

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

 © 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

http://dx.doi.org/10.1109/IPDPS.2012.54

http://hdl.handle.net/10251/67537

IEEE

Feliu Pérez, J.; Sahuquillo Borrás, J.; Petit Martí, SV.; Duato Marín, JF. (2012).
Understanding cache hierarchy contention in CMPs to improve job scheduling. 26th IEEE
International Parallel & Distributed Processing Symposium (IPDPS 2012). IEEE.
doi:10.1109/IPDPS.2012.54.

Understanding Cache Hierarchy Contention in CMPs to Improve Job Scheduling

Josué Feliu, Julio Sahuquillo, Salvador Petit, and José Duato
Department of Computer Engineering (DISCA)

Universitat Politècnica de València
València, Spain

jofepre@fiv.upv.es, {jsahuqui,spetit,jduato}@disca.upv.es

Abstract—In order to improve CMP performance, recent
research has focused on scheduling to mitigate contention
produced by the limited memory bandwidth. Nowadays, com-
mercial CMPs implement multi-level cache hierarchies where
last level caches are shared by at least two cache structures
located at the immediately lower cache level. In turn, these
caches can be shared by several multithreaded cores. In this
microprocessor design, contention points may appear along the
whole memory hierarchy. Moreover, this problem is expected
to aggravate in future technologies, since the number of cores
and hardware threads, and consequently the size of the shared
caches increases with each microprocessor generation.
In this paper we characterize the impact on performance of

the different contention points that appear along the memory
subsystem. Then, we propose a generic scheduling strategy for
CMPs that takes into account the available bandwidth at each
level of the cache hierarchy. The proposed strategy selects the
processes to be co-scheduled and allocates them to cores in
order to minimize contention effects.
The proposal has been implemented and evaluated in a

commercial single-threaded quad-core processor with a rel-
atively small two-level cache hierarchy. Despite these potential
contention limitations are less than in recent processor designs,
compared to the Linux scheduler, the proposal reaches perfor-
mance improvements up to 9% while these benefits (across the
studied benchmark mixes) are always lower than 6% for a
memory-aware scheduler that does not take into account the
cache hierarchy. Moreover, in some cases the proposal doubles
the speedup achieved by the memory-aware scheduler.

Keywords-memory-aware scheduling; contention-points;
shared caches; cache hierarchy;

I. INTRODUCTION

Multi-core processors have become the common im-
plementation for high-performance microprocessors. These
Chip MultiProcessors (CMP) incorporate additional cores on
the same chip with each technology generation, and they
have the potential to provide higher levels of processing per-
formance than their single-core counterparts, while attacking
power, cooling, and package costs problems.
Most of these CMPs are Symmetric MultiProcessing

(SMP) systems, whose main performance bottleneck lies
in the interconnection between the computational multi-
core chip and the main memory. In most processors, the
most important component of this bottleneck has typically
been the main memory latency. However, as the number
of cores and their multithreading capabilities increase, the

contention for the available memory bandwidth is becoming
a major concern since it prevents current and future many-
core designs from scalability.
When the number of jobs exceeds the number of cores,

bandwidth-aware strategies can help the scheduler to reduce
memory contention by avoiding the concurrent execution
of memory-hungry applications. These strategies take into
account the total bandwidth required by applications and
schedule a set of them to execute concurrently, whose cu-
mulated bandwidth requirements does not exceed the avail-
able bandwidth. Otherwise, performance could severely be
damaged due to memory contention. Nevertheless, previous
research has shown that the scheduler must try to approach
to a given bandwidth threshold to maximize the system
performance. This trade-off has been explored in several
research works [1], [2], [3].
On the other hand, with the aim of hiding, as much as

possible, the huge memory latencies that current DRAM
memories present, many commercial processors implement
large Last Level Caches (LLC) and other microarchitectural
mechanisms like prefetching or multithreading. As an exam-
ple, Figure 7 presents a memory hierarchy interconnecting
two quad-core chips, which closely resembles the scheme
followed by the IBM Power 5 [4]. This processor supports
the execution of two hardware threads per core. Therefore,
a significant number of jobs can compete for accessing to a
given shared cache structure. For example, up to 8 processes
can try to access the L3 cache in each quad-core. Other
designs, like the quad-core Xeon, used to carry out the exper-
iments in this paper, present a similar memory hierarchy with
shared L2 caches [5]. Moreover, recent commercial designs
[6], [7] present larger shared caches with huge L3 latencies
(close to one hundred cycles) and can accommodate by
around four to eight hardware threads per core. Therefore,
the cache contention is a major design concern, which is
expected to exacerbate in future microprocessor generations.
In summary, current L2 and L3 caches use to be shared

by an increasing number of threads, thus memory contention
can appear at any level of the cache hierarchy. Therefore,
these potential contention points must be tackled by the
scheduler policy in order to maximize the system perfor-
mance.
This paper has two main contributions. First, we charac-

terize the performance sensitiveness of the set of benchmarks
to each contention point in the memory hierarchy of a quad-
core Intel Xeon, showing that some benchmarks are even
more sensitive to L2 cache contention than to main memory
contention. Second, we propose a scheduling approach for
multi-core processors with shared caches. The proposed
approach takes n steps (as many as cache levels) to schedule
the jobs, and follows a top-down strategy, from the lowest
to the highest shared cache level of the cache hierarchy.
Despite that the cache hierarchy is relatively smaller

compared to some existing processors, and that cores do
not include multithreaded capabilities; experimental results
show that the proposal reaches performance improvements
up to 9% in comparison with the Linux scheduler, while
these benefits are always lower than 6% for a memory-aware
scheduler that does not take into account the cache hierarchy.
Moreover, in some cases the proposal doubles the speedup
achieved by the memory-aware scheduler.
The rest of this paper is organized as follows. Section

