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Abstract The aim of this work is to propose a formulation to solve both small and
large deformation contact problems using the finite element method. We consider
both standard finite elements and the so-called immersed boundary elements. The
method is derived from a stabilized Nitsche formulation. After introduction of a
suitable Lagrange multiplier discretization the method can be simplified to obtain
a modified perturbed Lagrangian formulation. The stabilizing term is iteratively
computed using a smooth stress field. The method is simple to implement and the
numerical results show that it is robust. The optimal convergence rate of the finite
element solution can be achieved for linear elements.
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1 Introduction

The aim of this work is to propose a formulation to solve contact problems in
the context of large and small deformations using the finite element method. We
consider both standard finite elements and the so called immersed boundary ele-
ments in which an underlying Cartesian grid made of regular hexahedral elements
is cut by the real geometry and integration is performed only in the internal part
of the elements. In recent years segment-to-segment formulations like the mortar
method [8] have been successfully applied to solving a wide variety of contact
problems in 2D [35,27,55] and 3D [39,38], with linear and quadratic elements [28,
53], in large and small deformations including Coulomb friction [40,41,17,18,42,
50,20] and dynamic problems [24]. The theoretical basis of the mortar method is
well known [15,28,32,30,31]. The compatibility of the displacement field and the
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contact stresses allows the Brezzi-Babuska-InfSup condition to be fulfilled, so the
optimal convergence rate of the finite element solution can be achieved. The above
references are only a part of the bibliography on the mortar method applied to
contact problems.

In the case of immersed boundaries it is more difficult to find finite element
spaces that fulfill the InfSup condition. To our knowledge only the Vital Vertex
method, first proposed by Bechet et al. [7], can satisfy the compatibility between
displacements and multipliers. This method has been used for imposing Dirichlet
boundary conditions in 2D and 3D [2] immersed boundaries. However, its applica-
bility to deal with large deformation contact problems is more involved, although
there are some works in 2D [37]. For this reason, other techniques based on stabi-
lized formulations have recently been proposed to solve contact problems. In these
techniques the finite element spaces can be freely chosen at the price of adding
new stabilizing terms to the formulation. Modifications of the Nitsche method
have been applied to standard FEM [26,57,29,13], X-FEM [21,4,3] and interface
problems [23,12,45,2,1]. Other techniques use different stabilized formulations.
For example [34] uses a polynomial stabilization valid for linear elements or [11]
penalizes the jump in the multiplier linear elements. In other works the idea of ex-
tending the solution of internal elements to the intersected elements was explored
[14,25]. In [19] the idea of condensing the Lagrange multipliers to obtain a sim-
plified method for immersed boundaries was introduced. It was also used in [51]
using the quadrature points. The same ideas were applied in [5] using a stabilizing
field defined in the volume of the element instead of its surface. For Navier-Stokes
equations in [46] a stabilization term that takes into account the jump in the
derivative in the internal elements edges is used to overcome limitations of the
Nitsche method in immersed boundaries.

In this work we propose a formulation derived from the stabilized Nitsche
method. With the choice of finite element spaces, after simplifying the formulation,
we obtain a formulation of the perturbed Lagrangian formulation proposed in [47].
From our analysis, an extra term due to contact is introduced to obtain a consistent
formulation. The correction term can be iteratively computed using a smooth stress
field. The same idea is used in [52] to impose the Dirichlet boundary conditions
in immersed boundaries. It is demonstrated that the optimal convergence rate
of the finite element solution can be achieved for linear and quadratic elements.
This paper is organized as follows: Section 2 describes the formulation of the
contact problem using Lagrange multipliers. In Section 3 we propose a stabilized
formulation based on the Nitsche method. We propose an iterative method to solve
the problem. In Section 4, the convergence of the iterative method is analyzed.
In Section 5 the formulation is simplified and expressed as a modified penalty
formulation with a suitable choice of the Lagrange multiplier field. We provide
some details of the linearization for solving large deformation problems. In the
last section some numerical examples are solved.

2 Contact problem formulation

In this part we introduce the contact problem formulation for small deformations.
In Section 5 we will extend the formulation to deal with large deformations and
large sliding problems. Fig. 1 shows a schematic representation of two deformable
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Fig. 1 Scheme of two deformable bodies in contact.

bodies labeled (1) and (2) that occupy volumes Ω(1) and Ω(2), respectively. The
boundary of each body Γ (i) is divided into three non-overlapping surfaces, Γ (i)

D
on

which Dirichlet boundary conditions are imposed, Γ (i)

N
, the Neumann boundary,

and Γ (i)

C
the surface of the bodies on which contact can occur. We assume a linear

elastic behavior of the materials and small deformations. With this setting, the
contact problem can be formulated as a minimization of a functional [33,54], the
total potential energy, under the contact constraints, i.e.:

min







Πp(u) =
∑

i=1,2

(

∫

Ω(i)

σ(u) : ǫ(u) dΩ −

∫

Γ
(i)
N

u · t̂ dΓ

)







subject to gN ≥ 0 in Γ (1)

C

(1)

where σ is the stress tensor, ǫ linear strain tensor and t̂ are the tractions imposed
at the Neumann boundary. The normal gap between the two contact surfaces is
gN . Here we assume that the contact constraint is satisfied for surface Γ (1)

C
. The

gap is computed as the distance between the surface point x(1) and the intersection
of the other contact surface Γ (2)

C
with the line emanating from the first point in

the direction of the normal vector n(1),

gN =
(

x
(2)
(

ξ
(2)
)

− x
(1)
)

· n(1) (2)

where ξ(2) is the local coordinate of the intersection point on surface Γ (2)

C
(in 3D it

has 2 components). The position can be written as the sum of the initial position
and the displacement, i.e. x(i) = x

(i)

0 + u(i). In small deformations we assume that
the contact point denoted by the surface coordinate ξ(2) remains the same despite
the deformation of the solids, i.e. it can be computed for the initial undeformed
position. We can therefore write:

gN =
(

u
(2)
(

ξ
(2)
)

− u
(1)
)

· n(1) +
(

x
(2)

0

(

ξ
(2)
)

− x
(1)

0

)

· n(1)

=
(

u
(2)
(

ξ
(2)
)

− u
(1)
)

