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Abstract	

	

Nowadays	 more	 and	 more	 physiological	 models	 are	 developed	 and	 applied	 to	 extract	

imaging	 biomarkers	 from	 medical	 images,	 which	 have	 been	 used	 for	 cancer	 and	 lesion	

detection	in	different	organs,	prostate,	breast,	lung,	brain,	etc.	So	the	current	trending	is	to	

study	the	potential	of	the	combination	of	these	emerged	biomarkers	in	diagnosis,	increasing	

the	need	for	image	coregistration.	 	

	

This	 thesis	 mainly	 consists	 of	 aligning	 MR	 (Magnetic	 Resonance)	 prostate	 perfusion	 and	

diffusion	sequences	using	software	Horos.	After	the	image	coregistration,	same	biomarkers	

established	by	previous	studies	(José	Manuel	Prats	and	others,	2013,	Eric	Aguado	and	others,	

2014)	were	 extracted	 using	Multivariate	 Curve	 Resolution	 (MCR),	 and	 later	 analyzed	with	

Partial	 Least	 Square	 regression	 (PLS)	model.	 The	 obtained	 results	 show	 a	 good	 prediction	

with	 f-score	 0.8144.	 Similar	 outcome	 has	 also	 been	 achieved	 with	 leave	 one	 out	 cross	

validation	(LOOCV).	As	a	preliminary	work,	further	studies	are	recommended	and	necessary	

to	evaluate	better	the	precision	and	to	extend	the	work	with	more	depth.	

	

Key	words:	MIA,	MCR,	PLS,	MR,	Perfusion,	Diffusion,	Image	coregistration	
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Resumen	

	
Hoy	 en	 día	 hay	 cada	 vez	más	modelos	 fisiológicos	 desarrollados	 y	 aplicados	 para	 extraer	

biomarcadores	 de	 imágenes	 médicas.	 Estos	 biomarcadores	 son	 usados	 mayormente	 en	

detectar	lesión	y	cáncer	en	diferentes	órganos,	próstata,	mama,	pulmón,	cerebro,	etc.	Por	lo	

cual	 la	 tendencia	 actual	 se	 convierte	 en	 estudiar	 el	 potencial	 de	 la	 combinación	 de	 estos	

biomarcadores	en	el	diagnóstico,	aumentando	la	necesidad	de	corregistro	de	imagen.	

	

Esta	tesis	consiste	principalmente	en	la	alineación	de	RM	(resonancia	magnética)	secuencias	

de	perfusión	y	difusión	utilizando	el	software	de	Horus.	Después	de	la	alineación,	los	mismos	

biomarcadores	establecidos	por	investigaciones	previas	 	 (José	Manuel	Prats	y	otros,	2013,	

Eric	Aguado	y	otros,	2014)	son	extraídos	usando	Curva	de	Resolución	Multivariante	(MCR),	y	

luego	 analizados	 con	 regresión	 de	 mínimos	 cuadrados	 parciales	 (PLS).	 Los	 resultados	

obtenidos	muestran	una	buena	predicción	con	f-score	0.8144.	Con	leave	one	out	validación	

cruzada	 (LOOCV)	 también	 se	 obtiene	 resultado	 parecido.	 Como	 un	 trabajo	 preliminar,	

estudios	adicionales	y	más	profundos	son	recomendados	y	necesarios	para	evaluar	mejor	la	

precisión	y	extenderlo	con	más	profundidad.	 	

	

Palabras	Clave:	MIA,	MCR,	PLS,	MR,	Perfusión,	Difusión,	Corregistro	de	imagen	
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Resum	

	
Hui	en	dia	hi	ha	cada	vegada	més	models	 fisiològics	desenrotllats	 i	 aplicats	per	a	extraure	

biomarcadors	d'imatges	mèdiques.	Estos	biomarcadors	són	usats	majorment	per	a	detectar	

lesió	i	càncer	en	diferents	òrgans,	pròstata,	mamella,	pulmó,	cervell,	etc.	Per	la	qual	cosa	la	

tendència	actual	es	convertix	a	estudiar	el	potencial	de	la	combinació	d'estos	biomarcadors	

en	el	diagnòstic,	augmentant	la	necessitat	de	corregistre	d'imatge.	

	
Esta	tesi	consistix	principalment	en	l'alineació	de	RM	(ressonància	magnètica)	seqüències	de	

perfusió	 i	 difusió	 utilitzant	 el	 programa	 Horos.	 Després	 de	 l'alineació,	 els	 mateixos	

biomarcadores	 establits	 per	 investigacions	 prèvies	 (José	 Manuel	 Prats	 i	 altres,	 2013,	 Eric	

Aguado	 i	altres,	2014)	són	extrets	usant	Corba	de	Resolució	Multivariant	 (MCR)	 ,	 i	després	

analitzats	amb	regressió	de	mínims	quadrats	parcials	 (PLS).	Els	resultats	obtinguts	mostren	

una	 bona	 predicció	 amb	 f-score	 0.8144.	 Amb	 leave	 one	 out	 validació	 encreuada	 (LOOCV)	

també	s'obté	resultat	paregut.	Com	un	treball	preliminar,	estudis	addicionals	i	més	profunds	

són	 recomanats	 i	 necessaris	 per	 a	 avaluar	 millor	 la	 precisió	 i	 estendre-ho	 amb	 més	

profunditat.	

	

Paraules	clau:	MIA,	MCR,	PLS,	MR,	Perfusió,	Difusió,	Corregistro	d'imatge	
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1.1.	 	 Objectives	

	

The	main	 object	 of	 this	 thesis	 is	 to	 align	 the	 perfusion	 and	 diffusion	Magnetic	 Resonance	

sequences	using	the	software	Horos,	to	investigate	whether	combined	biomarkers	of	these	

two	sequences	provide	a	good	prediction	for	prostate	tumor.	 	

	

Once	 the	 alignment	 is	 finished,	 the	 aligned	 sequences	 are	 analyzed	 through	 multivariate	

analysis,	 specifically	 Multivariate	 Curve	 Resolution	 (MCR)	 and	 Partial	 Least	 Squares	

regression	 (PLS).	 As	 the	 result	 of	 this	 study,	 a	 predictive	 model	 for	 tumor	 detection	 in	

prostate	is	developed	and	capable	of	explaining	associated	physiologic	phenomena	in	those	

sequences,	and	meanwhile	extracting	clinical	information	for	diagnostics.	 	
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1.2.	 	 Prostate	Cancer	

	

Carcinoma	 of	 the	 prostate,	 or	 generally	 called	 as	 prostate	 cancer,	 is	 the	 most	 common	

neoplasia	 in	 Europe,	 exceeding	 lung	 and	 colorectal	 cancer	 (Jemal	 A	 and	 others,	 2008).	 In	

Spain,	the	situation	is	no	different,	with	more	than	25.000	cases	diagnosed	annually,	21%	of	

tumors	among	men.	 	

	

Early	prostate	cancer	usually	does	not	 cause	clear	 symptoms,	which	makes	early	diagnose	

more	 difficult	 than	 others	 if	 the	 patient	 does	 not	 schedule	 regular	 physical	 examination.	

Sometimes	 when	 it	 does	 cause	 symptoms,	 the	 patient	 may	 undergo	 urinary	 dysfunction	

such	 as	 frequent	 and/or	 painful	 urination,	 increased	 urination	 at	 night,	 and	 blood	 in	 the	

urine.	These	symptoms	are	due	to	the	fact	that	the	prostate	gland	surrounds	a	part	of	the	

urethra,	 proximal	 to	 the	 bladder.	 And	 because	 the	 secretions	 from	 the	 prostate	 are	 also	

included	 in	 semen,	 prostate	 cancer	 may	 result	 in	 problems	 with	 erection	 or	 painful	

ejaculation	(Miller	DC	and	others,	2003).	 	

	

Although	most	prostate	cancers	are	slow	growing,	some	can	grow	more	quickly.	When	the	

cancer	 cells	 penetrate	 through	 prostate	 gland	 to	 adjacent	 tissue,	 it	 may	 spread	 to	 other	

parts	of	the	body	causing	additional	different	symptoms.	This	often	happens	with	advanced	

prostate	 cancer,	 probably	 in	 bones	 and	 lymph	nodes.	 By	 that	 time	 the	patient	would	 feel	

pain	 in	 the	 pelvis,	 vertebrae,	 ribs	 or	 leg	weakness	 should	 the	 cancer	 reach	 the	 spine	 and	

compress	the	spinal	cord.	 	

