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Abstract. This paper aims to develop a dynamic model of the charging process of a 

commercial ice-storage tank. Firstly, three different 1
st
 order and 2

nd
 order numerical schemes 

have been compared to solve the transport equation of the heat transfer fluid. Euler’s method 

has finally been chosen as the mass flow rate can vary throughout the charging and it avoids 

the oscillations which are introduced by Lax-Wendroff’s and MacCormack’s method. 

Secondly, the heat transfer outside the coils is analyzed. The numerical complications involved 

in the creation of the first ice layer around the tubes are discussed and an electrical resistance 

model is introduced to avoid this problem. The model results have provided a very good 

agreement with experimental measurements of charging tests which have been performed on a 

CALMAC ICEBANK tank with a capacity of 172 kWh. The model helps to predict the final 

part of the latent heat transfer process, where the thermal power is decreased due to the contact 

between the ice layers around adjacent tubes of the tank. 

Nomenclature 

A cross-sectional area of the tube (m
2
)          thermal resistance of the inner half of 

the ice layer (K/W)    heat capacity of HTF (J/kg K)  

  convection heat transfer coefficient 

(W/m
2
 K) 

      thermal resistance of the tube (K/W) 

 t time (s) 

    latent heat (J/kg) T temperature of HTF (K) 

     thermal conductivity of ice (W/m K)      temperature of ice (K) 

 ̇     variation of ice mass (kg/s)               temperature of phase change interface 

(K) P inner perimeter of the tube (m)  

 ̇         heat conduction in the ice (W)       temperature of the tube (K) 

 ̇          heat conduction in the tube (W) u velocity of HTF (m/s) 

 ̇           heat convection in the water (W)             heat transfer coefficient between phase 

change interface and ice (W/m K)  ̇         sensible heat in the ice (W)  
     radius of ice surface (m) x position along the tube (m) 

       radius of centre of ice layer (m)   

         thermal resistance of the external half of 

the ice layer (K/W) 

Greek letters 

   HTF density (kg/m
3
) 
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1.  Introduction 

Due to the increasing demand of refrigeration, a key point in the next years is to develop more 

efficient cold generation and storage technologies. In comparison with Sensible Heat Storage (SHS), 

Latent heat storage (LHS) presents the advantage of having a high volumetric capacity, and that the 

energy storage takes place within a fairly uniform temperature range [1-3]. 

Many Phase Change Materials (PCMs) are being tested [4], although in the temperature range 

which is useful for air-conditioning (-5 ºC to 10 ºC), there are not many options, mainly ice storage, 

ice slurries or paraffins with a low melting temperature. Ice storage is a low cost and a rather simple 

technological solution but presents the drawback in the chiller performance at the low evaporation 

temperatures which are required due to the subcooling of water. Ice-storage systems can be divided 

into external and internal-melt-ice-on-coil systems. The latter systems have been treated less in 

literature, especially in the case of systems with a significant capacity (above 100 kWh) and complex 

coil geometries. 

This paper presents the development of a model for the charging of an ice-storage tank as well as 

the model validation with measurements from the test rig. 

2.  Description of the experimental ice-storage installation 

A special test rig has been built at the Institute for Energy Engineering of the UPV to characterize 

different energy storage systems within a temperature range -10 ºC to 100 ºC [5]. The installation 

(shown in figure1) enables the characterization of LHS systems with different supply temperatures and 

mass flow rates of the heat transfer fluid (HTF). Mass flow rates between 1000 kg/h and 4000 kg/h of 

the HTF (26% water/glycol mixture) are achieved by means of a variable-speed pump CRE5-5 from 

GRUNDFOS which has a nominal power consumption of 750 W. 

 

Figure 1. Layout of the experimental installation. 

In order to carry out the charge and discharge tests of the ice tank, an external heat sink and source 

are required. The required cooling power (charge tests) is achieved with an 8 kW water-to-water 

chiller working with R22. The building condensation ring (water at 24.5 ºC) provides the necessary 

heating power for the ice-melting (discharge tests). 