· n(1) + gN0

(3)
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The minimization problem under inequality constraints (1) can be solved using
the Lagrange multiplier method, which is the basis of many finite element formu-
lations for contact problems. A new variable, the Lagrange multiplier field λN is
introduced and the following functional must be minimized with respect to the
displacements and maximized with respect to the multipliers

opt







∑

i=1,2

∫

Ω(i)

σ(u) : ǫ(u) dΩ −

∫

Γ
(i)
N

u · t̂ dΓ +

∫

Γ
(1)
C

λNgN dΓ







subject to λN ≤ 0

(4)

With this formulation the inequality constraint affects the multiplier λN . This
restriction can be resolved by an active set strategy, assuming that the real contact
surface is known, solving the problem and modifying the contact surface. From now
onwards, for the analysis of convergence, we assume that the real contact surface
is known and denoted as Γ (1)

C
. In Section 5 we provide details of the algorithm

used to update the real contact surface.
As pointed out above, Equation (4) can be used to obtain a finite element

formulation of the contact problem. The displacement and multiplier fields are
replaced by a suitable finite element approximation uh ∈ U

h and λhN ∈M
h.

In this work we use both 3D standard hexahedral finite elements and the so-
called immersed boundary method with 8-node linear elements H8 and 20-node
quadratic elements H20. Here we only describe the basic aspects of the immersed
boundary method. A more detailed description can be found in [36,49], for exam-
ple. In the immersed boundary method, sometimes referred to as the Cartesian
grid method, the underlying mesh consists of regular hexahedrals and this will be
used in this work. Figure 2 schematically shows the Cartesian grids of two bodies
that can come into contact. The thick lines represent the contact surface, which in
general does not coincide with the edges of the elements. The shaded area repre-
sents the real domain of the bodies. For the boundary elements (elements cut by
the real geometry of the problem) the integration is performed only in the part of
the elements lying within the problem domain. Thus, a linear sub-triangulation of
the internal part of the elements is defined only for integration purposes and the
contact surface is approximately represented with straight segments, as depicted in
Figure 2. Analogously, in the 3D case, the boundary elements are subdivided into
tetrahedrals for integration and the contact surface is approximately represented
by linear triangles.

The contact interaction between Cartesian meshes follows the same definition
as the gap given in Equation (2) using the local coordinate in the contact surface
ξ(1) and normal vector n(1). The position of the contact surface in the deformed
configuration is defined by standard finite element interpolation using all the nodes
of the boundary elements and not only the boundary nodes.

It is well known that in mixed formulations such as that of equation 4 a careful
choice must be made of the discretization spaces for displacements and multipliers
to achieve the optimal convergence rate. There are two conditions [9,10] the ElKer
and the InfSup. As a solution for the compatibility of the spaces of Lagrange mul-
tipliers and displacements we find the mortar method, which has been successfully
applied to 2D and 3D, large and small deformation contact problems using linear
or quadratic elements, as pointed out in the Introduction. For immersed boundary



A modified perturbed Lagrangian formulation for contact problems 5

Γ
(1)
C

Γ
(2)
C

Ω(1)

Ω(2)

n(1)

ξ(1)

ξ(2)

Fig. 2 Cartesian grid finite elements in contact. The thick lines are the contact surfaces that
follow the deformation of the boundary elements. Thin lines represent the subtriangulation of
the boundary elements performed only for integration purposes.

methods the Vital Vertex method has been defined to fulfill the InfSup condition
in the case of a Dirichlet boundary in 2D [7] and 3D [2].

The InfSup condition introduces many constraints in the case of immersed
boundaries and it is by no means straightforward to derive a contact formulation
that fulfills this condition. Stabilized methods can be used obtain greater freedom
to choose the Lagrange multiplier space. This will be introduced in the following
section and will form the basis of the proposed formulation.

3 Stabilized formulation

The difficulty in solving equation 4 by finite elements usually arises when the
space of the multipliers is too rich, i.e. there are too many constraints in relation
to the displacement degrees of freedom as the mesh is refined. Even though the
problem can be solved, the convergence rate of the solution may be compromised.
As the number of constraints increases, the constraint equations become more
dependent and the value of the multiplier is unbounded. The idea of the stabilized
formulations is to add a new term to the functional 4 that would prevent the
multiplier from taking unbounded values.

In order to simplify the notation, from now on, we assume that the finite
element variables are denoted without superscript h, i.e. u = uh and λN = λhN .

The ideas of stabilizing the solution were used in [47]. Simo, Wriggers and
Taylor proposed a perturbed Lagrangian formulation to solve contact problems as
the optimization of the following functional

opt

{

Πp(u) +

∫

Γ
(1)
C

λNgN dΓ −
1

2k

∫

Γ
(1)
C

λ2
N dΓ

}

(5)

The last integral in the functional is a penalty stabilizing term that allows the
values of the multipliers to be bounded. As pointed out in [47], this penalized
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method is not consistent, in the sense that the exact solution of the contact problem
is a solution of the above functional only at the limit, when the parameter k →∞,
which is impossible in practice. In [47], after some simplifications, a structure of the
problem as a pure penalty method was obtained in which the contact constraints
are imposed in an average sense.

In this work we propose a new method that includes a modification of the
perturbed Lagrangian formulation to make the formulation consistent, i.e. the
finite element solution converges to the exact solution as the mesh is refined for a
wide range of bounded values of the penalty parameter k.

In what follows, we first introduce (Subsection 3.1) the modified functional used
to stabilize the problem and analyze the similarities of the proposed formulation
with the Nitsche method. In subsection 3.2 we introduce the stabilization field
used in this work and show that the proposed field overcomes some limitations
of the Nitsche method, particularly for immersed boundary meshes. The proof
of convergence of the proposed formulation will be analyzed in Section 5 after
introducing the iterative solution method.

3.1 Proposed stabilized functional

The proposed formulation can be derived from a modified version of the Barbosa-
Hughes stabilization [6] in which the stabilizing term is replaced by a smooth
stress field. Stenberg [48] demonstrated that the Barbosa-Hughes stabilization was
equivalent to the Nitsche method, so that the proposed formulation can also be
considered as a modified version of the Nitsche method. The functional reads as:

opt

{

Πp(u) +

∫

Γ
(1)
C

λNgN dΓ −
∑

∀e

h

2Eκ

∫

Γ
(1)
C

(λN − pN)
2
dΓ

}

(6)

where E is the Young modulus, κ a user-defined penalty parameter that will be
defined in the following sections and pN is the stabilizing stress. The difference is
found in the definition of the stabilizing stress pN .

