
UNIVERSITAT POLITÈCNICA DE VALÈNCIA
DEPARTAMENT DE SISTEMES INFORMÀTICS I

COMPUTACIÓ

DOCTORAL THESIS

Improved Error Correction
of NGS Data

Author: Andrei S. Alic
Supervisor: Dr. Ignacio Blanquer Espert

June 21, 2016

Summary

The work done for this doctorate thesis focuses on error correction
of Next Generation Sequencing (NGS) data in the context of High
Performance Computing (HPC).

Due to the reduction in sequencing cost, the increasing output
of the sequencers and the advancements in the biological and med-
ical sciences, the amount of NGS data has increased tremendously.
Humans alone are not able to keep pace with this explosion of in-
formation, therefore computers must assist them to ease the handle
of the deluge of information generated by the sequencing machines.
Since NGS is no longer just a research topic (used in clinical rou-
tine to detect cancer mutations, for instance), requirements in per-
formance and accuracy are more stringent. For sequencing to be
useful outside research, the analysis software must work accurately
and fast. This is where HPC comes into play. NGS processing tools
should leverage the full potential of multi-core and even distributed
computing, as those platforms are extensively available. Moreover,
as the performance of the individual core has hit a barrier, current
computing tendencies focus on adding more cores and explicitly
split the computation to take advantage of them.

This thesis starts with a deep analysis of all these problems
in a general and comprehensive way (to reach out to a very wide
audience), in the form of an exhaustive and objective review of the
NGS error correction field. We dedicate a chapter to this topic
to introduce the reader gradually and gently into the world of se-
quencing. It presents real problems and applications of NGS that
demonstrate the impact this technology has on science. The review
results in the following conclusions: the need of understanding of
the specificities of NGS data samples (given the high variety of
technologies and features) and the need of flexible, efficient and
accurate tools for error correction as a preliminary step of any

NGS postprocessing.

As a result of the explosion of NGS data, we introduce Muffin-
Info. It is a piece of software capable of extracting information
from the raw data produced by the sequencer to help the user un-
derstand the data. MuffinInfo uses HTML5, therefore it runs in
almost any software and hardware environment. It supports cus-
tom statistics to mould itself to specific requirements. MuffinInfo
can reload the results of a run which are stored in JSON format
for easier integration with third party applications. Finally, our
application uses threads to perform the calculations, to load the
data from the disk and to handle the UI.

In continuation to our research and as a result of the single
core performance limitation, we leverage the power of multi-core
computers to develop a new error correction tool. The error cor-
rection of the NGS data is normally the first step of any analysis
targeting NGS. As we conclude from the review performed within
the frame of this thesis, many projects in different real-life applica-
tions have opted for this step before further analysis. In this sense,
we propose MuffinEC, a multi-technology (Illumina, Roche 454,
Ion Torrent and PacBio -experimental), any-type-of-error handling
(mismatches, deletions insertions and unknown values) corrector.
It surpasses other similar software by providing higher accuracy
(demonstrated by three type of tests) and using less computational
resources. It follows a multi-steps approach that starts by group-
ing all the reads using a k-mers based metric. Next, it employs
the powerful Smith-Waterman algorithm to refine the groups and
generate Multiple Sequence Alignments (MSAs). These MSAs are
corrected by taking each column and looking for the correct base,
determined by a user-adjustable percentage.

This manuscript is structured in chapters based on material
that has been previously published in prestigious journals indexed
by the Journal of Citation Reports (on outstanding positions) and
relevant congresses.

Resumen

El trabajo realizado en el marco de esta tesis doctoral se centra
en la corrección de errores en datos provenientes de técnicas de
secuenciación masiva (también llamadas de nueva generación, Next
Generation Sequencing o NGS) utilizando técnicas de computación
intensiva.

Debido a la reducción de costes y el incremento en las presta-
ciones de los secuenciadores, aśı como en los avances en las ciencias
médicas y biológicas, la cantidad de datos disponibles en NGS se ha
incrementado notablemente. La utilización de computadores en el
análisis de estas muestras se hace imprescindible para poder dar re-
spuesta a la avalancha de información generada por estas técnicas.
El uso de NGS transciende la investigación con numerosos ejem-
plos de uso cĺınico y agronómico (como por ejemplo la detección
de mutaciones en tumores cancerosos), por lo que aparecen nuevas
necesidades en cuanto al tiempo de proceso y la fiabilidad de los
resultados. Para maximizar su aplicabilidad cĺınica, las técnicas de
proceso de datos de NGS deben acelerarse y producir datos más
precisos. En este contexto es en el que las técnicas de comptuación
intensiva juegan un papel relevante. En la actualidad, es común
disponer de computadores con varios núcleos de proceso e incluso
utilizar múltiples computadores mediante técnicas de computación
paralela distribuida, incluso fuera del uso cient́ıfico. Las tenden-
cias actuales hacia arquitecturas con un mayor número de núcleos
(many-core) ponen de manifiesto que es ésta una aproximación rel-
evante.

Esta tesis comienza con un análisis de los problemas fundamen-
tales del proceso de datos en NGS de forma general y adaptado para
su comprensión por una amplia audiencia, a través de una exhaus-
tiva revisión del estado del arte en la corrección de datos de NGS.
Esta revisión introduce gradualmente al lector en las técnicas de

secuenciación masiva, presentando problemas y aplicaciones reales
de las técnicas de NGS, destacando el impacto de esta tecnoloǵıa
en ciencia. De este estudio se concluyen dos ideas principales: La
necesidad de analizar de forma adecuada las caracteŕısticas de los
datos de NGS, atendiendo a la enorme variedad intŕınseca que
tienen las diferentes técnicas de secuenciación masiva; y la necesi-
dad de disponer de una herramienta versátil, eficiente y precisa
para la corrección de errores, como fase previa a cualquier análisis
genómico.

En el contexto del análisis de datos, la tesis presenta Muffin-
Info. La herramienta MuffinInfo es una aplicación software imple-
mentada mediante HTML5 para favorecer su portabilidad tanto a
nivel de sistema operativo como de dispositivo. MuffinInfo obtiene
información relevante de datos crudos de NGS para favorecer el
entendimiento de sus caracteŕısticas y la aplicación de técnicas de
corrección de errores, soportando además la extensión mediante
funciones que implementen estad́ısticos definidos por el usuario.
MuffinInfo almacena los resultados del proceso en ficheros JSON
que facilitan su integración en pipelines de proceso. Al usar HTML5,
MuffinInfo puede funcionar en casi cualquier entorno hardware y
software, dada el amplio soporte que tiene esta tecnoloǵıa. La
herramienta está implementada aprovechando múltiples hilos de
ejecución y gestionando de forma concurrente el acceso a disco y
la gestión del interfaz.

La segunda conclusión del análisis del estado del arte nos ll-
eva a la oportunidad de aplicar de forma extensiva técnicas de
computación de altas prestaciones en la corrección de errores para
desarrollar una herramienta que soporte múltiples tecnoloǵıas (Il-
lumina, Roche 454, Ion Torrent y experimentalmente PacBio). La
herramienta propuesta (MuffinEC), soporta diferentes tipos de er-
rores (sustituciones, delecciones, inserciones y valores desconoci-
dos). MuffinEC supera los resultados obtenidos por las herramien-
tas existentes en este ámbito, en los tres tipos de tests utilizados

en la tesis. Ofrece una mejor tasa de corrección, en un tiempo
muy inferior y utilizando menos recursos, lo que facilita además
su aplicación en muestras de mayor tamaño en computadores con-
vencionales, donde otras herramientas no pueden funcionar por
problemas de recursos. MuffinEC utiliza una aproximación basada
en etapas multiples. Primero agrupa todas las secuencias uti-
lizando la métrica de los k-mers. En segundo lugar realiza un
refinamiento de los grupos mediante el alineamiento con Smith-
Waterman, generando contigs resultado del alineamiento múltiple
de las secuencias compatibles en el grupo. Estos contigs resultan de
la corrección por columnas de atendiendo a la frecuencia individual
de cada base y la aplicación de diferentes fórmulas y técnicas que
facilitan discriminar errores de variantes significativas.

La tesis se estructura por caṕıtulos cuya base ha sido previa-
mente publicada en revistas indexadas en posiciones destacadas del
ı́ndice del Journal of Citation Reports y en congresos de prestigio.

Resum

El treball realitzat en el marc d’aquesta tesi doctoral se centra en la
correcció d’errors en dades provinents de tècniques de seqüenciació
massiva (també anomenades de nova generació, Next Generation
Sequencing o NGS) utilitzant tècniques de computació intensiva.

A causa de la reducció de costos i l’increment en les prestacions
dels seqüenciadors, aix́ı com en els avenços en les ciències mèdiques
i biològiques, la quantitat de dades disponibles a NGS s’ha incre-
mentat notablement. La utilització de computadors en l’anàlisi
d’aquestes mostres es fa imprescindible per poder donar resposta a
l’allau d’informació generada per aquestes tècniques. L’ús de NGS
transcendeix la investigació amb nombrosos exemples d’ús cĺınic i
agronòmic (com per exemple la detecció de mutacions en tumors
cancerosos), per la qual cosa apareixen noves necessitats quant al
temps de procés i la fiabilitat dels resultats.

Per a maximitzar la seua aplicabilitat cĺınica, les tècniques de
procés de dades de NGS han d’accelerar-se i produir dades més
precises. En este context és en el que les tècniques de comptuación
intensiva juguen un paper rellevant. En l’actualitat, és comú dis-
posar de computadors amb diversos nuclis de procés i inclús util-
itzar múltiples computadors per mitjà de tècniques de computació
paral·lela distribüıda, inclús fora de l’ús cient́ıfic. Les tendències
actuals cap a arquitectures amb un nombre més gran de nuclis
(many-core) posen de manifest que és esta una aproximació relle-
vant.

Aquesta tesi comença amb una anàlisi dels problemes fonamen-
tals del procés de dades en NGS de forma general i adaptat per
a la seua comprensió per una àmplia audiència, a través d’una
exhaustiva revisió de l’estat de l’art en la correcció de dades de
NGS. Esta revisió introdüıx gradualment al lector en les tècniques
de seqüenciació massiva, presentant problemes i aplicacions reals

de les tècniques de NGS, destacant l’impacte d’esta tecnologia en
ciència. D’este estudi es conclouen dos idees principals: La ne-
cessitat d’analitzar de forma adequada les caracteŕıstiques de les
dades de NGS, atenent a l’enorme varietat intŕınseca que tenen les
diferents tècniques de seqüenciació massiva; i la necessitat de dis-
posar d’una ferramenta versàtil, eficient i precisa per a la correcció
d’errors, com a fase prèvia a qualsevol anàlisi genòmica.

En el context de l’anàlisi de dades, la tesi presenta Muffin-
Info. La ferramenta MuffinInfo és una aplicació programari imple-
mentada per mitjà de HTML5 per a afavorir la seua portabilitat
tant a nivell de sistema operatiu com de dispositiu. MuffinInfo
obté informació rellevant de dades crues de NGS per a afavorir
l’enteniment de les seues caracteŕıstiques i l’aplicació de tècniques
de correcció d’errors, suportant a més l’extensió per mitjà de fun-
cions que implementen estad́ıstics definits per l’usuari. MuffinInfo
emmagatzema els resultats del procés en fitxers JSON que faciliten
la seua integració en pipelines de procés. A l’usar HTML5, Muffin-
Info pot funcionar en gairebé qualsevol entorn maquinari i progra-
mari, donada l’ampli suport que té esta tecnologia. La ferramenta
està implementada aprofitant múltiples fils d’execució i gestionant
de forma concurrent l’accés a disc i la gestió de l’interf́ıcie.

La segona conclusió de l’anàlisi de l’estat de l’art ens porta a
l’oportunitat d’aplicar de forma extensiva tècniques de computació
d’altes prestacions en la correcció d’errors per a desenrotllar una
ferramenta que suport múltiples tecnologies (Illumina, Roche 454,
Ió Torrent i experimentalment PacBio). La ferramenta proposada
(MuffinEC), suporta diferents tipus d’errors (substitucions, delec-
ciones, insercions i valors desconeguts). MuffinEC supera els re-
sultats obtinguts per les ferramentes existents en este àmbit, en
els tres tipus de tests utilitzats en la tesi. Oferix una millor taxa
de correcció, en un temps molt inferior i utilitzant menys recur-
sos, la qual cosa facilita a més la seua aplicació en mostres més
gran en computadors convencionals, on altres ferramentes no po-

den funcionar per problemes de recursos. MuffinEC utilitza una
aproximació basada en etapes multiples. Primer agrupa totes les
seqüències utilitzant la mètrica dels k-mers. En segon lloc realitza
un refinament dels grups per mitjà de l’alineament amb Smith-
Waterman, generant contigs resultat de l’alineament múltiple de
les seqüències compatibles en el grup. Estos contigs resulten de
la correcció per columnes d’atenent a la freqüència individual de
cada base i l’aplicació de diferents fórmules i tècniques que faciliten
discriminar errors de variants significatives.

La tesi s’estructura per caṕıtols la base de la qual ha sigut
prèviament publicada en revistes indexades en posicions destacades
de l’́ındex del Journal of Citation Reports i en congressos de pres-
tigi.

To Grandpa

Declaration

I declare that the work presented herein is my own.
This work was supported by Generalitat Valenciana [GRISOLIA/2013/013].

Acknowledgements

I would like to express my special appreciation and thanks to my
advisor Dr. Ignacio Blanquer Espert, whi was a tremendous men-
tor for me. I would like to thank you for encouraging my research
and for allowing me to grow as a research scientist. Your advice
on both research as well as on my career have been invaluable.

I would also like to thank my collaborators Ignacio Medina
Castello, Dr. Andres Tomas Dominguez, Dr. Joaquin Dopazo
and Dr. David Ruzafa. Special thanks go to Dr. Vicente Arnau
Llombart, Dr. Rodica Potolea and Dr. Camelia Lemnaru for their
help and guidance even before starting the PhD.

Finally, I would like acknowledge the unconditioned love of
my mother Rodica Maria, grandmother Tavi, grandfather Costica
(who unfortunately passed away while I still was a PhD student)
and my cat Muffin. Thank you for taking great care of me and
being there when I needed you the most.

CONTENTS

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 3

1.3 Contributions . 4

1.3.1 Published Contributions 6

1.4 Document Organization 6

2 State of the Art 8

2.1 Motivation . 9

2.1.1 Sequencing Technologies 10

2.1.1.1 Illumina/Solexa 14

2.1.1.2 Roche 454 15

2.1.1.3 Ion Torrent/PGM 16

2.1.1.4 Abi SOLiD 16

2.1.1.5 Pacific Biosciences 17

2.1.1.6 Oxford Nanopore 17

2.1.2 Errors in NGS 18

2.1.2.1 GC Content 21

2.1.3 Benefits of Error Correction 23

3 Error Correction 25
3.1 Approach . 25

3.1.1 Conditions 26
3.2 Technology support 27
3.3 Software Categories 30

3.3.1 K-Spectrum Based (ksb) 30
3.3.2 Suffix Trie/Array Based (stab) 39
3.3.3 Multiple Sequence Alignment Based (msab) 43
3.3.4 Read Cluster Based (rcb) 48
3.3.5 Probabilistic Models Based (pmb) 50
3.3.6 Recommendations 52

3.4 Discussion . 56
3.4.1 Challenges 57

3.4.1.1 Data Preparation and Post-processing
Steps 57

3.4.1.2 K-mer 57
3.4.1.3 Repetitive Regions 60
3.4.1.4 Ploidy 62
3.4.1.5 Read Trimming and Splitting . . . 62
3.4.1.6 Unknown/Uncalled Bases 63
3.4.1.7 Low-Coverage Regions and Unifor-

mity 64
3.4.1.8 Parameters 65
3.4.1.9 Single Threaded vs Parallel 66
3.4.1.10 Operating System and Programming

Language 67
3.4.1.11 License and availability: 68
3.4.1.12 Recommendations 68

3.5 Testing . 69
3.5.1 Methods . 70
3.5.2 Gain/Specificity/Sensitivity 70
3.5.3 Assembly 73
3.5.4 Genomes Used for Testing 74

3.5.5 Real vs. Artificial Datasets 74

3.5.6 Resource Consumption 75

3.5.7 Testing details 76

3.5.8 Recommendations 77

4 MuffinEC - Error Corrector 78

4.1 Materials and Methods 80

4.1.1 k-mers Count and Histogram 82

4.1.2 Initial Reads Grouping 83

4.1.3 Greedy Grouping 83

4.1.4 Group Refining 86

4.1.5 Error Correction 87

4.2 Calculations . 90

4.2.1 Implementation 90

4.2.2 Parameters 91

4.3 Results and Discussion 96

4.3.1 Testing Methodology 97

4.3.1.1 Resource Consumption Testing . . 101

4.3.1.2 Scalability 106

4.3.1.3 Profiling 107

4.3.1.4 Parameter Robustness 107

4.3.2 Short Aligning Results 112

4.3.3 Assembly Results 112

4.3.4 Unknown Bases 114

4.3.5 Resource Demands 115

4.4 Discussion and Conclusion 118

5 MuffinInfo - NGS Information Extractor 121

5.1 Methods . 125

5.2 Extensibility . 129

5.3 Results . 131

5.4 Conclusion . 132

6 Conclusion 134
6.1 Published results 137
6.2 Software . 138

A Error correction in real projects 139
A.1 Recommendations 143

B External Testing of Error Correctors 146

C Testing Methods for Correctors 151

D Correctors’ Performance 158

LIST OF TABLES

2.1 Information (as of November 2015) about sequenc-
ing machines as reported by the vendors themselves.
. 11

3.1 The software and important features support; The
columns have the following meaning: Par. Tech-
the parallel technology (if any), k- whether or not a
software make use of k-mers, Q.- support for quality
scores, N- support for uncalled bases, Indel- sup-
port for indels, V.L.- support for variable length
reads, H.- support for heterozygosity, Rep.- support
for repetitive regions, T.- whether or not the algo-
rithm incorporates trimming, T.S. - the categories
in which a software fits from Fig. 3.1 53

3.2 Formulas to determine the k-mer size for non-automatic
k-mer determination; N = Genome length, l = read
length; p = probability that a random k-mer ap-
pears in a random string of length N, using the al-
phabet {A, C, G, T}; Ns = number of unique solid
k-mers as reported by BLESS 59

4.1 Consensus Example (the first five rows show the
alignment example; the rest of the table shows the
actual distribution values stored in the consensus) . 86

4.2 Experimental Datasets; the last two columns show
number of reads in the original dataset (penultimate
column) and filtered dataset respectively (last column) 96

4.3 Error Correction Testing Results 102
4.4 Dataset Statistics with Respect to Unknown Bases 117

5.1 Comparison with other similar software 124
5.2 The performance of MuffinInfo; Time in minutes;

Datasets from E. coli K-12 substr. MG1655 131

A.1 Work using the correctors included in the current
review . 139

B.1 Testing result from benchmarks and original papers;
App - the name of the corrector, Mem/Rt/Gain -
memory in GB/runtime in mins (num of threads
in parentheses for Rt O)/gain as percentage re-
ported in the original paper (represented by O) and
in the survey by [1] (represented by S), Gain R -
gain(percentage) reported by [2], # Rds - number
of reads, # Bs - number of bases; The programs
that didn’t run successfully are market by ”-*”. . . 146

C.1 Testing methods algorithms; RC represents the re-
source consumption 151

D.1 Algorithms’ performance on different datasets . . . 158
D.2 Testing configurations used by the authors 168

LIST OF FIGURES

2.1 Main sequencing steps for Illumina. 15

3.1 Classification using the technology support among
correctors; Letters between paranthesises on the leaves
used to group the algorithms in Table 3.1. 29

3.2 Typical distribution of k-mers used by ksb correc-
tors; Vertical axis shows the number of k-mers which
appear in the number of reads displayed on the hor-
izontal axis; First peak corresponds to erroneous k-
mers which appear only in a few reads; Correct k-
mers typically exist in a number of reads close to the
coverage; K-mers found in many reads (right part of
the spectrum) typically correspond to repetitive re-
gions. 31

3.3 Suffix trie example; a) An error on the rightmost
path results in branch having a very low frequency
(<< k/2) compared with its sibling branch (. k/2);
b) Example of a trie for a very short genome with
read TAAA having an error on its third position . . 41

3.4 a) Multiple sequence alignment of reads versus the
(prospective) reference genome; b) Example of four
read with the common k-mer ”TTACGAA” and the
four basic types of errors. 45

3.5 a) Clustering approach for one reference read and
four related having one difference each; b) Real ex-
ample with the main read market in bold and the
satellites aligned and with the different locus market
with bold and italic. 49

3.6 The EM algorithm initializes the probabilities of the
bases before entering the loop where it alternates
between E-step and M-step; Once the convergence
threshold has been reached the method exits and
enters the correction stage; The capital P represents
the probability for a base to be the real one; 51

4.1 The basic flow of the algorithm. 81

4.2 Graph example for five reads and k=6; The number
of common k-mers gives the weight of a link between
two reads; A missing link means zero k-mers in com-
mon; . 85

4.3 Execution time and memory consumption for multi-
core execution. 108

4.4 Profiling using one core 109

4.5 Profiling using six cores 110

4.6 Robustness analysis for D2, varying two parameters. 111

4.7 Percentage of mapping reads from the NON-mapping
ones after correction as reported by bowtie2; results
with the FASTA output; higher is better. 113

4.8 Newbler’s metrics; larger is better (longer contigs
means that the assembler was able to build longer
stretches from the original genome) 115

4.9 Number of large contigs and all contigs as reported
by Newbler; Shorter is better (fewer contigs, closer
to a final genome) 116

5.1 MuffinInfo can run in a multitude of environments.
All logos appearing in this picture are the property
of their respective owners. (Online version in colour.) 123

5.2 MuffinInfo main UI 128

CHAPTER 1

Introduction

1.1. MOTIVATION 1

The Next Generation Sequencing (NGS) appeared around 2005
and since then its market has increased steadily, with various tech-
nologies being developed. The NGS has evolved faster than the
Moore’s law in Computer Science, allowing us to sequence and
assemble large genomes like the Loblolly Pine with 22 Gb [3] or
the Norway Spruce with 20 Gb [4] for a reasonable cost in time
and resources. However, there are many other species (e.g. the
Amoeba Dubia with a 670 Gb estimated genome size [5], 200x
human genome’s size) that are still challenging to assemble. The
errors introduced by the sequencing process are one of the main
reasons NGS data has to be corrected before any further use. Mul-
tiple studies have demonstrated the impact of sequencing errors
on different applications of NGS, making error correction a funda-
mental initial step. [6, 7, 8, 9]

This chapter continues with a Motivation section where we de-
scribe why our work is necessary. Next, in Objectives, we sum-
marise our goals for this thesis. We continue with a section dealing
with the main achievements obtained from our work and conclude
with the description of the organization of the whole manuscript.

Motivation

As we shall see in the chapter State of the Art, the current se-
quencing technologies are unable to sequence a full genome at once,
even from bacteria like E. coli with a genome having 4.6Mbp. As
a result, the current methods cleave the original genome in small
segments which are read by a sequencer machine. To obtain the
digital representation of a genome from the reads (the assembly of
the genome), one must concatenate them in the right order.

The size of the genomes (3Bbp for H. sapiens) relative to the
size of the reads (35bp to 90Kbp) is one real challenge that must
be addressed. To allow the deduction of the right order of the

2 CHAPTER 1. INTRODUCTION

reads, each locus in the genome is sequenced multiple times. A
base ends up in multiple overlapping reads. The term coverage
denotes how many times a base on a locus in the genome has been
read by the sequencer. The downside is that this process generates
huge amounts of data (for example, a 400x coverage for the human
genome would result in a dataset of reads having a combined 1.2
trillion bases). Unfortunately, the deluge of information cannot
be processed by humans alone. The computers can process the
data extremely fast, hence they can solve simple cases and mark
the complex ones for later human intervention. To cut the costs,
speed up the analysis and improve accuracy, the algorithms are
continuously improved to handle more and more complex cases by
themselves.

The errors introduced during sequencing represent another prob-
lem that must be dealt with. Overall, the research done until now
strongly supports the need for error correction before any other
processing of the raw data, as we shall see in chapter State of the
Art. Existing error correction tools address different technologies,
error types and approaches. Many error correction publications
include assembly tests because one of the most important applica-
tion of NGS is assembly. The assembly quality metrics (like N50)
and number of assembled fragments (contigs) undoubtedly demon-
strate the need of ”a priori” error correction to generate a mean-
ingful and useful output. For instance, in [10, 11], one can observe
the improvement of both the performance of the assemblers and
the accuracy of the results, even when using other error correction
methods than the ones packaged with/embedded in the assemblers
themselves. Another application of NGS is resequencing. Some
papers [6, 12] specifically list this as an area where error correction
has a very strong and positive impact. Finally, the short reads
alignment is also improved after error correction[13, 14, 15, 16].
Variant calling is an application of NGS directly related to align-
ment. The errors in the reads can negatively impact the SNP

1.2. OBJECTIVES 3

detection, because the errors may look like SNPs[9].

Objectives

The overall objective of the thesis is to advance the state-of-the-art
in the field of error correction. In order to achieve this, we divided
this general objective in three main objectives:

1. To lay the foundation of the thesis by looking at NGS in
the context of error correction. At this step, we aim to de-
scribe succinctly the field of NGS to equip the reader with
the relevant background for the actual error correction. The
main accent is to be put on error correction that is to be
discussed in depth and the current state-of-the-art tools are
to be presented.

2. To get insights into the sequencing data. To be able to im-
prove the existing applications, one must first understand the
data and as a famous quote goes, ”Knowledge is power”, to
us is essential to find out more about as many datasets as
possible to design a tool as efficient and general as possible.
Since we seek to create a whole new application, knowing
what was developed previously is not enough, we must be
able to generate new knowledge from newly obtained data
to push the boundaries. To do that we have to be able to
look into the data, therefore to develop a tool that suits our
needs.

3. To correct the sequencing data. Once we have the NGS foun-
dation, we learnt about the existing state-of-the-art and we
built a customized way to look into the data, we can target
the development of an effective method which fixes the errors
and improves almost any further step.

4 CHAPTER 1. INTRODUCTION

These objectives are set in natural order (each built on top of
the knowledge generated by the previous one). A reader with a
limited knowledge in the domain can catch up and understand the
work pretty easily by following the chapters in order. The accessi-
bility to a wide audience is a secondary objective we pursue with
the organization of the manuscript and the way the information is
presented throughout the thesis.

Contributions

During the doctorate, we pursued a number of three main objec-
tives. All of them have been addressed successfully as we shall see
in the remainder of this section.

To address the first objective, we authored a review of stand-
alone error correction methods of NGS data. Even though the title
specifies error correction, the review also includes a brief, but com-
prehensive summary of the NGS field with the current technologies.
Another unique trait is the search and inclusion model which is ab-
sent in other reviews. We specified a list of desired features for the
correctors to be allowed in our review. Next, we used a reliable
search approach than can be easily duplicated by the user. This
same review also includes a list of scientific articles in which the
stand-alone correctors were used for different purposes. Finally,
we include the testing results and approaches from benchmarking-
reviews, making ours a meta-review also. This work is aimed at a
large audience, ranging from biologists to chemists and computer
scientists. We present the information in a very accessible way with
the most important background terms and information explained.

Due to the vast amount of NGS data in a typical sequencing
project, a-priori information about the quality of the input and the
selection of relevant information from the deluge of information can
have a great impact on the project costs in human time and com-

1.3. CONTRIBUTIONS 5

putational resources. We introduce MuffinInfo, the materialization
of the second objective, an online/offline HTML5 statistics extrac-
tion software from NGS data. One of its unique features is the
ability to run on almost any software or hardware platforms. An-
other novel feature is its straightforward extensibility. The user is
able to develop his/her own custom statistic, which can be easily
integrated in the main program. Last but not least, we introduce
the possibility of statistics reuse. MuffinInfo can export the results
of an execution in JSON format, native to Javascript. It can open
these results for later analysis. An important advantage over other
similar software is the level of interactivity offered when viewing
charts (which are not static images like those generated by other
statistics extractors).

Once the error correction domain has been explored and we
have a statistics tool customized for our needs, we proceed to the
third objective with the actual error correction. MuffinEC is a par-
allel, indel-aware, multi-technology error corrector for NGS data.
Our novel method optimizes the memory consumption and spreads
the correction across multiple CPU cores. Due to its approach, it
is faster and obtains better correction results than other similar
software. The multiple sequence alignment correction tackles all
types of errors, without resorting to simplifications like converting
an unknown nucleotide to a random real base. With MuffinEC, we
propose a novel, two step grouping procedure. First, the reads are
grouped together by a fast, greedy mechanism to avoid comparing
all reads against all reads. Next, these groups are refined. During
this second step, MuffinEC may split the main group (if needed)
in multiple subgroups where all the reads show strong similarity.
This way, our software avoids correcting those reads clustered to-
gether at the first step as being from the same genomic locus, but,
in reality, they are from distinct loci. Furthermore, this approach
ensures that the misclassified reads at the greedy step are not left
uncorrected.

6 CHAPTER 1. INTRODUCTION

All these three main targets are grouped as individual chapters
in the manuscript.

Published Contributions

As of now, we published three articles in high impact journals and
participated at two conferences:

• MuffinEC is published as ”MuffinEc: Error correction for de
Novo assembly via greedy partitioning and sequence align-
ment” in Information Sciences.

• The error correction review is published under the title ”Ob-
jective review of de novo stand-alone error correction meth-
ods for NGS data” in WIREs Computational Molecular Sci-
ence.

• An early version of MuffinInfo was presented as a poster at
ISMB/ECCB ’15 in Dublin, Ireland. The newest feature-
complete version is in press at the Journal for Computational
Biology.

• MuffinInfo is in press as ”MuffinInfo: HTML5-based statis-
tics extractor from Next Generation Sequencing data” in
Journal of Computational Biology.

• An early version of MuffinEC was presented at IWBBIO ’14
in Granada, Spain.

Document Organization

The thesis continues with two chapters presenting the biological
and bioinformatics background and reviewing the error correction
domain. They have already been published with the versions herein

being the result of the merging between the main manuscript and
the Supplementary Material. The fourth chapter is published ar-
ticle of MuffinEC, the error corrector, the adapted for this thesis.
The fifth chapter presents MuffinInfo, the statistics extractor which
has been accepted for publication in a journal. We conclude with
a short discussion about the contributions added with this thesis.

CHAPTER 2

State of the Art

Part of this chapter has been published as: Alic AS., Ruzafa D.,
Dopazo J., Blanquer I. ”Objective review of de novo stand alone er-
ror correction methods for NGS data”. In: WIREs Computational
Molecular Science. 2016. DOI: 10.1002/wcms.1239

8 CHAPTER 2. STATE OF THE ART

There are many error correction tools in the literature that cope
with different technologies and error types. However, to our knowl-
edge, there is no complete, objective review of the modern meth-
ods that could help researchers, educators and users at the same
time. There are benchmarks summarizing a number of methods,
but there is none extensively focusing on the implementation, fea-
tures and the overall domain (including challenges). Our work
synthesises 50 de Novo stand-alone error-correction software.

This chapter continues with the motivation (also containing a
brief description of the sequencing technologies and various error
sources), followed by a presentation of the correctors. Next, sec-
tion ”Discussion” presents some important points related to chal-
lenges faced by correctors and how their performance is assessed in
the literature. This chapter ends with some general remarks about
the current state of the field of the error correction of NGS data.

We also introduce the concept of gradual recommendations.
The recommendations are gradual, because they progress with the
text and each one is based on the previous information. Sec-
tion ”Error Correction Software” includes general recommenda-
tions based on the features presented in table ”Recommendations”.
The recommendations from section ”Error correction in real projects”
use as foundation the previous ones and extend the suggestions
now that the reader has read about some real-world examples.
Subsection ”Recommendations” from section ”Challenges” focuses
on proposals taking into account the challenges that the correc-
tors must address. Finally, subsection ”Recommendations” from
section ”Testing” offers advice (now that the reader knows the
methods, where these have been used and what the challenges are)
based on real-world performance using different metrics.

2.1. MOTIVATION 9

Motivation

The market size of the next generation sequencing was estimated
at $2.5 billion in 2014.[17] Furthermore, Illumina managed to lower
the cost of sequencing with its HiSEQ X to ∼$1000 (in 2015) for
the human genome.[18, 19] This price is quite an achievement when
considering that not so long ago (2000-2003) the draft of the human
genome costed about $300 million.[20] Overall, NGS has become
widely used by the medical and scientific community not only for
the basic biological research, but also in numerous applied fields
such as medical diagnosis, forensic biology, virology and biotechnol-
ogy. These are just a few clear proofs of the increasing importance
of NGS in the world (not mentioning the increase in size of the
segments, faster sequencing machines and improved quality of the
generated data).

This quickly evolving and advancing environment facilitated
the development of a myriad of methods with different applica-
tions for the NGS data. One of the most important steps (usually
the first) is the correction of errors, yielding many benefits for the
ulterior ones as demonstrated in sub-section ”Benefits of Error Cor-
rection”. Our reader may assume that an easy way to deal with the
errors is to increase the coverage (i.e. add more sequencing data).
While the increase in coverage indeed helps the correction process,
there are still many challenges that the correctors must address
(especially in de Novo sequencing). Furthermore, an increase in
coverage comes with an increase in costs, sequencing/processing
time and storage requirements.

After an extensive literature search (see approach and details
in the Supplementary Material), we selected a number of 50 cor-
rectors. As one may expect, there is a tremendous amount of
information scattered across these papers. We strive to summarize
the deluge of information for an audience from many fields such

10 CHAPTER 2. STATE OF THE ART

as bioinformatics, biology, chemistry, computer science and others
with an interest in NGS. Our aim is to help the researcher in the
field of error correction by grouping the information and synthesiz-
ing the existing work. Secondly, our work also comes in handy for
educators because it summarizes and presents the key points of the
information found in the selected articles. We tried to present the
information gradually, without an abrupt and direct presentation
of the correctors (our readers are not expected to have an apriori
deep knowledge of the domain). Finally, the actual users of the
correction software can find Table B.1 useful to choose the right
tool for their specific requirements.

Sequencing Technologies

The DNA sequencing is considered to be born in 1977 with the
publication of the Sanger method[21]. This method implies a large
amount of DNA as template for each read and needs an indepen-
dent PCR for each possible nucleotide. The PCRs are produced in
presence of four deoxynucleotides and a single dideoxynucleotide,
which stops the elongation. Once synthesized, the truncated DNAs
are resolved by electrophoresis. During the synthesis reaction, a
radioactive nucleotide (usually dATP - Deoxyadenosine triphos-
phate) is incorporated into the elongating strands that simplifies
the determination of the sequence.

