
plore new learning operators.

Furthermore, gErl is able to take advantage of previous learning episodes
(problems) in order to improve or accelerate the learning of future tasks thus
following an incremental view of learning. As we will see in more detail in
Section 5.3, the redefinition of what policy reuse is in this context is motivated
by the abstract representation of states and actions (application of an operator
over a rule) as feature vectors, and the use of a Q-matrix where rewards for
each state and action combination is stored and from which a supervised model
is learnt. This makes it possible to have a more flexible mapping between old
and new problems, since we work with an abstraction of rules and actions.

As we have said in the previous chapter, Erlang is used as a knowledge
representation functional language to represent theories and examples in an
understandable way: examples as equations, patterns as rules, models as sets
of rules, and, for the definition of operators. The advantages of using the
same representation language has been previously shown by the fields of ILP,
IFP and IFLP (except for operators). Hence, we look for a flexible language,
with powerful features for defining operators and able to represent all other
elements (theories and examples) in an understandable way.
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Figure 5.1: gErl’s system architecture. A problem to solve is given by a set of posi-
tive and negative examples (〈e+, e−〉) and a possible empty background knowledge K.
There are two internal repositories containing rules (R) and programs (P ). Initially,
the set of rules R is populated with the positive evidence E+ and the set of programs
P is populated defining unitary programs ω from the rules of R. Both repositories are
updated at each step of the algorithm: the Rule Generator builds new rules ρ′ and they
are added to R while the Program Generator is in charge of generating new programs
ω′ by combining rules. The Reinforcement Learning Module is in charge of updating
the optimality value of each new rule generated thus generating a table (Q-matrix)
defining combinations of states and actions (operator applied over a rule) which will
be used to select future actions to perform.

5.2.1 Basic concepts

The core of our declarative learning system system is the mechanism for con-
structing (recursive) generalisation or specialization rules from a set of exam-
ples through inductive (user-defined) operators. Beforehand, we will review
some classical machine learning terminology in the light of declarative learning
paradigms (some of it already introduced in section 2.5). Although we use the
vocabulary and notation of functional programming, this method also covers
the synthesis of logic programs.

Given a subset of the functional programming language Erlang, it is used
for expressing examples, patterns, operators and background knowledge, all
of them in the form of functional rules. Given a set of function symbols
(together with their arity) Σ (also called signature) and a countable set of
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variables X , we denote the set of all terms over Σ and X by T (Σ,X ) and
the (sub)set of ground (variable free) terms by T (Σ). We distinguish (in
Σ) function symbols that denote datatype constructors from those denoting
(user-)defined functions. Thus, Σ = C ∪ F , C ∩ F = ∅ where C contains the
constructors and F the defined function symbols respectively. We call terms
from T (C,X ) constructor terms. Depending on the arity of symbols in Σ, a
function is said to be a constant if its arity is equal to 0, otherwise it is said
to be a functor. The set of variables occurring in a term t is denoted Var(t).
Hence, a term t ∈ T (Σ) if V ar(t) = ∅. Following Erlang syntax, constant
terms begin with a lower-case letter and variables begin with an upper-case
letter.
R denotes the space of all (conditional) functional rules ρ expressed as

l [when G] → r, where l and r are, respectively, the left hand side (lhs) and
the right hand side (rhs) of ρ, and G is an ordered conjunction (separated
by comma) or disjunction (separated by semi-colon) of equality constraints
(Boolean expressions) called guards gi = hi with gi, hi ∈ T (Σ,X ). If G = ∅,
then ρ is said to be an unconditional rule. The lhs (l) of a rule ρ is a term
of the form F (a1, . . . , an), called function head, where F ∈ F is the name of
the function symbol, and ai ∈ T (C,X ) are built up from constructors and
variables only. The sequence of the ai is called pattern. The rhs (r) of a rule
ρ is of the form B, rb, being B (the body) a (possibly empty) conjunction of
equations, and rb being a term.

Let P = 2R be the space of all possible functional programs (modules in
Erlang) formed by sets of rules ρ ∈ R. Given a program ω ∈ P, we say that
a term t reduces to term s with respect to ω, t →ω s, if there exists a rule
l [when G] → r ∈ ω such that a subterm of t at occurrence u matches l with
substitution θ, all conditions (gi = hi)θ hold, for each equation li = ri ∈ B ⊂ r,
liθ and riθ have the same normal form (that is, liθ →∗ω σ, and rirθ →∗ω σ and
σ can not be further reduced) and s is obtained by replacing in t the subterm
at occurrence u by rbθ.

The set of examples representing a learning problem, the evidence, is de-
noted as E. An example e ∈ E is a ground equation l → r (that is, a rule
without condition nor body) being r in normal form and both l and r are
ground terms. We say that e is covered by a program p (denoted by p |= e) if
r is the normal form of l with respect to p, i.e. l→∗p r.

A program ω ∈ P is a solution of a learning problem defined by a labeled
dataset E (composed as sets of positive E+ and negative E− examples) and a
background theory K if it covers all positive examples, K ∪p |= E+ (posterior
sufficiency or completeness), and does not cover any negative example, K ∪
p 6|= E− (posterior satisfiability or consistency). Our system has the aim
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of obtaining complete solutions, but their consistency is not a mandatory
property, so approximate solutions are allowed. As usual, the coverage relation
can also be defined in terms of the operational mechanism of the functional
language.

The function Cov+ : 2R → N calculates the positive coverage of a program
ω ∈ 2R and it is defined as Cov+(p) = Card({e ∈ E+ : ω∪K∪E+−{e} |= e}),
where Card(S) denotes the cardinality of the set S. Analogously, the function
Cov− : 2R → N calculates the negative coverage of a program p ∈ 2R and it is
defined as Cov−(p) = Card({e ∈ E− : ω∪K ∪E+−{e} |= e}). When we deal
with recursive programs, we have to consider the problem of non-terminating
proofs (that is, infinite sequences of rewriting steps). Note that, for proving
the coverage of an example e we use the set (E+ − {e}) as base cases for the
target function (this is known as extensional coverage). Moreover, the length
of the proofs are limited to a maximum number of rewriting steps.

A rule ρ can be represented as a tree, in a similar way as the usual tree
representation of terms. Given a rule l [when G] → r, the root of the tree
represents the complete rule, and its three children represent l, G and r. Since
G and r are conjunction of guards and equations (jointly with the rb term)
respectively, both nodes in the tree have as many children as components
there are in the conjunctions. From here, the tree is populated following the
usual tree representation of terms and equations. We call this kind of tree
representation as position trees. Given the position tree of a rule ρ, Pos(ρ),
a position p ∈ Pos(ρ) is a (possibly empty) sequence of natural numbers that
denotes a subtree in the position tree, where Λ (the empty sequence) denotes
the entire tree. The subpart of rule ρ at position p ∈ Pos(ρ) is denoted as ρ|p.
Figure 5.2 shows the position tree of the rule

ρ : member([X|Y ],Z)[when true]→ member(Y ,Z)

As we can see, ρ|1.1 is the term [X|Y ] and ρ|3.2 is the term Z. It what follows,
pos(ρ) ⊆ 2Pos(ρ) denote any subset of positions in the position tree Pos(ρ).

It should be noted that the position tree of a rule ρ matches exactly with
the Erlang abstract representation of the rule, namely, the Abstract Syntax
Tree (AST) which, as explained before, is a tree representation of the abstract
syntactic structure of a source rule written in Erlang. Each node of the tree de-
notes a component occurring in the source code. If we parse the abstract tree,
we can enumerate each component in a post-order way obtaining a position
tree.

Hereinafter, we will consider the following running example in order to
illustrate how the system works. This example will be developed along the
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Figure 5.2: Position tree of the rule ρ : member([X|Y ],Z)[when true] →
member(Y ,Z). Positions (numerals) are placed at the bottom-right of each term.

following sections.

Example 2
Consider a simple recursive problem of finding the last element of a list of
characters. This problem could be defined using a set of positive examples E+

and a set of negative ones E− (and an empty set of functions as the background
knowledge K) as in Table 5.1.

id E+ id E−

1 last([c])→ c. 1 last([c])→ b.

2 last([d])→ d. 2 last([b])→ l.

3 last([l])→ l. 3 last([l])→ c.

4 last([a, b, c])→ c. 4 last([a, b, c])→ a.

5 last([t, b, n, a, b])→ b. 5 last([t, b, n, a, b])→ t.

6 last([h, h, t, a, l])→ l.

7 last([a, c, b])→ b.

8 last([a, b, a, c])→ c.

Table 5.1: Set of positive and negative examples provided to gErl in order to learn the
recursive problem of last element of a list.
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5.2.2 Operators over rules and programs

The definition of customised learning operators is one of the key concepts of
our proposal. In gErl, rules R are transformed by applying a set of operators
O. Then, an operator o ∈ O is a function o : R → 2R, where O ⊆ O denotes
the set of operators chosen by the user for solving the problem. Roughly
speaking, operators perform modifications over any of subparts of a rule in
order to generalise or specialise it. The main idea is that, when the user is
going to deal with a new problem, they can define their own set of operators
(which can be selected from the set of predefined operators or can be defined
by the user with the functions provided by the system) especially suited for
the data structures of the problem. This feature allows our system to adapt
to the problem at hand.

For defining operators, the system is equipped with meta-level facilities
called meta-operators. A meta-operator is formally defined as

µ :: (R → 2Pos)× (R → T (Σ,X ))→ O

which takes two functions returning a set of positions in a rule (as given by its
position tree) and a term, and gives an operator. gErl provides the following
two meta-operators able to define well-known generalisation and specialisation
operators in inductive learning:

1. µreplace(pos, f) defines an operator that, when applies to a rule ρ, re-
places the subparts ρ|p, p ∈ pos(ρ) by f(ρ). Notice that this meta-
operator can be used to define both generalisation (replacing, for in-
stance, a term by a variable) and specialisation (replacing a given term
by another more specific) operators (depending on whether f(ρ) is more
general/specific than ρ|p).

2. µcondition(pos, f) defines an operator that inserts a Boolean condition
f(ρ) in all the positions p ∈ pos(ρ). As gErl only allows the insertion of
Boolean conditions in the guard of rules, pos is a constant function that
always returns position 2. Notice that this meta-operator can be only
used to define specialisation operators.

To simplify notation, any constant function fun(· · · ) = const will be denoted
as const. We will see some application examples at the end of this section.

Finally, there is an internal operator called one_step_rew which, by de-
fault, is always included in the set O. This operator performs a step of rewrit-
ing at any position of the rhs of a rule. Our system also has a special kind
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of transformation n ∈ N , called combiners, that only apply to programs. The
Program Generator module (Figure 5.1) applies a combiner to the last rule ρ′
generated by the Rule Generator module and the population of programs P .
Thus, a combiner n ∈ N can be formally described as a function n : P×P → P
that transforms programs into programs.

Example 3
Following with running example last element of a list in Example 2, the fol-
lowing step is to define appropriate operators (relying on the previous meta-
operators) in order to allow the system to learn possible solutions. Since in
Erlang lists can are internally dealt as improper lists ([Head|Tail]) the first
pair of operators should be responsible of replace both the head and tail of
the input list by a variable thus improving usability and generalisation:

op1 ≡ µreplace(1.1.1, Vhead)
op2 ≡ µreplace(1.1.2, Vtail)

Looking at the evidence in Table 5.1 and knowing that it could be useful
to play with the structure of the input list, we define a new pair of operators
in charge of replacing the rhs (equal to ρ|3) of the rules by the head or the tail
of the input list, namely:

op3 ≡ µreplace(3, fh)
op4 ≡ µreplace(3, ft)

where fh(ρ) = ρ|1.1.1 and ft(ρ) = ρ|1.1.2.
Finally, in order to find the last element of a list we need to go through

the latter until we find it. Therefore, by building recursive navigation over
the input list we do not concern ourselves with having a consistent navigation
(equal for all kind of arrays):

op5 ≡ µreplace(3, flast)
where flast(ρ) = last(ρ|1.1.2).

Taking as an example the sequential application of some of the previous op-
erators over, for instance, the evidence rule e4 from Table 5.1 (last([a, b, c])→
c) we will obtain:

op5(op2(op1(e4))) ⇒
op5(op2(last([Vhead, b, c])→ c)) ⇒

op5(last([Vhead|Vtail)→ c) ⇒
last([Vhead|Vtail)→ last(Vtail)



5.3. Heuristics based on reinforcement learning 63

5.3 Heuristics based on reinforcement learning

Reinforcement learning [Sut98] is learning what to do so as to maximise a
numerical cumulative reward signal. The learner is not told which actions to
take, but instead it ought to discover which actions yield the most reward by
trying them in an environment (trial and error search). Furthermore, actions
may affect not only the immediate reward but also the next situation and,
through that, all subsequent rewards (aggregated rewards). Reinforcement
learning differs from standard supervised learning in that neither correct in-
put/output examples nor the goal of the task (and the task itself) are provided,
but indirectly given in the form of rewards, from which the agent can acquire
its ultimate goals.

In this section we describe the reinforcement learning approach followed by
gErl in order to guide the learning process. We decided on this approach since
the freedom given to the user concerning the definition of their own opera-
tors implies the impossibility for us to define specific heuristics to explore the
search space. This means that heuristics must be overhauled as the problem
of deciding the operator that must be used (over a rule) at each particular
state of the learning process.

Therefore, following a reinforcement learning approach, the population of
rules at each step of the learning process can be seen as the state of the
system and the selection of the tuple operator and rule can be seen as the
action. However, the probably infinite number of states and actions makes
the application of classical reinforcement learning algorithms not feasible. To
overcome this, states and actions are represented in an abstract way using
features. From here, a model-based reinforcement learning approach has been
developed in order to use propositional machine learning methods for selecting
the best action in each possible state of the system.

5.3.1 Optimality and stop criterion

Since the system is flexible and general in the way it represents and operates
with rules, we need some general optimality criteria. First we have to select
the optimal program (or a set of optimal programs, depending on the user’s
interests) as the solution of the learning problem. Second, we also need to feed
the reward module in each step of the learning process.
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The Minimum Message Length [WB68a] (MML), seen in Section 4.2, pro-
vides, as commented, a general way for selecting “the right hypothesis” sup-
ported by the classical view of unsupervised learning as compression: the
model generating the shortest overall message (composed by the model and
the evidence concisely encoded using it) is more likely to be correct. Accord-
ing to this philosophy, we present the simplest criterion we have essayed which
is a concretisation of the MML principle. In particular, the optimality of a
program ω is defined as the weighted sum of two simpler heuristics, namely, a
complexity-based heuristic (which measures the complexity of ω) and a cov-
erage heuristic (which measures how much extra information is necessary to
express the evidence given the program ω)1:

Opt(ω) = −β1 · L(ω)− β2 · L(E|ω) (5.1)

Note that we use negative values due to the promotion of lower optimality
values. Since programs are composed by rules, we can define the length of a
program as the sum of the length of each rule belonging to ω. In particular,
we can define the length of a rule (L(ρ)) in different ways depending on the
rule representation language. For instance, if we are using logical or functional
rules we could use the following approximation. Given Σ a set of mΣ function
symbols of arity ≥ 0, and X a set of mX variables, we could define the length
of a rule ρ containing nΣ functors and nX variables as

L(ρ) , mΣ log2(nΣ + 1)

+ mX
2 log2(nX + 1)

(5.2)

Note that we promote variables over constants or functors. Therefore, we
define the length of a program ω as

L(ω) ,
∑
ρ∈ω

L(ρ) (5.3)

On the other hand, we define the covering factor w.r.t. an specified class
i as the coding lengths of the instances not covered from the class i plus the
cost of coding the exceptions, namely, the instances belonging to the rest of
classes covered by ω:

1For the time being we have just considered β1 = 1 and β2 = 1, but these values could
be parametrised for different kinds of problems.
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Li(E|ω) = L({e ∈ Ei : ω 6|= e})
+

∑
j∈Cj 6=i

L({e ∈ Ej : ω |= e}) (5.4)

In particular, since gErl accepts only learning problems E defined by pos-
itive and negative instances, equation 5.4 is amended to read as follows:

L(
〈
E+, E−

〉
|p) = L({e ∈ E+ : ω 6|= e})

+L({e ∈ E− : ω |= e}) (5.5)

As we have mentioned at the beginning of this section, the optimality
measure is used to rank the programs generated by the system (in increasing
order of their optimalities).

Finally, regarding the stop criterion, it can be specified by the combination
of two conditions. The first one establishes that the learning process stops
when the difference between the optimalities of the programs generated in the
last n steps (where n is a parameter determined by the user) is less than a
threshold ε (also determined by the user) which indicates that a better program
is not likely to be found. Figure 5.3 shows the optimality of the programs
generated at each step of the system for the current running example. As can
be seen, the difference between the optimalities of the last generated programs
maintain themselves within a tight fluctuation range, so the system stops by
condition 1. The second stop condition limits the number of steps of the
learning process to a maximum.

5.3.2 Reinforcement Learning problem statement

As we can see in Figure 5.1, gErl works with a set of rules R ⊆ R, a set of
programs P ⊆ P and a set of operators O ⊆ O. Initially, R is populated with
the positive evidence E+ while the set of programs P is populated with as
many unitary programs as rules are in R. As the process progresses, new rules
and programs will be generated. First, the Rule Generatormodule (Figure 5.1)
takes the operator o and the rule ρ returned by the Reinforcement Learning
Module (policy). Then the operator is applied to the rule giving new rule ρ′
which are added to R. Then, the Program Generator module combines ρ′ (if
appropriate) with an existing program to create a new program ω′(which is
added to P ). Therefore, in each iteration of the system, we have to select
a rule and an operator to produce new rules. Depending on the problem to
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(ρ

)

Number of steps

Figure 5.3: Example of the optimality values of the programs generated by gErl in
successive steps (starting from 1). Notice that in final steps, the variation of the
optimality is not constant but shows a stabilisation.

solve, the number of required iterations could be astronomically high. To
address this issue we need a particular heuristic (policy) to tame the search
space and make good decisions about the choice of rule and operator, in which
the application of an operator to a rule is seen as a decision problem.

To guide the reinforcement learning process we need to describe the system
in each step of the process (before and after applying an action) in terms of
the quality of the system states (that is, the population of rules and programs
generated until now). The infinite number of states makes their abstraction
necessary. As there are infinitely many rules, we also have to use an abstraction
for actions. This is done by defining an abstract representation of states and
actions which constitutes the configuration of the RL problem we see next.

Formally, we define a state at each iteration or step t of the system as a
tuple σt = 〈R,P 〉 that represents the population of rules R and programs P
in t. An action is a tuple 〈o, ρ〉 with o ∈ O and ρ ∈ R that represents the
operator o to be applied to the rule ρ. Our decision problem is a four-tuple
〈S,A, τ, ψ〉 where: S is the state space; A is a finite actions space (A = O×R);
τ : S × A → S is a transition function between states and ψ : S × A → R is
the reward function. These components are defined below:

• States. As we want to find a good solution to the learning problem,
we abstract each state st by a tuple of features ṡt from which to extract
relevant information in step t (average size and optimality of the popu-
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lation). We denote by Ṡ the set of state abstractions used to represent
elements S in Ṡ. We denote by Ṡ = R3 the set of state abstractions used
to represent elements S in Ṡ (Table 5.2).

Feature Description
φ1 Average optimality of the population (Equation 5.1)
φ2 Average size of rules (Equation 5.3)
φ3 Average cardinality of programs

Table 5.2: Features φi abstracting states st

• Actions. An action is a tuple 〈o, ρ〉 where o is just an (non abstracted)
operator identifier and each rule ρ is abstracted (similarly as before) by
a tuple of features ρ̇ from which we extract relevant information such as
size, number of functors, constructors and variables or coverage rates.
Therefore, an action is finally abstracted as a tuple of nine features, i.e.
Ȧ =

〈
N,R8〉, where the abstraction of the actions goes from A → Ȧ

(Table 5.3).

Feature Description
o Operator identifier
ϕ1 Positive Coverage Rate
ϕ2 Negative Coverage Rate
ϕ3 Number of variables of ρ
ϕ4 Number of constants of ρ
ϕ5 Number of functors of ρ (arity greater than 0)
ϕ6 Number of structures (lists, graphs, . . . ) of ρ
ϕ7 Number of variables of ρ
ϕ8 Is ρ recursive?

Table 5.3: Features ϕi abstracting actions 〈o, ρ〉.

• Transitions. Transitions are deterministic. A transition τ evolves the
current sets of rules and programs by applying the operators selected
(together with the rule) and the combiners.

• Rewards. The optimality criterion seen above (eq. 5.1) is used to feed
the rewards.
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At each point in time, the reinforcement learning policy π can be in one of
the states st ∈ S and may select an action at ∈ A to execute. Executing
such action at in st will change the state into st+1 = τ(st, at), and the policy
receives a reward ψt = ω(st, at). The policy does not know the effects of the
actions, i.e. τ and ψ are not known by the policy and need to be learnt. This
is the typical formulation of reinforcement learning [Sut98] but here we use
features to represent the states and the actions. With all these elements, the
aim of our decision process is to find a policy π : S → A that maximises:

V π(st) =
∞∑
i=0

γiψt+i (5.6)

for all st, where γ ∈ [0, 1] is the discount parameter which determines the
importance of the future rewards (γ = 0 only considers current rewards, while
γ = 1 strives for a high long-term reward).

5.3.3 Modelling the state-value function: using a regression
model

Since gErl works with an abstract representation of states and actions, we use
a hybrid between value-function methods (which update a state-value matrix)
and model-based methods (which learn models for τ and ω) [Sut98]. The idea
is to replace the state-value function Q(s, a) of the Q-learning [WD92] (which
returns quality values, q ∈ R) by a supervised model QM : Ṡ × Ȧ → R that
calculates the q value for each state and action, using their abstractions. gErl
uses linear regression (by default, but other regression techniques could be
used) for generating QM , which is retrained periodically from Q(s, a). Then,
QM is used to obtain the best action at for the state st as follows:

at = arg max
a∈A
{QM (ṡt, ȧ)} (5.7)

Since the rules are abstractly described using features, more than one rule
can share the same description, if that happens when the system selects an
action, the rule is randomly selected (among those which share the descrip-
tion).

In order to train the model we need to provide different states and actions
as inputs, and quality values as outputs. More concretely, we use a ‘matrix’
Q (which is actually a table), whose rows are in Ṡ × Ȧ×R where Ṡ is a tuple
of state features, Ȧ is the tuple of rule features and operator (both described
in Section 5.3.2), and R is a real value for q. We set initial q-values (in s0) to
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have a high initial value, also known as “optimistic initial conditions” [Sut98],
in order to encourage exploration: no matter what action will take place.
Abusing notation, to work with Q as a function (like the original Q-matrix
is used in many RL methods), we will denote by Q[ṡ, ȧ] the value of q in the
row of Q for that state ṡ and action ȧ. So, Q grows in terms of the number of
rows. Figure 5.4 continues with the example 2 and shows how gErl initialises
the Q table and the set of rules R.

Once the system has started, at each step, Q is updated using the following
formula:

Q[ṡt, ȧt]← α

[
ψt+1 + γmax

at+1
QM (ṡt+1, ȧt+1)

]
+ (1− α)Q[ṡt, ȧt] (5.8)

which is a variation of the formula used in Q-learning for updating the Q-
matrix where the maximum future value is given by the model. The previous
formula has two parameters: the discount parameter γ ∈ [0, 1], and the learn-
ing rate α (α ∈ [0, 1]) which determines to what extent the newly acquired
information will override the old information (α = 0 makes the agent not
to propagate anything, while α = 1 makes the agent consider only the most
recent information). By default, we set α = 0.5 and γ = 0.5.

Following with Example 2 , Figure 5.4 and 5.5 show how gErl uses QM in
order to get the best action to apply in each step of the learning process, and
how the set of rules R and the Q-matrix are updated until the system reaches
the Stop Criterion.

5.3.4 Reusing past policies

The intuition behind reusing policies comes from the simple idea that the
probability that an agent behaves in a certain way should be proportional to
how often this agent’s behaviour has been successful in the past.

As we have seen in Section 3.3, in other TL methods the knowledge is
transferred in several ways (via modifying the learning algorithm, biasing the
initial action-value function, etc.) and, if the source and the target task are
very different, a mapping between actions and/or states is also needed. Instead
of that, in gErl the reuse of previous acquired knowledge is done in a different
way, by reusing the values in the Q table.

The main reason why we can use past policies (table Q learnt in previous
tasks) in order to accelerate the learning of different new tasks is due to the
abstract representation of states and actions (the φ and ϕ features of Ṡ and Ȧ
respectively) which prevents the system from starting from scratch. Actions
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Figure 5.6: The knowledge transfer process in the gErl system where t represents the
learning step and i ∈ 1..3 and j ∈ 1..8 are, respectively, the set of features indexes
used to describe the states S and rules R

which are successfully applied to certain states (from the previous task) are
also applied when a similar (with similar features) new state is reached. Due
to this abstract representation, how different the source and target task are
does not matter.

The knowledge transfer between two task (source S and target T respec-
tively) is performed as follows: when gErl reaches the solution of a given
problem (or it executes a maximum number of steps), the table QS (which
has been filled in by the model QSM and equation 5.8) is copied and transferred
to a new situation. Concretely, when gErl learns the new task, QS is used to
train a new model QTM 2. Therefore, QS is used from the first learning step and
it is afterwards updated with the new information assimilated by the model
QTM . Figure 5.6 briefly describes the process of reusing a QS table and how it
becomes a new QT table.

Further information showing the usefulness of the policy reuse strategy can
be found in [MFHR13d, MFHR13a, MFHR13c].

5.4 Summary

The increasing interest in learning from complex data has led to a more in-
tegrated view of this area, where the same (or similar) techniques are used
for a wide range of problems using different data and pattern representations.
This general view has not been accompanied by general systems that address
a large variety of problems representations. Most systems need to be modi-

2We do not transfer the QSM model since it may not have been retrained with the last
information added to the table QS (because of the periodicity of training, the generation
of the latest model may not match with the stopping criterion, so there may be a bunch of
information in Q which is not used to retrain QSM ).
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fied (or became completely useless) when the original data representation and
structure change. Some other approaches require the data to be flattened,
sliced or migrated to hyperspaces of unintelligible fictitious features. In fact,
the most general learning approach can still be found in ILP [MLPTN14] (or
the more general area of inductive programming). However, each system is
still specific to a set of embedded operators and heuristics.

In this chapter, we have shown that more general systems can be con-
structed by not only giving power to data and background knowledge repre-
sentation but also to a flexible operator redefinition and the reuse of heuristics
across problems and systems. This flexibility also carries a computational
cost. In order to address this issue we rely on two (compatible) mechanisms:
the definition of customised operators, depending on the data structures and
problem at hand, done by the user, using a language for expressing operators.
The other mechanism is the use of generalised heuristics, since the use of dif-
ferent operators precludes the system from using specialised heuristics for each
of them. The choice of the right pair of operator and rule has been reframed
as a decision process, as a reinforcement learning problem.

The definition of operators is a difficult issue, and it requires some expertise
and knowledge of the functional language used to express them. Even so,
the definition of heuristics is a more difficult issue that cannot be assigned
to users. Therefore, not only is this a novel approach but also allow us to
better understand the role of operators and heuristics in learning systems.
Due to the fact that gErl provides us inspectable and intelligible knowledge
(symbolic nature) as well as its already mentioned versatility, this will allow
us to, as commented in the introduction, use our system as an appropriate
cognitive tool to analyse several general intelligence problems in the context
of cognitive development. gErl thus could help us to makes it explicitly how
complex each pattern is and what constructs (learning operators) are used
for each problem providing useful information about the role of the cognitive
operational constructs that are needed to solve these intelligence tests. We
will further discuss this in Chapter 7.

Finally, it is worth commenting that our work has several limitations.
Constructing new operators is not always easy and requires expert knowledge.
Despite providing some facilities (meta-operators), the inference of powerful
hypotheses requires the ability of coding complex abstracts constructs as well
as the use of auxiliary concepts in the background knowledge. Furthermore,
we are assuming the number of examples to be a small number, otherwise
the system becomes very inefficient. This is common in other inductive pro-
gramming approaches where, similarly to humans learning, these systems have
important limitations on working memory and the size of the data (although
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humans are exceptional for perception mechanisms such as vision, speech or
music). Complex hypotheses can be only constructed over previously derived
or existing concepts [Mil56] and the background knowledge should thus be
maintained, refined and developed in the way it is applied to new problems.
This has been the motivation of our incremental and lifelong learning view of
knowledge acquisition that we will discuss in Chapter 8.



6
Intelligent test tasks for AI

evaluation

In the early days of artificial intelligence, the intelligence test approach was
considered useful not only as a tool for the study of cognitive processes and
the development of new techniques, but also for the evaluation of AI systems
or even as the goal for AI research. Since then, human psychometric tests have
been repeatedly suggested as a much better alternative to most task-oriented
evaluation approaches in AI. The question thus is whether this measurement
of mental developmental capabilities lead to a feasible, practical evaluation for
AI. In this in this chapter we make a revision of what has been done when
intelligence test problems have been analysed through cognitive models or par-
ticular systems. We make a general account of all these works in terms of how
they relate to each other and what their real achievements are. Also, we pro-
vide some insight about what intelligence tests measure in machines, whether
they are useful to evaluate AI systems, whether they are really challenging
problems, and whether they are useful to understand (human) intelligence.
Overall, the ultimate goal of the chapter is to understand the meaning, utility,
and impact of these computer models taking intelligence tests, and explore
the progress and implications of this area of research.

This chapter is organised as follows. The current state of research of com-
putational models aimed at solving intelligence test problems motivates our
study in Section 6.1. In Section 6.2, some of the most common types of in-
telligence test problems, and what they are supposed to measure in humans,
are summarised, with a more detailed exposition of each problem in the ap-
pendix. In Section 6.3, we will go chronologically through all the computer
models. The results will be summarised in a table at the end of this Section.
A technical analysis of the systems and the relation with the kinds of prob-
lems solved is more deeply examined in section 6.4. From the table and the
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technical analysis, in Section 6.5 we will address a series of questions including
a discussion about the insights and implications we can infer from this study.
Finally, some possible directions and perspectives of integration are discussed
in Section 6.6.

These results have been published in [HMS+16].

6.1 Introduction
Artificial intelligence is typically defined as “the scientific understanding of
the mechanisms underlying thought and intelligent behaviour and their em-
bodiment in machines”1. Associated with the notion of natural and artificial
intelligent agents is our (human-centred or anthropocentric) belief that intel-
ligence underlies most human behaviour. The origin of AI research was based
on the conviction that “intelligence is the computational part of the ability to
achieve goals in the world” [McC07].

Indeed, AI research can claim some impressive milestones as we saw in the
introduction of this thesis. For example, already in 1959 Arthur Samuel pre-
sented a self-learning program that could play checkers (or draughts) [Sam59].
In 2002 the 1957 prophecy of Herbert Simon that within 10 years a computer
would be world’s chess champion (eventually) came true when Deep Blue won
against the human chess champion Garry Kasparov [CHH02]. In 2010 IBM’s
program Watson [FBCC+10, FLB+13] was the winner of the Jeopardy! TV
quiz. However, one can ask whether the mechanisms underlying the behaviour
of AI systems are the same as or similar to the mechanism underlying human
intelligent behaviour. In fact, the success in specialised tasks is a very illus-
trative demonstration of the big switch2 approach in AI research. If we fix the
switch to one particular problem, we can devise, after several years or decades
of research, a system that performs better than humans. We can even embed
many specialised programs into a system and devise an automated switch. For
instance, if we have a good program for checkers, a good program for chess,
etc., we can devise a meta-system that is able to recognise which kind of game
has to be played and switch to the appropriate program. If AI evaluation
is based on specific benchmarks that are known beforehand, non-intelligent
systems will be able to thrive. Game playing is a good example where a
reaction against this specialisation is beginning to flourish. Since 2005 the

1See homepage of the Association for the Advancement of Artificial Intelligence, http:
//www.aaai.org.

2The so-called big switch hypothesis [EN69] was postulated as a way of achieving systems
that could show performance on more complex tasks —and even on a range of tasks—, by
integrating several specialised modules [Min88].

http://www.aaai.org
http://www.aaai.org
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performance of game playing systems is evaluated in the game playing compe-
tition [GLP05] on a wide variety of games—some invented ones not disclosed
to the participants until the competition. Consequently, in the area of game
playing, systems using a big switch approach are hardly successful in contrast
to systems realising general game playing algorithms.

While successfully playing games can be seen as a special manifestation
of intelligent behaviour, intelligence tests assess the underlying ability to act
intelligently in many different domains [Ste00]. In psychology research the
classical approach to intelligence assessment is to apply psychometric tests
measuring intelligence [Ste00]. Some of these tests, the so-called IQ tests, are
standardised in such a way that humans can be classified as below, about, or
above average intelligence. Nonetheless, there are many other human intel-
ligence tests and cognitive tests that also measure intelligence. In addition,
other similar tests from other areas were not originally targeted to humans.
In what follows, for simplicity, we will use the term intelligence tests for all
of them. The intelligence test tasks address a variety of reasoning abilities,
for example, solving number series problems, detecting regularities in spatial
configurations, or understanding verbal analogies. Some types of problems
are rather independent of the subject’s educational and cultural background,
others depend on background knowledge.

As briefly commented in Chapter 1, in early AI research, the intelligence
test approach was considered as a useful approach for AI programs as well;
Newell argued that one of the ways artificial intelligence could be achieved was
“to construct a single program that would take a standard intelligence test,
say the WAIS or the Stanford-Binet” [New73b]. And indeed, as early as 1963,
Evans devised an AI program that could solve geometric analogy tasks from
the WAIS (Wechsler Adult Intelligence Scale) test [Eva63, Eva65] and, in the
same year, Simon and Kotovsky [SK63] presented a program that could solve
Thurstone letter series completion problems [TT41]. Both types of problems
address the ability to identify regularities in patterns and generalise over them.
This connection between inductive inference and intelligence tests was also
identified early on, for instance by Blum and Blum [BB75]: “Intelligence tests
occasionally require the extrapolation of an effective sequence”.

After the initial interest of AI research in intelligence test problems, this
branch of research sank into oblivion during the next decades. However, in the
1990s, cognitive science research recovered this line of research, and cognitive
models were proposed to simulate the human cognitive processes that take
place when solving inductive inference in intelligence test problems [CJS90].

In AI, forty years after the work of Evans and Simon & Kotovsky, in
2003, computer programs solving intelligence tests became of interest again.
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On one hand, Sanghi and Dowe [SD03] wanted to make a conclusive point
about how easy it was to make non-intelligent machines pass intelligence tests.
On the other hand, Bringsjord and Schimanski aimed at resuscitating the
role of psychometric tests—including not only intelligence tests but also tests
about personality, artistic creativity, etc.—in AI [BS03]. They claimed that
psychometric tests should not be dismissed but placed at a definitional, major
role for what artificial intelligence is and proposed “psychometric artificial
intelligence” (PAI) as a direction of research.

But the fact is that the past ten (and especially five) years have been
bloomed with computational models aimed at solving intelligence test prob-
lems. The diversity of goals and approaches has also widened, including the
use of intelligence tests for the analysis of what intelligence is, for the under-
standing of certain aspects of human cognition, for the evaluation of some AI
techniques or systems, including robots, and, simply, to have more insights
about what intelligence tests really represent. We will use the term computer
model for all these approaches, independently of their purpose, of the employed
techniques, and of the range of problems they are able to address.

In the current state of research, there exist many systems addressing differ-
ent intelligence tests. Currently, there is no general framework to characterise
all intelligence tests. Therefore, it is unclear whether instances of problems
are members of the same or different problem classes. With the exception
of those systems solving several problems, like the one of Sanghi and Dowe
[SD03], current systems are based on algorithmic approaches specifically de-
signed to solve a special class of such problems and even only one specific test.
It is an open question whether a general algorithmic approach for a diverse
set of intelligence tests can be designed in principle. Therefore, the composi-
tion of an inventory of problems and the proposal of some criteria to compare
the different systems is a crucial step. We will be as inclusive as possible in
the purpose of these systems and the area or research question that moti-
vated the study, be it psychology, artificial intelligence, cognitive science, or
robotics. We analyse all the computer models taking intelligence tests (or as
many as we could find, about thirty in total), starting with Evans’s ANAL-
OGY [Eva63, Eva65] and going through to Spaun [ESC+12], a noteworthy
2.5-million-neuron artificial model brain that has received considerable inter-
est [Yon12, Mac12]. This review will be the gateway for the posterior analysis
of our own AI system gErl solving intelligence tests.