The LHS system is a CALMAC ICEBANK tank model 1098C [6]. The tank consists of 

polyethylene pipes distributed in a spiral-shape in horizontal planes. The upper and lower spirals for 

each plane are placed in counter-current in order to achieve more uniform temperatures within the 

PCM which is tap water. In total, the tank has 34 tubes immersed in the PCM. In the present work, the 

tank has been tested at a partial load of around 172 kWh by blocking the top 16 coils using plumbing 

accessories for polyethylene pipes. Thus, the HTF only circulates through the bottom 18 coils, which 

are the ones which are surrounded by water. 
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The supply and return temperatures of the HTF (T1 and T2 in figure 1) are of particular interest as 

they enable the calculation of the charge and discharge power. Thus, they have been measured with 

RTD thermal resistances PT100 1/10 DINB with an accuracy of ±0.03 K according to manufacturer 

data. Many other variables are also measured, for instance temperatures and pressures in the external 

loops, but these are out of bounds in this work. 

The temperature measurements are fully monitored by means of a datalogger Agilent 34970A and 

three 22 channels multiplexer HP 34901A. The mass flow rate of the HTF is measured by means of a 

SIEMENS CORIOLIS flow meter with an uncertainty of ±7.3 kg/h. 

3.  Solution of the transport equation 

The system which has been modelled is composed of the heat transfer fluid flowing through the tube, 

the tube itself and the PCM (water-ice) surrounding the tube. The aim of the model is to solve the 

temperature of each one of these components and the heat transfer between them at different time 

intervals. A one-dimensional model has been applied in order to calculate the latter temperatures along 

the length of the coil (x). 

Firstly, the problem consists in obtaining the temperature distribution of the HTF along the tube. In 

order to solve the transport equation, three finite difference methods were used; the Euler’s Method (a 

first order explicit method) and two second order explicit methods (Lax-Wendroff Method and 

MacCormack Method) [7]. MacCormack’s Method is a variation of the two-step Lax-Wendroff 

scheme. 

In the following paragraphs, a comparison is shown for the three methods by applying the same 

initial and boundary conditions. Initially both the tube and the entering fluid have a temperature of 10 

ºC, and then at time t=0 s the HTF enters the coil at 2 ºC, hereby introducing a step in the temperatures 

of the HTF. The transport of this step through the tube length is analyzed in the following subsections. 

Two cases were considered: the adiabatic case, without heat exchange between the fluid inside the 

tube and the tube, and the non adiabatic case, taking into account the heat exchange by convection 

between the fluid and the tube, which remains at a constant temperature. 

3.1.  Adiabatic case 

In the adiabatic case, the temperature variation of the fluid along the tube is only due to the 

displacement of the fluid. The equation which has to be solved is hereby: 

 
  

  
  

  

  
   (1) 

Where T is the fluid temperature, t is the time, x the position along the tube and u the velocity of 

the fluid in the tube. In the time and spatial discretization of the differential equation (1), the 

coefficient CFL= u·∆t/∆x appears. The stability and the accuracy of the methods depend on the value 

of the CFL. Euler’s Method, Lax-Wendroff’s Method and McCormack’s Method need for the stability 

that CFL≤1. For these reasons, in any simulation the time step and x-spacing have to be chosen 

carefully depending on the fluid velocity u. Euler’s Method is a first order explicit method based on 

the following scheme: 

   
    (     )  

          
  (2) 

The Lax-Wendroff Method uses a scheme in two steps. Step 1 is the Lax method applied at the 

midpoint i+1/2 for a half time step, and the step 2 is the leap frog method for the remaining half time 

step: 

Step 1:       
     

 (    
    

 )   
   

 
(    
    

 )      
  (3) 

Step 2:   
      

     (      
     

       
     

) (4) 
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The MacCormack Method is a variation of the two-step Lax-Wendroff scheme, removing the 

unknown grid points i+1/2 and i-1/2. Then step 1 provides a first predicted value of T (predictor step), 

and step 2 provides the final value of T (corrector step): 

Predictor step:   
   ̅̅ ̅̅ ̅̅

 (     )  
          

  (5) 

Corrector step:   
    

  
    

   ̅̅ ̅̅ ̅̅

 
 
   

 
(  

   ̅̅ ̅̅ ̅̅
     

   ̅̅ ̅̅ ̅̅
) (6) 

In figure 2, the progression of the temperature step is shown for the three methods. As shown in 

figure 2.a, for CFL=1, the results are identical for the three methods. Figures 2.b and 2.c show that for 