The last integral in Equation 6 is computed for each contact segment, as defined
in the following section. The constant multiplying the stabilizing term includes E

and a representative measure of the element size h. The former is needed to obtain
a physical meaning of energy, since we have the product of stress multiplied by
stress in the integral. Thus, dividing by E transforms the term into energy. The
latter, h, is included to give the stabilizing term the same order of magnitude
as the strain energy. As the element size is reduced, the variation of the element
strains and stresses inside the element is also reduced. We can think on the limit as
being constant in the entire element. Thus, the strain energy will be proportional
to h3, as it is a volume integral. The stabilizing term is a surface integral so it
will be proportional to h2. The additional h constant is introduced to have the
same order of magnitude, as we need to bound the stabilizing term with the strain
energy to achieve the convergence of the method (see following Section).

In the case of the Nitsche method pN is the contact traction computed from
the finite element solution, i.e. pN = n ·σ(u)n. This has been applied in [26,29] to
derive the formulations to solve contact problems. With the same choice for pN ,
the value of the constant can be adapted to deal with X-FEM problems [45,1,4,
3].
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Fig. 3 Patch of elements for computing the smooth stress field of node i. The internal volume
of the boundary elements depends on distance d.

The negative sign before the last integral is necessary, as the optimization of
the functional is a maximization with respect to the multipliers. However, as the
problem is a minimization with respect to the displacements and n ·σ(u)n linearly
depends on this field, the negative sign may cause a non desired behavior of the
stabilization term. A possible solution with standard finite elements is to bound
this term by taking a sufficiently large value for κ so that this integral can be
bounded by the strain energy [51]. In the case of immersed boundary elements
there are some difficulties involved in bounding this term, particularly in meshes
with cut elements that have a very small volume/surface ratio, as pointed out in
[25].

To illustrate this problem two boundary elements with small internal volumes
are shown in Figure 3. In general the L2 norm of the stress on the boundary cannot
be bounded by the energy norm of the element as its volume depends on distance d

which can be very close to zero. Therefore, the stress n·σ(u)n can only be bounded
with very large values of the constant κ up to a geometric tolerance (see also [45,
2]). This can affect the convergence of the Nitsche method in this context, although
from the engineering point of view, the results obtained using the tolerance seem
to be acceptable. Appropriate choices for the stabilizing constant are proposed
in the γ−Nitsche method [1,45] for X-FEM applications. Schott and Wall [46]
recently proposed an additional stabilization term that penalizes the jump in the
derivative along internal element edges for fluid problems.

3.2 Smooth stress field

In this work we propose to define pN as a smooth stress field obtained from the
finite element solution, following the ideas introduced in [52] to apply Dirichlet
boundary conditions in immersed boundaries. This choice is motivated from the
observation that any variable having good convergence properties to the exact
contact traction can be used as stabilizing term pN in equation 6. The smooth
stress field depends not only on the solution of the boundary elements but also
on the internal elements, where stresses are better estimated. The idea is close to
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that used in [25,14], where the displacements of the internal elements are extended
to the boundary cut elements. In [46] the solution of the internal elements is also
used to stabilize the variables in the boundary elements.

The smooth stress field is based on the SPR (Superconvergent Patch Recovery)
first proposed in [59] and improved in [43] to include constraint equations that must
be fulfilled by the exact solution. Here we recall the main features of the smooth
stress field calculation. The smooth stress field Si = {1x y xy ...} ai is defined as a
polynomial associated to each node i whose coefficients ai are computed solving
the following minimization problem:

ai = argmin

{

∫

Ω
patch
i

(σ(u)− Si) · (σ(u)− Si) dΩ

}

(7)

where σ(u) is the stress field computed from the finite element solution. The
integral is extended in the volume of a so-called nodal patch Ωpatch

i . This vol-
ume includes all internal elements that contain node i and the internal volume of
boundary elements that contain this node. For example, Figure 3 shows the patch
of node i in a 2D case, that contains two internal and two boundary elements.
With this choice, small-volume boundary elements (d close to zero, in which the
finite element stress is poorly estimated, i.e. it has a large error) contribute less
than the internal elements to the computation of the smooth stress field.

The stabilization term is computed as the normal traction of the smooth stress
in the contact surface pN = n · Sn. With this definition it can be proved that the
L2 norm of pN in the contact surface can be bounded with the energy norm [52],
with a bounded positive constant C as follows

‖S‖2L2(ΓC) ≤
EC

h
‖u‖2E (8)

where h is a representative measure of the element size and ‖ · ‖E is the energy
norm in the volume. The value of C depends on the order of the interpolation
and the nodal patches. For immersed boundaries the worst case appears for nodes
whose elements are cut and have very small volume. Even in that case, as the
smooth stress field depends on the solution of the internal elements, the constant
C is bounded. In practice we found that we can use C ≥ 10 for linear and quadratic
elements.

4 Iterative solution method

The stabilization term pN depends on the finite element solution u. However, it
is somewhat cumbersome to obtain an explicit formula for it, as its computation
derives from equation (7). Following the ideas presented in [52], we propose an
iterative process to solve the optimization problem 6 in which the stabilization
term pN is assumed to be constant. After solving the problem, pN is updated from
the finite element solution, and problem 6 is solved again. The process begins with
pN = 0 and runs until convergence is achieved.

Assuming that the stabilization term pN is known, we solve problem (6) tak-
ing variations with respect to the displacements and the multipliers to obtain a
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following variational equation. We have to find the iteration k solution, [uk, λkN ],
solving the following system

∑

i=1,2

G(i)

int(u
k, δu) +

∫

Γ
(1)
C

λNδgN(u
k) dΓ =

∑

i=1,2

G(i)

ext(δu) ∀δu

∫

Γ
(1)
C

δλkN gN(u
k) dΓ −

h

Eκ

∫

Γ
(1)
C

δλN λkN dΓ = −
h

Eκ

∫

Γ
(1)
C

δλN pN(u
k−1) dΓ ∀δλN

(9)

G(i)

int and G(i)

ext are the virtual work of internal and external forces of body i,
respectively. The contact integral in the first equation is the virtual work of contact
forces, and δgN is the virtual gap computed by taking variations in equation (3).
The smooth pressure is written as pN(u

k−1) to emphasize the dependence of this
variable on the solution of a previous iteration k − 1. In the second equation,
the first integral contains the constraints imposed to fulfill the non-penetrability
condition of contact. The other two integral terms in the second equation prevent
the contact constraints from being exactly fulfilled but tend to compensate each
other as the mesh is refined. At the limit, when the element size tends to zero,
λN = pN and the exact constraint will be enforced.