This analysis will also help us to have a better understanding of the rele-
vance and connections of these approaches, and draw some conclusions about
their usefulness. Furthermore, in order pursue the matter further, in Chap-
ter 7 we will analyse the role of the cognitive operational constructs that are
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needed to solve some intelligence tests through our general-purpose learning
system gErl. Overall, the main goal of the chapter is to understand the mean-
ing, utility, and impact of these computer models taking intelligence tests, and
explore the progress and implications of this area of research.

6.2 Intelligence tests tasks and similar problems

Intelligence is a trait that has been recognised in several degrees and qualities
in humans, and to a lesser extent, other animals. While there are many ways of
recognising, identifying, and ultimately measuring intelligence of humans, non-
human animals and machines, in this chapter we will focus on computer models
addressing intelligence test problems. Particularly, we will briefly review some
of the tasks that appear in intelligence tests and similar tests. We refer to some
of these tests as ‘similar’ to intelligence test because those tests do not originate
from psychometrics but from AI or cognitive science, and have never been used
to evaluate humans systematically. Nonetheless, they are similar (intentionally
or not) to human intelligence tests, and we think it is worth taking them into
consideration. Basically, the criteria for inclusion in this chapter are (1) that
the tests have been developed as part of human intelligence tests or tests of
mental abilities, or have been introduced in the context of cognitive systems
addressing aspects of human intelligence, and (2) that the tests have been
attempted by at least one computer model, as we will see in Section 6.3.

One of the motivations behind the advent of psychometrics in the late
XIXth century was the common confusion between ‘idiots savants’ and genera
lly-able individuals [CS08]. Tests to measure intelligence in human children
and adults consolidated in psychology in the first half of the last century.
One common psychometric approach to the evaluation of intelligence is to
determine the intelligence quotient (IQ)3, as a score obtained in a standardised
test that quantifies the intelligence of a person [Ste00]. However, there are
many intelligence tests that are not used for IQ estimation.

Intelligence tests are typically based on a factor analytical model with sub-
tests for different abilities. There is no complete consensus about the number
of factors and, most especially, how they are related. However, there is a cer-
tain level of agreement on the existence of specific and general factors, and
also on the distinction between knowledge-independent abilities and those that
require the use of knowledge (and, of course, language). In this regard, one
important notion is the distinction between fluid and crystallised intelligence

3Psychometrics not only measures abilities (cognitive skills), but also traits (personality)
and attitudes (social views and opinions).
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[Cat63]. Fluid intelligence refers to the capacity of reasoning and solving new
problems, with a limited use of previously acquired knowledge. Crystallised
intelligence, on the contrary, refers to the capacity of applying previous knowl-
edge to new problems. It is important to clarify that crystallised intelligence
is not the same as specialised knowledge. For instance, an ‘idiot savant’ is
not generally able to use knowledge to generalise and relate concepts to new
problems.

One inherent characteristic of intelligence tests is that they are composed
of items with variable item difficulty. Item difficulty is determined by the
percentage of subjects that are able to solve this item, using functional mod-
els as in Item Response Theory [Lor80, ER00]. However, this cannot explain
why one item is more difficult than another. For such an explanation, the
investigated system has to be modelled as an information processing system
as proposed by Newell and Simon [NS63]. Taking this perspective, item dif-
ficulty can be either explained completely independent of humans by means
of algorithmic information theory (AIT) 4 or based on the complexity of the
cognitive processes and representations necessary to solve a test item5. This
will be further investigated in Chapter 7.

Well known intelligence tests are Raven’s Progressive Matrices (RPM),
the German Intelligenz-Struktur-Test 2000 (IST-2000), and the Wechsler In-
telligence Scales for Adults, School and Preschool Children (WAIS, WISC,
WPPSI). There are computer models dealing with Raven’s Standard Progres-
sive Matrices (denoted by SPM), number series (Numb-S) which are present in
different standard intelligence tests, such as IST-2000, verbal common-sense
reasoning problems (WPPSI), and block design problems (WAIS-B). Further-
more, different tests for mental abilities were investigated with computer mod-
els: Thurstone letter series completion task (Lett-S) based on Thurstone’s
Theory of Primary Mental Abilities (PMA), geometric analogies (ACE-A) in
American Council of Education (ACE) tests, Odd-one-out problems (OOO,
used nowadays in many test batteries6), Bennett mechanical comprehension
tests (BMCT), word analogies (SAT-A) from the Scholastic Assessment Test
(SAT), and Montessori’s object matching (Mont-O). Problems introduced in

4By using notions such as Solomonoff universal probability [Sol64a], Kolmogorov complex-
ity [LV08a], and Wallace’s Minimum Message Length (MML) [WB68b, WD99a], intelligence
is seen as a special kind of information processing tool (able to determine the theoretical
difficulty of any task) that can be defined and evaluated using mathematical constructs.

5Cognitive approaches are not meant to build systems that are able to perform well (or
perfectly) in some tasks (or even in intelligence test problems), but rather that perform in
the same way humans do, solving problems that humans usually solve but also failing at
problems where humans fail.

6Such as http://www.cambridgebrainsciences.com/

http://www.cambridgebrainsciences.com/
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Figure 6.1: Cattell-Horn-Carroll’s three stratum model. The top level represents the
g-factor (a construct that is usually derived from a factorial analysis of the abilities)
which is usually associated to the idea of ‘general intelligence’, the middle level iden-
tifies a set of broad abilities and the bottom level may include many narrow abilities.
The broad abilities (second level) are Crystallised Intelligence (Gc), Fluid Intelligence
(Gf), Quantitative Reasoning (Gq), Reading and Writing Ability (Grw), Short-Term
Memory (Gsm), Long-Term Storage and Retrieval (Glr), Visual Processing (Gv), Au-
ditory Processing (Ga), Processing Speed (Gs), and Decision/Reaction Time/Speed
(Gt). The first level can include many more ‘narrow’ abilities or types of tasks.

the context of cognitive systems are Bongard’s analogy problems (Bong-A),
string analogies (Str-A), and Hofstadter’s anagrams (Jumbles). More infor-
mation on these tests is given in the appendix B. These tests represent the
selection of problems covered by the computer models discussed in this chap-
ter. We intentionally leave out related work where specific problems included
in school or college tests are addressed [IGIS13, HHEK14, SHFE14, KAZB14],
because the tests are not intended to evaluate general intelligence.

The selection of which tests have been attempted by computer models and
which tests have not is most informative. For instance, it seems pointless to
apply a memory test to a computer model, even if this kind of test is usu-
ally included in many human intelligence test batteries. Also, some verbal
tests, especially those about story completion, have only been attempted by
a computer model very recently because they are really challenging. Another
important factor that explains why some tasks have not been used in artificial
intelligence or cognitive science is due to the restricted availability of many psy-
chometric tests. The reason behind this is mostly to prevent the task instances
from becoming public, as this would allow humans to prepare and specialise
for the tests. A third factor influencing the selection of tests is the degree
and complexity of required previous knowledge. Usually tasks that are very
abstract and do not require previous knowledge (aiming at measuring fluid
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intelligence) are preferred in the context of computer models. However, there
are also computer models addressing more knowledge-intensive tests (aiming
at measuring crystallised intelligence). Finally, some tests issue new editions
regularly, such as the WAIS (e.g., WAIS-IV was released in 2008), and the
definition of items and tasks is hence more volatile.

Because of this volatility and their extensional definition by a set of in-
stances, the tasks that we consider are not easy to separate or characterise by
a single criterion, as there is a high degree of overlaping in the processes and
abilities that each of the following tasks involve. It is more convenient to anal-
yse the abilities that each test covers. Table 6.1 shows a list of mental abilities
on the rows and an identifier for each test task on the columns. We follow
the list of primary mental abilities as described in [Sch10], which is mostly
based on Thurstone’s Mental Abilities (PMA) theory [Thu38, TT41] (see Fig-
ure 6.1). Even if there is no consensus on a list of abilities or factors, this list
includes “the most important factors, in order of the proportion of individual
differences explained” [Sch10]. We exclude Associate Memory and Perceptual
Speed, as memory and speed are not very interesting from the point of view
of machines. We include Deductive Reasoning as it was originally present in
Thurstone’s PMA theory.

Ability Lett-S Numb-S ACE-A SPM WAIS-B OOO Bong-A Str-A Mont-O Jumbles WPPSI BMCT SAT-A

Verbal Comprehension × × ×
Spatial Orientation × × × × × × ×
Inductive Reasoning × × × × × × × × × × ×
Number Facility ×
Word Fluency × × ×
Deductive Reasoning ×

Table 6.1: Correspondence between the tasks given in the appendix B (using the task
identifiers as they appear in each subsection heading) and the mental abilities they
measure according to [Sch10].

From the point of view of artificial intelligence, the list of mental abilities
in Table 6.1 can be mapped to the areas in artificial intelligence. For instance,
Table 6.2 shows a list of AI subdisciplines7. Our understanding of “knowledge
representation” is not just mere representation, which obviously affects all
problems, but the storage and retrieval of previous knowledge from knowledge
bases (linguistic, common-sense, rules, constructs, etc.) and its application for
new problems.

7These are taken from the list of topics of the Artificial Intelligence Journal (AIJ), ex-
cluding “AI and Philosophy”, “Cognitive aspects of AI”, “Heuristic search", “Intelligent
interfaces", and “Intelligent robotics" for being metalevel, hybrid, or instrumental.
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One of the first things that we observe in these two tables is that inductive
reasoning is predominant in Table 6.1 while deductive reasoning is predomi-
nant in Table 6.2.

AI area Verbal Spatial Inductive Number Word Deductive
Automated reasoning and (deductive) reasoning ×
Commonsense reasoning × × ×
Constraint processing × ×
Computer vision (and perception) ×
Knowledge representation × × ×
Machine Learning ×
Multiagent systems
Natural Language Processing × × ×
Planning and theories of action ×
Reasoning under uncertainty or imprecision ×

Table 6.2: Approximate correspondence between the mental abilities as shown in Table
6.1 and main areas in AI. The area of multiagent systems does not find a match in
the list of abilities, as social abilities are not in the list. Constraint processing may
only be related to the Number Facility ability when dealing with numeric constraints.

A detailed discussion of the computer models that attempt to solve the
types of tasks that are found in intelligence tests seen in this section will be
presented in Sections 6.3 and 6.4.

6.3 Account of computer models solving intelligence
test problems

In this Section we shortly describe all the computer models that have addressed
intelligence tests and related tests following a chronological order. The sys-
tems we will review address the tasks introduced in section 6.2 (Table 6.1). In
order to get a comprehensive insight of many different approaches spanning
over five decades, we will identify some criteria that are crucial in this un-
derstanding: year of development, range of tasks solved, purpose or intention
of the study, techniques used by each model, representation of the data, per-
formance compared to humans, kind of difficulty assessment derived from the
model. These criteria are identified to characterise all the computer models
we will analyse in sections 6.3 and 6.4 in a most informative way, covering
the facts about what, when, why, and how, as we can see in Table 6.3. The
purpose of this section is to focus on the main features and achievements for
all of these models, trying to determine the values of each of them for this
criteria. The values for the criteria will be summarised in Table 6.3 (where
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we see a row for each model (or a group of models) and the value for each
criterion) and discussed in Section 6.5. Further discussion about the technical
details of and the connections between these models will be given in Section
6.4. Finally, we try to put into perspective the comparison (in performance)
of all these computer models.

6.3.1 Early systems: 1961–1991

The relation between artificial intelligence and psychometrics started more
than fifty years ago with Evans [Eva63, Eva65] and his program ANALOGY,
which was “capable of solving a wide class of the so-called ‘geometric-analogy’
problems (“A is to B as C is to ?”) frequently encountered on intelligence tests”
[Eva65] such as the ACE Tests. Evans’s ANALOGY analyses the geometric
figures in terms of intersections, decompositions, similarities, transformations
(rotation, scaling), etc., using pattern matching.

At least for this seminal paper, it is interesting to know the reasons why
Evans considered intelligence test problems were appropriate for the construc-
tion of heuristic problem-solving programs. He thought that the choice of
geometric-analogy problems was suitable because: (i) “problems of this type
require elaborate processing of complex line drawings”, (ii) “the form of prob-
lems, [...] more speculative, [...] presents an interesting paradigm of ‘reasoning
by analogy’ ”, and (iii) “problems of this type are widely regarded as requiring
a considerable degree of intelligence for their solution and in fact are used as a
touchstone of intelligence in various intelligence tests” [Eva65]. The intention
was then to better understand some principles of analogy and its presenta-
tion, and the problems were converted from visual to symbolic. Evans did
not say that these tests could be taken as a sufficient or a necessary condition
for intelligence, just that “this suggests a non-trivial aspect of any attempt
to mechanize their solution”. In fact, when he compared his results to hu-
mans’, no mention is made of this being interpreted as ANALOGY showing
intelligence.

Evans’s program ANALOGY was highly acclaimed and cited in the fol-
lowing years, but not because of its results being comparable to humans (as
this was probably considered irrelevant or anecdotal). Some people (e.g.,
Solomonoff [Sol66]) suggested that ANALOGY could be extended to cover
a much wider range of problems, but the approach was never continued or
extended.

A different, but almost simultaneous, approach to Evans’s was taken by
Simon and Kotovsky [SK63]. They chose “Thurstone letter series completion”
tasks. The goal of the research was to understand how humans solved these
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kinds of problems and their difficulty, through the use of a computer model.
In order to make a system that would capture the patterns, Simon and Ko-
tovsky formulated a simple procedure for pattern descriptions using IPL-V,
the Newell’s information processing language V [New61]. Their work included
a number of different pattern generator variants conceived to solve the series
with different levels of performance (variants A to D, becoming progressively
more challenging). One of the programs (variant D) was able to score better
than 10 of 12 human subjects on 15 problems of the Thurstone Letter Series
Completion [SK63, Table 3]. Similarly to Evans, this work did not claim that
these results could lead to seeing these programs becoming closer to human
intelligence.

Despite the relevance of these works, it took almost two decades to see
more models. With the major goal of understanding analogy, Hofstadter de-
veloped a series of computational models, Jumbo [Hof83], and others, in the
Copycat project [HM84]. Hofstadter considered analogy as key to recognition
and categorisation, namely, the core of “high-level perception” and creative
thought. The project and tasks were inspired by the Bongard problems. How-
ever, because of their visual difficulty, the problems were simplified and remade
in a microdomain with a symbolic representation whose basic elements are let-
ters and strings of letters: jumbles (anagrams from a given set of letters) and
letter sequences analogies. The cognitive architecture and ideas used therein
were very specific and generally unrelated to other techniques in AI. The ar-
chitecture follows a biological metaphor in its development by using different
constituent elements (long-term memory, short-term memory, and subcogni-
tive processing mechanisms) which interplay in parallel in order to generate
obvious or (in cases) creative solutions. The results were not fully compared
with those of humans.

Carpenter et al. [CJS90] addressed Raven’s Progressive Matrices (RPM)
[RCR92]. Yet again, the goal was to better understand human intelligence
and the nature of the tests. The general outline of how the model performs is
divided into three main categories: (a) perceptual analysis, where the model
encodes the information about the figures of the first pair of entries of each
row, determines the correspondences between their attributes and the figures
in the remaining entry are compared to obtain a pattern of pairwise similar-
ities and differences; (b) conceptual analysis, induction and generalisation of
the rules that account for the variation among the figures and attributes in
each of the first two rows. This process is incremental and the rules are in-
duced one by one; (c) response generation, the rules for the top two rows are
generalised and applied to the third row to generate the solution. Carpenter
et al. analysed the rules needed to solve the RPMs and identified five relations:
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“constant in a row”, “distribution of three values”, “quantitative pairwise pro-
gression”, “figure addition”, and “distribution of two values”. Strictly, this is
not a big switch approach, but shows that the system would not work for a
similar problem with different relations. As an indirect result and based on the
previous relations, they produced “a pair (FAIRAVEN and BETTERAVEN)
of computer simulation models that performed like the median or best college
students in the sample”, which were based on the analysis of eye fixations,
verbal protocols, error patterns, and the identification of the previous rules.

As the reasons to choose RPM, Carpenter et al. say: “the correlation
between Raven test scores and measures of intellectual achievement suggests
that the underlying processes may be general, rather than specific to this
one test” [CJS90]. Again, it is not argued or mentioned that these models
are intelligent. Carpenter et al.’s approach does not handle re-representation
or encoding of the problem. Nonetheless, for the first time, one of these
cognitive models is generalised as a theory of intelligence on its own, but
without any explicit reference that this could be used for machines or for
artificial intelligence.

Simon et al. [SKN91] presented the cognitive computer model SC-Soar
to solve series completion tasks based on the ideas of Simon and Kotovsky
[SK63]. Their system was an adaptation of the cognitive architecture SOAR.
In particular, SC-Soar solved letter series completion tasks by casting them as
comprehension tasks so as to find relations that characterise the series. The
system was able to solve ten out of fifteen series in the original set [SK63].
Although they did not make any comparison with humans, they argued that
the number of decision cycles (measure of duration) that the system took to
obtain a right solution provided a measure of complexity of these series that
could be closely related to the difficulty of these series for the subjects. The
authors also claimed that the five series SC-Soar cannot solve were the most
difficult.

6.3.2 Later systems: 2003–2009

A decade later, Bringsjord and Schimanski refreshed the interest of psychome-
tric tests in artificial intelligence [BS03]. In fact, they started by wondering
“what went wrong” with Evans’s ANALOGY program, as it should have been
“the first system in a long-standing, comprehensive research program”, but,
after forty years, they found themselves “trying to start that very program”
[BS03]. One of their explanations was based on the distinction between a
narrow view of intelligence tests (Spearman’s general intelligence g [Spe04],
as illustrated by Raven’s Progressive Matrices [RCR92]) in front of a broader
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view of intelligence tests (Thurstone’s view of a range of problems [Thu38],
as in WAIS [Wec81]). As an example of how to deal with WAIS (at least
partially), they introduced PERI, whose name stands for “Psychometric Ex-
perimental Robotic Intelligence”. PERI is based on cognitive robotics and
makes no claim of being a cognitive model. It uses brute force for problem
solving and space search. While it is specialised to one kind of problems (Block
Design), Bringsjord and Schimanski argued that PERI was not only able to
solve the particular Block Design problems in the WAIS, but any Block Design
puzzle given to it.

Simultaneously with Bringsjord and Schimanski, Sanghi and Dowe [BS03,
SD03] developed a computer program (without any supporting cognitive model)
which was used to make a clear point about the relevance of machines pass-
ing intelligence tests. A third year undergraduate student (Sanghi) produced
an obviously non-intelligent small program written in Perl which was able to
pass some specific intelligence tests featuring number, letter, and word series.
The authors claimed that some other kinds of more difficult intelligence tests
(involving matrices, pictures, and questions) could be passed in the same way
(using predefined patterns), but they were not implemented in the program.
The experiment was conclusive, as nobody would assign intelligence—not even
the smallest degree—to this program. This system is a clear example of the
big switch approach. The code was full of if-then-else and case instructions
trying to identify what kind of problem they were facing and delegate it to the
appropriate module. As a result, the analysis of this work has to be done in
terms of the specialisation of the techniques that were used, their performance
and the range of problems, hence raising important doubts about the use of
intelligence tests for evaluating AI systems.

The two previous (opposed) approaches [BS03, SD03] for solving intelli-
gence tests led to an increasing number of works in the area (although some
of them were possibly unaware of these opposed views, as they do not cite
Bringsjord and Schimanski’s paper or Sanghi and Dowe’s paper). For in-
stance, Tomai et al. [TLFU05] revisits Evans’s problems but using a more
abstract and general approach, based on general-purpose simulation models:
sKEA [FU02] and the Structure-Mapping Engine (SME) [FFG89]. Tomai et
al.’s goal was to show that through the generality of their system, they were
able to solve a set of classic visual analogy problems. The results on the twenty
problems used by Evans were similar to those of Evans.

A different attempt to address a psychometric test with the aim of under-
standing humans’ cognitive mechanisms was Phaeaco [Fou06], which focussed
on Bongard problems [Bon70]. Phaeaco uses a cognitive architecture with an
image processing module, pattern matching techniques, long-term memory,
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and learning mechanisms with the aim to tell how similar such figures are and
trying to emulate how humans solve these problems (hardwired mechanisms
and holistic and analytic views). Phaeaco is able to solve some Bongard prob-
lems. Overall, its performance was shown to be slightly worse than humans.

Similar to Tomai et al., Lovett et al. addressed three visual problem-solving
tasks: geometric analogies [LTFU09, LF12], Raven’s Progressive Matrices
[LFU07, LFU10], and odd-one-out intelligence tests [LLF08, LF11]. With
a major goal of modeling human cognition, their models provide novel in-
sights about which cognitive operations are easier or harder for human visual
problem-solving. Lovett et al. demonstrated that qualitative spatial represen-
tations extracted by using CogSketch [FUL+08] (their sketch understanding
system) and visual comparisons made by the structure mapping engine (SME)
can be used to solve geometric analogy problems [TLFU05, LTFU09, LF12].
The authors combine these two models with two complementary theories of
how people perform it: (1) visual inference, where the answer of a problem
is inferred applying the differences found between the images “A” and “B”
over the image “C” in order to obtain the solution “D”; and (b), second-order
comparison, where the differences found between the images “A” and “B” are
then compared to the differences between “C” and each possible answer “i”,
selecting the most similar one.

In order to address RPMs [LFU07, LFU10], Lovett et al. used SME (with-
out using any processes specifically designed for the task) in a two-stage
mapping process, also using CogSketch and a series of strategies based on
structure-mapping techniques which are used to map the different elements in
the matrix in order to obtain patterns of structural relationships (similarities
and dissimilarities). Lovett et al. claimed that their model overcame the lim-
itations of Carpenter et al.’s model [CJS90], using visual representations and
task-general processes. Regarding the results, the first system scored like an
average American adult, while an improved version scored “above [...] most
adults” [LFU10].

Finally, in [LLF08, LF11], Lovett et al. addressed odd-one-out problems in
the same way as the previous models: using SME with the analogical gener-
alisation module known as SEQL. The results were slightly better than those
of American adults [LF11, Table 3]. While these comparisons could be in-
dicative of the achievements of these techniques, and one of the most general
approaches to intelligence tests to date, we note that the goal of these works
was to construct a model to better understand item difficulty.
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6.3.3 Recent explosion: 2010–today

A surge of new systems has taken place since 2010. For instance, a different
approach has been started by Sinapov and Sotytchev [SS10], where an intelli-
gence test is taken by a robot in a rich sensorimotor scenario. The robot’s aim
was to solve personalised odd-one-out tasks. The tests were performed on six
natural object categories (pop cans, plastic cups, metal objects, empty bottles,
soft objects, and objects with contents) where a group of four objects (three
of the same category and one outside the category) is presented. Cognitively,
the model uses similarities ect. The results were not compared to humans,
but the robot obtained results better than chance for all six object categories.

Another attempt to address Raven’s Progressive Matrices was undertaken
by McGreggor, Kunda, and Goel [MKG10, KMG10, KMG12, KMG13]. Un-
like previous models focussing exclusively on modal propositional accounts,
they proposed two complementary approaches that use purely iconic visual
representations of test inputs (with different level of resolution): the “fractal”
and an “affine” method. Both methods are used to judge the similarity be-
tween images and induce all possible transformations (selecting the best one)
so as to predict an answer that will be compared to each given answer choice.
The affine and fractal models were tested on all problems from the Raven’s
Standard and Advanced Progressive Matrices tests. Even with this original
visual representation, the performance was shown to be similar to the human
norm. McGreggor and Goel also applied the fractal approach to the odd-
one-out problem in [MG11a, MG11b], where the system automatically adjusts
the level of the resolution of the images and increases (also automatically)
the complexity of the relationships (from simpler to higher-order) to resolve
ambiguity. Their approach was evaluated against 2976 randomly selected odd-
one-out problems from a large corpus with a span of difficulty from the very
easiest (level one) up to the most difficult (level 20). From them, 1647 problems
were solved and, although the performance was not compared with humans,
we think that its results must be below human performance. The main goal
of these works was to evaluate whether visual analogy problems (RPMs and
odd-one-out problems) could be solved using visual representations.

A special journal issue on psychometric artificial intelligence [Bri11] trig-
gered more computer models. For instance, Klenk et al. [KFTK11] challenged
a new kind of test, Bennett’s Mechanical Comprehension Tests [Ben69], with
important content about physics and contextual information. Klenk et al. also
used sKEA and SME (as [TLFU05] and [LFU07]), integrated in (and extend-
ing) the Companion Cognitive Architecture [FG97], in order to address these
problems. Unlike the previous approaches, they did not make any comparison
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with humans.
Turney [Tur11] introduced the system PairClass as an improvement of

other systems by the same author. PairClass is a system for analogy percep-
tion that recognises lexical proportional analogies (A:B::C:D, meaning “A is to
B as C is to D” but with words) by using word frequency-based features vec-
tors (searching in a corpus) and some supervised machine learning algorithms
to classify word pairs. PairClass is able to solve word analogies found in the
SAT college entrance exam, TOEFL (test of English as a foreign language)
synonyms, ESL (English as a second language) synonyms, some synonym and
antonym problems previously used in computational linguistics, similar/asso-
ciated/both word pairs, and noun-modifier relations. Although only the SAT
college entrance exam resembles an intelligence test (with specific knowledge),
we think that the other tests are also valid as human-level tests and show that
PairClass can address many kinds of linguistic problems provided it has access
to a corpus.

Ruiz [Rui11] addresses the odd-one-out problems. The aim of this work
was to show that a simple two-step algorithm can help to understand the rela-
tionships between symbols and the dissociation/association process (based on
symbols and sets) in this kind of intelligence test problem. The results were
comparable to those of humans. This has to be interpreted carefully, as instead
of re-representation, the system performed a hand translation (RASCM). Also,
the ad-hoc use of a Hamming distance (to find most frequent symbols) sug-
gests that the system would need to be changed dramatically for other similar
problems.

Ragni and Klein [RK11] worked on number series completion, which is
very common in many intelligence tests and also occasionally in artificial in-
telligence [Bur05a]. They took over 50,000 number series from the Online
Encyclopedia of Integer Sequences (OEIS) and applied a general method us-
ing artificial neural networks (ANNs) and dynamic learning. Although the
overall results were comparable to those of humans, the error distribution was
very different, probably because the way in which the problems were solved is
very different to the way humans solve them.

Ragni and Neubert [RN12, RN14] presented another system for Raven’s
Progressive Matrices, implemented in the cognitive architecture ACT-R. The
system requires the identification of relational rules, as Carpenter did. In
particular, Ragni and Neubert use five rules: constant in a row, distribution
of three values, quantitative pairwise progression, figure addition, and distri-
bution of two values. Unlike the previous work [RK11], the motivation of
this work is to solve the problems in a cognitive way, i.e., explaining why the
system fails (ambiguousness, objects neglected, incorrect rules applied, . . . )
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and why some problems are more difficult than others (number and type of
rules applied, number of calls to the declarative memory, objects stored, . . . ).
Considering the results obtained, the authors claim that the visual complexity
involved in solving this kind of problems is smaller than the functional diffi-
culty (rules to be applied). The results were compared to humans in terms of
correlations for the accuracy (subjects’ error rates) and to Carpenter’s BET-
TERAVEN (where a human comparative study was made), with similar (or
slightly better) score, so we can estimate the results to be around human
average.

Closely related to the approach of Turney we find the work of Bayoudh et
al. [BPG12], where a feature vector similar to Turney’s is used to represent the
concepts but with completely different semantics. The main idea is that each
word in an analogical proportion problem carries an “information content”
that can be formally defined via its Kolmogorov complexity K. To evaluate
their approach, they used a set of 147 pairs of words coming from the SAT
college entrance exam that are to be completed with another pair of words to
be selected among 5 options, performing slightly better than a pure random
choice.

Prade, Richard, and Correa [PR11, CPR12, PR14] developed a logical rep-
resentation of the notion of “analogical proportion” (i.e., analogies of the form
“A is to B as C is to D”). This logical view tries to depict how similar (ho-
mogeneous proportions) or dissimilar (heterogeneous proportions) the items in
an analogical proportion are by representing them using binary or multiple-
valued features. Following this perception of similarity, the authors devel-
oped a system for addressing Raven’s Progressive Matrices based on solving
analogical proportion equations using an extended scheme where proportion
(a, b) : f(a, b) :: (c, d) : f(c, d) holds for lines and proportion (a, b) : g(a, b) ::
(c, d) : g(c, d) for columns. Their approach may be applicable at different levels
of representation: feature-based approach (propositional representation of the
matrices) and pixel-based approach (bitmaps). For both approaches a simple
algorithm finds both horizontal and vertical patterns (analogical proportions)
between the Boolean values of the features or pixels of the pictures. The au-
thors mainly compared their work with those which use Structure-Mapping
Engine (SME) approaches [LFU07] claiming the simplicity and generality of
their approach. The results for the pixel-based approach were worse than those
for the feature-based approach (because their algorithm is unable to provide
the information needed to get a proper solution of several tests), the latter
being about human average.

Following the previous perception of dissimilarity between items in a formal
setting of logical proportions, Prade and Richard [PR13, PR14] addressed odd-
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one-out problems. By using the same Boolean representation and equation-
solving principle, the idea is to find the item which has most dissimilarities with
regard to the rest of items for each feature: when a homogeneous proportion
equation holds between four Boolean values, there is no intruder among them,
however, if heterogeneous proportions equations hold for an item but not for
the rest, an intruder is found. This approach was not evaluated.

With quite a different perspective, Eliasmith et al. [ESC+12] have recently
produced a 2.5-million-neuron artificial model brain (called Spaun, short for
Semantic Pointer Architecture Unified Network). Since Spaun is highlighted
by its functionality, attention has been drawn to its having a similar ability
on certain aptitude test questions to what might be found in some humans
[Yon12, Mac12]. Spaun is evaluated against eight types of problems (A0–
A7). A7 is “fluid reasoning”, which is arguably said to be “isomorphic to
the induction problems from the Raven’s Progressive Matrices (RPM) test for
fluid intelligence. [...] This task requires completing patterns of the form: 1
2 3; 5 6 7; 3 4 ?” [ESC+12]. Using a “match-adjusted success rate” (since
Spaun must generate the correct answer, not choosing from a set of answers),
and comparing to humans, the authors conclude that “Spaun is similarly good
at these tasks” [ESC+12].

Siebers and Schmid [SS12b] address the number series problem with a
cognitive model, differently to other previous approaches for the same prob-
lem introduced before [RK11, Bur05a]. They use their own (public) series
collection formed by 25,000 randomly created number series (using the basic
numerical operators), for which the accuracy was 93.2%. No comparisons with
humans were made.

Schenck et al., in a series of papers [SS12a, SSS12] and in Schenck’s Mas-
ter thesis [Sch13], address a series of tasks found in intelligence tests with an
upper-torso humanoid robot performing a set of stereotyped exploratory be-
haviours and recording sensorimotor feedback, as in Sinapov’s paper [SS10].
Three different types of problems were tried. First, some Montessori tasks
[SS12a] [Sch13, chapter 4] were included in the experiments with sound cylin-
ders, weight cylinders, pressure cylinders, and sound boxes. Second, order
completion problems [SSS12] [Sch13, chapter 5] were arranged and three tasks
were prepared: ordering by weight, ordering by compliance (black and white
categories) and height. They posed 150 order completion tasks to the robot
(3 sets of objects, 50 tasks per set). Third, matrix completion problems were
arranged [Sch13, chapter 6]. They were similar to simple RPMs, where size,
colour, and content were used. “The robot was presented with a set of objects
arranged in a grid, with the lower-right object missing, and with a set of can-
didate objects”. They posed “500 randomly generated matrix reasoning tasks
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to the robot”.
Strannegård et al. [SAU13] address the number series problem by devel-

oping ASolver, a Haskell-coded anthropomorphic cognitive system based on
the idea of limited working memory. The main strategy is as follows: (a) con-
struct a term-based language that describes number sequences (1, 2, 3, 4, . . .
is described as f(n − 1) + 1); (b) define a term rewriting system to compute
mathematical terms; (c) define bounded cognitive resources in terms of com-
putations and size; (d) look for the smallest term that computes the input
sequence. This model was not intended as a cognitive model but only for
the purpose of problem solving. Nevertheless, it has some relations to human
cognition. The same problem was undertaken by Strannegård et al. [SNSE13]
with SeqSolver, which, following the same pattern discovery as in [SAU13], is
based on Kolmogorov complexity for limiting the set of computations. ASolver
was tested on the 11 number sequence problems of the IQ test PJP [SSF06],
obtaining scores above IQ 130–140. On the other hand, SeqSolver was tested
on number series from IST [ABLB01] and obtained scores of at least IQ 130.

Closely related and simultaneously, Strannegård et al. [SCS13] address
Raven’s progressive matrices with an anthropomorphic cognitive model in the
sense that it uses certain problem solving strategies that were reported by high-
achieving human solvers. Some principles are different to those of [SAU13] but
the system is also based on a repertoire of patterns that are combined to reach
the solution. To solve the matrices, the system relies on pattern matching
and the use of the repertoire of patterns similar to those of Carpenter et al.
[CJS90] (identity, one of each, numeric progression, translation, AND, OR,
XOR). The system program was tested on the sets C, D, and E of Raven’s
Standard Progressive Matrices test and produced correct solutions for 28 of
the 36 problems considered. The results are said to be roughly comparable to
an IQ of 100.

The approach presented by Ohlsson et al. [OSTU13] is one of the few
approaches to verbal intelligence tests. In particular, the authors proposed the
use of the Wechsler Preschool and Primary Scale of Intelligence (WPPSI-III,
Third Edition) to evaluate common-sense AI systems. Their method is based
on the capabilities available in the commonsense knowledgebase and natural-
language-processing toolkit ConceptNet [Sin01], an open-source project run by
the MIT Common Sense Computing Initiative. The system obtained results
which were comparable to results obtained by an average 4-year-old (which
does not mean that the system has the verbal abilities of a 4-year-old).

Hofmann, Kitzelmann, and Schmid [HKS14] demonstrate that the induc-
tive programming [FS08, GHOK+15b] system IGOR2 can be applied to num-
ber series problems. IGOR is a system for learning (recursive) functional
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programs from input/output examples, which has been applied to many prob-
lem solving domains [SK11]. The authors present an empirical evaluation with
100 number series systematically varied along three dimensions: size of start-
ing number (small/large), type of operator (+,×), and structural complexity.
The latter involves variations with respect to reference (last number, second
last number, third last number), linear vs. tree recursion (as for factorial vs.
Fibonacci), and usage of one or more operators. These dimensions were iden-
tified from a psychological study of the difficulty of number series problems
by Holzmann et al. [HPG82]. Although IGOR2 is an AI system, the authors
propose that IGOR2 can also be viewed as a plausible cognitive approach to
learning complex rules.

6.3.4 Comparison between systems

There are two types of comparisons that can be made with these systems.
First, we can perform a bona fide comparison using the data from the asso-
ciated papers. For instance, from all the systems in Table 6.3, there is only
sufficient data in the papers to compare the results for those addressing RPMs.
This is shown in Table 6.4. The insight from this table is narrow, for many
different reasons. First, many of the systems were not designed to achieve
good performance but to study the problems or the human performance on
them. Secondly, they do not use the same subsets (the Set II of APM is the
one for which we can compare the largest number of systems: just 5). This
is sometimes caused by confidentiality agreements and copyrights. Thirdly,
many systems could have been overfitted for the subset of items they used,
and the results may not generalise to other items. Fourthly, we do not have
information in most cases about the results for particular items, so a system
may be successful on the most difficult ones, or vice versa.