	

There	are	three	primary	risk	factors:	race,	family	history	and	age.	The	prostate	cancer	is	very	

rare	in	men	younger	than	45,	and	the	average	age	at	the	time	of	diagnosis	is	70	(Hankey	BF	

and	others,	1999).	Ethnically,	the	risk	is	relatively	higher	in	black	people,	with	a	prevalence	

rate	of	275	per	100,000.	However,	 the	 risk	 is	 doubled	 for	men	who	have	one	 first-degree	

family	member	with	prostate	cancer	compared	to	 those	without.	And	the	risk	 is	 increased	

between	5	to	11	times	when	there	are	two	or	more	first-degree	family	members	affected.	

On	the	other	hand,	mutations	in	genes	like	SNPs,	HPC1,	BRCA1	and	BRCA2	have	been	linked	

to	prostate	cancer.	 	

	

An	intriguing	fact	has	been	found	considering	the	prostate	carcinoma.	Most	of	the	prostate	

cancer	 originates	 in	 the	 peripheral	 area	 rather	 than	 the	 central	 zone,	 while	 the	 benign	

prostatic	hyperplasia	normally	affects	 the	 transitional	or	periurethral	 zone	of	 the	prostate.	

Yet	there	is	no	evidence	to	correlate	these	two	diseases.	 	
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Figure	1.	Different	areas	of	prostate	with	its’	prevalence	of	common	diseases.	(David	Marti	Aguado,	2014)	

	
As	 for	 diagnosis,	 only	 through	 biopsy	 can	 the	 prostate	 cancer	 be	 fully	 confirmed.	 Initial	

diagnosis	can	be	conducted	with	less	invasive	techniques	such	as	digital	rectal	examination	

(DRE),	prostate-specific	antigen	(PSA),	and	transrectal	ultrasonography.	The	PSA	is	a	marker	

of	prostatic	tissue	usually	found	higher	in	cancer	cells,	but	it	only	serves	as	a	complementary	

result	since	it	is	also	the	consequence	of	prostatitis	or	other	benign	diseases.	Not	to	mention	

that	 some	 of	 the	 prostate	 cancer	 cases	 even	 give	 normal	 results.	 Generally	 if	 the	 rectal	

examination	 turned	 out	 to	 be	 suspicious	 and	 a	 PSA	 superior	 to	 4	 ng/ml,	 it	 would	 be	

sufficient	criteria	for	a	prostatic	biopsy.	It	is	recommended	to	all	men	over	50	years	to	have	

a	 DRE	 and	 PSA	 every	 year.	 However,	 studies	 have	 shown	 that	 this	 recommendation	 for	

population	 screening	 of	 prostate	 cancer	 is	 not	 convenient	 owing	 to	 the	 risks	 of	

over-diagnosis	and	over-treatment	(Andriole	GL	and	others,	2009;	Schröder	FH	and	others,	

2009).	 	 	
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1.3.	 	 Prostate	Imaging	

	

Thanks	 to	 the	 great	 advances	 in	 medical	 imaging,	 the	 diagnosis	 of	 prostate	 cancer	 is	

extended	to	non-invasive,	painless	method	using	also	biomarkers.	An	 imaging	biomarker	 is	

defined	as	an	extracted	feature	of	medical	 images,	which	can	be	measured	objectively	and	

yields	quantitative	 information.	Nowadays	Magnetic	Resonance	Imaging	(MRI)	has	become	

one	 of	 the	 most	 frequently	 applied	 medical	 imaging	 techniques	 in	 diagnosing	 prostate	

cancer,	 because	 of	 its	 versatility,	wide	 range	 of	 image	 contrasts,	 especially	 its	 capacity	 to	

combine	the	spatial/temporal	resolutions.	On	the	other	hand,	it	is	rather	safe	compared	to	

other	techniques	based	on	ionizing	radiation.	 	

	

According	 to	 different	 target	 organs,	 corresponding	 tissue	 property	 is	 weighted	 into	

frequency	of	 the	magnetic	 field.	Then	depending	on	the	choices	of	various	contrast	media	

and	 configurable	 parameters	 during	 image	 acquisition,	 along	 with	 the	 help	 of	

multi-parameter	 techniques	 or	 image	 post-processing,	 the	 following	 information	 can	 be	

revealed	in	MRI	images:	

	

1. Anatomical	information	obtained	from	T2-weighted	MRI	images.	 	

	

Prostate	 cancer	 in	 T2-weighted	 MRI	 images	 is	 typically	 represented	 as	 a	 focal	

lesion	of	 low	signal	 intensity.	Although	 it	has	been	widely	used	for	oncologists	as	

the	first	evidence	to	detect	prostate	cancer	before	treatment,	this	modality	 is	far	

from	providing	satisfactory	sensitivity	and	specificity	 (Quint	LE	and	others,	1991).	

Under	 these	 circumstances,	 both	 perfusion	 and	 diffusion	 sequences	 have	 been	

investigated	and	applied	to	improve	the	diagnostic	performance	of	MRI.	 	

	

1.3.1.	 	 Perfusion	 	

	
2. Information	of	angiogenesis,	also	known	as	perfusion,	through	dynamic	sequences	

acquired	in	T1-weighted	MRI	images,	after	Dynamic	Contrast-Enhancement	(DCE).	 	

	

Angiogenesis	 is	 a	 biological	 process	 associated	 to	 tissues	with	 increased	nutrient	

and	oxygen	demand	resulting	 in	 the	 formation	of	new	vessels,	and	 thus	 increase	

the	blood	perfusion.	 Therefore	 it	 is	 commonly	present	 in	 tumor	 cells	 but	 rare	 in	
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healthy	subjects.	The	quantification	of	the	tumor	angiogenesis	measurements	has	

shown	 great	 potential	 in	 applications	 not	 only	 to	 differentiate	 prostate	 cancer	

from	 noncancerous	 tissue	 and	 gradate	 tumor	 stages,	 but	 also	 to	 evaluate	

therapeutic	 response	early	after	 treatment	onset	 (Jackson	ASN	and	others,	2009;	

Leach	MO	and	others,	2005).	 	

	

In	order	to	attain	quantitative	measurements,	one	of	the	most	popular	approaches	

is	 the	mathematical	 pharmacokinetic	model	 that	 quantifies	 the	 variations	 in	 the	

local	 concentration	 of	 the	 contrast	 medium	 over	 time.	 Specifically	 saying,	 it	

characterizes	 the	 intensity	 versus	 time	 curves	 per	 pixel,	 providing	 physiologically	

meaningful	parameters.	Of	critical	 importance	 is	 the	appropriate	 selection	of	 the	

arterial	 input	 function	 (AIF)	 based	 on	 the	 tumor-feeding	 artery	 (Figure	 2).	 If	

represented	 in	 graphs,	 it	 would	 be	 composed	 of	 a	 baseline,	 an	 abrupt	 positive	

peak,	and	a	fast	decay.	 	

	

The	next	step	is	to	apply	mathematical	analysis	to	the	tissue	enhancement	curves	

on	a	pixel-by-pixel	basis.	At	 last,	 the	quantitative	biomarkers	Kep,	Ktrans,	Ve	and	Vp	

are	obtained	by	curve	fitting	algorithms,	also	for	each	pixel.	The	general	equation	

for	the	pharmacokinetic	model	is	(Tofts	PS	and	others,	1999):	 	

	

! !, !, ! = !!"#$% !!"#!
! ! !!!"#!  !"	 	 	 	 	 	 	 	 	 	 	 	 	 (1)	

	

where	 C(x,y,t)	 is	 the	 tissue	 enhancement	 curve	 at	 (x,y)	 pixel,	 CAIF(t)	 the	 AIF	

enhancement	curve,	and	Kep	the	washout	constant.	 	
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Figure	2.	The	four	biomarkers	extracted	from	the	pharmacokinetic	model.	Kep:	coefficient	of	

transference	between	plasma	and	extravascular	extracellular	space	(EES);	K
trans

:	transfer	constant,	

Ve:	volume	fraction	of	the	EES;	Vp:	volume	fraction	of	plasma	in	the	intravascular	compartment.	

(David	Marti	Aguado,	2014)	

	

These	 four	 biomarkers	 are	 of	 high	 correlation	 with	 the	 angiogenesis.	 And	 by	

representing	 them	 numerically	 or	 with	 regionally	 colored	 parametric	 maps,	

intratumoral	 heterogeneity	 of	 the	 vascular	 distribution	 can	 easily	 be	 analyzed	

(Barrett	T	and	others,	2007).	