Note that, compared with the Nitsche method used in [26], the proposed for-
mulation has a lower number of integrals that need to be evaluate to obtain the
tangent matrix of the system. In particular, all the terms of the Nitsche method
that derive from the variation of the stabilization term pN (which is here a function
of u) are avoided in the proposed formulation, at the cost of an iterative solution
process. It is necessary to verify the conditions under which the iterative method
converges to the solution and to check the stability of the system. This is done in
the following Section after defining the Lagrange multiplier finite element space.

5 Lagrange multiplier interpolation: Penalty method

The stabilized formulation (9) gives greater freedom than the Lagrange formulation
to choose the Lagrange multiplier finite element space. The displacement field is
defined in uh ∈ H1(Ω) and the multiplier space λhN ∈ L2(ΓC). We choose for the
displacement field linear 8-node H8 or quadratic 20-node H20 hexahedral elements,
having degree of interpolation p = 1 and p = 2, respectively. As pointed out above,
we deal with standard or cut (immersed boundary) elements.

The only requirement for the Lagrange multiplier space is that it must have ad-
equate approximation properties. Stenberg [48] analyzes the approximation prop-
erties of the multiplier space used to impose the Dirichlet boundary conditions
using the Nitsche method. From this analysis, if the solution is regular enough,
the optimal convergence rate can be achieved [52] if the Lagrange multiplier space
is at least a piecewise constant, not necessarily continuous, interpolation for linear
elements H8 and a piecewise linear, not necessarily continuous, interpolation for
quadratic elements H20.

In [51] an implicit definition of the multiplier field was introduced for 2D ele-
ments, based on the value of the multiplier at the quadrature points of the surface
used to numerically evaluate the boundary integrals. The Dirichlet boundary con-
ditions in immersed boundary elements problem was analyzed in this work. For
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Γ
(1)
C

Γ
(2)
C

Fig. 4 Concentrated inexact numerical integration. The integrands are only evaluated at the
quadrature points (shown as x) defined in each contact slave surface segment. The circles are
the nodes and the squares are the corresponding contact points on the master surface. Normal
vectors are independently defined for each slave segment.

2D problems, the Dirichlet boundary was divided into segments defined in each
cut element. It has been stated that npg = 2 quadrature points for linear elements
define a piecewise linear interpolation for the multiplier q = 1 and can exactly
integrate polynomials of degree 3. As the product of the multiplier and the dis-
placement has degree 2, it is enough to exactly evaluate integrals with constant
Jacobian. Similarly, in 2D for quadratic elements npg = 3 allows exact integration
and good approximation properties of the multiplier field.

In the case of contact problems, the boundary integrals on the contact surface
are more complex because they involve functions defined in the two bodies in con-
tact. Exact evaluation of the contact surface integrals would need a segmentation
of the surface, as proposed for the mortar method in [56,40,39]. Instead of looking
for exact integration, in this work we use the same strategy proposed in [18,50,22]
and depicted in Figure 4. The approximate integration is performed evaluating the
integrand at the quadrature points defined on the surface Γ (1)

C
regardless of whether

the integrand belongs to one or other body. Despite the inexact integration, this
method has certain advantages. First, the evaluation has a lower computational
cost and is easy to implement. Also, the optimal convergence rate of the finite
element solution error can be achieved for linear elements if a uniform refinement
is performed. The reason is that the error in the contact integral computation will
decrease linearly as the mesh is refined.

The main drawback of this integration is that for quadratic elements the the-
oretical rate of convergence p+1 in energy norm is lost when the mesh is refined.
The problem can be alleviated by increasing the number of quadrature points,
so that the level of the integration error is reduced. Even though the rate is not
improved, the optimal rates of convergence of the finite element error could be
achieved for the first meshes when the discretization error is much higher than
the integration error. Therefore, from the engineering point of view, the method is
suitable for achieving an accurate finite element solution with a reasonable amount
of degrees of freedom. It must be pointed out that in some contact problems the
regularity of the solution itself limits the theoretical rate of convergence that could
be achieved with quadratic elements.

Another alternative that is explored in the numerical examples in the present
paper is to impose the contact constraints on both contact boundaries Γ (1)

C
, Γ (2)

C

at the same time, which is possible due to the stabilized formulation. It can be
seen as the double pass strategy defined in the classical penalty method. As the
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stabilization stress pN

(1) and pN

(2) are acting at the same time in the two bodies,
λN = pN

(1) + pN

(2) must be fulfilled. Any weight factor can be defined between 0
and 1 for the two pressures. In the examples we choose pN

(1) = pN

(2) = λN/2.

5.1 Penalty method

Once the Lagrange multiplier field is defined, the iterative method of equation (9)
can be simplified by eliminating the Lagrange multipliers. As the interpolation
is defined as a piecewise discontinuous function, the multiplier can be condensed
element by element before the assembly. Indeed, due to the concentrated numerical
integration, they can also be eliminated for every quadrature point. The value of
the Lagrange multiplier at each quadrature point is:

λkNg = pN(u
k−1) +

Eκ

h
gNg (10)

where the subindex g is used to denote the value of the variable at the quadrature
point.

Formally, we proceed as in [48,52] to obtain a simplified stabilized problem. We
can take the variation of the multiplier as the projection in L2 of an appropriate
displacement field in the second equation of the problem (9) to condense the
multiplier and then substitute in the first equation to obtain:

∑

i=1,2

G(i)

int(u
k, δu)+

Eκ

h

∫

Γ
(1)
C

gN(u
k) δgN dΓ =

∑

i=1,2

G(i)

ext(δu)−

∫

Γ
(1)
C

δgN pN(u
k−1) dΓ

(11)

Here we find a close similarity between the proposed formulation and the perturbed
Lagrangian formulation [47]. In the first iteration, when pN = 0, the formulation
is a pure penalty method, but computed in a distributed sense. This coincides
with the formulation in [47]. As far as the integral can be exactly evaluated, the
penalty term in equation (11) is like a distributed spring that joins the two bodies
in contact. As has been pointed out above, the number of quadrature points can
be freely chosen, provided that they define a suitable interpolation of sufficient
degree. Increasing the number of points only affects the numerical integration
error. Although the number of constraints in the formulation (9) is increased,
as we condense the Lagrange multipliers, the number of equations remains the
same for the simplified formulation (11). On the right hand side of Equation (11)
the smooth stress field has the effect of compensating the error introduced by
the penalty method. This term is computed iteratively from the finite element
solution (see Subsection 5.3). Another alternative followed in the literature in
order to find stable contact formulations using springs without stabilizing terms
(penalty formulation) is to properly choose the number of quadrature points and
define a distributed integration [16,58].