A more meaningful analysis could be performed if we were able to analyse
more systems and use different item sets. In order to determine whether this
comparison could be possible, we performed a survey (a series of questionnaires
sent by email to the systems’ authors) in order to determine the availability
of the systems and the input format the systems use. We complemented this
information with the set of problems these systems can handle. The result is
given in Figure 6.5, where we show that systems can only be compared for iso-
lated clusters (given by the problems they can handle). An additional difficulty
has been the public availability of some models, thus making their comparison
impossible. Furthermore, an extra challenge lies in the input representation.
Note, for instance, that solid links between systems solving RPMs (and also
for those solving odd-one-out problems) indicate that, although almost all of
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Model Raven’s SPM Raven’s APM
A (12) B (12) C (12) D (12) E (12) Set I (12) Set II (36)

Carp+RPM (FAIRAVEN) - - - - - 7a 16b
Carp+RPM (BETTERAVEN) - - - - - 7a 25b
Lov+RPM 44c - -
Rag+RPM - - 12 12 11 - 31
McG+RPMf 11 7 5 7 2 12 26
McG+RPMad 12 11 8 1 3 7 14
Pra+RPMp - - - - - - 16
Pra+RPMf - - - - - - 16 + 16e
Str+RPM - - - - - 7 16

Table 6.4: Comparison of systems addressing RPMs using the results given in the
corresponding papers. The identifier (Model) corresponds to the first column in Ta-
ble 6.3 Many of these systems did not have high accuracy as a goal or used different
transformations of the instances. Notes: aOut of 7 attempted. bOut of 27 attempted.
cFrom sets B to E. dResults shown for the standard configuration. eThe pixel-based
approach was able to solve 16 problems and the feature-based approach solved 16 ad-
ditional problems.

them use propositional input representations, the dimension, number, type,
syntax, and semantics of the features used vary for each model. This makes
it extremely difficult to ensure equivalence between the input problems to be
solved in each model. Therefore, we see that a comparison of several systems
for a range of problems is not possible. It seems that apart from the RPM
cluster in Figure 6.5 (for which we have already discussed the comparison in
Table 6.4 there are a few models that could be compared for number series,
only three of them (Rag+NUMS, San+PERL, and Sie+NUMS) share a simi-
lar representation (raw numbers with minor variations). However, there is no
point in making a comparison between these three systems since their aims
were completely different: the goal of Sanghi and Dowe [SD03] was not to
excel in any specific task, the aim of Ragni and Klein [RK11] was to success-
fully solve large sets of number series from OEIS, and the goal of Siebers and
Schmid [SS12b] was to get cognitive plausibility for series actually found in
intelligence tests (including failure on those difficult series for which humans
fail) instead of excelling on performance.

As a result, the comparison would become much more meaningful with
systems that are able to handle several kinds of problems. An effort must be
made towards a standardised format for problem description and the avail-
ability of a large variety of instances—so that system cannot prepare for a
particular set.
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6.4 Technical analysis

In this section we present a more detailed study of the techniques that are
used by the systems introduced in the previous section. We will group the
systems by the techniques they used. Furthermore, we will show the evolution
of the techniques and their progress and whether some kinds of techniques are
more appropriate for some types of problems. Our analysis is arranged in two
parts: (1) how the representation of the input problems is addressed, and (2)
which techniques are used to compute the solutions.

6.4.1 Input representation techniques

Regarding the input problem’s representation we find two big different ap-
proaches: (a) symbolic representations (hand-coded or not) and (b) visual
representations (pixel-based or analogical visual representations). Former sys-
tems like Evans’s ANALOGY [Eva63, Eva65] or those developed by Carpenter
et al. [CJS90] relied on hand-coded symbolic descriptions of geometric analo-
gies and RPMs. In particular, Evans’s system made a complex preprocessing
of the input problems decomposing each hand-made figure description (co-
ordinates) into very precise internal symmetry descriptions (LISP-based rep-
resentations): both a specified set of geometrical analogy relations (inside,
above, . . . ) and a set of “Euclidean similarity” calculations (rotations, uni-
form scale changes, and certain types of reflections), which were determined
for each and every pair of objects by using a substantial repertoire of “analytic
geometry” routines and a topological pattern matching process. By contrast,
more recent works, such as those of Tomai et al. [TLFU05] and Lovett et al.
[LTFU09, LF12, LLF08, LF11], are based on the process of forming high-level
conceptual representations from raw data (without hand-coding). These ap-
proaches exploit qualitative visual structure computing abilities from sketching
programs such as sKEA [FU02] or its successor CogSketch [FUL+08]. Both
are general-purpose architectures for conceptual sketch understanding (visual
and spatial properties) that allow the generation of representations from raw
input and provide a convenient platform for cognitive experiments that use vi-
sual stimuli. Specifically, in CogSketch the user has to label the input objects
(glyphs) and CogSketch uses them to compute spatial relations (e.g., edges,
groups of objects, relative position, topology, overlapping) which can lead to
inferences about the spatial relationships between the content of those glyphs.

Notwithstanding, many modern computational systems keep assuming that
hand-coded representations are available as inputs. Systems such as those of
Ragni and Neubert [RN12, RN14] and Strannegård et al. [SCS13] continue ad-
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dressing Raven’s progressive matrices by generating hand-coded propositional
attribute-value vectors with, respectively, a fixed set of attributes (shape, size,
number of sides, width, height, colour, rotation, position, and quantity); and
vector graphics where each matrix is encoded as vectors of attribute-value
pairs using different abstraction levels (features, elements, groups, and cells)
by using the XML-based specification language from Microsoft, XAML.

Prade, Richard, and Correa’s approach [PR11, CPR12, PR14] is a special
case, applicable to different levels of representation (resolution). One is a
feature-based approach, where the RPM pictures are represented as vectors of
Boolean features (coded manually), in some way like Ragni and Neubert’s, but
the features can be different for each problem and can denote, for instance,
the presence of a Big Square, a Small Square, a Circle, or a Cross in a picture.
A pixel-based representation is also used in a number of cases.

Clearly, a big technical advance in intelligence tests’ input has been the
ability of using low level image representations (bitmaps). Here we find
those systems for solving RPMs of Prade, Richard, and Correa’s (pixel-based
approach) aforementioned [PR11, CPR12, PR14], the system of Foundalis
[Fou06] for solving Bongard problems, or the (robotic or not) approaches with
video input systems [BS03, SS10, SS12a, SSS12, Sch13, ESC+12]. Also, the
fractal and pixel-based computational models from McGreggor, Kunda, and
Goel [MKG10, KMG10, KMG12, KMG13, MG11a, MG11b] work directly on
visual inputs from both RPMs and odd-one-out problems without any need to
extract propositional representations from them. All these techniques, com-
putationally infeasible in previous decades (due to the hardware and software
requirements), have shown that they perform surprisingly well in those kind
of tasks and, thus, are valid alternatives to the verbal representations.

Finally, note that those systems addressing word, letter, or number-based
tasks are able to use raw “strings” or number/letter sequences directly [SK63,
SKN91, SD03, RK11, SS12b, SAU13, SNSE13], meanwhile others need spe-
cific types for input problems: Hofmann, Kitzelmann, and Schmid’s system
[HKS14] needs algebraic data-types for the target function together with a
small set of examples; Ragni and Klein’s system [RK11] and Siebers and
Schmid’s system [SS12b] need to transform the sequences into different train
and test sets.

6.4.2 Computational techniques

A crucial difference that makes systems distinctive is not only the kind of
problems they solve, but also the great deal of techniques that have been
used for solving the same or different intelligence tests. This correspondence
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between tasks and kinds of problems is illustrated in Figure 6.2 where the
the first seven kinds of techniques are general and can be applied to any type
of problem. The bottom three, though, are clearly more restricted to some
types of problems. While some categories can be mapped to AI areas seen in
Table 6.2, and ultimately to Table 6.1, it is still difficult to tell for a particular
problem which kinds of AI techniques may be more suitable. However, from
the experience in other areas such as of general game playing, it is clear that
the ad hoc “rule-matching” approach does not work if the system is aimed at
a range of problems [GB13]. We will be develop the technical details below,
attempting to clarify the evolution over the years.

Rule-matching: One of the most used techniques during the early years
was what we call rule-matching technique. This includes, among others, the
use of the authors’ own code or the use of production-systems [New73a] with
hand-coded production rules. In this category we include those systems such
as Evans’s ANALOGY, which used a substantial amount of pattern-matching
techniques between pairs of figures and heuristic problem-solving mechanisms
in order to generate a set of rules transforming figure A into figure B (spec-
ifying how the objects of figure A are removed, added to, or altered to gen-
erate figure B). These sets of rules are generalised and a similarity matching
is carried out between figure C and each of the five answer figures given in
the analogy problem to find (if possible) a correct answer. Another example
is [CJS90], where Carpenter et al. used their own production system CAPS
[JC87] (for Concurrent, Activation-Based Production System), a collection of
procedural hand-coded if-then-else rules (including the five rules discovered
needed to solve the RPMs) specifying what symbolic manipulation should be
made when a given information condition arises in working memory. Unlike
conventional production systems, (a) CAPS allows for parallel execution of
all the productions whose conditions are satisfied, and (b) instead of having
knowledge elements either present or absent from working memory, they can
have varying degrees of activation. As commented in the previous section,
Carpenter et al. produced a pair (FAIRAVEN and BETTERAVEN) of com-
puter simulation models. The BETTERAVEN model differs from FAIRAVEN
in two major ways: BETTERAVEN has the ability to induce more abstract
relations than FAIRAVEN, and it has the ability to manage a larger set of
goals in working memory and hence can solve more complex problems.

Currently, several computational systems still use their own if-then-else
patterns to pass some specific intelligence tests. This is the case with Sanghi
and Dowe’s program written in Perl (960 lines of code) [SD03], which, having
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access to a word-list of approximately 25,000 words and using some predefined
if-then-else patterns, was able to pass some specific intelligence tests featuring
number, letter, and word series. Furthermore, some other systems use hand-
coded variations of those patterns found by Carpenter. Strannegård et al.
[SCS13] also relied on a repertoire of patterns similar to the one of Carpenter et
al. [CJS90], which can operate with one or more abstraction levels—attributes
(features), elements, groups, and cells—and can be processed row or column-
wise in order to obtain a prediction value for the solution cell.

Cognitive architectures: On the other hand, Ragni and Neubert [RN12,
RN14] also relied on the use of some predefined hand-coded rules or pat-
terns for solving RPMs. However, in their case, these rules were implemented
using the well-known cognitive architecture ACT-R [And96], a cognitive archi-
tecture for simulating and understanding human cognition implemented as a
production system, where each symbolic processes is controlled by subsymbolic
equations (responsible for most learning processes) which estimate (and then
decide) the relative cost and benefit associated with their execution. Their
system also requires the identification of relational rules, as Carpenter did.

Former systems such as those of Hofstadter also relied on cognitive archi-
tectures. In this case, Hofstadter developed its own cognitive architecture in
the Copycat project [HM84]. Particularly, Jumbo [Hof83] and Copycat [HM84]
were developed for solving different letter-based intelligence tests and, further-
more, both are composed of three constituent elements following a biological
metaphor. Jumbo’s architecture, used to make plausible anagrams from a
given set of letters, is composed by: the chunkabet, storing a database of
pondered chunks (small sequences of letters); the cytoplasm, modelling the
working memory and containing partial associations of letters; and the coder-
ack, formed by codelets (fragments of code) that run in parallel (based on
the current state of the chunkabet and cytoplasm) and can perform modifica-
tions over the structures in the chunkabet and cytoplasm. On the other hand,
Copycat’s architecture, which is similar to Jumbo’s, was used for solving letter
sequence analogies. Its main components are: the slipnet, the workspace, and
the coderack. The slipnet models the long-term memory in humans by a se-
mantic network composed of nodes that represent permanent concepts about
the letter-string world (sameness, leftmost, opposite, . . . ) and their weighted
relations (strength of associations between concepts). In total there are more
than 60 such concepts. Both the relevance of the concepts (related to their
activation) and the distance of the links between them change dynamically de-
pending on CopyCat’s perspective on the given problem. On the other hand,
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the workspace is the site of subcognitive processing activity that is in charge
of modelling the short-term memory where partial structures can be formed
(single letters, descriptions, groups, bonds, and bridges). These are tempo-
rary combinations built up entirely from Slipnet concepts, e.g., “jjfg” may be
described as the sameness group “jj” and the successor group, consisting of
the letters “f” and “g”. The third main component of the architecture is the
coderack, which is equal to Jumbo’s but based on the current state of the slip-
net and workspace. Codelets in the coderack examine in parallel the letters of
an analogy problem trying to build a coherent set of structures around them
and possibly chunking them together into groups based on a common relation-
ship, representing a particular interpretation of the problem. Since analogy
problems can have many interpretations (giving rise to a vast space of poten-
tial configurations in the workspace), Copycat runs according to the parallel
terraced scan—introduced by Jumbo—that executes several probabilistically
selected possible processes in parallel.

Simon et al. [SKN91] used the cognitive computer model SC-Soar, an adap-
tation of the cognitive architecture SOAR [LNR87] for solving letter series
completion. Based on a production system, the SOAR architecture formu-
lates the task in a problem space in which different operators are selectively
applied to bring the system gradually closer to its goal state. In each decision
cycle SOAR brings different pieces of knowledge from its long term recogni-
tion memory to the working memory and decides which action to be taken.
In particular, SC-Soar used letter series completion tasks and solved them by
casting them as comprehension tasks: comprehension operators are applied
in order to find relationships between items reaching different states (which
encode the knowledge about the relations that characterise the series) for a
goal state.

Foundalis’s Phaeaco [Fou06] is another cognitive architecture for visual
pattern recognition and abstraction. Phaeaco, which creates abstract repre-
sentations of geometric figures received as input (pixels), uses three mecha-
nisms for solving Bongard’s problems. The first mechanism is the hardwired
recall, related to those problems that can be solved by means of mechanisms
hardwired in the human brain. Phaeaco employs a mechanism (“zero vari-
ance”), very different from the one humans use, as a first attempt to solve a
Bongard problem. If this first stage fails, Phaeaco enters its holistic view, re-
lated to the initial strategy of conducting a panoramic overview of the problem
for a brief period of time in an attempt to see apparent differences. Finally,
if the previous stages fail, the systems performs the analytic view, where indi-
vidual images are selected and reexamined in an effort to come up with fresh
ideas due to Phaeaco’s nondeterministic nature.
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Simulation models: Notwithstanding the previous techniques, the best-
known approach to analogy-making is the use of simulation models and, in
particular, the use of the Structure-mapping Engine (SME) [FFG89]. SME is
a program for analysing analogical processing which compares the similarities
and differences between objects. SME has been a significant advance facili-
tating a lightweight high-level visual matching solving analogy problems. The
SME is based on Gentner’s structure-mapping theory [Gen83] and operates
over symbolic representations (entities, attributes, and relations) and thus, it is
used together with sketch understanding systems (such as sKea or CogSketch)
using the qualitative spatial representations returned by the latter. SME takes
as input two propositional descriptions, a base and a target, and produces a
set of mappings between the pictures aligning their common relational struc-
ture. Each mapping consist of: 1) correspondences linking items in the base
and target (commonalities in the representations and corresponding objects
in two pictures); 2) a structural evaluation score which provides an indication
of match quality (thus giving an overall similarity between the pictures); and
3) candidate inferences which identify particular differences between pictures.
Furthermore, SME accepts input constraints to bias the mappings.

This combination of sketch understanding systems and a structure-mapping
engine has been used for solving a wide range of intelligence tests: Tomai et
al. [TLFU05] revisited Evans’s geometric analogy problems. Lovett et al. ad-
dressed geometric analogies [LTFU09, LF12], Raven’s Progressive Matrices
[LFU07, LFU10] and odd-one-out problems [LLF08, LF11]. For solving both
RPMs and odd-one-out problems, Lovett’s models also perform a generalisa-
tion of the patterns founded using SEQL [KFGQ00], a model of analogical
generalisation (describing what is common between two structural representa-
tions of objects) through a process of progressive abstraction [GL02] built upon
SME. The generalisation can then be compared to new objects: each given
solution in a RPM problem is inserted into the matrix, returning the one with
the closest matching structural relationship, or, each individual image in an
odd-one-out problem can be compared to the generalisation thus returning
the noticeably least similar as the solution. Furthermore, since SME auto-
matically figures out what kinds of things can be matched [FGMF98], this
combination of qualitative representations and structure-mapping engine has
also been used (all together with the Companion Cognitive Architecture to
perform qualitative reasoning) to solve Bennett’s Mechanical Comprehension
Tests [KFTK11], demonstrating its generality.
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Simulation models (Sketches + SME) ●
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Non-declarative Learning (SVM, RBF, Clusters, ANN) ●

Complexity/Compression/Fractal ●

Similarity functions ●

Robotic perception and action ●

Natural Language Processing ●
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psychomotor blocks (WAIS-B)

series and anologies

Figure 6.2: Correspondence between kinds of techniques and problems. Compare with
tables 6.1 and 6.2. The id of the computer models can be found on the first column
of Table 6.3.

Declarative Learning: Techniques related to declarative learning such as
list processing mechanisms or inductive programming [FS08, GHOK+15b]
have also been widely used for solving letter and number series intelligence
tests. Simon and Kotovsky [SK63] proposed a list processing procedure to
induce pattern descriptions from segments using IPL-V, Newell’s information
processing language V [New61]. The main task of this procedure is to seek for
initial conditions, periodicity and relations in the given sequence, and to ar-
range them in the corresponding pattern. Simon and Kotovsky also developed
an extremely simple IPL-V based procedure capable of generating sequences
from pattern descriptions by executing elementary list processes called for by
the descriptions.

Likewise, Siebers and Schmid [SS12b], Strannegård et al. [SAU13, SNSE13]
and Hofmann, Kitzelmann and Schmid [HKS14] demonstrate that the num-
ber series problem can be addressed with the use of inductive programming
and bounded cognitive resources (use of heuristics emulating certain limita-
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tions of human cognition). Siebers and Schmid [SS12b] use basic numerical
operators (addition, subtraction, division, multiplication, and exponentiation)
to construct the patterns that lead to extrapolate the sequences. Following
a human-like strategy, the hypothesis formation is guided by an analytical
strategy.

Strannegård et al. [SAU13] developed two Haskell-coded anthropomorphic
cognitive systems based also on the idea of limited working memory: ASolver
and SeqSolver. Both systems have a repertoire of predefined patterns (syntac-
tic expressions defining sequences), mathematical operators (+, −, ∗, ÷) and
simplifications (odd, even, exception, last) used to describe number sequences;
and a limited set of computations with bounded cognitive resources (SeqSolver
based on Kolmogorov complexity for limiting the set of computations), that
are used to decode patterns (rejecting solution candidates which are too com-
putationally demanding), thus turning them into number sequences.

Hofmann, Kitzelmann, and Schmid [HKS14] used their inductive program-
ming system IGOR2, a system for learning (recursive) functional programs
from input/output examples. IGOR2 can be applied to number series prob-
lems using different example presentation: a list of the initial elements of the
series as input and the next element as output, a position as input and an
enumeration of the series up to this position as output, or a position as input
and the value at this position as output.

Non-declarative Learning: In addition, some systems use general ma-
chine learning techniques, what we have called non-declarative learning. In
this group of techniques we find the large-scale model of the functioning brain
developed by Eliasmith et al. [ESC+12]. It is remarkable that the system
learns to recognise the problems (with digit recognition) and also writes the
answer with a robotic arm, which gives the system an even more impressive
look. In Spaun, the tasks are learnt, which is clearly different to a hardwired
big switch approach. Nonetheless, the re-representation that is made here is
different to the one needed in many intelligence test tasks with visual presen-
tation, such as RPM, since the components of each item are digits, unlike the
original RPMs.

Ragni and Klein [RK11], for their part, worked on number series comple-
tion applying a general method using artificial neural networks (ANNs) and
dynamic learning where the learning rate, the number of input nodes, the
number of hidden nodes, and the number of training iterations are manually
varied in order to allow for a comparison of the different ANNs. Like other
previous techniques, most models based on non-declarative techniques need
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to rely on other mechanisms or techniques shown on Figure 6.2. Turney’s
PairClass [Tur11] uses a standard supervised machine learning algorithm: a
sequential minimal optimisation (SMO) support vector machine (SVM) with a
radial basis function (RBF) kernel from the machine learning library WEKA
to classify word pairs according to their semantic relations. PairClass rep-
resents the semantic relations between two words using a high-dimensional
feature vector, in which the elements are based on frequencies of patterns in a
corpus—consisting of a large corpus of plain text (280GB), gathered by a web
crawler and retrieved by the search engine Wumpus [BC05]—obtained using
templates.

Ruiz [Rui11] addresses odd-one-out problems, combining a clustering tech-
nique with a similarity function. Ruiz uses the so-called “Ruiz-Absolute Scale
of Complexity Management” (RASCM) in order to code or discretise the ob-
jects as character strings. For instance, a problem composed of two circles and
a square is represented as (A;A;B). In order to represent objects with several
features, other letters are used for each object, such as (AC;AD;AE;BF;AG),
so representing four circles and a square with different sizes. Once this trans-
formation is made, the problems are addressed by a two-step clustering algo-
rithm that computes the average Hamming distance of the sets in the first
step, and, for those misclassified items, it makes a second recoding so that the
most frequent symbol within that set becomes A, the second most frequent
symbol becomes B, and so on. For example, the three following sets: (AAAD,
BBBE, CCDE) become respectively: (AAAB, AAAB, AABC),which clearly
unveil AABC as the least similar.

Complexity, Compression or Fractals: Among the approaches based on
complexity, compression or fractal techniques, Bayoudh et al. [BPG12] uses the
relationship between Kolmogorov complexity and the universal distribution,
and searching on a structured text corpus (i.e., the Web), is able to address
word analogies. In more detail, the authors use the Kolmogorov complexity
as a measure of the quantity of information needed to go from the word w1 to
the word w2, namely, to define agreement and disagreement between concepts.
The estimation for a given pair of words <w1, w2> is calculated as the log
inverse of the words’ frequencies within a given corpus.

McGreggor, Kunda, and Goel [MKG10, KMG10, KMG12, KMG13, MG11a,
MG11b] proposed two different image resolution-based methods (the “fractal”
and a “affine” method) for solving RPMs and odd-one-out intelligence test
problems. Both methods compare images under a variety of transformations
(image rotations and mirrors, scaling, addition, and subtraction), and must
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judge the similarity between images (based upon features which arise from
them) to determine similarity for each possible answer. The main difference
is the interpretation of what constitutes a feature in each model: (a) in the
fractal method, the representation of an image is a set of fractal codes which
compactly describe the geometric alteration and colourisation of fragments
(sets of points) of the source image that will transform into the target image,
and the features are derived from these representations (which will be used to
determine the similarity for each possible answer across all the relationships
present in the problem); (b) in the affine method, a feature is defined to be a
single greyscale pixel with each pixel associated with a single intensity value.
Both approaches induce all possible transformations for the matrix, both row-
wise and column-wise and select the best one according to some measure of
fitness. The model applies this transformation to the incomplete row/column
to predict an answer which will be compared to each given answer choice
according to a similarity measure.

Similarity functions: The above combines a fractal approach with similar-
ity. Similarity functions have also been in a wide range of computer models.
Prade, Richard, and Correa [PR11, CPR12, PR14], following a logical view
of similarity, developed a system for addressing Raven’s Progressive Matri-
ces based on solving analogical proportion equations. As seen before (Section
6.4.1), their approach may be applicable at different levels of representation.
Their approach starts with the truth table of the analogical proportion (i.e.,
0000 or 0101 satisfy an analogical proportion, but 1000 or 1011 do not satisfy
it), where each Boolean digit represents the absence or not of a property. The
equation-solving principle is used to build the missing item D (rather than
selecting it from a set of potential candidates) in an incomplete proportion in-
volving A, B, C. Furthermore, following the logical view of dissimilarity and by
using the same Boolean representation and equation-solving principle, Prade
and Richard [PR13, PR14] developed an approach to address the odd-one-out
problem. The idea is to find the item which has most dissimilarities with
respect to the rest of items for each feature.

Robotic perception and action: Unimaginable in the early years, we find
robotic approaches developed to solve several intelligence test problems (such
as WAIS Block problems [BS03], Montessori tasks and RPMs [SS12a, Sch13],
or odd-one-out problems [SS10]) making use of an upper-torso humanoid
robot with auditory, proprioceptive, and visual sensory abilities. Apart from
the robotic abilities, other rule-matching or similarity-based techniques are
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needed. As an example of how to deal withWAIS (at least partially), Bringsjord
and Schimanski’s PERI [BS03] is capable of logic/reasoning, vision, physical
manipulation through a five-degree-of-freedom vertically articulated robotic
arm, speech, and hearing. At the core of PERI we find a complex Lisp program
and an associated “Scorbot Advanced Control Language Library”. Meanwhile,
Sinapov and Sotytchev [SS10] present a framework that allows the robot to
interact with a set of fifty household objects (cups, bottles, and toys) with the
aim of solving personalised odd-one-out tasks. The robot explores each object
to detect many of its physical properties (auditory and proprioceptive sensory
feedback) to infer the pairwise similarity matrix for the objects that will be
used to select the most dissimilar object in the tests. Finally, Schenck et al.
[SS12a, SSS12, Sch13] address Montessori tasks and RPMs with an upper-
torso humanoid robot, as in Sinapov’s paper [SS10]. The robot grounded its
representation for the different objects in each task in terms of the auditory
and proprioceptive outcomes that they produced in response to a series of ex-
ploratory behaviours. Combining information from each sensorimotor context
and using similarity measures, the robot was able to estimate the perceptual
distance (similarity score) on a given set of objects.

Natural Language Processing: On the other hand, some systems use nat-
ural language processing methods based on keywords and statistics in order to
try to understand basic facts and queries. Systems like the open-source crowd-
sourced knowledge base ConceptNet [Sin01] support many practical textual-
reasoning tasks.

Ohlsson’s system [OSTU13] uses ConceptNet tools to map the input words
to concepts in the system, Python algorithms to wire the different parts of the
system, and the AnalogySpace, a concise version of the large common-sense
knowledge base of ConceptNet, which is queried to obtain relations (between
concepts). For a question such as, “Where can you find a penguin?”, their
system will query its knowledge base for the words “find” and “penguin”.

Previous Knowledge Finally, Turney’s PairClass [Tur11], Ohlsson’s CNET
[OSTU13] and Bayoudh’s system seen above use previous knowledge (e.g., Cor-
pus or knowledge bases) more intensively, in integration with other techniques.

6.4.3 Progress in techniques

In the case of intelligence test tasks, we have seen in Sections 6.3 and 6.4, that
some improvement from the early systems exists but it is not clear how much
of it is due to the use of better techniques or just due to more computational
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power (note that there are no time comparisons between current and previous
models). However, we see that only a few systems have reused the same
techniques, and in many cases it is because there are common authors. Also,
even for those cases where the techniques are similar, the range of tasks solved
is different. In fact, some works we have seen in Section 6.3 do not even cite
all the relevant literature for the same task, which clearly limits the transfer
between systems. The lack of correspondence that we observed between Tables
6.1 and 6.2 and the techniques that we see in Table 6.3 and Figure 6.2 must
be an indication that something is wrong here. Of course there may be many
interpretations for all this. First, there is a possibility that AI techniques are
not appropriate (or too specific) to solve these problems. Second, there is the
possibility that many of these works were not able to adapt AI techniques more
smoothly. But there is also the possibility that AI has not considered these
problems interesting enough, or simply, as mentioned above, that the systems
have not been designed in many cases to excel in the results, but to better
understand the nature of the problems and how humans solve them. Actually,
this was the motivation behind one of the systems, Sanghi and Dowe’s, [SD03],
which showed that if the mere goal is to score well in these tests, one can do
a very simple switch approach (with no AI techniques whatsoever).

Also, if we compare Tables 6.1 and 6.2 we see a mismatch between de-
duction and induction. This may suggest that inductive reasoning is still the
area where more progress is required. In fact, for most approaches the system
does not learn to solve the problems but it is programmed to solve the prob-
lems. In other words, the task is hard-coded into the program and it can be
easier to become ‘superhuman’ in many specific tasks, as happens with chess,
draughts, some kinds of planning, and many other tasks. But humans are not
programmed to do intelligence tests. Only for a few cases (such as Spaun, but
with many limitations and just some kinds of tasks), the system is trained to
solve intelligence test tasks. We think that this is one of the lessons learnt in
AI as stated in the introduction of this thesis (Chapter 1): the ultimate goal
of AI is to make systems that learn to solve new tasks they have never seen
before.

As a result, there has been limited feedback between the systems, and the
progress is caused by the painstaking integration of more methods from AI and
some incremental development for some particular techniques. However, the
techniques that originated from these systems have had very limited impact
on mainstream AI.



110 6. Intelligent test tasks for AI evaluation

6.5 Discussion

After giving a historical overview of the systems in Section 6.3 and a discus-
sion of the techniques of the systems in Section 6.4 we will now discuss some
of the key questions raised in the introductory chapter of this thesis (Chapter
1) in order to understand the meaning, usefulness, and impact of those com-
puter models taking intelligence tests. We will focus on the criteria used to
characterise the different systems in Table 6.3 that will be crucial in the un-
derstanding of what intelligence tests measure in machines, whether they are
useful to evaluate AI systems, whether they are really challenging problems,
and whether they are useful to understand (human) intelligence.

Firstly, the years criterion gives us a chronological perspective that can
show trends about the interest in computer models solving intelligence test
problems. An overview of the table indicates that most approaches are very
recent. Is it an indication of relevance? According to the venues, we see that
they go from mainstream AI to cognitive science, or even psychology, and
some of them are in leading conferences and journals in these areas or even
in interdisciplinary general outlets. According to the intention criterion, it
seems that most approaches aim at unveiling general (artificial) intelligence
principles in ways that are not necessarily connected to the way humans solve
these tests. This suggests that this is attracting more interest in artificial
intelligence and cognitive science than in psychology.

What about the use of these tests for AI evaluation? Are they becom-
ing more common? It has been recently argued—from human intelligence
researchers—that intelligence tests are the right tool to evaluate AI systems. In
February 2011, Douglas K. Detterman, the editor-in-chief of Intelligence wrote
an editorial after seeing how successful IBM’s program Watson [FBCC+10]
(the recent winner of the Jeopardy! TV quiz show at the time) had been
(at least as a way to acknowledge the progress of artificial intelligence for lay
people). As Watson was clearly unable to do other tasks and clearly non-
intelligent, Detterman claimed that AI systems should be better measured by
classical intelligence tests. The challenge was set in this way [Det11]: “I, the
editorial board of Intelligence, and members of the International Society for
Intelligence Research will develop a unique battery of intelligence tests that
would be administered to that computer and would result in an actual IQ
score”. It is important to note that Detterman’s challenge had two levels:
the first level allowed the challenge designers to look at the (kinds of) tests
beforehand, and construct their system according to this information, while
the second (true) level allowed the committee to use any possible test not
previously disclosed to the designer or the system. This is a very appropriate
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distinction in the context of this chapter, since in the previous sections we have
seen systems that could come close to the first level, but there is no attempt
that could come close to the second level.

Nonetheless, we do not see that artificial intelligence has changed its eval-
uation protocols following this increase of models taking intelligence tests (the
only exceptions are the works by Sinapov [GSSS12], Sotytchev [SS10], and
Schenck et al. [SS12a, SSS12, Sch13] for robots and model brains such as Spaun
[ESC+12]). But overall, Detterman’s challenge has had almost no impact in
AI. We see that these models are becoming more common and widespread as
testbeds for experimentation, but not so as regular tools for AI evaluation.

In order for intelligence tests to be useful evaluation tools for AI, several
things must be considered. Instead of a collection of problems, a better ap-
proach may be a collection of instance generators, by integrating some of the
existing ones we saw in Section 6.3 and developing new ones. The collection
must be large, in order to avoid the big switch approach applied to a small
repertoire (or ranges as in Table 6.3). Moreover, brand-new problems could
be generated by the combination of existing ones or by the development of
more abstract problem generators (instead of instance generators). Differ-
ent presentations and difficulty levels should be explored. The categories and
overlaps between problems could be assessed via theoretical models, instead
of using factor analysis as in psychometrics. In other words, a theoretical al-
ternative to the classification of mental abilities—as presented in Tables 6.1
and 6.2—should be endeavoured (see [HOD10, DHO14].

The range specifies the kinds of tests addressed by the models. This cri-
terion is fundamental to understand whether computer models are specialised
or general. We can see that computer models usually address one problem
and the most common one has been RPMs. An asterisk is shown in this col-
umn to indicate that the representation of the problem has been transformed.
This is very common for RPMs. Clearly, we need to understand where the
difficulties of these problems lie and why some problems are more difficult
than others. As we can see on Table 6.3, very few approaches address more
than one kind of test. Actually, the more specific a test is the easier it is to
develop specific solutions. The key issue is to consider a greater diversity of
problems. As we can see on Table 6.3, very few approaches address more than
one kind of test. Actually, the more specific a test is the easier it is to develop
specific solutions. Likewise, some problems that were very ‘challenging’ (e.g.,
chess) for machines are now excelled at by specialised programs. In addition,
‘representation’ is also crucial, as some problems involving complex pattern
recognition (those involving images) need some processing. In fact, the same
problem (e.g., RPM) is very challenging if it is presented visually—as it is
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presented for humans—but it is not so if translated to an appropriate sym-
bolic representation. Nevertheless, we can still specialise a system to do the
re-representation for just one task. Diversity and representation are hence cru-
cial to distinguish between specific and general AI systems. The challenging
goal should be to develop a single general system that is able to solve all of
them as they are.

The intention criterion specifies the purpose of the study: to better un-
derstand human cognition, to understand general principles of intelligence,
to propose a metric for AI evaluation (i.e., psychometric AI), or to make
a philosophical/epistemological question (human cognition, AI principles, AI
evaluation, philosophical). This provides key information to truly understand
the model achievements. The intention behind the models is usually ‘AI prin-
ciples’ or ‘human cognition’, whereas ‘evaluation’ is not very common. Some
of the works featuring computer models have tried to mimic how humans solve
these problems. Nonetheless, many anthropomorphic models have succeeded
and failed on the same problem items that humans do, but some other non-
anthropomorphic approaches have also shown some degree of coincidence with
humans, even if the mechanism to solve the items was completely different.
Also, very good results have been obtained with techniques that are clearly
different from those that humans use. Interestingly, when a problem is chal-
lenging for humans but not so for machines, this is very explanatory. For
instance, machines are much better at arithmetic than humans. Nonetheless,
we can see this from a different view. As we are using human tests, why are
these kinds of problems (and not others) useful to measure human abilities?
Why are Raven progressive matrices different from chess or multiplication?
The use of intelligence tests for machines gives very insightful information
about what intelligence tests measure and what they do not and, ultimately,
about what characterises intelligence in humans.

Most interestingly, using computer models for intelligence tests can eluci-
date the relation between different tasks, as the factorial analysis in psycho-
metrics reflects how abilities (or tasks) are correlated for humans. However,
psychometrics says nothing about how abilities are correlated in principle, in
a computational way. For instance, psychometrics may have found that the
g factor is correlated to many other abilities. But does this happen for ma-
chines? Can we implement models with good results on tests measuring g
and very poor results on the other tests? This seems to be possible, as some
of the results shown in Section 6.3 suggest. In fact, this even sheds more
doubts about the validity of comprehensive tests such as WAIS for machines,
because they are inspired or derived from the knowledge about factorial anal-
ysis of human abilities in the past century. Nonetheless this can also be seen
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as an opportunity of computer models, AI, and other approaches based on
information theory, to help improving intelligence tests.

Overall, some of these models have been useful to provide insights and
valuable information about how human cognition works. This is especially the
case when there is a coincidence of results between a model and humans even if
the model was not conceived to follow exactly what humans do. Nonetheless,
a systematic disagreement in results or ability correlations may also be very
informative. In fact, these studies can be very useful to better understand what
intelligence tests really measure and to better understand the correlations
between the abilities found in humans. We will further discuss this in the
following chapter.

The techniques criterion shows which techniques are used by each model,
which is relevant to see the role and progress of AI techniques or other ad-hoc
techniques. There is a wide variety in the techniques used, from more ad-hoc
to more general AI techniques. As was discussed in Section 6.4, many models
use specific techniques, either by developing new techniques from scratch or by
performing a very particular adaptation of existing techniques. In fact, only
a few common AI techniques (see column ‘techniques’ in Table 6.3) are used,
mostly from machine learning, pattern recognition, automated reasoning, and
natural language processing (apart from some other more miscellaneous tech-
niques such as fractals and ad-hoc rules). It is interesting that a few cases
have developed new techniques. If we look at Table 6.1 and especially Table
6.2, we see a correspondence between AI subdisciplines and cognitive abilities.
However, if we look at the models and the techniques through Table 6.3 and
Figure 6.5, it seems that there is no clear correspondence between the kind of
problem and the techniques from AI that have been used to solve it. There is
again more prevalence of techniques related to inductive reasoning, but some
specialised techniques have also been used in some problems to circumvent this
need. Some approaches (many using their ‘own rules’) are actually variants
of a big switch. We also see that some perception techniques are used for the
representation mapping when the problems are originally presented in a visual
way. These techniques are of course unrelated to whether the task is inductive
or deductive, but are just necessary to process the visual tasks. As a conse-
quence, there is some correspondence between techniques and abilities but the
alignment is far from perfect, due to the specialisation, as many systems are
still more task-oriented than ability-oriented.