NGS methods are more efficient than Sanger sequencing in two
different ways. On the one hand, in Sanger sequencing only 1 Kb
(max) can be sequenced in a single experiment, whereas NGS is
parallel by definition, allowing a throughput of hundreds/thousands
of gigabases per run. Note that Kb, Mb and Gb are the acronyms
for kilobases, megabases and gigabases. On the other hand, the
chemical reactions are usually combined with the signal detection
in some versions of NGS, whereas in Sanger sequencing they are
two separate processes. Factors like the reduction of time, man-

2.1. MOTIVATION 11
T

ab
le

2.
1:

In
fo

rm
at

io
n

(a
s

of
N

ov
em

b
er

20
15

)
ab

ou
t

se
q
u
en

ci
n
g

m
ac

h
in

es
as

re
p

or
te

d
b
y

th
e

ve
n
d
or

s
th

em
se

lv
es

.

P
la

tf
o
r
m

In
st

r
u

m
e
n
t

U
n

it

R
e
a
d

s/

U
n

it
1

A
v
g
./

M
a
x

R
e
a
d

L
e
n

.
(b

p
)

R
e
a
d

T
y
p

e
Q

u
a
li

ty
E

r
r
o
r

T
y
p

e

Il
lu

m
in

a

H
iS

eq
X

T
en

[2
2
]

L
a
n

e
3
7
5
M

1
5
0
/
1
5
0

P
E

≥
7
5
%

b
p
>

Q
3
0

m
is

m
a
tc

h
H

iS
eq

3
0
0
0
/
4
0
0
0
[2

3
]

L
a
n

e
3
1
2
M

1
5
0
/
1
5
0

P
E

≥
7
5
%

b
p
>

Q
3
0

m
is

m
a
tc

h
H

iS
eq

N
ex

tS
eq

5
0
0

H
ig

h
-O

u
tp

u
t[

2
4
]

R
u

n
4
0
0
M

1
5
0
/
1
5
0

S
R

/
P

E
≥

7
5
%

b
p
>

Q
3
0

m
is

m
a
tc

h
H

iS
eq

N
ex

tS
eq

5
0
0

M
id

-O
u

tp
u

t[
2
4
]

R
u

n
1
3
0
M

1
5
0
/
1
5
0

P
E

≥
7
5
%

b
p
>

Q
3
0

m
is

m
a
tc

h
H

iS
eq

2
5
0
0

H
ig

h
-O

u
tp

u
t

H
IS

E
Q

S
B

S
V

4
[2

5
]

L
a
n

e
2
5
0
M

1
2
5
/
1
2
5

S
R

/
P

E
≥

8
0
%

b
p
>

Q
3
0

m
is

m
a
tc

h
H

iS
eq

2
5
0
0

H
ig

h
-O

u
tp

u
t

T
R

U
S

E
Q

S
B

S
V

3
[2

5
]

L
a
n

e
1
8
6
M

1
0
0
/
1
0
0

S
R

/
P

E
≥

8
0
%

b
p
>

Q
3
0

m
is

m
a
tc

h
H

iS
eq

2
5
0
0

R
a
p

id
R

u
n

[2
5
]

L
a
n

e
1
5
0
M

2
5
0
/
2
5
0

S
R

/
P

E
≥

7
5
%

b
p
>

Q
3
0

m
is

m
a
tc

h
H

iS
ca

n
S

Q
[2

6
]

L
a
n

e
9
3
M

1
0
0
/
1
0
0

S
R

/
P

E
≥

8
0
%

b
p
>

Q
3
0

m
is

m
a
tc

h
G

en
o
m

e
A

n
a
ly

ze
r

II
x
[2

7
]

L
a
n

e
4
2
M

1
5
0
/
1
5
0

S
R

/
P

E
≥

8
0
%

b
p
>

Q
3
0

m
is

m
a
tc

h
G

en
o
m

e
A

n
a
ly

ze
r

II
e[

2
8
]

L
a
n

e
4
2
M

1
5
0
/
1
5
0

S
R

/
P

E
≥

8
0
%

b
p
>

Q
3
0

m
is

m
a
tc

h
G

en
o
m

e
A

n
a
ly

ze
r

II
[2

9
]

F
lo

w
C

el
l

5
0
M

7
5
/
7
5

S
R

/
P

E
≥

7
0
%

b
p
>

Q
3
0

m
is

m
a
tc

h
G

en
o
m

e
A

n
a
ly

ze
r[

3
0
]

F
lo

w
C

el
l

2
6
M

5
0
/
5
0

S
R

/
P

E
≥

9
8
.5

%
b

p
er

ro
r-

fr
ee

m
is

m
a
tc

h
M

iS
eq

R
ea

g
en

t
K

it
v
3
[3

1
]

L
a
n

e
2
5
M

3
0
0
/
3
0
0

S
R

/
P

E
>

7
5
%

b
p
>

Q
3
0

m
is

m
a
tc

h
M

iS
eq

R
ea

g
en

t
K

it
v
2
[3

1
]

L
a
n

e
1
5
M

2
5
0
/
2
5
0

S
R

/
P

E
>

7
0
%

b
p
>

Q
3
0

m
is

m
a
tc

h

T
h

er
m

o
F

is
h

er
S

ci
en

ti
fi

c[
3
2
]

Io
n

P
ro

to
n

I
C

h
ip

8
0
M

1
2
5
a
/
2
0
0

S
R

N
A

in
d

el

Io
n

P
G

M
3
1
8
[3

3
]

C
h

ip
4
M

3
6
3
a
/
4
0
0

S
R

>
9
9
%

a
li
g
n

ed
/

m
ea

su
re

d
a
cc

u
ra

cy
in

d
el

Io
n

P
G

M
3
1
6
[3

3
]

C
h

ip
2
M

3
3
3
a
/
4
0
0

S
R

>
9
9
%

a
li
g
n

ed
/

m
ea

su
re

d
a
cc

u
ra

cy
in

d
el

Io
n

P
G

M
3
1
4
[3

3
]

C
h

ip
4
0
0
K

1
8
1
a
/
4
0
0

S
R

>
9
9
%

a
li
g
n

ed
/

m
ea

su
re

d
a
cc

u
ra

cy
in

d
el

S
O

L
iD

5
5
0
0
x
l[
3
4
]

W
L

a
n

e
3
.2

B
7
5
/
7
5

S
R

/
P

E
/

M
P

N
A

m
is

m
a
tc

h

12 CHAPTER 2. STATE OF THE ART

T
a
b

le
2
.1

C
o
n
ti

n
u

ed
fr

o
m

p
re

v
io

u
s

p
a
g
e

P
la

tf
o
r
m

In
st

r
u

m
e
n
t

U
n

it

R
e
a
d

s/

U
n

it
1

A
v
g
./

M
a
x

R
e
a
d

L
e
n

.
(b

p
)

R
e
a
d

T
y
p

e
Q

u
a
li

ty
E

r
r
o
r

T
y
p

e

S
O

L
iD

5
5
0
0

W
[3

4
]

L
a
n

e
1
.6

B
7
5
/
7
5

S
R

/
P

E
/

M
P

N
A

m
is

m
a
tc

h

S
O

L
iD

5
5
0
0
[3

5
,

3
6
]

L
a
n

e
1
2
0
M

7
5
/
7
5

S
R

/
P

E
/

M
P

u
p

to
9
9
.9

9
%

≥
Q

V
4
0

m
is

m
a
tc

h

S
O

L
iD

5
5
0
0
x
l[
3
5
,

3
6
]

L
a
n

e
2
0
0
M

7
5
/
7
5

S
R

/
P

E
/

M
P

u
p

to
9
9
.9

9
%

≥
Q

V
4
0

m
is

m
a
tc

h

P
a
cB

io
R

S
II

[3
7
]

S
M

R
T

C
el

l
5
5
K

1
8
,1

8
1
a
/

6
0
,0

0
0

S
R

>
9
9
.9

9
9
%

(Q
V

5
0
)

in
d

el

R
S

[3
8
]

S
M

R
T

C
el

l
2
2
k

4
,5

7
5
/

2
0
,8

4
8

S
R

N
A

in
d

el

R
o
ch

e
4
5
4

G
S

F
L

X
T

it
a
n

iu
m

X
L

+
[3

9
]

R
u

n
1
M

7
0
0
/
1
0
0
0

S
R

9
9
.9

9
7
%

C
o
n

se
n

su
s

a
cc

u
ra

cy
in

d
el

G
S

F
L

X
T

it
a
n

iu
m

X
L

R
7
0
[3

9
]

R
u

n
1
M

4
5
0
/
6
0
0

S
R

9
9
.9

9
5
%

C
o
n

se
n

su
s

a
cc

u
ra

cy
in

d
el

J
u

n
io

r[
4
0
]

R
u

n
1
0
0
K

4
0
0
/
-b

S
R

9
9
%

a
cc

u
ra

cy

a
t

4
0
0
b

p
in

d
el

J
u

n
io

r+
[4

1
]

R
u

n
1
0
0
K

7
0
0
/
-b

S
R

9
9
%

a
cc

u
ra

cy

a
t

7
0
0
b

p
in

d
el

O
x
fo

rd
N

a
n

o
p

o
re

M
in

Io
n

[4
2
]

R
u

n
4
M

9
,5

4
5
a
,c

/

3
0
0
,0

0
0

1
D

/
2
D

9
6
%

a
cc

u
ra

cy

b
a
se

ca
ll
in

g
in

d
el

P
ro

m
et

h
IO

N
[4

2
]

R
u

n
2
6
M

9
,8

4
6
a
,c

/

3
0
0
,0

0
0

1
D

/
2
D

9
6
%

a
cc

u
ra

cy

b
a
se

ca
ll
in

g
in

d
el

a
C

al
cu

la
te

d
fr

om
m

ax
th

ro
u

g
h

p
u

t
d

iv
id

ed
b
y

m
a
x

n
u

m
b

er
o
f

re
a
d

s
b
U

n
sp

ec
ifi

ed
m

ax
le

n
g
th

c
V

al
u

es
fr

om
F

as
t

M
o
d

e
1
S

in
gl

e
R

ea
d

s

2.1. MOTIVATION 13

power and reagents in NGS lead to lower costs making it possible
to do more repeats than with the Sanger method. This results in
a more accurate, reliable sequencing and better coverage. In NGS,
the first step is the DNA cleavage into short fragments with lengths
depending on the particular sequencer used.

In this review we focus on NGS technologies based on sequenc-
ing by synthesis (SBS), using DNA polymerase/ligase enzymes to
generate a complementary strand. As defined by [43], Pacific Bio-
sciences is the only SBS approach which has a real time sequencing
strategy. All the others are synchronously controlled as we shall see
in the following sub-sections where we present a brief but compre-
hensive description of the sequencing chemistries of the five afore-
mentioned technologies. Fuller et al. also divide the methods in
single molecule based (Pacific Biosciences and Oxford Nanopore -
not specified in [43]) and ensemble based (Illumina, Roche 454, Ion
Torrent - not specified in [43] and SOLiD). The former sequences
single molecules of DNA as they are obtained from the source, while
the latter relies on the amplification (cloning) of DNA fragments
before starting the actual sequencing process.

The sequencing technologies explicitly supported by the meth-
ods from our review (ordered by the number of correctors sup-
porting them) are: Illumina, Roche 454, Pacific Biosciences, Ion
Torrent, Oxford Nanopore and SOLiD. Note that we put a strong
accent on the actual DNA ”reading” step, because this is the main
step where sequencing errors are generated. For further and de-
tailed information regarding the platforms and the entire sequenc-
ing process, please, check the Further Reading section where we
listed some resources which cover the themes more in depth. Ad-
ditionally, the interested reader can find more details about chem-
istry of SBS sequencing in [43].

Table 2.1 offers some information about a number of well-known
sequencers. SR stands for single read, PE stands for pair-end reads,
MP stands for mate-paired reads, 1D stands for a fragment read

14 CHAPTER 2. STATE OF THE ART

in one direction and 2D stands for a fragment read both forward
and reverse. Q or QV followed by a number represents the quality
score for a base (depending on the reference the score can be in
Phred[44] format or not)

Illumina/Solexa

In the case of Illumina sequencing, the DNA fragments receive
adapters at their ends. These adapters attach themselves to the
respective complementary adapters, with the latter hooked on a
slide with many variants of (complementary) adapters placed on
a solid surface. Next, the hooked fragments are cloned by PCR
amplification, creating a spot with many copies of the same initial
DNA fragment. The last step before the actual sequencing sepa-
rates the complementary strands of each cloned, hooked fragment
on every slide. Next, fluorescent labelled, terminated nucleotides
and DNA polymerase are added as a mix (Fig. 2.1, Step 1). Flu-
orescent bases produce unique colours for each matching base. A
polymerase is a protein that rebuilds the double helix starting from
a single stranded template. It adds the complementary base for
each of the template’s composing nucleotides. Due to the termi-
nated property of the free nucleotides added earlier in the mix, the
polymerase attach to one and only one base per cycle (Fig. 2.1,
Step 2). The sequencer registers the colour of the latest incorpo-
rated nucleotides for each slide with the cloned fragments by taking
a picture (Fig. 2.1, Step 3). The process continues with the elimi-
nation of the terminator with the fluorescent label and the starting
of a new cycle. The number of cycles gives the length of the read
(the digital representation of a physical DNA fragment), with all
reads normally having the same length. Using the snapshots, the
sequencer determines the nucleotides composing a read (Fig. 2.1,
Step 4).

2.1. MOTIVATION 15

T

C

T

A

A

G

A

T

G

C

G

T

G

T

C

T

A

A

G

A

T

G

G

C

G

T

G

T

C

T

A

G

A

G

T

G

C

G

T

G

Step 1 Step 4Step 3Step 2

DNA

Polymerase

Bead With

Adapter

Figure 2.1: Main sequencing steps for Illumina.

Roche 454

As in Illumina’s method, the 454 reads pass through a PCR ampli-
fication step and bind to adapters for which the complementaries
lay hooked on a bead. Roche 454 uses the same fluorescent sig-
nalling to read the attached nucleotides. Therefore, the addition of
each nucleotide releases a light signal. The main difference consists
in the approach taken at each cycle. Instead of adding a solution
containing all four fluorescent and terminated bases, the sequencer
adds the solution with one and only one type of bases without the
terminator. As a result, a variable number of bases can bind on
the read at each cycle. The intensity of the signal represents the
number of nucleotides added in each cycle. Roche tries to recon-
struct entire homopolymers (runs of identical bases) at each cycle
to save time. As an example, at Step 2 from Fig. 2.1, the sequencer
adds two Cytosines (instead of one like in Illumina’s case) in the
depicted cycle. Generally, the sequences generated by 454 instru-
ments have different lengths, because different numbers of bases
are incorporated at each cycle.

16 CHAPTER 2. STATE OF THE ART

Ion Torrent/PGM

Unlike Illumina and 454, Ion torrent sequencing is not based on
the detection of optical signals. Instead, it takes advantage of the
release of protons (H+) following the addition of deoxynucleotides
to the DNA strands by the DNA polymerases. The fluctuation in
the pH of the solution can be easily measured and, using its level of
acidity, the instrument can determine how many bases have been
attached in each cycle. The bases are identified as in the case of
454.

Abi SOLiD

In this case, the reads are used to prepare clonal bead populations.[45]
Instead of binding one nucleotide or a homopolymer per cycle (like
the previously described sequencers), ABi uses fluorescently la-
belled di-nucleotide probes. Instead of individual bases, SOLiD
encodes the transition between bases. At each ligation step, four
DNA primers attached to different fluorescent dyes (out of the
16 DNA possibilities) are added to the reads that match to the
complementary DNA primers on the bead. Next, the fluorescent
part is read and afterwards cleaved from the probe. The sequencer
repeats this cycle of ligation/reading/cleavage as many times as
needed in order to obtain a read of a certain length. In each cycle
two positions of every five are determined. Once the sequencer
has executed enough cycles, it resets the template with the primer
going one position backward by removing one base of the primer.
In order to determine the complete sequence of the read SOLiD
sequencers perform this resetting step five times. As the primer
is moved one base backward, the sequencer reads each base twice,
improving the robustness.

2.1. MOTIVATION 17

Pacific Biosciences

Pacific Biosciences uses a single-molecule real time (SMRT) se-
quencing approach.[46] It employs the same fluorescent labelling as
the previous technologies, but instead of executing cycles of incor-
porating nucleotides and taking snapshots, it detects the signals
in real time, as they are emitted when the incorporations occur
(using a zero-mode waveguide system[47]). Like Illumina, Pacific
Biosciences uses all four bases at the same time floating in the mix.
It has a bead with many wells having a diameter between 70 and
100 nm, lower than the wavelength of the visible light. Due to
the physical properties of the fluorescent additives, light is needed
in order to make the fluorescent dye glow. Owing to this require-
ment, the bottom of the wells is illuminated, but due to their very
small diameter, the light intensity decays exponentially along the
wells, creating a shadow zone. The wells have a DNA polymerase
attached to their bottoms (the illuminated zone) which rebuilds
the DNA complementary strand of the DNA segments floating in
the mix. Each time a nucleotide is added, the fluorescent dye is
cleaved. As a result, two consecutive signals do not overlap be-
cause the sensors only record the non-cleaved fluorescent dyes as
the previous ones move up in the well into the shadow zone. This
approach does not require cycles, because each polymerase works
independently of the others.

Oxford Nanopore

As its name suggests, this sequencing technology uses very small
nanopores (allowing one nucleotide at a time) to read the DNA
sequences.[48] The idea of using nanopores to decipher the DNA’s
code has been around since 1989, but it was not viable, until 2010
when a DNA polymerase capable of attracting the DNA to the
nanopore was discovered [49]. The main components of this tech-

18 CHAPTER 2. STATE OF THE ART

nology are the protein nanopores, resembling those found on the
cellular membrane. These structures are inserted into an electrical
resistant artificial membrane onto which an electrical potential is
applied. Owing to the flowing of the potential only through the
aperture of the nanopore, any molecule passing through generates
a variation in the current, resulting in a specific signature. Using
the previously described process, the sequencer is able to decode
the DNA (or RNA or proteins). In order to get the DNA segments
to pass through the hole, the segments are mixed with copies of a
carrier enzyme. These carrier enzymes attach to the DNA strands.
They are pulled to a nanopore where the DNA is unzipped (if neces-
sary) and the resulting single strand passes through the aperture,
producing variations in the potential. One interesting feature is
the capability to sequence both strands of the DNA segment using
the same nanopore, generating the so-called 2D reads (5’-3’ and
its complementary 3’-5’ strands linked together). In order to do
this, the DNA must have a hairpin structure at the end to keep
the two templates together after unzipping. This way, once the
first strand has passed through the hole, the complementary one
is pulled through.

Errors in NGS

There are four types of basic sequencing errors: insertion, deletions,
mismatches and uncalled/unknown bases (or N’s).[50] The differ-
ences in the sequencing process of the aforementioned technologies
lead to different types of errors. Table 2.1 lists the predominant
error type for each NGS technology. This constitutes an important
factor when choosing the values of the parameters for the correc-
tors. Mismatches are prevalent in Illumina and SoLID, while indels
constitute the main error type in Roche 454, Ion Torrent, Pacific
Biosciences and Oxford Nanopore.[51, 52, 7, 53, 54, 55] More details
about the types of errors in the aforementioned technologies and

2.1. MOTIVATION 19

practical experiments appear in [7, 53, 56]. The ensemble-based
methods are prone to pre-sequencing errors (generated by the li-
brary preparation method and the choice of primers)[57], unless
PCR-free kits are used[58, 59, 60].

Owing to its one nucleotide incorporation per cycle, the Illu-
mina sequencers avoid insertions and deletions almost entirely.[7,
53] Sleep et al. [61] describe the substitution errors for various Illu-
mina sequencers. They found that the percentage of error increases
towards the 3’ end of the reads [62, 9] because of a phenomenon
called dephasing/phasing. It is caused by the fact that an error
generated at one cycle affects the next cycles, hence the increased
number of errors towards the end.[61] This same phenomenon is
the main cause for the limited length of the reads in all ensemble-
based SBS methods where some strands in a group of clones may
fall behind resulting in a de-synchronization of the emissions of
each clone in a group.[43] Another important cause of sequencing
errors is the crosstalk arising due to the overlap of dye emission
frequencies. The Illumina Genome Analyzer R© uses a red laser to
read A and C and a green laser to read G and T. As a result, the
Genome Analyzer R© produces many substitution G→ T and C→
A.[9, 63] Related to the previous cause for the MiSeq R© sequencer,
Schirmer et al. determined that A ←→ C substitution errors ap-
peared more often than G←→ T (red laser/filtering problem).[57]
They also studied the relation between the position of bases in a
read and the quality scores for Illumina MiSeq data. Generally,
errors occurring between the start and the middle of the reads
had much higher quality scores, than those in the second half of a
read. Furthermore, the authors found several 3-mer motifs usually
preceding substitutions and indels, resulting from the selection of
primers and library design. The estimated error rate for Illumina
sequencers is between 1 and 2.5%.[64, 65, 9]

Following the brief description of the Roche 454’s sequencing
approach, it becomes clear that, analogous to Illumina, some nu-

20 CHAPTER 2. STATE OF THE ART

cleotides are misclassified. Furthermore, the exact length of the
homopolymers cannot be exactly determined each time [52, 66],
with the sequencer introducing:

• insertions (when recorded homopolymers are longer than real
ones)

• deletions (when recorded homopolymers are shorter than the
real ones)

Luo et al.[67] demonstrate the relation between homopolymers and
their length, where pyrosequencing (Roche 454 FLX Titanium R©)
loses accuracy as the length of the homopolymer increases. Gilles
et al. [68] found a chemistry-related source of errors termed the
CAFIE effect (carry forward and incomplete extension). Carry
forward is generated by the inability to fully clean a well (unin-
corporated nucleotides are not removed) after a cycle. As a result,
during the next base flow nucleotides are prematurely incorporated
to specific sequence combinations, hence generating noise. The in-
complete extension effect appears when some DNA strands on a
bead miss the nucleotides incorporation at a certain flow cycle.
They must wait for the next flow cycles, but they are already out-
of-phase with the other strands. The Roche 454 GS Junior R© has
an indel error rate of 0.38 per 100 bases.[8] Gilles et al. report a
mean error rate of 1.07%.

The Ion Torrent sequencing approach has indels as dominant
error type.[55] Bragg et al. also observe that insertions appear
more often than deletions and that (in contrast to Illumina) in-
dels are an order of magnitude more likely to be generated. Due
to the similarity in the sequencing idea between Ion Torrent and
454, it becomes clear that homopolymers pose a problem for this
technology too.[8] The sequencing accuracy of the reads steadily
decreased from their start to their end.[55, 8] Loman et al. ob-
served that in comparison to 454 GS Junior R©, the Ion Torrent

2.1. MOTIVATION 21

PGM R© is less accurate when dealing with homopolymers (accu-
racy of 60% for homopolymers with six or more bases). Further-
more, for homopolymers shorter than two bases, insertion is the
main error type, but the situation changes with the increase in
length of the homopolymers where deletions become the norm.[55]
For long homopolymers (more than 14 bases), Ion Torrent does
not generate reads at all.[69] The same study reinforces the prob-
lem with homopolymers by mentioning the inability to predict the
correct number of bases for homopolymers longer than eight bases.
The observed error rate is 1.78% (all types of errors) in [69], be-
tween 1.68% and 4.86% (all types of errors, depending on the used
kit) with 96-97% of them being homopolymers errors in [55] and
1.5 indels per 100 bases in [8].

Pacific Biosciences generates longer reads than other sequenc-
ing technologies, but the error rate is still high.[70] The errors
seem to be uniformly distributed and independent of the sequence
context.[71] The same authors and [72] suggest that Pacific Bio-
sciences is more susceptible to insertions than to deletions. Cur-
rently, the error rate for Pacific Biosciences is between 15% and
20%.[72, 73]

Oxford Nanopore is an emergent technology, generating long
reads with a small and portable device (the MinION R© [74]). It is
still in development, but there are some publications studying the
sequencing results [75, 76]. The accuracy is still low, with insertion
as the predominant type of error [51]. Goodwin et al. report a very
high error rate, between 25% and 40%.

GC Content

It is widely accepted that extreme base composition of some re-
gions poses a problem for sequencing technologies.[7] For example
the GC content (rich and poor regions) is often a source of bias
and unevenness in coverage. The coverage is an extremely impor-

22 CHAPTER 2. STATE OF THE ART

tant aspect of the NGS, as it is needed to successfully process the
output data as we discuss in section ”Low-Coverage Regions and
Uniformity”. The problem is even more important as the bias can
be introduced during the library preparation step, before the ac-
tual sequencing process.[7] This holds true for ensemble-based SBS
technologies where the amplification step (emulsion PCR or bridge
amplification) generates (much) lower coverage on the very GC-rich
and GC-poor regions [7]. Quail et al. consider that this problem
appears for Ion Torrent due to its double amplification step (li-
brary and template). They managed to lower the bias by using
the Kapa HiFi enzyme for the fragment amplification. Further-
more, the bias can be eliminated by using PCR-free preparation
kits for Illumina[58], Ion Torrent[59] and 454[60].

Ross et al.[7] provide an excellent measurement of the biased
caused by the GC regions. They use the genomes of four species
as the correct and trusted source and compare it with the data
generated by Illumina MiSeq R©, Ion Torrent PGM R©, Pacific Bio-
sciences RS R© and Complete Genomics R©. Fig. 3 and fig. 4 from
the aforementioned article depict the strong variation introduced
by the these GC extreme zones.

Pacific Biosciences sequencing seems to obtain better sequenc-
ing results, because of its lack of amplification before sequencing
[7], but bias still plagues this technology (slight but noticeable)
when faced with genomes with GC-rich regions like S. Aureus.[69]
The Pacific Biosciences RS R©, like the Illumina MiSeq R© and Ion
Torrent PGM R©, is also susceptible to dissociation of fragment ends
in adapter ligation.[7] High and low GC content seems to influence
Oxford Nanopore too as the coverage is more variable than in zones
with a 20%-60% GC content. As a result, this extreme GC content
partially motivates the lack of coverage for certain regions in the
genome.[77]

2.1. MOTIVATION 23

Benefits of Error Correction

The most important application of error correction is in the field
of genome assembly where the input data is corrected before the
actual assembly. Many error correction publications include tests
with assemblers and real data. Various assembly metrics demon-
strate the need of error correction to generate meaningful assembly
output (see subsection ”Assembly” from section ”Testing”).[78]

A second application is re-sequencing, where multiple samples
from an organism with an already known genome are sequenced.
The main purpose of this operation is to compare the variability
among different genomes from the same species. Another purpose
is the comparison of datasets from the same organism sequenced
using different technologies or sample preparation procedures. Re-
sequencing indirectly uses the same metrics like gain and accuracy
which compare the corrected reads against a reference genome.[6,
12]

Thirdly, the authors in [13, 14, 15, 16] stress the impact of error
correction on short reads aligners. Errors are dangerous because
they can cause an aligner to miss the real locus of a read in the
reference genome. Furthermore, in the case of repetitive regions,
a faulty read from a unique path in the genome can end up in
multiple locations, provided it matches the repetitive region due
to the errors.

Another affected application of NGS is the detection of SNPs.
Normally, an aligner maps the reads against a reference genome
to search for variants, but the errors in the reads can be mislead-
ing, increasing the total number of differences.[9] Furthermore, as
the distribution of SNPs is not uniform, a region can have a high
density of SNPs. Errors have a higher impact in these areas.

Additionally, there are other steps following sequencing that
can benefit from error correction (e.g. identification of copy num-
ber variation or chromosomal rearrangement).[6] In conclusion al-

24 CHAPTER 2. STATE OF THE ART

most any possible operation on NGS data benefit from the cor-
rected input. Section ”Error correction in real projects” lists a
many real studies that used the correctors included in this review.

CHAPTER 3

Error Correction

Part of this chapter has been published as: Alic AS., Ruzafa D.,
Dopazo J., Blanquer I. ”Objective review of de novo stand alone er-
ror correction methods for NGS data”. In: WIREs Computational
Molecular Science. 2016. DOI: 10.1002/wcms.1239

3.1. APPROACH 25

This chapter presents the actual error correctors and a discussion of
the most important topics in the error correction field. The exact
target of a corrector is not specified in most papers, the authors
normally specifying DNA reads. The benchmarks performed in the
same articles contain only datasets from whole genome sequencing
(WGS) projects. One exception is PAGANtec[93] which works
with transcriptome assemblies.

Approach

Driven by the need of understanding the current status in error
correction, we tackled the review included in this thesis in three
stages: check existing reviews, systematic literature searching and
following citations in the papers found.

There are only three reviews [1, 2, 79] published, with the lat-
est one targeting only Illumina data. They focus on benchmarking
the correctors, while this article extracts key information from the
work in this field, summing up all important points deemed as im-
portant. Generally, our objective review follows the rules described
for other domains in [80, 81, 82, 83].

We used search engines and literature indexes to ensure a wide
coverage of the relevant work. A list of key words was identified and
specific scientific searching engines were used (Google Scholar R©,
PubMed R© and Thompson Reuters Web of Science R©). We tried
different terms to refine our search for the relevant papers. The
final versions of the search expressions (only articles written in
English were accepted) are:

• (intitle:”correct” OR intitle:”correction” OR intitle:”correcting”)
AND (intitle:”sequence” OR ”sequences” OR intitle:”read”
OR intitle:”reads”) AND (intitle:”error” OR intitle:”errors”)
for Google Scholar R©

26 CHAPTER 3. ERROR CORRECTION

• (((error*[Title/Abstract]) AND correct*[Title/Abstract])) AND
((sequen* OR (short NEAR read*))) for PubMed R©

• ((((error*) AND correct*)) AND ((sequen* OR (short NEAR
read*)))) for Thompson Reuters R© with Research Domains:
”SCIENCE TECHNOLOGY” and Search in: ”Title”

We restricted the search to publication date between 2009 and
2014, 2009 being the year of the oldest method in [1]. The re-
sults returned by the engines were manually inspected to guaran-
tee that the encountered work fit the inclusion criteria detailed in
section 3.1.1. The third stage of our search procedure consisted of
following the citations from the already discovered papers.

While the original document was prepared, we also performed
a monthly literature search, to include new publications that could
have appeared during the elaboration of the article. We used the
Google Scholar R© ”Cited By” feature for this periodical check, since
new methods are very likely to cite work released before.

Conditions

There is an important amount of work done in the field of error
correction, with many applications having specific targets like the
discrimination between sequencing errors and true bases as point
mutations [84]. Others [85, 86, 87] use a reference genome to correct
NGS data. Some assemblers [88] have an integrated error correc-
tion method, which cannot be used separately. Others [89, 90] have
stand-alone error correction modules. We herein list the conditions
the programs must fulfil to be included in the present review:

• Standalone application, published in a paper of its own. It
can be a part of a suite (like an assembler, e.g. the MaSuRCA
assembler [89] along with QuorUM [91]), but it must have its
own separate published paper.

3.2. TECHNOLOGY SUPPORT 27

• Published in the last 6 years, including therefore papers pub-
lished since 2009 (inclusive).

• The work should have appeared in a congress, symposium
and/or journal to be accessible from an indexing service.
We also include papers published on preprint servers like
arxiv.org and biorxiv.org.

• No restriction on the sequencing technology, just to be deemed
as NGS in the literature.

• No restriction on the rank of the journal, including all trust-
worthy sources.

• The correctors must use final raw sequences obtained from
the sequencer, i.e. FASTQ or FASTA. Software tools using
other types of input like flowgrams [92] are not considered.

Technology support

Illumina is the market leader, with a 70% market share.[17] The
majority of software in our review support Illumina (and in some
cases other technologies at the same time), fact that reinforces the
status of the aforementioned company. The second major player is
Roche with its 454 line of sequencers which, despite its shutdown of
its technology in 2013, is still widely used (officially supported until
2016).[94] As a matter of fact, Karect, one of the most recent error
correctors (2015), handles indels errors from 454. We can see an
increase on the support of Pacific Biosciences, but all the current
correctors rely on an additional dataset on a different technology
to perform the correction. Ion Torrent is not widely supported as
of now, but since the prevalent errors for this technology are indels
[7], the tools handling indels should also work with it. Finally,

28 CHAPTER 3. ERROR CORRECTION

there is only one program that targets SOLiD color-space data,
namely HSHREC.

In our review, we have found programs supporting more than
one technology. Table 3.1 enumerates the technologies supported
by all correctors (column ”Tech”). Fig. 3.1 depicts the categories
in which the correctors fall. All but one of the tools supporting
only one technology work with Illumina and only target mismatch
errors. Hector is the exception to the above rule, designed only
for 454 reads, supporting indels. All Pacific Biosciences software
focus only on Pacific Biosciences, but they use Illumina/454 reads
for the cross-correction, therefore they are classified in a separate
group.

There are several software tools handling multiple technolo-
gies which can tackle all types of errors. Our reader can deter-
mine the support for different types of errors by consulting ta-
ble 3.1, columns ”N ” and ”Indel”. All programs support mis-
matches, therefore it is not mentioned in the aforementioned ta-
ble. Some programs like HSHREC treat all datasets in the same
manner with no special handling for different technologies (albeit
HSHREC) has a special version which can correct colour space
reads, as a different executable program). We included it in the
first category because the base space version does not have a target
technology.

The software with different profiles can be further divided in
software using the same correction method for all technologies, but
setting different values for parameters, and software with internal
algorithmic modifications for a certain technology. For the first
group, Coral is a perfect example since it uses the same algorithm
to correct both Illumina and 454, but in case of Illumina the al-
gorithm sets very high values for gaps, forcing mismatches only.
Blue on the other hand has a flag for 454 to enable searching
for homopolymers errors. Karect has generic support for multi-
ple sequencing technologies, running in two modes, with indels or

3.2. TECHNOLOGY SUPPORT 29

Supported

Technologies

Single

With Pro les

Technology

Speci c Code

(e)

Modify

Existing Flags

(f)

Cross-

Correction

(c)

One

Technology

Indels+

Mismatches

(b)

Mismatches

(a)

Multiple

No Speci c

Pro les

(d)

Figure 3.1: Classification using the technology support among cor-
rectors; Letters between paranthesises on the leaves used to group
the algorithms in Table 3.1.

without.

A new approach is the cross-correction using a high-quality
short reads dataset to correct a dataset having (much) longer,
lower-quality reads. There are correctors targeting the very long
reads (LoRDEC, proovread, Jabba and LSC) produced by Pa-
cific Biosciences, 454 (Blue) and Oxford Nanopore (Nanocorr).

The latest review including software supporting indels is from
2013 [1] and it does not include the latest additions to indel-aware
software, like Blue, Fiona, Pollux or Karect. The authors of
the review stressed the need for better software solutions with
indels support, as the results of the existing algorithms at that
time (HSHREC and Coral) were not comparable to the Illumina-
specific solutions.