The system of Equation (11) can be written in matrix form using the standard
finite element procedure to define the following residual:

r
k =

(

K+
Eκ

h
M

)

d
k − f− Sd

k−1 = 0 (12)
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where dk is the nodal displacements vector in the iteration k, K is the stiffness
matrix and f is the external force vector. For clarity of presentation we assume
that the initial gap gN0 is zero. Matrix M is computed from the second integral
of Equation (11) using the numerical integration presented above and the gap
definition. Although, in general, h is included in the integral of each element for
meshes with different element sizes, here we leave the factor to emphasize the
dependence of this term on the element size. Matrix S is derived from the last
integral of Equation (11) and points out the linear dependence of the smooth stress
field with respect to the displacement field. In practice, this term is computed as
the additional contact force vector fk−1

N depending on the previous displacement
field and S is not explicitly obtained.

5.2 Large deformations

The formulation proposed above for small deformations can be extended to deal
with large deformations and large sliding problems. The virtual work of internal
and external forces can be evaluated in the standard way for all type of mate-
rial behavior, including hyper-elasticity and plasticity. In addition to the contact
iterations, another non-linear behavior due to contact has to be considered, i.e.
the change of the contact point as the bodies deform. This makes the gap and
the virtual gap, to be non-linear functions of the displacements. Equation (11) is
now the residual of a non-linear equation that can be solved using a semi-smooth
Newton method. After numerical integration the residual can be expressed as:

δu · rk = δu ·
(

fint(u
k)− fext

)

+
∑

∀g

Hg

(

Eκ

h
gNg(u

k) + pNg(u
k−1)

)

δgNgJg (13)

where Hg is the weight of the quadrature point and Jg the Jacobian of the trans-
formation. Here the sum is extended to the active quadrature points that will be
discussed in the following subsection.

Here any definition found in the literature of the contact variables gN and δgN

at the quadrature points could be used (based on closest point projection [54,33]
for example) although the aim of this paper is not to deal with the computation
details of these contact variables for large deformation problems. We have cho-
sen the definition given in a previous paper [50], to which we refer for details of
linearizations. Also, we neglect the linearization of the Jacobian because it leads
to a non-symmetric tangent matrix. An additional term could be included in the
functional of the formulation to recover symmetry [17] and perform a consistent
linearization. In practice, the convergence obtained without consistent lineariza-
tion in the numerical problems analyzed seems to be acceptable.

We use the definition of the gap based on the ray tracing, so we follow the
formulation proposed in [50] also used in [24] for 2D problems, but extended to
3D. We recall here the main steps of the derivation. Taking variations in expression
(2), we have

δgN =
(

δu(2) − δu(1)
)

· n(1) + s
(2)

ξ
· n(1) δξ + s

(2)
η · n

(1) δη (14)

where δξ and δη are the variations of the contact point local coordinates and
s
(2)

ξ
and s

(2)
η are the tangent vectors. The variations of the contact point can be
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computed using the same procedure as in [50] to obtain the following system (2),
we have

[

s
(1)

ξ
· s(2)

ξ
s
(1)

ξ
· s(2)

η

s
(1)
η · s

(2)

ξ
s
(1)
η · s

(2)
η

]

{

δξ

δη

}

=

{

(δx(2) − δx(1)) · s(1)

ξ
+ gNδn(1) · s(1)

ξ

(δx(2) − δx(1)) · s(1)
η + gNδn(1) · s(1)

η

}

(15)

The tangent matrix is obtained taking the derivative with respect to the dis-
placements. As pointed out above, we neglect the derivative of the Jacobian. The
tangent matrix used in the numerical examples is:

KT = K+
∑

∀g

Hg
Eκ

h
∆gNg(u

k) δgNgJg

+
∑

∀g

Hg

(

Eκ

h
gNg(u

k) + pNg(u
k−1)

)

∆δgNgJg

(16)

where K is the directional derivative of the work of internal forces with respect
to the displacements. For the derivative of the virtual gap ∆δgN the procedure
described above can be followed.

5.3 Solution algorithm

Algorithm 5.1: ()

Compute pN from previous step (Subsection 3.2)

λNg ← pNg +
Eκ

h
gNg

while residual > Tol : Augmentation loop

do































while residual > Tol : Contact loop

do







Check active quadrature points: λNg < 0
Solve system of Equation (11)
Check residual. Equation (12)

Update pN

Check residual. Equation (12)

The proposed method has certain similarities with the Uzawa algorithm used in
the augmented Lagrangian formulation, in which updating the Lagrange multiplier
is called augmentation. We use the same term for the updating performed in
(10), using the smooth stress field. It also resembles the method used in [1] to
solve contact problems. The algorithm for small deformation problems is shown
in Table 5.1. For every load step, the smooth stress field pNg and the gap gNg are
first obtained for each quadrature contact point from the previous solution.

In addition to the augmentation iterations, another iterative process is defined
to resolve the contact surface, i.e. to determine which part of the potential contact
surface is active and will be used to impose the impenetrability constraints. The
contact check is performed at each quadrature point, using the value of the mul-
tiplier defined in Equation (10), so that λNg ≤ 0. It can be seen that the contact
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iterations are performed with a constant value of the smooth stress pN , which acts
as an external pressure on the contact surface, so that the contact iterations are
similar to a pure penalty method. The contact iterations run until the active con-
tact points are unchanged. In this work this is directly checked with the residual
of Equation (12).

For large deformation problems, the structure of the algorithm is the same,
the only changes being the computation of the residual, which is now defined in
Equation (13), and the solution of the system of equations by a Newton method.