Performance specifies what the kind of comparison with humans was
made while difficulty specifies the kind of difficulty assessment derived from
the model. For these two last criteria, we specify whether it is at the test
level or item by item (values can be no, global, or itemwise). There is also a
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huge diversity in whether performance and difficulty are assessed. We need
to be clear that focussing on the overall results of a computer model and
comparing them with the results of humans (column ‘performance’ on Table
6.3) is not very informative about how challenging the problem is. Humans are
general-purpose systems and it is not fair to compare them with some systems
that are only able to solve one problem—even if the problem comes from an
intelligence test. Furthermore, many of these intelligence test problems have
been developed for humans, and hence it can be unfair to evaluate AI systems
limitations with anthropocentric measures.

Nonetheless, some of the works perform an interesting analysis in terms of
difficulty. The purpose is to determine what instances are more difficult, but
this is not very related to how challenging the problem is. In fact, focussing
on the most difficult problems may even make the system more specialised to
the intelligence test task at hand. Some of the previous works have studied
whether difficulty is related to the size of the working memory, the size of the
pattern, the number of elements that need to be combined or retrieved from
background knowledge [SK63, CJS90, SAU13, SNSE13] or the operational
constructs needed to solve this problems,as we will also see in the following
chapter. These notions of difficulty are much more general and can work
independently of the problem and the representation. One way or the other,
there seems to be an agreement that there will be an increasing number of
machines in the near future which show a range of cognitive abilities, and that
we will require evaluation mechanisms for them.

6.6 Summary

In this chapter we take a look at all of the computer models taking IQ tests
(about thirty in total), starting with Evans’s ANALOGY [Eva63, Eva65] and
going through to Spaun [ESC+12]. The analysis in this chapter was motivated
by an observed explosion of the number of papers featuring computer models
addressing intelligence test problems. We wanted to investigate whether this
increase was casual or was motivated by an increasing need of these tests
and the computer models solving them. When we began our investigation we
soon realised that computer models addressing intelligence tests have different
purposes and applications: to advance AI by the use of challenging problems
(this is the Psychometric AI approach), to use them for the evaluation of
AI systems, to better understand intelligence tests and what they measure
(including item difficulty), and, finally, to better understand what (human)
intelligence is.
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Therefore, the analysis is not restricted to performing a survey of all these
models. Through a comprehensive account of the models we derive a set of
criteria that help us to characterise each system: their relationships, the range
of intelligence test tasks they address, the purpose of the models, how general
or specialised these models are, the AI techniques they use in each case, their
comparison with human performance, and their evaluation of item difficulty.
We aim at understanding the meaning, utility, and impact of these computer
models taking intelligence tests, and explore the progress and implications of
this area of research. Furthermore, this analysis help us to have a better un-
derstanding of the relevance and (the limited) connections of these approaches,
and draw some conclusions about their usefulness.

Finally, what has been discussed in this chapter confirms our statement
posed in the introduction of this thesis: we have seen that even for suppos-
edly general tasks that are designed for evaluation, many approaches have the
(understandable) tendency to specialise to the task and hard-wire parts (or
most) of the solution. This is yet another indication of a discipline like AI
that is being extremely successful in task-specific applications—from playing
chess to driving a car—but yet of limited success in general-purpose systems.
In a nutshell, we could say that AI has become a big switch discipline. This
problem is being recognised in AI itself, as several benchmarks and compe-
titions are now aiming at more general classes of problems (e.g., the general
game playing competition [GLP05] or the proposal of a Turing championship
[You15]).





7
Concept dependencies of

intelligent systems

Apart from assessing several factors of human intelligence, some of the early
motivations and applications of intelligence tests was the assessment of the
so-called mental age. The progression in several cognitive tests for the same
subjects at different ages would give very valuable information about their
cognitive development and, particularly, about how humans gradually come
to acquire, construct, and use knowledge to solve them. We understand this
knowledge as specific operational cognitive constructs (sometime referred as
concepts) defining different mental capabilities. The question which we pose in
this chapter is whether the same approach can be used to assess the cognitive
development of artificial systems. In particular, we want to know whether
the intelligence of an artificial system depends on the acquisition, learning or
development of different operational constructs and whether we can use human
intelligence tests for this. With this is mind, in this chapter, we address several
intelligence tests (IQ tests) problems with our general-purpose learning system
gErl (presented in Chapter 5) as a tool to better understand the role of the
cognitive operational constructs that are needed to solve these intelligence test
problems.

The chapter is organised as follows. After introducing and motivating our
approach in Section 7.1, Section 7.2 briefly overviews the use of cognitive tests
and their variants (according to age and set of abilities), mostly focusing on
the evolution of scores with (mental) age and their relation to human cognitive
development. Their application to evaluate artificial cognitive systems is also
discussed, and the need for a better assessment of their difficulty in terms
of the operational constructs and search space that are involved. Section 7.3
discusses how cognitive tests can be analysed proposing gErl as an appropriate
kind of tool for this. Section 7.4 applies gErl to several odd-one-out problems,
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Raven’s progressive matrices and Thurstone letter series, analyses the required
cognitive operational constructs and the complexity of the found patterns.
Section 7.5 makes an overall analysis of the findings over the previous three
problems and its implications in the issue of concept dependencies in cognitive
development assessment. Finally, a comprehensive summary closes the chapter
in Section 7.6.

These results have been published in [MFHR16].

7.1 Introduction

Humans undergo a cognitive development that starts with important neuro-
logical transformations even before birth and lasts during their whole life span.
This cognitive development is also accompanied by an uneven variation of a
range of cognitive capabilities. In order to assess this, many cognitive tests
have been specifically devised for different capabilities and age ranges. In fact,
one of the applications of these tests (among many others) is the assessment
of children’s cognition and learning, in order to spot development problems
or to identify specially talented individuals. The notion of ‘mental age’, for
instance, was introduced by one of the fathers of psychometrics, Alfred Binet,
to compare retarded children with the normal development of children of their
age. Nowadays, the notion of a single mental age is more elaborate, as many
abilities are known to develop at different age intervals.

As we have already seen in the previous chapter, this idea of using tests,
in the form of a set of tasks or exercises, is also becoming more and more
common for the evaluation of artificial cognitive systems or architectures.
For example, in the last decade we have seen many proposals: the cogni-
tive decathlon [MJMH07, Mue08, SJT08, CG03], the staged developmental test
[Kee10], the intelligence tests for robots [SS10, Sch13], the so-called psychome-
tric AI [BS03, Bri11], the universal anytime intelligence tests [HOD10] and
others [AL03, Lan11]. Many of them are inspired by human mental develop-
ment tests such as Kuhlmann’s test [Kuh39] and Griffith’s mental development
scale (a test) “covering the locomotor, personal-social, hearing and speech, eye
and hand, and performance areas" [Gri54], and also by intelligence tests.

This approach is becoming now crucial in AI, robotics and cognitive sci-
ence as the Turing Test [Tur50a] has been left as a philosophical rather than
a practical test [HO00a]. Similarly, we also have the more classical evalua-
tion of AI systems using specific testbeds, such as maze problems, games such
as chess, pattern recognition problems, robot navigation, etc. However, it is
more and more manifest that the success or failure at some specific tasks is
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not well correlated to the degree of intelligence or cognitive development of
a system, a phenomenon that is well illustrated by the problems we can find
in CAPTCHAs [vABL04, VAMM+08]. In the end, it is clear that one goal is
to solve a specific (application) problem and a very different goal is to devise
a cognitive system that can solve many different problems. Interestingly, it
is not very likely that such an artificial cognitive system could have a high
degree of intelligence from the beginning. In other words, it is potential in-
telligence [HOD13] rather than actual intelligence what these systems should
have originally.

It is then understandable that cognitive science and artificial intelligence
are becoming more interested in tests that evaluate general abilities instead
of success on a particular set of tasks. In development robotics “the notion
of task-independence” [OK07] is related to “psychometrics” and “general in-
telligence”: “developmental robots shall not be programmed to achieve a pre-
specified practical task”. The choice of intelligence tests to evaluate cognitive
development is consistent to one observed phenomenon in human intelligence:
many of its underlying abilities increase during childhood and youth, stabilise
for several decades and then slowly decline while ageing. However, is this
really the consequence of a cognitive development or is it a result of some
neurophysiological changes in the brain affecting its efficiency? In fact, once
we distinguish between fluid intelligence and crystallised intelligence (Section
6.2), should not fluid intelligence be constant while crystallised intelligence
increases through cognitive development?

We can rephrase the previous question more specifically. Are the increas-
ingly better results in IQ tests from infancy to early adulthood explained by
the development of new cognitive operational constructs that are useful (or
even necessary) to solve the tests? Or is it because those taking the tests
develop increasing better combinatorial search power? What about artificial
systems where the computational power is constant? Is their intelligence ex-
pected to remain constant?

In order to shed some light on these questions, we set a parallelism between
the concepts of fluid and crystallised intelligence in humans and artificial sys-
tems by exploring how a general learning system (without a proper cognitive
development) addresses several fluid intelligence tests as a possible way to ex-
amine the development of general intelligence in artificial systems. With the
goal of getting more insight from this experiment, we will use a learning sys-
tem that uses intelligible ways of expressing background knowledge (to make
the required cognitive operational constructs explicit) and the extracted pat-
terns for each exercise. In particular, we will use the system gErl (Chapter 5)
to solve some prototypical fluid intelligence test tasks: odd-one-out problems,
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Raven’s progressive matrices and Thurstone letter series. The presentation of
the problems will be set as bare as possible, in order to eliminate the influence
of pattern recognition issues that may interfere in our analysis. While gErl is
the first general-purpose learning system that is able to score average human
results in several IQ test tasks1 (see Chapter 6), we clearly make the point of
how misleading a superficial score comparison is. Rather, we use the system
to better understand what these IQ test tasks measure and what a system
—human or artificial— requires to solve them, and whether an inability can
be turned into an ability through development. Therefore, we will pay special
attention on what makes some of the instances in each category harder than
others: is it because the search space is larger or because they need more
cognitive constructs? In other words, we distinguish two previously conflated
aspects in item difficulty: the mental operational constructs that each task
requires and the combinatorial problem of combining these constructs to find
the solution.

It is important to note that gErl is not a cognitive model and it is not
inspired by how humans solve problems or how their development takes place.
It is orthogonal to them and this is precisely what will allow us to determine
those features that are dependent on the problem and not on the system.
Also, we do not want to show how good or bad gErl is at solving these IQ
test problems. Actually, what we want to show is that, through the use of a
general learning tool that uses intelligible patterns, we can better understand
their difficulty and the role of the cognitive constructs that are required in
the process. This is possible because of the generality of the system, as other
systems that are made on purpose for solving IQ tests may lead to misleading
interpretations as they are relatively easy to create with many built-in con-
structs and may have a strong bias in their scaling of problem difficulty (as we
also saw Chapter 6). From this analysis using a general system for several IQ
test problems, we will not settle the question of how much important cognitive
development is for scoring better in general intelligence tests for natural and
artificial cognitive systems, but we will provide a new perspective and proce-
dure to investigate this question. The take-away message is the understanding
of the appropriateness and care of using these and other general intelligence
tests to evaluate the mental development of artificial systems.

1The system presented by Shangi and Dowe [SD03], although scored well in several
IQtests, it is not a general system but an adhoc small program.
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7.2 General intelligence evaluation during cognitive
development

As human capabilities improve with age, many evaluation procedures use sev-
eral sets of exercises of different types and difficulty in order to accommodate
for the subject’s expected cognitive development (such as the Wechsler In-
telligence Scale tests [Wec58, KL06] seen in the previous chapter). In this
and other tests we have a broad range of abilities, so we can give specific as-
sessments of what components of intelligence are more or less developed in a
particular individual, as well as their improvement in time. For instance, the
results on verbal tests are expected to improve with years, as language must
be acquired during early childhood and is consolidated for many years even
after. However, it is not clear why other abilities, especially the more abstract
abilities related to abstract reasoning and inductive inference, have a similar
behaviour.

This is closely related to Cattell’s concepts of fluid and crystallised in-
telligence (Section 6.2), where the former is the ability of solving problems
independently of previously acquired knowledge, while the latter is the ability
of correctly finding and applying the given knowledge to a particular problem.
Again, it is easy to understand why crystallised intelligence increases with
cognitive development (with still moderate increments until the age of 40 or
50, see 7.1). However, why does fluid intelligence grow until the age of 20?
One main hypothesis is that the brain develops until that age, so the increase
in fluid intelligence has a neuropsychological explanation [Eps79]. However,
another possible explanation is that while the brain reaches its final size and
connections very early, some cognitive constructs (such as identity, difference,
size, order, counting, symmetry, logic, quantification, (re)iteration, recursion,
etc.) are also useful in fluid intelligence and need to be acquired during a long
period of time. These two hypotheses are also closely linked to the nature-vs-
nurture dilemma, as fluid intelligence in adults can be well predicted from early
fluid intelligence [NBBJ+96], showing a strong genetic basis, but contrasting
with the diminished performance in fluid intelligence tests for children with a
poorly-stimulating environment or education. Instead of two alternative hy-
potheses, the question is rather to establish what the role and relevance are of
both an internally-driven cognitive development and an externally-enhanced
cognitive development. In fact, the picture becomes more complicated, as
some recent experimental evidence has shown that fluid intelligence can be
increased by cognitive exercising [Ste08]. The area of autonomous mental
development requires, thus, better measurement techniques and devices to de-
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Figure 7.1: A figurative representation of how fluid and crystallised intelligence “dis-
play different life-span developmental trajectories” [Bal87, Fig.1]. Can we expect (and
measure) the same evolution of general intelligence for artificial cognitive systems?
What is the role of cognitive operational constructs in this evolution?

termine whether and how systems develop [OK07], and to tell between what
a system has been programmed to do and what abilities the system has really
developed. As an interdisciplinary area, the understanding and adaptation of
measurement devices from humans to artificial cognitive systems may have an
important impact in how the goals and progress in the field are understood,
strengthening the connections and cross-citations with other disciplines and a
source of new research questions.

As mentioned in the introduction an in the previous chapter, the use of
intelligence test problems for the evaluation of artificial cognitive systems has
increased in the past decades. On one hand, we have those who advocate for
the use of human cognitive tests for machines directly. This idea is behind
the psychometric AI proposal [BS03, Bri11] (see Section 6.3), where sets of
tests for all possible human capabilities should be used to evaluate artificial
cognitive systems. This view is consistent with an editorial [Det11] by Dou-
glas K. Detterman (already commented in Section 6.5), the editor-in-chief of
Intelligence, motivated by the success of IBM’s program Watson [FBCC+10]
on the Jeopardy! TV quiz show. Detterman challenged Watson and other
artificial systems to pass a battery of human intelligence tests. For instance,
Spaun (see Section 6.3), a 2.5-million-neuron model of the brain has been able
to “reproduce the largest amount of functionality and behaviour” [Yon12] by
their performance on a “diversity of tasks” [ESC+12], where some of them are
very similar to intelligence test tasks, such as serial working memory, count-
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ing, number series, etc. Despite this pullulation and advocacy of intelligence
test tasks for evaluating artificial cognitive systems, some criticisms have been
raised as whether the resulting scores can be meaningful [DHO12], starting
with [SD03], who devised a very small and ad-hoc program that was able to
score relatively well on many human IQ tests.

That does not mean that cognitive tests for humans need to be discarded
for artificial systems, but that a proper selection and a careful analysis of re-
sults may be required in each case, as we stated in the previous chapter. In
fact, some approaches to evaluate artificial cognitive systems or architectures
have adapted existing tests or have been inspired by them, such as the cognitive
decathlon [MJMH07, Mue08, SJT08, CG03], a set of tests designed to evaluate
the performance of truly intelligent agents in a variety of situations that cover
a core set of cognitive, perceptual, and motor skills typical for a two-year-old
human child; the staged developmental test [Kee10], which states that if we
are to judge intelligent machines by our own standards of intelligence, then
we can enrich the process of AI development by a staged approach to cogni-
tive development similar to those of Piaget [Pia64]; the intelligence tests for
robots [SS10, Sch13], where intelligence test are taken by a robot in a rich
sensorimotor scenario (see Section 6.3); and others [AL03, Lan11]. Many of
them are inspired by human cognitive development tests such as Kuhlmann’s
test [Kuh39], which consists of eight separate subtests administered at differ-
ent difficulty levels, involving nonverbal (problem solving, picture and number
patterns, proportions and symmetry, . . . ) and verbal tests (scrambled words,
scrambled sentences, ordering, visual clues, . . . ); and Griffith’s mental devel-
opment scale (a test) “covering the locomotor, personal-social, hearing and
speech, eye and hand, and performance areas" [Gri54], and also by intelligence
tests.

Many tasks that comprise development tests are associated with specific
achievements or functions [AHK+09], such as smiling, reacting to voice, grasp-
ing objects, following a gaze, walking, etc., rather than general abilities, and
are clearly more prone to hard-wiring specific circuits and mechanisms from
the very system design. We are then more interested in purely cognitive abili-
ties appearing in these tests, such as the more abstract tasks that are found in
intelligence tests. While the analysis of both crystallised and fluid intelligence
tests would be interesting, crystallised intelligence tests can be more easily
contaminated by the existence of predefined structures and task-specific prob-
lems. Also, most crystallised intelligence problems are verbal, which limits the
application of these tests to systems with a limited or no comprehension of
natural language. In fact, Watson, although not tested with a crystallised in-
telligence test, is able to access millions of gigabytes of textual information to
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answer tricky natural language questions that are very hard for most humans.
In fact, adapting Watson to achieve some good scores on crystallised intel-
ligence tests would not be difficult, even if Watson is still a very specialised
system without a real intelligence.

Fluid intelligence tests have several advantages for evaluating cognitive de-
velopment as most of them do not require natural language and also because
they are commonly represented in very abstract terms, so it seems possible
to analyse and ultimately understand what processes and constructs may be
needed to solve them and what their actual difficulty is. If we look at the
Wechsler’s WPPSI, WISC and WAIS mentioned in Section 7.1, they usually
measure fluid intelligence on the performance scale and crystallised intelligence
on the verbal scale. If we focus on non-linguistic abstract problems (usually
found under the categories of working memory and perceptual organisation),
and exclude memory problems because of lack of a suitable machine evalua-
tion, we find matrix reasoning tasks, problems about categories and similar-
ity (picture concepts and symbol search) and letter-number sequencing (only
present in WISC and WAIS). These tasks usually feature a combination of
inductive inference and abstract reasoning and are among those with highest
g loadings, namely, they highly correlate with the g-factor2, so an individual’s
performance at one type of cognitive task tends to be comparable to their
performance at other kinds of cognitive tasks. This is particularly interesting,
as the g factor accounts for an important fraction of the variation of other
cognitive abilities, and it seems to be higher for individuals with lower ability
levels and children [TD09].

From the previous analysis, we will focus on fluid intelligence tests with
high g loading. In order to make experiments more insightful and easy to
replicate we will select problems that are easily accessible, either because they
are on the open domain or because they have been well studied by previous
works. For instance, odd-one-out problems have been chosen as very relevant
for cognitive development [SS10], as they are closely related to the capability
of forming categories and distinguishing between them [GSSS12]. Raven’s
Progressive Matrices (RPM) [RCR92] have some of the highest g loadings of
standard cognitive tests. Finally, Thurstone’s letter series [TT41] are a well-
known instance of series problems, which are regularly found in most general
intelligence tests.

It is important to note, however, that the use of any cognitive test to
2The g factor (short for “general factor”) is a construct developed in psychometrics (theory

and practice of psychological measurement) investigations that is usually derived from a
factorial analysis of the cognitive abilities, and is usually associated to the idea of general
intelligence.
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evaluate cognitive development is based on the assumption that the difficult
items in these tests require a more advanced cognitive development than the
simpler ones. Otherwise, we could use the adult versions for all. Nonetheless,
it is not clear whether this difficulty comes from a higher search power when
looking at the combinatorial possibilities or it is because some difficult prob-
lems require some cognitive operational constructs. With the term ‘cognitive
operational construct’ we do not refer to very elaborated linguistic concepts,
neither do we refer to knowledge facts, but rather about elementary opera-
tional concepts such as identity, difference, order, counting, logic, etc. Many
of these constructs are specifically addressed in children education curricula.

Circumscribing our study to fluid intelligence tests frames the question in
terms of the evolution of the development and evolution of general intelligence,
as opposed to the mere acquisition of factual knowledge, from which general
intelligence (including crystallised intelligence) should, therefore, not benefit
(e.g., “how many protons a hydrogen atom” has is not usually found in a
culture-fair test, as could be answered by any idiot savant or a web searching
engine). This analysis of general intelligence tests removes many other sources
of contamination and renders the question in a more pristine way. Also, it
links cognitive development to an increase in general intelligence and suggests
a possible path to develop and study how artificial cognitive systems could be
created. We do not expect a general cognitive system to be highly intelligent
from its very creation, neither to be highly specialised, but rather to have very
low levels of intelligence and being mostly useless in the beginning. In other
words, development robotics and other areas of artificial (general) intelligence
would aim instead at developing potential intelligent systems, whose general
intelligence could gradually increase with the interaction with the world, as it
happens with humans (up to the limit of the computational resources of the
system).

Analysing these questions by administering some tests to humans and by
asking them what constructs and patterns they have used and found respec-
tively is a traditional approach for the analysis of human cognitive develop-
ment. This provides a subjective and anthropomorphic view, and it is also
contaminated about many other issues taking place during human develop-
ment, including physical, biological and social effects. Nonetheless, it is still
a useful approach. However, when the goal is to assess the development of
artificial cognitive systems, we need more general approaches for a theoretical
or experimental analysis of intelligence test problems. In fact, there have been
other works in the past where IQ tests, development tests or other kinds of
cognitive tests are undertaken by artificial systems. The goal of the study is
not to evaluate these systems, but to better understand how the tests work and
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what they measure. In fact, this analysis of tests should have really preceded
their use over artificial (and natural) systems. As most studies so far have
been performed at the experimental level, the artificial system that is chosen
to analyse the test is basically seen as a cognitive tool, sometimes in the form
of a cognitive model (which is supposed to help understand how cognition
works) or as a merely instrumental tool.

7.3 Analysing the tests: specific cognitive models
and general tools

Although already introduced in Chapter 6 (Section 6.3), let us briefly recapit-
ulate what has been done when intelligence tests have been analysed experi-
mentally through cognitive models or particular systems, but focusing on our
previous problem selection. For a extensive overview of the IQ tests problems
we refer the reader to the Appendix B (although in the following section we
will recap those selected).

Starting with letter series, we need to go back to the 1960s when [SK63]
undertook “Thurstone Letter Series Completion” tasks, with the aim of better
understanding how humans solved these kinds of problems and their difficulty
(analysed in terms of memory requirements), through the use of a computer
model (again with a symbolic representation) that could generate series.

Raven’s Progressive Matrices (RPM) were investigated by [CJS90] with
two computer simulation models (FAIRAV EN and BETTERAV EN). Yet
again, the goal was to better understand human intelligence and the nature
of the tests. These systems included five relational rules (constant in a row,
distribution of three values, quantitative pairwise progression, figure addition
and distribution of two values) emulating the cognitive operational constructs
that are needed to solve this intelligence test problem, and several attributes
to describe the information about the images. [LFU07, LFU10] developed an
RPM solver based on Carpenter’s work by using structure mapping (iden-
tifying commonalities and differences in non-preprocessed images) and ana-
logical generalisation. The authors claimed that their model overcame the
limitations of [CJS90]’s model, using visual representations and task-general
processes. RPMs were also analysed by [RN12] by using the cognitive ar-
chitecture ACT-R [And96] and a rule identification mechanism. The system
requires the identification of relational rules, as Carpenter did, and a descrip-
tion of the geometric objects of the input matrices using attributes. A different
attempt to address RPMs was undertaken by [MKG10] and [KMG10, KMG12]
by capturing similarities directly between images (without any conversion to
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symbolic representation) and induce transformations. [PR11] and [CPR12]
also developed a system for solving RPMs based on an “analogical propor-
tion” view applicable at different levels of representation: feature-based, and
pixel-based. Finally, [SCS13] used an anthropomorphic cognitive model (in
the sense that it uses certain problem solving strategies that were reported by
high-achieving human solvers) and a repertoire of patterns for RPMs.

Odd-one-out problems have also been subject of several studies, mainly by
those authors that already addressed RPMs. Some have focused on the vi-
sual problem (analogical approaches), with the use of fractals and similarities
[MG11a] in the same way they addressed RPMs [MKG10, CPR12]. Another
analogical approach was carried out by [LLF08], who used spatial representa-
tions with structure mapping with the aim of constructing a model to better
understand item difficulty (also in a similar way to their attempts to address
RPMs). In a different way, some other systems have assumed some previous
feature transformation [Rui11], called the “Ruiz-Absolute Scale of Complexity
Management” (R-ASCM) where the objects in each item of an example are
coded (“discretised”) as letter sequences and the problems are solved by using
clustering with some similarity measures as required constructs.

As discussed in the previous chapter (Section 6.3.4), this collection of sys-
tems and approaches are difficult to compare, as the cognitive principles, lan-
guages and goals of each work are very different. In fact, any assessment
of difficulty has to be taken very carefully, as a specific method solving one
type of problem is relatively easy to build [SD03, DHO12] and may have a
strong bias in their scaling of problem difficulty. In brief, most of the previous
systems and cognitive models have been defined on purpose for one problem,
usually with some strong assumptions about how the problems are solved by
humans. On many occasions, when the model is not anthropomorphic, the
patterns cannot be properly investigated as the systems that are used do not
yield comprehensible patterns (as usually happens with, e.g., neural networks,
although constructive neural networks have been found to be insightful for the
problem of psychological development [Shu12]. However, most importantly,
none of them has focused on the issue of item difficulty in terms of both the
combinatorial search space of each item and the required operational con-
structs under the context of cognitive development. Item difficulty is crucial
in order to set different test scales for different stages of development. Note
that it is not very meaningful if we define problem difficulty as the average
result of a population of artificial cognitive systems (mimicking what is done
with human population, item response theory and IQ normalisation), as the
sample of systems would be completely arbitrary. So, in order to assess diffi-
culty we need system generality and intelligibility. More precisely, we need a



128 7. Concept dependencies of intelligent systems

cognitive tool that meets the following properties:

• The system must have a general purpose. It cannot be defined ad-hoc
for intelligence tests, as this may lead to specialisation to one or more
tests [SD03], and the results would not be meaningful [DHO12]. The use
of inductive programming systems for cognitive modelling tool has been
recently shown to be effective by [SK11].

• Because of the above design generality, the system must learn to solve
the problems. In other words, it has to be a learning system, which
must be guided by a rewarding system or the level of success on several
examples.

• The system has to be explicit in what constructs and operators must be
given as background knowledge when addressing each problem. These
operational constructs must also be intelligible.

• The system must produce intelligible solutions, such that their patterns
can be compared to those usually extracted by humans, and their struc-
ture can be evaluated in terms of size and number of constructs.

The above properties suggest the use of declarative learning systems, i.e., in-
ductive programming systems [Kit10, SK11, FS08]. We will use the declarative
learning system gErl (described in Chapter 5 ), as a cognitive tool that ful-
fils the above properties. Note that a symbolic system can also be emergent
(compatible in the sense of [Wen12]) if new constructed concepts can be incor-
porated or created by the system. We will use gErl to analyse several general
intelligence problems in sections 7.4 and 7.5, discussing on the identification
of what makes each instance easy or hard, and the proportion of this difficulty
in terms of the pattern size and the constructs that are involved.

7.4 Developmental analysis of IQ test problems
In this section we analyse several general intelligence tests problems, as chosen
in section 7.3: odd-one-out, Raven’s matrices and letter series by using the
gErl system. For a further description description of these and others IQ tests,
we refer the reader to Appendix B.

7.4.1 Odd-one-out problems

The odd-one-out problems are focused on geometry and spatial understanding,
where the goal is to spot the most dissimilar object from the rest. They were
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first introduced by [ZHH74, ZHE80] as non-verbal test and was used in the
study of comparative animal learning ([ZHH74] assessed pigeon’s intelligence),
where some species appear to learn this kind of problems readly, slowly or
nothing at all. The oddity task has been also used for cross-cultural testing
to probe the conceptual primitives of geometry in the Mundurukú, an isolated
Amazonian indigenous group, for which [DIPS06] designed a visual oddity
task (further information in Appendix B). Figure 7.2 shows three examples of
odd-one-out problems of increasing complexity. Typically, the presented items
can vary along one dimension (e.g., shape, size, quantity).

Problem representation and constructs

In order to focus on the core of the problem and not on the visual recognition
issues we use the abstract representation R-ASCM, introduced by [Rui11] and
seen in Section 7.3. Remember that in R-ASCM, for instance, an item com-
posed by two circles and a square is represented as (A,A,B). We will also
use the same 35 examples in [Rui11], with the R-ASCM coding, as shown in
Table 7.1. To process the examples with gErl, we represent each set of items
as a list of lists. This will form the lhs of each example (that in gErl is an
equation lhs → rhs). And its corresponding rhs will be a number indicating
the position of the item in the list that is the odd one. For instance, example
number 3 in Figure 7.1 is represented as:

1 ooo([[a,a,a], [a,a,b], [a,a,c]]) -> 1

Next we need to define appropriate operators, both to navigate the struc-
ture and to apply local or global changes to the rules. As in [Rui11], we will
use some constructs to analyse these lists. In our case, we identify three types
of constructs:

• Differences between items: As used in [Rui11], we incorporate the
notion of difference between items, by adding the function hamming,
which represents the average Hamming Distance3 between objects. This
measure is calculated for every item inside an example and refers to
the average distance of a given item to all the other items within an
example. For instance, given the items of the example #3 in Figure 7.2
([[a, a, a], [a, a, b], [a, a, c]]), if we apply this construct over each item we
will obtain, for all items, a result equal to 1.

3The Hamming distance between two strings of equal length is the number of positions
at which the corresponding symbols are different.
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Example #3 (Easy)

Example #23 (Medium)

Example #34 (Difficult)

Figure 7.2: Examples 3, 23 and 34 from the 35 original odd-one-out examples in
[Rui11] (adapted and redrawn), sorted by human-subjective complexity (from easy to
difficult).
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# Example Item 1 Item 2 Item 3 Item 4 Item 5
01 AAA AAA ABB
02 AAA AAA BCD
03 AAA AAB AAC
04 AAA ABB ABB
05 AAA BBB ABC
06 AAA BCD EFG
07 AAA BBC CCB
08 AAB AAB ABC
09 AAB AAC DEF
10 AAB ABB EFG
11 ABC ABC ABD
12 AAB ABB ABC
13 ABC ADE FGH
14 AAAA BBDE CCFG
15 AAAA AABB AACC
16 AAAD BBEF CCGH
17 AABB AABB ABCD
18 AABC AACD ABCD
19 AAAB BBBD CCCE
20 ABCD ABCD ABCE
21 ABCD ABCE ABFG
22 AABC BBAC CCAF
23 ABCD AEFG HIJK
24 AAAA AAAA BBBB BBBB CCCC
25 AAAD AAAE BBBF BBBG CCCH
26 AABB BBCC AADD DDCC EEFF
27 AAEF BBGH CCIJ DDKL ABCD
28 AAAE BBBF CCGH DDIJ ABCD
29 AAAE BBBF CCGH DDIJ AABB
30 AAAB BBBF CCGH DDIJ AABB
31 AABB BBCC AADD DDCC AAEE
32 ABCD BCDE CDEF DEFG FGAB
33 ACDE AFGH BIJK BLMN OPQR
34 ABEF ABGH CDEG CDFH ABCD
35 ACDE AFGH BIJK BLMN ABOP

Table 7.1: 35 examples of R-ASCM abstract representation (solutions in grey) from
[Rui11]. For simplicity and space, letters are used here instead of the figural symbols
of the real test. Both the items in each example and the coded figures in each item are
sorted alphabeticaly. The first letters of the alphabet correspond to the most frequently
used symbols in an item (e.g., A is more frequently used than B, B than C, and C
than D).
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• Differences inside items: In addition, we also include another con-
struct about item diversity, which counts the number of different objects
inside an item (diffObj). For instance, taking the previous example
into account, the diversity for the first item is equal to 1 while for the
next two items is equal to 2.

• The notion of an element that is distinct: Finally, this concept
must actually be given in order to solve these problems, as it is usually
explained in the test instructions. It is extremely related to the previous
constructs since, once we have applied any of the previous ones to one
example, we have to select the odd one.

Since these functions have to be applied to a list, we define operators op1 and
op2 with the help of the higher-order function map that Erlang provides in
order to introduce the two first constructs.

op1 ≡ µreplace(3, fhamming)
op2 ≡ µreplace(3, fdiffObj)

where fhamming(ρ) = map(hamming, ρ|1.1) and fdiffObj(ρ) = map(diffObj, ρ|1.1),
and 3 is a constant function returning the position 3, namely, the rhs of the
input rule over which the operator will be applied4 (this has been explained
in Section 5.2). This meta-operator (µreplace) is thus used to define an oper-
ator in charge of replacing the rhs of the input rule by the defined functions.
Since the previous operators return a list with the values for each item in each
example, we must let the system apply the function distinct, which selects
the different item (if exists) in a list. Hence, the operator op3 can be defined
as

op3 ≡ µreplace(3, fdistinct)

where fdistinct(ρ) = distinct(ρ|3).
Finally, we need a way of generalising the examples. This is performed by

introducing variables at each possible position.

op4 ≡ µreplace(poslist, Vlists)

where we use now the function poslist(ρ) (which is not a constant) returning
all the positions in ρ where we can find a list (1.1, 3.2 and 3.1.2) and Vlists is
a constant function returning a list variable.

4Following the usual representation of (functional) rules as trees, each sub-part (term) of
a rule is denoted by a natural number that represents the position of such term in the tree.
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The abstract idea of generalisation through the use of variables appears as
an operator, but it is not considered a cognitive construct here as it is rather
a way of representing that the function ooo can be applied to any list.

Results

Table 7.2 shows the two hypotheses (rules) with highest optimality found by
gErl (h1 and h2). Taking the first rule, 28 of 35 (80%) examples are solved
(being on a par with an average human adult). Regarding the second rule, it
solves 17 of 35 examples. Note that some examples are covered by both rules.
Example number 31 is not covered by any rule because it exhibits other more
complex properties, not captured by the constructs. 7.2 also shows the results
provided by Ruiz. Ruiz defines a 2-step clustering algorithm. In the first step,
28 of 35 (80%) examples are solved, exactly the same number that gErl covers
with its first rule. The second step consists in taking those examples that were
misclassified (using the classes of the test set), and recode them using what
he calls the Structural Hamming Distance (SDM). Note that gErl’s approach
is more general as we do not have to recode misclassified examples. Also,
the diffObj construct is much simpler than the SDM. In any case, it is not
our goal to compare which system is best (in fact, we mostly follow Ruiz’s
approach, as we use his representation and the Hamming distance function),
but to see what constructs are used in each case.
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gErl 
 

ℎ1
∗1

 ● ●  ● ●  ● ● ● ● ●  ●    ● ● ● ● ● ● ● ● ● ● ● ● ● ●  ● ● ● ● 28 

ℎ2
∗2

 ● ● ● ●  ● ● ● ● ●  ●  ● ● ● ● ●         ● ●        17 

Ruiz 

 

1𝑠𝑡𝑠𝑡𝑒𝑝 ● ●  ● ●  ● ● ● ● ●  ●    ● ● ● ● ● ● ● ● ● ● ● ● ● ●  ● ● ● ● 28 

2𝑛𝑑𝑠𝑡𝑒𝑝   ●         ●  ● ● ●                    5 

∗1  ℎ1: ooo(𝑉𝑙𝑖𝑠𝑡𝑠)→ distinct(map(hamming, 𝑉𝑙𝑖𝑠𝑡𝑠) 

∗2 ℎ2: ooo(𝑉𝑙𝑖𝑠𝑡𝑠)→ distinct(map(diffObj, 𝑉𝑙𝑖𝑠𝑡𝑠) 

Table 7.2: Odd-one-out results for both gErl and [Rui11]’s approach. Filled dots shows
those examples from Table 7.1 solved. h1 refers to the hypothesis using (among oth-
ers) the Hamming construct (h1: ooo(Vlists) → distinct(map(hamming,Vlists))),
whereas h2 refers to the hypothesis using the diffObj construct (h2: ooo(Vlists) →
distinct(map(diffObj,Vlists)))

Table 7.2 is very informative as we can separate those examples (28, actu-
ally) that can be solved with the notion of difference between same-length lists
(i.e., the Hamming distance, which implies some kind of alignment) and those
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examples (17, actually) that can just be solved with an internal account of di-
versity of each item. Finally, only one example requires some other constructs.
Apart from this case, we see that the pattern complexity is similar in both
categories. At least in gErl, both rules have the same structure and number
of constructors. In fact, the number of steps the system takes is similar (227
and 230). As a result, we can say that this is a clear example of problems
where two categories can be established by the constructs they require and
not because the search space is significantly higher for one problem or the
other. In other words, each category will only be solved when the construct is
available (or can be discovered) at a given stage of cognitive development, and
does not require any exceptional combinatorial or brain power. Performance
differences in humans must be then attributed to the complexity of the prob-
lems that can be built. Namely, the more symbols are included in the sets, the
more advanced mathematical properties could appear (see, for instance, item
31 in 7.1, which cannot be solved with any of the construct used). However,
mathematical abilities (prime, odd or even numbers, squares, . . . ) are not
measures of fluid intelligence but of crystallised ability, so this mathematical
knowledge is beyond the scope of this chapter.