II discusses related work. Section III describes the plat-
form where the experiments are carried out. Section IV
presents the benchmark behavior and analyzes performance
degradation due to both memory and L2 contention. Section
V introduces the proposal and Section VI evaluates its
performance. Finaly, Section VII presents some concluding
remarks.

II. RELATED WORK

Most research on bandwidth-aware multi-core schedulers
focuses on mitigating the performance penalties due to either
memory contention [2], [3], [8], [1], [9] or LLC contention
[10], [11], [12], [13], [14], [15], [16].
Regarding memory contention, Antonopoulos et al. ([2],

[3]) proposed several scheduling policies based on the
memory bus bandwidth consumption of the co-runners. In
[2], the information about this consumption is obtained by
modifying the source code of the running applications, while
in [3], less intrusive implementations based on processor
performance information are explored. In both cases, the
proposed policies try to match the total bandwidth require-
ments of the co-runners to the peak memory bus bandwidth.
In a posterior work [8] addressing SMP clusters, Koukis
et al. take into account the network bandwidth as well.
Other works also address the trade-off between energy
consumption and execution time taking into account the
memory contention [9].
In a recent work, Xu et al. [1] prove that irregular memory

access patterns can produce fine-grained contention when
the required bandwidth is close to the peak bandwidth. To
deal with this situation, they propose the use of the average
bandwidth requirements of the running applications instead
of the whole available bandwidth. Authors estimate the Ideal
Average BandWidth (IABW) of a workload as the total
number of LLC misses divided by the total execution time.

In practice, the IABW is an approximation, since the exact
average bandwidth consumption due to LLC misses depends
on the final schedule. Therefore, the IABW is adjusted
using polynomial regression methods to obtain the optimal
scheduling bandwidth.
Regarding LLC contention, two complementary ap-

proaches are used: cache partitioning [10], [11], [12], [13]
and cache-aware scheduling [14], [15], [16]. Cache partition-
ing mechanisms avoid cache starvation of the co-runners by
implementing new hardware-based metrics and mechanisms
that maximize throughput and/or improve fairness among
co-runners. However, as pointed out by Sato et al. in [14]
these mechanisms can severely limit the overall performance
if applications with cache requirements exceeding the cache
capacity are co-scheduled. Therefore, the scheduler must
be aware of cache to avoid this type of situation. On the
other hand, Fedorova et al. [15], [16] show that contention-
aware scheduling based on cache miss rate is effective and
only requires accounting information already provided by
hardware counters in modern microprocessors.
In contrast to previous works, we propose a global so-

lution that tackles the bandwidth contention problems that
can arise at each level of the memory hierarchy. We only
found in the literature one proposal by Kaseridis et al. [17]
with such wide target. In their work, they rely on additional
hardware based resource profilers and cache partitioning
algorithms to avoid cache contention. However, unlike this
work, we use existing hardware counters extensively and
avoid contention points only by scheduling decisions. Thus,
our solution does not require hardware modifications in
existing platforms.

III. EXPERIMENTAL PLATFORM
Workload characterization was performed in a shared-

memory quad-core Intel Xeon X3320 processor [5], with
the hardware specification summarized in Table I. The cache
hierarchy of the quad-core consists of two 3MB L2 caches
(LLC), each one shared by a pair of cores. The proposed
scheme was implemented and evaluated in a user-level
process manager using the ptrace Linux system call [18].
The system runs a Fedora Core 10 Linux distribution with

the kernel 2.6.29, which is the last kernel version supporting
the monitoring software used in this work. This software,
namely perfmon2 [19], uses the library libpfm to access the
hardware performance counters during the jobs execution
and supports run-time measurement for multiple processes
running concurrently. The tool also provides the number of
cache misses for each cache structure, among the available
variables.
Most current processors implement performance counters

for debugging purposes, which keep track of the number of
cycles and events like the number of instructions executed
and misses in each cache level. Apart of these counters,
the proposed algorithm has no extra hardware requirement.

CPU Intel Xeon X3320

Frequency 2.5 GHz

Number of cores 4

Multithreading No

L1 cache Code L1: 4 x 32 KB
Data L1: 4 x 32 KB

L2 cache 2 x 3 MB shared, 12-way

Memory 4GB (2GB x 2) DDR2

Table I
SYSTEM SPECIFICATION

The events gathered by these counters usually differ among
commercial processors. The major requirement is that the
system must be able to collect the information in a per
process basis, as done by Linux OS using the libpfm library.