In terms of computational cost, the proposed method is equivalent to an aug-
mented Lagrange formulation implemented by the Uzawa algorithm. The advan-
tage of the proposed method is the freedom to choose the number of quadrature
points at which the contact constraints are imposed as the method is stabilized.
Compared with the Lagrange multiplier formulation (or augmented Lagrange in
which the multipliers remain as variables of the system), in the proposed method
the system of equations to be solved in each iteration is smaller in size. Another
advantage is that the system matrix is positive definite, which usually reduces the
solution time. On the other hand, the number of iterations is in general greater as
there is a nested loop.

5.4 Convergence of the iterative method

The iterative process for augmentations defined above in Equation (12) can be
viewed as the Richardson method of solving a system of equations. This system
can be rewritten as:

(

K+
Eκ

h
M

)

d
k = Sd

k−1 + f (17)

The convergence [44,52] is then verified if the spectral radius of the iteration matrix
(

K+
Eκ

h
M

)−1

S is lower than 1 (equivalently, the modulus of any eigenvalue α

is lower than 1), even if the set of active quadrature points changes from one
iteration to another.

To prove this, we start with the definition of the eigenvalue problem. Any
eigenvector v∗ associated with an eigenvalue α of the iteration matrix fulfils

Sv
∗ = α

(

K+
Eκ

h
M

)

v
∗ (18)

On the other hand, if the following equation is satisfied for any nodal displace-
ment vector v :

v
T
Sv < v

T

(

K+
Eκ

h
M

)

v ∀v (19)

then the modulus of α is necessarily lower than 1 and the convergence is proven.

To check Equation (19), we use the definition of the stabilization term Sv:

∣

∣

∣
v
T
Sv

∣

∣

∣
=

∣

∣

∣

∣

∣

∫

Γ
(1)
C

gN(v) pN(v) dΓ

∣

∣

∣

∣

∣

.
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Mesh 1 Mesh 2

Fig. 5 First two meshes of the sequence used to solve the problem of a hollow sphere under
internal pressure. The hollow sphere is discretized into two volumes using non-conforming
meshes.

Applying the Cauchy-Schwarz inequality, using Equation (8), and taking into ac-
count that for two positive numbers x, y , it holds that 2x y ≤ x2 + y2, we have:

∣

∣

∣
v
T
Sv

∣

∣

∣
=

∣

∣

∣

∣

∣

∫

Γ
(1)
C

gN(v) pN(v) dΓ

∣

∣

∣

∣

∣

≤ ‖gN(v)‖L2,Γ
(1)
C

‖pN(v)‖L2,Γ
(1)
C

≤

‖gN(v)‖L2,Γ
(1)
C

√

EC

h
‖v‖E ≤

EC

4h
‖gN(v)‖

2

L2,Γ
(1)
C

+ ‖v‖2E

(20)

Now, taking κ > C/4 we obtain the bound of the stabilization term and the
iterative process will converge.

Remark: The stabilization term is only computed on the active contact zone of
the current iteration, even if the size of the contact surface Γ (1)

C
has been modified.

This ensures that Equation 20 is verified even in this case.

6 Numerical examples

Some academic examples have been solved to test the performance of the proposed
formulation. We used standard finite elements and immersed boundary elements
with linear H8 and quadratic H20 interpolation and different number of quadrature
points. In the case of standard linear elements we tried npg = 2 × 2, npg = 3 × 3
and npg = 16× 16. For quadratic elements we tried npg = 3x3 and npg = 16× 16.
For immersed boundary elements the number of quadrature points is based on the
triangulation of the surface due to the intersection of the real geometry with the
element. For integration purposes, we divide the hexahedral into tetrahedral and
use the quadrature formulas for the surface triangles of the tetrahedral whose face
coincides approximately with the contact surface.

6.1 Hollow sphere under internal pressure

The first example to be tested is a problem with an exact solution, so that the
discretization error can be exactly computed. The problem is a hollow sphere under
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Fig. 6 Energy norm error of the solution as a function of the element size for the hollow
sphere under internal pressure problem. Analysis of the influence of parameter κ.

internal pressure. We define two volumes that are discretized using non-conforming
meshes as depicted in Figure 5. A sequence of uniformly refined meshes is obtained
by element subdivision. In this problem all the quadrature points of the potential
contact surface are in contact, so there are no iterations due to changes in contact
conditions.

The first test was performed to check the influence of the constant κ in the finite
element solution using standard linear (L) and quadratic (Q) elements. In Figures
6 and 7 the energy norm error and the L2 norm error of the finite element solution
are plotted as a function of a representative element size. The triangles show the
theoretical convergence rate that can be achieved in every case. These test were
performed using npg = 16x16 quadrature points both for H8 and H20 elements to
keep the integration error as small as possible. The theoretical convergence rate
is obtained in all cases, at least for this level of error. The results show that the
influence of the parameter κ is negligible in this example, as the curves for different
values of κ perfectly overlap.

As pointed out above, it is not expected that the quadratic elements can achieve
the theoretical rate of convergence of the finite element solution because of the
integration error. However, if the meshes are not very refined (for example, the
meshes shown in Figure 5), the level of the discretization error is much higher
than the integration error. Despite the lower rate of convergence of the latter, the
optimal convergence rate can be achieved. To test the influence of the integration
error we solved the same problem using different number of quadrature points
and different types of integration. For H8 linear elements we used npg = 2 × 2,
npg = 3 × 3 and npg = 16 × 16. For H20 quadratic elements we used npg = 3 × 3,
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Fig. 7 L2 norm error of the solution as a function of the element size for the hollow sphere
under internal pressure problem. Analysis of the influence of parameter κ.
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Fig. 8 Energy norm error of the solution as a function of the element size for the hollow
sphere under internal pressure problem. Analysis of the influence of the integration error.
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Fig. 9 L2 norm error of the solution as a function of the element size for the hollow sphere
under internal pressure problem. Analysis of the influence of the integration error.

npg = 3 × 3 with double pass integration (i.e. the surfaces of both bodies are
considered at the same time as contact surfaces where the numerical integration
is performed), and npg = 16 × 16. The discretization error is shown in Figures 8
and 9, in energy and L2 norms, respectively. The triangles show the theoretical
rate of convergence. Optimal convergence is achieved for linear elements. However,
for quadratic elements using npg = 3 × 3 quadrature points, the integration error
seems to affect the solution for the more refined meshes and the convergence rate
is reduced. To alleviate this effect, using both a double pass strategy and more
quadrature points seems to reduce the integration error and allows the optimal
rate to be recovered in this case and for these element sizes.