7.4.2 Raven’s Progressive Matrices

Raven’s Progressive Matrices (RPM) [RC96] consist of a pattern or a set of
items where a missing part or item has to be guessed. The most typical case
is a 3 × 3 grid where a figure is placed at each of the nine positions except
the bottom-right cell, which is empty. Eight possible choices (‘distractors’) to
fill in the gap are displayed at the bottom, as illustrated in Figure 7.3. There
is a logical relation between the figures, which can be seen either horizontally
(rows) or vertically (columns).

There are three different sets of RPM for participants of different IQ
ranges or different abilities [RC96]: the original Standard Progressive Ma-
trices (SPM), the Coloured Progressive Matrices (CPM) for children aged 5
through 11 years-of-age, the elderly, or people with learning difficulties, and
the Advanced Progressive Matrices (APM), developed to assess individuals of
above-average intelligence. We will just work with SPM, which consist of 5
sets with 12 items in each set —60 items in total. Sets A and B do not use a
3 × 3 grid structure, so we will use sets C, D and E as they share the same
structure (although the difficulty varies). The items were reconstructed using
information from [Rav01].
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1                    2                    3                    4 

5                    6                    7                    8 

?

Figure 7.3: A geometrical reasoning problem similar to Raven’s Progressive Matrices.
The solution is no. 8 (for copyright reasons, the illustrations in this paper do not
depict original RPM problems, but constructed equivalents).

Problem representation and constructs

Given an example of one kind of Raven’s Progressive Matrices (as the one
shown in Figure 7.3), the task of gErl will be to guess the pattern and, then,
to apply it to infer the solution. In other words, gErl tries to build the solution
rather than choose among the collection of 8 possible choices (1 solution and
7 distractors) under the matrix (which are not given to gErl). So, in this way,
the problem formulation is slightly more difficult than the original one.

In order to represent RPM in gErl, a feature-based coding similar to that
of [RN12] is used. Additionally, a list-based coding is used to represent cells,
rows, and matrices. Every figure inside a cell is abstractly represented as a
tuple of features:

〈shape, size, quantity, position, type〉

Every cell is represented as a list of figures. Every row is represented as a lists
of cells, and, finally, every Raven’s matrix as a list of rows.

Since every single Raven’s matrix is a problem itself (each matrix shows
a different pattern), we need a way to generate several instances in order to
make learning possible, by taking the most information from each matrix. To
do that, each matrix is decomposed into several sub-matrices (the number
depends on the problem) as we can see in Figure 7.4. The last row/column
of the original matrix cannot be used to generate any training instance since
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it contains the gap to be filled in. However, they will be used to create two
test cases (row and column). Note that the output element must obviously be
the same, but the vertical and horizontal patterns may be different. If that
happens, the system selects the best program with respect to the row training
instances to be applied to the row test instance, and the best program with
respect to the column training instances to be applied to the column test
instance.

e1 e2 e4e3

?

  [[   ,   ,    ], [   ,    ]]       [   ]        

  [[   ,   ,    ], [   ,    ]]       [   ]        

  [[   ,   ,    ], [   ,    ]]       [   ]        

  [[   ,   ,    ], [   ,    ]]       [   ]        

e :1

e :2

e :3

e :4

 

Figure 7.4: (Top) Raven’s matrix decomposition example: e is decomposed as a four
new examples (e1, e2, e3 and e4). (Bottom) List-based representation of the training
instances generated (bottom).

For instance, in gErl, the example e1 from Figure 7.4 is represented as
follows, where none represents the absence of a particular feature, and the
special variable _ matches anything, and never gets bound:
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1 raven([[[<square ,big ,1,_,black >],
2 [<diamond ,big ,1,none ,white >],
3 [<circle ,big ,1,none ,striped >]],
4 [[<diamond ,big ,1,none ,striped >],
5 [<circle ,big ,1,none ,black >]]]) ->
6 [<square ,big ,1,none ,white >].

To solve RPMs, it is necessary to determine the relations between the objects
in a row or column. [CJS90] identified five ‘relations’:

• Identity (equality): is a particular attribute of different objects re-
maining constant in a row? For instance, in Figure 7.5, the attribute
shape (square) remains constant in every row/column. We will use the
function ident.

• Ternary distribution (difference): is an attribute of the objects in a
row/column always differing (3 distinct values)? For instance, in Figure
7.5, the attribute type differs in matrix a. We will use the function dist3
for this.

• Progression: are the values of an attribute in an increasing or decreas-
ing sequence in all rows? This rule is seen in matrix b (Figure 7.5), where
the attribute for the object’s position turns 45 degrees in each cell. We
will use the function prog for this.

• Addition (OR): is each object in the third row/column appearing in
any of the first two rows/columns? An example is depicted in matrix c
(Figure 7.5). We will use the function addition for this.

• Binary distribution (XOR): are there exactly two equal values and
one differing value of an attribute in the rows/columns? This rule is seen
in matrix d in Figure 7.5. We will use the function dist2 for this.

While these relations were expressed in terms of solutions, here they are just
included as operational constructs and implemented as complex functions in
gErl, i.e., each construct goes through each cell (in a complete row/column)
looking for a specific descriptive feature and returning a solution for the con-
struct.Since we are only interested in knowing which of those relations are
required to solve each RPM problem, and knowing the abstract mental op-
erations they represent, the low-level programming details of these previous
functions are beyond the scope of this chapter.

To solve the selected 36 matrices from SPM, we need a way to apply
the five relations (functions) to the different attributes of the figures. The
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a b c d

Figure 7.5: Problems illustrating several ‘relations’ in RPM problems (redrawn and
adapted from [RN12]). For matrix a, the ternary distribution is required. The solution
is no. 4. Matrix b requires progression. The solution is no. 6. For matrix c, addition
is required. The solution is no. 8. Matrix d requires binary distribution. The solution
is no. 4.

meta-operator µreplace does this perfectly by defining operators following this
scheme:

µreplace(posF , fRel)

where posF (ρ) returns all positions where feature F (shape, size, quantity,
position or type) appears in the rhs of rule ρ and fRel(ρ) applies the relation
function Rel (ident, dist3, prog, addition, dist2) to ρ|p, p ∈ posF (ρ).

We will obtain as many operators as kinds of attributes multiplied by the
number of relations (5 attributes × 5 relations, 25 operators). For instance,
the operators that apply ident to the five possible attributes will be defined
as:

op1 ≡ µreplace(posshape, fid) op2 ≡ µreplace(possize, fid)
op3 ≡ µreplace(posquantity, fid) op4 ≡ µreplace(posposition, fid)
op5 ≡ µreplace(postype, fid)

where fid(ρ) = ident(ρ|p), p ∈ posF . Below we show an example of application
of the operator op3, which is in charge of applying the relation ident over the
feature quantity, to a rule (where some other operators have been already
applied):

op3
(
raven(Vmatrix) → [<dist3(shape),ident(size),1,none,dist3(type)>]

)
⇒

raven(Vmatrix) → [<dist3(shape),ident(size),ident(quantity),none,dist3(type)>]

where Vmatrix is a matrix variable. This suggests that we also need a gen-
eralisation operator for input lists (as we did in the odd-one-out problem):
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µreplace(1.1, Vmatrix). If we apply the previous rule learnt by the system to the
test row/column in Figure 7.3, the different functions applied over the particu-
lar features will be in charge of returning the correct values (e.g. dist3(shape)
will return diamond since the circle and square shapes have been already
used), thus returning the following cell as solution:

1 [<diamond ,big ,1,none ,black >]

which covers the correct solution (no. 8).

Results

Id Solution Steps E+ |oapp| Diff
C01 raven(V )→ [〈ident(shape), none, none, none, none〉] 37 3 2 -2.6
C02 raven(V )→ [〈ident(shape), prog(size), none, none, none〉] 99 4 3 -3.0
C03 raven(V )→ [〈ident(shape), prog(size), none, none, none〉] 99 4 3 -3.3
C04 raven(V )→ [〈ident(shape), prog(size), none, none, none〉] 111 4 3 -2.2
C05 raven(V )→ [〈ident(shape), none, prog(quantity), prog(position), none〉] 131 4 4 -3.5
C06 raven(V )→ [〈ident(shape), prog(size), none, none, none〉] 88 4 3 -1.5
C07 raven(V )→ [〈ident(shape), none, none, prog(position), none〉] 81 4 3 -2.7
C08 raven(V )→ [〈ident(shape), none, prog(quantity), none, none〉] 79 4 3 -0.8
C09 raven(V )→ [〈ident(shape), none, none, prog(position), none〉] 91 4 3 -1.6
C10 raven(V )→ [〈ident(shape), none, none, prog(position), none〉] 91 4 3 -0.5
C11 raven(V )→ [〈ident(shape), none, prog(quantity), none, none〉] 81 4 3 -0.5
C12 raven(V )→ [〈ident(shape), none, none, prog(position), none〉] 83 4 3 1.2
D01 raven(V )→ [〈ident(shape), none, none, none, ident(type)〉] 75 4 3 -2.8
D02 raven(V )→ [〈dist3(shape), none, none, none, none〉] 69 4 2 -2.3
D03 raven(V )→ [〈dist3(shape), none, none, none, none〉] 71 4 2 -2.3
D04 raven(V )→ [〈ident(shape), none, none, none, dist3(type)〉] 94 6 3 -2.1
D05 raven(V )→ [〈ident(shape), none, none, none, dist3(type)〉] 96 6 3 -2.6
D06 raven(V )→ [〈ident(shape), none, none, none, dist3(type)〉] 93 6 3 -2.6
D07 raven(V )→ [〈dist3(shape), none, none, none, dist3(type)〉] 106 6 3 -2.1
D08 raven(V )→ [〈dist3(shape), none, none, none, dist3(type)〉] 91 6 3 -2.0
D09 raven(V )→ [〈dist3(shape), none, none, none, dist3(type)〉] 104 6 3 -1.5
D10 raven(V )→ [〈ident(shape), none, none, none, dist3(type)〉] 93 6 3 -1.4
D11 raven(V )→ [〈ident(shape), none, dist3(quantity), none, dist3(type)〉] 146 6 4 1.1
D12 raven(V )→ [〈dist3(shape), none, none, none, dist3(type)〉] 106 6 3 1.8
E01 raven(V )→ [〈addition(shape), none, none, none, none〉] 61 4 2 -1.5
E02 raven(V )→ [〈addition(shape), none, none, none, none〉] 55 4 2 -1.0
E03 raven(V )→ [〈addition(shape), none, none, none, ident(type)〉] 99 6 3 -1.3
E04 raven(V )→ [〈dist2(shape), none, none, none, none〉] 63 4 2 -0.6
E05 raven(V )→ [〈dist2(shape), none, none, none, none〉] 60 4 2 -0.7
E06 raven(V )→ [〈dist2(shape), none, none, none, none〉] 61 4 2 -0.4
E07 raven(V )→ [〈dist2(shape), none, none, none, none〉] 77 4 2 0.9
E08 raven(V )→ [〈dist2(shape), none, none, none, none〉] 99 4 3 2.9
E09 raven(V )→ [〈dist2(shape), none, none, none, dist3(type)〉] 100 4 3 1.5
E10 raven(V )→ [〈dist2(shape), none, none, none, none〉] 60 4 2 0.6
E11 raven(V )→ [〈dist2(shape), none, none, none, none〉] 65 4 2 0.7
E12 - - 4 - 1.6

Table 7.3: Solutions returned, steps needed, number of examples (E+) that are derived
from each problem and the number of different operators |oapp| that are applied in order
to get the solution in gErl (as a measure of the complexity of the solution) for Raven’s
SPMs sets C, D & E. The last column, taken from [Geo08] shows the results of the
b parameter (difficulty) of an IRT model of human performance on these sets. The
last example (E12) is not solved by gErl.

As we see in Table 7.3, gErl is able to solve 35 out of the 36 problems (12
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of 12 in sets C and D, and 11 of 12 in set E). If we take a look at the length
and complexity of the solution, we see that the number of steps is usually
larger. However, we see no clear correspondence between pattern size and the
difficulty humans find on these problems. Hence, the time that gErl requires
to solve a problem is explained by the requirement of relations needed to solve
it: the more relations needed, the longer it takes to obtain a solution pattern.
Otherwise, as we have said, this is not well correlated with the difficulty found
by humans, for which the difficulty lies on the complexity of the relation to
apply. In fact, some of the examples in set E have a small solution with a small
number of steps, but their difficulty for humans is high. However, if we take a
look at the constructs we see that most of the examples in set C use the ident
and the prog constructs, which yields easy problems for humans in general.
The use of dist3 does not seem to be a big challenge for most humans either.
However, the use of dist2 seems to be responsible of the higher difficulty for
set E, except for the three cases that only use addition, which look easier for
humans.

It seems that the operative constructs play an important role in how dif-
ficult these problems are for humans, with ident and prog being constructs
that most individuals have and can use, dist3 and addition being interme-
diate and dist2 being a construct that seems to be accessible or be devel-
oped by some individuals, in the line of the study carried out by [CJS90],
where the author claims that the problem difficulty not only appears when
the number of figures per cell is not constant but also occurs in problems con-
taining a distribution-of-two-values (dist2) relation, as well as figure addition
(addition) and difference (dist3). Finally, there are some cases that could be
explained by a combination of pattern size and constructs, such as the extra
difficulty of D11. Also, there are some cases that show a strange result, such
as D12, as it has the same pattern as other matrices but the difficulty hu-
mans find here is much higher. We have to say that we have not analysed the
distractors (how good and plausible the other 7 incorrect given options are,
which are given to humans but not to gErl). They may play a contaminating
role here as well as some issues about the visual shape and type that have not
been considered.

7.4.3 Letter series completion problems

Thurstone et al. [TT41] introduced the letter series completion problems as
part of some test batteries. These problems were developed to assess “reason-
ing ability”. The goal of the letter series problems is to identify the following
letter in a series (see Figure 7.6) from five letter choices. Further information
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1. cdcdcdcd_
2. aaabbbcccdd_
3. atbataatbat_
4. abmcdmefmghm_
5. defgefghfghi_
6. qxapxbqxa_
7. aducuaeuabuafua_
8. mabmbcmcdm_
9. urtustuttu_
10. abyabxabwab_
11. rscdstdetuef_
12. npaoqapraqsa_
13. wxaxybyzczadab_
14. jkqrklrslmst_
15. pononmnmlmlk_

Figure 7.6: 15 letter series completion test problems from [SK63].

in Appendix B. To solve a letter series, an abstract pattern has to be iden-
tified which captures the regularity of the sequence. The correct answer can
be generated by applying this pattern. As typical for induction, there is no
generally acceptable concept of correctness. For example, a person might con-
tinue a sequence just with some constant letter. Correctness in the context of
induction problems typically presupposes that there is one continuation which
is most plausible with respect to the given regularity. Typically, problems are
carefully constructed in such a way that there is a unique solution. However,
there is also research on ambiguous problems, for example in the domain of
letter string analogies [Hof08].

Problem representation and constructs

Once again, the first step to deal with Thurstone’s letter series problems is
to code the examples as equations in order to be correctly addressed by gErl.
Each letter series (lhs of the equations) will be coded as a list of characters
(or strings). The rhs will be the character that follows the series. Below we
can see the representation of example 1 in Figure 7.6:

e1 : thurstone(“cdcdcdcd”)→ “c”

Since each letter series is a problem itself, we need to provide the system
with more than one training instance as we did for the RPM problems. We do
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that by decomposing each initial example (the input letter series) into several
letter series of increasing length. For instance, from the previous example e1
we create the following training instances:

e1,1 : thurstone(“cd”)→ “c”
e1,2 : thurstone(“cdc”)→ “d”
e1,3 : thurstone(“cdcd”)→ “c”
e1,4 : thurstone(“cdcdc”)→ “d”
e1,5 : thurstone(“cdcdcd”)→ “c”
e1,6 : thurstone(“cdcdcdc”)→ “d”
e1,7 : thurstone(“cdcdcdcd”)→ “c”

In order to determine the set of constructs, we follow the ideas about the basic
“subroutines” from [SK63, KS73] to explain human behaviour in these letter
series problem tasks:

• Sequence: The problem is a series and needs to be extrapolated: the
pattern discovered (symbolic structures built from the vocabulary of
such a language) is held in order to continue the generation of the letter
series.

• Letter identity and alphabet order: It is assumed that the subjects
must know the English alphabet (backwards and forward) and are told
that it is circular (‘a’ follows ‘z’). That means that they have to know
the concepts of letter identity, and the next and previous letters.

• Periodicity: Cyclical patterns (or iterations) may be required, e.g., to
repeat the list at in order to produce atatatat. . . . Finding the length
and the positions of where the repetitions start is one of the difficulties
of the problem, such as in the series atbataatbat_: we can mark it off in
segments of length 3 (ata, atb, ata and at_). Here we observe that the
first and the second position of each segment are occupied, respectively,
by an a and a t which is a symple cycle of a’s and t’s (as previously),
and the third position is occupied by the cycle ba ba . . . .

• Composition: The assembly of two previous components must be
needed in order to generate the entire series.

For our purposes, only the first two subroutines will be taken into account
(the last two subroutines have nothing to do with learning aspects but with
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implementation aspects of the system in [KS73]). Therefore, we need some
operators in order to (a) work with letter sequences (strings), (b) establish
interletter relations (alphabet order) and, finally, (c) deal with the composi-
tion (finding regularly occurring breaks in a given series). As sequences are
represented with strings, we need some string operators (a) in gErl:

µreplace(3, flistL)
µreplace(3, flistR)

to replace the rhs of the rules (position 3) by an application of any of the
(Erlang) built-in functions flist that works with lists: head (which returns
the first element of the list), tail (which returns the list without the first
element), last (which returns the last element of the list) and init (which
returns the list without the last element). This can be applied either over the
input (ρ|1.1) letter series string (flistL(ρ) = flist(ρ|1.1)) or over the rhs (ρ|3) of
ρ (flistR(ρ) = flist(ρ|3)). Note that this latter function allows the system to
construct rules whose rhs are the result of successive applications of different
functions since it takes whatever there is in the rhs of ρ as input of the new
function to allocate there. This will also make possible to deal with periodicity.

For handling the alphabet order (b) we can also use the meta-operator
µreplace, instantiated as:

µreplace(3, forder)

where forder is an alphabet order function, either previous or next of a specific
letter. Note that next(“z”) = “a” and previous(“a”) = “z”.

Finally, in order to deal with the composition (c), we use the meta-operator
µcondition to generate operators in charge of inserting Boolean conditions (guards)
to the rules. In this way, some parts of the sequences are handled differently.
In order to distinguish different parts of the sequence we use the position rel-
ative to the length of the list. This makes it possible to learn problems with
more than one pattern (for instance “abxcdx", where the following letter is
“x” if the position of the missing letter is a multiple of 3, and the application
of next to the last letter, otherwise). So we used the following two conditions.

length(L) mod ϕ = 0
length(L) mod ϕ 6= 0

where the period ϕ ∈ {2, 3, . . . }. Both conditions are defined in the back-
ground knowledge as several functions modϕ and not_modϕ (respectively),
which apply over the input letter sequence parameter in the lhs of the rules.
Hence, the operators are defined as
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µcondition(2,modϕ)
µcondition(2, not_modϕ)

wheremodϕ(ρ) = length(ρ|1.1) mod ϕ = 0 and not_modϕ(ρ) = length(ρ|1.1) mod ϕ 6=
0, generating as many operators as periods ϕ we have.

As we did for the RPM problems, we also need a generalisation operator
that will be applied to generalise the input attribute, µreplace(1.1, Vstring).

The following example illustrates how the operators are applied to solve
the letter series problem e1,3:

op3(op2(op1(thurstone(“cdcd”)→ “c”))) ⇒
op3(op2(thurstone(Vstring)→ “c”)) ⇒

op3(thurstone(Vstring)→ init(Vstring)) ⇒
thurstone(Vstring)→ last(init(Vstring))

where
op1 ≡ µreplace(1.1, VString)
op2 ≡ µreplace(3, finitL)
op3 ≡ µreplace(3, flastR)

It is easy to see that the example e1,3 follows a regular pattern just alternating
the characters “c” and “d”, so the last rule obtained thurstone(Vstring) →
last(init(Vstring)) returns the right solution whatever the input is (it covers
all seven training instances generated from example e1,3). For instance, if
Vstring = “cdcdc”, then init(Vstring) = “cdcd” and last(init(Vstring) = “d”,
which is the correct and general solution for all letter series that follow the
same pattern as the previous example.

Results

gErl has been tested on the same 15 problems of the Thurstone Letter Series
Completion task (Figure 7.6) from [SK63]. With the operators that were pro-
vided, gErl learns 14 of the 15 test sequences, as shown in Table 7.4. As we
see in this table, the size of the solution (represented by |oapp| or their sum
when there are two rules) is not related to the difficulty humans find in these
exercises (DiffH). In fact, there is no clear trend or correlation between any
pair of the three last columns. If we take a look at the constructs, we see
that all solutions use string operator constructs, such as init and last. Only
problems 1, 3, 6 do not use the letter order (next and previous), which may
explain why they are easy for humans. The use of composition does not seem
to add too much complexity to humans, as problem 4, for instance, is easy
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for humans, and problems 8 and 10 are not very difficult. Finally, one of the
most difficult problems for humans (15) is relatively short and simple in its
functional representation. In fact, there seems to be some contamination in
the degree of difficulty for humans, depending on which letters in the alphabet
are used in each problem. It seems that problems that have patterns involving
the first letters of the alphabet are easier for humans than those involving
other letters. This possible explanation is not reflected by any of the com-
puter programs used by Simon and Kotovsky, or by the way the problems are
presented to gErl.

7.5 Discussion

In the previous section we have seen how several intelligence test problems
are addressed by a general-purpose learning system, which uses a declarative,
rule-based representation language for examples, patterns and operators. This
representation language and the generality of the learning process (which does
not have any hard-wired operator) make it explicitly how complex each pat-
tern is and what operators are used for each problem. This provides useful
information about the elements that each problem really requires: more com-
putational power (in terms of working memory and combinatorial search) or
some basic operational constructs. Many previous works in the literature that
have analysed the complexity of intelligence test problems using computational
models have focused on the former. Here, we are interested in the latter.

It should be noted that, when we analyse and determine the complexity of
intelligence test problems based on problem-dependent characteristics rather
than user-dependent ones, we should ensure that we generate and test all pos-
sible solution candidates (program outputs in order of their complexities) for a
given problem until the minimal one (the shortest) is returned, while keeping
the execution time of the solution under some reasonable terms. Actually, we
consider a relation between space or length of the solution (L) and its execu-
tion time (T ) as follows: LT = L+ log(T ). This is closely related to a Levin
search [Lev73, Lev84] (see [LV08b] for an overview), which, for a broad class of
search problems, can be shown to be optimal with respect to total search time
(leaving aside a constant factor independent of the problem size). Despite this
strong result, in practice, Levin search will fail to solve problems whose solu-
tions all have a high value of LT , which is highly dominated by L. Because of
this infeasibility of Levin search, we need to use an approximation. gErl is an
approximation of this search. This, of course, might lead to a solution that is
not the optimal in terms of LT , thus giving an overestimation of the difficulty
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of the search problem.
A related issue is whether the solutions are efficient or get more and more

efficient after use. This is not related to fluid intelligence but rather to crys-
tallised intelligence. Given a solution or policy to address a problem (e.g.,
multiplication), the repeated use of the algorithm will lead to ‘routinisation’,
i.e., a phenomenon in humans and non-human animals by which those mech-
anisms that have been so well mastered and regularly replicated no longer
require mindful manipulation. A possible future work would be to analyse
that, instead of the optimal solution in terms of LT (which is usually ap-
proximated as the shortest solution in the gErl representation), some program
transformation techniques could be used to render it more efficient (but se-
mantically equivalent). For instance, gErl may find that the solution for a
problem is to sort a sequence of letters. That solution could be expressed
with a very short, but inefficient, sorting algorithm. A further improvement
—similar to a routinisation— could be to transform the sorting algorithm into
another more efficient one.

The problems seen in the previous section feature the following operational
constructs (in parenthesis I, II, II referring to odd-one-out, RPM and letter
series problems respectively): differences intra and inter items (in I, II), the
notion of being distinct (I, II), the concept of identity (I, II, III), the ideas
of combination/addition (I, II, III), the sense of sequence and progression (II,
III), the notion of order (III) and the notion of periodicity or repetition (III).
It seems that if a system lacks many of these concepts, these problems become
irresolvable (unless the system can invent or discover all these concepts). In
fact, gErl is not able to solve them when we remove the constructs. On the
other hand, if we artificially provide these constructs, even if the system, such
as gErl, does not have a real cognitive development or physical embodiment,
we can get excellent results.

A very different thing is how much time gErl takes to solve the problem
when it can solve the problem. For instance, the Pearson correlation coefficient
between the number of different operators |oapp| (a measure of the complexity
of the pattern) and the time gErl takes (in number of steps) is 0.907 for the
RPM problems and 0.944 for the letter completion problems5. In other words,
the time a problem requires does correlate with the combinatorial problem of
using the operational constructs, but solving it or not correctly may mostly
depend on the constructs. This suggests that many studies about intelligence
tests are conflating two components of the difficulty of a problem: whether

5Since we only have two odd-one-out problem types and actually just two different learn-
ing problems, we do not have a meaningful value for the correlation in this case.
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we have the pieces and how many pieces we need to combine. In fact, in
cognitive development we are interested in the set of elements and constructs
that evolves with time rather that the computational ability of combining
them.

This leads to several observations. If we focus on the evaluation of cognitive
development in humans, we see clearly that intelligence tests for small children
usually differ in presentation but also in the constructs that are required. For
instance, even the easy RPM matrices of the standard series for adult humans
may be impossible for children under 6. Note that we are not referring here
to psychomotor abilities but pure fluid ability, where the concepts of identity,
difference, order, repetition, etc., may still be under development. Naturally,
some of these constructs are acquired by interacting with the world and with
the use of language, as many of them are not innate. As these cognitive
constructs are useful in a wide variety of problems, fluid intelligence (and not
only crystallised intelligence) increases when these constructs are developed
or learnt.

If we focus on the evaluation of cognitive development in artificial systems,
this work confirms that looking at the score of a (non-human) system on a
human intelligence test can be very misleading, as already anticipated a decade
ago by [SD03] and seen in Chapter 6. Unlike the other computer models
solving IQ tests viewed in Section 7.3, gErl is the first system (apart from
[SD03]) that is able to deal with more than one IQ test. But, unlike [SD03],
the system has not been designed on purpose for intelligence tests, but rather
as a general learning system. In other words, gErl learns to solve the problems.
For instance, for the RPM problems, gErl had 59/60 hits on sets C, D & E.
As humans who performed well on these sets typically got a perfect score in
the easier sets A and B [RC96, Table SPM2], we could infer that gErl is in the
95th percentile for American adults (IQ: 140), according to the 1993 norms
[RC96]. This is not very meaningful, as we know that gErl has some learning
abilities, but it is not really intelligent. We can always find explanations in the
way the problems are represented (where the complex visual representation is
simplified), but our results suggest that a better explanation is just to look at
the constructs that are provided to the system.

Nonetheless, it has to be said that if we provide many constructs in a
huge background knowledge base, the difficulty would then lie in designing the
system in such a way that it can choose among them in an efficient way, one of
the most challenging problems in AI and machine learning today. This suggests
that artificial cognitive systems, if their computational power remains the same
(no change of hardware or basic algorithms), should not become faster with
time for those problems they were able to solve in previous cognitive stages.
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In fact, it may still happen that efficiency can be degraded if the system has
a much larger knowledge base so that retrieving the appropriate constructs
becomes more difficult. This of course assumes that we evaluate the systems
without over-training on the particular tasks, as the system can just change
its contextual priorities if some kinds of exercises have been presented to the
system immediately before the evaluation6.

In general terms, for both humans and machines, are these (and other)
human intelligence tests useful to evaluate cognitive development? As a take-
away message, we do think that some of them can be useful. For the three kinds
of problems we have seen here, the odd-one-out problem will have less interest
than the two other problems, as we can only evaluate two particular constructs
with the odd-one-out problem, and the constructs are relatively elaborated.
In contrast, the other two types of problems (RPM and letter series) have a
diversity of constructs. In order to make these intelligence tests more useful
we need to create categories about the constructs they use. These categories
can be created (less subjectively) by the use of declarative learning systems
such as gErl. Also, we have to be very careful to separate success/failure with
speed of resolution in the analysis of results, and the evolution of both speed
and success for the whole cognitive life of the system. Let us remember that
gErl is not a cognitive model and it is not based in how humans learn or
develop (we will see our own developmental view for knowledge acquisition
in the following chapter). When comparing systems (humans, machines or
hybrid), we can potentially discover whether they share the same constructs
or not, and identify whether the difference in speed and success is because a
higher or lower computational power or the disposition and better handling of
cognitive operational constructs.

7.6 Summary

In this chapter, we address several IQ tests problems (odd-one-out problems,
Raven’s Progressive Matrices and Thurstone’s letter series) with a general-
purpose learning system, the inductive programming system gErl, which is
not particularly designed on purpose to solve intelligence tests. The goal is

6It is very difficult to expect that an underdeveloped subject (e.g., a child) could ever
guess the solution for some of the problems that require complex operational concepts. This
is related to the notion of ‘spontaneous overtraining’, that is able to get adult performance in
preschoolers. It is also relevant to consider the studies about the blocking of some constructs,
which can make adults perform like preschoolers [SS06]. One way of obtaining a similar
result with artificial systems would be by giving or training the subject with the necessary
constructs on one case and forbidding (or making forget) the constructs on the other case.
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not to evaluate gErl but to use it as a tool to better understand the role of
the mental operational constructs that are needed to solve these intelligence
test problems. From here, we gain some insights into the characteristics and
usefulness of these tests and how careful we need to be when applying human
test problems to assess the abilities and mental development of robots and
other artificial cognitive systems. The process and outcome of our study are
as follows:

• We set a parallelism between the concepts of fluid and crystallised intel-
ligence in humans and artificial systems.

• We explore fluid intelligence test tasks as a possible way to examine con-
cept dependencies for the cognitive development of general intelligence
in artificial systems.

• We use a general system, gErl, with intelligible representation, to ex-
amine three different IQ test problems: odd-one-out problems, Raven’s
Progressive Matrices and Thurstone’s letter series.

• While gErl is, to our knowledge, the first general system that is able to
score average human results in several IQ test tasks, we clearly make the
point of how misleading a superficial score comparison is.

• Rather, we use the system to better understand what these IQ test
tasks measure and what a system —human or artificial— requires to
solve them, and whether an inability can be turned into ability through
development.

• We distinguish two previously conflated aspects in item difficulty: the
mental operational constructs that each task requires and the combina-
torial problem of combining these constructs to find the solution.

• The take-away message is the appropriateness and care of using these
and other general intelligence tests to evaluate concept dependencies of
artificial systems.

There are of course some shortcomings about the use of human intelligence
tests for machines, as already pointed out in [DHO12], but most criticisms are
related to an anthropocentric choice of the exercises and an anthropocentric
determination of their difficulty and scales. We have seen that through the
use of general declarative systems where constructs, patterns and examples are
explicit and intelligible, we can find non-anthropocentric criteria about what



7.6. Summary 151

exercises we choose and what constructs and computational effort they require.
This indicates that many tasks that have been devised in traditional intelli-
gence tests can be reused. This is a compatible alternative to the conception
of more principled and better grounded tests based on a mathematical basis
[HO00a, LH07, HOD10] for both actual [HODHL14] and potential [HOD13]
capabilities.

Other limitations are intrinsic to the work in this chapter. More tests could
be analysed and other (preferably declarative) systems could be used to see
whether the identification of required constructs is convergent with this work.
Also, the ability of acquiring constructs (and consolidating them for future use
or forgetting those useless) has not been analysed in this work and it is a key
issue in any cognitive development. In the following chapter we will provide
an insight about how this could be done.

In concluding, the study in this chapter supports the assumption that,
even for fluid intelligence tests, the difficult items require a more advanced
cognitive development than the simpler ones. This study also encourages the
use of general intelligence tests for the evaluation of cognitive development
of humans and machines, but with extra care when evaluating the latter. In
contrast, many doubts have been raised about the use for artificial systems
of the difficulty gradation for humans. Similarity, and the stage arrangement
used for humans may not match with that of artificial systems, as the pace and
sequence of acquisition of constructs may differ dramatically between humans
and artificial cognitive systems.





8
Forgetting and consolidation in

knowledge acquisition

In the previous chapter we saw how the cognitive development of intelligent
systems —human or artificial— is explained by the development of cognitive
capabilities (cognitive operational constructs) that are necessary to solve spe-
cific tasks. Although we used gErl in order to better understand the difficulty
and the role of the cognitive constructs that are required in the process of
learning a new task, the system has not a developmental nature: it has to be
explicit in what constructs and operators must be given as background knowl-
edge when addressing each problem. The ability of acquiring, consolidating
and forgetting constructs fulfils the initially stated goal of properly represent-
ing, revising, evaluating, organising and retrieving knowledge in the quest for
more developmental and general-purpose approaches in AI. In this chapter we
present an incremental, lifelong view of knowledge acquisition which tries to
improve task after task by determining what to keep, what to consolidate and
what to forget. This approach is based in two characteristic features of intel-
ligence that are essential for knowledge development: forgetting and consoli-
dation. Both play an important role in knowledge bases and learning systems
to avoid possible information overflow and redundancy. They are also use-
ful to preserve and strengthen important or frequently used rules and remove
(or forget) useless ones. The final aim is to overcome The Stability-Plasticity
dilemma [CG88].

This chapter is organised as follows. Section 8.1 motivates this adaptive,
developmental and cognitive view of knowledge acquisition and reviews what
has been achieved in different AI areas related to this topic. Section 8.2 intro-
duces the notion of Coverage Graphs, which defines the setting for a knowledge
base. Over this Coverage Graphs, we are able to introduce an adaptation of
the MML principle and related metrics in Section 8.3. Section 8.4 deals with
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knowledge structuring, how rules are forgotten, promoted and demoted. In
Section 8.5 we include several experiments that illustrate how knowledge con-
solidation and forgetting works in practice. Finally, Section 8.6 closes the
chapter with a brief summary and discussion.

These results have been published in [MFHR14, MFHR15a, MFHR15b].

8.1 Introduction

Memory in artificial systems is usually understood as an encode-store-recall
structure where learnt knowledge is placed, remaining static until recall. How-
ever, memory (as storage) should be understood as an active cognitive compo-
nent [WBB11], where the process of knowledge acquisition (automated process
of abstracting knowledge from facts and other knowledge) cannot be under-
stood as a naive accumulation of what is being learnt. New knowledge must
be checked to see whether it is redundant, irrelevant or inconsistent with old
one, and whether it may be built upon previously learnt knowledge. We argue
that artificial intelligent systems should be developed for this purpose. This
leads us to the stability-plasticity dilemma [CG88]. The basic idea is that an
adaptive cognitive system must be capable of learning new things (plasticity)
without losing previously consolidated learnt concepts (stability). This has
been a designing principle within the perspective of neural computation over
the last thirty years. Some of the proposed solutions include: (a) dual-memory
systems simulating the presence of short and long-term memory [Fre97, AR97],
and (b) cognitive architectures such as the Adaptive Resonance Theory (ART
[Gro13]) emulating how the brain processes information. In both cases, those
approaches can only incorporate new knowledge, without the ability of re-
organisation or forgetting obsolete knowledge.