IV. PERFORMANCE DEGRADATION ANALYSIS
This section explores the performance of the entire SPEC

CPU2006 benchmark suite. First, we study the performance
behavior when running each benchmark alone in the ex-
perimental platform. Then, we analyze the performance
degradation due to L2 contention and memory contention. To
this end, each SPEC benchmark was concurrently launched
with synthetic benchmarks, measuring the unhalted core
cycles, instructions retired, L2 cache misses (LLC) and L1
cache misses with the pfmon2 tool.

A. Benchmarks Characterization
Each benchmark was characterized running alone accord-

ing to three main performance indexes: IPC, MPKI (Misses
Per Kilo Instructions) in the L1 cache, and MPKI in the
L2 cache. In this way, interferences of other benchmarks
are avoided. The latter two indexes will be referred to as
MPKIL1 and MPKIL2, respectively.
Figure 1 depicts the IPC for each integer and floating-

point benchmark. Figure 2 and Figure 3 show the MPKIL1

and MPKIL2, respectively. As expected, a high MPKI value
results in a low IPC. This is the case of mcf, gobmk, astar,
specrand, and lbm applications. An interesting observation
is that, mainly in integer applications, there is a correlation
between MPKIL1 and MPKIL2. For example, the three
integer benchmarks with MPKIL1 greater than 20 present
the highest MPKIL2 (higher than 1.5).
Depending on the MPKI results, a given benchmark can

be classified as memory-bounded when its MPKIL2 is high
enough to increase significantly the memory contention.
In such a case, the benchmark will show a low IPC and
will potentially affect the IPC of the co-runners. Likewise,
a benchmark is considered to be L2-bounded when its

MPKIL1 can cause L2 contention, which will affect the
performance of those applications accessing the shared L2.
Note that L2-bounded does not necessarily means memory-
bounded. This is the case of the leslie3d benchmark, with
an MPKIL1 by about 35 but an MPKIL2 around 2. Note
that the effect of the latter type of contention is expected to
grow in future many-core processors where the LLC cache
structures are being shared by an increasing number of cores,
most of them implementing multithreading capabilities.

B. Degradation due to Memory Contention
To analyze the performance degradation that main mem-

ory contention causes in a given benchmark, we designed
a memory-hungry synthetic microbenchmark, which is used
as co-runner. This microbenchmark creates contention by
injecting synthetic traffic in an infinite loop. To parametrize
the induced contention, the microbenchmark includes an
argument specifying the number of nop instructions that each
iteration of the loop executes.
The designed microbenchmark can mimic the behavior

of either a memory-bounded application or an L2-bounded
application. Each iteration of this program executes memory
instructions that miss in a given target Li level of the
memory hierarchy and hit in the next Li+1 level. Thus,
depending on the target level (i.e., L1 or L2 in the experi-
mental platform), the benchmark enables the study of how
contention in the next level affects the performance of a
given application. To sum up, the microbenchmark is used
to evaluate how the IPC of a given benchmark degrades due
to either memory contention or cache contention.
Listing 1 presents the core loop of the microbenchmark

code. Parameters N and CACHE LINE SIZE refer to the
number of lines and the line size of a given cache organiza-
tion. In order to force continuous misses, these parameters
must be properly tuned according to the target cache.

Listing 1. Microbenchmark code
i n t A[N] [CACHE LINE SIZE] ;
i n t B[N] [CACHE LINE SIZE] ;
whi le (1) {

f o r (i =0 ; i< (# m i s s e s / 2) ; i ++)
{

A[i] [0] = B[i] [0] ;
}
f o r (i =0 ; i< (# nops ; i ++) {

asm (” nop”) ;
}

}

To check the performance degradation caused by memory
contention, we designed two experiments. The former is
aimed at checking the impact of the MPKI created by the
co-runner on the performance of a given benchmark. The
latter studies how the number co-runners and the core they
are launched affect the performance of the benchmarks.

(a) integer (b) floating-point

Figure 1. IPC for each SPEC CPU2006 benchmark

(a) integer (b) floating-point

Figure 2. L1 MPKI for each SPEC CPU2006 benchmark

(a) integer (b) floating-point

Figure 3. L2 MPKI for each SPEC CPU2006 benchmark

The first experiment was designed assuming that the
system is fully loaded; that is, each core is busy running
a program. To this end, each benchmark is concurrently
launched with 3 memory-bounded instances of the mi-
crobenchmark 1. To explore the effects of having different
traffic amounts, the number of nop instructions executed in
each loop iteration was configured to obtain MPKI values
1each instance accesses 25% the cache space of its core (i.e. 0.75 MB)

ranging from 3 to 42 for each microbenchmark instance.
The highest range value (i.e., 42) is the maximum value the
microbenchmark can achieve in the experimental platform,
that is, when the number of nops is set to 0. In such a case,
this MPKI value translates to around 27 transactions per µs
between the L2 cache and main memory.