	

Nevertheless,	 to	 determine	 this	 function	 requires	 visual	 inspection	 and	 manual	

selection	 of	 the	 region	 of	 interest	 (ROI).	 This	 process	 inevitably	 introduces	

user-dependent	 bias	 into	 the	 analysis,	 making	 almost	 impossible	 the	

reproducibility	 and	 standardization	 of	 different	 cases.	 Moreover,	 series	 of	

assumptions	 about	 the	 tissue	 vascular	 environment	 have	 to	 be	 made	 unless	 a	

priori	knowledge	is	provided.	All	these	limitations	have	prevented	the	widespread	

use	of	this	model	in	clinical	practice.	 	 	

	

	

Figure	3.	Dynamic	patterns	(AIF)	of	dynamic	contrast-enhanced	magnetic	resonance	images.	

	 (José	Manuel	Prats	Montalbán	and	others,	2013)	

	

An	 alternative	 is	 referring	 to	 Multivariate	 Image	 Analysis	 (MIA),	 particularly	

Multivariate	Curve	Resolution	–	Alternating	 Least	 Squares	model	 (MCR-ALS).	 The	

idea	behind	MCR	is	that	the	pixel	enhancement	curve	is	now	considered	as	a	linear	

combination	 of	 various	 dynamic	 behaviors.	 Additionally,	 physiological	

interpretability	is	improved	thanks	to	the	lack	of	orthogonality	restriction	and	the	

introduction	of	a	priori	knowledge	to	the	model.	 	

	

To	compare	with	the	mathematical	pharmacokinetic	model,	the	MCR-ALS	is	faster	

and	easier	to	reproduce	the	results,	no	expert	knowledge	needed.	Besides,	not	like	

PCA,	it	allows	imposing	constraints	like	non-negativity.	 	
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Therefore	the	MCR-ALS	model	is	chosen	and	used	to	extract	biomarkers	in	this	

thesis,	and	will	be	more	thoroughly	described	in	the	next	chapter.	 	 	

	

1.3.2.	 	 Diffusion	

	
3. Information	about	molecular	movements	from	diffusion	images.	 	

	

Apart	from	angiogenesis,	cellularization	is	another	non-negligible	sign	for	a	tumor.	

They	are	 the	very	 first	 steps	 in	oncogenesis,	 thus	 their	presence	usually	confirms	

the	existence	of	an	early	tumor.	One	possible	way	to	look	into	these	two	biological	

processes	is	through	studying	the	tissue	local	diffusion,	resulted	from	the	thermal	

agitation	of	the	water	molecules	inside	the	body.	 	

	

Diffusion	is	defined	as	a	process	in	which	free	molecules	move	randomly	in	space.	

Inside	 of	 human	 body,	 cellular	 structures	 stand	 as	 barriers	 to	 diffusion	 of	 free	

water	molecules.	When	the	tissue	is	highly	vascularized,	free	molecules	can	move	

at	a	high	velocity	within	the	vessels.	Yet	when	the	tissue	is	highly	cellularized,	free	

molecules	 are	 greatly	 restricted	 to	 movement	 since	 the	 interstitial	 space	 is	

drastically	decreased.	 	

	

The	MRI	 is	the	only	modality	that	permits	the	calculation	and	visualization	of	this	

process	 in	 vivo	 directly	 from	 the	 molecule	 movements	 (L.	 Martí-Bonmatí	 and	

others,	 2010).	 This	 technique,	 Diffusion-Weighted	 Magnetic	 Resonance	 Imaging	

(DW-MRI),	 has	 the	 advantage	 of	 providing	 high-resolution	 images.	 Cellularized	

tissue	 (tumor)	 would	 appear	 with	 higher	 signal	 intensity,	 in	 accordance	 with	 its	

proliferation	and	aggressiveness.	 	

	

The	 weighted	 magnetic	 resonance	 signal	 is	 very	 sensitive	 to	 water	 molecules	

movement.	Due	to	the	thermic	agitation	of	water	molecules,	the	relaxation	of	the	

spines	 (loss	 of	 synchronism)	 is	 accelerated.	 And	 the	 repetitive	 displacements	 of	

water	make	 the	 nuclear	 spines	 spread	 to	 areas	where	 the	magnetic	 field	would	

alter	from	the	original,	causing	a	modulation	of	the	relaxation	frequency.	 	

	

The	 image	 acquisition	 of	 the	 DW-MRI	 depends	 on	 the	 configurations	 of	 the	

equipment	and	a	key	parameter,	b-value	(s/mm2).	It	is	essential	because	the	image	

signal	decreases	as	the	acquired	b-value	increases,	informing	about	the	degree	of	
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enhancement	 in	 diffusion.	 Furthermore,	 this	 attenuation	 changes	 with	 different	

characteristics	 of	 the	 tissue,	 being	 stronger	 regarding	 angiogenesis	 and	 weaker	

with	cellularization.	That	is	to	say	distinct	kinds	of	tissue	would	show	varied	signal	

attenuation	under	the	same	b-value.	 	

	

Normally	the	recommended	rank	for	b-value	is	from	100	s/mm2	to	800	s/mm2,	but	

for	lesion	detection	and	characterization	purposes,	5	values	(0,	50,	200,	400,	1000)	

are	always	applied	in	daily	practice	to	study	the	attenuation	of	the	signal.	 	

	

In	 general	 terms,	 measured	 parameters	 of	 diffusion	 state	 the	 effective	

displacement	 of	 water	molecule	 during	 a	 time	 interval	 (D.	 Le	 Bihan	 and	 others,	

1988).	It	is	assumed	that	at	the	initial	instant	molecules	are	concentrated	together	

at	 one	 certain	 point.	 After	 a	 time	 interval,	 without	 outside	 forces,	 they	 would	

expand	in	three	dimensions	according	to	Einstein’s	diffusion	equation:	

	

r2	=	6	·	!	·	!	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (2)	
	

Where	t	is	the	time	interval	elapsed,	r	the	average	radius	of	distribution,	and	D	the	

coefficient	of	diffusion,	usually	expressed	as	mm2/s.	 	

	

There	 are	 several	 ways	 to	 conduct	 a	 diffusion	 study.	 One	 is	 called	 Intra-Voxel	

Incoherent	Motion	–	Diffusion	Weighted	Imaging	(IVIM-DWI).	It	is	a	mathematical	

pseudo	 bi-exponential	 model	 that	 quantifies	 signal	 loss	 and	 restriction	 of	 the	

diffusion	 coefficient	 of	 free	water	molecules	 inside	 of	 tumor	 compared	 to	 those	

inside	of	healthy	prostatic	parenchyma.	As	a	matter	of	fact,	the	curve	fitting	with	

the	 following	 equation	 takes	 two	 behaviors	 into	 consideration,	 slow	 and	 fast	

diffusion,	related	to	cellularity	and	vascularization.	

	

!
!!
= 1 − ! · !!!·! + ! · !!!·!∗ 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (3)	

	 	 	

Being	 s/s0	 the	 normalized	 value	 of	 signal,	 f	 the	 vascular	 fraction,	 D*	 the	

pseudo-perfusion	 coefficient.	 The	 vascular	 fraction	 f	 is	 a	 weighted	 parameter	 in	

regards	to	the	proportion	of	vascular	tissue	in	a	voxel.	The	output	of	this	equation	

is	weighted	average	of	the	slow	and	fast	diffusion,	characterized	and	weighted	by	

D	and	D	+	D*	respectively.	 	

	

Though	 this	model	 is	 rather	physiologically	 appropriate,	 the	distortion	 caused	by	

the	normalization	of	 the	signal	 reduces	 the	signal-to-noise	 ratio	and	deforms	 the	
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original	curve	(Figure	4).	Moreover,	the	biomarkers	of	this	model,	D,	D*,	and	f,	do	

not	 illustrate	 the	 correlation	 between	 pixels	 with	 the	 same	 behavior,	 and	 thus	

increase	the	uncertainty	and	produce	results	that	are	difficult	to	be	interpreted.	 	

	

	

Figure	4.	Signal	attenuation	in	DW-MRI.	(a)	before	normalization	and	(b)	after	normalization	(Eric	

Aguado	Sarrió	and	others,	2014).	 	

	

Again,	MCR-ALS	can	be	used	here	so	as	to	analyze	the	relation	between	pixels.	By	

introducing	a	priori	knowledge	and	other	constraints,	for	example,	non-negativity,	

unimodality,	 and	 shape	 constraints,	 the	 model	 is	 able	 to	 select	 non-orthogonal	

behaviors	with	more	physiological	meaning,	and	to	model	additive	phenomena.	 	