Therefore, with the purpose of overcoming the above dilemma and follow-
ing the goals about developmental knowledge acquisition stated in the intro-
duction of this thesis, we have conducted an approach able to (a) support in-
crementally knowledge acquisition without the need to have (one-shot) models
discarded and retrained repeatedly (which is not cost-effective), (b) integrate
inductive and deductive reasoning algorithms for such a goal and guided by
knowledge evaluation metrics (thus having the knowledge integrated in the
system rather than being an adjunct storage system), and, finally, (c) focus
on relevant knowledge (or discard what is not) by the use of memory-based
mechanisms that simplify the learning of new knowledge. These principles,
being the starting point for a general framework for knowledge acquisition,
aim at generating adaptive behaviour in intelligent learning systems based on
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previously acquired knowledge.
A crucial aspect relies on theory and knowledge evaluation. When the the-

ory or hypothesis is considered as a whole and separated from the evidence, we
have many well-founded proposals, such as the MML principle or the similar
(but posterior) MDL principle seen in Chapter 4 (Section 4.2). However, for
knowledge integration and consolidation it is necessary to assess each part of
the theory since different parts of the theory can have different degrees of va-
lidity, probability or reinforcement [HO00b, HOGV00]. But even in this case,
there is still a separation between knowledge and evidence. It would be mean-
ingful to fully integrate knowledge and evidence into a hierarchical assessment
structure (from specific facts to more abstract rules). The perspective of a
network or hierarchy of nodes that get support from other nodes is more com-
mon in the area of link analysis (as we also saw in Chapter 4, Section 4.3) ,
or in infometrics.

8.1.1 Forgetting

Properly revising, evaluating, organising and retrieving knowledge in AI sys-
tems have much to learn from the study of human cognition and behaviour
[RV08, EWB14, HT12, LCA14]. Cognitive factors, responsible for generating
intelligent and adaptive behaviour, need to receive full consideration in order
to improve current AI systems (not intelligent in human terms). In particular,
there is a characteristic feature of intelligence that is essential for knowledge
development: forgetting. Remembering absolutely everything prevents from
having abstract thought (the process of generalisation). Forgetting can refer
to a complete and irreversible elimination of significant old knowledge while
learning new one; or it can denote that new learnt knowledge is not always
kept in the working memory but abstractly encoded by identifying their rela-
tion to abstract concepts already present in the knowledge base. This latter
definition is the desired one: forgetting should exist in knowledge bases and
learning systems to avoid possible information overflow and redundancy, and
in order to preserve and strengthen important or frequently used rules and
remove (or forget) useless ones.

The ability to focus on what knowledge to discard is becoming more rele-
vant not only in cognitive science and neuroscience [Qui12], but also in artificial
intelligence (e.g., reasoning, planning, decision making). Usually considered
in biology to be a combination of decay (to a lesser extent) and a proactive
and retroactive interference (to a major extent) [Wix04], forgetting has been
frequently used in AI systems because of performance and space constraints
[NTHW10, AZM09]. Also known as variable elimination, forgetting has been
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widely investigated in the context of classical logic [LR94, LL03, LM10] and
developed under the notion of logical equivalence. A similar approach but for
reasoning from inconsistent propositional bases is proposed in [LM10]. Re-
cently, the concept of forgetting has been widespread in other non-classical
logical systems such as in logic programs [ZF06, EW08, WZZZ12] where a se-
mantic forgetting is used to develop a number of criteria for forgetting atoms;
in modal logic [ZZ09, SSLZ09, LW11], in description logics (DLs) [WWTP10]
and in planning [EF07]. Note that the forgetting mechanisms used in the
previous approaches are based either on decay or relevance-related measures
rather than interference. This is due to the symbolic nature for representing
the information and the encapsulation property of symbols. This makes a
scalar comparison (i.e. determination of the degree of overlap between dis-
crete components) difficult [WBB11]. We argue that this could be overcome
by means of hierarchical assessment structures of knowledge (as commented
before) where relations between different individuals (pieces of knowledge)
may be better understood and measured.

Closely related to the above concept we found memory consolidation,
namely, the neurological process of converting information from short-term
memory into long-term memory. Some studies about episodic memory in hu-
mans [Sha01, tag08] claim that memory traces in the hippocampus are not
permanent and are occasionally transferred to neocortical areas in the brain
through a consolidation processes. Recent cognitive models of memory have
given great importance to consolidation procedures [DS10].

The development of a new learning system for knowledge acquisition that
is meant to be cumulative is not an easy task. As commented before. the need
of making general principles that were available for any AI system (not only
gErl) motivated the approach we present in this chapter. Indeed, we take a
most general approach by considering that we start with an off-the-shelf in-
ductive engine (e.g., a rule learning algorithm, an ILP system or an IP system)
and an off-the-shelf deductive engine (e.g., a coverage checker, an automated
deduction system or a declarative programming language) and, over them, we
construct a lifelong knowledge acquisition system where the working memory
follows the division imposed on human memory which separates processes for
short and long-term recall [Heb49]. Several issues have to be addressed:

1. The inductive engine can generate many possible hypotheses and pat-
terns. Once brought to the working memory (short-term memory sys-
tem) we require metrics to evaluate how these hypotheses behave and
how they are related to previous knowledge. Also, at any time new
evidence can be added to the working space.
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2. As working memory and computational time are limited, we need a
forgetting criterion to discard some rules which are considered irrelevant
(or redundant) in terms of informativeness. Forgetting should, therefore,
follow a proactive interference principle (rather than decay or relevance)
where new information may be more likely to be forgotten because of
already existing information covering or overlapping the former.

3. The deductive engine checks the coverage of each hypothesis indepen-
dently, using the background or consolidated knowledge as auxiliary
rules, but not other working rules. As a result, only when new knowledge
is consolidated (long-term memory system) we can use it for new prob-
lems or for more difficult examples of the same problem. This means
that deduction is “modulo the background knowledge”.

4. The promotion of rules into consolidated knowledge must avoid unnec-
essarily large knowledge bases and the consolidation of rules that are
useless, too preliminary or inconsistent. That is, rules must be pro-
moted and demoted to keep a powerful, but still manageable knowledge
base.

The idea of a hierarchical knowledge arrangement (what we call Coverage
Graphs) is used as the basis for structuring knowledge (and, thus, their rela-
tions) and is delegated to the deductive engine (the Coverage Graphs will be
defined in the following section). The generation of new rules is delegated to
the inductive engine. The crucial part is the definition of appropriate metrics
to guide the way knowledge develops. Note that the use of both linking struc-
tures with complexity and compression metrics helps determine the degree of
overlap between individuals. Therefore, the existing information can prevent
the storage (consolidation) of already covered (overlapped) information.

8.2 Coverage graph
We consider that ‘rules’ are used for expressing examples, hypotheses and
background knowledge. Rules are denoted by lower case Greek letters where,
regarding examples, class(ρ) = c, c ∈ C and C is the set of classes, such as
{false, true}. The set of all possible rules is denoted by R, where W ⊂ R is
the working space or memory, and K ⊂ R is the background or consolidated
knowledge base.

Rules are presented as vertexes or nodes V (and we refer them indistinctly)
in a directed acyclic graph G(V,A) (which is the DAG representation of a
specific working space) we call coverage graph because the directed edges A
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represent the coverage relation between the different rules. We denote an edge
from node µ to node ν as µ → ν. For simplicity, the coverage graphs do not
include the edges for the transitive closure of the covering relation, i.e., if a
node µ covers nodes ν and γ, but ν also covers γ, only the edges µ → ν and
ν → γ are included in the graph.

A rule ρa is covered by another rule ρb if (K ∪ ρb) |= ρa. The precise
understanding of the semantic consequence operator |= will depend on the
rule representation language used and the deductive engine. Hence, given an
edge µ → ν, we say that ν is directly covered by µ using K. The set of
ancestors and successors of a node ν are defined as anc(ν) = {µ|µ → ν} and
suc(µ) = {ν|µ→ ν} (respectively). Also, we distinguish two subsets of nodes:
leaves, nodes without successors (|suc(ν)| = 0), where leavesc denotes the set
of leaves of class c; and roots, nodes without ancestors (|anc(ν)| = 0).

Figure 8.1 shows an example of Coverage Graph of a well-known ILP prob-
lem [MD94]: the family relationship. In this problem, the task is to define the
target relation daughter(X,Y ), which states that person X is daughter of per-
son Y . W consists of three positive examples (rules 1, 2 and 5), two negative
ones (rules 3 and 4), and seven selected rules that try to generalise and solve
the problem (Table 8.1 right), whereas K is composed of the relations female
and parent (Table 8.1 left). Note that the rules in K have not been included in
the graph for clarity, although they belong to the initial “consolidated knowl-
edge”.

Figure 8.1: Coverage Graph of the family relations problem. Green and red nodes refer
to positive and negative examples respectively. The graph shows rule IDs according to
Table 8.1.
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Background Knowledge Rules
ID Rule ID Rule
k1 parent(ann, mary). 1 daughter(mary,ann).
k2 parent(ann, tom). 2 daughter(eve,tom).
k3 parent(tom, eve). 3 daughter(tom,ann).
k4 parent(tom, ian). 4 daughter(eve,ann).
k5 female(ann). 5 daughter(cris,tom).
k6 female(mary). 100 daughter(X,Y):- female(Y),parent(Y,mary).
k7 female(eve). 59 daughter(eve,tom):- female(eve),parent(tom,eve).

20 daughter(eve,tom):- female(eve).
35 daughter(eve,Y):- female(eve).
73 daughter(X,tom):- female(X),parent(tom,X).
110 daughter(X,Y):- female(X),parent(Y,X).
138 daughter(V,W):- female(X),parent(Y,Z).

Table 8.1: Left: Background Knowledge for the family relations problem. Right: Rules
of this problem in Prolog notation.

8.3 Basic Metrics for Acquired Knowledge Assess-
ment

In order to select and arrange the set of rules in the working space, various
measures of usefulness, relevance and consistency have to be derived from the
coverage graph. Based on the idea that the relevance or usefulness of a rule can
be stated by the relationship between its own complexity and the complexity
of the rules it covers, a general criterion such as the Minimum Message Length
[WB68a] can be used as a starting criterion from which to derive new metrics.
For a motivation we refer the reader to the Chapter 4.

8.3.1 MML goes hierarchical: Support

Let us first restate some of the main points of the Minimum Message Length
presented in Chapter 4 (Section 4.2) that will be useful to understand how we
have adapted it to our Coverage Graphs. As we saw, MML is one of the most
popular selection criterion in inductive inference where the model generating
the shortest overall message (composed by the model and the evidence con-
cisely encoded using it) is more likely to be correct. MML can be re-stated in a
Bayesian form [WB68a] (Equation 4.1) which, in turn, by taking negative log-
arithms could be defined as the sum of three simple heuristics (Equation 4.2):
a complexity-based heuristic (which measures the complexity of the hypoth-
esis H), a coverage heuristic (which measures how much extra information is
necessary to express the evidence E given the hypothesis H) and the length
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of the evidence (L(E)), equal for all competing hypotheses.

L(H|E) = L(H) + L(E|H)− L(E) (4.2 revisited)
By minimising equation 4.2 we maximise the posterior probability which

involves searching for the model that gives the shortest message. To our knowl-
edge, the MML principle has always been applied to select between hypotheses
with respect to some given evidence. In our case, we have a coverage graph
where rules cover other rules, so they become H and E at the same time.
In a way, what we need is a hierarchical MML application. Having this in
mind, the MML principle can be adapted to be used in this approach with
the following considerations: instead of measuring the length of a hypothesis
H given fixed evidence E, what we want to measure is the length of each
rule ρ in W with respect to the rest of rules in W (which includes examples
and hypotheses) because ρ can model not only examples, but also other rules.
Therefore, L(ρ|W ) is defined as the sum of the length of ρ (L(ρ)), and the
length necessary to express the rules in {W − ρ} not modelled by ρ (L(W |ρ)),
minus the length of the total rules in W (L(W )). Formally:

L(ρ|W ) = L(ρ) + L(W |ρ)− L(W ) (8.1)

Apparently, it just seems a notational change wrt. equation 4.2. This is
only true for the first term, which is estimated in the same way as the original
MML principle. The term L(ρ) can be defined in different ways depending
on the rule representation language. For instance, if we are using logical
or functional rules (as in the family example), we could use the following
approximation. Given Σ a set of mΣ functor symbols of arity ≥ 0, and X a set
of mX variables, we could define the length of a rule ρ containing nΣ functors
and nX variables as

L(ρ) , mΣ log2(nΣ + 1) + mX
2 log2(nX + 1) (8.2)

Note that we promote variables over constants or functors.
Table 8.2 shows the length in bits and the class for the rules in the graph

of Figure 8.1.
Following with the equation 8.1, we are going to reunderstand the terms

L(W |ρ) − L(w) to be adapted to coverage graphs and multiclass settings.
Roughly speaking, these terms capture the “net profit” of the rules both in
terms of support or coverage (length in bits of the rules covered). More for-
mally, we define the support of a rule ρ ∈W as:
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ID L(ρ) c

1 17.844 ⊕
2 17.844 ⊕
3 17.844 	
4 17.844 	
5 17.844 ⊕

100 11.977
59 20.036
20 11.591
35 9.284
73 13.114
110 9.962
138 12.462

Table 8.2: Length and class c for the rules on the right side of Table 8.1. It should be
noticed that only those rules representing the evidence have class values.

S(ρ,W ) , L(ρ)− L(ρ|W ) = L(W )− L(W |ρ) (8.3)

where L(W ) − L(W |ρ) represents the coverage of a rule ρ expressed in bits,
that is, the length of all the rules in W minus the length of the rules not
covered by ρ. Therefore, the support of a rule ρ represents the length of the
rules it covers:

S(ρ,W ) =
∑
ν:ρ|=ν

L(ν) (8.4)

leading to an alternative expression for L(ρ|W ) (equation 8.1) in terms of
support:

L(ρ|W ) = −S(ρ,W ) + L(ρ) (8.5)

which establishes that maximising S(ρ,W ) and minimising L(ρ) we minimise
L(ρ|W ) which involves searching for the rule ρ that covers the maximum
number of rules and has the lowest length.
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The following step is to adapt equation 8.5 to be used in coverage graphs
that does not explicitly include the edges for the transitivity of the coverage
relation. In order to consider the upwards propagation, only the leaves will
have an initial support value which is equal to its length in bits, and the rest
of nodes will distribute it recursively by propagating this support. Thus, the
new support (S′(ρ,W )) adapted to work on coverage graphs is defined as:

S′(ρ,W ) ,


L(ρ) if ρ ∈ leaves∑
ν∈suc(ρ)

S′(ν,W ) otherwise (8.6)

In order to avoid the scenario where the less grounded (upper) nodes get
higher and higher support values, the support measure is required to satisfy
a conservative condition. This property is somehow related to the law of
conservation of energy, implying that at any node in a coverage graph, the
sum of the total support flowing into that node is equal to the sum of the
total support flowing out of that node.

Now, to make S′ conservative we need to divide the support coming from
the outcoming of a specific node ν by |anc(ν)| in order to equally distribute
the support of ν between all of its ancestors.

Therefore, the new formula used to calculate the support of a rule (Ṡ(ρ,W ))
is defined to be equal to:

Ṡ(ρ,W ) ,


L(ρ) if ρ ∈ leaves∑
ν∈suc(ρ)

Ṡ(ν,W )
|anc(ν)| otherwise (8.7)

and leading to an expression for L(ρ|W ) (8.5) in terms of this conservative
support:

L̇(ρ|W ) = −Ṡ(ρ,W ) + L(ρ) (8.8)

Equation 8.7 now accomplishes the mandatory conservative condition which
could be stated such as the support of a node (which depends on its successors)
has to be always entirely allocated in its ancestors together with the support
inherited from other covered nodes (see Figure 8.2).

This implies (but not vice versa) that the total sum of the support of the
leaves in the coverage graph is equal to the total sum of the support at the
root nodes. Namely:
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Figure 8.2: Graphical representation of the flow of the support by using equation 8.7
through the coverage graph: the support of each leave node is always allocated in the
roots. Therefore, the total support of the leaves is equal to the total support in the
roots

∑
µ∈leaves

Ṡ(µ,W ) =
∑

ν∈roots
Ṡ(ν,W ) (8.9)

For each leaf in the coverage graph we have n different paths whereby the
support flows upwards to root nodes. Whenever a path is forked (an ancestor
is found), its support is always divided by the number of the outgoing paths
(incoming edges), having the ancestors an equally part of the support and thus
having the roots a proportion of the original support of the leaves transitively
covered by them. Therefore, if we assume that the total support at the roots
is different from the total support at the leaves, it means that an external
transfer of support (which comes from or goes to other sources) has happened.
However, accordingly to equation 8.7, this is not possible and, therefore, the
total sum of the support at the roots always remains constant and equal to
the total support at the leaf nodes (see Figure 8.2).
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Example 4
Viewed through the example in Figure 8.2 and accordingly to the equation 8.7
we have that the support of the root nodes is

Ṡ(d,W ) = Ṡ(e,W ) = Ṡ(x,W )
3 , Ṡ(f,W ) = Ṡ(x,W )

3 + Ṡ(Y,W ),

where

Ṡ(x,W ) = Ṡ(a,W ) + Ṡ(b,W )
2 , Ṡ(y,W ) = Ṡ(b,W )

2 + Ṡ(c),

and

Ṡ(a,W ) = L(a), Ṡ(b,W ) = L(b), Ṡ(c,W ) = L(c)

thus making the following equations true (accordingly to the formula 8.7):

Ṡ(a,W ) + Ṡ(b,W )
2︸ ︷︷ ︸

Ṡ(x,W )

− Ṡ(d,W )︸ ︷︷ ︸
Ṡ(x,W )

3

− Ṡ(e,W )︸ ︷︷ ︸
Ṡ(x,W )

3

− (Ṡ(f,W )− Ṡ(y,W )
2 )︸ ︷︷ ︸

Ṡ(x,W )
3

= 0

Ṡ(c,W ) + Ṡ(b,W )
2︸ ︷︷ ︸

Ṡ(y,W )

− (Ṡ(f,W )− Ṡ(x,W )
3 )︸ ︷︷ ︸

Ṡ(y,W )

= 0

and, also, being the total support at leaf nodes (L(a) + L(b) + L(c)) equal to
the total support at root nodes (equation 8.9):

Ṡ(d,W ) + Ṡ(e,W ) + Ṡ(f,W ) = ( Ṡ(x,W )
3 ) + ( Ṡ(x,W )

3 ) + ( Ṡ(x,W )
3 + Ṡ(y,W ))

= S(x,W ) + Ṡ(y,W )

= (Ṡ(a,W ) + Ṡ(b,W )
2 ) + ( Ṡ(b,W )

2 + Ṡ(c,W ))

= Ṡ(a,W ) + Ṡ(b,W ) + Ṡ(c,W )

Finally, we need to take into account that, since the working space W can
accommodate examples of different classes, we need our metric to distinguish
between them and, hence, there are as many support values for each node as
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many different classes there are in the working space, each one holding the
conservative property and formally defined to be equal to:

Ṡc(ρ,W ) ,


L(ρ), if ρ ∈ leavesc∑
ν∈suc(ρ)

Ṡc(ν,W )
|anc(ν)| otherwise (8.10)

with Equation 8.8 being defined for classes as follow:

−L̇c(ρ|W ) = Ṡc(ρ,W )− L(ρ) (8.11)

The value of L̇c is interpreted as the hierarchical version of the MML principle,
with L̇c being the lower the better (and obviously −L̇c the higher the better).

Following with the Family example, Table 8.3 shows the support and the
negative form of L(ρ|W ) (for each class) of the rules in the graph in Figure
8.1.

ID L(ρ) c Ṡ+ Ṡ− −L̇+ −L̇−
1 17.844 ⊕ 17.844 0.0 0.0 -17.844
2 17.844 ⊕ 17.844 0.0 0.0 -17.844
3 17.844 	 0.0 17.844 -17.844 0.0
4 17.844 	 0.0 17.844 -17.844 0.0
5 17.844 ⊕ 17.844 0.0 0.0 -17.844

100 11.977 8.922 26.766 -3.0549 14.788
59 18.791 8.922 0.0 -11.114 -20.036
20 11.591 8.922 0.0 -2.668 -11.591
35 9.284 8.922 8.922 -0.362 -0.362
73 13.114 26.766 0.0 13.651 -13.114

110 9.962 35.688 0.0 25.726 -9.962
138 12.462 44.61 26.766 32.147 14.303

Table 8.3: Ṡ and −L̇(ρ|W ) values (both for the + and − classes) for the rules on the
right side of Table 8.1. Taking a look at the table, we cannot decide which is the best
rule in global terms: we can only establish a ranking per classes (by using the support
values) without taking into account any other information.
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8.3.2 Optimality

By using the support as the sole criterion to rank the rules in W is useful
provided there are only rules belonging to one class. However, when there are
more than one class in W , we need to consider the purity or confidence of the
rules. In the same spirit of the MML principle, we define the optimality as
the difference between the cost of coding a rule following equation 8.11 for a
specific class and the cost of coding the exceptions, i.e.,: the support of the
rules covered that belong to the other classes. We use a factor β indicating
the relevance of rules being as pure as possible. Formally:

optc(ρ,W ) , −β · L̇c(ρ|W )− (1− β) ·
∑
c′∈C
c′ 6=c

Ṡc′(ρ,W ) (8.12)

leading to a generic optimality of a rule as:

opt(ρ,W ) , max
c∈C

(optc(ρ,W )) (8.13)

Following with the family example, Table 8.4 shows the optimality values per
class (the generic optimality in bold) for the rules in the graph of Figure 8.1
using β = 0.5. According to these values, rule 110 is the most significant
rule, as it can be easily viewed in the coverage graph because it covers all the
positive examples and no negative one.

8.4 Structuring knowledge: forgetting, promotion
and demotion

In our setting, rules are repeatedly generated by the inductive engine and
added to the working space W . As an answer to the possible never-ending
growth of W , it is necessary to have mechanisms for forgetting or revising
useless pieces of acquired knowledge as we already said in the introduction of
this chapter. Using the metrics we have just introduced, we need a mechanism
to discard those rules that are not useful, are inconsistent or do not get enough
support.

8.4.1 Forgetting mechanism

The optimality of a rule ρ is a core metric to determine its usefulness, but it
is also important to see whether ρ could be considered superfluous because it
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ID L(ρ) c Ṡ+ Ṡ− −L̇+ −L̇− opt+ opt−
1 17.844 ⊕ 17.844 0.0 0.0 -17.844 0.0 -17.844
2 17.844 ⊕ 17.844 0.0 0.0 -17.844 0.0 -17.844
3 17.844 	 0.0 17.844 -17.844 0.0 -17.844 0.0
4 17.844 	 0.0 17.844 -17.844 0.0 -17.844 0.0
5 17.844 ⊕ 17.844 0.0 0.0 0.0 -17.844

100 11.977 8.922 26.766 -3.0549 14.788 -14.91 2.933
59 18.791 8.922 0.0 -11.114 -20.036 -5.557 -14.479
20 11.591 8.922 0.0 -2.668 -11.591 -1.334 -10.256
35 9.284 8.922 8.922 -0.362 -0.362 -4.642 -4.642
73 13.114 26.766 0.0 13.651 -13.114 6.825 -19.939
110 9.962 35.688 0.0 25.726 -9.962 12.863 -22.825
138 12.462 44.61 26.766 32.147 14.303 2.69 -15.153

Table 8.4: Optimality values (both for the + and − classes) for the rules on the
right side of Table 8.1. Bold values indicates the generic optimality (equation 8.13).
Ranking the rules by optimality we see that the best rule is 110.

is covered (transitive or directly) by another rule of higher optimality. If it
is the case, ρ is mostly redundant and it could be discarded safely. This idea
leads to the following definition for the permanence of a rule:

permc(ρ,W ) , optc(ρ)−max(0, max
ν:ν|=ρ

optc(ν)) (8.14)

and for its generic permanence:

perm(ρ,W ) , max
c∈C

(permc(ρ,W )) (8.15)

The lower the value of permanence a rule has, the higher the odds it has to
be forgotten.

When we perform a forgetting step, the coverage graph is affected and
coverages are also affected. In order to keep as much information about the
past support, each rule is provided with a trace of its old support. In cognitive
systems this is associated to notions such as the preservation of belief and trust
even if we forget the particular cases that gave support to a given statement.
Therefore, the forgetting mechanism will work as follows:
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Figure 8.3: (Left) forgetting case (a): an internal node is forgotten (graphically rep-
resented with a red cross). (Right) forgetting case (b): a leaf node is forgotten. Brown
data storage cylinders graphically represent the concept of “residual” that collects the
support (for each class) of forgotten leaf nodes.

1. If a non-leaf node is selected to be forgotten, the support of its successors
has to be re-distributed among their ancestors and the ancestors of the
forgotten node (see Figure 8.3 (left)).

2. In case there is a forgetting step that removes a leaf node, its support
has to be equally distributed among the rules that cover it which inherit
it as their “residual” support value associated to each class c (resc) (see
Figure 8.3 (right)).

Hence, the equation 8.10 is modified to include the residual:

S̊c(ρ|W ) ,


L(ρ) if ρ ∈ leavesc
resc + ∑

v∈suc(ρ)

S̊c(v,W )
|anc(v)| otherwise (8.16)

where resc is initially set as 0. For each forgetting step, the support of for-
gotten nodes is distributed among the outcoming nodes increasing their resc
value, but if the last forgetting step removes a node without ancestor nor suc-
cessors and a non-zero resc, this value cannot be distributed and, therefore,
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is lost. This results in a decrease of the total support of the graph: although
the support will remain conservative, the total amount will be lower than the
total support of the coverage graph before the forgetting steps. Consequently,
in the end some rules may have an under-estimated support value in terms of
how many rules (of different classes) cover (see Figure 8.4).

In order to clarify how this mechanism works we illustrate this with the
Family example. Figure 8.5 shows the evolution of the coverage graph in
Figure 8.1 and its measures (see Table 8.5) through nine consecutive forgetting
steps, where the rule with lowest permanence is forgotten in each step (shown
with a grey square). For instance, in step 1, we see that rule number 59 is
redundant because it is covered by a more significant rule (with ID 110), and
it has the lowest value of permanence (see Table 8.5 (step 1)). Thus, rule
59 is forgotten, the coverage graph is redrawn (see Figure 8.5 (step 2)) and
the metrics are recalculated if necessary (see Table 8.5 (step 2)). In step 2
(and other steps where a leaf node is deleted), its support is distributed equally
among its ancestors and this distributed support becomes part of their residual
or intrinsic support (resc).

In this example, we have forgotten one rule at a time, but the actual pace
and number of rules to forget can be tuned to the purpose of the system.

8.4.2 Consolidated knowledge: promotion and demotion

Finally, some of the rules with good indicators in the working space have to
be eventually promoted to consolidated knowledge (or belief). This has to be
a careful process, as the consolidated knowledge will be used by the deductive
engine to calculate coverage. This means that an inconsistent rule that is
promoted to the consolidated knowledge may have important consequences
on the behaviour of the system.

The promotion function can be tuned for the application at hand, but a
general choice is to use a threshold θp on the optimality to consolidate or
promote a rule to a belief status in B.

When a rule is promoted to consolidated knowledge, it cannot be target of
the forgetting mechanism and, hence, be forgotten. However, it may happen
that this rule can be eventually removed from the consolidated knowledge.
Therefore, the promotion system is mirrored by a demotion system, with the
use of another threshold θd. The original background knowledge (B0) cannot
be demoted (and forgotten).

In the Example in Figure 8.5 in case we would establish θp equal to the
average optimality of all the rules in the working space, all the rules that ex-
ceed this average value will be consolidated to the consolidated knowledge base
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Figure 8.4: Forgetting mechanism performed over a complete branch. The conserva-
tive property over the support measure occurs in all steps, but the initial amount of
support at step = 0 (

∑
µ∈leaves

S̊(µ,W ) = L(A)) has been reduced at the last step = 4

(
∑

µ∈leaves
S̊(µ,W ) = L(A)

2 ) due to the forgetting mechanism.
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(rules 110 and 73). Any rule that is consolidated cannot be target of the forget-
ting mechanism until it is demoted to the working space again (considering a
demoting threshold θd equal to θp). Thus, in Table 8.5 (step 5), rule 73 has the
lowest permanence value (perm(73) = −6.037) but 35 (perm(35) = −4.642)
would be forgotten instead, because the former is a consolidated rule.

8.5 Experiments
As mentioned in section 8.1, one of the issues in many cognitive systems (es-
pecially connexionistic, either artificial or biological) is the Stability-Plasticity
dilemma. We claim that our approach is able to address this issue in a lifelong
or incremental learning process. For this purpose, we have conducted an ex-
perimental evaluation to explore the following questions: (a) is it possible to
gradually generate a large repository of consolidated knowledge assessing the
usefulness of the rules? (b) is our approach able to forget or revise the existing
knowledge in order to generate a rich and reusable knowledge base? and (c)
how are the process and the resulting knowledge structure understood in terms
of cognitive systems that must acquire and develop knowledge incrementally?
We want to illustrate these features in one single domain (chess). The ul-
timate goal of these experiments is to see whether the framework is general
enough to work with off-the-shelf inductive and deductive engines, to better
understand how the metrics and procedures work, and finding whether they
may require some tuning or improvement to the framework before addressing
other problems.

8.5.1 Methodology

We will focus on the problem of learning the rules of chess by observation. In
particular, we focus on learning a model of legal moves of different pieces from
a set of legal and illegal move examples (extracted from [MBHMM89]). In our
framework, the legal moves are the positive examples and the illegal moves the
negative ones (so we have two classes). Each example represents a move of a
specific piece on an empty board. Therefore, a move is represented by a triple
from the domain Piece×Pos×Pos, where the second and third components
represent, respectively, the piece’s initial position and its destination on a
chessboard. Positions are represented by a tuple from the domain File ×
Rank where files (a-h) stand for columns and ranks (1-8) stand for rows. For
instance, Figure 8.6 illustrates all the possible moves of the knight from a
specific initial position (k) to several other positions (k′). We will use a Prolog
notation (see Table 8.6).
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8         

7   k’  k’    

6  k’    k’   

5    k     

4  k’    k’   

3   k’  k’    

2         

1         

 a b c d e f g h 

 Figure 8.6: Possible moves of the knight from position (d,5). The particular legal
move from k to k′ will be represented as move(knight,pos(d,5),pos(e,3)).

The only background predicate used is the absolute difference, diff(X,Y),
that calculates the distance between X and Y , where both X and Y can be
ranks or files (see Table 8.6).

ID Rule ID Rule 

K1 project(a,1).   

K11 

 

rdiff(Rank1,Rank2,Diff) :- 

 rank(Rank1), rank(Rank2), 

 Diff1 is Rank1-Rank2, 

 abs(Diff1,Diff). 

K2 project(b,2).   

K3 project(c,3).   

K4 project(d,4). 

K5 project(e,5).   

K12 

fdiff(File1,File2,Diff) :- 

 file(File1), file(File2), 

 project(File1,Rank1), 

 project(File2,Rank2), 

 Diff1 is Rank1-Rank2, 

 abs(Diff1,Diff). 

K6 project(f,6).  

K7 project(g,7).   

K8 project(h,8). 

K9 abs(X,X) :- X>=0. 

K10 abs(X,Y) :- X<0, Y is -X. 

 

Table 8.6: Background knowledge for the chess problem.

The challenge we would like to face is knowledge discovery and acquisition
in a progressive way from examples provided incrementally. A random set of
chess moves from all chess pieces in the game except the pawn (rook, bishop,
knight, queen and king) is given. This includes positive and negative examples
(28 and 12 examples respectively). We also consider that an inductive engine
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is generating rules during the whole process (according to the working space
and using the consolidated knowledge as background knowledge) and they
are arriving to the system in a random order as well. In our case, we have
taken the rules generated by the ILP system Progol [Mug95] (60 in total).
How many examples and rules are given for each step of the system is defined
following a geometric distribution. Formally, the probability that k examples
(and similarly for rules) are given is Pr(X = k) = (1 − p)k−1 · p where k is
1, 2, 3, . . . and p is the probability of success (we set it to 0.5). In order to
better mimic a situation where the inductive engine can produce rules it has
already generated (as otherwise we would need to keep trace of all this), it is
more realistic to use this distribution with replacement. Similarly, as the same
move can appear repeatedly in chess, we have also considered replacement for
the set of examples.

Subjectively, in this experiment, we have set the consolidation criterion
with a threshold of optimality greater than the average of the optimality value
of the rules in W (provided that it is above the average optimality of the
evidence1), namely,

opt(ρ,W ) > max(0,

∑
ν∈W

opt(ν,W )

|W |
) (8.17)

Furthermore, since we want the consolidated knowledge to represent legal chess
moves, we have set the β parameter equal to 0.1 in Equation 8.12 with the
aim of penalising those rules that are not pure.

8.5.2 Consolidation without forgetting

In a first experiment we try to show what would happen without applying
the forgetting mechanism and check whether the MML-based measures work
successfully for knowledge acquisition: are the final consolidated knowledge
useful to solve the problem given the evidence? Figure 8.7 shows the evolu-
tion of the learning process during 500 steps. As no rules are forgotten, the
rule population (dashed brown line) reaches its maximum value (100) and it
stagnates ignoring any new evidence which arrives to the system (because they
are already placed inW ) from step 180 onwards. In this case we have assumed
that all the evidence of the chess problem can be allocated in W , however it
could be the case that all knowledge of a problem will not fit into W (memory

1It has no sense, for this problem, to consolidate rules with a optimality value lower than
the optimality in average of the examples.



176 8. Forgetting and consolidation in knowledge acquisition

restrictions) thus collapsing with no improvement. The same applies to both
the average optimality of all rules (dashed blue line) and the consolidated ones
(dashed green line) which, since no more new rules are allocated into W , no
further learning or knowledge improvement can take place. Table 8.7 shows
the consolidated rules at step 500 where we can see that they almost represent
all the legal chess moves (only two movements of the knight are missing in
this set) and there is only one rule (x20) which, despite representing a legal
move, does not completely generalise the movement of the piece (king). This
is a good result as the working space is large enough to accommodate all these
rules (and many other less significant rules). See Table C.1 (in Appendix C)
and Figure C.1 for all the rules in W at step 500 and their coverage relations,
respectively. The conclusion we can draw from these results is that the metrics
used to measure the usefulness of the rules provide a guarantee of promoting
those rules that, having the maximum compression, best describe the problem.