Figure 4 presents the results of this experiment. As
observed, the amount of memory traffic generated by the

microbenchmark can strongly affect the performance of the
applications. In some cases, and for an MPKI equal to 42,
performance drops are as large as 60%. This is the case
of gobmk, milc and lbm, when the three instances of the
microbenchmark are tuned to have an MPKI equal to 42 in
the L2 cache. A few applications, like hmmer, are poorly
affected since they show very low MPKI both in L1 cache
and L2 caches. As expected, the lower the MPKI of the
microbenchmark the smaller the performance degradation.
However, some applications, like gobmk, show important
performance drops (larger than 30%) even for an MPKI
equal to 3.
The second experiment varies the number of co-runners

as well as the core in which they are executed. In the
Intel Xeon, core 0 and core 2 refer to the pair of cores
sharing one of the L2 caches, and core 1 and core 3 refer
to the pair sharing the other L2. In this experiment, SPEC
benchmarks always run in core 0, and we vary the cores
where the instances of the microbenchmark were ran. The
MPKI parameter of all the microbenchmark instances is set
to 42. Four different situations were analyzed:

• Mem-b c1: the microbenchmark runs in core 1 so both
applications (benchmark and microbenchmark) access
to different L2 caches.

• Mem-b c2: the microbenchmark runs in core 2 so both
applications compete for accessing the same L2 cache.

• Mem-b c1-2: two instances of the microbenchmark are
executed, one in core 2 and one in core 1.

• Mem-b c1-2-3: three instances of the microbenchmark
are executed. This case corresponds to the first column
of the results of the previous experiment.

Figure 5 shows the results. As observed, some bench-
marks are less sensitive to the pair in which the co-runner is
launched. This happens because in these benchmarks, mem-
ory contention becomes the major performance bottleneck.
The expected behavior is that, if the co-runners run in the
other pair, then memory will be more frequently accessed so

hurting the performance more severely. This is the common
case (e.g., bzip2, gcc, or mcf). However, there are some
benchmarks, like gobmk, with the opposite behavior. The
reason is that when the co-runner runs in the same pair,
it brings more memory blocks to the shared L2 cache (one
per each memory access). Therefore, the microbenchmark is
competing for L2 space, so increasing the miss rate of the
tested benchmark in that cache. Finally, notice that the case
with the highest memory requirements (i.e., Mem-b c1-2-3)
experiences similar performance degradation as Mem-b c1-
2. This is due to the memory being already saturated with
3 co-runners, thus the number of BTRL2 is similar in both
cases.

C. Degradation due to L2 Contention

To evaluate the performance degradation caused by L2
contention, a similar set of experiments was performed.
To this end, the microbenchmark parameters were tuned to
stress the shared L2 cache but not the main memory. In this
experiment the microbenchmark always hits the shared L2
cache. Since each L2 cache is shared by a pair of cores,
experiments focused only on a single L2 cache. Two bench-
marks were launched together, one SPEC benchmark and
one L2-bounded instance of the microbenchmark. Hence,
there was no benchmark running on the other pair of cores.
We vary the induced MPKIL1 of the co-runner from 10 to
132, which is the maximum value reachable in the platform
when the number of nops is set to zero.
Figure 6 shows the results. As observed, the IPC of some

benchmarks, like mcf, specrand and soplex, are strongly
affected (IPC degradation is even higher than 10%) by the
traffic created by others processes competing for the L2
cache. In addition, 12 benchmarks from 28 have a degrada-
tion higher than or close to 5% when they are co-scheduled
with an L2-bounded instance of the microbenchmark with
MPKIL1 equal to 133. This means that some benchmarks
are highly sensitive to the L2 accesses of the co-runners. In

(a) integer (b) floating-point

Figure 4. IPC degradation due to memory contention varying the mpki of co-runners

(a) integer (b) floating-point

Figure 5. IPC degradation due to memory contention varying the number of co-runners

(a) integer (b) floating-point

Figure 6. IPC degradation due to L2 contention

other words, in some benchmarks and, depending on the co-
runners, IPC degradation due to L2 contention can be similar
or even higher than the caused by memory contention.
As expected, the IPC degradation is lower than the

MPKIL1 of the co-runner decreases. However, even for an
MPKIL1 equal to 10, we can observe noticeable degradations
(around 7%) like the experienced by mcf. Therefore, in this
paper we claim that, since the current industry trend is to
increase the number of cores as well as their multithreading
capabilities, an scheduling policy aware of the bandwidth
requirements for each level of the cache hierarchy can help
the scheduler to improve the system performance.

V. CACHE HIERARCHY AWARE SCHEDULING
A. Baseline memory aware scheduling
Numerous schedulers have been proposed to deal with

memory contention. Most of the proposals work as follows:
block the running processes, read the performance counters,
and update the bandwidth requirements from the counter
values. Then, the scheduler is responsible for selecting
the processes to be executed concurrently during the next
quantum attending to their expected bandwidth utilization.

Typically, schedulers have pursued to keep full utilization
of the available bandwidth, by selecting processes trying
to match the peak memory bus bandwidth [3]. However,
recent works proved that contention could exist before the
bandwidth utilization achieves the peak bandwidth.
This work uses as baseline the scheduler proposed by

Xu et al. [1], which defines an Ideal Average Bandwidth
(IABW) that quantifies the memory bandwidth demand of
a workload. By scheduling jobs whose memory bandwidth
requirements approach the IABW, performance degradation
is reduced since bandwidth utilization is balanced along the
workload execution time, so reducing contention.