	

In	 the	 case	 of	 diffusion,	 a	 two-components	 model	 is	 applied.	 The	 biomarkers	

established	 in	 this	 model	 are	 d1	 (slow	 diffusion),	 d2	 (fast	 diffusion),	 and	 RSS	

(residual	 sum	 of	 squares).	 This	model,	 whose	 biomarkers	 are	 complementary	 to	

those	of	 the	 IVIM-DWI,	has	been	proved	capable	of	directly	 locating	and	grading	

the	 intensity	 of	 these	 behaviors	 in	 the	 DW-MRI	 images,	 improving	 the	 clinical	

diagnosis	(Eric	Aguado	Sarrió	and	others,	2014).	

	

The	procedure	of	extracting	the	biomarkers	will	be	more	thoroughly	described	 in	

the	next	chapter.	 	
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1.4.	 	 Image	Coregistration	

	
The	 coregistration	 of	medical	 images	 of	 the	 same	patient	 acquired	 in	 different	modalities	
has	been	demonstrated	beneficial	in	improving	the	prediction	for	pathological	response	and	
accuracy	of	locating	regional	lesions,	typically	in	brains,	breasts,	lungs,	etc	(J.	Ashburner	and	
K.	 Friston,	 1997;	 Yeong	 Yi	 An	 and	 others,	 2015;	 Gerhard	 W.	 Goerres	 and	 others,	 2002).	
Nowadays	 as	 the	 image	 post-processing	 techniques	 rapidly	 advance,	 more	 and	 more	
biomarkers	are	established	and	extracted	from	different	modalities	of	images.	That	is	why	to	
accurately	 relate	 information	 from	 distinct	 images	 is	 of	 great	 interests	 and	 so	 widely	
investigated.	
	

Alignment	of	a	PET	image	with	a	MRI	image	was	one	of	the	earliest	successful	examples	of	

coregistration,	 spawning	 a	 great	 variety	 of	 clinical	 applications.	 Its	 significance	 is	 that	 it	

permits	structural	or	anatomical	information	to	be	deduced	from	images	with	less	resolution,	

like	PET	images	in	this	case.	Normally,	the	image	coregistration	applications	can	be	classified	

as:	

	

Ø Multi-modality	 registration.	 The	 images	 are	 taken	 with	 different	 imaging	

technologies	of	the	same	part	of	the	human	body,	extremely	powerful	when	

dealing	 with	 obtaining	 anatomical	 information	 from	 images	 with	 coarser	

resolution.	
	

Ø Intra-modality	registration.	 Images	are	taken	over	time	with	one	modality	 in	

the	 same	 patient,	which	 often	 happens	when	 the	 goal	 is	 to	monitor	 subtle	

changes	or	to	inject	different	contrast	media,	for	instance,	MRI	perfusion	and	

diffusion	sequences.	 	

	

Ø Registration	 of	 images	 to	 physical	 space.	 Certain	 interventional	 or	 surgical	

treatments	 rely	 greatly	 on	medical	 images	 to	 achieve	 productive	 outcome.	

Especially	during	 treatment,	 the	 image-derived	 information	must	be	aligned	

properly	with	actual	physical	space.	

	
In	 this	 thesis	 one	 technique	 of	 image	 alignment	 (software	 HorosTM)	 has	 been	 applied	 to	

synchronize	 the	 MRI	 perfusion	 and	 diffusion	 sequences,	 so	 that	 later	 the	 combined	

biomarkers	can	be	analyzed	using	PLS-DA	 to	determine	whether	 the	combination	of	 these	

two	modalities	improves	the	predictability	of	prostate	cancer.	
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Chapter	2.	MATERIALS	AND	METHODS	
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2.1.	 	 Materials	

	

Both	the	diffusion	and	perfusion	sequences	are	performed	along	the	volume	of	the	prostate,	

at	spatial	planes	corresponding	to	slices	of	the	human	body.	All	patient	cases	are	from	local	

hospitals,	Valencia.	

	

2.1.1.	 	 Perfusion	sequences	

	

Anonymized	DCE-MR	sequences	of	nine	patients	with	surgically	proven	prostate	cancer	have	

been	 studied	 in	 this	 thesis.	 The	 images	 were	 taken	 with	 the	 contrast	 medium	 Gd-DOTA,	

under	 a	 resolution	 of	 192	 x	 192	 pixels,	 47	 non-equally	 spaced	 temporal	 samples,	 and	 12	

slices	covering	the	whole	pelvis	area.	As	output,	a	3D	matrix	of	564	DICOM	images	(12	slices	

x	47	time	points)	is	constructed.	 	

	

	
Figure	5.	A	dynamic-enhanced	MRI	image	(perfusion)	shown	in	Horos	with	DICOM	format.	
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2.1.2.	 	 Diffusion	sequences	

	

The	 diffusion	 sequences	 were	 taken	 with	 DW-MRI	 of	 the	 same	 nine	 patients	 but	 at	 a	

different	 time,	 under	 a	 resolution	 of	 192	 x	 192	 pixels,	 also	 12	 slices	 including	 the	 whole	

pelvis	 area.	 Six	 different	 b-values	 (0,	 50,	 200,	 400,	 2000)	 s/mm2	 are	 administered.	 So	 the	

output	is	a	3D	matrix	of	72	DICOM	images	(12	slices	x	6	time	points)	this	time.	 	

	

	 	
Figure	6.	A	diffusion	weighted	MRI	image	shown	in	Horos	with	DICOM	format.	

	

	

2.1.3.	 	 Software	

	

The	software	applied	for	image	coregistration	is	Horos	(Purview,	Annapolis,	MD,	USA)	a	free,	

open	source	medical	image	viewer	based	upon	OsiriX	as	well	as	other	open	source	libraries.	

OsiriX	 is	 a	 closed	 source	 program,	 whose	 FDA	 approved	 premium	 version	 costs	 699	 USD	

(suitable	for	medical	use).	Horos	has	been	selected	to	conduct	image	alignment	in	this	study	

because	 it	 is	64-bit,	 compared	 to	 the	32-bit	 free	version	of	OsiriX	 (OsiriX	Lite).	This	means	

that	Horos	conducts	faster	study	loading	than	OsiriX	Lite.	Another	important	feature	is	that	

Horos	 is	 advertisement	 free	 while	 OsiriX	 Lite	 is	 not.	 Every	 time	 one	 opens	 OxiriX	 Lite,	 a	

window	 disclaiming	 “Not	 for	 Medical	 Use”	 appears,	 making	 the	 user	 experience	 less	

satisfactory	to	a	certain	extent.	 	
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Figure	7.	Tag	appeared	in	codes	of	Horos.	

	

The	 software	 later	 used	 for	 extraction	 of	 biomarkers	 and	 statistical	 analysis	 is	 Matrix	

Laboratory,	 commonly	 known	 as	 Matlab	 (The	 Mathworks	 Inc.,	 Natick,	 MA,	 USA).	 The	

MCR-ALS	 and	 PLS-DA	 codes	 are	 based	 on	 codes	 previously	 programmed	 by	 Eric	

Aguado-Sarrió	and	José	Manuel	Prats-Montalbán,	of	the	Multivariate	Statistical	Engineering	

Group,	Universitat	Politècnica	de	València,	and	later	adapted	and	modified	for	this	work.	
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2.2.	 	 Methods	

2.2.1.	 	 Image	Registration	

	

All	 programmed	 codes	 for	Horos	 is	 available	 at	GitHub,	where	 one	 can	 also	 share	 his/her	

own	 codes.	 Same	 as	 Osirix,	 Horos	 is	 written	 in	 the	 programming	 language	 Objective-C.	

Objective-C	 is	a	general-purpose,	object-oriented	and	rather	straightforward	because	of	 its	

Smalltalk-style	messaging.	For	example,	Figure	8	is	part	of	the	code	DicomSeries,	@property	

represents	the	categorical	information	contained	in	the	tags	of	a	dicom	series.	The	rest	of	it	

amounts	to	some	initial	steps	when	opening	dicom	images,	such	as	confirmation	of	filename	

for	all	images,	identification	of	paths	and	key	images,	modification	of	series,	etc.	 	

	

	
Figure	8.	Part	of	DicomSeries	code	of	Horos.	

	

The	 synchronization	of	 images	 consists	 in	 aligning	pixels	 that	 are	 congruent	 in	 two	 series,	

which	 means	 to	 identify	 the	 “counterpart”	 pixel	 of	 the	 one	 in	 the	 reference	 image,	

corresponding	to	the	same	anatomical	point.	 	
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Figure	9.	Image	alignment	at	pixel	level	(Colin	Studholme).	