CFL<1 the Lax-Wendroff scheme and the McCormack scheme provide identical results, but different 

form the Euler scheme. In fact, McCormack’s method is a variation of the Lax–Wendroff scheme, but 

is much simpler in application. Figures 2.b and 2.c show that the Euler scheme introduces a diffusion 

of the step and a drop of the slope, in other words a dissipation error which is typical of first order 

methods. The Lax-Wendroff and McCormack schemes have a steeper slope, but they introduce an 

oscillation to reach the steep slope of the step. This dispersion error is typical of second order 

methods. The oscillation becomes greater as the step moves forward along the nodes of the tube, and 

this can be a problem in systems with long tubes. The oscillation also becomes greater as the CFL is 

lowered. 

3.2.  Non adiabatic case 

In this case, the heat transfer between the wall and the HTF is introduced by means of a constant 

forced convection coefficient. The transport equation with non adiabatic conditions becomes: 

 
  

  
   

  

  
 

  

    
(       ) (7) 

Where P is the inner perimeter of the tube, h is the convection coefficient, A is the cross-sectional 

area of the tube,   is the HTF density,    is the heat capacity and       is the temperature of the tube. 

In equation (7), both Ttube and T are dependent on the x-coordinate. 

As inferred from figure 2.d, 2.e and 2.f, the temperatures around the step are similar than for the 

adiabatic case, but with the exception that the fluid is progressively heated as it circulates thorough the 

tube, which has a higher temperature of 10ºC. 

To sum up, second order methods reproduce better the slope of the step but introduce oscillations, 

which are greater as the fluid flows through tube and for low CFL values. This can be a problem for 

the modelling of ice-storage tanks as the CALMAC ICEBANK model 1098C which has rather long 

tubes (around 70 m) and where the mass flow rate, and consequently the CFL vary during the charge 

process. Nevertheless, Euler’s Method introduces a diffusion of the step. Taking into account that the 

diffusion due to conduction inside the fluid in the axial direction and axial diffusion due to turbulence 

have been neglected, the diffusion introduced by the Euler’s method is not problematic, since real 

temperature profiles are closer to Euler’s solution than the theoretical step-shape. Thus, Euler’s 

Method has been chosen to obtain the fluid temperature distribution along the tube of the tank. The 

outlet temperature is calculated for one single tube, although in practice the fluid in the outlet comes 

from a common collector from all of the coils. 
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(a) 

 

(d) 

(b) 

 

(e) 

 
(c) 

 

 
(f) 

Figure 2. Fluid temperature profiles along the tube for the adiabatic case: a) CFL=1, b) CFL=0.99, 

c) CFL=0.8, and for the non adiabatic case: d) CFL=1, e) CFL=0.99, f) CFL=0.8. 

4.  Ice layer growth and heat transfer modelling 

Once the transport equation has been solved for the HTF, the next step is to analyze the heat transfer 

within the tube (conduction), the surrounding ice layer (conduction) and the water (convection). The 

figure 3 shows a scheme of the ice formation process for a Δx of tube: 
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 Figure 3. Scheme of the ice formation process. 

The model calculates for each time step the heat transfer rates between each point, the consequent 

temperature, and the ice layer thickness. Heat conduction in the axial direction has been neglected for 

the HTF and also for the tube and the ice layer, due to the greater temperature gradient and exchange 

surface in radial direction than in the axial one. In further studies this effect could be studied in more 

detail. Thus the current model focuses in the heat transfer in the radial direction, between the fluid, the 

wall, the ice layer and the surrounding water. Each of these elements is represented by a single 

temperature node. 

The interface between the ice and the water is assumed to be at 0º C. In this moving solid/liquid 

boundary layer, the energy balance is represented by means of equation (8): 

  ̇          ̇         ̇            ̇         (8) 

Where  ̇         is the sensible heat due to the temperature difference between the new ice layer 

formed at 0ºC and the mean temperature considered for the ice. 

Once the first ice layer is formed, this interface is placed at the tube surface. The energy balance 

equation is then: 

  ̇           ̇         ̇           (9) 

Before the first ice-layer appears, numerical problems appear for the ice temperature calculation. In 

fact, the heat transfer by conduction between the solid/liquid interface and the ice is calculated by 

means of equation (10) which depends on the ice layer thickness: 

             
  [

  (     
         

 )

      
]

  

 (10) 

As the ice thickness tends to 0, the previous logarithm tends to 0 and the coefficient             

tends to infinite. Thus, for the instants when the ice layer thickness is less than 0.5 mm, the ice 

temperature is calculated by means of an electric equivalent, as represented in figure 4. 