30 CHAPTER 3. ERROR CORRECTION

Software Categories

We clustered the algorithms according to their core functionality,
extending the work in [1, 2]. Table 3.1 summarizes some important
features of the analysed software. We explain the information on
the columns in the following sections.

K-Spectrum Based (ksb)

The K-Spectrum Based (ksb) software corrects the reads employ-
ing the k-mer spectrum.[95] A k-mer is a segment from a read with
k -bases. The set of all k-mers of a read is generated by using a
sliding window of dimension k. At each step, the window is shifted
by one element and ”the visible” segment of the read is added
to the spectrum set. This is by far the most popular approach,
used by 28 out of 50 correctors. Generally, the applications use
the k-mer spectrum (Fig. 3.2) to decide whether a k-mer is correct
or not. The error-free k-mers are those appearing in a number of
reads entering a predefined distribution (a Gaussian in our exam-
ple). Roughly speaking, k-mers appearing in a small number of
reads are considered erroneous, since the coverage is not uniform,
the k-mers in the low coverage areas are under-represented (more
information about k-mers in section ”K-mer”)

The authors of [65, 96] propose a CUDA accelerated algorithm
based on spectral alignment [95, 97]. It uses a GPU-based Bloom
filter to store the k-mers and to count their multiplicity (in all
reads). If a k-mer appears less than a threshold m it is considered
as weak, otherwise it is deemed as solid. The software first runs a
voting method for each read to correct ∆−point mutations within
a weak k-mer. Then, it decides to fix, trim or discard the reads
with larger number of errors.

Reptile [98] employs approximate multiple alignments of seg-
ments (tiles) of reads allowing only substitutions. This software

3.3. SOFTWARE CATEGORIES 31

Correct K-mers

K
-m

e
r

C
o

u
n

t

Erroneous K-mers

Read Count

Figure 3.2: Typical distribution of k-mers used by ksb correc-
tors; Vertical axis shows the number of k-mers which appear in
the number of reads displayed on the horizontal axis; First peak
corresponds to erroneous k-mers which appear only in a few reads;
Correct k-mers typically exist in a number of reads close to the cov-
erage; K-mers found in many reads (right part of the spectrum)
typically correspond to repetitive regions.

32 CHAPTER 3. ERROR CORRECTION

creates these tiles by concatenating two overlapping k-mers. Rep-
tile first split a read into tiles and using the k-mer spectrum it
creates a Hamming graph with k-mers as nodes, connecting k-mers
with a distance lower than a threshold. Starting from the first tile,
it aligns the reads with tiles connected to this first tile and corrects
the differences if possible.

Quake [9] uses a k-mer distribution cut-off to differentiate be-
tween trusted and untrusted k-mers. If a read contains untrusted
k-mers, Quake searches for the set of corrections with the maxi-
mum score that convert all k-mers into trusted k-mers. The score
is based on the quality values for a read coupled with the rate
of nucleotide substitution. The correction process examines the
changes applied to a read until it finds an unambiguous enough set
of modifications that makes all k-mers trusted.

EDAR [99] removes low quality reads and, from the remain-
ing data, calculates the coverage for all possible k-mers. Using the
variable bandwidth mean-shift method [100] for each read, EDAR
clusters the k-mers and set each cluster as erroneous or correct us-
ing a threshold derived from the normalized distribution of the
coverage. The clusters a read belongs to are post-processed con-
sidering the proximity and the unusual high coverage of the k-mers.
Lastly, EDAR detects the putative error bases for each read and
splits the read at their location, creating multiple error-free frag-
ments.

Hammer [101] is a similar method to Reptile, but it does not
assume any uniformity distribution in the dataset. It considers
the multiplicity of distinct k-mers and it finds clusters of the k-
mers Hamming graph. Unlike Reptile, which uses consecutive
tiles, Hammer uses spaced seeds. For each cluster Cl with more
than one element, the software determines its consensus C. If C
is unique, Hammer corrects all k-mers k ∈ Cl with respect to
C. Otherwise, it uses the quality values of each k ∈ Cl to decide
whether to keep it or to remove it k from Cl.

3.3. SOFTWARE CATEGORIES 33

REDEEM [102] proposes a model to deal with errors in genomes
with highly repeated content. It generates the k-mer histogram,
but instead of finding errors by using the number of occurrences, it
uses an Expectation Maximization method. Then, REDEEM es-
timates the expected number of appearances (attempts to read) of
a k-mer, including both correct and erroneous reads. The authors
propose an error model similar to RECOUNT [62], but instead
of using full reads, they use the target k-mers.

DecGPU [103] is the first parallel and distributed error cor-
rection software for deNovo NGS data appearing in the literature.
It has two separate versions, CUDA+MPI and OpenMP+MPI. It
starts by building a distributed k-mer spectrum, then it removes
the reads without errors and corrects the remaining (using a vot-
ing algorithm). DecGPU can optionally repeat the last two steps
to correct reads with more than one error. Finally, the software
trims/discards the erroneous reads left.

CUDA-EC2 [104] is an improved version of [65] adding the
support to quality scores in the correction process. Unlike the
previous version, in a preprocessing step it trims the bases with a
quality score less than a threshold h. Threshold h determines also
if the method could try to correct a position marked as erroneous.
CUDA-EC2 also improves the performance over the first version
by using multiple concurrent threads for correcting each read in
parallel.

Qamar [54] generates the k-mer frequency table t. It gener-
ates all possible 4k single-change alternatives for the k-mers with
a frequency higher than a threshold, by substituting each position
within with the other three possible nucleotides. Finally, Qamar
selects the k-mer with the highest frequency in t from the alterna-
tive k-mers, and it modify the original k-mer/read accordingly.

Parallel Reptile [105] provides a parallel framework (MPI) for
computing the k-mer frequency table and the Hamming distance
graph. The approach divides evenly the dataset among the p pro-

34 CHAPTER 3. ERROR CORRECTION

cesses. Each process builds its local sorted k-spectrum. A global
k-spectrum is computed merged on their completion. Finally, each
process ends up with a local copy of the global k-spectrum, which is
used to correct its share of reads using the same correction heuristic
as Reptile.

BayesHammer [106] uses Hammer’s clustering algorithm. It
improves the existing clusters through a further splitting based on
the quality scores of the reads. The centres of the final subclusters
are high-quality k-mers. BayesHammer uses them in the cor-
rection process in a majority-voting algorithm for each erroneous
position in a read.

After generating the k-mer frequency table, QuorUM [91]
splits the k-mers using a quality score threshold into reliable and
not reliable. It starts the correction of the reads with its first k-mer
appearing three or more times. It proceeds with the same method
on both sides of the k-mer. At each step, it uses a sliding window
(one base at a time) to check the existence of each newly formed
k-mer in the reliable and unreliable set of reads, respectively. Quo-
rUM decides at each step whether to ignore or to correct the base
or trim the analysed read.

RACER [107] encodes each nucleotide into 2 bits and uses a
64-bit integer k-mer representation, converting Ns to a random real
base. The method computes the occurrences of the eight possible
variations for each k-mer by adding each of the possible four bases
at both sides. A k-mer followed by base a is correct if its frequency
is higher than a threshold t. In this case, the k-mers followed by
other base b and appearing only once are corrected replacing b by
a.

Musket [13] is a multi-stage corrector for Illumina datasets.
Firstly, it creates the k-mer spectrum using multiple threads in a
master-slave fashion and it removes the k-mers with a frequency
lower than a threshold. The error correction starts classifying bases
in a read as trusted (covered by at least one trusted k-mer) or

3.3. SOFTWARE CATEGORIES 35

untrusted. In the latter, Musket searches for a unique nucleotide
correction which makes all overlapping k-mers on that position
trusted. Next, Musket tries to correct two adjacent overlapping
k-mers where only one is trusted. Finally, Musket executes a
modified voting based refinement like in [103].

Hector [52] is a modified version of Musket supporting 454
technology. Hector only handles homopolymers errors, with in-
sertion and deletion errors in addition to mismatches. It uses of
k-hopos instead of the regular k-mers used by Musket. A k-hopo
contains k groups of adjacent homopolymers, encoding on each
homopolymer its length and the nucleotide. The homopolymer
encoding method helps the 454 software to obtain a bimodal spec-
trum analogous to the Musket k-mer spectrum. Unlike Musket,
Hector also considers insertions or deletions as well as mismatches.

Lighter [108] proposes a three-step error correction process.
First, it generates a sample set of k-mers (Bloom filter A), choosing
them by a user-adjustable probability. The correct k-mers will
appear more times than the erroneous ones, and thus should be
kept after the sampling process. Next, it moves all trusted k-mers
from A to Bloom filter B. Finally, Lighter corrects the reads using
B and a procedure similar to [109].

HErCoOl [110] divides the k-mer frequency table into trusted
and untrusted k-mers using a threshold calculated from a user in-
put error rate. The software creates the overlap graph G of the
trusted k-mers. For an untrusted k-mer of a read r, HErCoOl
generates a set containing the closest trusted k-mers determined
by the Needleman-Wunsch (NW) score. This set along with the
other trusted k-mers of r mark a sub-graph in G, in which the
longest path represents the corrected version of r.

Trowel [111] determines the high-quality k-mers (named bricks)
using only the quality scores of their bases and stores them in an
index I. Using a dual correction mechanism, Trowel first corrects
single low quality bases followed and preceded by a brick. Sec-

36 CHAPTER 3. ERROR CORRECTION

ondly, it attempts to correct single low-quality nucleotides aside
read-edge bricks. As low-quality bases are corrected, more can-
didates for correction are generated. These new candidates are
included in the index I.

LoRDEC [71] supports PacBio but it needs an additional NGS
dataset with low error rate like Illumina or 454, from which it only
selects solid k-mers skm. LoRDEC creates a De Brujin Graph
(DBG) with the solid k-mers. The software decompose the long
PacBio reads in k-mers and tries to find them in the DBG graph.
The k-mers not appearing in the DBG are weak. Reads containing
no skm are discarded. LoRDEC corrects regions containing weak
k-mers bordered by skm by finding the best path in the DBG.

BLESS [109] uses solid and weak k-mers separated by an au-
tomatic or user-adjustable threshold (M). It decomposes the reads
into canonical k-mers and deems all k-mers with a multiplicity
greater than M as solid. In the second phase, BLESS loads each
read and searches for groups of overlapping solid k-mers, followed
or preceded by either weak k-mers or the ends of a read (islands).
If a read does not contain any island, BLESS searches for a solid
alternative by substituting the low quality nucleotides on the first
k-mer. If a valid alternative is found the correction process starts.

Blue [10] has a preprocessing step which tiles a set of reads
into overlapping k-mers and outputs the distinct canonical k-mers
and their multiplicity count. By using this separate step, it can
perform cross correction, that is, using an Illumina dataset, it can
derive the k-spectrum and use it for 454 correction. The actual
error correction step tries to find a good alternative for a faulty
k-mer, by searching (depth-first) the tree generated by the set of
the prospective reads obtained when modifying the k-mer. The
software runs recursively, that is each time Blue does a modifica-
tion it generates all the possible alternatives for that modification
onwards and starts exploring them to find the best path in the
tree.

3.3. SOFTWARE CATEGORIES 37

BFC[112] implements a heuristic adaptation of the method de-
scribed by Chaisson et al.[97]. It starts by generating the hashtable
of trusted k-mers using one of the two approaches: exact k-mer
count with minimum frequency of three and an approximate k-
mer derivation with k-mers consisting of Q20 bases. This structure
aids the algorithm at detecting the longest substring s composed
only from trusted k-mers, for each read. Next, BFC iteratively
extends s at both ends and collects the possible corrections in a
priority queue. This way, as the algorithm loops over a read, the
past corrections influence the future ones, resulting in a correction
that considers the whole structure of a read. When no s is found,
BFC generates the set all variants with one mismatch of the first
k-mer in a read. The read cannot be corrected if there are none or
more than one trusted variants.

Scrible[113] targets reads obtained by sequencing intersecting
pools of BACs. As a result of this sequencing approach, it is known
what reads are part of what pool, therefore eliminating the problem
of genome-wide repetitive regions. The algorithm generates the k-
mers hashtable (forward and reverse complement) and eliminates
those with very low count. After elimination, it loads each read
again, generates its k-mers and search for them. If it is not found,
the program tries different variants by replacing the first or the last
nucleotide with the other three possibilities. Scrible goes k-mer by
k-mer and selects correct variants for them. If at the end it ends
up with multiple corrections for a read, Scrible iteratively tries
each to apply a correction with the smallest number of nucleotide
changes.

PAGANtec[93] focuses mostly on the parallelization approach
of the error correction process using OpenMP. It builds a k-mer
graph and tracks the errors down by observing paths supported by
a low number of reads. To do this, it uses the concept of flow which
is a collection of reads traversing the graph in a common manner.
The authors consider two types of errors, at the ends (corrected

38 CHAPTER 3. ERROR CORRECTION

first) and inside of a read (corrected last), corrected in a similar
manner by two different mechanisms.

ACE[114] organizes the forward and reverse-complementary K-
mers of the input reads in a trie. To be able to handle very large
datasets, the corrector applies a prefix-based classification based
on the available memory and the size of the input data reducing
the size of the trie. Next, it further reduces the memory footprint
by building a root array instead of the top triangle of the trie.
Finally, ACE employs multiple threads to build different subtries
in parallel. The correction method targets the frequency of the
K-mers, trying to find a high count alternative for every low-count
K-mer. It is doing so by comparing the counts of K-mers given by
each of the four nucleotides on a problematic position.

FADE[115] is the first FPGA-based corrector. It is based on
BLESS, with several distinctions. This corrector uses a counting
Bloom Filter[116] which replaces te disk based approach in BLESS.
The first step is to end the reads from PC to the FPGA. The k-mers
are counted in the device’s memory. Once again, the reads are sent
from the PC to the FPGA, where the algorithm can now determine
which k-mers are weak and must be corrected. The corrected or
unmodified reads are dispatched back to the PC.

Pollux[117] counts all the 31-mers for all reads. It then pro-
ceeds with a second loop over reads, but this time it generates a
k-mer depth profile per read. The infrequent k-mers are not as-
sumed as erroneous because of the low coverage regions that are
correct. Instead, the program searches for discontinuity in adjacent
k-mer frequencies, the k-mers with the frequencies that deviate un-
expectedly.

Gu et al.[118] present a method using BoND-trees[119] to store
the k-mers and the reads containing them on disk. The method
detects suspicious bases and their positions and uses k-mers con-
taining the bases to select the overlapping reads at that position.
Utilizing a majority voting algorithm, the corrector decides if the

3.3. SOFTWARE CATEGORIES 39

base is erroneous or not. A problem to the simple approach is posed
by a k-mer covering a suspicious base which appears in other parts
of the genomes (and it is deemed as entirely correct there). In
order to mitigate this problem, the authors also verify the all the
shifted k-mers containing the suspicious base, considering the fact
that the probability of all k k-mers to appear twice in genome is
small.

Jabba[120] is based on LoRDEC. The main idea is to align the
PacBio long reads against a de Bruijn graph built with k-mers from
higher quality, shorter reads. This alignment generates a path in
the graph that dictates the correction. In contrast to LoRDEC,
Jabba uses maximal exact matches (MEMs) to determine the path
in the graph. The advantages of the MEMs as listed by the authors
are the possibility of using

• a greater length than for k-mers

• variable length MEMs without rebuilding the whole suffix
array holding them

• MEMs with different sizes than the nodes in the de Bruijn
graph

Suffix Trie/Array Based (stab)

Suffix Trie/Array Based (stab) generally build a suffix structure
with the common parts of the reads. These correctors try to lo-
cate inconsistencies in their path, while exploring the trie/array.
Fig. 3.3 depicts an example where a low frequency of a divergent
suffix signals a possible error case. Normally the reads on a trie
follow the same path, but it happens to diverge at some point. A
corrector has to decide if the split is an error or not. Fig. 3.3 a) de-
picts a divergence point (different nucleotide) where the frequency
of one of the resulting paths is very low (<< k/2) and the bases

40 CHAPTER 3. ERROR CORRECTION

of this path after the divergence point till the leaves are exactly
the same as for the path with the frequency . k/2, hence it is
an error. For the other case where the frequencies are the same
(k/4), a SNP (Single Nucleotide Polymorphism) causes the diver-
gence. Otherwise, the common path till the divergence point is
a repetitive region in the genome, followed by the unique region
for each path. The trie in Fig. 3.3 b) with the erroneous base in
bold and italic exemplifies the branching caused by an error. The
$ symbol marks the end of a suffix (a standard way of depicting
suffix tries). It is crystal clear that due to the low frequency of the
suffixes containing the bad base, a corrector can isolate the error
and can take a valid decision given enough coverage. Given the
shortness of the reads in our example we consider one base to be
sufficient proof of inclusion on one branch or another. As a result,
for the suffix AAA$ the third base will match with its counter-
part from the suffix AGA$ (the first base is the same since we are
talking about the same family of suffixes), therefore A should be
G. Next, the branch TAAA$ triggers a warning for the corrector
due to its low frequency of its sub-branch AA$. The problem-
atic base is again surrounded by bases that match a sibling path
(i.e. TAAA can be converted to TAGA, with the latter having a
higher frequency), therefore it is safe to assume that A is in fact
G. Finally, after analysing these cases, a corrector can support its
decision by detecting the relation between the suffixes AAA$ and
TAAA$ where the former is in fact included in the latter and the
corrections on both sides have an even higher degree of validity
when taken together.

SHREC [64] uses a generalized suffix trie to store and fix the
reads. It checks for an unbalance of edge weights between certain
levels of the trie where the errors are likely to be detected. SHREC
tries to correct a node with a smaller than expected weight by
converting it to a correct sibling such that the subtree below the
faulty node exactly fits in subtree rooted at the correct sibling. An

3.3. SOFTWARE CATEGORIES 41

freq = k/2

freq = k

freq = k/2

freq ≲ k/2

freq = k/4

freq = k/4 freq <<< k/4

Error-Free Reads
Erroneous Reads

a)

ACTAGACTTAAA

TAGA

TAGA

CTAG

GACT

AGAC

ACTA

ACTA$

 CTA$

 TA$

 A$

TAGA$

 AGA$

 GA$

 A$

CTAG$

 TAG$

 AG$

 G$

GACT$

 ACT$

 CT$

 T$

AGAC$

 GAC$

 AC$

 C$

TAAA$

 AAA$

 AA$

 A$

root

A(13)

C(3)

T(2)

A(1)

$

G(5) C(4)
T(6)

A(5)

$
G(3)

A(2)

$

$

A(4)

$

$

G(4)

A(3)

A(2) T(3)

$A(2)

$

$

G(1) $

$

$

C(2)

T(1)

$

$

$

C(1)

$

$

$

$

A(1)

A(1)

$

$

A(1)
$

GenomeReads

Suffixes for All Reads

b)

Figure 3.3: Suffix trie example; a) An error on the rightmost path
results in branch having a very low frequency (<< k/2) compared
with its sibling branch (. k/2); b) Example of a trie for a very short
genome with read TAAA having an error on its third position

42 CHAPTER 3. ERROR CORRECTION

uncorrected node marks the read as erroneous and eliminates it
from the final set of reads.

The previous software is extended in [121] to support varying
length reads, indels, unknown bases and hybrid colour/base space
reads. HSHREC finds indels like SHREC, but instead of con-
verting a node to a sibling it checks if an insertion or deletion
on the faulty node can make the sibling subtrees match. N’s are
always erroneous being either a substitution or deletion. When us-
ing colour/base space mix, the software converts all bases to colour
and creates a trie in colour space. It applies the same correction
method as for base space.

PSAEC [122] is an improved version of HiTEC based on h-
order suffix arrays [123]. It also features a Pthread implementation
and a reduced memory consumption. The correction algorithm
implements the same steps as HiTEC and leading to the same
results.

Like SHREC, HiTEC [6] uses weights to find erroneous bases.
HiTEC uses suffix arrays and it uses the occurences of a witness
(k-mer) u followed by a problematic base a in the pool of reads to
determine the correct a. When a read cannot fit at least one u, the
algorithm calculates a distribution of errors and decreases the size
of u such that the segment will not lose its uniqueness (or close to)
property. HiTEC calculates the number of iterations needed to
correct a read when the count of corrected positions in a iteration
drops below a threshold.

MyHybrid [12] employs both a suffix array and multiple se-
quence alignment for error correction. In a first stage, it detects the
overlapping region (common substring) between related reads. In
a second stage, the method uses the common substring (error-free)
between a set of reads S as an anchor for the multiple alignment
to form a consensus c for the set. Finally, MyHybrid uses NW to
identify the differences between each read ∈ S and the consensus
c.

3.3. SOFTWARE CATEGORIES 43

Pluribus [124] improves upon [121] by considering all the suf-
fixes generated by an error instead of deciding the validity of a node
based only on the siblings. Pluribus avoids correcting a read in
multiple ways, depending on the order of data structure traversal
by taking one read at a time and referencing the trie to determine
low frequency segments incident on the read. It decides upon the
corrections using a voting mechanism. This consideration impacts
negatively in the performance, making it slower than [121].

Fiona [50] uses the same approach as SHREC and HSHREC
to correct mismatches and indels. Unlike the aforementioned meth-
ods, Fiona optimizes the error detection by using an edit distance
metric between overlapping reads. The sizes of the seeds for the
alignments variate with the length of the reads and are automati-
cally calculated for every case, extending this method in a following
version named HiTEC. Furthermore, it accumulates the errors for
a specific read and it corrects them by order after the error detec-
tion process stops, not when each individual error pops in.

Multiple Sequence Alignment Based (msab)

Multiple Sequence Alignment Based (msab) software focuses on
aligning the reads to identify the overlap between them (see Fig. 3.4).
The methods use different algorithms (like Needleman-Wunsch in
Coral [15]) to build a consensus from a set of reads that are likely
to fit together. Generally, these methods cluster together a number
of related reads (e.g. those having at least one k-mer in common,
like Coral), which may belong to (as the corrector may wrongly
include reads from other regions) the same genomic locus. Reads
containing k-mers appearing in multiple loci or erroneous k-mers
matching wrong locations will normally fail in the alignment pro-
cess. Being part of the same region, a msab corrector can gen-
erate a multiple sequence alignment and try to determine and fix
the anomalies in the resulting consensus. The example Fig. 3.3 b)

44 CHAPTER 3. ERROR CORRECTION

demonstrates that given sufficient coverage, a corrector is able to
group a number of reads, isolate the erroneous bases and make a
decision if possible. In the above example, we are able to take a
decision in every case. On the contrary, if we have a mismatch
between the first position of the first read and the fifth position
of the third read, the decision is not straightforward any more (if
possible altogether). For instance, if instead of (A,A) - the cor-
rect version - the pair would be (A,N), the corrector would have
to either ignore it or apply some kind of heuristic. An example of
approach would be to convert N to A, since A is a valid nucleotide.
On the other hand, this approach could be rendered useless by the
use of quality scores where N has a very high score compared to
A (the previously considered valid base may not be so valid after
all). In this case it is up to the corrector to take the appropriate
action using different approaches and the context of the problem.

ECHO [11] generates the k-mers and stores them along with
the identifiers of the reads they belong to. Next, the method gener-
ates neighbourhoods by aligning all reads sharing a common k-mer.
A valid alignment should satisfy both a score condition based on
a certain fraction of errors in the overlap, and an overlap length
larger than a threshold. ECHO discards any neighbourhood with
a C greater than a threshold (inferred using an estimate of the ex-
pected C), avoiding corrections in highly repetitive regions. The
second stage determines if a base is correct using expectation max-
imization. It also handles diploid genomes by considering zygosity
in their expectation maximization calculus (neighbourhood finding
remains unchanged). The software can automatically determine
the optimal parameters.

Coral [15] starts by generating the k-mer (forward and reverse-
complementary) spectrum with the list of reads appearing in. Coral
considers each entry in the aforementioned spectrum as a neigh-
bourhood n. The correction step is based on MSA and it starts
by considering the first read in a n as the consensus C for that n.

3.3. SOFTWARE CATEGORIES 45

Reads in MSA

Reference Genome

(Unknown)

Figure 3.4: a) Multiple sequence alignment of reads versus the
(prospective) reference genome; b) Example of four read with the
common k-mer ”TTACGAA” and the four basic types of errors.

46 CHAPTER 3. ERROR CORRECTION

Coral progressively adds all the other reads in n to C by using
Needleman-Wunsch as a distance and updating C at each step.
Finally, it corrects each column of C by considering the base fre-
quencies and quality scores (if available).

LSC[73] performs a hybrid correction of PacBio data using a
multi-steps approach. First, it compresses short (SR) and long
reads (LR) by collapsing the homopolymers to a single base. Sec-
ond, it selects only the high quality SRs and aligns them using
Novoalign (other aligners could be used) against the concatena-
tion of all compressed LRs. Finally, LSC modifies an LR using
the consensus of the SRs aligning on a correction point on a LR.
LSC outputs the decompressed LR from the left-most SR-covered
point to the right-most SR-covered.

CloudRS[125] implements the ALLPATHS-LG’s [126] error
correction algorithm on top of Hadoop. The corrector create stacks
of reads sharing a k-mer. The kmer can contain upto one wildcard
(i.e. a variable base). Firstly, CloudRS uses a 25-mer with a
central wildcard to stack the reads and correct the variable base.
Next, it clusters the reads with a fixed 24-mer and fixes the bases
outside the common zone. Finally, the method filters out those
reads containing unique 24-mers.

Chung textitet al.[127]aim to improve the efficiency and effec-
tiveness of CloudRS[125] by introducing the read-message (RM)
diagram trimmed using the Gradient-number Votes (GNV) scheme.
They define the RM diagram of a read as the set of the records
i represented by Armleft(i), Kernel(i), Armright(i). There are as
many i as k-mers in a read (denoted by R). A base at position p in
a read is corrected using a variable voting scheme dependent upon
p, R, k, the base number of votes and a value for fine-tuning the
votes.

Like the previous PacBio correctors, proovread[72] uses align-
ments (using SHRiMP2 [128] or Bowtie2[129] - experimental sup-
port) of SR on LR. Using previous work of [130, 7] the authors

3.3. SOFTWARE CATEGORIES 47

give different weight to deletions, insertions and mismatches. The
application creates multiple alignments using all the short reads
mapping on a small region called a bin on the a LR. A consen-
sus of SR’s resulting from a majority voting of each column of the
overlapping reads decides the right bases of a bin. Chimeric re-
gions left from the previous consensus step can be trimmed using
a window-based quality filter. To increase both the performance
and correction rate, proovread performs an iterative correction,
increasing the sensitivity of the mapping process at each step.

The only corrector that handles Oxford Nanopore data in our
review is Nanocorr [77]. Like the PacBio algorithms, it is a hy-
brid approach that uses Illumina MiSeq short reads to correct the
long reads. The software is a Python wrapper which uses BLAST
internally to align the short reads on the long Nanopore’s ones
as its first step. Next, Nanocorr determines the set of short read
alignments to be used for correction of a long read by running
a longest-increasing-subsequence dynamic algorithm. Finally, the
corrector calculates a consensus (to be able to apply the corrections
from the short to the long reads) using pbdagcon 1.

Karect[131] uses a partial order graph (POG) to accumulate
partial alignment results. The alignments are generated for each
read r from the input file which becomes the seed. To generate
the MSA, Karect sets a size m for a group and fills it with reads
with:

• an exact common k-mer

• a common k-mer with d mismatches/indels on its prefix or
suffix

• two common exact sub-k-mers

1Accessible at https://github.com/PacificBiosciences/pbdagcon

48 CHAPTER 3. ERROR CORRECTION

• two common inexact sub-k-mers with mismatches/indels on
their prefixes or suffixes

Next, the program uses NW to align each read in a group against
the seed, generating a partial alignment. These alignments are
inserted in a POG, from where the corrector extracts the correct
version of a read as a path between bases.

Read Cluster Based (rcb)

Read Clustering Based (rcb) methods use different clustering
methods to group reads which fit together. This group resem-
bles the msab one, but the algorithms in it do not generate an
alignment, but search for reads that are similar and choose a con-
sensus which is the correct form for all these similar reads. Fig. 3.5
shows a central read (having the most common part with all the
others) and its satellites. For simplicity, we only exemplify the one
difference case. In our example all four satellites have one distinct
nucleotide each. A corrector should group them together as they
present a high degree of similarity, hence they are in fact clones
of the same read, but with errors. Fig. 3.5 b) is an example (ex-
tracted from the bibliography[16]) where the consensus read is the
one with the highest frequency. The other reads differ from the
main read by just one nucleotide and also have much lower fre-
quencies. Please keep in mind that the algorithms included here
do not perform a multiple sequence alignment to determine the
correct read, they just group them by differences and search for a
valid consensus, the error-free existing read.

FreClu [16] uses an iterative approach to group reads. This
clustering method, starts selecting the most likely error-free reads,
and it cluster all the reads in a tree structure where each read
on a lower level stochastically derives from its parent (which is
more abundant). A difference of one nucleotide between the two

3.3. SOFTWARE CATEGORIES 49

Different Nucleotides

Satellite vs Main

Main Read

Satellite Reads

TACCCTGTAGATCCGAATTTGTG 9281

TCCCCTGTAGATCCGAATTTGTG 59

TACCCTGTAGATCCGAATTTGAG 1

TACCCTGTAGCTCCGAATTTGTG 151

TACCCTGTAGAACCGAATTTGAG 5

Main Read

a)

b)

One mismatch

sequences {
Reads Frequency

Figure 3.5: a) Clustering approach for one reference read and four
related having one difference each; b) Real example with the main
read market in bold and the satellites aligned and with the different
locus market with bold and italic.

50 CHAPTER 3. ERROR CORRECTION

levels stays at base of the aforementioned parent-child relationship
generating a structure the root of which is the most frequently
observed sequence.

In [61], the authors describe an error modelling method based
on a graph that connects the reads that have one and only one
difference, first published in [132]. The authors extend the original
approach to allow a pattern of error rates varying by base change
pattern and position in the read, not working in a multiplicative
fashion. The corrector first trims and filters the reads. Using
the one nucleotide variance, the method assemble the graphs and
creates a subset containing their largest disconnected sub-graphs,
to deduce the error model and correct the graphs.

Probabilistic Models Based (pmb)

Probabilistic Models Based (pmb) methods use the Expectation
Maximization (EM) algorithm to determine the correct base at
each position by calculating the likelihood of the existing variants
at that specific position. Basically, the problem of error correction
boils down to selecting the right nucleotide at a certain position
where two or more reads overlap and there is more than one choice.
The pmb software base their approach on the fact that this problem
has unknown parameters (unobserved component), in this case the
correct base. As a result, using the existing input data (observed
component) and maybe more information (like the error rate), they
try to generate a model (after multiple iterations over the same
data). This model can say with a certain degree of trustiness of the
correction of a certain nucleotide. The EM alternates between two
steps, the E (guessing the probability) and the M (re-estimating the
model parameters using the new probability), until it converges to
the desired model. Figure 3.6 presents the basic algorithm. For an
extensive explanation of the EM algorithm, the reader should check
the article of Do and Batzoglou from [133]. Different algorithms in

3.3. SOFTWARE CATEGORIES 51

Loop Until ConvergenceA C G T

Pi,A,0 Pi,C,0

and
Pi,G,0 Pi,T,0

and and

Position i in the

prospective

genome

E

M

jth

iteration
Update Pi, X,j

and check

convergence

If
 m

od
el

 c
on

ve
rg

ed
, e

xi
t

Compare expected Pi, X,j

against observed data

where X in {A, C, G,T}

Figure 3.6: The EM algorithm initializes the probabilities of the
bases before entering the loop where it alternates between E-step
and M-step; Once the convergence threshold has been reached the
method exits and enters the correction stage; The capital P repre-
sents the probability for a base to be the real one;

this category use different position comparison methods (position
part of k-mer or read) and convergence points.

RECOUNT [62] uses the Expectation Maximization method
[134, 135] to determine the true counts of a read based on the
count of observed reads and the estimation of the error rate. A
true read represents the real DNA sequence, whereas a observed
read is the output of the sequencer. To calculate the observed
count, the method creates a neighbourhood t for a seed read r
including all the reads with a Hamming distance to r of one. The
elements in t are the observed reads for the (considered as) true r.

Premier [136] models a sequencer as a Hidden Markov Model,

52 CHAPTER 3. ERROR CORRECTION

with each read being an independent realization of the HMM. It
uses Expectation Maximization (EM) Baum-Welch to fit a HMM
to a read. The authors view the problem of error correction from
the point of view of a signal processing and error control. They
present two algorithms for error correction: Viterbi and Fano.

Premier Turbo [137] expands upon the previous version from
[136]. It allows errors in the first k-mer. Next, the new version
applies the correction for a read in both the forward and reverse
complementary directions. Lastly, the EM Baum-Welch method’s
(fitting the HMM’s parameters) result at any stage is utilized for
correction in the following stage.

kGEM [138] generates a haplotype set H for the input reads set
R. Initially, H covers R with a number of mismatches. Haplotypes
are turned into fractional haplotypes where each nucleotide can
be one of the options: A, C, G, T or to be deleted. Running
until convergence, (H maximizes PrR—H), kGEM determines the
most frequent option at each position of each item in H. At the end,
duplicates are collapsed and rare genotypes are removed generating
the final version of H.

Please note that many methods can be included in more than
one category. For instance, Coral [15] is listed in this review in
the category of msb algorithms [1, 2, 79], but it also uses the k-
mer spectrum to determine the related reads. The same case arises
with Premier[136] and Premier Turbo[137] which use k-mers to
update the probabilities for the variants on a position.

Recommendations

From table 3.1, it is clear that depending on the nature of the
project some programs are better than others. For Illumina projects
almost all correctors can be used. Although, as we shall see in the
coming sections (mostly in section ”Testing”, the Illumina-only
correctors offer a better performance on Illumina data when com-

3.3. SOFTWARE CATEGORIES 53
T

ab
le

3.
1:

T
h
e

so
ft

w
ar

e
an

d
im

p
or

ta
n
t

fe
at

u
re

s
su

p
p

or
t;

T
h
e

co
lu

m
n
s

h
av

e
th

e
fo

ll
ow

in
g

m
ea

n
in

g:
P

ar
.