	 	

	

Due	 to	 the	 fact	 that	 the	patients	 are	 scanned	at	different	 times,	orientation,	position	and	

state	 of	 the	 target	 organ	 (prostate)	 would	 undoubtedly	 be	 distinct	 for	 perfusion	 and	

diffusion	 sequences.	Besides,	 the	patient	 location	and	orientation	with	 respect	 to	 imaging	

system	cannot	be	easily	 controlled	or	known.	That	 is	why	a	 lineal	 combination	of	 the	 two	

sequences	does	not	suffice	for	a	correct	alignment	at	pixel	level.	 	

	

With	Horos	 two	 series	of	 images	are	 synchronized	automatically	when	 loaded	 together	 at	

the	workstation	(Figure	10	(b)).	 In	order	to	do	that	the	function	“sync	series	(same	study)”	

under	 the	 “2D	 viewer”	 bar	 should	 be	 activated	 (Figure	 10	 (a)).	 The	 first	 series	 opened,	

always	 displayed	 at	 left,	 is	 the	 series	 taken	 as	 reference.	 This	 means	 that	 the	 secondly	

loaded	 series	 is	 moved	 upon	 the	 former	 to	 find	 “counterpart”	 pixels.	 In	 this	 study	 the	

perfusion	sequences	has	been	chosen	as	the	reference	set.	 	

	

	

(a)	

	

(b)	

Figure	10.	Codes	for	synchronizing	series.	(a)	Activation	state	of	“sync	series”	function;	(b)	To	synchronize	only	

opened	series.	
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Once	loaded	the	two	series,	regions	of	interest	(ROI)	have	been	selected	manually	with	the	

function	 “closed	polygon”	 so	 as	 to	 fit	 the	prostate	 as	much	as	possible	 (Figure	11).	Horos	

provides	various	tools	for	ROI	selection	in	the	pull-down	menu,	Ovals,	Lines,	Rectangles	and	

Polygons.	 The	 Repulsor	 tool	modifies	 the	 ROI	 created,	 by	 “pushing”	 the	 borders	 to	make	

subtle	changes.	With	the	Propagate	tool	the	ROI	made	in	one	image	can	be	extended	to	the	

whole	slice	(47	for	perfusion	and	6	for	diffusion).	At	last	manual	masks	(ROIs)	were	made	for	

each	slice	and	same	ROIs	are	used	for	both	perfusion	and	diffusion	sequences.	This	way	the	

areas	covered	and	position	of	ROIs	are	the	same	for	both	sequences	to	assure	feasibility	for	

later	analysis	(Figure	12).	 	

	

	

Figure	11.	Codes	for	Polygon	selection.	 	

	

	

Figure	12.	Workstation	of	one	case	(out	of	nine)	with	ROIs	selected	(shown	as	green).	 	
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As	 represented	 in	 Figure	 12,	 prostate	 is	 normally	 located	 in	 the	 middle	 of	 the	 image,	

possessing	a	more	bright	contrast.	Yet	not	all	that	bright	zone	was	selected	as	a	precaution	

against	 disturbance	 towards	 the	 behaviors	 and	 introduction	 of	 more	 noise	 into	 PLS-DA	

model.	Next,	for	the	purpose	of	reducing	computational	cost	as	well	as	noise,	pixels	outside	

of	ROIs	were	set	to	zero.	Finally	the	new	constructed	series	were	exported	to	DICOM	images	

to	be	analyzed	with	MATLAB.	

	

	

2.2.2.	 	 Extraction	of	biomarkers	

	

The	exported	DICOM	images,	like	the	originals,	can	be	considered	as	a	3D	matrix	data,	which	

needs	to	be	unfolded	 into	a	2D	matrix	for	MCR	model.	Because	the	resolution	 is	the	same	

for	perfusion	and	diffusion	sequences,	each	slice	of	 the	case	 is	unfolded	as	a	2D	matrix	of	

size	36,864	x	time	points/slice,	being	6	for	diffusion	and	47	for	perfusion.	Then	each	slice	is	

stacked	 one	 below	 the	 other	 in	 rows	 forming	 a	 second	 2D	matrix	 of	 size	 442,368	 x	 time	

points/slice.	 This	 way	 the	wanted	 information	 is	 kept	 intact	 as	 the	 defined	 behaviors	 are	

forced	to	maintain	the	same	internal	correlation	structure.	
	

u MCR-ALS	for	perfusion	
	
According	 to	 radiologists	 and	 professionals	working	with	 these	 images,	 the	 first,	

second,	 ninth,	 and	 tenth	 slice	 does	 not	 include	 prostate	 area.	 Therefore	 these	

slices	were	discarded	later	during	the	process.	

	

As	 previously	 described	 in	 chapter	 1,	 there	 are	 three	 dynamic	 behaviors	 in	 the	

perfusion	model,	 type	A,	NT	and	VT.	MCR	 is	an	 iterative	method	that	performs	a	

bilinear	decomposition	of	matrix	X	by	means	of	an	ALS	optimization	(José	Manuel	

Prats	Montalbán	and	others,	2013):	

	

X	=CST	+	E	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (4)	

	

Each	dynamic	behavior	is	modeled	in	rows	of	the	matrix	ST,	the	relative	importance	

of	each	behavior	corresponding	to	each	pixel	is	contained	in	the	matrix	C,	and	E	is	

the	residue	matrix.	 	

	

As	 it	 was	 mentioned	 above,	 a	 priori	 knowledge	 is	 introduced	 in	 the	 MCR-ALS	

model	and	can	be	employed	as	an	 initial	 estimation.	Apart	 from	 that,	 it	helps	 to	
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select	 appropriate	 constraints	 so	 that	 the	 iterative	 model	 can	 yield	 finite	 and	

interpretable	solutions.	

	

To	 know	 what	 is	 to	 be	 expected	 is	 very	 helpful	 to	 the	 correct	 definition	 of	 the	

“pure”	 dynamic	 behaviors	 existing	 in	 the	 images.	 After	 the	 initial	 estimation,	

principal	 component	 analysis	 (PCA)	 can	 be	 applied	 to	 validate	 the	 a	 priori	

knowledge	and	to	determine	the	number	of	the	behaviors.	To	do	so	the	umber	of	

latent	variables,	or	 the	principal	components	 (PCs),	with	the	highest	variance	are	

counted.	 Once	 the	 number	 is	 determined,	 the	 purest	 dynamic	 behaviors	 can	 be	

sought	 by	 using	 Simple-to-use	 Interactive	 Self-modeling	 Mixture	 Analysis	

(SIMPLISMA)	 based	 algorithm	 of	 the	 software	 available	 at	 the	 MCR	 homepage	

(MCR	 homepage,	 2016).	 In	 this	 case,	 three	 dynamic	 behaviors	 have	 been	

identified:	

	

l Type	AIF:	drastic	enhancement,	corresponding	to	AIF.	

l Type	NT:	low	progressive	enhancement	with	no	decay,	corresponding	to	

healthy	tissue.	 	

l Type	VT:	delayed	drastic	enhancement	with	widened	and	slow	decay,	

corresponding	to	highly	vascularized	tissue	(tumor).	

	

The	 next	 move	 would	 be	 to	 find	 the	 dynamic	 behaviors	 present	 in	 each	 pixel,	

which	could	be	from	zero	to	all	of	them.	And	because	the	goal	here	is	to	“decipher”	

biological	 information	 out	 of	 the	 database,	 constraints	 like	 non-negativity	 is	

employed	 for	 the	 model	 as	 a	 pixel	 with	 negative	 intensity	 does	 not	 make	 any	

physiological	sense.	Even	though	a	priori	 information	is	applied	for	determination	

of	 dynamic	 behaviors	 in	 pixels,	 it	would	 be	 better	 to	 leave	 it	 out	when	 applying	

local	 MCR	 models	 for	 each	 case.	 This	 way	 possible	 bias	 resulted	 from	 a	 priori	

knowledge	is	prevented	and	the	attained	AIF	is	best	fitted	in	each	case.	

	

After	 applying	 non-negativity	 constraints	 on	 pixel	 intensity	 values	 and	 on	 the	

dynamic	behaviors,	the	C	matrix	can	now	be	folded	back	into	the	original	size	(192	

x	 192)	 to	 obtain	 the	 distribution	maps.	 Only	 through	 these	maps	 can	 the	 pixels	

with	 more	 correlation	 to	 the	 dynamic	 behaviors	 be	 located.	 However,	 the	 local	

MCR	model	discards	 the	type	AIF	behavior,	 since	there	are	no	arteries	 inside	the	

prostate.	 The	 newly	 emerged	 behavior	 is	 identified	 by	 doctors	 as	 the	

non-physiological	 contrast	 media	 arrival	 (CMA),	 or	 simply	 the	 artificial	 effect,	

which	seems	to	affect	the	VT	and	NT	behaviors	to	certain	degree	(Figure	13).	
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Figure	13.	(a)	Initially	estimated	dynamic	behaviors,	type	NT	(yellow),	type	VT	(blue),	type	contrast	

media	arrival	(red).	(b)	Dynamic	behaviors	patterns	of	one	case.	