B. Proposed cache-hierarchy aware scheduler
The performance degradation analysis discussed above

leads to the necessity of a job scheduling that is aware of the
available bandwidth in each potential contention point of the
cache hierarchy, and not only of the memory bandwidth (as
stated in previous proposals). For this purpose, the scheduler
must know the cache misses that each process experiences
in any cache structure of the hierarchy. As mentioned above,
in this work these values were captured with the perfmon2

Figure 7. Contention points related to the memory subsystem in a three-level cache hierarchy CMP

monitor.
The BTR (bus transaction rate) has been typically used

to refer to the number of transactions occurred over the
memory system bus. This variable depends on the number
of misses of the last level cache (L3 in Figure 7). Since
the focus of this work is on the bandwidth requirements
for each level of the memory subsystem, we use the terms
BTRMM , BTRL3, and BTRL2 to refer to the BTR of main
memory, L3, and L2, respectively. On the other hand, if
the processor implements multithreading capabilities, the L1
cache must be also considered since it behaves as a shared
memory structure. Notice that to quantify the BTR for a
given cache level, that is, the bandwidth requirements of
the running processes, we need to measure the misses that
those processes experience in the immediately lower cache
level. For instance, the BTR of each L3 cache is estimated
with the misses that the processes have in the L2 caches
sharing that L3. The BTR values were calculated from
the values gathered in the performance counters, using the
events number of misses of the cache structure and unhalted
core cycles of each process.
The proposed scheduler addresses the target bandwidth

at each contention point and schedules the jobs in n steps
(as many as cache levels). The strategy follows a top-down
approach, that is, in the first step jobs are selected to match
a target MM bandwidth (upper contention point in Figure
7). Then, the last level cache (LLC) bandwidth is addressed
by balancing the BTR of caches in the immediately higher
level. After that, contention points of the following levels
of the cache hierarchy are addressed. Finally, the last step
allocates jobs to cores.
Algorithm 1 presents the proposed approach. In the first

part the scheduler updates the BTR values. Each quantum,
the algorithm gathers the BTR values experienced for every
process in each cache level. The values gathered during a

given quantum are used by the scheduler as the predicted
BTR for the next quantum. In particular, in our experimental
platform the BTR of both memory and shared L2 caches are
updated for every process with the gathered values during
the last quantum.

Algorithm 1 Cache-hierarchy memory aware scheduler
Block the executing processes and place them at the queue tail.
for each process P executed in the last quantum do
for each cache level L do
Update BTR for process P in cache level L

end for
end for
while there are unfinished jobs do
BWRemain = average memory bandwidth
Select the process at the queue head and update BWRemain

while selected processes < cores do
select the process that maximizes
FITNESS(p) = 1

∣

∣

BWRemain
CPURemain

−BWP
required

∣

∣

and update BWRemain

end while
for i = max cache level downto level 2 do
AVGBTR(Li)=

∑

BTR of L(i−1)

#Caches at Li

for each cache in level Li do
BWRemain = AVGBTR(Li)
while #selected processes for the cache < # cores
sharing the cache do
Select the process that maximizes the FITNESS(p)
function and update BWRemain

end while
end for

end for
Unblock the processes, and allocate them in the chosen core.

end while

The main loop of the algorithm consists of a while loop
that selects the jobs to be scheduled the next quantum. The
first sentence of the loop estimates the target bandwidth
BWRemain. This parameter is initialized to the average

BTRMM of all the processes of the mix weighted by their
execution time. The resulting value is then slightly reduced
to enhance the bus transaction rate [1].
The processes still pending to finish their execution are

kept in a software queue structure. When a quantum expires,
the processes executed during this quantum are placed at the
queue tail. For the next quantum, the proposed algorithm
always schedules the process located at the queue head
to avoid process starvation, and then, selects those that
maximize the fitness function described in [2], [3].
Each time a process is selected for execution, BWRemain

must be updated accordingly.
The result of this selection step is the list of processes

to be executed taking into account the MM bandwidth
constraint; that is, the upper contention point represented
in Figure 7. Note that the number of processes selected is
limited by the number of available cores (cores are assumed
to be single-threaded). For example, eight processes will be
selected for the two quad-core of the figure.
After that, the algorithm deals with the contention points

located at the shared levels of the cache hierarchy; referred
to as L3 bandwidth and L2 bandwidth in Figure 7. To this
end, for each level Li, the required BTR of all caches at Li−1

level is estimated, and averaged considering the number of
caches at Li level. Then, processes for each cache structure
at Li level are selected according to the fitness function.
Notice that in the last iteration, when the loop reaches
the lowest shared cache level (i.e., L2 in the example) the
algorithm selects two processes for each L2 cache, which
are subsequently allocated in any of the two cores sharing
the L2.