T
ec

h
-

th
e

p
ar

al
le

l
te

ch
-

n
ol

og
y

(i
f

an
y
),

k
-

w
h
et

h
er

or
n
ot

a
so

ft
w

ar
e

m
ak

e
u
se

of
k
-m

er
s,

Q
.-

su
p
p

or
t

fo
r

q
u
al

it
y

sc
or

es
,
N

-
su

p
p

or
t

fo
r

u
n
ca

ll
ed

b
as

es
,
In

d
el

-
su

p
p

or
t

fo
r

in
d
el

s,
V

.L
.-

su
p
p

or
t

fo
r

va
ri

ab
le

le
n
gt

h
re

ad
s,

H
.-

su
p
-

p
or

t
fo

r
h
et

er
oz

y
go

si
ty

,
R

ep
.-

su
p
p

or
t

fo
r

re
p

et
it

iv
e

re
gi

on
s,

T
.-

w
h
et

h
er

or
n
ot

th
e

al
go

ri
th

m
in

co
rp

or
at

es
tr

im
m

in
g,

T
.S

.
-

th
e

ca
te

go
ri

es
in

w
h
ic

h
a

so
ft

w
ar

e
fi
ts

fr
om

F
ig

.
3.

1

T
y
p

e
N

a
m

e
P

a
r
.

T
e
c
h

L
a
n

g
.

k
Q

.
T

e
c
h

N
In

d
e
l

V
.L

.
H

.
R

e
p

.
T

.
T

.S
.

k
sb

C
U

D
A

-
E

C
[6

5
]

C
U

D
A

c+
+

y
n

Il
lu

m
.

N
A

N
A

N
A

n
n

y
a

k
sb

R
e
p

ti
le

[9
8
]

O
M

P
P

er
l/

c+
+

y
y

Il
lu

m
.

→
A

n
N

A
n

n
n

a

k
sb

Q
u

a
k
e
[9

]
O

M
P

c+
+

y
y

Il
lu

m
.

N
A

n
N

A
y

y
y

a

k
sb

E
d

a
r
[9

9
]

N
A

N
A

y
n

A
ll

N
A

y
y

n
y

n
a

k
sb

H
a
m

m
e
r
[1

0
1
]

-
c+

+
y

y
Il

lu
m

.
y

n
y

n
n

n
a

k
sb

R
E

D
E

E
M

[1
0
2
]

-
c+

+
y

n
Il

lu
m

.
n

n
y

n
y

n
a

k
sb

D
e
c
G

P
U

[1
0
3
]

C
U

D
A

/
M

P
I

c+
+

y
n

Il
lu

m
.

N
A

N
A

N
A

n
n

y
a

k
sb

C
U

D
A

-
E

C
2

[1
0
4
]

C
U

D
A

N
A

y
y

Il
lu

m
.

N
A

n
y

n
n

y
a

k
sb

Q
a
m

a
r
[5

4
]

P
T

h
r.

c+
+

y
n

S
a
n

g
er

/
Il

lu
m

.
y

n
y

n
n

n
d

k
sb

P
a
r
a
ll

e
l

R
e
p

ti
le

[1
0
5
]

M
P

I
c+

+
y

y
Il

lu
m

.
→

A
n

N
A

n
n

n
a

k
sb

B
a
y
e
sH

a
m

m
e
r
[1

0
6
]

O
M

P
c+

+
,

p
y
th

o
n

y
y

Il
lu

m
.

n
n

N
A

n
y

y
a

54 CHAPTER 3. ERROR CORRECTION

T
a
b

le
3
.1

C
o
n
ti

n
u

ed
fr

o
m

p
re

v
io

u
s

p
a
g
e

T
y
p

e
N

a
m

e
P

a
r
.

T
e
c
h

L
a
n

g
.

k
Q

.
T

e
c
h

N
In

d
e
l

V
.L

.
H

.
R

e
p

.
T

.
T

.S
.

k
sb

Q
u

o
r
U

M
[9

1
]

P
T

h
r.

c+
+

y
y

Il
lu

m
.

N
A

n
y

n
n

y
a

k
sb

R
A

C
E

R
[1

0
7
]

O
M

P
c+

+
y

n
Il

lu
m

.
→

A
n

N
A

N
A

n
n

a

k
sb

M
u

sk
e
t[

1
3
]

P
T

h
r.

/
O

M
P

c+
+

y
n

Il
lu

m
.

y
n

N
A

n
y

n
a

k
sb

H
e
c
to

r
[5

2
]

O
M

P
c+

+
y

n
4
5
4

y
y

y
n

n
n

b

k
sb

L
ig

h
te

r
[1

0
8
]

P
T

h
r.

c+
+

y
y

Il
lu

m
.

y
n

y
n

n
n

a

k
sb

H
E

r
C

o
O

l[
1
1
0
]

T
h

re
a
d

s
ja

v
a

y
n

4
5
4
/
Io

n
N

A
y

y
n

n
n

d

k
sb

T
r
o
w

e
l[

1
1
1
]

B
o
o
st

c+
+

y
y

Il
lu

m
.

N
A

n
N

A
n

y
n

a

k
sb

L
o
R

D
E

C
[7

1
]

P
T

h
r.

c+
+

y
n

P
a
cB

io
N

A
y

y
n

y
y

a

k
sb

B
L

E
S

S
[1

0
9
]

-
c+

+
y

n
Il

lu
m

.
n

n
n

n
n

n
a

k
sb

B
lu

e
[1

0
]

T
h

re
a
d

s
c#

y
y

Il
lu

m
./

4
5
4

y
y

y
n

y
n

c,
e

k
sb

B
F

C
[1

1
2
]

P
T

h
r.

C
y

y
Il

lu
m

.
N

A
n

y
y

n
n

a

k
sb

S
c
r
ib

b
le

[1
1
3
]

N
A

N
A

y
n

Il
lu

m
.

n
n

y
n

y
n

a

k
sb

P
A

G
A

N
te

c
[9

3
]

O
p

en
M

P
C

+
+

y
n

Il
lu

m
.

n
n

y
n

n
n

a

k
sb

A
C

E
[1

1
4
]

O
p

en
M

P
C

+
+

y
n

Il
lu

m
.

y
n

n
y

n
n

a

k
sb

F
A

D
E

[1
1
5
]

F
P

G
A

V
er

il
o
g

y
n

Il
lu

m
.

y
n

n
n

n
n

a

k
sb

P
o
ll

u
x

[1
1
7
]

-
C

y
n

Il
lu

m
./

Io
n

/
4
5
4y

y
y

n
n

n
d

k
sb

G
u

et
a

l.
[1

1
8
]

N
A

C
+

+
y

n
Il

lu
m

.
y

N
A

N
A

N
A

N
A

n
a

k
sb

J
a
b

b
a

[1
2
0
]

N
A

C
+

+
y

n
P

a
cB

io
n

y
y

y
n

y
c

st
a
b

S
H

R
E

C
[6

4
]

T
h

re
a
d

s
ja

v
a

n
n

Il
lu

m
.

n
n

n
n

n
n

a

st
a
b

H
S

H
R

E
C

[1
2
1
]

T
h

re
a
d

s
ja

v
a

n
n

A
ll

y
y

y
y

n
n

d

st
a
b

P
S

A
E

C
[1

2
2
]

P
T

h
r.

c/
c+

+
n

n
Il

lu
m

.
n

n
n

n
n

n
a

st
a
b

H
iT

E
C

[6
]

-
c/

c+
+

n
n

A
ll

S
u

b
st

.
n

n
n

n
y

n
a

3.3. SOFTWARE CATEGORIES 55
T

a
b

le
3
.1

C
o
n
ti

n
u

ed
fr

o
m

p
re

v
io

u
s

p
a
g
e

T
y
p

e
N

a
m

e
P

a
r
.

T
e
c
h

L
a
n

g
.

k
Q

.
T

e
c
h

N
In

d
e
l

V
.L

.
H

.
R

e
p

.
T

.
T

.S
.

st
a
b

M
y
H

y
b

r
id

[1
2
]

N
A

N
A

n
A

ll
y

y
y

n
y

n
d

st
a
b

P
lu

r
ib

u
s[

1
2
4
]

N
A

N
A

n
n

A
ll

n
y

y
n

n
n

d

st
a
b

F
io

n
a

[5
0
]

O
M

P
c+

+
y

n
Il

lu
m

./
4
5
4
/
Io

ny
y

y
n

y
n

e

m
sa

b
E

C
H

O
[1

1
]

P
y
th

o
n

/

P
T

h
re

a
d

P
y
th

o
n

/
c+

+
y

y
Il

lu
m

.
y

y
y

n
y

n
a

m
sa

b
C

o
r
a
l[

1
5
]

O
M

P
c

y
y

Il
lu

m
./

4
5
4

y
y

y
n

n
n

f

m
sa

b
L

S
C

[7
3
]

N
A

P
y
th

o
n

n
b

P
a
cB

io
s

y
y

y
n

n
y

c

m
sa

b
C

lo
u

d
R

S
[1

2
5
]

H
a
d

o
o
p

J
a
v
a

y
y

Il
lu

m
.

N
A

n
N

A
N

A
y

n
a

m
sa

b
C

h
u

n
g

et
a

l.
[1

2
7
]

H
a
d

o
o
p

J
a
v
a

y
y

Il
lu

m
.

n
n

n
N

A
y

n
a

m
sa

b
p

r
o
o
v
r
e
a
d

[7
2
]

G
ri

d
P

er
l

n
y

P
a
cB

io
N

A
y

y
N

A
y

y
c

m
sa

b
N

a
n

o
c
o
r
r
[7

7
]

G
ri

d
P

y
th

o
n

n
n

N
a
n

o
p

o
re

y
y

y
n

n
n

c

m
sa

b
K

a
r
e
c
t[

1
3
1
]

P
T

h
r.

C
+

+
y

y
Il

lu
m

./
4
5
4
/
Io

ny
y

y
y

y
y

d

rc
b

F
r
e
C

lu
[1

6
]

-
ja

v
a

n
n

Il
lu

m
.

N
A

n
n

n
n

n
a

rc
b

S
le

ep
et

a
l.

[6
1
]

-
N

A
n

n
Il

lu
m

.
n

n
y

n
n

y
a

p
m

b
R

E
C

O
U

N
T

[6
2
]

N
A

c+
+

n
y

Il
lu

m
.

N
A

N
A

N
A

n
n

n
a

p
m

b
P

r
e
m

ie
r
[1

3
6
]

N
A

N
A

y
y

Il
lu

m
.

n
n

N
A

n
n

n
a

p
m

b
P

r
e
m

ie
r

T
u

r
b

o
[1

3
7
]

N
A

N
A

y
y

Il
lu

m
.

n
n

N
A

n
n

n
a

p
m

b
k
G

E
M

[1
3
8
]

N
A

N
A

n
N

A
A

ll
y

y
y

n
n

n
d

56 CHAPTER 3. ERROR CORRECTION

pared to multi-technology software.

From a computational resources point of view, the correctors
written in a low-level language like C++ should be used. One must
take this last advice with a grain of salt as the performance is highly
dependent on the quality of the code and the algorithms used. An-
other very important aspect is the multi-core and multi-computer
support. Nowadays, even the mobile phones are multi-core and the
speed of CPUs has hit a hard limit, therefore any piece of software
capable of scaling on multiple cores should be preferred over the
others. This scalable applications are very useful when the time
frame is very short. Furthermore, the same programs win when
testing multiple combinations of parameters at the same time and
running multiple instances of a single threaded program is not an
option (e.g. when the user has to run the next instance of the
program with a combination of parameters based on a previous
run). Lastly, the multi-threaded programs would normally con-
sume less memory than multiple single-threaded instances running
at the same time. The best example for this last observation is
an OpenMP corrector creating a k-mer spectrum. An optimized
multi-threaded program would create just one structure to keep
the k-mers and their count and it would allow thread-safe access
to the structure. An optimized single-threaded program using the
same mechanism would avoid the locks but for multiple instances,
the same structure would be replicated as many times as instances
are running.

Discussion

In this section of the paper, we discuss the most important topics
for the error correction state of the art. It starts with the general
problem of errors in NGS data, followed by the key features of the
methods and ending with the main testing approaches.

3.4. DISCUSSION 57

Challenges

Data Preparation and Post-processing Steps

There are cases in which the input data must pass through some ad-
ditional pre-processing steps like the conversion to a certain format.
Blue performs a preparation step to generate the k-mer spectrum.
Reptile has a pre-processing step, to separate the reads from their
quality scores and to filter reads containing ambiguous charac-
ters. CloudRS converts the FASTQ input file to a specific format.
Furthermore, it must upload the converted input to the Hadoop
cluster and download the result locally when the job has finished.
HSHREC generates the corrected output files without the ini-
tial descriptions of the reads. Some tools may need this informa-
tion for further processing like SolexaQA++ [192] which generates
statistics from multiple technologies. The dataset requires a post-
processing step (that the user must implement) to restore the initial
information. Secondly, HSHREC generate two files, one contain-
ing all corrected reads and the other the skipped reads. Generally,
the output of the error correction tools is FASTA/FASTQ and it
does not require any explicit processing.

K-mer

K-mers Handling: Many methods base their decision on k-mers
and apply different techniques to deal with the memory limitation
and CPU requirements. BLESS uses the hard-drive to store the k-
mers during the counting.[193, 194] RACER encodes the bases in
a k-mer as a 2-bit representation to save memory. A newer version
of Quake integrates Jellyfish [195] to count k-mers instead of its
own implementation to stay competitive against the more recent
algorithms. It also provides a distributed approach for those cases
in which the local memory is not enough to handle the k-mers. To
speed up the k-mer spectrum generation, [105] implements a par-

58 CHAPTER 3. ERROR CORRECTION

allel counter. [103] use GPGPUs to generate the k-mer spectrum.
A rare feature is the support for variable k-mers for grouping reads
as in [125], where the corrector uses a wildcard based k-mer.

K-mer Size Selection: The value of k is extremely important.[9,
136] A too low value for k would result in many k-mers appearing
in most reads, thus joining in groups reads without any real rela-
tion. On the contrary, very large values would generate too many
unique k-mers, which also have a higher probability of including
more errors, therefore introducing noise into the grouping. Long
k-mers may also require more RAM memory.

The analysed methods set the size of the k-mer by: accepting
a user value, having a fixed default value and/or performing au-
tomatic selection. Hammer requires the user to set it. Quake
and ECHO define a formula to determine the optimum value as
presented in Table 3.2. Reptile considers 10 ≤ k ≤ 16 enough
for microbial genomes, fitting the spectrum in less than 4 GB of
RAM. Coral uses a default value of 21 for the k-mer. Hector and
Musket require both the k-mer length and the total estimated
number of k-mers from all reads. HiTEC and Fiona automati-
cally identify the optimum k-mer length at each step. CloudRS
stacks reads using a wildcard based 25-mer and, later in the cor-
rection procedure, a fixed 24-mer. The k-mer size should be odd in
order to avoid palindromic k-mers.[196] The software using k-mers
in their pipeline are market in table 3.1, column ”k”.

K-mer Distribution: Software relying on correct and erro-
neous k-mers tries to fit the k-mer spectrum on a certain distribu-
tion. The correctors compute the histogram with the frequencies
for each k-mer in the set of reads. A valid estimation tries to
model the initial, complex distribution as a combination of multi-
ple, simpler distributions.[9] Quake divides the solid k-mer distri-
bution in a combination of a normal and a Zeta distribution and
it considers (like BLESS) the weak k-mers to follow a Gamma
distribution. Lighter assumes a Poisson distribution, like Fiona.

3.4. DISCUSSION 59

Table 3.2: Formulas to determine the k-mer size for non-automatic
k-mer determination; N = Genome length, l = read length; p =
probability that a random k-mer appears in a random string of
length N, using the alphabet {A, C, G, T}; Ns = number of unique
solid k-mers as reported by BLESS

Formula Where

k = log4200N [9, 12]
k ≥ dlog4Ne [15]
4k >N [98]
k = bl/6c [11]
k = log42Np-1; p = 10-4 [110]
Ns/4k ≤ 0.0001 [109]

REDEEM models the k-mer distribution as a Multinomial one.
For 454, Hector encodes homopolymers using the base and the
multiplicity. The authors observe that the distribution of the orig-
inal reads tends to be unimodal. With the encoding applied in the
homopolymers space, the distribution of the homopolymers spec-
trum is analogous to the one (bimodal) obtained by Musket in
base space. The same authors conclude that, generally, the ho-
mopolymers spectra are bimodal.

Coverage Cut-off and K-mer Distance: K-mer based error
correction methods can cut the k-mer histogram to remove k-mers
with too high or too low frequencies, which normally reduces the
noise caused by highly-repetitive regions or singular errors. Some
algorithms automatically compute the best cut-off value, allowing
users to override this value. Quake uses the Broyden-Fletcher-
Goldfarb-Shanno method to calculate the histogram cut-off, but
this method fails when the curve of the distribution is not smooth
enough.[13] The authors of Musket empirically determined that
the lowest count for a k-mer around the valley can be a good cut

60 CHAPTER 3. ERROR CORRECTION

point. Musket also has an option to use a user-provided value.
Trowel uses a different approach by using the contiguity of high-
quality-scores bases instead of the coverage. It also expands the
trusted k-mer set, adding new k-mers after they are corrected.
QuorUM bases its decision on the quality of bases from k-mers,
therefore all bases in a solid k-mer must have a quality greater than
a threshold. RACER uses an internal threshold to deem a k-mer
followed or preceded by a certain base, either as solid or weak.
Hammer and Reptile create a Hamming graph for the array of
all k-mers, locating groups of similar k-mers that only differ in a
few positions, and then collapsing all those k-mers into a consensus
k-mer. To improve memory consumption, Lighter uses a random
method to decide whether to store or not a k-mer, assuming that a
correct k-mer appears multiple time in a dataset, thus the chance
of being selected is high.

Bloom filter: The Bloom filter [197] requires less memory
than a traditional hash-map, with the downside of occasional false-
positives. We discovered that only the k-mer spectrum based meth-
ods employ it at the moment. These correctors use the structure
to store the spectrum. Musket uses a Bloom filter in conjunction
with a hash table to remove unique k-mers. Furthermore, it splits
the work between multiple threads and instead of using a global
Bloom filter, it assigns a local one to each thread to speed-up the
processing. BLESS heavily relies on Bloom filters to perform cor-
rection.

Repetitive Regions

In general, the problem of repetitive regions cannot be tackled by
considering individual reads or k-mers in isolation. Some argue
that in the case of highly repetitive genomes, a sequencing error
has a greater probability to change a solid k-mer to another solid
k-mer.[9] They calculated the percentage of all one base mutations

3.4. DISCUSSION 61

for a k-mer k that will convert k into a sequence which also exists
in the genome. The results show a 2.25% for E. coli and 13.8%
for human chromosome 1, with a 15-mer and a 18-mer respec-
tively. Increasing the k-mer length up to 19 did not significantly
change the result, dropping the percentage to 11.1% for the H.
sapiens ’ first chromosome. The different percentages obtained for
the two organisms result from the higher complexity of the human
genome. REDEEM was specifically designed to handle repeats.
The main problem with repetitive regions is the similarity of two
sequences which are reside on different loci of the genome. A cor-
rector may try to convert them to a consensus, hence destroying
the existing valid zones. These wrongly fixed reads would prevent
an assembler from correctly composing the real genome (or make
it generate chimeric assemblies). It is a real problem for highly-
repetitive genomes (plants).[1] Furthermore, misreads in repetitive
regions can cause an abnormal high frequency of a k-mer [97] which
could result in an erroneous classification as solid by some correc-
tors. The methods based on multiple sequence alignment are more
resilient to challenges posed by repeats, although they do not to-
tally solve the problem.[11] The relationships between reads can
tackle to some extent some small repetitive regions because of the
higher length of the analysed strings compared to k-mers. More-
over, a read from a repetitive region has a higher probability to
enter the right group provided it shows enough dissimilarity with
other repetitive regions. Fiona implements a filter to remove suf-
fixes with an unreasonable high frequency and supports tandem
repeats. Blue addresses the problem of repeats by evaluating al-
ternative fixes for a read (it works in the case of significant differ-
ences among reads). proovread takes into account the loci on the
long reads where large blocks of short reads map, collecting many
reads. In contrast, non-repetitive regions may not even participate
in alignments, because of the uniqueness resulted from the Pacific
Biosciences’s high error rate. [125] makes use of a high frequency k-

62 CHAPTER 3. ERROR CORRECTION

mer filter to avoid stacking reads from repetitive regions. Column
”Rep” from table 3.1 contains the support for repetitive regions in
the correctors.

Ploidy

A corrector must distinguish between errors and variants. Since
most error correctors where tested on bacterial genomes, the infor-
mation on the behaviour of most tools are restricted to the haploid
case. The support for heterozygosity is stated on column ”Hzy.” on
table 3.1. Authors of [61] apply a smoothing technique to avoid re-
moving zones with only biological variants. They build a tree using
the frequency of reads, and consider a true variant as a sequence
appearing with a high enough frequency compared with the parent
sequence. Their decision is based on the fact that the frequencies of
a variant should be much higher than the ones from the sequencing
errors. The authors of ECHO explain a modification to support
a diploid genome with homozygous and heterozygous genotypes.
Their approach is to consider a uniform distribution over all pos-
sible genotypes. They skip a correction if the estimated coverage
is much greater than the expected coverage at an analysed locus.

Read Trimming and Splitting

To avoid the propagation of errors to the next steps, the correc-
tors may eliminate bases from both ends of a read, which can be
considered a complementary method to reduce errors.[121] Users
should take great care in using trimming, because it can heavily
influence the next steps like assembly, where the final result may
become fragmented [91] as the assembler is not able to find proper
overlaps among reads. However, not trimming faulty bases may
result in erroneous assemblies.[78] Some authors [103, 96, 65] try
to fix the read first and when this is not possible, they trim it. If

3.4. DISCUSSION 63

the result remains unsatisfactory, they discard the read. Another
approach is to pre-process the reads and cleave the suffixes and
prefixes having low quality scores to decrease the number of false
positives in the k-mer spectrum.[104] One must be careful with
the quality scores and take into account that the accuracy of the
quality scores depend upon library preparation method as demon-
strated for Illumina MiSeq data [57]. When dealing with very long
reads like Pacific Biosciences with a high percentage of errors [71],
along with considering trimming their ends, an additional approach
is to split the long reads into smaller, high quality segments. The
authors of [99] do not correct the spurious bases, opting instead to
split the read at the locus of the error and to remove the faulty
base. They argue that for a further assembly step based on k-mers
such as Velvet [196], their method should not pose any problems.

Unknown/Uncalled Bases

The unknown bases (denoted by N in Illumina and Roche 454
sequencing) are one of the four basic types of errors. Schirmer et
al. concludes that this type of error does not occur randomly as
supported by their non-uniform distribution. Column ”N ” from
table 3.1 indicate whether the correctors support Ns or not. In
some cases [61, 64, 6, 121], the authors prefer to exclude all reads
which contain one or more uncalled bases. Other programs (such
as LSC) eliminate the reads that have a frequency of Ns above a
threshold. A different strategy is to convert each unknown to a real
base, like RACER, Reptile and Parallel Reptile. Tools such
as [15, 10] tackle the unknown bases in the correction process.
Some authors fail to mention the support for uncalled bases in
their papers, therefore it is up to the user to experiment. Since the
unknown bases are a type of error [50], the authors should make
it clear whether their software supports them or not. In [10], the
authors put together a table with a selection of correcting software

64 CHAPTER 3. ERROR CORRECTION

and their features including handling of uncalled bases.

Low-Coverage Regions and Uniformity

Illumina sequencing generally has a higher average coverage than
other platforms [198], but their short size may not be suited for
phylogenetic profiling when a high resolution is required. However,
many studies [199, 200, 63, 201] have found that GC-poor and
GC-rich regions have low coverage or even no coverage at all. An
error corrector must consider these platform-specific shortcomings
to increase sensitivity and specificity.[9]

The authors of MyHybrid and Coral state that correction
methods expects the coverage to be relatively high and use that
multiplicity for a meaningful decision. Therefore, they cannot
do much for reads from low-coverage regions. The methods that
use a threshold for weak/solid k-mers will work if the coverage is
high enough or uniform, but they will end up destroying the low-
coverage regions (QuorUM tries to avoid this problem). Edar
takes into account the bias introduced by GC regions when calcu-
lating the k-mer coverage, by actively considering the GC content
of the k-mer. For a reliable result, the authors recommend using
a reference genome to accurately calculate the coverage. While
many authors do not state the minimum required coverage for a
successful correction, ECHO’s paper specifies a coverage of 15 or
higher. Hammer and BayesHammer are specifically designed
for error correction without uniformity assumptions. Due to uni-
formity, some authors admit their algorithm’s limit like in case of
Reptile where a non-uniform coverage and the existence of more
than one acceptable tile force the algorithm to skip a correction de-
cision. The authors of Blue mention the caveat of a simple k-mer
cut-off due to uniformity which can result in the rejection of cor-
rect k-mers in low-coverage regions and the acceptance of erroneous
k-mers in very high-coverage regions. Fiona detects erroneous k-

3.4. DISCUSSION 65

mers by calculating the expected coverage for each k-mer, given
a uniform sampling of genomic positions. It uses a hierarchical
statistical model to describe the expected coverage distribution of
k-mers based on library preparation and sequencing.

Parameters

All the methods rely on specific thresholds, lengths, ratios or prob-
abilities to drive their correction. As the methods evolve, they tend
to move the burden of choosing the best suited values for their pa-
rameter from the user to the program itself.

Generally, the k-mer size has a default (user adjustable) value.
However, some correctors like Quake require an explicit value from
the user, but offer a formula to determine it. Coral has a default
value, but it also proposes a formula in order to obtain the best
results.

The technology flag can explicitly set the source technology. For
example, Coral has a flag for ”Illumina/454” and Fiona another
one for ”Illumina/Ion Torrent/454”, which helps the software to
decide the best approach for correction. Others have a flag which
enable targeting the errors specific to a specific platform, i.e. ho-
mopolymers errors in 454 with the ”hp” flag in [10]. Karect can
run with indels support (Ion Torrent, Roche 454) or without (Illu-
mina).

Parameter selection automatic/manual: A manual method
to select parameters requires the user to try different values for
different parameters to obtain the best results. On the other hand,
an automatic method would prevent the user to provide additional
valuable information to infer the best actions the algorithm has to
take during the correction process. We must distinguish between
automatic determination of the best value for the dataset/ analysed
case and the default value of a parameter (deemed by the authors
to be an acceptable value). The two programs supporting full

66 CHAPTER 3. ERROR CORRECTION

automatic parameter value selection are HiTEC and Fiona. Note
that HiTEC needs the length of the genome and the percentage
of errors as input, but these two parameters remain the same for
a certain dataset.

Single Threaded vs Parallel

Generally, the programs tested in this review support parallel pro-
cessing using multiple threads. There are methods, like BLESS,
that can compete against multi-threaded software due to their ap-
proach, despite being single threaded . Other methods like Reptile
have been updated to run on multiple CPUs [105], using the same
initial correction mechanism. The parallel implementations are a
normal trend as both the NGS data size and the length of the reads
increase.

A distinction must be made between those programs being na-
tively parallel (they internally split the jobs between multiple work-
ers) like Coral and HSHREC and those that have no parallel
implementation but their input can be divided in chunks and mul-
tiple processes can be launched on different fragments of the initial
dataset like in the case of proovread.

Parallel Technology: The reader can check the parallel tech-
nology used by a corrector on column ”Par. Tech.” from table 3.1.
Most of the parallel implementations use OpenMP to distribute
the workload among the threads. DecGPU and Parallel Reptile
support distributed-memory computing by MPI. The distributed-
memory model requires a more complex programming and config-
uration, but enables gathering a larger number of RAM memory.
This advantage may enable tackling larger-scale correction prob-
lems which cannot be addressed on a single node. Other methods,
such as Quake, use parallelism only for counting k-mers. Further-
more, proovread and Nanocorr can run on multi-core desktops
and distributed clusters using queuing engines like SGE (commer-

3.4. DISCUSSION 67

cial2) and SLURM [202]. As of now, there are two fully distributed
methods using the Map-Reduce (Hadoop) paradigm.[125, 127] An
interesting addition to the field is FADE[115], the FPGA error cor-
rector which unleashes the massive parallelism available on FPGA
devices to tackle the error correction.

Operating System and Programming Language

The resource consumption is a problem because of the continuous
growth of the size of the NGS data. Owing to this, we observe
that the majority of authors chose a low-level language like C or
C++ to implement their solution. An interesting trend is the use
of of C++ over C in writing the software, with just one program
(from those being available online for us to analyse), Coral, being
implemented in pure C. The C# implementation of Blue obtains
the best performance when compared against other algorithms on
Illumina and Roche 454. Even though C# is not considered to be a
high performance language, Blue performs really well against the
rest of the algorithms. Some correctors appear to be implemented
in Perl and/or Python. These are often scripts that are used to
execute third party software. In case of LCS, the authors offer a
software wrapper written in Perl that uses an external aligner to
map the short reads against the long ones. Nanocorr is a python
wrapper for BLAST and pbdagcon 3. For the reader’s convenience,
we list in table 3.1 the programming language of choice for each
corrector.

Overall, the correctors should work on the three most impor-
tant desktop/server operating systems: Windows, Linux and Mac
OS. Some authors [108] mention the supported platform in their
papers. Generally, the authors prefer to support Unix flavours
and to distribute the source code and the instructions to build it.

2Available at http://www.univa.com/products/grid-engine.php
3Available at https://github.com/PacificBiosciences/pbdagcon

http://www.univa.com/products/grid-engine.php
https://github.com/PacificBiosciences/pbdagcon

68 CHAPTER 3. ERROR CORRECTION

Furthermore, the tests for the majority of the works were done
under Linux, with some authors also using Windows.[61] Besides
PC based methods, we included a corrector which runs on FPGAs
- FADE - (even though with the help of a computer that handles
the data transfer and storage).

License and availability:

The majority of the software is available online free of charge. As
we specified in the inclusion criteria, we focused on freely available
software appearing in a journal or conference. Some papers do not
include a link to the software, and some of them do not even include
any mention to its availability. Releasing the software online is a
method to attract more users and to improve the existing solution
using their feedback.

Recommendations

Depending upon the preprocessing type, a corrector that can sep-
arate the steps of the correction can save a lot of time when pro-
cessing big datasets. For instance, Blue can generate the k-mer
table in a separate process. In its case, the advantage is twofold.
Firstly, it can use the same k-mer table for multiple runs with the
different combinations of values for the majority of parameters that
are not involved in the histogram’s generation. Secondly, it makes
cross-correction possible since the k-mer table can be generated
from one technology that can be used to correct data from a dif-
ferent one. Another important aspect is the k-mer size selection.
Any program able to determine the size of k-mers automatically
(HiTEC) or use variable sizes (Fiona) is recommended over those
with user-defined only k-mer size selection. Next recommendation
is to select a software like Fiona or Blue that consider repeti-
tive regions as they may avoid altering similar zones with SNPs.

3.5. TESTING 69

The unknown bases support depends upon the used sequencing
technology as some technologies do not produce this type of error.
Furthermore, in case of extreme necessity, one can easily write a
script that can convert the unknowns into random or specific nu-
cleotides. The low-coverage issue must always be a top priority
since some algorithms can skip those zones because of the limited
information. Finally, the user must be careful with the trimming
and the splitting of the reads. In the former case, a corrector (like
Quake and DecGPU) may trim a read if the correction is not
possible. If result is then fed to an assembler, the correction may
negatively influence the overlap detection. Edar applies a distinct
correction mechanism by cleaving the reads. This approach may
be detrimental for any further step because a lot of information
is lost. The reads become much smaller and the relation between
segments part of the same read is lost forever.

Testing

This section focuses on the testing part included on the analysed
papers. We extracted all datasets which we could identify in the
papers along with the results provided by the authors. Due to
space limitation, we split the datasets in two categories. Table B.1
lists all those datasets appearing in [1, 2]. The rest of the datasets
(second category) along with the benchmark information are lo-
cated in the Supplementary Material. The gain metric for both
categories is calculated (by the authors or by the reviewers) using
the formula from [1]. The reader must be careful though, because
there is no standard way to count TP, FP and FN. As a result,
the numbers given by the authors and the reviewers must be taken
with a grain of salt. The reliable gain appears on the same col-
umn (same review, the authors used the same testing approach for
all software). The hardware configurations used by the correctors’

70 CHAPTER 3. ERROR CORRECTION

authors and in [2] as more sections related to testing are located
in the Supplementary Material.

Methods

Some metrics are general and do not focus on certain type of error
correction mechanism. For instance, the sensitivity and specificity
appear in k-mer-spectrum methods like Reptile, suffix trie/array
methods like SHREC and MSA methods like Coral. Sensitiv-
ity, specificity, gain and genome assembly statistics are the most
widespread metrics.

Simply counting the mapping reads that did not map before
the correction and do so after it, can prove the effectiveness of a
corrector.[62, 121, 73] However, the differences obtained heavily
depend on the aligner’s parameters. For example, the authors of
[1] test with different values for the aligner, albeit only for datasets
with indels, given the complexity introduced by these types of er-
rors.

In the case of artificial datasets, it is possible to report quite
reasonable the error rate before and after correction.[99, 11] On
the other hand, the exact error rate for real data can only be
estimated.[53]

Gain/Specificity/Sensitivity

The gain (G), specificity (SP) and sensitivity (SE) metrics (for
formulae see Equation 3.1) seem to become the de-facto on error
correction. SP and SE first appeared in [64]. The gain[98], repre-
sents the percentage of eliminated errors. They are all based on
counting:

• TP (true positives) existing errors that are corrected.

• TN (true negatives) correct bases left unmodified.

3.5. TESTING 71

• FP (false positives) correct bases that are wrongly considered
being faulty.

• FN (false negatives) erroneous bases left unmodified.

G =
TP − FP

TP + FN
, SE =

TP

TP + FN
, SP =

TN

TN + FP
. (3.1)

There are differences in how the authors of each tool compute
TP/TN/FP/FN. For Reptile, they compute the errors at base
level, while for SHREC and RACER, they count the errors at
reads level (a read is either error-free or erroneous, without con-
sidering the number bad base). The lack of a standard approach
on counting the errors leads to some serious inconsistencies in the
results published in the literature by the same tool in different
benchmarks even using the same dataset and formula. For exam-
ple, in [1], Coral obtains a score of 0.002 for an Illumina dataset
(SRR022918), while with the same dataset, it scores 0.97 in its
own paper. There is no doubt that Coral is a good corrector (as
demonstrated by [50]) and even in the aforementioned survey it
performs really good on datasets with indels. The problem lies in
the different approach in performing the tests, which is not infal-
lible. Moreover, the previous difference in score may arise just by
changing the way to prepare the datasets before correction. Even
though the approach is the same (filter non and multi mapping
reads), the aligner can make a difference too. Salmela et al.[15]
use Soap, while Yang et al.[1] use BWA.[203, 204] Table B.1 con-
tains the results obtained by some correctors in [1, 2] on a number
of datasets. The different results obtained in the original article
versus the surveys can be explained by the difference in dataset
preparation, FP/TP/FN/TN counting and maybe different ver-
sions of the tested programs.