	

Once	all	nine	cases	have	been	examined	to	show	similar	patterns	as	Figure	13(a)	 	

(pixels	 with	 extreme	 value	 would	 deform	 the	 patterns	 and	 catastrophically	

influence	 the	 PLS-DA	 model),	 the	 same	 ROIs	 defined	 by	 doctors	 for	 the	

pharmacokinetic	 model	 have	 been	 used	 for	 segmentation.	 The	 ROIs	 are	 the	

regions	of	 interest	marked	for	each	case,	which	are	composed	of	either	tumor	or	

the	 healthy	 tissue	 of	 prostate,	 denominated	 as	 DL	 -	 dominant	 lesion	 or	 HP	 –	

healthy	peripheral.	During	segmentation,	the	ROIs	serve	as	sample	zones	used	to	

relate	 regions	 in	 the	 image	 with	 comparable	 biological	 composition-related	

properties.	 	

	

	

u MCR-ALS	for	diffusion	
	

With	diffusion	the	model	does	not	vary	much	from	the	basic	equation,	(Equation	

4).	This	 time	the	matrix	X	 contains	the	signal	spectrum	for	each	pixel	 in	rows;	ST	

contains	 in	 rows	 the	 diffusion	 behaviors	 modeled;	 C	 contains	 the	 relative	

contribution	of	modeled	behavior	for	each	pixel,	and	E	is	the	residue	matrix.	

	

The	 studied	 phenomena	 in	 diffusion	 are	 the	 slow	 diffusion	 (d1),	 associated	 to	

cellularization,	and	fast	diffusion	(d2),	associated	to	vascularization.	Assuming	that	

the	 signal	 spectrum	 in	 a	 pixel	 can	 be	 expressed	 as	 a	weighted	 sum	 of	 different	

decreasing	exponential	functions,	so	the	following	model	 is	proposed	in	previous	

investigation	(Eric	Aguado	Sarrió,	2014):	
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!! = !!" !!!!!!! ;     !!  ,!!  , !!" ≥ 0!
!!! 	 	 	 	 	 	 	 	 	 	 	 	 	 (5)	

	

where	I	means	the	number	of	exponential	functions	used,	the	rest	are	exponential	

parameters	determined	sequentially.	Details	can	be	found	in	(Eric	Aguado	Sarrió,	

2014).	

	

Constraints	need	to	be	employed	here	as	well.	As	mentioned	earlier	in	chapter	1,	

non-negativity	constraints	are	used	in	matrices	S	and	C,	for	the	behaviors	and	their	

relative	contribution	lied	in	a	pixel	have	to	be	positive	to	make	sense.	Unimodality	

constraints	 are	 only	 used	 for	 the	 matrix	 S,	 where	 the	 modeled	 behaviors	 are	

monotonically	 decreasing	 (Eric	 Aguado	 Sarrió	 and	 others,	 2014).	 At	 last	 shape	

constraints	 are	 applied	 also	 to	 matrix	 S	 inside	 ALS	 to	 assure	 that	 the	 modeled	

behaviors	are	expressed	as	exponential	decay.	 	

	

	
Figure	14.	The	exponential	decay	of	the	modeled	behaviors.	

Blue:	slow	diffusion	(d1);	red:	fast	diffusion	(d2).	

	

The	ST	and	C	matrices	gather	at	each	pixel	position	the	behaviors	as	well	as	their	

relative	 contribution.	 Like	 in	 perfusion,	 the	matrix	C	 is	 then	 folded	 into	 original	

spatial	dimension	(192	x	192)	 to	build	distribution	maps.	The	 idea	behind	 it	 is	 to	

relocate	the	pixels	more	related	to	the	corresponding	behaviors	in	each	column	of	

C,	 because	 these	 maps	 generated	 from	 C	 are	 the	 ones	 performing	 as	 imaging	

biomarkers.	 Later	 the	 distribution	maps	 of	 the	 RSS	 can	 be	 used	 to	 validate	 the	

result,	as	the	pixels	not	well	fitted	by	the	model	are	included	in	it.	 	

	

The	 next	 step	 is	 to	 apply	 the	 same	 ROIs	 used	 for	 perfusion	 to	 diffusion	models	

segmentation.	It	must	be	stressed	that	the	ROIs	are	applied	with	perfusion	masks	

because	 the	 perfusion	 sequences	 were	 taken	 as	 reference	 during	 image	
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alignment.	 	

	

With	the	MCR	model	finalized,	the	XDIF	matrix	containing	the	three	biomarkers	(d1,	

d2,	 RSS)	 in	 columns	 is	 obtained.	 The	 rows	 are	 all	 the	 pixels	 “filtered”	 by	 ROIs.	

Equally,	the	matrix	XPER	 is	constructed	with	the	three	biomarkers	NT,	VT,	and	RSS	

of	perfusion.	The	AIF	behavior	 is	 taken	out	of	 the	matrix	 for	 improved	precision.	

And	a	matrix	Y	contains	the	information	about	classification	of	each	pixel,	whether	

it	belongs	to	class	DL	or	HP.	Finally	a	new	X	matrix	 including	all	 six	biomarkers	 is	

formed,	completing	the	combination,	which	is	easily	done	with	Matlab	(Figure	15).	 	

	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 (a)	 	 	 	 	 (b)	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 Figure	15.	The	X	and	Y	matrices	for	PLS	model.	(a)	X	matrix;	(b)	Y	matrix.	

	

	

	

2.2.3.	 	 PLS-DA	analysis	

	

The	Partial	Least	Squares	regression	is	one	of	the	possible	models	of	prediction	that	tries	to	

find	the	fundamental	relations	between	two	data	matrices,	X	(studied	images)	and	Y	(output	

data),	maximizing	the	covariance	of	X	and	Y	by	a	 linear	multivariate	model.	That	 is	 to	say,	

PLS	conducts	a	projection	of	 the	matrix	X	 to	approximate	 it	properly	and	 to	maximize	 the	

correlation	with	matrix	Y.	The	output	data	can	be	formed	by	other	images	or	simply	data	of	

different	nature,	such	as	analytical	or	mechanic	parameters,	 temporal	evolution,	and	even	

artificial	 dummy	 variables	 associated	 with	 each	 type	 of	 the	 image	 in	 the	 case	 of	 a	

discriminant	 analysis.	 This	 way	 the	 new	 predicted	 output	 data	 of	 new	 images	 can	 be	

calculated	through	constructed	PLS	model.	 	
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When	 it	 comes	 to	 multivariate	 images,	 it	 is	 also	 denominated	 as	 multivariate	 image	

regression,	 the	 MIR.	 For	 instance,	 for	 cases	 aiming	 at	 tumor	 or	 lesion	 detection,	

quantification	 and	 localization	 inside	 of	 a	 patient,	 it	 is	 often	 referred	 to	 an	 inferential	

prediction	 model,	 whose	 result	 is	 an	 output	 image.	 However,	 a	 Partial	 Least	 Squares	

Discriminant	Analysis	(PLS-DA)	has	been	chosen	in	this	work,	as	the	matrix	Y	 is	categorical,	

created	 with	 dummy	 variables	 (ones	 and	 zeros).	 Generally,	 the	 PLS-DA	 is	 applied	 for	

classification	of	new	projected	images.	The	Figure	16	shows	the	basic	idea	for	PLS-DA	model	

construction.	 	

	

	
Figure	16.	Framework	of	a	PLS-DA	model	construction	(José	Manuel	Prats	Montalbán,	2005).	 	

	

Each	of	the	images	analyzed	is	placed	one	below	another,	creating	dummy	variables	for	each	

of	 the	pattern	 images.	Normally	 the	PLS-DA	 is	 calculated	with	predictive	algorithms	 (a	PLS	

model)	on	unfolded	data	structure:	

	

!!" =  !!"!
!!! !!" +  !!"(!)	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (6)	

	

!!" =  !!"!
!!! !!" + !!" ! =  !!"!