VI. SCHEDULER EVALUATION
A. Mix Design and Evaluation Methodology
To evaluate the effectiveness of the proposal we designed

a set of ten mixes, being the number of benchmarks in each
mix twice as large the number of cores. Table II shows the
mixes and the associated MPKIL1 and MPKIL2 as well. As
analyzed above, there are benchmarks with poor memory
requirements that have scarce misses in L1 and L2 caches.
Thus, if the mix is built only using these benchmarks, there
will not be any appreciable difference among the studied
schedulers. As opposite, if all the benchmarks in the mix
have a high MPKI in both L1 and L2 caches, then the
scheduler will be forced to launch memory-hungry bench-
marks together, leaving little room to improve performance.
Therefore, a good mix should include a subset of memory-
bounded benchmarks mingled with a subset of benchmarks
with few memory requirements.
On the other hand, remark that the execution time widely

varies among the different benchmarks. For example, some
benchmarks like wrf or sphinx are completely executed in
less than 1 second, while other benchmarks like tonto take
more than 400 seconds. This fact must be addressed in

Mixes Benchmarks

Mix 1 GemsFDTD, H264ref, Hmmer, Lbm,
Lbm, Mcf, Tonto, Xalancbmk

Mix 2 Astar, GemsFDTD, H264ref, Hmmer,

Lbm, Mcf, Tonto, Xalancbmk

Mix 3 Astar, GemsFDTD, Hmmer, Lbm,
Lbm, Mcf, Tonto, Xalancbmk

Mix 4 Astar, CactusADM, GemsFDTD, Lbm,

Lbm, Mcf, Tonto, Xalancbmk

Mix 5 Astar, Bwaves, CactusADM, Lbm,

GemsFDTD, Mcf, Tonto, Xalancbmk

Mix 6 Astar, DealII, GemsFDTD, H264ref,
Lbm, Mcf, Namd, Sjeng

Mix 7 Astar, Bwaves, DealII, H264ref,

Lbm, Lbm, Mcf, Sjeng

Mix 8 CactusADM, GemsFDTD, Mcf, Milc,
Lbm, Leslie3d, Tonto, ZeusMP

Mix 9 Bwaves, CactusADM, GemsFDTD,

GemsFDTD,Lbm, Mcf, Milc, Povray

Mix 10 Astar, CactusADM, Gromacs, Lbm

Leslie3d, Mcf, Mcf, Namd

Table II
MIXES

the evaluation methodology, since a policy prioritizing the
longest jobs would provide the best performance in most
workloads. To deal with this evaluation shortcoming, we
consider that each benchmark in the mix executes in the
experiment as many instructions as it executes during a fixed
amount of time when it is running alone. In particular, we
gathered the number of instructions that each benchmark
runs during two minutes. Then, during the mix scheduling
experiment, if the execution of a given benchmark is shorter
than two minutes it is relaunched by the scheduler. On
the contrary, if it is longest, the benchmark is stopped
and the remaining instructions are discarded. In addition,
since benchmarks with very short execution time would be
relaunched several tens of times, such benchmarks were
discarded to build the mixes.
For evaluation purposes, we compared the performance of

the cache hierarchy aware proposal against two schedulers:
a memory-aware scheduler and the Linux OS scheduler.
Notice that according to this evaluation methodology, the
benchmarks must be killed and relaunched several times
after they execute a given number of instructions. Therefore,

execution time cannot be directly measured using Linux
scheduler, since we would need to stop the processes at
the time they execute the target number of instructions.
To solve this issue, we implemented an user-level pseu-
doscheduler that obtains native Linux turnaround times.
This pseudoscheduler stops the processes and reads the
number of executed instructions by each process. Then, the
pseudoscheduler lets the process to follow its execution, kills
the process or relaunches it depending on the number of
executed instructions is less than the target, greater than
the target or the process already finished its execution,
respectively. Notice that these actions do not take scheduling
decisions, which are taken by Linux scheduler. In this way,
all the studied schedulers are fairly evaluated since all of
them use the same quantum length, and stop and relaunch
benchmarks in the same way. Quantum length was fixed to
200ms in the experiments.

B. Scheduler Performance
Figure 8 shows the speedup achieved by both the pro-

posed scheduler and the memory-aware scheduler over the
native Linux scheduler, considered as baseline. As observed,
regardless the benchmark, the proposal always provides
better performance than the memory-aware scheduler. The
achieved speedup widely varies across the mixes, ranging
from 1.8% to 6% and from 3.3% to 9%, for the memory-
aware scheduler and the proposal, respectively. In short, the
proposed algorithm, which considers the cache hierarchy
contention points, performs better than the memory-aware
scheduler. Furthermore, in some cases (e.g., mix 6 and mix
8), the proposal doubles the speedup of the memory-aware
scheduler.
The main reason for this performance enhancement is

that the cache-hierarchy aware policy balances transactions
among the contention points across the cache hierarchy.
Since the experimental platform has two shared L2 caches,
the scheduler allocates jobs to cores taking into account that
L1 misses must be balanced between both L2 caches.

Figure 8. Speedup over native Linux OS

Figure 9. BTR differences between the L2 shared caches. Legend: M-
aware (memory-aware), C-aware (cache hierarchy aware)

To estimate how good job balancing works, we measured
the BTR arriving to both L2 caches (produced by L1 misses)
and calculated their difference. Figure 9 presents the results.
The histogram represents the frequency of the BTRL2 dif-
ference between both L2 caches for both schedulers across
all the mixes. Results are presented in intervals of 25
transactions per µs. The higher the frequency of the lower
intervals the better the transactions are balanced between L2
caches. In this way, the L2 bandwidth contention is reduced,
which turns in performance enhancements.
For instance, if we the compare memory aware bar versus

cache-hierarchy aware bar in mix 1, we can observe that
with the memory-aware scheduler 40% of times (black bar)
the BTR difference between both L2 caches was less than
25 (i.e., [0-25]) transactions/us. The immediately upper bar
indicates that by 30% of times the difference falls in the
range]25-50] and so on. In contrast, with cache-hierarchy
aware, differences lower than 25 transactions/us grows up
to 50% of times, resulting in better BTR distribution and
better performance.
As expected, results show a strong correlation between