This linear example was used to test the convergence of the Richardson itera-
tions of the system and the influence of parameter κ. In Figure 10 the normalized
norm of the residual (equation (11)) is shown as a function of the number of it-
erations. The results are shown for linear H8 and quadratic H20 elements and
different values of the parameter κ. Convergence is achieved between 4 and 6 it-
erations. This behavior is representative of all the tests ran for other numerical
examples. In this case, the best convergence is achieved with a double pass strategy
and κ = 100.

6.2 Rigid sphere in contact with a deformable block

In the second example a contact problem between a rigid sphere and an elastic
solid is solved using an immerse boundary mesh. The geometry of the elastic solid
is shown in Figure 11. It is a modified block with dimensions 2 × 2 × 2 units of



A modified perturbed Lagrangian formulation for contact problems 19

1 2 3 4 5 6

10−11

10−8

10−5

10−2

101

Iteration

N
o
rm

a
li
ze
d
re
si
d
u
a
l
n
o
rm

Linear elements

k = 10 k = 100 k = 1000

k = 100, DP

1 2 3 4 5 6

10−9

10−7

10−5

10−3

10−1

Iteration

N
o
rm

a
li
ze
d
re
si
d
u
a
l
n
o
rm

Quadratic elements

k = 10 k = 100 k = 1000

k = 100, DP

Fig. 10 Hollow sphere under internal pressure problem. Convergence of the Richardson iter-
ation of the system. The normalized norm of the residual is shown for linear and quadratic
elements.

Geometry Cartesian Grid

Fig. 11 Model of the rigid sphere contact with an immersed boundary mesh.

length, in which the upper face is a parabolic surface. The highest point of the
parabolic surface is at 2.5 units of length. As it can be observed the elastic solid
geometry is embedded in a uniform Cartesian Grid. The boundary elements are
cut by the geometry and integration is only performed in the internal part of these
elements. A sub-triangulation of the boundary elements using linear tetraedral is
performed only for integration purposes. The number of quadrature points on the
contact surface also depends on this sub-triangulation (7 quadrature points for
each triangle).

The sphere is located above the curved surface of the block, and contact occurs
at this curved face (see Figure 12). A rigid body motion towards the elastic solid
is applied to the sphere causing a maximum theoretical penetration of Dz = 0.15
or Dz = 0.3 units of length. The radius of the sphere is 2 units of length. Figure
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Fig. 12 Contact traction of the rigid sphere contact with an immersed boundary mesh.

Table 1 Rigid sphere in contact with an immersed boundary mesh. Convergence of the contact
and Richardson iterations. Normalized norm of the residual. The mark indicates that the
stabilizing stress pN was updated in the previous iteration.

Iter Dz = −0.15, κ = 10 Dz = −0.3, κ = 10 Dz = −0.3, κ = 100

2 1.71E-01 1.16E-02 5.88E-03
3 5.68E-02 4.09E-03 1.75E-03
4 3.19E-02 2.03E-03 1.83E-03
5 2.22E-02 1.53E-03 4.56E-04
6 1.07E-02 4.00E-04 2.91E-04
7 3.16E-16 3.49E-16 7.21E-05
8 ∗1.48E-02 ∗1.38E-02 1.05E-05
9 3.11E-04 3.97E-16 1.50E-06
10 3.64E-16 ∗2.90E-04 1.06E-16
11 ∗2.79E-04 3.38E-16 ∗5.12E-04
12 4.80E-16 ∗6.01E-06 1.55E-05
13 ∗5.72E-06 3.38E-16 1.03E-16
14 2.98E-16 ∗1.42E-07 ∗1.20E-06
15 ∗1.23E-07 3.12E-16 1.15E-16
16 3.97E-16 ∗3.89E-09 ∗2.85E-09
17 ∗2.76E-09

12 shows the deformed configuration of the elastic block. The colormap values
are related to the modulus of the displacement field. The contact traction at each
quadrature point of the surface is also shown in the same figure. The convergence
of the contact iterations and the augmentations is shown in Table 1 for different
initial penetration Dz and penalty parameter κ values. We use a tolerance of 10−8

to determine if the solution has converged, both for the contact and Richardson
iterations.
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Fig. 13 Initial configuration of the elastic ring contact problem.

6.3 Deformable ring in contact with a deformable block

The third example is a large deformation and large sliding contact problem. A
scheme of the example is shown in Figure 13. The upper body consists of two
joined rings of equal thickness but different Neo-Hookean hyperelastic material
properties. The material parameters are E = 105 and υ = 0.3 for the inner ring
and E = 103 and υ = 0.3 for the outer ring. The problem is 3D, with symmetry
boundary condition applied to the frontal plane. The ring thickness is 40 units of
length and the block thickness is 50 units of length. The block is linear elastic with
material parameters E = 1000 and υ = 0.3. We solved the problem assuming two
materials for the block: a pure elastic behavior and plasticity with yielding limit
Sy = 50 and plastic hardening H = 50. A downward displacement of Dy = 90 is
applied to the elastic ring. The displacement is applied in 20 steps in the elastic
case and 40 steps in the plastic case, with the time ranging from t = 0 to t = 1.
Linear elements were used in the simulation and the number of quadrature points
was npg = 4 × 4. The block contact surface was taken as slave surface where the
integration is performed.

Figures 14 and 15 shown some snapshots of the deformed configuration and
contact pressure with elastic and plastic behavior of the block. In the first time
steps, the deformation of the block is pure elastic and both examples show the
same deformed configuration. From t = 0.65 plastic deformation occurs in the
second case that causes a different deformation of the ring and contact pressure
distribution. This effect can also be noticed in Figure 16, where the reaction force
is plotted versus the time step for both cases (elastic and elasto-plastic).

In Table 2 we show the convergence of the contact and Richardson iterations
for different time steps and both elastic (EL) and elasto-plastic (PL) behavior
of the block. The normalized norm of the residual (equation 13) is shown as a
function of the iterations. A mark is shown when an augmentation is performed,
i.e. the stabilizing stress pN is updated. The tolerance of the relative error of the
residual is set at 1 · 10−8. As in the linear Example 1 shown above, after 3 or 4
Richardson’s iterations the solution has almost converged and the changes in the
displacement or contact stresses are very small.