!!! !!"∗ +  !!"	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (7)	
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where	t,	u	are	vectors	scores	of	the	matrix	T	and	U	in	the	X	and	Y	plane	respectively;	r	is	the	

sum	of	squares	of	 the	residue;	g	 is	 the	global	 residue;	q	are	the	weights	 that	combine	the	

variables	of	Y	to	form	the	scores	u	so	that	the	covariance	between	Y	and	X	is	maximized.	

	

Given	that:	

!!" =  !!"!� +  ℎ!"	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (8)	
	

!!" =  !!"!!	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (9)	
	

leaving	the	defined	bf	as	

!! =  !!
!!!

!!!!!
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (10)	

	

If	expressed	with	matrices:	

	

X	=	TP
T
	+	Rx	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (11)	

	

Y	=	UQ
T
	+	RY	=	TQ

*T
	+	G	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (12)	

	

where	R	stands	for	external	relations	and	U	the	internal	relations	(matrix	of	scores	in	the	Y	

plane);	T	is	the	matrix	of	scores	t	in	the	X	plane;	Q	itself	is	the	matrix	of	correlation	between	

t(X)	and	Y,	related	to	the	score	u;	P	is	the	direction	of	the	component	in	X,	commonly	called	

as	loadings.	 	

	

The	 fundamental	 reason	 for	 choosing	 a	 PLS	 is	 its	 operation	 as	 a	 prediction	 model,	 from	

which	a	standard	regression	equation	for	prediction	is	applied:	

	

Ypred	 =	 XBPLS	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (13)	
	

where	B	is	the	calculated	regression	coefficient.	Ypred	is	a	vector	with	precise	information	in	

each	variable	m	in	the	matrix	Y,	weighted	by	the	calculated	coefficiente	bm.	 	

	

!! =  �!!!! +  !!!!! +⋯+  !!"!! + !!	 	 	 	 	 	 	 	 	 	 	 	 	 	 (14)	
	

And	because:	

	

! = !!∗ = !"(!!!)!!	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (15)	
	

!!"#$ = !!!"# = !!! = !"(!!!)!!!!	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (16)	
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Being	W	 the	matrix	 of	 correlation	 between	X	 and	u(Y),	 and	W*	 the	matrix	 of	 correlation	

between	matrices	X	and	Y.	

	

Therefore:	

	

!!"# = !(!!!)!!!!	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (17)	
	

A	 PLS	 model	 facilitates	 the	 interpretation	 as	 well	 as	 the	 explication	 of	 the	 results	 to	

non-experts,	 when	 the	 number	 of	 the	 variables	 is	 tremendous.	 Algorithm	 SIMPLS	 (José	

Manuel	 Prats	 Montalbán,	 2005)	 is	 used	 here	 to	 calculate	 PLS,	 because	 it	 is	 much	 faster	

especially	when	matrix	X	is	of	large	size.	 	

	

2.2.4.	 	 Leave	one	out	Cross-Validation	

	

After	the	PLS	model,	a	validation	method	has	been	applied	to	verify	the	results.	Particularly,	

the	 cross-validation	 evaluates	 the	 predictive	 ability	 of	 a	 model	 by	 calculating	 the	 “right”	

number	of	components	to	retain	in	the	model.	Usually	it	is	used	in	prediction	realm	to	assess	

how	well	a	model	performs	in	practice,	when	the	number	of	observations	is	not	very	high.	 	

	

Normally	a	predictive	model	is	given	a	training	dataset	of	known	data	to	run	as	the	first	step,	

and	a	test	dataset	of	unknown	data	to	validate	the	outcome	of	the	training	data.	Typically	30	

percent	 of	 the	 data	 is	 divided	 and	 put	 into	 the	 test	 data	 group.	 This	 is	 one	 of	 the	most	

classical	 methods	 for	 validation,	 the	 training	 set	 versus	 the	 test	 set.	 It	 is	 a	 simple	 and	

straightforward	 tool	 using	 independent	 unknown	 dataset.	 For	 instance,	 the	 predictive	

accuracy	 in	 this	 case	 is	often	measured	by	 the	mean	 squared	error	 (MSE)	on	 the	 test	 set.	

However,	 if	the	available	data	were	rather	 little,	or	the	distribution	of	the	data	is	no	good,	

not	only	would	this	method	waste	data,	but	also	would	there	be	greater	probability	for	the	

performance	 to	have	high	variance.	When	 that	happens,	 there	are	 really	no	other	choices	

but	to	consider	the	validation	unreliable	for	model	performance.	 	

	

Therefore	 the	 leave	 one	 out	 cross-validation	 method	 (LOOCV)	 is	 often	 referred	 to	 as	 an	

alternative.	 It	 is	 somewhat	 similar	 but	 more	 sophisticated	 than	 the	 original	 training/test	

version.	 Here	 the	 accuracy	 is	 also	 measured	 by	 the	 average	 of	 the	 error	 (MSE)	 of	 all	 n	

observations,	y1,	…	yn.	The	procedure	of	this	method	is	summarized	as	follows:	
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i. Leave	out	 the	observation	 i	 from	 the	data	 set.	 Then	 fit	 the	model	with	 the	

rest	of	the	data	except	observation	i.	 	

	

ii. Test	 the	accuracy	of	 the	model	with	 the	observation	 i,	 computing	 the	error	

(!!∗ = !! −  !!)	 (predictive	residual)	for	the	omitted	observation.	 	

	

iii. Repeat	the	process	with	all	data	(n	observations)	in	the	set	and	calculate	the	

accuracy	for	each	one.	 	

	

iv. The	 LOO	 accuracy	 now	 amounts	 to	 the	 average	 of	 the	 accuracy	 of	 n	

observations,	computing	the	MSE	from	 !!∗,…  , !!∗ .	 	
	

This	way	 the	 available	 data	 is	more	 efficiently	 used	 and	 problems	 like	 over-fitting	 can	 be	

limited,	 by	 determining	 the	 appropriate	 number	 of	 components	 for	 the	 model.	 Plus	 it	

provides	insight	on	how	the	model	performs	while	generalizing	to	independent	dataset.	It	is	

also	convenient	as	the	human	bias	is	excluded	from	the	model	with	the	same	database.	To	

sum	up,	cross	validation	combines	averages	measures	of	prediction	error	to	correct	for	the	

training	error	and	thus	derives	a	more	accurate	estimation	of	model	prediction	performance	

(Robert	Grossman	and	others,	2010).	

	

In	 this	 thesis	 the	 LOOCV	 is	 selected	 due	 to	 the	 size	 of	 data	 set,	 190	 observations	

(pixels),	 and	 because	 it	 is	 less	 time-consuming.	
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Results	

	
MCR	analysis	was	performed	on	all	nine	cases,	obtaining	the	relative	importance	of	the	six	

biomarkers	 respectively	 for	 the	 MCR	 local	 models.	 Figures	 17	 and	 18	 display	 the	 local	

distribution	maps	of	the	behaviors	in	perfusion	and	in	diffusion.	

	

	
Figure	17.	Local	distribution	maps	of	the	dynamic	behaviors	in	perfusion:	 	

(a)	type	VT,	(b)	type	CMA,	(c)	type	NT,	(d)	RSS.	

	

	

Figure	18.	Local	distribution	maps	of	behaviors	in	diffusion:	 	

(a)	slow	diffusion	(d1),	(b)	fast	diffusion	(d2),	(c)	RSS	

	

For	the	PLS	model	to	work	correctly,	the	matrices	X	and	Y	need	to	be	well	balanced	before	

the	 maximization	 of	 the	 covariance.	 Accordingly,	 by	 observing	 the	 histograms	 of	

components	 in	 the	matrix	X,	 filters	have	been	applied	 to	omit	pixels	whose	value	 is	 larger	

than	500.	During	the	prediction,	or	more	precisely	the	classification	of	each	pixel,	if	one	pixel	
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is	categorized	as	healthy,	it	can	either	be	TN	(true	negative)	or	FN	(false	negative).	Likewise,	

for	 a	 pixel	 identified	 as	 tumor,	 it	 could	 be	 a	 TP	 (true	 positive)	 or	 FP	 (false	 positive).	With	

these	basic	parameters,	two	distinct	factors	can	later	be	deduced:	
	

!"#$%&%'( = !"
!"!!"    !"#$%% = !"

!"!!"	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (18)	

	

These	two	are	used	to	calculate	the	f-score,	which	serves	as	the	 index	for	the	goodness	of	

prediction	of	the	model.	The	closer	is	the	f-score	to	1	(maximum	value),	the	better	predicts	

the	model.	