Figure 10. Average and variance of the difference between the BTRs of
the L2 caches

Figure 11. BTRL2 difference evolution with time

the frequency distribution and the speedup presented above.
For instance, mix 2 and mix 8 present the widest distribution
variations between both schedulers, which translates in the
highest speedup variations. This can be clearly appreciated
in the lowest interval (i.e., 0-25). The only exception is
mix 9, which has similar frequencies for both schedulers.
However, even in this case, the cache hierarchy aware
scheduler still outperforms the memory-aware policy. This
can be explained with the results shown in Figure 10, which
presents the average and variance of the difference between
the BTRs of both L2 caches and, as observed, the proposal
presents a lower average.
To provide a sound understanding of BTR balancing, let’s

look inside the dynamic execution of a mix. In particular,
let’s focus on mix 2 where the proposal improves by 50% the
speedup achieved by the memory-aware scheduler. Figure 11
shows the monitored results during the first 1375 quanta of
execution. The plots, in the upper and lower sides of the
Figure, show the results for the memory aware and cache
hierarchy aware schedulers, respectively.
An interesting observation is that peak BTR differences,

which are mainly caused by the mcf benchmark, appear
before in the proposal (see grey boxes). Notice too that this
progress in time is not achieved at expenses of increasing

the peak heights, but the heights are reduced too. Looking at
the lower plot, it can be appreciated that in many intervals
the BTR difference falls always below 50 transactions per
µs. Notice that this horizontal line (BTR difference = 50)
cannot be seen in the upper plot. To provide insights in this
analysis, Figure 12 zooms the first 160 quanta. It can be
observed, for instance, that the longest interval below 50 is
around 24 quanta in the proposal (from 120 to 144 aprox.),
which is more than twice as large than that of the memory-
aware scheduler in this execution. Finally, it can be also
appreciated that peaks are both more frequent and higher
in the memory-aware scheduler than in the cache-hierarchy
aware scheduler.

VII. CONCLUSIONS

This work has addressed the cache sharing contention in
typical CMPs, and has proven that the system performance
can drop due to bandwidth contention located at different
levels of the memory hierarchy.
First, we have characterized the benchmarks behavior on

a commercial CMP processor, varying the location of the
contention points across the memory hierarchy, as well as
their intensity. We found that, contrary to expected, and
depending on the co-runners, some workloads are more

Figure 12. BTRL2 difference in the first 160 quanta

sensitive to contention in higher levels of the memory
hierarchy (e.g., shared L2) than to main memory contention.
These results lead us to claim that shared caches will

increase their pressure in performance in future microproces-
sor generations, since the current industry trend is to increase
the number of cores and their multithreading capabilities, as
well as enlarging the size and latency of the shared caches.
To deal with this performance problem, we have proposed a
multi-level scheduling policy for a generic CMP that selects
the jobs to be scheduled taking into account the memory
bandwidth and balances bandwidth requirements across the
cache hierarchy in order to reduce the potential contention
points.
As contention points can appear at each level of the mem-

ory hierarchy, the proposal follows a top-down multi-level
approach that takes n steps (as many as shared cache levels)
to plan a globally balanced schedule for the next quantum.
The scheduling proposal does not require any additional
hardware support, instead it only needs the information
provided by some hardware counters already available in
current microprocessors.
Experimental results show that, compared to the native

Linux scheduler, the proposal achieves speedups ranging
from 3.3% to 9%. Moreover, in some cases the proposal
doubles the speedup achieved by a memory aware scheduler
that does not take into account the cache hierarchy. Finally,
remark that these results have been obtained in a commercial
quad-core Intel Xeon X3320, whose bandwidth requirements
for the cache hierarchy are expected to be much more lower
than in future many-core multithreaded processors.

ACKNOWLEDGMENTS

This work was supported by the Spanish MICINN, Con-
solider Programme and Plan E funds, as well as European
Commission FEDER funds, under Grants CSD2006-00046

and TIN2009-14475-C04-01.

REFERENCES

[1] D. Xu, C. Wu, and P.-C. Yew, “On mitigating memory
bandwidth contention through bandwidth-aware scheduling,”
in PACT, 2010, pp. 237–248.

[2] C. Antonopoulos, D. Nikolopoulos, and T. Papatheodorou,
“Scheduling algorithms with bus bandwidth considerations
for smps,” in Parallel Processing, 2003. Proceedings. 2003
International Conference on, oct. 2003, pp. 547 –554.

[3] C. D. Antonopoulos, D. S. Nikolopoulos, and T. S. Pap-
atheodorou, “Realistic workload scheduling policies for tam-
ing the memory bandwidth bottleneck of smps,” in In Proc.
of the 2004 IEEE/ACM International Conference on High
Performance Computing (HiPC2004, 2004, pp. 286–296.