72 CHAPTER 3. ERROR CORRECTION

Yang et al. and Tahir et al. have tested a number of algorithms
with real datasets from different technologies. Both papers report
the quality of correction (TN/FN/FP/TP, Sensitivity, Specificity
and Gain). They even use the same formulae to calculate the
Sensitivity, the Specificity and the Gain.

After reading the previous paragraph, the vigilant reader may
asked him/herself why the numbers are not the same (one dataset is
common for both surveys). The results differ because, even though
the general idea is the same, their approaches are slightly differ-
ent. Yang et al. map the original, uncorrected datasets against
the reference genomes of the organisms that each dataset was ob-
tained from. They use BWA[]/RMAP[] to map the original Illu-
mina datasets, Mosaik[] for the original 454 dataset and TMAP[]
for the original Ion Torrent dataset. Using the mapping results,
they select only the reads that map exactly once. The differences
between each read and the reference genome are stored in Em.
Next, two cases arise:

• for mismatches only type of errors, the Hamming distance
between the original read and its corrected counterpart is
calculated and the differences are stored in Ec; The following
formulae are used to determine FN/FP/TP:

– TP = |Ec ∩ Em|
– FP = |Ec \ Em|
– FN = |Em \ Ec|

• for indels, the corrected read is aligned (global alignment)
against the the genomic region where the mapper determined
that the original uncorrected, read fits; The differences in the
global alignment are stored in Er and FN/FP/TP result from
the following formulae:

– TP = |Em \ Er|

3.5. TESTING 73

– FP = |Er \ Em|
– FN = |Er ∩ Ec|

Finally, the authors use the formulae from the main manuscript to
calculate the Sensitivity, the Specificity and the Gain Lastly, Yang
et al. also report the memory consumption and the running time
for each dataset.

Assembly

The majority of the recent publications include some information
about the assembly performance. Many list the N50 metric and the
contigs count, but there are variations. Salzberg et al.[78] define
N50 value as ”the size of the smallest contig (or scaffold) such that
50% of the genome is contained in contigs of size N50 or larger”.
A contig is a multiple sequence alignment of reads represented as
a consensus while the scaffold is a list of contigs that defines their
order, orientation and the length of the gaps between them.[205]
Pluribus’ paper provides the number of nodes in the Bruijn graph
generated by Velvet, which give a measure of the fragmentation of
the assembly. For QuorUM, the E-size statistics [78] complements
the N50 value.

While N50 and the maximum contig length measure the quality
of error correction and give valuable feedback over the correction,
the authors of[10] state that these metrics are not always accurate.
This mainly happens because the assemblers can generate chimeric
contigs in overcorrected datasets. In any case, the correctness of
an assembly is hard to verify.[206] As a consequence, more refined
assembly evaluation approaches are considered (e.g. the Mauve As-
sembly Metrics [207] for Blue). BLESS uses several assemblers
from two different categories (de Bruijn and string-graph based).
This approach increases the reliability of the capability to produce
valid results that do not fit a certain type of assembler (or worse,

74 CHAPTER 3. ERROR CORRECTION

a certain assembler) and to prove the corrector’s generality. Fur-
thermore, the same authors do not just provide the value of N50,
they also assess the quality of the assembly, using GAGE [78], as
the authors of Musket.

For BLESS, the authors chose only artificial datasets to demon-
strate the capabilities of their implementation. DecGPU contains
the assembly information only for their corrector, not the other
correctors in their benchmark. Salmela[15] eliminates the trimmed
reads generated by Quake, because the Illumina-only assembler
Edena[208] can only handle reads with the same length.

Our reader can find the assembly results (where available in the
original paper) in the table with the performance assessment from
the Supplementary Material.

Genomes Used for Testing

A recent review [79] tests seven correctors on three large genomes
(H. sapiens, D. melanogaster and C. elegans) among others. The
datasets for the aforementioned species are very large, between
31 million and 1.7 billion reads. As discussed in [11], the more
complex, diploid genomes bring up the problem of heterozygosity
and how to discriminate between true variants and sequencing er-
rors. The repetitive regions also pose a problem to the corrector as
mentioned by the authors of Musket and HiTEC. We can see a
clear focus on the human genome, as the largest and most complex
datasets for benchmarking come from this organism (for BLESS,
Blue and Fiona).

Real vs. Artificial Datasets

We discern three situations for the datasets used in benchmarks:
correctors tested only on simulated datasets, only on real data or
both types of datasets. The main reasons stated to avoid artificial

3.5. TESTING 75

datasets are the lack of simulators capable of producing meaning-
ful data and the non-existence of some real challenges that only
appear in already existing real data [15, 98]. To generate the ar-
tificial data, the authors of BLESS used simLibrary and simNGS
[209], for Lighter and Hector - Mason [210] and for Pluribus
- ART[211]. Pbsim [130] is cited in [72], but the authors did not
use it, as they preferred to perform their tests on real data only.
Correction software from 2013 onwards are tested mainly on data
generated with dedicated software, opposed to previous use of in-
house mechanisms. Some authors test their work on existing arti-
ficial datasets, e.g. [97] for Edar and [212] for Qamar.

Resource Consumption

Despite that early methods were not explicitly targeting a reduc-
tion in the requirements on CPU and memory consumption, cur-
rently all the methods try to address this aspect. Some of the
first stand alone error correction methods were developed in Java,
whilst the latest prefer C/C++. On the other side, Blue (2014)
runs on the Microsoft .Net R© platform while offering a very good
performance. Many authors do not specify the exact method of
determining the resource consumption. The authors of [71, 15] use
the Unix time command.

There are multiple approaches to measure memory consump-
tion. This is especially troublesome when testing programs in
C/C++ against the ones in Java. For the latter, the simplest
way is to measure the memory used by a process, but one must
be careful with the memory allocation of the VM. In case of very
small datasets, the overhead added by the VM can give a skewed
view of the real behaviour. Even the memory usage of native pro-
grams is hard to assess under Linux given the fact that there are
two main memory types: virtual memory and Resident Set Size.
Most of the papers do not state how memory is measured, mak-

76 CHAPTER 3. ERROR CORRECTION

ing comparisons difficult. We also observed a lack of information
regarding the number of threads used to asses the performance in
some cases. For example, [64] state the use of multi-cores, but do
to mention how many threads were actually used in their test. The
scalability of the program, i.e. how the software behaves with an
increasing number of threads is often not evaluated. Some authors
like [10] present additional test cases in which they only asses their
program, usually for very large datasets. Table B.1 contains the
results for a number of correctors. For reader’s convenience, we
also included the results obtained in the original articles. One can
see some differences in the memory and time obtained on the same
dataset. This is not necessarily a sign of overinflated results in the
original work, but more of a difference in the testing system and
how the authors prepared the data for correction. Furthermore,
there is no clear indication of the version of the program used in
the original benchmark and survey benchmark respectively. The
aforementioned table is a guideline for the interested user that can
help him/her choose the right toll given the target hardware.

Testing details

This section presents all the methods and information regarding
the testing methods in Table C.1. This should come in handy
for any developer who may be curious how the already published
correctors were tested and against what genomes.

Next, the actual results obtained by the algorithms, ordered by
dataset are listed in Table D.1. It also contains the N50 assembly
score to offer a second perspective of the correction performance.

Finally, the section ends with a list of the hardware equipment
used by the authors in Table D.2. This information is valuable
especially in the case of the Runtime where one can get a pretty
good idea at what he/she can expect from a certain corrector.

3.5. TESTING 77

Recommendations

Using the three benchmark reviews cited earlier, we can see some
correctors that emerge as the winners. Molnar and Ilie[79] con-
sider BLESS, Musket, RACER and SGA the best choices for
HiSeq data. The last three were also able to handle H. Sapiens
datasets with over 1.3 billion reads of 100-103bp on a Dell com-
puter with 32 cores and 1TB RAM. For MiSeq, RACER wins in
three from a total of four tests. Tahir et al.[2] recommend HiTEC,
ECHO and DecGPU. In their opinion, the first two have a plus
with their automatic parameter selection that can optimize perfor-
mance. Finally, Yang et al.[1] obtain good results with Reptile
and HiTEC for Illumina data. Unfortunately, HiTEC fails to
run for three of seven datasets. This review also includes datasets
from Roche 454 and Ion Torrent, where Coral wins in all cases
against HSHREC. The two aforementioned correctors support-
ing indels do not obtain a high gain for Illumina datasets, making
them inferior to Illumina-only correctors.

An important advice for the reader is to consider more than
one metric when selecting a program. We recommend that (s)he
should consider not only gain, sensitivity and specificity, but also
other metrics like genome assembly and short read alignment. An-
other important aspect is the type of datasets used in testing. A
corrector able to handle heterozygous organisms such as H. Sapi-
ens (like Blue, Fiona and BFC) should perform pretty well with
other complex organisms. From a resource consumption perspec-
tive, BLESS uses the least memory, but it is single threaded and
quite slow since it uses the disk. Blue on the other hand obtains
some very good results in its own publication, offering a trade-off
between memory and CPU consumption.

CHAPTER 4

MuffinEC - Error Corrector

Part of this chapter has been published as: Alic AS., Tomas A.,
Medina I., Blanquer I.. MuffinEc: Error correction for de Novo
assembly via greedy partitioning and sequence alignment. In: Infor-
mation Sciences. 2016. 329:206-19. DOI: 10.1016/j.ins.2015.09.012

An earlier version of the algorithm has been presented as:
Alic AS., Tomas A., Salavert J., Medina I., Blanquer I.. Robust
Error Correction for De Novo Assembly via Spectral Partitioning
and Sequence Alignment. At: 2nd International Work-Conference
on Bioinformatics and Biomedical Engineering (IWBBIO). 2014.
1040-1048

78 CHAPTER 4. MUFFINEC - ERROR CORRECTOR

Current NGS (Next Generation Sequencing) technologies offer the
possibility of sequencing (very) large genomes and even whole pop-
ulations (like thousands of individuals). However, errors intro-
duced by sequencing techniques can still significantly affect the
outcome of different ulterior processes applied to raw data like as-
sembly [219, 220, 196]. Therefore, an error correction step can have
a huge impact on the quality of de Novo assembly.

Most de Novo (without a reference genome) error correction
methods can only detect and repair base mismatches. Despite
this being adequate for Illumina reads, in which the predominant
errors generated are mismatches [56, 221], other technologies are
prone to generating indels [7]. In this paper, we focus on error
correction methods that are stand-alone solutions (not included in
an assembler package) and that are able to correct insertions and
deletions.

We introduce MuffinEC, a corrector that combines a kmer ap-
proach for greedy read grouping with the Smith-Waterman (SW)
algorithm for error detection and correction. Our method handles
indels, mismatches and uncalled bases from variable length reads.
The main objective of MuffinEC is to support different sequencing
technologies while minimizing resource consumption.

Although indel-aware solutions are capable of working with ba-
sically any type of input data, just supporting indels is not suffi-
cient and some parameters require adjustments for optimal results.
For example, HSHREC does not have any tweaks for specific plat-
forms, and its results are not on par with other solutions as shown
by [1].

MuffinEC targets four platforms, namely Illumina, Roche 454,
Ion Torrent and PacBio. However, as it accepts any type of error,
MuffinEC can work with basically any existing technology, even
though fine tuning of the parameters may be required to obtain
satisfactory results. With the right technology profile, MuffinEC
can be adjusted to fit different technologies.

79

A limitation found in some methods targeting just Illumina
reads (which generally have the same length) is a fixed read length
[6, 122]. For the rest of the platforms the read sizes vary greatly,
thus it is very important for a multiple technology aware error
correction software to allow variable length.

Sequencing technologies may not be able to interpret a certain
nucleotide, marking it as unknown or uncalled. Some methods [64]
ignore those reads containing unknown nucleotides. Others [107]
choose to randomly change them to one of the four DNA bases
(adenine, guanine, thymine, cytosine). This approach allows in-
creased performance because a nucleotide can be represented with
only 2 bits, but it loses accuracy. MuffinEC encodes the nucleotides
in more than 2 bits to obtain the most accurate results when cor-
recting a group of reads.

Another shortcoming of the available methods is their high
computational resource demands. As the growth rate of the NGS
sequencing data is faster than Moore’s law [222], a problem arises
because one may not be able to process new data without a costly
hardware upgrade. The design of MuffinEC mainly targets mem-
ory consumption. MuffinEC also supports multithreading to fully
exploit the potential of the multicore processors.

This chapter is divided as follows: the first section presents
all the steps of the method, and the second section gives some
relevant implementation details. The third section presents exper-
imental results with the testing methodology most employed in the
literature, and it compares the performance of MuffinEC against
Coral, HSHREC, Fiona and HECTOR. The last section presents
the paper’s conclusions and outlines future research directions.

80 CHAPTER 4. MUFFINEC - ERROR CORRECTOR

Materials and Methods

To preserve consistency across the whole chapter, we define: G as
the prospective genome from which the reads originate, R as the
initial set of reads, ri as the ith read in R, KM(r) as the set of all
k-mers for a read, KM+ as the set of all k-mers for all elements
in R, M(KM+, R) as the map having the keys as k-mers and the
values the ids of those reads containing the kmer once or more
times, N(rseed) as a group of reads having a certain number of k-
mers in common with rseed, B as the set of all bases A, C, G, T,
N, - (N = unknown base, - = missing base used when marking an
insert)

The set KM is obtained by generating all k-mers for a read.
MuffinEC obtains KM using a sliding window of size k and mov-
ing it one nucleotide at a time. At each step, a new kmer km is
generated. When the sliding window encounters an unknown base,
it discards the whole content and searches for the next k real bases.
By discarding all k-mers containing unknowns, we can employ a
2-bit representation for the elements in KM+ and KM. Note that
we only use the 2-bit representation for the kmer table. This is
highly desirable because the kmer set consumes a large amount of
memory. A 64-bit integer can hold up to 32 bases, thus the maxi-
mum size of km is 32. The set KM+ is obtained by the reunion of
all KM for each read. MuffinEC corrects the groups of reads using
the full 1-byte per base (ASCII) representation of a nucleotide to
allow uncalled bases.

Owing to the built-in FASTQ support, MuffinEC is able to trim
erroneous bases to improve the quality of the output. Furthermore,
the quality of the generated k-mers can be substantially increased
by eliminating low quality bases from the both ends.

Figure 4.1 presents the main working mechanism of our pro-
gram, based on master-slave threading model

4.1. MATERIALS AND METHODS 81

K-mer Counting and

Histogram

Greedy Grouping

Parallel Region

...

Lock

Initial Read

Grouping

Figure 4.1: The basic flow of the algorithm.

MuffinEC has a total of five main steps, summarized below:

• k-mers counting and k-mers histogram creation with the pur-
pose of eliminating low frequency k-mers,

• generate single k-mer relationships between reads,

• greedy grouping of the reads based on the number of common

82 CHAPTER 4. MUFFINEC - ERROR CORRECTOR

k-mers as a distance metric

• refinement of the groups using SW as a distance metric to
detect those reads that are truly close; at this step the original
group may be split into subgroups

• correction of the subgroups (or the original group if no split
was necessary)

The next five subsections detail each of these steps.

k-mers Count and Histogram

The first step in MuffinEC is the k-mer counting. It generates
KM+ along with the k-mer multiplicity for each km ∈ KM+. We
eliminate all k-mers that appear less than the minimum size of a
group accepted for correction (default minimum value being 3).
In contrast to other k-mer based methods that correct k-mers by
making use of KM+, we do not modify the eliminated k-mers. We
merely use them to remove many false relationships between reads,
as many of these low count k-mers are erroneous [9]. In addition
to increasing the quality of the groups, this step also improves
memory consumption.

One of the reasons for avoiding the k-mer histogram correction
only is because its vulnerability to low coverage regions. The cov-
erage is an important aspect when using NGS data. Due to its
multi-step grouping mechanism, MuffinEC is sensible to coverage
only when it is creating the initial groups. Let’s consider five over-
lapping reads A, B, C, D and E. We have the minimum group size
set to three (default value and minimum size for a group to make a
correction possible). MuffinEC ignores the reads in groups with a
size less than the aforementioned minimum. If we have the case in
which A, B and C overlap and C, D and E overlap too, because of
the greedy approach only group A, B, C is created. D and E form

4.1. MATERIALS AND METHODS 83

their own group, but its size is smaller than three. This limitation
only appears in border cases when the coverage is very low. In
this border case, even the correction method may have problems,
because the groups are so small that the correct base cannot be
derived reliably. For the same case, a k-mer-histogram approach
may entirely eliminate the whole low coverage area because the
count of the k-mers is very low (and k-mers shorter). The MSA
methods (like MuffinEC) have a tremendous advantage over the
k-mer-histogram methods, because they have access to a lot more
information given by whole, overlapping reads (which are longer
than k-mers alone).

Initial Reads Grouping

The second step groups the reads based on their common k-mers.
MuffinEC generates a new KM+ (using the old KM+) to determine
which reads can be clustered. Instead of merely counting, KM+
uses the k-mers as keys and the sets of reads containing a k-mer key
as values. We skip all those k-mers previously removed. This step
creates basic groups and reduces the number of costly comparisons
we have to perform at later stages.

Greedy Grouping

MuffinEC utilizes a greedy approach, i.e. it puts a read in the first
group that satisfies the number of common k-mers condition. This
approach (once processed, reads are discarded) is faster than the
one in Coral (presented in chapter 2 - multiple corrections, same
read) and it also saves memory (it produces smaller groups). As
shown in the results section, it also increases the percentage of cor-
rected errors. To avoid spurious large groups with unrelated reads,
our software demands a maximum size of a group. When this re-
quirement fails, MuffinEC selects a number of reads equal to the

84 CHAPTER 4. MUFFINEC - ERROR CORRECTOR

group’s maximum size (which is user adjustable). This step is not
dangerous at all for very high coverage (true) regions because it
merely splits the large groups into multiple smaller ones. Further-
more, the maximum group size is generally high enough to provide
sufficient coverage for efficient ulterior correction. At this step, we
reverse complement a read before we correct it at the next step if
it fits in a certain group. The group creation is in essence an ex-
ploration of a weighted undirected graph GR=(R, E) (an example
in Figure 4.2). E contains all these connections between the reads.

The algorithm starts by setting the first read from the input file
as rseed. It creates KM(rseed) and traverses G using M(KM+, R) to
search for reads having at least one k-mer in common (denoted by
ck-mers or k-mers count) with rseed. When searching the graph, we
also convert each km ∈ KM to its reverse complement, kmrc, and
search for those reads containing kmrc too. Depending upon the
direction of the common k-mers, MuffinEC changes the direction
of the read added to the group.

After the related reads are found, MuffinEC verifies each read
if it has at least tk-mers (or a k-mer threshold) in common with
rseed. MuffinEC calculates tk-mers on the fly, for each compared
pair of reads. To calculate tk-mers, it uses the percentage of overlap
between two reads, poverlap. We allow a user adjustable percentage
value instead of a fixed value to avoid fail cases where there is a very
long read compared against a very short read. To better model real
life situations, we also include the estimated percentage of errors
perrors in the overlap. We calculate tk-mers using the shortest read
of the two compared using the formulae (where osize is the size of
the overlap):

osize = pk-mers * min(len(rseed), len(ri))
tk-mers = osize - osize * perrors * len(km)
Figure 4.2 show an example of a set of reads and their associated

graph.
To keep resource demands low, our algorithm allows k-mer over-

4.1. MATERIALS AND METHODS 85

r1

r2

2

r4

r5

r3

1 2
8

r1: GTAAGTATGCCTCCTACATCGATGT

r2: AAGTATCAACATNCATCGA

r3: AACCTCCTNNCANNATNCACCGAT

r4: GCAAGTATCAACATTCATCGA

r5: CGAANNNNCATTTACCCCCGAA

Kmer r1 r2 r3 r4 r5

AAGTAT y y n y n

CCTCCT y n y n n

CATCGA y y n y n

AGTATC n y n y n

GTATCA n y n y n

TATCAA n y n y n

ATCAAC n y n y n

TCAACA n y n y n

CAACAT n y n y n

Figure 4.2: Graph example for five reads and k=6; The number of
common k-mers gives the weight of a link between two reads; A
missing link means zero k-mers in common;

lapping in contrast to other correction mechanisms that require
non-overlapping k-mers [11]. This approach reduces the mem-
ory footprint (no k-mer location needed) and the overall execution
time (no need to check if a k-mer is unique and if it is in a zone
where no previous k-mer appears). Furthermore, to reduce mem-
ory consumption and increase execution speed, we also allow the
common k-mers to appear in any order. Once the group contain-
ing rseed is complete, MuffinEC sends it for correction to a worker
(thread). The grouping process using k-mers continues for the rest
of the reads that are still left unprocessed. Owing to this grouping
method, MuffinEC is able to run fast, but it requires fairly high
coverage to enable it to correct the groups.

86 CHAPTER 4. MUFFINEC - ERROR CORRECTOR

Table 4.1: Consensus Example (the first five rows show the align-
ment example; the rest of the table shows the actual distribution
values stored in the consensus)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
1 C G G T A A G T A T G A A - C A T A C A T C G A - T G T
2 A A G T A T G A A - C A T N C A T C G A
3 G G C A C T G T A A G N A T C A A - C A T N C A T C G A - T G T
4 A G T A T G A A T C A T N C A T C G A C T G T G G A A
5 G T C G T A A G T A T G A A - C A T N C A T C G A C T G T G G

- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0
N 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A 0 0 0 1 0 0 0 0 4 5 0 0 5 0 0 5 5 0 0 5 0 5 0 5 0 0 0 5 0 0 0 0 0 0 1 1
C 0 0 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 5 0 0 0 5 0 0 5 0 0 2 0 0 0 0 0 0 0
G 1 1 0 1 1 1 3 0 0 0 5 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 4 0 2 2 0 0
T 0 0 0 0 1 1 0 3 0 0 0 4 0 5 0 0 0 1 0 0 5 0 0 0 5 0 0 0 0 4 0 4 0 0 0 0

Group Refining

Once the previous step has generated a group of reads N, we use
a modified version of the SW algorithm to refine it. SW is a well-
known dynamic programming algorithm that computes a matrix
of scores between two strings. The matrix contains all the possible
alignments between the two strings. The original alignment algo-
rithm has been modified to search for the maximum in the last
column and row of the matrix. We used the affine map approach
as explained in [223] because it has the best biological meaning
compared with other methods. In the case of Illumina, we do not
allow gaps. MuffinEC does that by selecting the maximum value as
described previously, but instead of following a path pre-computed
by the default SW algorithm, our software goes straight on a diag-
onal starting on the maximum value’s position. We introduce the
concept of consensus Cons, which is a matrix for storing a group of
reads in a distribution form as shown in table 4.1. A Cons counts
at each position j how many bases from B are found in all reads
overlapping at j. The first read in N is used to create the first Cons.
While there are reads left unprocessed in N, MuffinEC takes each
r ∈ N and tries to fit it in an existing Cons. MuffinEC uses SW
to determine the number of differences between a read and Cons.
Using a user adjustable threshold for the number of differences, the

4.1. MATERIALS AND METHODS 87

algorithm decides if r fits in an existing Consi or a new consensus
for r must be created. In the latter case, the read becomes the
seed for a new Cons. At the end of this step, MuffinEC ends up
with a set containing one or more Cons. This part of the soft-
ware runs in parallel on multiple threads (each thread with its own
group), on groups sequentially generated at the step presented in
section 4.1.3.

This step is crucial and it has been added not only to tackle the
limitations of the fast greedy step, but also for the repetitive and
very similar regions. Normally, all the reads that have certain parts
in common end up in a big group. As a result there is no prob-
lem with isolating some reads that were supposed to be grouped
together, they are always grouped together. The problem appears
when the reads have common parts but they are actually from dif-
ferent loci of the genome. In that case, the previously presented
algorithm searches for the exact MSA of the reads. When there are
too many differences (similar regions) or distinct prefixes/suffixes
(entry in/exit from repetitive regions), MuffinEC creates subgroups
including only those reads which are very similar. The user is free
to adjust the quality of the detection by setting different parame-
ters like the maximum number of errors accepted in the MSA and
SW penalties.

Error Correction

After the group refining, on the same thread, for a N, MuffinEC
corrects the reads within each consensus Consi. The process it-
erates through the columns of Consi and at each step checks the
distribution of bases. Let us consider b̃j to be the correct base at
position j ∈ Consi and Consi,j all reads overlapping at position j ∈
Consi. Furthermore, the program accepts a user defined threshold
pb̃ as the percentage of reads overlapping in j having in the over-

lapped position base b̃j. One can also set the minimum number of

88 CHAPTER 4. MUFFINEC - ERROR CORRECTOR

reads overlapping in a position (trmin, default value 3). We define
ḃj as the existing base found in the analyzed reads in Consi on the
jth column. A base ḃj is considered to be correct if the following
holds true:

count(ḃj) := max(count(bj)), where bj ∈ B

ḃj := b̃j iff count(ḃj) ≥ (pb̃ x count(̃bj) ∧ count(Consi,j) ≥ trmin

First, we iterate over the consensus (just once) and correct the
bases on the fly. Next, we reconstruct the reads using the (cor-
rected if appropriate) information from the consensus. When a
correction occurs, we set the value of the quality (if applicable) for
all bases in all reads on the corrected column using:

qcorrected, j :=

count(Consi,j)∑
h=1

qh[breal,h = b̃j]

count(Consi,j)[breal,h = b̃j]

Before writing the corrected reads, MuffinEC checks what reads
were reverse complemented before correction and, if needed, it con-
verts them to their initial direction. This way, we do not influence
the next steps where the direction of a read may be meaningful.
Algorithm 2 and 1 summarize the main idea of the group refining
and correction algorithms.

The error correction process works best when there is enough
coverage on the columns, otherwise the consensus may not be cor-
rected due to lack of information. The insufficient information case
is prevalent at the ends of the consensus where MuffinEC may not
be able to correct the prefixes/suffixes of some reads.

4.1. MATERIALS AND METHODS 89

Input: N, OutFile
Result: Corrected reads
ConsArr ← [];
Cons← createCons(N [0]);
addCons(ConsArr, Cons);
foreach R ∈ N do

foreach Cons ∈ ConsArr do
if SW(r, cons) then

addRead(Cons,R);
end
Cons← createCons(R);
addCons(ConsArr, Cons);

end

end
foreach Cons ∈ ConsArr do

if size(Cons) ≥ ThreshMinReads then
correct(Cons);

end
Reads← consToReads(Cons);
writeR(OutF ile, Reads);

end
Algorithm 1: The group refining and correction algorithm

90 CHAPTER 4. MUFFINEC - ERROR CORRECTOR

Input: Cons
Result: Corrected consensus
foreach Column ∈ Cons do

if existsMajority(Column, MajBase) then
foreach Base ∈ Column do

Base←MajBase;
end

end
else

Skip Column
end

end
Algorithm 2: The error correction algorithm

Calculations

The program follows the C++11 standard and it can be compiled
using gcc version 4.7.2 or ulterior. We built and tested it on Linux,
but it should work on any other UNIX flavor and even Windows.
MuffinEC does not have external third party requirements, except
the TCLAP library [224] to process the input parameters, which
we ship with our source code. To achieve the best performance
we recommend a 64-bit computer with a 64-bit OS. The compiler
must support OpenMP 3.0 or greater, because of the use of the
OpenMP task directive.

Implementation

MuffinEC uses an unordered map to determine the k-mer spec-
trum. This data structure has the advantage of fast insertion,
deletion and search with an amortized cost of O(1). The error
correction step is executed in parallel using a master-slave model,

4.2. CALCULATIONS 91

as depicted in the Supplementary Material. The master thread
generates the groups using the greedy approach, while the work-
ers do the costly computation, the alignment and correction. The
OpenMP task directive controls the flow of the execution. The er-
ror correction step for a group is almost entirely parallel. MuffinEC
uses locks to protect the output of the corrected reads in a file.

The memory consumption of the program can be adjusted using
C++ templates. We encoded everything that can have an impact
on memory consumption as a template. For instance, the k-mer
type can be adjusted to use a 32-bit unsigned integer when the
k-mer size is less than or equal to 16 or a 64 bit integer otherwise.
This has an impact on the k-mer spectrum because it can grow
upto tens or hundreds of millions of keys.

Parameters

We make a number of parameters available for our program to keep
the execution as flexible as possible. MuffinEC has a technology
selection flag that sets most parameters to values suitable for differ-
ent sequencing technologies. The user can change any parameter,
overriding the default values set by any of the technology selection
flags. MuffinEC currently supports four technologies and each one
can be configured separately. We also provide a generic option, ad-
visable when the sequencing platform is unknown or the software
runs on unsupported technologies. This parameter is compulsory,
thus the user must set it to one of the five available values, namely
illumina, 454, ion, pacbio, generic. The profiles for different tech-
nologies are shortcuts that set internally the rest of the parameters
to values determined to be the best for a certain technology.

One important setting is the maximum number of errors ac-
cepted by the SW regrouping. It can filter out those reads that
are not related to the others in a group obtained by the step from
section 4.1.3. An inadequate value for this option translates into

92 CHAPTER 4. MUFFINEC - ERROR CORRECTOR

the admittance of a read that can destroy a subgroup’s consensus,
rendering the whole correction process useless. This parameter sets
a threshold for the number of differences between a read and a con-
sensus. If the number of differences exceeds it when SW executes
the backtracking part, the algorithm does not accept the read in
the current subgroup.

A third parameter with a strong influence on the results is
the number of bases having the same nucleotide when executing
a correction of a column in a consensus. If the value is too low,
MuffinEC will change a potentially valid base into an erroneous
one. This case appears when the coverage on a column is low. In
sub section 4.3.1.4, we present the results of our corrector with
various values for this parameter. The default value is 51%.

Finally, the default value of the k-mer length (user adjustable)
is 21 (the same default value as in Coral and HECTOR). This value
is the most appropriate in the case of bacterial genomes, which are
typical cases where error correction is applied. The user is free to
adjust this value as per his/her requirements.

MuffinEC accepts the following parameters listed by running
./MuffinEC –help:

./MuffinEC -a <string>|-q <string> --454 | --illumina

| --pacbio | --ion | --generic [--allowIndels] [--gencon]

[--trimQualThresh <positive number>] [--mincomkperc <decimal

percentage>] [--errorPercOverlap <decimal percentage>] [-k

<natural number>] [--maxsn <positive number>] [--minsn <positive

number>] [--errsmaxperc <decimal percentage>] [--algapext <real

value>] [--algap <real value>] [--almat <real value>] [--almis

<real value>] [-m <decimal percentage>] [-p <positive number>]

-o <string> [--] [--version] [-h]

Where:

-a <string>, --fasta <string>

(OR required) The full path of the FASTA file containing the

reads to be corrected

4.2. CALCULATIONS 93

-- OR --

-q <string>, --fastq <string>

(OR required) The full path of the FASTQ file containing the

reads to be corrected

--454

(OR required) The input data is from 454

-- OR --

--illumina

(OR required) The input data is from Illumina technologies

-- OR --

--pacbio

(OR required) The input data is from Pacific Biosiences

-- OR --

--ion

(OR required) The input data is from Ion Torrent

-- OR --

--generic

(OR required) use this option if you don’t want to set/know the

source technology

--allowIndels

Add this flag to allow indels when creating the consensus of a

group of related reads

--gencon

Add this flag to generate the contigs for the consensus

--trimQualThresh <positive number>

Value marking the minimum accepted quality score for a base at

the ends of the reads such that the position won’t get axed

94 CHAPTER 4. MUFFINEC - ERROR CORRECTOR

--mincomkperc <decimal percentage>

Percentage of overlapping for two reads, calculated from the

smaller between the two

--errorPercOverlap <decimal percentage>

The percentage of errors found in the overlap region of two

reads compared by the fast gapped kmer algorithm

-k <natural number>, --kmerlen <natural number>

the length of the kmer used to do the coverage and to create the

neighborhood

--maxsn <positive number>

Maximum size of a neighbourhood, created by the grouping method

and which will be further processed by the correction mechanism

--minsn <positive number>

Minimum size of a neighbourhood, created by the grouping method

and which will be further processed by the correction mechanism

--errsmaxperc <decimal percentage>

The max number of errors accepted by the Smith Waterman

algorithm when comparing the distance between a read and

a subgroup; if the total number of differences between the

read and the subgroup are greater than the limit set by this

parameter the read won’t be added to the subgroup

--algapext <real value>

Aligner gap extending score

--algap <real value>

Aligner gap opening score

4.2. CALCULATIONS 95

--almat <real value>

Aligner match score

--almis <real value>

Aligner mismatch score

-m <decimal percentage>, --percentMajorityDist <decimal

percentage>

The percent of reads which must have the same base on a column

of the consensus to apply a correction

-p <positive number>, --threads <positive number>

number of threads used by the program

-o <string>, --output <string>

(required) the name of the output file containing the corrected

reads

--, --ignore rest

Ignores the rest of the labelled arguments following this flag.

--version

Displays version information and exits.

-h, --help

Displays usage information and exits.

MuffinEC Multi-technology Indels-Aware NGS Error Correction

Software

The next section discusses the robustness of the chosen settings
and/or methods used to calculate the default values. The rest of

96 CHAPTER 4. MUFFINEC - ERROR CORRECTOR

Table 4.2: Experimental Datasets; the last two columns show num-
ber of reads in the original dataset (penultimate column) and fil-
tered dataset respectively (last column)

Dataset Genome Accession # NCBI Ref. Platform Genome Size Read Length Coverage # Reads Orig. # Reads Filt.
D1 E. coli SRR022918 1 NC 000913 Illumina 4 639 675 47 72 7 204 315 4 134 786
D2 E. coli SRR000868 NC 000913 454 4 639 675 37 – 385 12 230 517 223 055
D3 E. coli ERR039477 NC 000913 Ion Torrent 4 639 675 16 – 107 7 390 975 366 969
D4 E. coli SRR620425 NC 000913 Ion Torrent 4 639 675 6 – 395 155 4 237 734 3 838 047
D5 E. coli SRR1284073 NC 000913 Pacific Bioscience 4 639 675 22 – 29453 139 163 464 29 426
D6 S. aureus SRR022866 1 NC 003923 Illumina 2 860 755 76 339 12 775 858 7 475 923
D7 D. melanogaster SRR035606 RELEASE 5 48 454 119 029 979 35 – 609 <1 239 192 134 312
D8 E. coli SRR1640170 NC 000913 Illumina 4 639 675 100 523 24 298 709 23 334 662
D9 A. muciniphila SRR073384 NC 010655.1 454 2 664 102 53 – 225 15 353 852 325 853
D10 S. enterica SRR1183991 NZ CP007422.1 454 4 734 890 57 – 1601 110 429 755 176 935

the parameters are described in the documentation file accompa-
nying the software.