ID Rule 𝑳(𝝆) �̇�+
 �̇�−

 ‑�̇�+
 ‑�̇�−

 𝑶𝒑𝒕+ 𝑶𝒑𝒕− Perm 

r15 move(rook,pos(A,B),pos(A,C)). 22.133 49.594 0 27.461 -22.133 2.746 -46.847 2.746 

q19 move(queen,pos(A,B),pos(C,B)) 13.214 27.052 0 13.838 -13.214 1.383 -25.668 1.383 

q12 move(queen,pos(A,C),pos(A,D)) 13.214 27.052 0 13.838 -13.214 1.383 -25.668 1.383 

r16 move(rook,pos(A,B),pos(C,B)). 20.455 33.815 0 13.36 -20.455 1.336 -32.479 1.336 

x18 move(king,pos(A,B),pos(C,D)) :- rdiff(B,D,1), fdiff(A,C,1). 34.275 40.578 0 6.303 -34.275 0.63 -39.947 0.63 

x20 move(king,pos(A,B),pos(A,C)) :- rdiff(B,D,1). 22.918 27.052 0 4.134 -22.918 0.413 -26.638 0.413 

x13 move(king,pos(A,B),pos(C,B)) :- fdiff(A,C,1). 22.918 27.052 0 4.134 -22.918 0.413 -26.638 0.413 

q23 move(queen,pos(A,B),pos(C,D)) :- rdiff(B,D,E),fdiff(A,C,E). 28.993 32.462 0 3.469 -28.993 0.346 -32.115 0.346 

b10 move(bishop,pos(A,B),pos(C,D)) :- rdiff(B,D,E), fdiff(A,C,E). 24.534 26.3 0 1.766 -24.534 0.176 -26.123 0.176 

 

 

 

 

ID Rule 𝑳(𝝆) �̇�+
 �̇�−

 ‑�̇�+
 ‑�̇�−

 𝑶𝒑𝒕+ 𝑶𝒑𝒕− Perm 

x18 move(king,pos(A,B),pos(C,D)) :- rdiff(B,D,1), fdiff(A,C,1). 34.275 662.774 0 628.499 -34.275 62.849 -599.924 -22.681 

x13 move(king,pos(A,B),pos(C,B)) :- fdiff(A,C,1). 22.918 459.884 0 436.966 -22.918 43.696 -416.187 -41.834 

k22 move(knight,pos(A,B),pos(C,D)) :- rdiff(B,D,2), fdiff(A,C,1). 34.275 446.358 0 412.083 -34.275 41.208 -405.149 29.394 

q23 move(queen,pos(A,B),pos(C,D)) :- rdiff(B,D,E),fdiff(A,C,E). 28.993 437.34 0 408.347 -28.993 40.834 -396.505 -1.513 

x20 move(king,pos(A,B),pos(A,C)) :- rdiff(B,D,1). 22.918 392.254 0 369.336 -22.918 36.933 -355.32 8.116 

r15 move(rook,pos(A,B),pos(A,C)). 22.133 389.999 0 367.866 -22.133 36.786 -353.212 6.602 

q19 move(queen,pos(A,B),pos(C,B))  13.214 365.202 0 351.988 -13.214 35.198 -330.003 -7.149 

k24 move(knight,pos(A,B),pos(C,D)) :- rdiff(B,D,1), fdiff(A,C,2). 34.275 369.71 0 335.435 -34.275 33.543 -336.166 25.561 

q12 move(queen,pos(A,C),pos(A,D))  13.214 311.098 0 297.884 -13.214 29.788 -281.309 -12.559 

r16 move(rook,pos(A,B),pos(C,B)). 20.455 284.046 0 263.591 -20.455 26.359 -257.686 -3.824 

b10 move(bishop,pos(A,B),pos(C,D)) :- rdiff(B,D,E), fdiff(A,C,E). 24.534 275.028 0 250.494 -24.534 25.049 -249.978 12.731 

 

Table 8.7: Consolidated rules and metrics for the chess problem without the forgetting
mechanism at step 500. IDs in bold represent those rules that perfectly generalise the
legal moves of the chess pieces.

8.5.3 Consolidation with forgetting

After that, we repeat the same experiment, but using the forgetting mecha-
nism. This tries to represent a situation where we have bounded resources,
in this case a more limited working space, so it is necessary to forget rules in
order to allocate new ones. What we want to show is that if our approach is
able to find a solution to a certain problem without the use of the forgetting
mechanism, a suitable (and possibly better) solution to the problem should
exist having bounded resources and by using the forgetting mechanism. In or-
der to do that, we have executed several configurations with varying maximum
number of rules in the working space (|W | ∈ {(20, 30, 40, 50, 60, 70, 80, 90)})
and every time the limit is exceeded the forgetting process is launched, for-
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30 

25 3 10 6 4 9 9 9 10 9 8 9       1  1      1       
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40 
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60 
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50 10 10 9 8 10 10 10 10 10 10 10                      

75 7 10 9 6 10 10 10 10 9 8 9         1    1  1     2 
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90 
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50 10 10 10 8 10 10 10 10 10 10 10 4        4  4  6      1   

75 10 10 10 9 10 10 10 10 10 10 10 4       2 4             

100 0 10 10 10 10 10 10 10 10     10 
                                        

 

Table 8.8: Heat map showing the percentage of times a rule has been consolidated
for each different configuration (rows: maximum number of rules, 20-100, percentage
of rules forgotten, 25%-75%). Each cell represents 10 repetitions. The latter row
(|W | = 100) represents the reference solution, namely, the solution obtained by the
experiment without forgetting (previous section). Rules (ρ) in bold (columns) are
those rules that belong to the solution of the problem. As it can be seen, even with
very limited resources, the consolidated knowledge improves the reference solution.

getting up to 25%, 50% or 75% of the most meaningless rules (those with the
lowest perm value). Each different configuration has been launched 10 times,
hence, there are 240 executions in total.

Table 8.8 is a Heat map showing, for each possible configuration (|W | ×
forgetting(%)) how many times a specific rule appears in the consolidated
knowledge in 10 repetitions, from white (0 times), light yellow (1 time) to
dark green (10 times). Rules that are not represented in the Heat Map is
because they have not been consolidated at any time. Knowing that the
consolidated rules by the first experiment (Table 8.7) are those represented
in the bottom row (|W | = 100), it is easy to see that not only the set of
consolidated rules almost always includes the reference solution (even with
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very limited resources), but also the forgetting criterion allows the system to
include those rules that perfectly generalise the moves of the king (rules in
bold). The rest of rules included in the consolidated set in each experiment
also generalise different movements of the pieces and, in some cases, they could
disappear from this set by using a more restrictive consolidation criterion (i.e.,
by using the average of the optimality plus n times its standard deviation).

In order to compare both experiments, Figure 8.8 shows the evolution of
the system during 500 steps for one representative setting of the 24 configura-
tions (maximum number of rules equals to 60 and up to 50% of rules forgotten
in each forgetting step). Now, the variations in the amount of consolidated
rules (dotted black line) and rules in the working space (dashed brown line)
allow us to observe how the forgetting mechanism works (every 30 steps ap-
proximately). Table 8.9 presents the consolidated rules at the final step (500)
(see Table C.2 in Appendix C for all the rules in W at step 500). In this case,
this set perfectly generalises all the legal moves of all the chess pieces. The
system has reached a stable situation in which the number of consolidated
rules (dotted black line) remains almost constant from step 250. The average
optimality of both the consolidated rules (dashed green line) and all the rules
(dashed blue line) have an increasing trend due to the distribution with re-
placement used to populate the working space. The appearance of new rules
in the system or the execution of the forgetting mechanism mainly affect the
average optimality of W (dashed blue line): every time it runs, the working
space is cleaned of useless rules which strongly affects the metrics of the rules
in W (and to a lesser extent to the consolidated set of rules (green line)) that
have to be recalculated. Compared with the former experiment, the number
of rules inW has been reduced (with one order of magnitude (10x) speedup in
execution) obtaining a better set of consolidated knowledge: it includes all the
rules that solve the chess problem, including the two legal moves of the knight,
rules k22 and k24, which were missing from the consolidated knowledge in the
first experiment.

8.5.4 Incremental knowledge acquisition

Finally, one last experiment tries to show the capability of our approach for the
incremental learning of new knowledge from previously consolidated concepts.
This experiment is divided in two phases: in the first one we have only taken
rules and examples of moves of the rook and bishop chess pieces (15 and 30
rules respectively) providing the system with them in the same way as in the
previous experiment. The consolidation criterion has not been changed, but
the maximum number of rules in the working space has been established to
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ID Rule 𝑳(𝝆) �̇�+
 �̇�−

 ‑�̇�+
 ‑�̇�−

 𝑶𝒑𝒕+ 𝑶𝒑𝒕− Perm 

r15 move(rook,pos(A,B),pos(A,C)). 22.133 49.594 0 27.461 -22.133 2.746 -46.847 2.746 

q19 move(queen,pos(A,B),pos(C,B)) 13.214 27.052 0 13.838 -13.214 1.383 -25.668 1.383 

q12 move(queen,pos(A,C),pos(A,D)) 13.214 27.052 0 13.838 -13.214 1.383 -25.668 1.383 

r16 move(rook,pos(A,B),pos(C,B)). 20.455 33.815 0 13.36 -20.455 1.336 -32.479 1.336 

x18 move(king,pos(A,B),pos(C,D)) :- rdiff(B,D,1), fdiff(A,C,1). 34.275 40.578 0 6.303 -34.275 0.63 -39.947 0.63 

x20 move(king,pos(A,B),pos(A,C)) :- rdiff(B,D,1). 22.918 27.052 0 4.134 -22.918 0.413 -26.638 0.413 

x13 move(king,pos(A,B),pos(C,B)) :- fdiff(A,C,1). 22.918 27.052 0 4.134 -22.918 0.413 -26.638 0.413 

q23 move(queen,pos(A,B),pos(C,D)) :- rdiff(B,D,E),fdiff(A,C,E). 28.993 32.462 0 3.469 -28.993 0.346 -32.115 0.346 

b10 move(bishop,pos(A,B),pos(C,D)) :- rdiff(B,D,E), fdiff(A,C,E). 24.534 26.3 0 1.766 -24.534 0.176 -26.123 0.176 

 

 

 

 

ID Rule 𝑳(𝝆) �̇�+
 �̇�−

 ‑�̇�+
 ‑�̇�−

 𝑶𝒑𝒕+ 𝑶𝒑𝒕− Perm 

x18 move(king,pos(A,B),pos(C,D)) :- rdiff(B,D,1), fdiff(A,C,1). 34.275 662.774 0 628.499 -34.275 62.849 -599.924 -22.681 

x13 move(king,pos(A,B),pos(C,B)) :- fdiff(A,C,1). 22.918 459.884 0 436.966 -22.918 43.696 -416.187 -41.834 

k22 move(knight,pos(A,B),pos(C,D)) :- rdiff(B,D,2), fdiff(A,C,1). 34.275 446.358 0 412.083 -34.275 41.208 -405.149 29.394 

q23 move(queen,pos(A,B),pos(C,D)) :- rdiff(B,D,E),fdiff(A,C,E). 28.993 437.34 0 408.347 -28.993 40.834 -396.505 -1.513 

x20 move(king,pos(A,B),pos(A,C)) :- rdiff(B,D,1). 22.918 392.254 0 369.336 -22.918 36.933 -355.32 8.116 

r15 move(rook,pos(A,B),pos(A,C)). 22.133 389.999 0 367.866 -22.133 36.786 -353.212 6.602 

q19 move(queen,pos(A,B),pos(C,B))  13.214 365.202 0 351.988 -13.214 35.198 -330.003 -7.149 

k24 move(knight,pos(A,B),pos(C,D)) :- rdiff(B,D,1), fdiff(A,C,2). 34.275 369.71 0 335.435 -34.275 33.543 -336.166 25.561 

q12 move(queen,pos(A,C),pos(A,D))  13.214 311.098 0 297.884 -13.214 29.788 -281.309 -12.559 

r16 move(rook,pos(A,B),pos(C,B)). 20.455 284.046 0 263.591 -20.455 26.359 -257.686 -3.824 

b10 move(bishop,pos(A,B),pos(C,D)) :- rdiff(B,D,E), fdiff(A,C,E). 24.534 275.028 0 250.494 -24.534 25.049 -249.978 12.731 

 

Table 8.9: Consolidated rules and metrics (as in Table 8.7) for the chess problem
with the forgetting mechanism at step 500 (for a configuration with maximum number
of rules 60 and up to 50% of rules forgotten for each forgetting step). IDs in bold
represent those rules that perfectly generalise the legal moves of the chess pieces.

15 (in order to allow the forgetting mechanism to work) and the percentage
of meaningless rules that are forgotten for each forgetting process up to 25%,
due to the smaller size of the working set. In Table 8.10 we can see the
set of consolidated rules after 100 steps. This set contains the rules that
perfectly generalise all the legal moves of the rook and the bishop. In the
first 100 steps of Figure 8.9 we can see how the forgetting and consolidation
mechanisms work. This time, due to the lower maximum number of rules
allowed in the working space, the lower percentage of rules forgotten and the
geometric distribution used to provide the rules, the forgetting mechanism
runs here every few steps, showing non-constant sawtooth-like wave ramps
for the number of rules in the working system (dashed brown). However, the
number of consolidated rules remains constant almost from step 45 to the end
of this stage (100).

In the second phase, we provided the system with a new set of rules and
examples (10 and 20 rules respectively) only representing moves of the queen
chess piece. Apart from using the background knowledge that is provided
initially, it should also be possible at this point to use the previously learned
moves of the rook and the bishop in order to express the moves of the queen.
This is what the inductive engine can take advantage of. Table 8.11 shows the
set of consolidated rules which contains the previously consolidated rules that
generalise the legal moves of the rook and bishop, and a new set of rules that
represents the legal moves of the queen. This latter set includes a pair of rules
(q29 and q25) that use the rook and bishop rules and represent all the possible
moves of the queen piece: q25 which covers both the horizontal and vertical
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moves of the queen; and q29 which covers the diagonal movement. The second
half of Figure 8.9 (from step 100) shows how the forgetting mechanism runs
even more frequently than previously (dashed brown) due to the increment of
consolidated rules (that cannot be targeted by forgetting). Again, the number
of consolidated rules (dotted black line) remains constant most of the time
(from step 140 to step 200).

ID Rule 𝑳(𝝆) �̇�+
 �̇�−

 ‑�̇�+
 ‑�̇�−

 𝑶𝒑𝒕+ 𝑶𝒑𝒕− Perm 

b10 move(bishop,pos(A,B),pos(C,D)) :- rdiff(B,D,E), fdiff(A,C,E). 24,534 590,635 0 566,101 -24,534 56,61 -534,024 24,904 

r15 move(rook,pos(A,B),pos(A,C)). 22,133 277,282 0 255,149 -22,133 25,514 -251,767 25,514 

r16 move(rook,pos(A,B),pos(C,B)). 20,455 223,178 0 202,723 -20,455 20,272 -202,905 20,272 

r7 move(rook,pos(A,2),pos(B,2)). 19,718 175,838 0 156,12 -19,718 15,612 -160,226 -4,659 

r14 move(rook,pos(A,2),pos(C,D)). 21,133 162,311 0 141,178 -21,133 14,117 -148,193 14,117 

r9 move(rook,pos(a,B),pos(h,B)). 19,133 121,733 0 102,6 -19,133 10,26 -111,473 -10,011 

 

 

 

ID Rule 𝑳(𝝆) �̇�+
 �̇�−

 ‑�̇�+
 ‑�̇�−

 𝑶𝒑𝒕+ 𝑶𝒑𝒕− Perm 

b10 move(bishop,pos(A,B),pos(C,D)) :- rdiff(B,D,E), fdiff(A,C,E). 34,275 590,635 0 566,101 -24,534 56,61 -534,024 56,61 

q29 move(queen,pos(A,B),pos(C,D)) :- move(bishop,pos(A,B),pos(C,D)) 34,275 432,832 0 405,116 -27,716 40,511 -392,32 40,511 

q25 move(queen,pos(A,B),pos(C,D)) :- move(rook,pos(A,B),pos(C,D)) 22,133 417,051 0 389,335 -27,716 38,933 -378,117 38,933 

r15 move(rook,pos(A,B),pos(A,C)). 22,918 277,282 0 255,149 -22,133 25,514 -251,767 25,514 

r16 move(rook,pos(A,B),pos(C,B)). 34,275 223,178 0 202,723 -20,455 20,272 -202,905 20,272 

q12 move(queen,pos(A,C),pos(A,D))  13,214 173,583 0 160 -13,214 16,036 -157,546 16,036 

r7 move(rook,pos(A,2),pos(B,2)). 28,993 175,838 0 156,12 -19,718 15,612 -160,226 -4,659 

r14 move(rook,pos(A,2),pos(C,D)). 22,918 162,311 0 141 -21,133 14,117 -148,193 14,117 

r9 move(rook,pos(a,B),pos(h,B)). 24,534 121,733 0 102,6 -19,133 10,26 -111,473 -10,011 

 

Table 8.10: Consolidated rules and metrics (as in Table 8.7) for the chess problem
(rook + bishop moves) at step 100. All rook and bishop legal moves are covered by
these rules and no better rules can be obtained.

ID Rule 𝑳(𝝆) �̇�+
 �̇�−

 ‑�̇�+
 ‑�̇�−

 𝑶𝒑𝒕+ 𝑶𝒑𝒕− Perm 

b10 move(bishop,pos(A,B),pos(C,D)) :- rdiff(B,D,E), fdiff(A,C,E). 24,534 590,635 0 566,101 -24,534 56,61 -534,024 24,904 

r15 move(rook,pos(A,B),pos(A,C)). 22,133 277,282 0 255,149 -22,133 25,514 -251,767 25,514 

r16 move(rook,pos(A,B),pos(C,B)). 20,455 223,178 0 202,723 -20,455 20,272 -202,905 20,272 

r7 move(rook,pos(A,2),pos(B,2)). 19,718 175,838 0 156,12 -19,718 15,612 -160,226 -4,659 

r14 move(rook,pos(A,2),pos(C,D)). 21,133 162,311 0 141,178 -21,133 14,117 -148,193 14,117 

r9 move(rook,pos(a,B),pos(h,B)). 19,133 121,733 0 102,6 -19,133 10,26 -111,473 -10,011 

 

 

 

ID Rule 𝑳(𝝆) �̇�+
 �̇�−

 ‑�̇�+
 ‑�̇�−

 𝑶𝒑𝒕+ 𝑶𝒑𝒕− Perm 

b10 move(bishop,pos(A,B),pos(C,D)) :- rdiff(B,D,E), fdiff(A,C,E). 34,275 590,635 0 566,101 -24,534 56,61 -534,024 56,61 

q29 move(queen,pos(A,B),pos(C,D)) :- move(bishop,pos(A,B),pos(C,D)) 34,275 432,832 0 405,116 -27,716 40,511 -392,32 40,511 

q25 move(queen,pos(A,B),pos(C,D)) :- move(rook,pos(A,B),pos(C,D)) 22,133 417,051 0 389,335 -27,716 38,933 -378,117 38,933 

r15 move(rook,pos(A,B),pos(A,C)). 22,918 277,282 0 255,149 -22,133 25,514 -251,767 25,514 

r16 move(rook,pos(A,B),pos(C,B)). 34,275 223,178 0 202,723 -20,455 20,272 -202,905 20,272 

q12 move(queen,pos(A,C),pos(A,D))  13,214 173,583 0 160 -13,214 16,036 -157,546 16,036 

r7 move(rook,pos(A,2),pos(B,2)). 28,993 175,838 0 156,12 -19,718 15,612 -160,226 -4,659 

r14 move(rook,pos(A,2),pos(C,D)). 22,918 162,311 0 141 -21,133 14,117 -148,193 14,117 

r9 move(rook,pos(a,B),pos(h,B)). 24,534 121,733 0 102,6 -19,133 10,26 -111,473 -10,011 

 

Table 8.11: Consolidated rules and metrics (as in Table 8.7) for the chess problem
(queen moves) at step 200 (the 100 firsts steps for learning the rook and bishop moves,
and the 100 following steps for learning the moves of the queen). All legal moves of
the queen are covered by taking advantage of previously learnt moves of the rook and
bishop, whose legal moves are also covered by this set.

8.6 Summary

Learning a set of rules from data is nowadays a well-known problem for which
many approaches exist, from data science to robotics. However, the use of
background knowledge and the consolidation of new knowledge is one of the
conspicuous problems in the understanding and creation of cognitive systems,
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and the management of more lifelong learning and knowledge acquisition sys-
tems. The organisation of complex knowledge structures in terms of Coverage
Graphs allows for a straightforward and principled approach to knowledge ac-
quisition, consolidation (promotion), revision (demotion) and forgetting. All
this can be analysed at a meta-level, with the use of off-the-shelf deductive
and inductive engines in charge of, respectively, establishing the relations be-
tween the different rules and the generation of new rules. This modularity,
and the ability of dealing with declarative knowledge bases (logical, functional,
algebraic, equational, grammatical, etc.) opens up a range of applications in
learning, knowledge acquisition, developmental cognition, expert systems and
other intelligent systems that are meant to have a non-ephemeral life. The
main contributions of this chapter are:

• The first extension of the MML principle to a knowledge network (in the
form of coverage graph). While the MML principle has a Bayesian inspi-
ration, the metrics are more flexible than actual probabilities, stauncher
when pieces of the working space are removed, and can be combined into
metrics for different processes.

• We show that the development of a formal epistemological setting to
realise how knowledge can be acquired, supports a constructive and de-
velopmental knowledge acquisition processes. In particular, we have seen
how the forgetting criterion is not only necessary when the working space
is finite but it can even be beneficial.

• Our approach is parametrisable to other cognitive or intelligent systems,
as it works at a meta-level and is independent of the actual deductive
and inductive mechanisms that are used underneath.

• The nonmonoticity problem of knowledge acquisition and revision is ap-
proached in a more lightweight and robust way, and the system can cope
with redundancy, inconsistency or even uncertainty produced by conflict
resolutions or complex semantic artefacts.

• The stability-plasticity dilemma has been addressed efficiently.

In an effort to facilitate an understanding of whether our approach is able
to effectively and incrementally grow a knowledge base by using appropriate
evaluation metrics and useful cognitive abilities for addressing the knowledge
acquired, we have performed some experiments over a well-known scientific do-
main, the chess problem. As we have said, the ultimate goal is not to validate
the approach but to provide some insight into both its generality, efficiency
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and the much-needed use of forgetting and consolidation cognitive procedures
in incremental and developmental approaches for knowledge discovery.





9
Conclusions and Future Work

In this final chapter, we summarise the main contributions of this thesis and
we point out several directions for further work.

9.1 Conclusions

When we talk about AI—the traditional and philosophical sense of AI—what
comes into mind is the use of computer models to help us understand “in-
telligence” (more explicitly, “how intelligence works”) and to figure out ways
to make computers exhibit intelligent behaviour [Tur50b]. However, and al-
though this stance prevailed in the beginning of the AI research, the AI com-
munity soon became more interested in the development of practical appli-
cations for solving particular tasks with no intention whatsoever of featuring
intelligence. Up to date, the vast majority of the computer models are mindless
rule-followers or cleverly written computer program doing statistical calcula-
tions and making predictions based on them. If we accept them as intelligent,
what did that say about human intelligence? However, what it would mean for
a computer to behave in an intelligent way? This thesis states that the answer
lies in the construction of systems that go beyond task specific scenarios into
more general-purpose ones.

Given the above challenge, we have strived to characterise a series of hu-
man intelligence attributes (incremental, developmental and lifelong learning)
and cognitive-oriented procedures that, combined with the use of symbolic AI
and symbolic learning, have helped us to develop a general-purpose learning
approaches as well as a knowledge handling and assessment tools. Further-
more, we have analysed the use of more ability-oriented evaluation techniques
for AI (such as intelligence tests) which has allowed us to have a better under-
standing about what intelligence and mental development is (both in humans
and AI systems) and how it can be assessed. In what follows we will review
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what has been done with regard to the goals presented in the introduction of
this thesis.

The first goal advocated for the construction of a general-purpose declar-
ative learning approach. For that we outlined several desirable characteristics
in terms of expressiveness and generality or versatility. In this regard, we have
also seen that learning from small data is interesting and useful, and also that
it can be difficult if the data is complex, especially if we have an expressive
language and a rich deep knowledge. Taken all of this into account we decided
to start working with approaches that are inherently general. We reflected
that symbolic knowledge representation approaches (featuring higher-order
functions, types and powerful abstraction mechanisms) and symbolic learn-
ing make it possible to not only deal with rich data environments, but also
the emergence of powerful and complex constructs. Furthermore, constructs
are understandable and facilitate to have an insight into the nature of the
application data. Given the flexibility of using a wide variety of inductive
operators (not relying thus in a fixed library of constructs and concepts in the
background knowledge) we have seen how a learning system is able to operate
in a wide variety of contexts. Finally, we have also adopt the idea that for
the construction of more general and adaptive AI systems, it is useful to use
approaches that are not explicitly programmed to achieve goals, but trained
to do things. In this way we have seen that a reinforcement learning approach
is appropriate for this purpose.

The second goal has to do with ability-oriented evaluation aspects of
general-purpose learning systems. We have seen how the use of intelligence
tests has become widespread as testbeds for experimentation, but not so as
regular tools for AI evaluation. However, the use of intelligence tests for AI
evaluation has provided very insightful information about what intelligence
tests measure and what they do not and, ultimately, about what characterises
intelligence in humans. Additionally, we have witnessed that even for suppos-
edly general tasks that are designed for evaluation, many approaches have the
(understandable) tendency to specialise to the task and hard-wire parts (or
most) of the solution. Therefore, with the goal of making intelligence tests
useful evaluation tools for AI, this thesis has claimed that several things must
be considered. This includes, among other characteristics, a broader possible
range and large number of (non public) tests, the generation of brand-new
problems thus trying to be as unexpected as possible, the use of different
presentations and difficulty levels, etc.

The third goal was related to the concept dependencies of AI systems and
was motivated by both previous goals. We have concluded that the evalua-
tion of a general-purpose learning with intelligible inductive operators by using
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intelligence tests can be useful to examine concept dependencies (mental oper-
ational constructs) in the cognitive development of artificial systems. That has
opened a new way of looking at artificial cognitive development. We concluded
that a superficial score comparison is misleading (the system is not really in-
telligent), but this kind of evaluation provides useful information about the
constructs that each problem really requires. We also suggested that when
comparing systems (humans, machines or hybrid), we can potentially discover
whether they share the same constructs or not, and identify whether the dif-
ference in speed and success is because a higher or lower computational power
or the disposition and better handling of cognitive operational constructs.

The final goal put emphasis on the idea that learning and knowledge acqui-
sition in general-purpose systems should follow a cumulative and developmen-
tal nature. Again we claimed that properly representing, revising, evaluating,
organising and retrieving knowledge is key to this end. In this sense we have
presented a parametrisable approach which is able to deal with several types
of declarative knowledge bases. From our studies we have concluded that
the use of complex knowledge assessment structures jointly with information
theory-based principles (to characterise knowledge) allow for a straightforward
and principled approach to knowledge acquisition, consolidation (promotion),
revision (demotion) and forgetting. Furthermore, we have seen how the forget-
ting criterion is not only necessary when the working space is finite (bounded
resources) but it can even be beneficial. In summary, the problem of knowl-
edge acquisition (and thus the stability-plasticity dilemma) has been addressed
efficiently in a lightweight and robust way.

9.1.1 Contributions

In short, the main contributions of this thesis are:

1. gErl as a general and declarative rule-based learning system
Vindicating the use of symbolic knowledge representation paradigms and
symbolic learning approaches, we have shown that more general systems
can be constructed by not only giving power to data and background
knowledge representation but also to a flexible operator redefinition and
the reuse of heuristics across problems and systems. This flexibility also
carries a computational cost. In order to address this issue we rely on
two compatible mechanisms. The first is the definition of customised
operators, depending on the data structures and problem at hand, done
by the user, using a functional language for expressing operators. The
second mechanism is the use of generalised heuristics, since the use of
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different operators precludes the system from using specialised heuristics
for each of them. The choice of the right pair of operator and rule has
been reframed as a decision process, as a reinforcement learning problem.
Therefore, not only is this a novel approach, but also allows us to better
understand the role of operators and heuristics in machine learning. By
performing a series of illustrative experiments with our latest system
version we have seen where the flexibility stands out, since gErl is able
to solve a wide range of problems (from recursive ones to several IQ
tests).

2. Analysis of Intelligence tests for AI evaluation
We have analysed over 30 papers featuring computer models addressing
intelligence test problems, thus providing relevant insights for psycho-
metrics, cognitive science, and artificial intelligence. We have studied
and characterised each system by their relationships, the range of intel-
ligence test tasks they address, the purpose of the models, how general
or specialised these models are, the AI techniques they use in each case,
their comparison with human performance, and their evaluation of item
difficulty. Through this analysis we have realised that those systems
have different purposes and applications: to advance AI by the use of
challenging problems (this is the Psychometric AI approach), to use
intelligence test for the evaluation of AI systems, to better understand
intelligence tests and what they measure (including item difficulty), and,
finally, to better understand what human intelligence is. Furthermore,
we have seen that these systems systematically ignore results and ideas
already present in previous related approaches specialising to the task
and, therefore, losing the opportunity to understand what a computer
model passing an intelligence test really means. Our aim here has also
been both to encourage any future computer model taking intelligence
tests to link with and build upon previous research, and to contribute
to a more widespread realisation that more general classes of problems
are needed when constructing new benchmarks for AI evaluation.

3. Concept dependencies in artificial systems
We have focused on whether we can assess the concept dependencies of
an artificial cognitive system during learning, and whether we can use
human intelligence tests for this. We have seen how several intelligence
test problems (odd-one-out problems, Raven’s Progressive Matrices and
Thurstone’s letter series) are addressed by our general-purpose learning
system gErl, which, although lacks any mental epigenetic development
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and physical embodiment and it is not particularly designed on purpose
to solve intelligence tests, is able to perform relatively well for this kind
of tests. gErl makes it explicitly how complex each pattern is and what
operators are used for each problem due its symbolic and declarative
nature: rule-based representation language for examples, patterns and
operators. This provides useful information about the role of the cogni-
tive operational constructs that are needed to solve a problem or task.
Therefore, the goal has not been to to evaluate gErl but to use it as a
tool to gain some insights into the characteristics and usefulness of these
tests and how careful we need to be when applying human test problems
to assess the abilities and cognitive development other AI systems. We
do think that, in general terms, for both humans and machines, human
intelligence tests are useful to evaluate cognitive development through
the diversity of cognitive operational constructs required, therefore sup-
porting the assumption that, even for fluid intelligence tests, the difficult
items require a more advanced cognitive development than the simpler
ones.

4. Developmental and lifelong view of knowledge acquisition
We have devised the problem of development as a knowledge acquisition
approach that is incremental and cumulative, where new learnt knowl-
edge should be checked to see whether it can be considered redundant,
irrelevant or inconsistent with the old one, and whether it may be built
upon previously acquired knowledge. Therefore, we have presented an
incremental, lifelong view of knowledge acquisition which tries to im-
prove task after task by determining what to keep, what to consolidate
and what to forget. This approach is designed to combine any rule-based
inductive engine with a deductive engine (is, therefore, parametrisable to
other cognitive or intelligent systems) and integrates them into a lifelong
learner through the use of a hierarchical knowledge assessment structure
(Coverage Graphs) and by introducing several MML-based [WB68a] met-
rics. Therefore, given a lifelong learning problem, our approach is able
to discover and develop knowledge incrementally by means of assessing
the usefulness of the rules and gradually generating a large repository of
consolidated knowledge where the knowledge is revised in order to gen-
erate a rich and reusable knowledge base. Particularly, we have analysed
how appropriate these cognitive mechanisms are in order to deal with
declarative knowledge bases in intelligent systems that are meant to have
a non-ephimeral life. This complex knowledge organisation and assess-
ment mechanisms allows for a straightforward and principled approach
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to knowledge acquisition, consolidation (promotion), revision (demotion)
and forgetting. We, then, show that the development of a formal episte-
mology to support knowledge discovery, in terms of how the knowledge
can be acquired and justified, supports a constructive and developmen-
tal knowledge acquisition processes. Furthermore, the nonmonoticity
problem of knowledge acquisition and revision has been approached in
a more lightweight and robust way, and the system can cope with re-
dundancy and even inconsistency without heavy conflict resolutions or
complex semantic artefacts. Finally, we claim that our approach is a
favourable compromise to The Stability-Plasticity dilemma [CG88].

Summing up, this dissertation represents one step forward in the hard and
long pursuit of making more general AI systems and fostering less custom-
ary (and challenging) ability-oriented evaluation approach. Comprehensibil-
ity, expressiveness, higher-order features, incrementality and developmental
knowledge discovery are all desirable features for this general-purpose AI de-
velopment, apart from the requirement of accurate, effective and meaningful
ability-oriented ways for evaluating its progress. For this purpose we have
integrated different topics both within and outside AI, such as machine learn-
ing, inductive programming, reinforcement learning, cognitive science and psy-
chometrics. From a methodological point of view, we have considered some
conceptual developments with systematic empirical evidence.

9.2 Future Work
There are several interesting future lines of research. Let us enumerate some
of them:

1. gErl as a testbed for general-purpose learning research
Overall, we are conscious that our general-purpose learning system gErl
entails some risks, since a general system which can be instantiated to
behave virtually like any other system by a proper choice of operators is
an ambitious goal. We think that for complex problems that cannot be
solved by the system with its predefined operators, the system can be
used to investigate which operators are more suitable. In more general
terms, this can be used as a system testbed, where we can learn and
discover some new properties, limitations and principles for more general
machine learning systems that can be used in the future. There are also
many other things to explore in the context of gErl. Regarding policy
reuse for transferring learning between problems, we think that a way
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(or measure) of similarity between problems would help us to better
understand when the system is able to detect these similarities, from
the point of view of better assessing the achievements of the system.
Finally, while we have focused on the system gErl, we think that many
of the principles could also be applied to other kinds of systems, most
especially learning classifier systems, reinforcement learning and other
evolutionary techniques.

2. Further approaches for acquisition, structuring and develop-
ment of operational cognitive constructs
We have seen that through the use of our general declarative system
gErl, where constructs, patterns and examples are explicit and intelligi-
ble, we can find non-anthropocentric criteria about what human intelli-
gence tests for machines choose and what constructs and computational
effort they require. However, our study has several intrinsic limitations.
Other (perhaps non-anthropocentric) tests could be analysed and other
(preferably declarative) learning systems could be used to see whether
the identification of required constructs is convergent with our study.
Furthermore, much more effort should be placed to derive tests that can
evaluate what happens when the background knowledge grows signifi-
cantly, namely, how concepts, constructs and policies are structured and
organised as a whole, how this knowledge relates to the notion of diffi-
culty and, finally, how subjects effectively generalise similar concepts.

3. Adaptability and modularity of the Coverage Graphs
Given that the Coverage Graphs approach is independent of the actual
deductive and inductive mechanisms that are used underneath, we may
consider many avenues of future work. We plan to apply this setting to
some other tasks, by using the same or other deductive and inductive
engines, and keep on with the integration into our learning system gErl
(we show some preliminary results for a single letter series completion
problem in Appendix C) thus making it explicit a constructive and de-
velopmental nature of the knowledge learnt. Furthermore, it is also of
interest the application of the principles used (MML evaluations and
knowledge handling mechanisms) in other sort of AI systems (such as
decision support systems) in order to help them make better decisions
based on the best available data.

4. Benchmarks and metrics in AI evaluation
It seems clear that the use of one single intelligence test that is known
a priori is mostly useless for evaluation, as we can specialise a system
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to solve that problem. The systems we have seen in Section 6.3 are, in
general, only able to deal with one kind of test. A very ambitious goal
would be, therefore, to create a repository or generator of all these in-
telligence test problems, thus following the Detterman claim about that
AI needed a “battery of intelligence tests” [Det11]. We know that many
intelligence tests are not publicly available, and many of the approaches
we have surveyed here have used alternative formulations because of
this. It would be very useful for AI to arrange these problems, record
the results of computer models and humans over them and organise
competitions. Therefore, the construction of a repository using some
human intelligence tests (such as PEBL), despite its limitations, could
be a seed for a more proper universal benchmark in the future. This
would be beneficial (at least at this moment and in the near future), as
several computer models could work with the same task instances, using
the same presentation, as well a previously fixed difficulty assessment.
The repository could also record some previous results and the kind of
abilities they usually represent in humans. This repository could also
integrate some other measurement tools from AI that try to be general
and domain-independent [BNVB12]. Of course, the development of an
evaluation testbed for AI (or universally) need to meet certain condi-
tions: the benchmark should be broad (including a wide range of tests),
standard (using some kind of general protocol for inputs and outputs),
characterised (accompanied with a catalogue of information about their
difficulty, the abilities they cover, etc.), available (on a web or prob-
lem library) and renewed (new items are generated or disclosed so that
systems cannot rote-learn them).

As a final remark, this thesis bring to light that there is still a huge margin
of improvement in the way general-purpose AI systems are devised and built
as well as evaluated. This work can serve as a comprehensive basis for new
research.
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Appendices





A
Erlang

Introduction

Erlang/OTP [VWW96] is a concurrent functional programming language (which
includes environment and libraries) developed by Ericsson (and used in pro-
duction systems for over 20 years) and “was designed from the ground up for
writing scalable, fault-tolerant, distributed, non-stop and soft-realtime appli-
cations (like telecommunications systems)”. The core Erlang language consists
of function definitions extended with message passing to handle concurrency
and distribution, and OTP (which stands for Open Telecom Platform), a set of
design principles and ready-to-use components that supports building fault-
tolerant systems. The Erlang programming language is gaining momentum
and its success is witnessed by the increasing number of its industrial appli-
cations, i.e.: Facebook and Tuenti’s chat back-end, Whatsapp, SimpleDB (a
distributed database that is part of Amazon Web Services), GitHub (used for
RPC proxies to ruby processes), Motorola, Rakuten, . . .