22 Manuel Tur et al.

t = 0.4

t = 0.6

t = 0.7

t = 0.9

Fig. 14 Deformable ring in contact with an elastic block. Deformation and contact pressure
for different time steps of the simulation.

6.4 Bicycle inner tube

The last example is depicted in Figure 17 and shows a quarter of the inner tube of a
bicycle tire that is submitted to increasing internal pressure. As the tube deforms,
a contact occurs with the tire and the rim. The rim is an elastic material with
properties E = 108 and υ = 0.3, the inner tube and the casing are hyper-elastic
materials with E = 1000 and υ = 0.3. The pressure is increased from 0 to p = 40
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t = 0.4

t = 0.6

t = 0.7

t = 0.9

Fig. 15 Deformable ring in contact with an elasto-plastic block. Deformation and contact
pressure for different time steps of the simulation.

units of pressure. A variable time step increment is applied from t = 0 to t = 1 in
40 steps. In the front plane of the casing there is a crack that allow the inner tube
to escape. The number of elements in the casing at this plane is 65. The casing is
subdivided in 65 equal segments corresponding to the element edge and the crack
ranges as depicted in Figure 17.
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Table 2 Elastic rings in contact with a block. Convergence of the non-linear contact and
Richardson iterations. The mark indicates that an augmentation is performed, so the stabilizing
stress pN is updated. The normalized norm of the residual is shown.

Iter t = 0.5, EL t = 0.6, EL t = 0.7, EL t = 0.5, PL t = 0.6, PL t = 0.7, PL

2 8.07E-02 8.74E-02 1.00E-01 4.17E-02 4.44E-02 4.84E-02
3 1.15E-03 9.02E-04 1.89E-03 7.38E-04 7.44E-04 5.19E-03
4 4.58E-05 1.91E-04 5.99E-04 1.63E-05 5.15E-04 1.54E-04
5 1.42E-07 2.32E-06 1.52E-04 4.70E-07 6.99E-06 6.70E-06
6 3.23E-10 1.27E-08 4.11E-05 6.26E-10 3.97E-07 6.39E-08
7 ∗3.29E-04 4.39E-11 5.59E-06 ∗4.25E-04 1.01E-09 4.05E-10
8 1.53E-06 ∗4.68E-04 3.16E-10 4.75E-07 ∗8.62E-04 ∗1.53E-03
9 3.40E-09 4.09E-06 ∗5.88E-04 2.07E-09 1.49E-06 6.09E-06
10 ∗1.58E-06 1.08E-08 2.77E-06 ∗2.14E-06 1.38E-08 5.81E-08
11 2.20E-09 4.84E-11 2.49E-08 2.85E-09 4.50E-11 3.19E-10
12 ∗9.25E-09 ∗2.33E-06 1.92E-10 ∗1.39E-08 ∗5.48E-06 ∗1.17E-05
13 5.33E-09 ∗3.58E-06 2.36E-11 9.60E-09 5.36E-08
14 ∗1.48E-08 1.29E-08 ∗1.11E-10 1.94E-11 2.88E-10
15 4.11E-11 8.92E-11 ∗4.07E-08 ∗1.02E-07
16 1.13E-10 ∗2.17E-08 8.48E-11 3.40E-10
17 8.45E-11 ∗3.76E-10 ∗8.22E-10
18 ∗1.36E-10
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Fig. 16 Elastic ring in contact with a block. Reaction force in the ring as a function of the
time step.
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Fig. 17 Model of the bicycle tire contact problem. The inner tube is shown in yellow (light
grey), the rim in blue (dark grey) and the casing in white.

Table 3 Inner tube contact problem. Convergence of the non-linear contact and Richardson
iterations. The mark indicates that an augmentation was performed in the previous iteration.
The normalized norm of the residual is shown.

Iter DP SP

2 2.83E-02 2.82E-02
3 4.68E-04 5.17E-04
4 1.34E-08 1.48E-08
5 ∗3.86E-03 ∗7.72E-03
6 2.03E-08 4.36E-08
7 ∗1.34E-06 8.55E-11
8 8.70E-11 ∗5.36E-06
9 ∗1.34E-09 1.26E-10
10 ∗ 9.99E-09

The value of the penalty constant was κ = 10. The problem was solved using
both a double pass and single pass strategies. The deformed configuration is shown
in figure 18 for different time steps using the double pass contact. In table 3 a
comparison of the residual convergence is shown. In this example, similar behavior
is found for both strategies.

7 Conclusions

This paper proposes a new method for solving contact problems. The formulation
is based on the stabilized Nitsche method and after simplifying the equations
by condensing the multipliers, a modified penalty formulation is obtained. The
method has similarities with the perturbed Lagrangian formulation [47], but with
the addition of an extra term that can be computed iteratively and makes the
formulation consistent. The proposed method was effectively applied to solving
large and small deformation problems implemented with 3D standard 8-node linear
and 20-node quadratic elements and with immersed boundary elements in which
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t = 0.275

t = 0.5

t = 0.75

t = 1.0

Fig. 18 Inner tube contact problem. Comparison of the deformed configuration for different
time steps. The colormap is proportional to the modulus of the displacement.



A modified perturbed Lagrangian formulation for contact problems 27

a Cartesian grid is cut by the real geometry. The method was also tested for
materials with elastic, elasto-plastic and hyperelastic behavior. The formulation is
robust and simple and can converge to the exact solution with optimal convergence
rates.

The results show an optimal convergence rate of the finite element solution
for linear elements. For quadratic elements, the integration error can reduce the
optimal convergence rate. To overcome this problem, the use of more quadrature
points or a double pass strategy has been shown to be effective from the engineering
point of view. The method has a user-dependent parameter κ to be defined. In the
numerical examples we analyzed a wide range of variation of κ from 10 to 1000
and similar discretization errors and convergence of the iterations were obtained.

A double iterative process is defined to solve contact problems. The first loop
is the contact iteration in which the stabilization stress is kept constant and the
formulation is a pure penalty method, with κ as penalty constant. The convergence
analysis of the method show that a relatively high value of the penalty parameter
is needed to guarantee convergence. This value prevents the use of very large time
step increments in which the initial penetration of the unconverged solution is very
large, and can be considered as a limitation of the method.
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