Results and Discussion

We tested MuffinEC against Coral, HSHREC, Fiona and HEC-
TOR (please refer to chapter 2 for a presentation of each corrector).
All of these tools support indels and were downloaded from their
websites as source code or compiled if possible. We selected vari-
ous datasets from the literature for all the supported technologies.
The chosen datasets (Table 4.2) try to cover most of the current
technologies and they pose complementary challenges (length, cov-
erage, error rates, error types etc.).

We chose E. coli as our model organism because there are many
well studied datasets for it. E. coli appears in almost all the liter-
ature about error correction. Datasets D1, D2 and D3 were chosen
because they appear in [15, 1]. D1 can also be found in other
papers that address Illumina data [54]. We selected the second
Ion Torrent dataset, D4, because of its size. To analyse the per-
formance of the correctors on PacBio data, we selected an E. coli
dataset (D5). D6 appears in Coral’s article, therefore we included
it in ours for the sake of comparison. D7 is an example of a dataset

4.3. RESULTS AND DISCUSSION 97

with indels and from a larger organism. D8 is the largest Illumina
dataset, being an excellent benchmark for testing the behaviour of
correctors in the case very high coverage datasets. D9 and D10
are two examples of 454 data (cases in which we can test all the
correctors in our benchmark, including HECTOR) from another
two organisms.

The selected datasets also vary a lot in coverage. This variation
should test the corrector’s behaviour in many situations, especially
when the overall coverage is very low e.g. D2. D7 is a special exam-
ple because it is the result of transcriptome sequencing. As a result,
the information in reads only targets those genes being expressed at
the sequencing time. This is an additional test where the reads are
isolated and the corrector cannot expect a contiguous alignment
of sequences. Even though MuffinEC has some limitations when it
comes to very low coverage as described in section 4.1, it still man-
ages to win against the other algorithms in the tests. Coral, which
is supposed to include a read in more than one group, is quite slow
and its correction performance not on par with MuffinEC as we
shall see later in this section.

We performed the tests on a 64bit Ubuntu 14.04 machine with
an Intel Core i7-3930K CPU @ 3.20GHz and 64 GB RAM.

Testing Methodology

Testing the accuracy of correction tools in real datasets proves
to be a challenge because the positions of errors in sequencing
data are unknown. There are numerous methods in the literature
to evaluate correction performance, for example [9, 1, 107]. We
chose the method used in [1] because it is widely employed in the
literature. The first step of this method is filtering via a mapping
algorithm (bowtie2 [129] in our case) to determine and discard
reads not mapping the reference genome or mapping to it multiple
times. This approach may eliminate many tricky cases by filtering

98 CHAPTER 4. MUFFINEC - ERROR CORRECTOR

the input dataset (as stated in [107]). For the PacBio datasets, we
used blasr [225] (specifically designed for PacBio) because bowtie2
was unable to map enough reads to generate a meaningful filtered
dataset for correction. A script filtered out the mapping reads
from those not mapping and generated a new dataset with only
the uniquely mapping reads. Eliminating these cases minimizes
the risk of misclassification [15]. The parameters used in case of
bowtie2 and blasr are the default ones, predefined by the aligner.
The alignment algorithms are not perfect and may misalign some
of the reads. To mitigate this, we align the original reads once and
use the found locus on the genome to generate the alignment for
both the original and corrected (as we shall see next). If case of
misalignment, the results for that particular read are erroneous. In
this case (since the data is real and no one can possibly know for
sure the location for each read) the only way to overcome this is to
use other metrics to validate the results. We understood this risk,
but from our check on samples of data the aligners are pretty good
at not making many errors. Nonetheless, we include in our set of
metrics the percentage of reads which align after correction.

The next step was to feed the filtered dataset to the programs
from our test. To assess the capability of each candidate, we de-
fined the following metric (gain) [1, 2]:

G =
TP − FP

TP + FN
.

Similarly, two more metrics used in [98] are Sensitivity

SE =
TP

TP + FN
.

and Specificity

SP =
TN

TN + FP
.

In the previous formulae, the variables represent:

4.3. RESULTS AND DISCUSSION 99

• TP (true positives) existing errors that are corrected.

• TN (true negatives) correct bases left unmodified.

• FP (false positives) correct bases that are wrongly considered
being faulty.

• FN (false negatives) erroneous bases left unmodified.

We consider ro as the original, uncorrected read and rc the
same read obtained after correction. To calculate TP/TN/FP/FN,
the evaluation procedure uses the location in the reference genome
from the alignment of the original read. We used a version of the
NW algorithm from the NCBI C++ Toolkit [226], allowing free
gaps at the beginning and the end of the alignment. The scoring
method mapped ro and rc, on the region previously determined by
bowtie2 or blasr, respectively. We avoided using the distance calcu-
lated by the aligner to be sure that we used the same scoring scheme
for both the original and corrected datasets. Using the CIGAR
string (Matches/Mismatches marked separately) produced by NW,
the evaluation procedure compared the number of differences be-
tween the two reads and incremented TP/TN /FP/FN accord-
ingly.

Table 4.3 presents the results of the evaluation. All programs
run with the default parameters, unless stated otherwise. The
greedy approach is more memory efficient and faster compared
with most cases. HECTOR performed better from a resource con-
sumption standpoint in all 454 tests, but it did not correct as
well as the others. From the perspective of gain and sensitivity,
MuffinEC managed to obtain a better score in all cases. On D5,
MuffinEC was slower than HSHREC but showed much better gain
and sensitivity, and its memory consumption was lower.

In contrast to HSHREC, MuffinEC remains constant in cor-
recting the datasets without any negative spikes (HSHREC obtains

100 CHAPTER 4. MUFFINEC - ERROR CORRECTOR

negative scores on D5 and D6). Coral failed with a memory access
error for the PacBio dataset (D5). This is understandable consid-
ering that PacBio was not on the market as a viable solution when
Coral was released.

HECTOR, failed to run with the defaults arguments, throwing
the following error: ”void ParaKmerEC(ProgramOptions&): As-
sertion ‘false’ failed”. We informed the authors about the problem
and, following their advice, we tried the corrector only with FASTA
files, removing the quality scores from the FASTQ files.

HSHREC failed to run on D7. It constantly asked for a smaller
value for the strictness parameter. We tried (without success) all
natural values from 7 down to 1. For this dataset that posed
problems for HSHREC, we ran all the other algorithms with a value
of 25 for the k-mer length (the value obtained by using the formula
in Subsection 4.2.2). We chose this value because of the larger size
of the genome of the organism being analyzed. The number of
threads for each program was set according to the number of CPU
cores available.

We measured the value of the Resident Set Size (RSS) memory
which is a closer estimate of the real memory consumption. The
difference in memory consumption measurements in previous pa-
pers is because Coral seems to allocate a great chunk of Virtual
Memory (VM), but the real memory used by the program varies
with the total RAM available in a system. Therefore, VM is sta-
ble across different setups, but RSS varies greatly. For datasets
D1, D2 and D6 the memory consumption also appears in [15]. For
datasets D2 and D3 more details about memory consumption on
older Linux systems appear in [1]. We let Coral use as much mem-
ory as it wanted to obtain the maximum performance.

To help the correctors and improve the correction, we set the
appropriate technology flags (if available) for each dataset. We
ran Coral with the flags corresponding to both 454 and Illumina.
For the datasets not officially supported, Coral used default values,

4.3. RESULTS AND DISCUSSION 101

without any technology flag. For HSHREC, we had to write a test-
ing loop to determine the maximum working value of the strictness
parameter. Without this, HSHREC would not successfully execute
on some datasets, asking for a lower value of the aforementioned
parameter (default 7). Fiona set the ”–sequencing-technology” flag
to the corresponding technology for each dataset being corrected.
For the PacBio dataset, Fiona did not use any technology flag at
all. Our program also utilized a technology flag, each time being
set to the suitable value for the analyzed dataset, namely one of
the values presented in section 4.2.2.

Another aspect is the input/output type we used for the three
programs. HSHREC and HECTOR do not work with FASTQ files,
thus we had to remove the quality scores for the inputs. Because
Coral, Fiona and MuffinEC do not have this limitation, we decided
to test them using FASTQ files.

Resource Consumption Testing

We used GNU time command instead of the builtin time com-
mand because the former offers more information about the run-
ning process. From the output generated by this command, we
also extracted the memory consumption given under the name of
”Maximum resident set size”. This measurement informs us over
the maximum memory used by a process during its execution. This
is very important in contrast with the memory occupied by the pro-
cess at the end of its execution because it gives an accurate view
over the real need of RAM. For instance our program uses C++
STL unordered maps. They grow as you insert elements and shrink
when you delete elements. There is a feature implemented called
rehash which when executed will re-arrange the elements inside the
map. This will usually result in a decrease in memory usage. Since
we delete elements during the k-mers removal stage, we call this
method at the end of the cleaning process to shrink the size. Now

102 CHAPTER 4. MUFFINEC - ERROR CORRECTOR

Table 4.3: Error Correction Testing Results

Dataset Algorithm Sensitivity Specificity Gain Memory
(GB)*

Time
(mins)

D1

Coral 0.74 0.99 0.74 11.2 3.28
HSHREC 0.68 0.99 0.68 8.3 19.48
Fiona 0.54 0.99 0.54 2.4 8.33
MuffinEC 0.82 0.99 0.82 1.7 1.83

D2

Coral 0.78 0.99 0.75 8.6 3.10
HSHREC 0.81 0.99 0.80 10.8 5.88
HECTOR 0.53 0.99 0.53 0.2 0.21
Fiona 0.83 0.99 0.83 1.0 2.28
MuffinEC 0.86 0.99 0.84 0.8 0.96

D3

Coral 0.78 0.99 0.77 9.3 0.51
HSHREC 0.78 0.99 0.78 7.1 3.93
Fiona 0.75 0.99 0.74 1.0 2.76
MuffinEC 0.94 0.99 0.94 0.5 0.25

D4

Coral 0.74 0.99 0.67 20.5 157.41
HSHREC 0.28 0.99 0.03 25.5 90.38
Fiona 0.76 0.99 0.77 5.3 40.28
MuffinEC 0.86 0.99 0.84 4.2 14.01

D5

Coral - - - - -
HSHREC 0.0004 0.99 -0.003 25.5 40.66
Fiona 0.001 0.99 0.0006 39.2 244.43
MuffinEC 0.08 0.99 0.08 20.2 83.58

D6

Coral 0.63 0.99 0.63 21.2 53.38
HSHREC 0.30 0.97 -0.31 26.4 70.20
Fiona 0.69 0.99 0.69 6.0 19.15
MuffinEC 0.71 0.99 0.71 3.7 5.33

D7

Coral 0.25 0.99 0.24 13 2.83
HSHREC - - - - -
Fiona 0.12 0.99 0.11 0.9 2.33
HECTOR 0.11 0.99 0.11 0.1 0.10
MuffinEC 0.40 0.99 0.38 0.8 1.01

D8

Coral 0.94 0.99 0.94 26.1 319.4
HSHREC 0.61 0.99 0.48 34.3 324.68
Fiona 0.95 0.99 0.95 22.5 52.48
MuffinEC 0.98 0.99 0.97 8.4 29.91

D9

Coral 0.78 0.99 0.77 12.8 1.05
HSHREC 0.38 0.99 0.37 6.9 5.31
Fiona 0.57 0.99 0.57 1.0 2.23
HECTOR 0.23 0.99 0.23 0.1 0.10
MuffinEC 0.93 0.99 0.93 0.5 0.41

D10

Coral 0.01 0.99 0.01 17.7 20.86
HSHREC 0.09 0.99 0.06 23.3 28.68
Fiona 0.09 0.99 0.09 1.6 14.96
HECTOR 0.01 0.99 0.009 0.3 0.73
MuffinEC 0.95 0.99 0.95 1.2 2.86

*RSS memory value measured by GNU Time

4.3. RESULTS AND DISCUSSION 103

let us consider an example in which we keep adding elements till
our map reaches 20 GB. We do the cleaning and rehash and we
end up with a 16 GB object. It will be totally wrong to say that
our program uses just 16 GB. On a machine with just 16 GB of
RAM the system will kill the process and the program will fail.
The following snippet is an example of the time command output:

The following is an example of testing procedure used for all
programs: # Using the following parameters values:

In file: /home/asalic/test/ecoli/illumina/SRR1640170.fastq

Out file: /home/asalic/test/ecoli/illumina/SRR1640170 MuffinEC.fastq

Use OMP: yes

Number of threads to be used for error correction: 3

Alignment match: 2

Alignment mismatch: -1

Alignment gap: -3

Alignment gap extension: -1

Max percentage errors accepted in SW: 0.14

kmer Size: 21

MinNum Percentage Common Kmer: 0.5

Percentage Errors in the Gapped Kmer Overlap : 0.02

Trim Bases With a Quality Below : 53

Generate Contigs: false

Minimum Overlap percentage: 0

Percent Common Bases Column Consensus for Valid Correction: 0.51

Min Size Neighborhood: 3

Max Size Neighborhood: 500

Selected Profile: Illumina

Allow indels during consensus generation: false

It’s time to correct the errors

Count kmers

35350474 different kmers found

Qualities between 35(#) and 74(J)

Create kmers histogram

104 CHAPTER 4. MUFFINEC - ERROR CORRECTOR

Filter kmers

Remove kmers with low level of expression

Cut histo at 3

Alloc space for IDs of reads containing left kmers

Group reads

Unique kmers left after removal stage: 9613863

Start error correction

Reads processed/total: 2429342/24292363

Reads processed/total: 4858554/24292363

Reads processed/total: 7287865/24292363

Reads processed/total: 9717270/24292363

Reads processed/total: 12146603/24292363

Reads processed/total: 14575496/24292363

Reads processed/total: 17004909/24292363

Reads processed/total: 19433932/24292363

Reads processed/total: 21863163/24292363

Reads processed/total: 24292361/24292363

Number of failed to correct reads: 3

Correction process has ended!

Number of neighborhoods: 260392

Largest neighborhood: 501

Number of reads associated with groups: 24298709

Total number of reads in the file: 24298709

Number of skipped short reads: 0

Number of skipped low qual reads: 6346

Number of oversized neighborhoods: 1754

Number of greedy falbacks/total number of greedy comparisons: 38447/31228102

happy ending after: 2761 secs

total size of corected contigs 21151025

Groups with 1 elem: 142690

Groups with 2 elems: 0

Num reads in groups smaller than 3: 0

Command being timed: "/home/asalic/tmp/MuffinEC-1.1/build/MuffinEC

4.3. RESULTS AND DISCUSSION 105

--illumina -p 3 -q /home/asalic/test/ecoli/illumina/SRR1640170.fastq

-o /home/asalic/test/ecoli/illumina/SRR1640170 MuffinEC.fastq"

User time (seconds): 6129.36

System time (seconds): 95.91

Percent of CPU this job got: 225%

Elapsed (wall clock) time (h:mm:ss or m:ss): 46:01.35

Average shared text size (kbytes): 0

Average unshared data size (kbytes): 0

Average stack size (kbytes): 0

Average total size (kbytes): 0

Maximum resident set size (kbytes): 8761176

Average resident set size (kbytes): 0

Major (requiring I/O) page faults: 0

Minor (reclaiming a frame) page faults: 7370293

Voluntary context switches: 2327

Involuntary context switches: 550818

Swaps: 0

File system inputs: 0

File system outputs: 17042768

Socket messages sent: 0

Socket messages received: 0

Signals delivered: 0

Page size (bytes): 4096

Exit status: 0

We had to patch the GNU time command because as a result of
a bug it incorrectly reports the Maximum resident set size (kbytes).
The line 395 from time.c must be changed from:

fprintf (fp, ”%lu”, ptok ((UL) resp->ru.ru maxrss));
into
fprintf (fp, ”%lu”, (UL) resp->ru.ru maxrss);
In the case of the Java program, we decided to use the same

GNU time command to measure the memory consumption. The
main reason we chose this path over specialized methods like YourKit

106 CHAPTER 4. MUFFINEC - ERROR CORRECTOR

Java Profiler [227] or EJ-Technologies JProfiler [228] is that we
need an overview over the full memory requirement of the program.
We could measure the memory consumption for only the Java pro-
gram and disregard the overhead of the Jvm but it wouldn’t have
offered a realistic view. The whole purpose of the memory section
is to give an accurate as possible measurement of the RAM needs
so the whole program works. Again, if Hshrec is using 16 GB as
a inside process in the JVM but the overall JVM requires 18 GB,
a machine with only 16 GB won’t be able to execute the program
and probably will have to kill the process.

To test Hshrec we used Oracle Java 1.7.0 55. We set the maxi-
mum memory of the JVM to be the whole quantity of RAM avail-
able on the testing machine. We left the minimum memory with
its default value.

Scalability

Nowadays, the CPU is limited in performance as a single unit.
There is no method to just increase the frequency and the execution
speed overall. As a result, the only method to dramatically improve
speed is to use more than one execution core, to split the problem
in tasks that can be executed at the same time. Therefore, the
concept of parallelism has become ubiquitous in Computer Science
and today even our mobile phones have multi-core CPUs. We
built MuffinEC to take advantage of the local parallelism by the
means of OpenMP. Figure 4.3 depicts the dramatic reduction of
the total running time of our application when using between one
and six core. the previous subsection contains a trial run for three
cores where the output of MuffinEC and of the time command are
listed. The same figure also contains the memory consumption
with different number of cores. We used KB together with a very
narrow interval (from 8,760,000 to 8,770,000) to mark the potential
differences as well as possible. Please bear in mind that the results

4.3. RESULTS AND DISCUSSION 107

in GB from table 4.3 are obtained by dividing by 1024, not 1000.
The analysis is performed on D8 (without filtering), the largest
dataset from our benchmark. The selection of D8 was based on
the assumption that using the highest quantity of data we are able
to counteract the effects of external factors like the OS executing
a short lived job besides our program. Furthermore, using the
largest dataset, we are able to see if the algorithm is susceptible
to dramatic increases in memory consumption when more workers
are added. Figure 4.3 shows a insignificant variation (maximum of
approx 2.3MB from 8.4GB when using six cores instead of one, an
increase of 0.02%) in the memory consumption, demonstrating the
stability of scalability.

Profiling

In this section we continue our exploration of parallelism. We con-
centrate on the time spent in different portions of the application.
For the test, MuffinEC ran with 6 threads under the supervision
of Intel VTUNE 2016 on Ubuntu 14.04. Intel’s profiling tool gen-
erated a summary with all the hotspots of the application. We
detected three methods corresponding to three distinct steps from
figure 4.1, namely the k-mer counting and histogram, the initial
read grouping, and the group refining and error correction. Fig-
ure 4.4 shows that the weightiest part is the actual group refining
and error correction. This is the main reason for us to choose this
part as the most important to execute in parallel. Once multi-
ple cores are allowed, the time spent in the aforementioned time
consuming parts drops significantly as depicted in figure 4.5.

Parameter Robustness

We followed multiple approaches to determine the optimal values of
MuffinEC’s parameters. First, we searched through the literature

108 CHAPTER 4. MUFFINEC - ERROR CORRECTOR

1 2 3 4 5 6
Num Threads

30

40

50

60

70

80

90

Ti
m

e
 (

m
in

s)

8759500

8760000

8760500

8761000

8761500

8762000

8762500

8763000

M
e
m

o
ry

 (
K

B
)

Figure 4.3: Execution time and memory consumption for multi-
core execution.

for similar parameters. For instance, the optimum k-mer size has
been debated in many published articles. The next list summarizes
the formulas for determining the k-mer size from different sources:

• k = log4200N [9, 12]

• k ≥ dlog4Ne [15]

• 4k >N [98]

• k = bl/6c [11]

4.3. RESULTS AND DISCUSSION 109

Group Refining and
Correction

66.0%
K-mers Count and
Histogram

9.0%

Initial Reads Grouping

18.7%

Others

6.3%

Figure 4.4: Profiling using one core

• k = log42Np-1; p = 10-4 [110]

• Ns/4k ≤ 0.0001 [109]

where N = genome length, l = read length; p = probability that a
random k-mer appears in a random string of length N, using the
alphabet {A, C, G, T}; Ns = number of unique solid k-mers

Five out of six papers chose a variation of the same general
formula, hence we selected k = log42Np-1 with p = 10-6.

Next, we used empirically derived values from the literature.
This is the case of error correction overlap error rate In case of Il-

110 CHAPTER 4. MUFFINEC - ERROR CORRECTOR

Group Refining and
Correction

19.8%

K-mers Count and
Histogram

20.9%

Initial Reads Grouping

44.4%

Others

14.9%

Figure 4.5: Profiling using six cores

lumina, [61] describe the substitution errors for various sequencers.
For instance, the Genome Analyzer R© produces many G → T and
C → A substitutions [9, 63]. Normally, the percentage of errors
increases towards the end of a read (the 3’ end) [62, 9]. The es-
timated error rate for Illumina is between 1 and 2.5% [64, 65, 9],
hence we selected 2% as the default for this technology.

Finally, for the parameters that are confined to our own ap-
proach, we performed an experimental analysis of their behaviour
and robustness. We present herein a study of the interdependence
between two very important settings for our program. Due to the

4.3. RESULTS AND DISCUSSION 111

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

Figure 4.6: Robustness analysis for D2, varying two parameters.

high number of parameters accepted by our system, we focus only
on the extensive testing of two key parameters with a very high
impact on the final result. One of the parameters is the SW error
rate and the other is the percentage of reads having the same nu-
cleotide in a consensus position to be considered correct. Fig 4.6
presents the results of multiple executions for the gain metric with
dataset D2. We selected for our empirical evaluation the percent-
age of bases that must agree in a column to perform correction and
the maximum percentage of differences allowed when comparing a
read against a subgroup’s consensus to accept that read in the sub-
group. To execute the tests, we varied each parameter between the
limits of a meaningful interval, i.e. for the former from 5% to 95%
and for the latter from 2% to 40%. Using this type of approach,

112 CHAPTER 4. MUFFINEC - ERROR CORRECTOR

we determined the optimum values for our parameters by testing
them on a representative set of data. As a result, it is clear that
MuffinEC is quite stable with respect to the parameters and the
high values for the gain are situated somewhere near the center
of the 3D shape. We went for extreme values for the percent of
the majority to show that although this parameter has a strong
impact on the outcome, our program remains quite stable and still
produces meaningful results (as long as the gain is not negative,
some correction is still being made).

Short Aligning Results

Finally, to complete our analysis of correction accuracy, we com-
puted the reduction of non-mapping using bowtie2 (the same aligner
as in the Gain/Specificity/Sensitivity filtering stage). To make the
test as even as possible for all programs, we decided to use FASTA
for all correctors as it is supported in all cases. For this test, the
correctors ran on the full dataset rather than the filtered one. We
compared the alignment results for the corrected data against the
results for the original data using bowtie2. MuffinEC managed to
reduce the number of non-mapping reads by 15% (Fig 4.7), the
highest percentage among all the tested programs.

Assembly Results

To complement the previous widely used metrics, we decided to add
results and discussion about the influence of error correction on as-
sembly. We present these detailed results obtained from the full
dataset D9. We selected this dataset because it is the best exam-
ple where we can demonstrate that the gain/sensitivity/specificity
metric is sufficiently accurate to compare the correctors. Further-
more, D9 is from a 454 sequencer, supported by all correctors (in-
cluding HECTOR) and a good example of a set having all types

4.3. RESULTS AND DISCUSSION 113

Coral Hshrec Fiona HECTOR MuffinEc

% Mapping 1 5 3 0 19

0

5

10

15

20

Pe
rc

e
n
ta

g
e

Figure 4.7: Percentage of mapping reads from the NON-mapping
ones after correction as reported by bowtie2; results with the
FASTA output; higher is better.

of errors. We chose Newbler [229], Roche’s own assembler, as it
should produce the best results with 454 data (its author is the
company that manufactures the 454 sequencer-family) [230]. The
assembler test supports and reinforces the usability of the error
correction for a real use case. To make this test as close to real-
ity as possible, we decided to skip the preprocessing step used in

114 CHAPTER 4. MUFFINEC - ERROR CORRECTOR

the case of the gain/sensitivity/specificity and feed the full original
dataset (as extracted from the SRA) to each corrector in our test.
We depict in Fig 4.8 the average and maximum contig size along
with N50 [231]. Additionally, we present the count of large contigs
(default 500bp as considered by Newbler) and all contigs. This
metric is very useful for observing the fragmentation of the final
result.

As seen in Fig 4.8 and Fig 4.9, MuffinEC manages to improve
the assembly results both in terms of contig size and total contig
number. HSHREC’s output does not respect the FASTA standard
and inserts a space between the read id’s reserved first character,
’>’, and the description string that follows before the new line.
As a result, we had to modify the output to successfully execute
Newbler with HSHREC’s output.

For the reader’s convenience, we also included the results ob-
tained from the original uncorrected dataset. By comparing the
behavior of an assembler with raw versus corrected input, one can
assess the assembly software’s degree of error tolerance. Regard-
ing D9, it is clear that assembly by Newbler improves when it is
fed corrected data regardless of the corrector. However, MuffinEC
boosts the assembly performance by a large margin compared to
the results obtained using the alternatives in our test.

Unknown Bases

Table 4.4 contains statistics regarding unknown bases for the origi-
nal, filtered and corrected datasets. We chose one Illumina dataset
and one 454 dataset from two different organisms. Overall Coral
was better than both HSHREC and Fiona, while MuffinEC was su-
perior in all cases. All the software in our test managed to remove
a large percentage of the unknowns.

4.3. RESULTS AND DISCUSSION 115

Original Coral Hshrec Fiona HECTOR MuffinEc

N50 1635 4734 2156 3085 1638 19982

Avg 1394 3209 1702 2276 1389 11325

Max 6901 16626 10562 15677 6900 56898

0

10000

20000

30000

40000

50000

60000

N
u
m
b
e
r
o
f
B
a
se
s

N50 Avg Contig Len Max Contig Len

Figure 4.8: Newbler’s metrics; larger is better (longer contigs
means that the assembler was able to build longer stretches from
the original genome)

Resource Demands

A top priority for MuffinEC is to keep both the computational cost
and memory consumption low as the amount of data increases. The
main challenge in memory consumption is the storing of the k-mers
count and the k-mer - reads map. These two structures need to be

116 CHAPTER 4. MUFFINEC - ERROR CORRECTOR

Original Coral Hshrec Fiona HECTOR MuffinEc

Large 1770 820 1494 1142 1775 231

All 2785 978 2122 1496 2803 289

0

500

1000

1500

2000

2500

3000
N
u
m
 C
o
n
ti
g
s

Num Large Contigs Num All Contigs

Figure 4.9: Number of large contigs and all contigs as reported by
Newbler; Shorter is better (fewer contigs, closer to a final genome)

in RAM to obtain good performance.

Our solution exploit multicore processors very well thanks to a
multi-threading implementation. However, the matrix used by the
SW algorithm consumes more memory when running in parallel
because each thread needs its own matrix instance. Furthermore,
to avoid memory fragmentation and many allocation/deletes, the
software assigns a static, re-sizable matrix to each thread when the

4.3. RESULTS AND DISCUSSION 117

Table 4.4: Dataset Statistics with Respect to Unknown Bases

Dataset Algorithm Reads with
One or More
N’s

Num. N
Bases

D1

Original 84 710 2 275 945
Filtered 3 312 4 527
Coral 927 1 750
HSHREC 1215 2 346
Fiona 1288 2 194
MuffinEC 484 856

D7

Original 31 465 100 735
Filtered 15 238 29 532
Coral 9 063 20 019
Fiona 9 415 21 200
HECTOR 15 238 29 532
MuffinEC 7 198 15 120

program starts and does not free the memory held by the matrix
until the program ends.

The first two steps described in section 4.1 are sequential. The
genuinely parallel part is the correction of the groups, which typ-
ically takes a significant amount of the whole running time. This
happens when the second step of the algorithm does not group
the reads well. Then, the refining part has more comparisons to
perform.

We measured the RAM requirement and the total time spent
for Coral, Fiona and MuffinEC using the GNU time command. In
the case of HSHREC, we decided to apply the same testing method-
ology as for the others. We measured the memory consumption of
the Java process, as explained in more detail in the Supplemental
Materials. HSHREC artificially alleviates the increased memory
consumption by working only with FASTA files (it does not load

118 CHAPTER 4. MUFFINEC - ERROR CORRECTOR

the quality scores) and by not preserving the original tags for each
FASTA entry. Table 4.3 contains the resource consumption data.
The fastest corrector by far in our benchmark, HECTOR, suffers
from a reduced correction rate when compared to the selected com-
petition.

Discussion and Conclusion

MuffinEC is an error correction program for de Novo assembly
capable of handling all types of errors in four current sequencing
technologies, namely, Illumina, Roche 454, Ion Torrent and PacBio
(plus generic support for future ones). It is implemented in C++11
with OpenMP and accepts a wide range of parameters. It tackles
the problem in five steps:

• k-mers counting and histogram generation,

• initial read grouping by one common k-mer,

• greedy grouping by number of k-mers,

• refining using the SW algorithm of the greedy groups ob-
tained at the previous step and subgroups generation when
needed,

• the actual error correction of the (sub)groups.

This program works on commodity hardware and has no limi-
tations in regard to to variable read lengths or uncalled bases.

In our experiments MuffinEC obtained better error correction
results in all cases against selected competition from the literature.
We tested it against five correctors using four different correction
quality metrics:

4.4. DISCUSSION AND CONCLUSION 119

• percentage of corrected errors in the form of gain, specificity
and sensitivity,

• percentage of short alignment after correction compared with
the percentage before,

• assembly metrics,

• unknown bases count before and after correction.

We also verified the robustness of the default values for the param-
eters accepted by MuffinEC. Because our implementation achieves
higher speed and lower resource consumption in most testing cases,
it should be suitable for large datasets, more complex genomes and
even new technologies. Section 4.3.1 contains a detailed analysis
of the resource consumption and the hotspots in the application.

CHAPTER 5

MuffinInfo - NGS Information
Extractor

An earlier proof version of the software has been presented as a
poster as: Alic AS., Blanquer I. MuffinInfo: HTML5 statistics
extraction system from FastQ/Fasta/Sam files. In: F1000Research
(ISCB/ECCB ’15). 2015. DOI: 10.7490/f1000research.1110049.1

Part of this chapter has been published as: Alic AS.,
Blanquer I. ”MuffinInfo: HTML5-based statistics extractor from Next
Generation Sequencing data”. In: Journal of Computational Biology
(In Press). 2016

121

In this chapter we introduce MuffinInfo, a HTML5 information
extraction tool from NGS data. One of the first reason for de-
veloping this tool is that many NGS analysis applications (like
assembly, error correction, variant calling etc.) depend on pro-
grams that are not capable to determine the best parameters by
themselves. Guidelines may exist to help the user to select a suit-
able execution configuration for a NGS analysis application, but
the deep knowledge of the sequencing data characteristics can help
the user tremendously. It is much more efficient to have some
insights into the data than to go blindly and try different combi-
nations of parameters for the applications. Information extractors
like MuffinInfo and FastQC are designed to aid the user in his/her
work with the data. Our work aims at helping the selection process
of the proper configuration for NGS analysis applications and can
also give clues about the results of different tools. For instance,
the k-mer distribution can come in handy for a user utilizing error
correctors that are based on k-mers and are unable to automati-
cally select the best k value. The problem is that on the one hand
a value too low for a k can result in a very high multiplicity for
the resulting k-mers which basically hides the errors. On the other
hand, a value too high for k can generate too many unique k-mers,
hence the errors cannot be detected and corrected.[9]

We selected HTML5 because it enables the scientist to perform
his/her work from whatever device (phone or PC) and whenever
in the world (online or offline). For the sake of simplicity, we will
refer to HTML5 as a general term which includes any combina-
tions of the underlying technologies: Javascript, CSS and HTML.
With so many existing hardware (laptops, phones, tablets; Intel
x86 and x64, ARM, SPARC) and software (Windows, Mac, Linux,
Android, iOS) options, a modern application should be able to
run on as many platforms as possible, regardless of the underlying
environment. However, despite the hardware currently being fast
enough to handle portable languages like Java and Python for in-

122CHAPTER 5. MUFFININFO - NGS INFORMATION EXTRACTOR

tensive computations, parsers and virtual machines are generally
available only for a limited number of platforms. HTML5 offers
the possibility to write once and then run on a great number of
hardware and software platforms. We also have to consider the in-
creasing penetration of internet (from TVs to smart labs) which is
an important catalyst for further development of web technologies.
this means that in the foreseeable future HTML5 will continue
to grow and be available on newly created devices (as everything
nowadays seems to be connected to the internet). Additionally,
we needed a software supporting easy addition of new statistics.
Owing to its eval command, Javascript has the ability to easily
add code (in Javascript) that an execution engine runs as part of
the main program. There is no need for libraries and a compli-
cated plug-in systems, the new code is integrated in the existing
one right away. Figure 5.1 depicts the impressive number of hard-
ware and software environments which support HTML5 and as a
result MuffinInfo.

A major advantage of Javascript (like Python and Perl) is the
availability of the source code for the user without the need of using
additional tools for building the application. This way, the code
can be easily modified when the need arises and the modifications
can be tested right away.

Finally, even though there are alternatives like FastQC, NGS
QC Toolkit [213] and PRINSEQ [214] (none in HTML5), they
have caveats as exemplified in the continuation of the paragraph.
Table 5.1 list the most important features for a statistics extraction
tool for the aforementioned programs and MuffinInfo. FastQC is
the most complete of all but its Java implementation does not
offer the same grade of freedom as HTML5 in addition to inability
to reload results of a run in the same interactive UI and user-
modifiable parameters. FASTX-Toolkit is command line only, in
Perl and targets just Illumina and Roche 454. PRINSEQ requires
Perl for local execution and the existence of a web server for remote

123

Figure 5.1: MuffinInfo can run in a multitude of environments. All
logos appearing in this picture are the property of their respective
owners. (Online version in colour.)

execution. Its standalone version doesn’t work on Windows. None
of the above support custom, user added statistics. The last two
listed tools are more than information extractors, because they can
also alter the data.

124CHAPTER 5. MUFFININFO - NGS INFORMATION EXTRACTOR

T
ab

le
5.