[4] B. Sinharoy, R. N. Kalla, J. M. Tendler, R. J. Eickemeyer, and
J. B. Joyner, “Power5 system microarchitecture,” IBM J. Res.
Dev., vol. 49, pp. 505–521, July 2005. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1148882.1148884

[5] G. Varghese, J. Sanjeev, T. Chao, S. Ken, D. Satish, S. Scott,
N. Ves, K. Tanveer, S. Sanjib, and S. Puneet, “Penryn: 45-nm
next generation intel core 2 processor,” in Solid-State Circuits
Conference, 2007. ASSCC ’07. IEEE Asian, nov. 2007, pp.
14–17.

[6] R. Kalla, B. Sinharoy, W. J. Starke, and M. Floyd, “Power7:
Ibm’s next-generation server processor,” IEEE Micro, vol. 30,
pp. 7–15, 2010.

[7] J. Shin, K. Tam, D. Huang, B. Petrick, H. Pham, C. Hwang,
H. Li, A. Smith, T. Johnson, F. Schumacher, D. Greenhill,
A. Leon, and A. Strong, “A 40nm 16-core 128-thread cmt
sparc soc processor,” in Solid-State Circuits Conference Di-
gest of Technical Papers (ISSCC), 2010 IEEE International,
feb. 2010, pp. 98 –99.

[8] E. Koukis and N. Koziris, “Memory and network bandwidth
aware scheduling of multiprogrammed workloads on clusters
of smps,” in Proceedings of the 12th International
Conference on Parallel and Distributed Systems - Volume
1, ser. ICPADS ’06. Washington, DC, USA: IEEE
Computer Society, 2006, pp. 345–354. [Online]. Available:
http://dx.doi.org/10.1109/ICPADS.2006.59

[9] F. Pinel, J. E. Pecero, P. Bouvry, and S. U.
Khan, “Memory-aware green scheduling on multi-
core processors,” in Proceedings of the 2010 39th
International Conference on Parallel Processing Workshops,
ser. ICPPW ’10. Washington, DC, USA: IEEE
Computer Society, 2010, pp. 485–488. [Online]. Available:
http://dx.doi.org/10.1109/ICPPW.2010.71

[10] M. K. Qureshi and Y. N. Patt, “Utility-based cache
partitioning: A low-overhead, high-performance, runtime
mechanism to partition shared caches,” in Proceedings
of the 39th Annual IEEE/ACM International Symposium
on Microarchitecture, ser. MICRO 39. Washington, DC,
USA: IEEE Computer Society, 2006, pp. 423–432. [Online].
Available: http://dx.doi.org/10.1109/MICRO.2006.49

[11] G. Suh, S. Devadas, and L. Rudolph, “A new memory
monitoring scheme for memory-aware scheduling and parti-
tioning,” in High-Performance Computer Architecture, 2002.
Proceedings. Eighth International Symposium on, feb. 2002,
pp. 117 – 128.

[12] J. Chang and G. S. Sohi, “Cooperative cache partitioning
for chip multiprocessors,” in Proceedings of the 21st annual
international conference on Supercomputing, ser. ICS ’07.
New York, NY, USA: ACM, 2007, pp. 242–252. [Online].
Available: http://doi.acm.org/10.1145/1274971.1275005

[13] S. Kim, D. Chandra, and Y. Solihin, “Fair cache
sharing and partitioning in a chip multiprocessor
architecture,” in Proceedings of the 13th International
Conference on Parallel Architectures and Compilation
Techniques, ser. PACT ’04. Washington, DC, USA: IEEE
Computer Society, 2004, pp. 111–122. [Online]. Available:
http://dx.doi.org/10.1109/PACT.2004.15

[14] M. Sato, I. Kotera, R. Egawa, H. Takizawa, and H. Kobayashi,
“A cache-aware thread scheduling policy for multi-core pro-
cessors,” in Parallel and Distributed Computing and Networks
(PDCN), 2009 IASTED 8th International Conference on, feb.
2009, pp. 109 –114.

[15] A. Fedorova, S. Blagodurov, and S. Zhuravlev, “Managing
contention for shared resources on multicore processors,”
Commun. ACM, vol. 53, pp. 49–57, February 2010. [Online].
Available: http://doi.acm.org/10.1145/1646353.1646371

[16] S. Zhuravlev, S. Blagodurov, and A. Fedorova, “Addressing
shared resource contention in multicore processors via
scheduling,” in Proceedings of the fifteenth edition of ASPLOS
on Architectural support for programming languages and
operating systems, ser. ASPLOS ’10. New York, NY,
USA: ACM, 2010, pp. 129–142. [Online]. Available:
http://doi.acm.org/10.1145/1736020.1736036

[17] D. Kaseridis, J. Stuecheli, J. Chen, and L. John, “A
bandwidth-aware memory-subsystem resource management
using non-invasive resource profilers for large cmp systems,”
in High Performance Computer Architecture (HPCA), 2010
IEEE 16th International Symposium on, jan. 2010, pp. 1 –11.

[18] P. Padala, “Playing with ptrace,” Linux Journal, 103, 2002.

[19] S. Jarp, R. Jurga, and A. Nowak, “Perfmon2: a leap forward
in performance monitoring,” Journal of Physics: Conference
Series, vol. 119, no. 4, p. 042017, 2008. [Online]. Available:
http://stacks.iop.org/1742-6596/119/i=4/a=042017