The main reasons why we have chosen Erlang as the programming language
of our system are: firstly, it is a free and open-source language with a large
community of developers behind that implies that there is a large repository
of libraries to deal, among other things, with the meta-level of the source code
in an easy way; secondly, reflection and higher order, that allows us to inter-
act easily with the meta-level representation of how rules and programs are
transformed by operators; and finally, it is a unique representation language,
which is appropriate for our requirements: operators, examples, models and
background knowledge are represented in the same language. The advantages
of using the same representation language has been previously shown by the
fields of ILP, IFP and IFLP (except for operators).
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Functional Erlang

A main difference between Erlang and more popular languages is that Erlang is
primarily a functional programming language meaning that it emphasizes the
evaluation of expressions rather than the execution of commands. Meanwhile
the imperative programming paradigm rely on changing the state of the appli-
cation during execution producing different results with the same input values,
with functional programming, the functions and operations of the language are
designed in a similar way to mathematical calculations where the expressions
operate with functions to derive consistent basic values or results for the same
inputs. This makes predicting the output of the function or program much
easier and, therefore easier to debug and analyze.

Figure A.1: Functional programming combines the flexibility and power of abstract
mathematics with the intuitive clarity of abstract mathematics. Extracted from http:
// www. explainxkcd. com/ 1270

Particularly, Erlang is a relatively small (PROLOG-inspired1) and simple
language which basics are: numbers (integers and float), atoms (for compari-
son and starting with a lowercase letter or you can delimit with single quotes),
invariable variables (starting with a uppercase letter, once a variable is bind-
ing to a value, it cannot be changed) , strings, tuples (composite data type
and are used to store collections of items delimited by curly brackets), lists
(bracketed, comma-separated list of values), bit strings, binaries (enclosed in
double angle brackets), fun expressions (to create anonymous functions) and

1The first implementation of Erlang was written in NU Prolog [AVW92]

http://www.explainxkcd.com/1270
http://www.explainxkcd.com/1270
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process identifiers (pids, the “names” of processes) . Lists and tuples may look
similar, but whereas a tuple can only be used in a comparison, lists allow a
wider variety of manipulation operations to be performed (by using operators
such as the list comprehensions, head, tail, |, ++ or –).

Erlang syntax includes a record construct providing syntactic sugar for
accessing the elements of a tuple by name instead of by position. Patter
matching-based functions are first class citizens in Erlang composed by their
name (atom indicating its name), arity (number of patterns given as param-
eters), variable identifiers (any valid parameter), guards (additional clauses
that can go in a function’s head to make pattern matching more expressive)
and the body which consists of an sequence of expressions, separated by com-
mas; the value of the sequence, and therefore the value of the function, is the
value of the last expression evaluated. For example, consider the declaration
of the function factorial (Algorithm A.1 which calculates the factorial of an
specified number.

1 -module(fact). % m o d u l e d e c l a r a t i o n %
2 -export ([ f a c to r i a l /1]). % f u n c t i o n s e x p o r t e d w i t h t h e i r

a r i t y %
3 f a c to r i a l (0) ->
4 1;
5 f a c to r i a l (N) when N > 0 ->
6 N * f a c to r i a l (N-1).

Code A.1: Factorial

Erlang, as a functional language, runs a program as a successive applica-
tion of functions over an initial expression (free of variables). Branches of
execution are selected based on pattern matching and loops are constructed
using recursive functions. Erlang has a declarative syntax and is largely free
from side-effects, i.e., most constructs (pure functions) return the same value
given the same arguments regardless of the context of the call of the function.
Exceptions are message passing and built-in functions (BIFs). One interest-
ing feature of Erlang is its strong dynamic nature. Although variables are
dynamically typed, there is no type checking at the compile-time, Erlang is
type safe: all values are tagged with their type during run-time and an excep-
tion is thrown if a type clash occurs. Function identifiers are a special data
type called pids and they can be generated at run-time and passed around in
variables (higher order abilities). Execution threads are also created at run
time, and they are identified by a dynamic system.

What makes Erlang a true functional programming language is the ability
to use a functions just like any other sort of data. They can be passed as
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arguments to other functions and therefore, they can be stored in data struc-
tures like tuples and records or sent as messages to other processes. Most of
all, they can be the result or output of the processing of other functions so
that the functions passed around as data can be created dynamically within
the program, and are not just pointers to statically defined functions. This
powerful means of abstraction, named as higher order functions, is rooted in
mathematics, mainly lambda calculus, where everything is a function, even
numbers, and due to that, functions must accept other functions as parame-
ters and can operate on them with even more functions. Erlang provides the
classic set of higher-order functions that functional languages are famous for:
anonymous functions (created on the fly maybe inside other piece of code),
map (which applies a function to each element of a list, returning a new list
with the results), filter (selects the element of a list that satisfy a predicate.),
fold (also known as reduce, recursively apply a function to pair of elements
from a list, starting with a seed (accumulator) that is passed to it and is
usually the neutral element for the function), . . .

List comprehensions is another powerful construct whose roots lie in func-
tional programming and, perhaps, it is a mild form of metaprogramming: they
compress logic in new mathematical constructs. The logic of what you would
write as for() cycles in an imperative language is exposed here in a generator,
so that you can write the interesting part (what to extract) in the shortest
possible form, associating a list to a variable representing its element. See for
instance the code in Algorithm A.2 whose, in English, stands for: build a list,
L with elements that have the value X ∗X, such that X is taken from the list
[1, 2, 3, 4], giving as output [1, 4, 9, 16]. Note that the previous list comprehen-
sion is similar to lists:map(fun(X) -> X*X end, [1,2,3,4]) In fact, list
comprehension provides a shorthand notation for most of the functions in the
lists module.

1 L = [ X*X || X <- [1,2,3,4] ].

Code A.2: Easy list comprehension

Quicksort is a very famous example of the power of list comprehensions,
Algorithm A.3 shows the code for the quicksort algorithm implemented in two
lines by using lists comprehensions. In English, this would be read as break a
list into head X and tail Xs and return a new list composed of three sublists:
(1) ordered list (qsort) of all Y from the tail Xs such that Y is less than or
equal to X, (2) list containing just X and (3) ordered list (qsort) of all Y
from the tail Xs such that Y is greater than X.
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1 qsort ([X|Xs]) ->
2 qsort ([Y || Y <- Xs, Y =< X]) ++ [X] ++ qsort ([Y || Y <-

Xs, Y > X]).

Code A.3: Quicksort using list comprehensions

Dynamic typing in Erlang
That Erlang has a dynamic typing means that it is not necessary to write the
type of a variable or the type of a function. This implies that when pattern
matching, the code we write does not have to know what it would be matched
against, namely, the tuple {X,Y} could be matched with {atom, 123} as well
as {"A string", «"binary stuff!"»}, {2.0, ["strings","and",atoms]}
or really anything at all. When an error occurs it is caught at runtime (unlike
static type systems which enforce compilers to catch most errors before exe-
cute the code) and the compiler does not always indicates where things may
result in failure. This can be seen as weakness in safety for many dynamic lan-
guages, however, Erlang begs to differ and certainly has a track record to prove
it partially because Erlang is built on the notion that a failure in one of the
components should not affect the whole system. Erlang uses a strategy for get-
ting round errors coming from the programmer, hardware or network, where
the language includes features which will allow you to distribute a program
over to different nodes, handle unexpected errors, and never stop running.

Dynamic typing has also some advantages for the programmers due to it
avoids the frustrations of having to convince the type system that one really
knows what they are doing. Furthermore, since type declarations and an-
notations need not be typed (in), program development can progress more
rapidly. Unfortunately, this freedom of expression comes with a price. Signif-
icantly less typos and other such mundane programming errors are caught by
the compiler. More importantly, this freedom considerably obstructs program
maintenance: it is extremely difficult to recall or decipher how a particular
piece of code âĂŤ often written by some other programmer years ago âĂŤ can
be used (comments can be unreliable, often cryptic and confusing).

Implementing such a type system would likely mean forcing Erlang to
change its semantics: analyzers will want to actually prove that there will
be no type errors at run time, as in mathematically prove. This means that
in a few circumstances, the type checker will disallow certain practically valid
operations for the sake of removing uncertainty that could lead to crashes.
The other option is then to have a type system that will not prove the absence
of errors, but will do a best effort at detecting whatever it can. You can make
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such detection really good, but it will never be perfect, and this is where Di-
alyzer [LS06] comes into play. Dialyzer is a type checker for Erlang that work
without type declarations (although you can define types to help out Dialyzer
in its task), is simple and readable, it adapts to the language (and not the
other way around), and only complain on type errors that would guarantee
a crash. Therefore, although defining types in Erlang have no effects or re-
strictions on actual compiling unless you enforce them yourself, it is possible
to declare types and annotate functions in order to both document them and
help formalize the implicit expectations about types we put in our code.

Metaprogramming in Erlang

The following Erlang expression:
1 Exprs = foo:bar(baz ,17).

it is represented in abstract format by the following tuple:
1 Exprs= [{call ,1,{remote ,1,{atom ,1,foo}, {atom ,1,bar}},[{

atom ,1,baz},{integer ,1 ,17}]}]

which, in fact, describes the tree representation of the abstract syntactic struc-
ture of source code written in Erlang. It is called as the Abstract Syntax Tree
(AST) or just syntax tree. Figure A.2 represents the tree representation of the
previous abstract expression. Each node of the tree denotes a construct oc-
curring in the source code which does not include certain elements appearing
in the real syntax (such as inessential punctuation and delimiters). Some ad-
vantages of the ASTs is that they can be edited and enhanced with properties
and annotations for every element it contain and, furthermore, they contain
extra information about the program (such as the position of an element in
the source code).

In Erlang’ ASTs, modules are represented with a list [F1...Fn], where each
F represents a form. A form is either an attribute or a function declaration.
Concretely:

• For instance, the abstract format corresponding to the attribute module
(Mod) is {attribute,LINE,module,Mod}.

• The abstract format corresponding to a function declaration is {function,
LINE,Name,Arity,[FC1...FCn]} where each FC is the abstract format
of a function clause, which in turn is represented by {clause,LINE,
[P1...Pn],[G1...Gn],[E1...En]} where each P, G and E is the ab-
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{call,1,Function,[Arg1,Arg2]}

{remote,1,Mod,Fun]} {atom,1,baz} {integer,1,17}

{atom,1,baz}{atom,1,baz}

Figure A.2: Tree structure of the tuple: {call,1,{remote,1,{atom,1,foo},
{atom,1,bar}},[{atom,1,baz},{integer,1,17}]}

stract representation of one of its pattern, one of its guards and one of
its bodyâĂŹs expressions respectively.

The easiest way to get the abstract form corresponding to a source code is
using the web development framework for Erlang ErlyWeb and the smerl.erl2
library (Simple Metaprogramming for Erlang) included. By using this module
we can get the abstract form of all the function declarations of a module from
its source file with a few lines of code:

1 {ok,Meta_model} = smerl:for_module(fact),
2 Form = smerl:get_forms(Meta_model),

The corresponding abstract form for its function declarations is:
1 [{function ,4, f ac tor ia l ,1,
2 [{clause ,4,[{integer ,4,0}] ,[],[{ integer ,5,1}]},
3 {clause ,6,
4 [{var ,6,’N’}],
5 [[{op ,6,’>’,{var ,6,’N’},{integer ,6,0}}]],
6 [{op ,7,’*’,
7 {var ,7,’N’},
8 {call ,7,
9 {atom ,7, f a c to r i a l },

10 [{op ,7,’-’,{var ,7,’N’},{integer
,7 ,1}}]}}]}]}]

Additionally, with smerl it is possible to create and compile easily a new
module allowing to call its functions by:

2https://code.google.com/p/erlyweb/
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1 -module(try_smerl).
2 -export ([ test_smerl /0]).
3

4 test_smerl() ->
5 M1 = smerl:new(foo),
6 {ok , M2} = smerl:add_func(M1, "bar() -> 1 + 1."),
7 smerl:compile(M2),
8 foo:bar().

thus being possible to compile and launch this module (try_smerl) obtaining
2 as an output of the call (foo:bar()) made in the body of the function
test_smerl().

Concurrent and Distributed Erlang
One of the main reasons for using Erlang instead of other functional languages
is Erlang’s ability to handle concurrency (several threads of execution at the
same time) and distributed programming. Erlang systems can be viewed as a
collection of Erlang nodes where each one is a collection of processes, with a
unique node name. The Erlang BIF spawn is used to create a new process (Pid
= spawn(Fun)). The only method by which Erlang processes can exchange
data is message passing.C ommunication is asynchronous and point-to-point,
with one process sending a message (simply valid Erlang terms) to a second
process identified by a process identifier, or pid, which uniquely identifies the
process (Pid ! Message). The receive construct is used to allow processes
to wait for messages from other processes. Each process has its own input
queue for messages it receives, also referred to as mailbox. Informally, a mail-
box is a sequence of values ordered by their arrival time which are matched
(orderly) against the pattern in the receive.

As an alternative to addressing a process using its pid, Erlang provides
a mechanism (the register BIF) for processes to be given names so that
these names can be used as identities . The name, which must be an atom, is
automatically unregistered when the associated process terminates. Message
passing between processes in different nodes is transparent when pids are used,
i.e., there is no syntactical difference between sending a message to a process
in the same node, or to a remote node. However, the node must be specified
when sending messages using registered names, as the pid registry is local to
a node.

A unique feature of Erlang that greatly facilitates building fault-tolerant
systems is that processes can be “linked together” in order to detect and
recover from abnormal process termination. If a process P1 is linked to a
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process P2, and P2 terminates with fault, process P1 is automatically informed
of the failure of P2. It is possible to create links to processes at remote nodes.

As commented before, an integral part of Erlang, the OTP library provides
a number of very frequently used design patterns (behaviours in Erlang ter-
minology) for implementing robust distributed and concurrent systems (clien-
t/server architectures, supervisors, finite state machines, . . . ).

An echo process

As a simple example of a concurrent process we will create an echo process
which echoes any message sent to it. Let us suppose that process A sends the
message {A, Msg} to the echo process, so that the echo process sends a new
message containing Msg back to process A. This is illustrated in Figure A.3

A B
{A, Msg}

A B
Msg

Figure A.3: An echo process in Erlang.

In Algorithm A.4 the function echo:go() creates a simple echo process
which returns any message sent to it.
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1 -module(echo).
2 -export ([go/0, loop /0]).
3 go() ->
4 % e c h o : l o o p ( ) f u n c t i o n ( P i d 2 ) i s c r e a t e d a n d e v a l u a t e d

i n p a r a l l e l w i t h t h e c a l l i n g f u n c t i o n %
5 Pid2 = spawn(echo , loop , []),
6 % M e s s a g e " h e l l o " s e n t t o P i d 2 %
7 Pid2 ! {self(), hello},
8 receive
9 % A m e s s a g e f r o m P i d 2 i s %

10 {Pid2 , Msg} ->
11 % E x e c u t i o n f u n c t i o n i f t h e m e s s a g e i s r e c e i v e d %
12 io:format("P1 ~w~n",[Msg])
13 end ,
14 Pid2 ! stop.
15

16 % f u n c t i o n t o b e s p a w e d b y g o ( ) %
17 loop() ->
18 receive
19 % M e s s a g e r e c e i v e d f o r w h a t e v e r p r o c e s s ( w h i c h k n o w s

P i d 2 ) %
20 {From , Msg} ->
21 % E x e c u t i o n f u n c t i o n : E c h o %
22 From ! {self(), Msg},
23 loop();
24 after
25 % i f n o m e s s a g e i s r e c e i v e d a f t e r 1 0 0 m s , s u s p e n d

t h e p r o c e s s %
26 100 ->
27 true
28 end.

Code A.4: Echo program



B
IQ tests

introduction

For the sake of exposition, we will arrange the test problems into three cat-
egories: general intelligence problems (usually related to the g-factor), other
abstract pattern problems and knowledge-intensive problems. The two first
categories do not require previous knowledge (or it is restricted to some basic
arithmetic or geometrical operations). The last category requires the applica-
tion of previous knowledge (and language).

General intelligence problems

In this first category we include several fluid intelligence problems that highly
correlate with the g-factor. Typically, solving these problems involves induc-
tive inference, abstraction, search and combination.

Thurstone letter series completion (Lett-S)

The letter series completion problems were introduced as part of some test
batteries. These problems were developed to assess “reasoning ability”. This
is one of the seven factors (verbal comprehension, word fluency, number fa-
cility, spatial visualization, associative memory, perceptual speed and reason-
ing) identified by Thurstone in his Primary Mental Abilities (PMA) theory
[Thu38, TT41]. The goal is to identify the following letter in a series (see
Figure B.1) from five letter choices. To solve a letter series, an abstract pat-
tern has to be identified which captures the regularity of the sequence. The
correct answer can be generated by applying this pattern. Correctness in the
context of induction problems typically presupposes that there is one contin-
uation which is most plausible with respect to the given regularity. Typically,
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problems are carefully constructed in such a way that there is a unique solu-
tion. However, there is also research on ambiguous problems, for example in
the domain of letter string analogies [Hof08].

abababab__
aaabbbcccdd__
cadaeafa__
wxaxybyzczadab__
mnlnknjn__

Figure B.1: Examples of Thurstone letter series completion problems [SK63].

Number series (Numb-S)
Similar to the Thurstone letter series completion problems we find the con-
tinuation of number series. This kind of problem is also included in some
intelligence tests (such as the German IST-2000 [ABLB99]). Number series
problems can be constructed to be much more complex than letter series due
to the greater number of combinations and operations, as, e.g., the Fibonacci
sequence 1, 1, 2, 3, 5, 8. In fact, the problem gets closer to a crystallised in-
telligence task (instead of a fluid intelligence task) when sequences are gen-
erated by the use of a large library of mathematical functions, so requiring a
correct memory search and retrieval by the subject. For instance, some prob-
lems can be just obtained from the Online Encyclopedia of Integer Sequences
(http://oeis.org)[Slo03].

Geometric analogy in American Council of Education tests
(ACE-A)

The ACE tests [TT47] were designed to predict or measure the scholastic
aptitude (or general intelligence) of the participants through the use of “dif-
ferential prognosis”, which involves a weighting of factors that are considered
important in the curricula of American colleges. However, it has been sub-
ject to serious criticism due to the fact that intelligence is only one of factors
that influence achievement. The examination consists of six tests arranged
into two groups: Quantitative Tests, which includes arithmetical reasoning,
number series, and figure analogies tasks; and Linguistic Tests, which includes
same-opposite, completion, and verbal analogies tasks. In particular, we are
interested in the the so-called “geometric-analogy” or “figure analogies” prob-
lems. The task to perform can be described as: “figure A is to figure B as

http://oeis.org
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figure C is to _” where “A”, “B”, and “C” are given and “D” should be derived
(Figure B.2). Note that in order to solve these tasks, the process must involve
some spatial reasoning and similarity recognition to identify the figures and
occasionally perform spatial operations on them.

 

 

 

A B C 

1 2 3 4 5 

D 

Figure B.2: ACE problem figure (redrawn following [Eva65], originally from the 1942
edition of the Psychological Test for College Freshmen of the American Council on
Education, ACE).

Raven’s Progressive Matrices (RPM)

Originally from Raven [RCR92], Raven’s Progressive Matrices consist of a
pattern or a set of items where a missing part or item has to be guessed.
The most typical case is a 3 × 3 grid where a figure is placed at each of the
nine positions except the bottom-right cell, which is empty (see Figure B.3)1.
Eight possible choices (‘distractors’) to fill in the gap are displayed at the
bottom. There is a logical relation between the figures, which can be seen
either horizontally (rows) or vertically (columns). There are three different
sets of Raven Progressive Matrices (RPM) for participants of different abilities
[RCR92]: RPM for participants of different IQ ranges or different abilities
[RC96]:

• Standard Progressive Matrices (SPM): the original set of matrices first
published in 1938. It consist in five sets (from A to E) each one com-
prising 12 items —60 items in total. Each set starts with a problem
which is, as far as possible, self-evident and becomes progressively more
difficult.

1Please note that items from standardised IQ tests are not allowed to be published due
to copyright issues. Therefore, we can only present some examples or problems which are
similar but not identical to the ones used in IQ tests.
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• Coloured Progressive Matrices (CPM): for children aged 5 through 11
years-of-age, the elderly, or people with learning difficulties, it consist
in 3 sets of 12 items (A and B from SPM and a further set of 12 items
inserted between the two, as set Ab). Most of them are presented on
a coloured or b/n background to make the test visually stimulating for
participants.

• Advanced Progressive Matrices (APM): developed to assess individuals
of above-average intelligence, it contains 48 items (of increasingly diffi-
culty) presented as one set of 12 (set I), and another of 36 (set II).

As in the previous case, these problems involve processes that require spatial
reasoning abilities, similarity recognition, and analogies, but also sequences.

�����������������������������������������������������������������

Figure B.3: Raven’s Progressive Matrices example [own example].

Other abstract pattern problems

In this category, we include some problems that do not require the application
of a significant amount of knowledge but cannot be considered general, as they
measure very specific abilities.

Block design in WAIS (WAIS-B)

These are geometrical problems where blocks with only white, only red, and
both white and red sides have to be arranged according to a presented pat-
tern (see Figure B.4). This task aims at measuring spatial perception, visual
abstract processing, and problem solving abilities. The difficulty does not lie
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in identifying the relation between the blocks but to figure out how to rotate
and combine the blocks such that they correspond to a given pattern.

Figure B.4: A block problem such as those found in Wechsler Adult Intelligent Scale,
WAIS [Wec81]. The picture shows one problem from the Kohs Block Design test
developed by Samuel Calmin Kohs and subsequently adapted into WAIS by David
Wechsler. (Taken from Wikimedia Commons: http: // commons. wikimedia. org/
wiki/ File: Kohs_ Block_ Design_ Test_ -_ Figure_ 1. jpg )

Odd-one-out problems (OOO)
The odd-one-out problems are focussed on geometry and spatial understand-
ing, where the goal is to spot the most dissimilar object from the rest (see
Figure B.5). They were first introduced in [ZHH74, ZHE80] as a non-verbal
test in the study of comparative animal learning (Zentall et al. [ZHH74] as-
sessed pigeon’s intelligence), where some species appears to learn it readly,
slowly or nothing at all. The oddity task has also been used for cross-cultural
testing to probe the conceptual primitives of geometry in the Mundurukú, an
isolated Amazonian indigenous group, for which Deheane et al. [DIPS06] de-
signed a visual oddity task. This is a fundamental task used in a wide variety of
intelligence tests to evaluate human or animal intelligence and some cognitive
abilities are required, including visual encoding, pattern detection, similar-
ity assessment, analogical transfer and creativity. Given a set of items, the
participant is asked to decide which one among them is most dissimilar from
the rest, namely addressing the identification of relations in geometrical pat-
terns. Typically, the presented items can vary along several dimensions (e.g.,

http://commons.wikimedia.org/wiki/File:Kohs_Block_Design_Test_-_Figure_1.jpg
http://commons.wikimedia.org/wiki/File:Kohs_Block_Design_Test_-_Figure_1.jpg
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shape, size, quantity). The problems can be automatically generated by using
a complex set of algorithms (http://www.cambridgebrainsciences.com/).
Due to this automatic generation and the possibility of generating countless
novel problems, the participant cannot rote learn how to solve them in ad-
vance.Consequently, “the task is suitable for training reasoning abilities or
taking many repeated measures”.

 

Figure B.5: An example of an odd-one-out problem [own example].

Bongard’s analogy problems (Bong-A)

Bongard’s analogy problems are a set of puzzles about visual categorisation
that were originally introduced for visual pattern recognition. They were in-
vented by the Russian computer scientist M. M. Bongard [Bon70], who pro-
vided a notable subset of a hundred problems in the appendix of the original
publication. Each problem is formed by six boxes on the left side and an-
other six on the right side containing relatively simple diagrams (see Figure
B.6). The goal is to guess the pattern, or rule, that appears in the left set
which is lacking in all the diagrams of the set on the right. For instance, the
left set in Figure B.6 follows two patterns: (1) all figures have only 3 sides,
and (2) 2 out of the 4 small white circles that appear in each diagram are
closer together than the others. These previous patterns do not appear on
the right side. Bongard was interested in the automation of visual perception,
so the original aim to develop them was to provide a computer system with
a black-and-white set of static (outlined or filled) figures in two dimensions,
as challenges for pattern recognition algorithms. However, a few years later,
Hofstadter [Hof79] was more interested in the problems themselves as abstract
analogy problems, and referred to them as “Bongard Problems”, which is the
term that has prevailed thereafter in the literature.

String analogies (Str-A)

Originally referred to as “word analogies” (we use the term ‘string analogies’,
as they are not really words of a language), Hofstadter [Hof83] introduced
short alphabetic sequence puzzles (see Figure B.7) as input problems. He

http://www.cambridgebrainsciences.com/
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Figure B.6: An example of a Bongard problem [own example].

focussed on Bongard’s problems, and simplified them in order to avoid the
difficulties arising when constructing representations for visual problems. The
processes involved in this problem are similar to the letter series problem but
with the additional use of analogical transfer.

abc ⇒ abd ijk ⇒ ?
aabc ⇒ aabd ijkk ⇒ ?
aac ⇒ abd kji ⇒ ?
abc ⇒ abd mrrjjj ⇒ ?
abc ⇒ abd xyz ⇒ ?

Figure B.7: String analogy problems (originally referred to as “word analogies”) anal-
ysed by the Copycat project [Hof08].

Montessori’s object matching (Mont-O)

The Montessori method [Mon12] is an educational method developed by Maria
Montessori, an influential Italian physician and educator, in 1897 (but popu-
larised in the 1910s). This method encouraged children to focus their attention
on one particular ‘quality’, working at his/her own optimum level with a nat-
ural psychological, physical, and social development, so it makes emphasis
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on independence and freedom within limits. This method tries to stimulate,
among other abilities, sensory, language and numeracy skills. Several tasks
require the children to compare objects, moving, rotating, or touching them
(see Figure B.8). One typical task inside the Montessori method is Object-to-
object matching, where the child is asked to find the matches from one set to
another, e.g., matching coloured tiles, 3-dimensional shapes, or pieces of tex-
tured cloth. This problem requires some cognitive abilities, including visual
encoding, object grouping, similarity assessment, category recognition, and
object ordering. Recently, a sensorimotor robot has been able to solve this
kind of object pairing task [SS12a].

Figure B.8: Materials used in some exercises and tests of the Montessori method.
[“Montessori Materials”, Diamond Montessori, retrieved from https: // www.
flickr. com/ photos/ rossmenot/ 351505158/ , CC BY 2.0]

Knowledge-intensive problems
Finally, we group another set of tasks that depend on the crystallised use of
knowledge and experience.

Hofstadter’s anagrams (Jumbles)
Frequently found in newspaper puzzle sections, jumbles are games where five
or six letters are given with the aim of unscrambling them into an English
word. In order to solve them, humans try to find common letter patterns in
order to generate blocks. For instance, in the jumble “yurfip” we are able
to find the common letter sequence “ify” because all the letters are present.
Once we subtract these letters, the remaining letters are “urp”, so there are

https://www.flickr.com/photos/rossmenot/351505158/
https://www.flickr.com/photos/rossmenot/351505158/
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two plausible possibilities (consonant + vowel + consonant): “rupify” and
“purify”, the latter being the right one. Clearly, these tasks require the use
of a large background knowledge (vocabulary) but also the ability of making
combinations. Jumbles were used by Hofstadter as a domain of his prototype
system Jumbo [Hof83], prelude to the Copycat project [HM84].

Verbal common-sense reasoning problems in WPPSI (WPPSI)

Wechsler developed several variants of WAIS that were aimed for individuals
aged under 16: the Wechsler Intelligence Scale for Children (WISC) and the
Wechsler Preschool and Primary Scale of Intelligence (WPPSI). Similar to
WAIS, the WISC is used as an intelligence test for individuals between 6 and
16 years old, which includes the same kind of tests as WAIS-IV but features
two supplemental tests: Cancellation and Word Reasoning. These latter tests
are used to accommodate rare individuals. WAIS can also be used as a clinical
tool to diagnose attention-deficit hyperactivity disorder (ADHD) and learning
disabilities. WPPSI is a descendent of the WAIS and WISC tests, and is also
used as an intelligence test but for individuals between 2 years 6 months and
7 years 3 months using the same kind of test as the previous ones. The verbal
part of the WPPSI (WPPSI-III, third Edition) includes questions of the type:
“What color is the sky?”, “What are pancakes made out of?”, “Finish what
I say. Pen and pencil are both ...”, “You can see through it”, “It is square
and you can open it”, etc. This task has been used to evaluate the common-
sense reasoning system ConceptNet 4 [OSTU13]. The processes involved are
language understanding and common-sense reasoning.

Bennett mechanical comprehension tests (BMCT)

The Bennett Mechanical Comprehension Test (BMCT) [Ben69] is an aptitude
test for the evaluation of human common sense relying on everyday reasoning.
Namely, it measures the ability to perceive, understand, and reason about the
physical world (with an important content about physics and contextual infor-
mation) and is commonly used to evaluate applicants for technical positions
(typically, electrical and mechanical positions). The BMCT is composed of 68
diagrams depicting physical situations involving many different mechanisms,
and is accompanied by multiple-choice questions about their qualitative prop-
erties. The test is time-limited (30 minutes) and the required reading and ex-
ercise level of concentration is below or at a sixth-grade reading level. To solve
this test, some abilities are required: spatial reasoning, conceptual knowledge
spanning a broad range of domains (dynamics, acoustics, statics, electricity,
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and heat), and experience with a wide variety of everyday situations (boats,
trains, bicycles, cranes, hoists, . . . ). In Figure B.9 we can see two examples
that represent the two general types of problems that appear on the BMCT
[KFTK11]: (a) outcome problems, where we need to predict a property of the
system, and (b) model formulation, where we need to reasoning qualitatively
using a broad set of everyday life concepts observing a causal model. In case
of the weight (Figure 1 in B.9), the examinee must remember to divide the
weight by the number of sections of rope supporting it to get the force needed
to lift the weight, so it is required a force equal to 12 lbs (answer D), whereas,
in the case of the tools for breaking concrete, it seem to be more suitable the
answer D, based on some previous background knowledge and knowing that
the rest of tools are for hammering nails (answer B), made of rubber and very
weak (answer C) or are used in metalworking (answer E). We have included
this test (even if it is not properly an IQ test) as a good example of a test that
requires many abilities.

 

1. Approximately how much force is needed to lift the anvil? 

a) 100 lbs  b) 50 lbs  c) 25 lbs  d) 10 lbs  e) 200 lbs 

2. If the switch S1 is closed and switch S2 remains open, which lights will turn on? 

 
 a) L1&L2  b) All  c) L3&L4  d) L1 &L4  e) None 

Figure B.9: Figurative recreation of Bennett mechanical comprehension test problems
[own example].

Word analogies in Scholastic Assessment Test (SAT-A)
The Scholastic Assessment Test (SAT reasoning test) is a standardised test
(or entrance exam) developed by the non-profit organisation “College Board”,
which is used in the USA as an admission prerequisite. The test is intended to
assess literacy and writing skills that are needed for university. SAT consists
of three major sections: Critical Reading, including sentence completions and
questions about short passages; Mathematics, including multiple choice and
grid-in about topics such as algebra and geometry (calculator use is allowed);
and Writing, including multiple choice questions and a brief essay. It includes
some tasks that are very similar to the problems we may find in intelligence
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tests. For instance, the SAT analogy questions (word analogies) include exer-
cises of the form teacher : chalk :: soldier : ? or sun : planet :: earth : ?. The
procedure to solve word analogy problems corresponds to the procedure to
solve geometrical analogies or letter string analogies. However, to detect the
relation between the first pair of words and to create the solution, conceptual
knowledge and verbal knowledge is necessary. This problem has been used by
[Tur11] (374 multiple-choice questions).





C
Coverage Graphs: Experimental

Consolidation without forgetting
In a first experiment we try to show what would happen without applying
the forgetting mechanism and check whether the MML-based measures work
successfully for knowledge acquisition. Table C.1 shows all the rules in W at
step 500 where we can see that the consolidated set almost represent all the
legal chess moves. Figure C.1 for their coverage relations.
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Figure C.1: Coverage graph that represents the coverage relations between the indi-
viduals for the chess problem (without oblivion) at step 400. The metrics are shown in
Table C.1. Green and red nodes refer to positive and negative examples respectively.
Original background knowledge is represented as blue nodes.
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262 C. Coverage Graphs: Experimental

Consolidation with forgetting
After that, we repeat the same experiment, but using the forgetting mecha-
nism. Table C.2 shows all the rules in W at step 500 where we can see that
the consolidated set perfectly represent all the legal chess moves
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Integration with gErl

It is also of interest the integration of out assessment setting with other induc-
tive and deductive mechanisms in order to show its generality. Particularly,
the application of the principles used (MML evaluations and cognitive mech-
anisms) in our declarative learning paradigm gErl seems to be an appealing
idea since from the very beginning of it development we were looking on a
proper foundation for detailed knowledge assessment metrics and criteria for
forgetting.

We will focus on the problem of solving a single letter series completion
problems, specifically, the problem number 11 in Table 7.6 (rscdstdetuef_)
following the problem definition stated in Section 7.4.3. The challenge we
would like to face is the same as in the experiments performed in Section 8.5:
knowledge discovery and acquisition in a progressive way from examples pro-
vided incrementally. A random set of examples and rules is given considering
gErl as the inductive engine (which is generating rules during the whole pro-
cess) and arriving to the system in a random order as well. gErl is also in
charge of deduction, namely, to provide the coverage mechanism with the goal
of establishing relations between individuals. We use gErl in the same way we
used Prolog in the previous experiments: we take those rules generated by the
learning system offline (around 120 rules including examples), we do not use
our assessment setting to guide the learning which remains as future work.

Like the previous experiments, we have set the consolidation criterion with
a threshold of optimality greater than the average of the optimality value of the
rules in W , as in equation 8.17, and the β parameter equal to 0.1 in equation
8.12 with the aim of penalising those rules that are not pure. Furthermore,
since this experiment has an illustrative aim, we will just show the performance
of one configuration of forgetting percentage (50%) and maximum number of
rules (50). Launching this experiment with whatever other configuration will
have the same results in terms of consolidated rules.

Figure C.4 shows the evolution of the system during 500 steps. The vari-
ations in the amount of consolidated rules (dotted black line) and rules in
the working space (dashed brown line) allow us to observe how the forget-
ting mechanism works (every 30 steps approximately). Table 8.9 presents the
consolidated rules at the final step (500), the rule q33 being the solution of
the letter series problem. If we could have a look at the consolidated set of
rules at each step, we will see that, from the very begging, it is only formed
by those rules covering the positive evidence and, it remains almost constant
from step 220 (dotted black line) showing that the system has reached a stable
situation. Like in the previous experiments using the forgetting mechanism,
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the average optimality of both the consolidated rules (dashed green line) and
all the rules (dashed blue line) have an increasing trend due to the distribution
with replacement used to populate the working space, while the appearance of
new rules in the system or the execution of the forgetting mechanism mainly
affect the average optimality of W (dashed blue line).

ID Rule 𝑳𝑳(𝝆𝝆) �̇�𝑺+ �̇�𝑺− -�̇�𝑳+ -�̇�𝑳− 𝑶𝑶𝑶𝑶𝑶𝑶+ 𝑶𝑶𝑶𝑶𝑶𝑶− Perm 
q33 letter(List) -> next(last(init(init(init(List))))) 14.9 1186.335 0 1171.404 -14.931 117.14 -1069.194 117.14 
q52 letter(List) -> previous(next(last(init(init(List))))) 16.5 706.988 0 690.479 -16.509 69.047 -637.94 69.047 
q65 letter(List) -> next(next(previous(last(List)))) 12.6 682.046 0 669.437 -12.609 66.943 -615.102 66.943 
q17 letter(List) -> next(last(List)) 7.0 501.953 0 494.953 -7 49.495 -452.457 49.495 
q19 letter(List) -> last(init(init(List))) 9.0 388.68 0 379.68 -9 37.968 -350.712 37.968 
q57 letter(List) -> next(previous(last(init(init(List))))) 16.5 388.68 0 372.171 -16.509 37.217 -351.462 37.217 
q114 letter(List) -> next(last(init(init(init(init(init(init(List)))))))) 21.9 263.407 0 241.51 -21.897 24.151 -239.255 24.151 

 

Table C.3: Consolidated rules and metrics for the letter series problem 13 with for-
getting at step 500.
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