1:
C

om
p
ar

is
on

w
it

h
ot

h
er

si
m

il
ar

so
ft

w
ar

e

F
e
a
tu

r
e

M
u

ffi
n

In
fo

F
a
st

Q
C

N
G

S
Q

C
T

o
o
lk

it
P

R
IN

S
E

Q

T
ec

h
n

o
lo

g
y

su
p

p
o
rt

ed
A

n
y

A
n
y

Il
lu

m
in

a
/
4
5
4

A
n
y

B
a
se

/
C

o
lo

r
sp

a
ce

Y
/
N

Y
/
Y

Y
/
N

Y
/
N

N
u

m
b

er
o
f

fe
a
tu

re
s

2
1

1
9

6
1
0

F
ea

tu
re

s
R

ea
d

co
u

n
t/

m
in

/
m

a
x
/
w

it
h

N
,

N
u

m
b

a
se

s
to

-
ta

l/
A

/
C

/
G

/
T

/
N

,
Q

u
a
l

p
ro

fi
le

,
Q

u
a
l

p
er

b
a
se

,
K

-m
er

sp
ec

tr
u

m
,

%
G

C
,

R
ea

d
s

le
n

li
st

,
D

u
p

li
ca

te
s,

A
d

a
p

te
rs

,
H

o
m

o
p

o
ly

m
er

s
L

en
D

is
tr

ib

F
il
e

ty
p

e,
E

n
c,

R
ea

d
co

u
n
t,

F
il
te

re
d

se
q
,

S
eq

le
n

,
%

G
C

,
P

er
b

a
se

/
se

q
q
u

a
l,

S
eq

A
/
C

/
G

/
T

,
P

er
se

q
G

C
,

P
er

b
a
se

N
,

S
eq

s
le

n
,

D
u

p
li
ca

te
s,

O
v
er

re
p

r
se

q
s,

A
d

a
p

te
rs

,
K

-m
er

p
o
s,

P
er

ti
le

se
q

q
u

a
l

A
v
g

q
u

a
l,

%
G

C
,

R
ea

d
s

p
er

a
v
g

p
h

re
d

q
u

a
l,

R
ea

d
co

u
n
t

p
er

b
a
se

q
u

a
l

ra
n

g
es

,
B

a
se

co
m

p
o
si

ti
o
n

,
S

u
m

m
a
ry

q
u

a
l

ch
ec

k
/
fi

lt
er

in
g

R
ea

d
s

le
n

,
B

a
se

q
u

a
ls

,
G

C
,

P
o
ly

-
A

/
T

ta
il
s,

A
m

-
b

ig
u

o
u

s
b

a
se

s,
D

u
p

li
ca

te
s,

C
o
m

-
p

le
x
it

y,
T

a
g

se
q
s,

C
o
n
ta

m
in

a
ti

o
n

,
A

sm
G

U
I

Y
Y

N
Y

C
o
m

m
a
n

d
li
n

e
Y

Y
Y

N
O

n
li
n

e
Y

1
N

N
Y

2

O
ffl

in
e

Y
Y

Y
Y

C
u

st
o
m

st
a
ti

st
ic

s
Y

N
N

N
O

S
S

u
p

p
o
rt

A
n
y
3

D
es

k
to

p
D

es
k
to

p
A

n
y
4

B
u

il
t

in
H

T
M

L
5

J
a
v
a

P
er

l
P

er
l+

H
T

M
L

+
P

H
P

S
ta

ti
st

ic
s

se
tt

in
g
s

Y
N

N
N

E
x
p

o
rt

re
su

lt
s

J
S

O
N

H
T

M
L

H
T

M
L

H
T

M
L

R
eo

p
en

/
re

u
se

o
ld

re
-

su
lt

s
Y

N
N

N

1
It

re
q
u

ir
es

ju
st

a
st

a
ti

c
H

T
M

L
se

rv
er

2
It

n
ee

d
s

an
A

p
ac

h
e

se
rv

er
w

it
h

P
er

l
C

G
I

fo
r

h
o
st

in
g

3
A

s
lo

n
g

as
a

H
T

M
L

5
en

g
in

e
ex

is
ts

o
n

a
sp

ec
ifi

c
p

la
tf

o
rm

4
N

et
w

or
k

ac
ce

ss
re

q
u

ir
ed

fo
r

th
e

o
n

li
n

e
v
er

si
o
n

5.1. METHODS 125

Methods

MuffiInfo is an extensible, efficient, portable and useful NGS in-
formation extraction tool. Furthermore, by developing it we want
to demonstrate the suitability of web technologies as a viable ap-
proach for bioinformatics applications. Server-side software solu-
tions are common, but require costly communication transfers and
the maintenance of non-trivial computing and storage back-ends.
With the new features introduced in HTML5, it is now possible
to write applications that were only able to be developed in tradi-
tional languages like Java and C++. The performance of HTML5
is sometimes very close to native code, as reported in [215] where a
resource intensive video game engine was ported to HTML5. Last
but not least, the latest Javascript standard enhances the perfor-
mance by introducing optimized data structures (like efficient maps
to hold key→value pairs instead of the all-purpose, traditional Ob-
ject - the base class in Javascript).

Our software can run both online, served by a basic server (able
to serve HTML pages) or offline from the local disk. Please note
that MuffinInfo is executed on user’s machine, not on the server.
Therefore, once downloaded, MuffinInfo should work on a discon-
nected computer because all its files can be stored by the browser
in the cache. This approach promotes the privacy of the data since
no information is sent to a third party server. The user can also
download the whole software and open locally index.html.

Even though there is no reliance on a server, we fully under-
stand the need of one in some cases. As a result, we designed
MuffinInfo to run both in a browser and in command line (by us-
ing Node.js [216]) where no GUI is available. The latter mode is
useful for building higher-level scripts or pipelines that include an
information extraction step. For example, a plugin for Galaxy [217]
can be easily implemented. Furthermore, one can easily connect to

126CHAPTER 5. MUFFININFO - NGS INFORMATION EXTRACTOR

a remote machine with no GUI, perform the statistics extraction
there and then return the results which can be displayed on a local
machine. This scenario is likely to arise whenever the local ma-
chine is not powerful enough to process a large dataset, therefore
a server (which usually comes without a GUI) can do the heavy
lifting.

Our application revolves around the File API which allows us
to read local files in chunks instead of being forced to read the data
from a server. This way we avoid filling the RAM with the input
data, sparing this fast memory for storing the statistics. Secondly,
Web Workers (HTML5 threads) can speed up the computation
and avoid blocking the UI by making use of the multi-core CPUs
(now available even in phones and tablets). MuffinInfo, in its GUI
form, uses two threads: one that handles the UI and the other that
generates the statistics. In its command line form, MuffinInfo uses
just one thread at the moment.

MuffinInfo include a number of 8 statistics presented in three
forms (list of features, charts and tables):

• General information (like total numbers of nucleotides, reads
and different types of bases)

• Quality Distribution per base

• K-mers histogram

• GC percentage per reads

• List of reads length

• List of duplicates

• List of adapters

• Homopolymers length distribution

5.1. METHODS 127

A detailed description of the implemented characteristics and pro-
gram behaviour are located in the Help→Contents menu of the ap-
plication. We extract information from FASTA, FASTQ and SAM
files. The extractor supports input files without quality scores, but
the information presented is reduced.

MuffinInfo is extensible and provides a way to inject external
code to implement custom statistics not yet supported by the tool,
without having to explicitly recompile, re-install or even restart
the software. In order to support this, we divided the execution
of a statistic in four levels: initialization, loop read processing,
statistics wrap up and display of the result as list of features, table
or chart. This way, the user can control the exact behaviour of a
statistic divided into the four levels. A more detailed explanation
can be found in section 5.2.

Users might need to export the results for their inclusion in
reports or other applications. Many tools only provide an HTML
file with bitmap charts. This prevents further processing or auto-
matic comparison. MuffinInfo stores the results of a run in JSON
format (opening the door to further processing by third party ap-
plications). It can reopen a run and repopulate the tabs with the
results. Our application uses HTML, therefore the application it-
self is the report.

MuffinInfo allows the user to select a number of parameters
used in the statistics computation like the k-mer size. Once the
values are set, our software will store them in the localStorage of
the browser.

The UI presented in Figure 5.2 is in line with modern applica-
tion design, resembling a desktop application. Therefore, there is a
base window with a number of tabs, display area and a main menu
which are not separated HTML documents. Instead of multiple
HTML files connected together using links a a wizard, MuffinInfo
relies on Javascript to modify the existing main document. For
instance, when someone selects a statistics, MuffinInfo hides the

128CHAPTER 5. MUFFININFO - NGS INFORMATION EXTRACTOR

Figure 5.2: MuffinInfo main UI

current one and loads the selected one from the main memory.
This way we can offer a desktop like feeling for our application and
avoid forcing our user to use the back button.

5.2. EXTENSIBILITY 129

Extensibility

MuffinInfo accepts customs statistics built by the user. The ac-
cepted code is Javascript, therefore the user inherits all the freedom
of the language. Furthermore, a power user who knows Javascript
can access all the program’s hidden features by editing the code
on the fly. This way the application can be easily modified by ac-
cessing different globally available objects like a certain chart (to
modify its type for instance). Although we deliberately allow this,
we do not recommended this approach. The reason for this is to
avoid breaking the custom, user-side modified code with our new
versions of the software. We try to expose as much of the internal
workings of MuffinInfo as we can and find useful for adding a new
statistic. This is like a public API that won’t get modified with
a minor release. The rest of this section explains how to add a
custom statistic. One should first know that there is a publicly
available parser object which holds the temporary data which is
being updated at the second step as the data stream gets pro-
cessed. When the processing of the file is complete, another object
called statistics is made available. It is the link between the parser
and the rest of the program, therefore the user must transfer the
temporary held results from parser to statistics.

The first step deals with the declaration and initialization of
all the custom properties of parser. At this first step, the user
can access parser with all its properties and the settings (from the
Settings window). The parser is the main engine of our software
because it receives a chunk of text read from the disk and it extracts
the entries (id + read + quality) from it.

The loop entry processing (the second step) represents the method
called each time MuffinInfo extract an entry from the input file.
Normally, an user would update the statistics at this step without
declaring any new properties for the parser object. The custom

130CHAPTER 5. MUFFININFO - NGS INFORMATION EXTRACTOR

code has access to three additional new objects, namely the com-
ponents of an entry. Please bear in mind that the quality object
can be null (as it happens for fasta files where there are no quality
scores).

At the third step, the parser invokes the finalization code when
the stream reader has reached the end of the input file and all
entries have been extracted and processed. The statistics object
becomes available. This object already contains all the prede-
fined statistics like the number of bases. The user is now required
to transfer his/her custom implemented statistics attached to the
parser object to the statistics object.

The last step moves away from the parser object into the display
mechanism where the user can display the custom statistic using
three methods: a list of fields, a table or a chart (they are mutu-
ally exclusive). The list of filed involves a predeclared array called
”list”. One can push fields declared as arrays with two elements.
The first element represents the name of the field, while the second
is the value. When the user wishes to generate a table, (s)he must
use the table object containing two properties: ”columnNames”
which defines an array with all the desired columns and ”datat-
ablesInit” which is an object used to initialize a Datatables ob-
ject. The format of the latter can be obtained from the Datatables
manual. We pass the definition created by the user directly to the
Datatables constructor. This way we offer full manoeuvre space
for anyone wishing to use this type of display method.

Finally, one can create charts using the HighCharts library.
We offer a charts object which can be modified by the user at
will using the library’s documentation. Due to the inner work-
ings of MuffinInfo, we strongly advise the user against modifying
the ”chart.renderTo”, ”chart.width” and ”chart.height” options.
MuffinInfo automatically takes care of the layout and arrangement
of the chart. The custom statistics are saved in the local storage
of the browser.

5.3. RESULTS 131

Our program contains a template with a read count statistic
as an example. In case of no already defined custom method,
the extractor will automatically load the template. Please keep in
mind that ”Save” won’t add the statistic to the execution pipeline.
One must use the ”Add” button which will also save the statistic.
We also offer the possibility of prior validation of the introduced
code before adding the statistic to the execution pipeline. This
way we hope to avoid crashing the program during the overall the
execution when the user might have waited a lot of time for the
completion of the process only to be forced to start again.

Results

Table 5.2: The performance of MuffinInfo; Time in minutes;
Datasets from E. coli K-12 substr. MG1655

Dataset Tech # Bases (Mb) Time Laptop Time Tablet Time Phone

SRR350073 1 Illumina 149 1.53 10.78 4.90
SRR000868 Roche 454 59 0.50 3.25 1.20
ERR039477 Ion Torrent 36 0.31 2.10 0.81
SRR387257 PacBio 31 0.25 1.50 0.56
ERR764952 1 Oxford Nanopore 48 0.36 2.10 0.85

MuffinInfo extends and complements the capabilities offered
by FastQC. Even though FastQC is written in Java, it cannot
run on as many platforms as MuffinInfo (for instance Android and
iOS). Actually, the probability of porting an HTML5 rendering
engine (like Gecko-Firefox or WebKit-Chrome) to a new platform
is much higher than porting the Java virtual machine (considering
the expanding availability of the internet).

In contrast to the fast increase of computational power of var-
ious devices, the size of the output of a sequencing run is limited
by the size of the real genomes. Additionally, the improvement of

132CHAPTER 5. MUFFININFO - NGS INFORMATION EXTRACTOR

accuracy of sequencing will reduce the need of increasing the cov-
erage As a result, the sequencing files for the same species should
normally not increase in size by orders of magnitude given the same
sequencing technology. In conclusion, even though the computa-
tional resources limited devices (like phones) may not be able to
process large datasets using web technologies at the moments, they
should be able to do so in the very near future. Additionally, the
sequencing coverage tends to have upper limits as shown in [218].
This means that after a certain coverage there is no real gain in
the result and the money is wasted. There already are phones with
4 GB of RAM and 8 CPU cores. We intentionally selected three
mobile devices, an Intel Core i7-2630QM laptop with 16 GB RAM
running Debian 8 x64, a Samsung S6 phone with 3 GB RAM and
an ARM Exynos 7420 octa-core CPU with Android 5.1.1 and an
Asus Fonepad 7 ME372CG tablet with an Intel Atom Z2560 CPU
and just 1 GB of RAM running Android 5.0. MuffinInfo obtained
the results presented in Table 5.2 on different operating system,
devices types and hardware platforms. The tests were performed
using Google Chrome for Linux (laptop) and Android (tablet and
phone) respectively.

Conclusion

MuffinInfo presents information such as average length, base dis-
tribution, quality scores distribution, k-mers histogram and ho-
mopolymers analysis. It improves upon the existing extractors by
adding the ability to save and then reload the results obtained af-
ter a run as a navigable file (also supporting saving pictures of the
graphs), by supporting custom statistics implemented by the user
and by offering user-adjustable parameters involved in the process-
ing.

MuffinInfo comes as a proof that nowadays it is possible to run

5.4. CONCLUSION 133

bioinformatics software on a wide range of environments by using
plain HTML5. As a result, MuffinInfo can be executed:

• online, served from a server or offline from the local disk

• with a graphical user interface or command line on an exe-
cution environment like Node.js

• on any operating system supporting a HTML5 browser (Win-
dows, Linux, Mac OS X, Android, iOS, Windows Mobile,
Blackberry OS etc.)

• on any hardware platform (HTML5 is a high level language,
it is dependent upon the underlying execution platform which
is hardware specific)

• in a browser/execution environment or as a standalone (thanks
to project Electron)

Our software is being updated on a regular basis. There are many
more statistics that can be added by the users and we plan to
stimulate the sharing of new 3rd party statistics in the future.
MuffinInfo is aimed at becoming a first-step tool for many different
projects using Next/Third Generation Sequencing data like variant
calling, error correction, genome assembly etc. The main goals for
future releases are: performance improvement, better support for
adding custom statistics, more default statistics, improved mobile
GUI for small screens and multiple statistics under the same tab.

CHAPTER 6

Conclusion

134 CHAPTER 6. CONCLUSION

NGS has become an important technology, with a great range of
application from cancer detection to stem cell analysis. It re-
placed the microarrays as the favourite technology for decipher-
ing the DNA and RNA code. In order to tackle different bio-
logical problems, bioinformatics tools were developed for various
problems. From the old Smith-Waterman alignment algorithm to
genome assemblers (like Velvet and Newbler), aligners (BWA and
Bowtie2), error correctors (Coral and Blue), information extractors
(FastQC and NGS QC Toolkit), genome and alignment visualiz-
ers (IGV[232] and Artemis[233]), etc., these all are proofs of the
impact NGS has on science.

This thesis has three main objectives which are built one on the
top of the other. We discuss each one of them in the next three
paragraphs.

As demonstrated in chapter 2, there is a lot of interest in error
correction. We found 50 methods after an exhaustive search for
the available software in the literature. This study helps us under-
stand the domain, as we are also putting an accent on the actual
sequencing technology. It shines some light over the weak points
that remain to be tackled. Because of its target (the principles
of sequencing) and its relation to error correction (normally the
first step and the correctors are evaluated using assemblers), the
review from chapter 2 represents the theoretical introduction and
foundation for the whole thesis. The necessity of a review in the
field is reinforced by many requests and reads of our paper just one
week after publication. We conclude that there is room for further
improvement especially on the biological aspects of the correction.
Here, we refer to concepts from biology like ploidy, heterozygosity
and repetitive regions not the more computer science oriented con-
cepts like the memory consumption, genome representation on two
bits per base and multi-core support. Now that the error correc-
tion field has been sufficiently explored, we are at a level where the
newer methods improve over the existing ones. A not so favourable

135

trend is the non-existence of mature methods that are constantly
enriched with new features, as in other related fields like assembly
(Mira [234]) or short sequences alignment (BWA [204]).

Usually, the information known ”a priori” about a newly se-
quenced organism is limited. Even re-sequencing the same organ-
ism can result in an unpredictable output. In this thesis, we intro-
duce MuffinInfo, a FastQ/Fasta/SAM information extractor im-
plemented in HTML5 capable of offering insights into NGS data.
It presents information such as average length, base distribution,
quality scores distribution, k-mers histogram and homopolymers
analysis. MuffinInfo improves upon the existing extractors by
adding the ability to save and then reload the results obtained af-
ter a run as a navigable file (also supporting saving pictures of the
graphs), by supporting custom statistics implemented by the user
and by offering user-adjustable parameters involved in the process-
ing. At the moment, the extractor works with all base space tech-
nologies such as Illumina, Roche, Ion Torrent, Pacific Biosciences
and Oxford Nanopore. With the use of HTML5, our software
demonstrates the readiness of web technologies for mild-intensive
tasks encountered in bioinformatics. The utility of MuffinInfo is
demonstrated by its acceptance at a prestigious conference (ISMB
/ ECCB) and then its publication in a first quarter‘ journal (Jour-
nal of Computational Biology).

Error correction is typically the first step of any application
targeting NGS data. The majority of available stand-alone er-
ror correction solutions can only detect and correct mismatches.
Therefore, these solutions only support correcting reads generated
by Illumina sequencers. Several solutions support insertions and
deletions (indels) and are capable of working with multiple tech-
nologies. However, they are limited by correction performance and
resources consumption. This thesis presents MuffinEC, an indel-
aware multi-technology correction method for NGS data. It uses
a greedy approach to create groups of reads and subsequently cor-

136 CHAPTER 6. CONCLUSION

rects them using their consensus. MuffinEC surpasses existing solu-
tions by offering better correction ratios for multiple technologies.
We tested it with different approaches: percentage of corrected
errors in the form of gain specificity and sensitivity, percentage
of short alignment after correction compared with the percentage
before, assembly metrics, unknown bases count before and after
correction. MuffinEC wins in all tests against similar, current soft-
ware. The error correction method also exploits parallel processing
via OpenMP and uses less computational resources than similar
programs, thereby being capable of handling larger datasets on
the same hardware setup. Additionally, we cover the evolution
of sequencing technologies too by tackling all types of errors and
allowing input from multiple sequencing technologies.

As the sequencing market share suggests, Illumina has become
an important player in the industry. Our review strongly supports
this claim based upon the general support for this technology, with
almost all programs supporting either only Illumina or Illumina
plus additional sequencing technologies. Pacific Biosciences and
Oxford Nanopore technologies with their (very) long reads gave
birth to a new trend. This trend requires the evolution of error
correction techniques to support longer reads and to deal with
the high error rate these technologies currently have. Overall we
can see improvements in the area of error correction for different
technologies as the newest methods are both resource efficient and
offer a very good correction. A reliable and structured way to
measure the accuracy is also very important.

6.1. PUBLISHED RESULTS 137

Published results

This thesis resulted in multiple publications in high impact journals
and at conferences:

1. Alic AS, Tomas A, Medina I, Blanquer I. MuffinEc: Error
correction for de Novo assembly via greedy partitioning and
sequence alignment. Information Sciences (JCR 2014 COM-
PUTER SCIENCE, INFORMATION SYSTEMS 6/139; Im-
pact factor: 4.038). 2016 Feb 1;329:206-19.
DOI: 10.1016/j.ins.2015.09.012

2. Alic AS, Ruzafa D, Dopazo J, Blanquer I. Objective review of
de novo stand-alone error correction methods for NGS data.
2016 Jan 11; WIREs Comput Mol Sci (JCR 2014 MATH-
EMATICAL & COMPUTATIONAL BIOLOGY 1/57; JCR
2014 CHEMISTRY, MULTIDISCIPLINARY 11/157; Impact
factor: 11.885). DOI: 10.1002/wcms.1239

3. Alic AS, Blanquer I. MuffinInfo: HTML5-based statistics ex-
tractor from Next Generation Sequencing data. Journal of
Computational Biology (In Press). 2016

4. Alic A, Blanquer I. MuffinInfo: HTML5 statistics extraction
system from FastQ/Fasta/Sam files. 23rd Annual Interna-
tional Conference on Intelligent Systems for Molecular Bi-
ology and the 14th European Conference on Computational
Biology. 2015. DOI: 10.7490/f1000research.1110049.1

5. Alic A, Tomás A, Salavert J, Medina I, Blanquer I. Robust
Error Correction for De Novo Assembly via Spectral Parti-
tioning and Sequence Alignment. 2nd International Work-
Conference on Bioinformatics and Biomedical Engineering
(IWBBIO). 2014. 1040-1048

138 CHAPTER 6. CONCLUSION

Software

We are strong supporters of open source software. Our work is
available free of charge, for academic and industry use, at the fol-
lowing locations:

1. MuffinEC: http://sourceforge.net/projects/muffinec/

2. MuffinInfo: http://sourceforge.net/projects/muffininfo/

http://sourceforge.net/projects/muffinec/
http://sourceforge.net/projects/muffininfo/

APPENDIX A

Error correction in real projects

139

The software presented so far was used in many research projects.
This section is the extension of the motivation, where we present
instances where scientist successfully employed error correctors.
Hopefully, this section opens the door for further usage in com-
parable or new cases. We concerted our efforts to find real life
biological projects where the utility of correctors is demonstrated
by practical use. In contradiction to what we found in the arti-
cles accompanying each corrector, some real life projects use the
correctors for additional applications like mithocondrial genome
correction[139] and RNA-seq[140, 141, 142, 143]

Table A.1: Work using the correctors included in the current review

Year Study Description Where

Quake/Illumina

2012 Exomes comparison of C. carpio & D.
rerio

[144]

2012 GAGE, evaluation of genome assem-
blies/algorithms

[78]

2013 Salinarchaeum HArcht-Bsk1T genome [145]
2013 L. arenae draft genome [146]
2013 Citrus sinensis draft genome [147]
2013 Genetic variants in C. sinensis [148]
2013 Genome-wide mutations in diploid

yeast
[149]

2014 Results of correction of heterozygous
NGS

[150]

2014 O. sativa de novo assemblies, novel
gene space aus/indica

[151]

2014 Study of hydrocarbons production from
fatty acids in Cyanobacteria

[152]

140APPENDIX A. ERROR CORRECTION IN REAL PROJECTS

2014 Genetic diversity in P. pacificus from
population-scale resequencing

[153]

2014 Genetic parameters estimation and re-
sponse to selection in breeding program
of M. Galloprovincialis

[154]

2014 Metagenomic characterization of C. de-
fluviicoccus tetraformis

[155]

2014 Prediction of antibiotic resistance by
gene expression profiles

[156]

2014 Methicillin resistance in S. aureus [157]
2014 De novo creation of repeat libraries

from whole-genome NGS reads
[158]

2014 Aerobic fungal degradation of cellulose [159]
2014 B. tryoni draft genome [160]
2014 Genome reorganization [161]
2015 P. vulgata/P. lamarcki draft genomes [162]
2015 The domestic dromedary genome [163]
2015 The brown kiwi genome [164]
2015 Comparative Genomics of S. pyogenes

M1
[165]

2015 Approach for Identification and Char-
acterization of Foodborne Pathogens

[166]

2015 P. glaucus complete mitochondrial
genome

[139]

2015 Mechanisms for Speciation and Cater-
pillar Chemical Defense

[167]

BayesHammer/Illumina
Year Study Description Where

2014 GABenchToB, assembly benchmark for
bacteria genomes

[168]

2014 C. burnetii genome [169]
2014 P. atrosepticum genome [170]

141

2014 Hidden diversity in honey bee gut sym-
bionts

[171]

2014 S. lemnae draft genome [172]
2015 Discovering Natural Products from

Cyanobacteria
[173]

2015 Characterize the metabolism of M.
thiooxydans L4 in the marine environ-
ment

[174]

2015 Utilization of alginate and other algal
polysaccharides by marine Alteromonas
macleodii ecotypes

[175]

2015 Genome-Wide Re-distribution in Ac-
tive Yeast Genes

[176]

2015 Study of the metabolome of M. pro-
ducens JHB

[177]

Reptile/Illumina

2014 Decrypting cryptobiosis-analyzing an-
hydrobiosis using transcriptome se-
quencing

[140]

2015 SNP genotyping and population ge-
nomics from expressed sequences

[178]

HSHREC/Illumina,454

2014 Decrypting cryptobiosis-analyzing an-
hydrobiosis using transcriptome se-
quencing

[140]

BLESS/Illumina

2014 Transcriptome, sequence polymor-
phism, and natural selection in P.
eremicus

[141]

142APPENDIX A. ERROR CORRECTION IN REAL PROJECTS

Blue/Illumina

2014 S. scitamineum genome [179]

Coral/Ion Torrent(a), Illumina(b), 454(c)

2014 GABenchToB, assembly benchmark for
bacteria genomes(a)

[168]

2014 Global gene expression in the exocarp
of developing P. avium L.(b)

[142]

2015 Comparative genomics/gene expression
applied on P. xuthus and P. machaon
genomes(c)

[180]

DecGPU/Illumina

2013 Genomic analysis of S. dulcamara [181]

Echo/Illumina

2012 Pipeline for small RNA-seq data anal-
ysis

[143]

2014 Results of correction of heterozygous
NGS

[150]

2014 Assembly/annotation for T. pratense [182]

Freclu/Illumina

2011 MicroRNA-mediated gene regulation
role

[183]

2011 Purification of monocyte subsets from
H. sapiens blood and their transcrip-
tomes analysis

[184]

2013 Identification of functional cis-
regulatory elements

[185]

Hector/454

A.1. RECOMMENDATIONS 143

2015 Triple-negative breast cancers in pa-
tients with no BRCA1 or BRCA2 mu-
tation

[186]

Lordec/PacBio,Illumina

2015 De novo tandem repeat detection using
short&long reads

[187]

LSC/PacBio,Illumina

2014 D. officinale genome and genes analysis [188]
2015 Detect fusion genes, determine fusion

sites and identify and quantify fusion
isoforms

[189]

2015 S. miltiorrhiza transcriptome and tan-
shinone biosynthesis insights

[189]

proovread/PacBio,Illumina

2015 Characterization of venom toxin-
encoding genes in E. coloratus

[190]

QuorUM/Illumina

2014 P. taeda reference genome [3]

RECOUNT/Illumina

2012 Brain tumor glioblastoma-derived neu-
ral stem cells transcriptome analysis

[191]

Recommendations

Quake[9] is the most used corrector as it targets the sequenc-
ing technology with the largest market share. Furthermore, as we

144APPENDIX A. ERROR CORRECTION IN REAL PROJECTS

shall see in section ”Testing”, it has a good level of correction. As a
general rule, Illumina data should be handled by Illumina-only cor-
rectors since they should be better tuned for the technology than
their general counterparts. There are exceptions like Coral[15]
that is used for both Illumina and 454. The same software is uti-
lized with Ion Torrent for which there is a generic support. Gen-
erally, the software supporting all types of errors can be used with
unsupported technologies, but the user must understand that the
result might not be what expected. In the above case, Ion Tor-
rent is somewhat similar to 454, hence Coral works. In the case
of datasets from multiple technologies, one can use more than one
corrector for each technology as Wang et al. did[140]. Another pos-
sibility is to use a cross-corrector like Blue, LorDEC, proovread
and LSC where instead of stacking up all the reads from multiple
technologies, one can use one technology to correct the other. The
correctors are used in many types of projects with the obviously
most targeted being assembly. Variant calling and different tran-
scriptome studies are also very common in the existing projects.
A very important fact emerging from table A.1 is the range of
genomes data tackled with the stand-alone correctors. The size
and complexity ranges from bacteria (S. pyogenes) to mammals
(Dromedary) and plants (Loblolly Pine).

APPENDIX B

External Testing of Error
Correctors

146APPENDIX B. EXTERNAL TESTINGOF ERROR CORRECTORS

T
ab

le
B

.1
:

T
es

ti
n
g

re
su

lt
fr

om
b

en
ch

m
ar

k
s

an
d

or
ig

in
al

p
ap

er
s;

A
p

p
-

th
e

n
am

e
of

th
e

co
rr

ec
to

r,
M

e
m

/R
t/

G
a
in

-
m

em
or

y
in

G
B

/r
u
n
ti

m
e

in
m

in
s

(n
u
m

of
th

re
ad

s
in

p
ar

en
th

es
es

fo
r

R
t

O
)/

ga
in

as
p

er
ce

n
ta

ge
re

p
or

te
d

in
th

e
or

ig
in

al
p
ap

er
(r

ep
re

se
n
te

d
b
y

O
)

an
d

in
th

e
su

rv
ey

b
y

[1
]

(r
ep

re
se

n
te

d
b
y

S
),

G
a
in

R
-

ga
in

(p
er

ce
n
ta

ge
)

re
p

or
te

d
b
y

[2
],

#
R

d
s

-
n
u
m

b
er

of
re

ad
s,

#
B

s
-

n
u
m

b
er

of
b
as

es
;

T
h
e

p
ro

gr
am

s
th

at
d
id

n
’t

ru
n

su
cc

es
sf

u
ll
y

ar
e

m
ar

ke
t

b
y

”-
*”

.

D
a
ta

se
t

G
e
n

o
m

e
T

e
c
h

#
R

d
s

B
s

A
p

p
M

e
m O

M
e
m S

R
t

O
R

t
S

G
a
in O

G
a
in S

G
a
in R

S
R

X
0
0
0
4
2
9

E
.

co
li

3
6

Il
lu

m
1
0
.4

7
4
9
.4

S
H

R
E

C
-

-
-

-
-

-
0
.7

5
H

S
H

R
E

C
-

1
4
.3

-
1
5
3
.2

3
-

-2
.8

8
6

0
.9

8
9

H
iT

E
C

-
1
3

-
1
4
3
.1

3
0
.8

6
1

0
.8

4
6

0
.9

5
2

D
ec

G
P

U
-

-
-

-
-

-
0
.7

7
2

C
o
ra

l
-

7
.5

-
3
6
.1

9
-

0
.5

7
9

0
.8

5
7

E
C

H
O

-
-*

-
-*

-
-*

0
.7

1
5

H
a
m

m
er

-
-

-
-

-
-

0
.9

4
4

Q
u

a
k
e

-
4
.1

-
3
8
.8

8
-

0
.7

8
4

-*
R

E
D

E
E

M
(i

)
9

-
1
2
0
(1

)
-

-
-

0
.9

2
6

R
A

C
E

R
(d

)
1
.1

-
1
5
.7

(1
)

-
0
.9

0
8

-
-

T
ro

w
el

3
.5

-
2
.9

(3
2
)

-
0
.7

6
5

-
-

C
lo

u
d

R
S

-
-

-
-

0
.2

0
7

-
-

R
ep

ti
le

(e
)

1
.1

3
.7

4
7
.4

d
1
4
9
.4

d
2
(1

)
2
3
.3

2
0
.7

5
7
d

1
0
.8

0
2
d

2
0
.9

3
3

-0
.0

4
7

P
a
r.

R
ep

ti
le

(e
)

-
-

0
.1

8
d

1
1
.3

8
d

2
(5

1
2
)

-
0
.7

5
7
d

1
0
.8

0
2
d

2
-

-

S
R

R
0
0
1
6
6
5

1
(j

)
E

.
co

li
K

1
2

M
G

1
6
5
5

Il
lu

m
.

1
0
.4

7
4
9
.4

S
H

R
E

C
-

-
-

-
-

-
0
.8

2
2

H
S

H
R

E
C

-
-

-
-

-
-

0
.9

8
9

H
iT

E
C

-
-

-
-

0
.8

5
7

-
0
.7

9
5

D
ec

G
P

U
(b

)
-

-
1
2
.3

1
(4

)
-

-
-

0
.9

9
9

147
T

a
b

le
B

.1
C

o
n
ti

n
u

ed
fr

o
m

p
re

v
io

u
s

p
a
g
e

D
a
ta

se
t

G
e
n

o
m

e
T

e
c
h

#
R

d
s

B
s

A
p

p
M

e
m O

M
e
m S

R
t

O
R

t
S

G
a
in O

G
a
in S

G
a
in R

C
o
ra

l
-

-
-

-
-

-
0
.9

9
9

E
C

H
O

-
-

-
-

-
-

0
.9

9
9

H
a
m

m
er

-
-

-
-

-
-

0
.6

6
8

R
E

D
E

E
M

-
-

-
-

-
-

0
.2

3
1

B
L

E
S

S
0
.0

1
-

2
3
(1

)
-

0
.9

6
7

-
-

Q
a
m

a
r(

f)
3
.5

-
3
8
.8

5
(-)

-
0
.9

1
3

-
-

R
ep

ti
le

(e
)

0
.8

4
-

2
1
d

1
7
3
.8

d
2
(1

)
-

0
.6

5
2
d

1
0
.7

0
9
d

2
-

0
.9

9
8

F
A

D
E

-
-

0
.5

1
(F

P
G

A
)

-
0
.9

2
3

-
-

S
R

R
0
0
6
3
3
2

A
ci

n
et

o
b

.
A

D
P

1
Il

lu
m

.
1
8
.1

3
6
5
2
.7

S
H

R
E

C
-

-
-

-
-

-
0
.8

9
H

iT
E

C
-

-
-

-
-

-
0
.3

2
4

D
ec

G
P

U
-

-
-

-
-

-
0
.5

4
8

C
o
ra

l
-

-
-

-
-

-
0
.8

1
6

E
C

H
O

-
-

-
-

-
-

0
.7

1
1

H
a
m

m
er

-
-

-
-

-
-

0
.9

8
4

R
ep

ti
le

(e
)

2
.2

-
9
9
.6

d
1
(1

)
-

0
.6

3
2
d

1
-

0
.9

8
2

Q
u

a
k
e

-
-

-
-

-
-

0
.9

2
6

C
U

D
A

-
E

C
-

-
-

-
-

-
0
.9

5
3

R
E

D
E

E
M

-
-

-
-

-
-

0
.5

9
5

C
lo

u
d

R
S

-
-

-
-

0
.2

6
5

-
-

N
C

0
0
5
9
6
6

A
ci

n
et

o
b

.
A

D
P

1
Il

lu
m

.
4

1
4
4

S
H

R
E

C
-

-
-

-
-

-
0
.9

9
7

H
S

H
R

E
C

-
-

-
-

-
-

0
.9

9
5

H
iT

E
C

-
-

-
-

-
-

0
.9

9
4

D
ec

G
P

U
-

-
-

-
-

-
0
.9

9
5

C
o
ra

l
-

-
-

-
-

-
0
.9

9
7

E
C

H
O

-
-

-
-

-
-

0
.9

9
3

H
a
m

m
er

-
-

-
-

-
-

0
.9

9
7

R
ep

ti
le

(e
)

0
.6

6
-

1
5
.6

d
1
(1

)
-

0
.5

9
9
d

1
-

0
.9

9
5

Q
u

a
k
e

-
-

-
-

-
-

0
.9

9
3

148APPENDIX B. EXTERNAL TESTINGOF ERROR CORRECTORS

T
a
b

le
B

.1
C

o
n
ti

n
u

ed
fr

o
m

p
re

v
io

u
s

p
a
g
e

D
a
ta

se
t

G
e
n

o
m

e
T

e
c
h

#
R

d
s

B
s

A
p

p
M

e
m O

M
e
m S

R
t

O
R

t
S

G
a
in O

G
a
in S

G
a
in R

C
U

D
A

-
E

C
-

-
-

-
-

-
0
.9

9
5

E
R

A
0
0
0
2
0
6

E
.

co
li

K
1
2

M
G

1
6
5
5

Il
lu

m
.