In the electric equivalent, from the temperatures of the tube and the phase-change interface, and 

knowing the thermal resistances between these points, the temperature of the ice node is obtained, 

considering the ice node placed at the centre of the ice layer. The equation which has been employed 

to calculate the ice temperature is shown in the equation (11). It has been assumed that the heat 

leaving the phase-change interface is equal to the heat transferred by the tube, as would happen in 

steady state. Although the charge process is completely transient, when the ice thickness is very small 

the heat rejected by the ice due to its temperature variation is negligible compared with the heat 

leaving the phase-change interface to the tube. 

            (                   )
(              )

(              )         
 (11) 
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Figure 4. Scheme of the electric equivalent. 

The ice-tank has a central region with a vertical supply and return collector, but with no spiral 

coils. Thus, this region has hardly any contact between the water and the coils. The model considers 

the existence of this volume of water and its mass transfer with the water nodes surrounding the coils 

due to the free convection of the water. The estimation of the free convection coefficient around the 

tube is based on the modification of the Grashof number proposed by Gebhart [8] which takes into 

account the density inversion of the water around 4 ºC. 

The model also considers a restriction for the ice-layer growth. In fact, at the end of the charge 

process due to the contact between the ice layer of two adjacent tubes, the thermal power decreases. 

The nucleation temperature depends on several factors like salinity or the existence of nucleation 

agents or surfaces, and it is also a very random process even for same inlet conditions of the HTF [9]. 

Thus, in the model the nucleation temperature is an input from the experimental tests. 

5.  Validation 

In this section, the developed model has been validated with tests from the experimental test rig. 

Several tests have been carried out to study the performance of the ice-storage tank with different inlet 

mass flow rates and temperatures for the HTF. Figure 5 shows a comparison of the outlet temperature 

of the HTF for a test with a mass flow rate of 3500 kg/h. In this test, nucleation was experimentally 

observed at a mean temperature of -0.5º C. 

  
Figure 5. Temperature comparison. Figure 6. Power and energy comparison. 

Figure 5 shows that outlet temperature of the HTF is reproduced perfectly with the model. 

However, since the temperature span between the inlet and outlet is small, a small deviation between 
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real and simulated temperatures can imply significant differences in the thermal power. Figure 6 

represents the experimental and theoretical power, as well as the energy. A deviation of less than 1% 

in the total energy exchanged is observed. 

Figure 6 shows that at the end of the latent heat transfer phase the thermal power decreases 

substantially. According to the model, this point is where the adjacent ice layers start to touch. 

The greatest deviation between the model and experimental results happens at the moment of the 

nucleation. Experimentally, nucleation is not instantaneous in all the tubes of the tank. This aspect 

cannot be introduced in the model unless all of the tubes are modelled. Nevertheless, in terms of 

energy, which is the most interesting point when working on a system level, this aspect is negligible. 

6.  Conclusion 

In this study, a dynamic model for the charging of an internal-melt-ice-on-coil tank has been 

developed and validated with experimental measurements. 

Three finite methods have been analyzed to calculate the transport equation inside the tube. Euler’s 

Method has finally been chosen since it does not introduce oscillations, and the small diffusion which 

is introduced partially compensates the neglected axial diffusion. 

The model calculates the outlet temperature of the HTF for a single tube. The results show that the 

outlet temperature of the tank, which comes from a common collector of all of the coils, can be 

reproduced very well with a single tube model. Furthermore, the model has helped to understand the 

end of the latent heat transfer process. At the end of the charge tests, adjacent ice layers start to touch 

and reduce rapidly the thermal power which is transferred to the HTF. 

The model calculates very well the temperature profile of the HTF, the ice growth and the thermal 

power. Thus, it can be useful for the design and sizing of ice-storage tanks. 

The calculation of the nucleation temperature has not been implemented yet, due to its complexity 

and random characteristics. The nucleation temperature is thus an experimental input, but in future 

investigations a correlation might be introduced depending on the mass flow rate and inlet 

temperatures of the HTF among other parameters. 
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