	

!"#$%& = !·!"#$%&%'(·!"#$%%
!"#$%&%'(!!"#$�! 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (19)	

	

As	results,	the	PLS	model	shows	a	goodness	of	prediction	0.8144,	with	TN	0.3947,	TP	0.4158,	

FN	 0.0526,	 and	 FP	 0.1369,	 accuracy	 0.8105.	 At	 this	 point	 the	 model	 has	 performed	 an	

impressively	 good	 prediction.	 The	 following	 picture	 (Figure	 19)	 shows	 the	 original	

classification	 (matrix	 Y)	 on	 the	 left	 and	 the	 prediction	 by	 the	 model	 (Ypred)	 on	 the	 right,	

represented	also	with	dummy	variables	 (1s	and	0s),	by	setting	the	 larger	probabilities	 to	1	

and	leaving	the	minors	to	0.	 	

	

	
Figure	19.	Results	of	PLS-DA	model,	with	matrix	Y	on	the	left	and	Ypred	on	the	right.	

	

PLS	model	has	also	been	applied	with	biomarkers	of	perfusion	and	diffusion	separately.	For	

diffusion,	the	f-score	only	reaches	0.4895,	with	TN	0.4316,	TP	0.1842,	FN	0.2842,	FP	0.1.	
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Figure	20.	PLS	prediction	with	only	diffusion	biomarkers	(results	on	the	right).	

	

For	 perfusion	 alone,	 the	 results	 are	 also	 quite	 frustrating.	 Calculated	 f-score	 possesses	 a	

value	 of	 0.4113,	 with	 TN	 0.4105,	 TP	 0.1526,	 FN	 0.3158,	 FP	 0.1211.	 In	 plain	 sight,	 the	

combined	biomarkers	perform	a	prediction	a	lot	better	than	those	of	each	sequence	alone.	 	

	

	
Figure	21.	PLS	prediction	with	only	perfusion	biomarkers	(results	on	the	right).	 	

	

For	 validation	purposes,	 leave	one	out	 cross	 validation	have	been	 conducted	 to	 verify	 the	

results	of	the	PLS-DA	model.	The	initial	number	of	 latent	variable	has	been	set	for	six.	And	

the	 dataset	 (matrix	 X)	 has	 been	 managed	 with	 auto-scaling	 to	 achieve	 better	 data	

distribution.	Auto-scaling	is	a	data	processing	technique	in	which	each	column	is	subtracted	

by	average	and	then	divided	by	typical	deviation.	The	underlying	idea	is	for	each	biomarker	

to	have	 the	 same	 importance,	or	 rather,	 the	 same	 contribution	 to	 the	model.	 The	 LOOCV	

shows	 a	 two-component	 proved	 model,	 for	 there	 is	 no	 significant	 improved	 prediction	

performance	 starting	 from	 three	 latent	 variables.	 This	 means	 that	 if	 one	 goes	 further	

introducing	more	 than	 two	 components	 into	 the	model,	 it	would	 be	 over-fitted	 and	 yield	

unreliable	results,	no	matter	how	good	the	accuracy	seems.	 	
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This	 two-component	 model	 gives	 an	 error	 of	 37	 wrong	 observations	 out	 of	 190	 in	 total,	

hence	an	accuracy	of	0.8053.	The	goodness	of	prediction	(f-score)	is	also	slightly	decreased,	

with	a	value	of	0.8122,	(TN	0.3842,	TP	0.4211,	FN	0.0474,	FP	0.1474).	 	

	

	
(a)	

	
(b)	

Figure	22.	The	results	of	LOOCV	of	one-component	(a)	and	two-component	(b).	 	

Obvious	improvement	in	the	two-component	model	can	be	observed	in	the	image.	 	
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CHAPTER	4.	 	 CONCLUSIONS	
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Conclusions	 	

	

In	this	work,	the	software	Horos	has	been	applied	for	image	alignment	instead	of	using	the	

classical	mathematic	method.	The	automatic	synchronization	of	the	series	makes	it	a	rather	

simple	 and	 rapid	 alternative.	 It	 ought	 to	 be	 noted	 that	 Horos	 is	 not	 FDA	 approved	while	

Osirix-MD	is.	This	main	difference	makes	Horos	inappropriate	for	clinical	diagnosis.	However,	

as	Horos	 is	based	upon	Osirix,	 it	 is	presumable	 that	 same	outcome	can	be	achieved	using	

Osirix-MD.	

	

Expert	 knowledge	 is	 preferred	during	 the	 selection	of	ROIs	with	Horos,	 since	 it	 is	 of	 great	

importance	to	select	all	prostate	avoiding	introducing	too	much	noise.	Excessive	noise	would	

deform	 the	 dynamic	 behaviors	 and	 thusly	 affects	 the	 biomarkers	 extraction.	 Along	 the	

present	work,	the	selected	ROIs	were	restricted	to	a	rather	small	area	because	of	this	very	

reason.	Consequentially,	 some	of	 the	“good”	pixels	were	 left	out,	 reducing	 the	number	of	

observations.	That	is	why	in	the	future	it	is	recommendable	to	study	the	model	with	a	larger	

data	 set	 and	 maybe	 with	 other	 different	 validation	 methods	 to	 assess	 the	 model	

performance.	

	

The	obtained	 results	 show	great	potential	 in	 further	applications,	particularly	 the	prostate	

cancer	diagnosis	on	a	patient	basis	as	a	fast	method	to	look	into	both	tissue	cellularization	

and	vascularization.	The	combined	biomarkers	of	perfusion	and	diffusion	could	also	give	a	

more	comprehensive	insight	into	tumor	stages,	its	characteristics,	etc.	As	a	preliminary	study,	

the	 next	 step	 could	 be	 to	 investigate	 and	 to	 evaluate	with	more	 depth	 the	 precision	 and	

differences	between	 the	alignment	by	Horos	 and	by	numerical	methods.	Besides,	 another	

interesting	question	that	remains	to	be	answered	is	whether	the	combination	or	addition	of	

those	 widely	 applied	 biomarkers	 (the	 IVIM	 and	 pharmacokinetic	 model),	 which	 are	more	

theoretically	physiological,	would	improve	prediction	performance.	 	
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Budget	
	

The	budget	of	this	work	mainly	comes	from	personnel	expenses.	I	have	been	worked	on	this	

project	for	nearly	300	hours.	Should	I,	as	an	engineer,	charge	15€/h,	the	accrued	cost	would	

then	be	4500€	in	total.	José	Manuel	Montalbán	and	Eric	Aguado	Sarrió	should	be	considered	

as	 consultants,	 at	 a	 cost	 of	 30€/h.	 And	 they	 have	 worked	 with	 me	 for	 50h	 and	 100h	

respectively.	 	

	

The	software	used	were	Horos,	student	version	of	Matlab	and	Microsoft	Office.	Horos	 is	a	

free	 software,	while	Matlab	 and	Microsoft	Office	 are	 purchased	 student	 version.	 Same	 as	

Osirix,	Horos	 can	only	be	used	with	operating	 system	OS	X.	 Therefore	a	Macbook	Pro	 (15	

inches)	 is	 applied	 in	 this	work.	All	 programmed	 codes	were	properties	of	 the	Multivariate	

Statistical	Engineering	Group,	Universitat	Politècnica	de	València,	Valencia,	Spain.	

	
Description	 Unit	Price	 Amount	 Total	
Engineer	 15€/h	 300h	 4.500	€	
Consultant	1	 30€/h	 50h	 1.500	€	
Consultant	2	 30€/h	 100h	 3.000	€	
Materials	 0	€	 9	cases	 0	€	
Matlab	 69€/unit	 1	 69	€	
Microsoft	Office*	 149€/unit	 1	 149	€	
Horos	 0	€	 1	 0	€	
Apple	Macbook	Pro	 2249€/unit	 1	 2.249	€	
Accessory*	 89€/unit	 1	 89	€	
Total	 � 	 � 	 11.556	€	
	

Table	1.	Budget	Table.	*	The	student	version	of	Microsoft	Office	refers	to	Office	Home	and	Student	2016	for	

Mac;	Accessory	is	Magic	Mouse	2	by	Apple	Inc.	Cupertino,	California,	U.S.	

	

If	 the	proposed	methodology	were	 to	be	used	by	a	company	 for	clinical	use	 in	 the	United	

States,	 other	 than	 personnel	 expenses,	 Osirix-MD	 will	 cost	 699$	 (627.53€);	 the	 price	 of	

Matlab	will	hinge	on	selected	toolboxes	and	number	of	employees	using	Matlab	at	the	same	

time.	 Usually	 the	 Network	 Named	 User	 License	 can	 be	 purchased	 in	 order	 to	 buy	 fewer	

licenses	than	the	headcount	of	the	company.	 	
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