1
4
.2

1
2
8
0
0

H
S

H
R

E
C

-
2
9
.9

-
7
7
9
.1

5
-

-1
.6

0
6

-
R

ep
ti

le
-

1
9
.1

-
2
2
5
.4

3
-

0
.9

1
-

H
iT

E
C

-
9
.8

-
6
8
3
.8

7
0
.8

7
4

0
.9

4
9

-
C

o
ra

l
-

3
0

-
4
5
0
.2

9
-

0
.1

1
2

-

B
lu

e(
a
)

1
.6

+
0
.4

-
9
.2

+
1
4
.4

(8
)

-
-

-
-

S
R

R
0
2
2
9
1
8

E
.

co
li

4
7

Il
lu

m
.

7
.2

6
7
7
.2

H
S

H
R

E
C

-
1
2
.6

-
7
4
.1

3
-

-0
.3

1
6
B

-0
.2

6
9
R

-

R
ep

ti
le

(e
)

1
.9

3
.4

5
6
.4

d
1
(1

)
7
1
.6

4
0
.3

8
1
d

1
0
.8

5
2
B

0
.7

9
1
R

-

Q
u

a
k
e

-
2

-
8
0
.4

3
-

0
.3

1
3
B

0
.2

8
5
R

-

H
iT

E
C

-
6
.2

-
5
9
.1

9
-

0
.9

2
9
B

0
.9

1
2
R

-

E
C

H
O

-
1
6

-
3
0
4
.2

1
-

0
.9

0
7
B

0
.8

9
7
R

-

C
o
ra

l
2
.6

7
.7

8
.1

2
(4

)
8
.3

2
0
.9

7
4

0
.0

0
2
B

0
.0

0
2
R

-

R
A

C
E

R
(d

)
1
.5

-
1
3
.6

5
(1

)
-

0
.8

2
6

-
-

T
ro

w
el

4
.5

-
3
.7

(3
2
)

-
0
.4

4
7

-
-

S
R

R
0
0
0
8
6
8

E
.

co
li

U
T

I8
9

4
5
4

0
.4

1
1
8
.2

F
io

n
a

1
-

2
.5

(8
)

-
0
.7

6
8

-
-

H
ec

to
r(

c)
-

-
3
(2

)
-

0
.8

8
2

-
-

H
S

H
R

E
C

(h
)

-
9
.9

-
1
6
.7

2
-

0
.2

9
3
E

1
0
.2

2
4
E

2
0
.4

7
0
E

3
0
.4

7
3
E

4
0
.4

5
1
E

5

-

C
o
ra

l(
h

)
1
.8

2
.4

5
.3

(4
)

2
.5

7
0
.8

5
7

0
.4

9
7
E

1
0
.4

2
5
E

2
0
.6

9
8
E

3
0
.7

0
2
E

4
0
.7

3
4
E

5

-

149
T

a
b

le
B

.1
C

o
n
ti

n
u

ed
fr

o
m

p
re

v
io

u
s

p
a
g
e

D
a
ta

se
t

G
e
n

o
m

e
T

e
c
h

#
R

d
s

B
s

A
p

p
M

e
m O

M
e
m S

R
t

O
R

t
S

G
a
in O

G
a
in S

G
a
in R

S
R

X
1
0
0
8
8
5

S
.

ce
re

vi
sa

e
Il

lu
m

.
2
6
.0

3
4
0
0
0

H
S

H
R

E
C

-
3
0
.1

-
1
0
2
7
.4

8
-

-2
.4

9
7

-
R

ep
ti

le
-

4
.1

2
-

1
6
5
.8

8
-

0
.2

2
4

-
C

o
ra

l
-

3
4
.5

-
5
4
4
.3

1
-

0
.0

6
7

-
R

A
C

E
R

(d
)

3
.2

-
1
9
8
.3

1
(1

)
-

0
.1

4
6

-
-

C
lo

u
d

R
S

-
-

-
-

0
.7

7
9

-
-

C
h
u

n
g

et
a

l.
-

-
1
5
3
.4

8
(8

0
)

-
-

-
-

S
R

R
0
2
2
8
6
6

S
.

a
u

re
u

s
U

S
A

3
0
0

Il
lu

m
.

1
2
.7

7
1
9
0
0

H
S

H
R

E
C

-
3
0
.2

-
8
1
3
.6

5
-

-4
.2

4
-

R
ep

ti
le

-
1
3
.1

-
2
9
5
.9

4
-

0
.6

1
3

-
C

o
ra

l
4

4
0

8
0
(4

)
2
1
0
.1

7
0
.9

7
4

0
.0

2
5

-
R

A
C

E
R

(d
)

2
.1

-
8
1
.6

8
(1

)
-

0
.4

7
-

-
T

ro
w

el
5
.7

-
6
.4

(3
2
)

-
0
.4

4
7

-
-

C
lo

u
d

R
S

-
-

-
-

0
.3

3
5

-
-

C
h
u

n
g

et
a

l.
-

-
6
3
.4

5
(8

0
)

-
-

-
-

S
R

X
0
2
3
4
5
2

S
R

X
0
0
6
1
5
2

S
R

X
0
0
6
1
5
1

D
.

m
el

a
n

og
a

st
er

Il
lu

m
.

1
8
.9

6
9
.4

6
2
0
.8

3
6
0
0

1
4
0
0

1
9
0
0

H
S

H
R

E
C

-
3
0
.3

-
2
5
6
2
.8

8
-

-5
.8

5
-

R
ep

ti
le

-
2
4

-
5
3
2
.7

6
-

0
.6

6
7

-
Q

u
a
k
e

-
1
2
.1

-
2
2
2
.3

5
-

-0
.1

2
6

-
C

o
ra

l
-

3
0

-
3
7
3
.1

9
-

0
.4

4
9

-
R

A
C

E
R

(d
)

3
9
.4

-
5
0
1
.9

5
(1

)
-

0
.5

7
-

-

P
a
r.

R
ep

ti
le

(e
)

-
-

2
.8

2
d

1
4
1
2
.9

8
d

2
(5

1
2
)

-
-

-
-

E
R

R
0
3
9
4
7
7

E
.

co
li

D
H

1
0
B

Io
n

0
.3

9
3
6

F
io

n
a

1
-

3
.1

(8
)

-
0
.9

0
5

-
-

H
S

H
R

E
C

(g
)

-
1
0
.2

1
-

8
.7

2
-

0
.3

9
9
T

1
0
.4

5
0
T

2
-

C
o
ra

l(
g
)

-
2
.2

4
-

1
.1

3
-

0
.5

1
5
T

1
0
.6

0
4
T

2
-

150APPENDIX B. EXTERNAL TESTINGOF ERROR CORRECTORS

T
a
b

le
B

.1
C

o
n
ti

n
u

ed
fr

o
m

p
re

v
io

u
s

p
a
g
e

D
a
ta

se
t

G
e
n

o
m

e
T

e
c
h

#
R

d
s

B
s

A
p

p
M

e
m O

M
e
m S

R
t

O
R

t
S

G
a
in O

G
a
in S

G
a
in R

(a
)

R
es

o
u

rc
es

fo
r

p
re

p
a
ri

n
g

th
e

d
a
ta

se
t

a
n

d
co

rr
ec

ti
n

g
th

e
d

a
ta

;

(b
)

T
h

e
re

su
lt

fo
r

1
x
G

P
U

ex
ec

u
ti

o
n

,
fo

r
m

o
re

th
re

a
d

s
a
n

d
G

P
U

s
p

le
a
se

re
fe

r
to

[1
0
3
];

(c
)

A
p

p
ro

x
im

a
te

v
a
lu

es
fo

r
ru

n
ti

m
e

ex
tr

a
ct

ed
fr

o
m

th
e

ch
a
rt

in
th

e
p

a
p

er
fo

r
th

e
o
ri

g
in

a
l

re
su

lt
s;

(d
)

R
es

u
lt

s
fo

r
th

e
d

a
ta

se
ts

fi
lt

er
ed

u
si

n
g

B
W

A
;

(e
)

R
u

n
ti

m
e

fo
r

H
a
m

m
in

g
d

is
t

(1
a
n
d

2
)

b
et

w
ee

n
tw

o
k
-m

er
s;

(f
)

G
a
in

ca
lc

u
la

te
d

b
y

u
s

u
si

n
g

th
e

v
a
lu

es
fo

r
T

P
,

F
P

,
F

N
g
iv

en
b
y

th
e

a
u

th
o
rs

a
n

d
th

e
fo

rm
u

la
in

[1
];

(g
)

P
ro

fi
le

s:
T

1
-

W
it

h
a
ll

m
a
p

p
ed

re
a
d

s;
T

2
-

ex
cl

u
d

in
g

re
a
d

s
w

it
h

m
o
re

th
a
n

1
0

er
ro

rs
;

(h
)

D
iff

er
en

t
p

ro
fi

le
s

fo
r

th
e

a
li
g
n

er
a
n

d
a

k
-m

er
le

n
g
th

o
f

1
0
;

T
h

e
p

a
ra

m
et

er
s

se
t

fo
r

E
(1

-5
)

ca
n

b
e

fo
u

n
d

in
[1

];

(i
)

D
a
ta

se
t

n
o
t

ex
p

li
ci

tl
y

p
in

p
o
in

te
d

,
w

e
in

fe
rr

ed
th

e
v
a
lu

e;

(j
)

S
R

R
0
0
1
6
6
5

1
is

th
e

sa
m

e
a
s

S
R

X
0
0
0
4
2
9
,

b
u

t
o
n

ly
th

e
fo

rw
a
rd

d
ir

ec
ti

o
n

is
u

se
d

;

APPENDIX C

Testing Methods for Correctors

151
T

ab
le

C
.1

:
T

es
ti

n
g

m
et

h
o
d
s

al
go

ri
th

m
s;

R
C

re
p
re

se
n
ts

th
e

re
so

u
rc

e
co

n
su

m
p
ti

on

N
a
m

e
T

e
st

R
e
a
l

D
a
ta

T
e
st

S
im

D
a
ta

T
y
p

e
T

e
st

G
e
n

o
m

e
s

P
r
o
g
r
a
m

s
T

e
st

e
d

A
g
a
in

st

M
e
th

o
d

o
f

T
e
st

in
g

R
C

C
U

D
A

-
E

C
y

y
S

.
ce

rv
is

a
e,

E
.

co
li

,
H

.
in

fl
u

en
za

e,
S

.
a

u
re

u
s,

H
.

a
ci

n
o

n
y
ch

is

S
A

P
(E

U
L

E
R

-
S

R
)

S
p

ec
ifi

ci
ty

,
S

en
si

ti
v
it

y,
1
-2

er
ro

r
/

re
a
d

C
o
rr

ec
te

d
/

T
ri

m
m

ed
/

A
cc

u
ra

cy
y

R
ep

ti
le

y
n

E
.

co
li

,
A

ci
n

et
o
b

a
ct

er
A

D
P

1
S

H
R

E
C

S
p

ec
ifi

ci
ty

,
S

en
si

ti
v
it

y,
G

a
in

y

Q
u

a
k
e

y
y

E
.

co
li

,
H

.
sa

p
ie

n
s,

M
.

ro
tu

n
d

a
ta

S
o
a
p

d
eN

o
v
o
,

S
H

R
E

C
,

E
u

le
r

A
cc

u
ra

cy
,

A
ss

em
b

ly
(V

el
v
et

,
S

o
a
p

d
en

-
o
v
o
),

S
N

P
ca

ll
in

g
y

E
D

A
R

y
y

H
u

m
a
n

b
a
c,

P
.

gi
n

gi
-

va
li

s,
S

.
a

u
re

u
s

S
A

P
(E

u
le

r-
S

R
)

E
rr

o
r

ra
te

,
A

ss
em

b
ly

(V
el

v
et

)
n

H
a
m

m
er

y
n

E
.

co
li

Q
u

a
k
e,

H
iT

E
C

P
o
si

ti
v
e

P
re

d
ic

ti
v
e

V
a
lu

e(
k
-m

er
s)

,
S

en
-

si
ti

v
it

y
(k

-m
er

s)
,

C
lu

st
er

o
f

k
-m

er
s

y

R
E

D
E

E
M

y
y

N
.

m
en

in
gi

ti
d

is
,

M
a
iz

e,
E

.
co

li
S

H
R

E
C

,
R

ep
-

ti
le

S
p

ec
ifi

ci
ty

,
S

en
si

ti
v
it

y,
G

a
in

,
tr

u
e

er
r

d
is

t
(t

IE
D

),
w

ro
n

g
Il

l
er

r
d

is
t

(w
IE

D
),

tr
u

e
u

n
if

o
rm

er
r

d
is

t
(t

U
E

D
),

w
ro

n
g

u
n

if
o
rm

er
r

d
is

t
(w

U
E

D

y

D
ec

G
P

U
y

y
E

.
co

li
,

D
.

m
el

a
n

og
a

st
er

,
S

.
a

u
re

u
s,

M
.

a
ga

la
ct

ia
e

h
S

H
R

E
C

S
en

si
ti

v
it

y,
sp

ec
ifi

ci
ty

,
B

y
-b

a
se

er
ro

r
ra

te
,

co
rr

ec
t

co
rr

ec
ti

o
n

ra
te

,
in

co
rr

ec
t

co
rr

ec
ti

o
n

ra
te

,
a
n

d
th

e
ra

te
o
f

n
ew

ly
in

tr
o
d

u
ce

d
er

ro
rs

,
A

ss
em

b
ly

(V
el

v
et

,
A

b
y
ss

)

y

C
U

D
A

-
E

C
2

y
n

M
.

a
ga

la
ct

ia
e,

S
.

a
u

-
re

u
s,

E
.

co
li

E
u

le
r-

S
R

,
C

U
D

A
-E

C
F

P
/
F

N
fo

r
tr

im
m

in
g
,

A
ss

em
b

ly
(E

d
en

a
)

y

152APPENDIX C. TESTING METHODS FOR CORRECTORS

T
a
b

le
C

.1
C

o
n
ti

n
u

ed
fr

o
m

p
re

v
io

u
s

p
a
g
e

N
a
m

e
T

e
st

R
e
a
l

D
a
ta

T
e
st

S
im

D
a
ta

T
y
p

e
T

e
st

G
e
n

o
m

e
s

P
r
o
g
r
a
m

s
T

e
st

e
d

A
g
a
in

st

M
e
th

o
d

o
f

T
e
st

in
g

R
C

Q
a
m

a
r

y
y

D
.

m
el

a
n

og
a

st
er

,
B

.
vu

lg
a

ri
s,

A
ci

n
e-

to
ba

ct
er

A
D

P
1

,
H

.
a

ci
n

o
n

y
ch

is
,

S
.

a
u

-
re

u
s,

E
.

co
li

,
S

.
ce

re
vi

si
a

e,
H

.
in

-
fl

u
en

za
e,

B
.

su
is

,
S

.
o

n
ei

d
en

si
s,

S
.

ep
id

er
-

m
id

is
,

W
o

lb
a

ch
ia

sp
,

C
.

bu
rn

et
ii

,
C

.
ca

vi
a

e,
C

.
je

ju
n

i,
E

.
li

to
ra

li
s,

G
.

co
ro

n
a

vi
ru

s

H
iT

E
C

A
cc

u
ra

cy
,

S
p

ec
ifi

ci
ty

,
S

en
si

ti
v
it

y,
M

a
p

p
ed

/
U

n
m

a
p

p
ed

,
Id

en
ti

ty
y

P
a
ra

ll
el

R
ep

ti
le

y
n

E
.

co
li

,
D

.
m

el
a

n
og

a
st

er
R

ep
ti

le
N

o
n

e
(O

n
ly

p
er

f)
y

B
a
y
es

H
a
m

m
ery

n
E

.
co

li
,

S
.

a
u

re
u

s
C

a
m

el
,

E
u

le
r-

S
R

,
C

o
ra

l,
H

a
m

m
er

,
Q

u
a
k
e

k
-m

er
s

co
u

n
t,

re
a
d

s
m

a
p

p
in

g
p

er
c,

A
s-

se
m

b
ly

(S
P

A
d

es
)

y

Q
u

o
rU

M
y

n
R

.
sp

h
a

re
o

id
es

,
S

.
a

u
-

re
u

s,
M

.
m

u
sc

u
lu

s
C

o
ra

l,
E

C
H

O
,

H
iT

E
C

,
Q

u
a
k
e

E
rr

o
r

co
rr

ch
im

er
ic

re
a
d

s,
P

er
ce

n
t

o
f

fa
ls

e
3
1
-m

er
s

re
m

a
in

in
g

a
n

d
tr

u
e

3
1
-

m
er

s
m

is
si

n
g
,

A
ss

em
b

ly
(e

st
im

a
ti

o
n

),
P

er
ce

n
ta

g
e

o
f
th

e
o
ri

g
in

a
l
re

a
d

s
th

a
t

a
re

p
er

fe
ct

a
ft

er
co

rr
ec

ti
o
n

a
n

d
p

er
ce

n
ta

g
e

o
f

se
q
u

en
ce

co
n
ta

in
ed

in
p

er
fe

ct
re

a
d

s,
co

m
p

a
re

d
w

it
h

th
e

o
ri

g
in

a
l

re
a
d

s

n

R
A

C
E

R
y

n
L

.
la

ct
is

,
T

.
pa

ll
id

u
m

,
E

.
co

li
,

B
.

su
bt

il
is

,
P

.
a

er
u

gi
n

o
sa

,
L

.
in

-
te

rr
og

a
n

s,
H

.
in

fl
u

en
-

za
e,

S
.

a
u

re
u

s,
S

.
ce

re
-

vi
si

a
e,

C
.

el
eg

a
n

s,
D

.
m

el
a

n
og

a
st

er

C
o
ra

l,
H

iT
E

C
,

Q
u

a
k
e,

R
ep

ti
le

,
S

H
R

E
C

g
a
in

y

153
T

a
b

le
C

.1
C

o
n
ti

n
u

ed
fr

o
m

p
re

v
io

u
s

p
a
g
e

N
a
m

e
T

e
st

R
e
a
l

D
a
ta

T
e
st

S
im

D
a
ta

T
y
p

e
T

e
st

G
e
n

o
m

e
s

P
r
o
g
r
a
m

s
T

e
st

e
d

A
g
a
in

st

M
e
th

o
d

o
f

T
e
st

in
g

R
C

M
u

sk
et

y
y

E
.

co
li

,
H

.
sa

p
ie

n
s

H
iT

E
C

,
S

G
A

,
S

H
R

E
C

,
C

o
ra

l,
Q

u
a
k
e,

R
ep

ti
le

,
D

ec
G

P
U

R
ec

a
ll
,

P
re

ci
si

o
n

,
F

-s
co

re
,

G
a
in

,
A

s-
se

m
b

ly
(S

G
A

)
y

H
ec

to
r

y
y

E
.

co
li

,
S

.
en

te
ri

ca
C

o
ra

l,
A

ca
ci

a
R

ec
a
ll
,

S
p

ec
ifi

ci
ty

,
G

a
in

,
P

re
ci

si
o
n

,
F

-
S

co
re

y

L
ig

h
te

r
y

y
E

.
co

li
,

H
.

sa
p

ie
n

s
Q

u
a
k
e,

M
u

sk
et

,
B

L
E

S
S

R
ec

a
ll
,

P
re

ci
si

o
n

,
F

-s
co

re
,

g
a
in

,
a
ss

em
-

b
ly

(v
el

v
et

)
y

H
E

rC
o
O

l
y

n
H

ep
a
ti

ti
s

C
C

o
ra

l,
K

E
C

,
R

ep
ti

le
E

rr
o
r

ra
te

s
(k

-m
er

v
a
ri

a
ti

o
n

),
E

rr
o
r

p
er

ce
n
ta

g
e

(c
o
u

n
ti

n
g

m
is

m
a
tc

h
es

,
in

d
el

s
in

h
o
m

o
p

o
ly

m
er

v
s

n
o
n

-
h

o
m

o
p

o
ly

m
er

re
g
io

n
s)

y

T
ro

w
el

y
y

A
.

th
a

li
a

n
a

,
S

.
a

u
-

re
u

s,
S

.
ce

re
vi

sa
e,

D
.

m
el

a
n

og
a

st
er

,
H

.
sa

p
i-

en
s

C
o
ra

l,
M

u
sk

et
,

S
o
a
p

E
c,

Q
u

a
k
e

R
ea

d
A

cc
u

ra
cy

,
B

a
se

A
cc

u
ra

cy
,

T
ra

n
-

sc
ri

p
to

m
e

d
a
ta

a
cc

u
ra

cy
,

S
N

P
ca

ll
in

g
,

A
ss

em
b

ly
(.

..
)

y

L
o
R

D
E

C
y

n
E

.
co

li
,

Y
ea

st
,

P
a
rr

o
t

P
a
cB

io
T

o
C

A
,

L
S

C
S

en
si

ti
v
it

y,
G

a
in

,
A

li
g
n

m
en

t
P

er
ce

n
t-

a
g
e,

C
o
v
er

a
g
e

(E
x
p

ec
te

d
v
s

O
b

se
rv

ed
)

y

B
L

E
S

S
y

y
S

.
a

u
re

u
s,

E
.

co
li

,
H

.
sa

p
ie

n
s

Q
u

a
k
e,

R
ep

-
ti

le
,

H
iT

E
C

,
E

C
H

O
,

M
u

sk
et

,
D

ec
G

P
U

S
en

si
ti

v
it

y,
S

p
ec

ifi
ci

ty
,
G

a
in

,
A

li
g
n

m
en

t
(B

o
w

ti
e)

,
A

ss
em

b
ly

(V
el

v
et

,
S

O
A

P
d

eN
-

O
V

O
,

S
G

A
)

y

B
lu

e
y

n
E

.
co

li
,

H
.

sa
p

ie
n

s,
P

.
a

er
u

gi
n

o
sa

B
L

E
S

S
,

C
o
ra

l,
H

iT
E

C
,

H
S

H
R

E
C

,
R

a
ce

r,
R

ep
ti

le
,

S
H

R
E

C

R
ea

d
s

M
a
p

p
in

g
S

ta
t

a
ft

er
C

o
rr

ec
ti

o
n

,
A

ss
em

b
ly

M
a
u

v
e

M
et

ri
cs

(V
el

v
et

)
y

B
F

C
y

n
H

.
sa

p
ie

n
s,

C
.

el
eg

a
n

s
B

L
E

S
S

,
B

lo
o
co

o
,

F
er

m
i2

,
L

ig
h
te

r,
M

u
sk

et
,

S
G

A

R
ea

d
s

co
u

n
t(

P
er

fe
ct

,
C

h
im

er
ic

,
B

et
te

r
W

o
rs

e)
,

A
ss

em
b

ly
(V

el
v
et

,
A

b
y
ss

,
fe

r-
m

ik
it

),
P

o
te

n
ti

a
l

F
P

S
N

P

y

154APPENDIX C. TESTING METHODS FOR CORRECTORS

T
a
b

le
C

.1
C

o
n
ti

n
u

ed
fr

o
m

p
re

v
io

u
s

p
a
g
e

N
a
m

e
T

e
st

R
e
a
l

D
a
ta

T
e
st

S
im

D
a
ta

T
y
p

e
T

e
st

G
e
n

o
m

e
s

P
r
o
g
r
a
m

s
T

e
st

e
d

A
g
a
in

st

M
e
th

o
d

o
f

T
e
st

in
g

R
C

S
cr

ib
le

y
y

O
.

sa
ti

va
,

H
.

vu
lg

a
re

S
G

A
,

R
A

C
E

R
P

er
ce

n
t

M
a
p

p
in

g
R

ea
d

s
(0

-3
M

is
-

m
a
tc

h
es

),
A

ss
em

b
ly

(C
o
n
ti

g
s

co
u

n
t,

N
5
0
;

V
el

v
et

)

y

P
A

G
A

N
te

c
n

n
N

A
N

o
n

e
N

o
n

e
y

A
C

E
y

n
E

.
co

li
,

M
.

tu
be

r-
cu

lo
si

s,
S

.
en

te
ri

ca
,

L
.

m
o

n
oc

y
to

ge
n

es
,

P
.

sy
ri

n
ga

e,
B

.
d

en
ti

u
m

,
O

.
ts

u
t-

su
ga

m
u

sh
i,

L
.

p
n

eu
-

m
o

p
h

il
a

,
C

.
el

eg
a

n
s,

D
.

m
el

a
n

og
a

st
er

,
S

.
sa

p
ie

n
s

S
G

A
,

R
A

C
E

R
,

H
iT

E
C

,
B

L
E

S
S

D
ep

th
/
B

re
a
d

th
R

ea
d

/
K

-m
er

G
a
in

y

F
A

D
E

y
y

S
.

a
u

re
u

s,
E

.
co

li
,

H
.

sa
p

ie
n

s
B

L
E

S
S

,
L

ig
h
te

r,
M

u
sk

et
S

en
si

ti
v
it

y,
S

p
ec

ifi
ci

ty
,

G
a
in

y

P
o
ll
u

x
y

n
S

.
a

u
re

u
s,

E
.

co
li

,
H

.
sa

p
ie

n
s,

L
.

p
n

eu
-

m
o

p
h

il
a

,
M

.
tu

be
rc

u
lo

-
si

s,
R

.
sp

h
a

er
o

id
es

Q
u

a
k
e,

S
G

A
,

B
L

E
S

S
,

M
u

s-
k
et

,
R

a
ce

r

C
o
rr

ec
ti

o
n

s,
R

ea
d

s
re

m
o
v
ed

(%
),

E
rr

s.
co

rr
ec

te
d

(%
),

E
rr

s.
in

tr
o
d

u
ce

d
(%

),
A

ss
em

b
ly

(V
el

v
et

)

y

G
u

et
a

l.
n

y
E

.
co

li
N

o
n

e
C

o
rr

ec
ti

o
n

s
co

u
n
t,

A
cc

u
ra

cy
y

J
a
b

b
a

n
y

N
.

m
en

in
gi

ti
d

is
,

A
.

h
y
d

ro
p

h
il

a
,

D
.

m
el

a
n

og
a

st
er

,
E

.
co

li

L
o
R

D
E

C
S

p
ec

ifi
ci

ty
,

S
en

si
ti

v
it

y,
G

a
in

,
P

re
ci

si
o
n

y

S
H

R
E

C
y

y
S

.
ce

re
vi

si
a

e,
H

.
in

-
fl

u
en

za
e,

E
.

co
li

S
A

P
(E

U
L

E
R

-
S

R
)

S
p

ec
ifi

ci
ty

,
S

en
si

ti
v
it

y,
A

cc
u

ra
cy

,
A

s-
se

m
b

ly
(E

d
en

a
),

P
er

ce
n
t

C
o
rr

ec
te

d
R

ea
d

s

y

H
S

H
R

E
C

y
y

E
.

co
li

S
A

P
(E

U
L

E
R

-
S

R
),

S
A

E
T

S
p

ec
ifi

ci
ty

,
S

en
si

ti
v
it

y,
A

cc
u

ra
cy

,
E

r-
ro

r
R

a
te

s
(b

ef
o
re

/
a
ft

er
co

rr
),

A
ss

em
-

b
ly

(V
el

v
et

)

y

P
S

A
E

C
n

y
S

.
ce

re
vi

sa
e,

H
.

in
-

fl
u

en
za

,
E

.
co

li
,

S
.

a
u

-
re

u
s

H
iT

E
C

,
S

H
R

E
C

,
R

ep
-

ti
le

N
o
n

e
(O

n
ly

p
er

f)
y

155
T

a
b

le
C

.1
C

o
n
ti

n
u

ed
fr

o
m

p
re

v
io

u
s

p
a
g
e

N
a
m

e
T

e
st

R
e
a
l

D
a
ta

T
e
st

S
im

D
a
ta

T
y
p

e
T

e
st

G
e
n

o
m

e
s

P
r
o
g
r
a
m

s
T

e
st

e
d

A
g
a
in

st

M
e
th

o
d

o
f

T
e
st

in
g

R
C

H
iT

E
C

y
y

S
.

a
u

re
u

s,
E

.
co

li
,

H
.

in
fl

u
en

za
e

S
H

R
E

C
,

re
p

ti
le

A
cc

u
ra

cy
y

M
y
H

y
b

ri
d

n
y

S
.

ce
re

vi
si

a
e,

H
.

in
-

fl
u

en
za

e,
S

.
a

u
re

u
s,

E
.

co
li

H
iT

E
C

,
S

H
R

E
C

,
Q

u
a
k
e,

h
sh

cr
ec

A
cc

u
ra

cy
y

P
lu

ri
b

u
s

n
y

H
.

sa
p

ie
n

s
Q

u
a
k
e,

H
S

H
R

E
C

P
re

ci
ss

io
n

,
R

ec
a
ll
,

A
ss

em
b

ly
(V

el
v
et

)
y

F
io

n
a

y
n

D
.

m
el

a
n

og
a

st
er

,
H

.
sa

p
ie

n
s,

E
.

co
li

,
S

.
a

u
-

re
u

s,
S

.
ce

re
vi

sa
e,

P
.

fa
lc

ip
a

ru
m

,
B

.
pe

rt
u

s-
si

s

A
ll
p

a
th

s-
L

G
,

C
o
ra

l,
H

S
H

R
E

C

E
rr

o
r

R
a
te

,
G

a
in

y

E
C

H
O

y
y

P
h

iX
1
7
4
,

D
.

m
el

a
n

og
a

st
er

,
H

.
sa

p
ie

n
s,

S
.

ce
re

vi
si

a
e

S
A

(E
u

le
r-

U
S

R
),

S
H

R
E

C
G

a
in

,
B

y
-b

a
se

er
ro

r
ra

te
,

b
y
-r

ea
d

er
ro

r
ra

te
,

A
ss

em
b

ly
(V

el
v
et

)
y

C
o
ra

l
y

y
E

.
co

li
,

S
.

a
u

re
u

s
S

H
R

E
C

,
Q

u
a
k
e,

R
ep

ti
le

S
en

si
ti

v
it

y,
G

a
in

,
A

ss
em

b
ly

(E
d

en
a
)

y

L
S

C
y

n
H

.
sa

p
ie

n
s

P
a
cB

io
T

o
C

A
A

v
er

a
g
e

le
n

g
th

o
f

o
u

tp
u

t
se

q
u

en
ce

s,
A

cc
u

ra
cy

(m
a
p

th
e

co
rr

ec
te

d
re

a
d

s
o
n

th
e

o
ri

g
in

a
l

g
en

o
m

e)
,

S
en

si
ti

v
-

it
y
/
S
p

ec
ifi

ci
ty

ex
o
n

ju
n

ct
io

n
d

et
ec

ti
o
n

y

C
lo

u
d

R
S

y
n

-
S

H
R

E
C

,
R

ep
-

ti
le

,
C

o
ra

l,
H

S
H

R
E

C
,

S
O

A
P

E
c

S
p

ec
ifi

ci
ty

,
S

en
si

ti
v
it

y,
G

a
in

,
P

re
ci

si
o
n

,
A

ss
em

b
ly

(V
el

v
et

)
y

C
h
u

n
g

et
a

l.
y

n
S

.
ce

re
vi

si
a

e,
S

.
a

u
-

re
u

s,
E

.
co

li
C

lo
u

d
R

S
N

u
m

b
er

o
f

V
o
te

s
y

p
ro

o
v
re

a
d

y
n

E
.

co
li

,
A

.
th

a
li

a
n

a
,

H
.

sa
p

ie
n

s
P

a
cB

io
T

o
C

A
,

L
S

C
A

cc
u

ra
cy

(m
a
p

th
e

co
rr

ec
te

d
re

a
d

s
o
n

th
e

o
ri

g
in

a
l

g
en

o
m

e)
,

A
ss

em
b

ly
y

N
a
n

o
co

rr
y

n
E

.
co

li
,

Y
ea

st
N

o
n

e
A

li
g
n

m
en

t(
B

L
A

S
T

),
A

ss
em

b
ly

(C
el

er
a
)

n

156APPENDIX C. TESTING METHODS FOR CORRECTORS

T
a
b

le
C

.1
C

o
n
ti

n
u

ed
fr

o
m

p
re

v
io

u
s

p
a
g
e

N
a
m

e
T

e
st

R
e
a
l

D
a
ta

T
e
st

S
im

D
a
ta

T
y
p

e
T

e
st

G
e
n

o
m

e
s

P
r
o
g
r
a
m

s
T

e
st

e
d

A
g
a
in

st

M
e
th

o
d

o
f

T
e
st

in
g

R
C

K
a
re

ct
y

n
H

.
p

y
lo

ri
,

Z
.

m
o

bi
li

s,
E

.
co

li
,

S
.

a
u

re
u

s,
H

.
sa

p
ie

n
s,

C
.

el
eg

a
n

s

L
ig

h
te

r,
T

ro
w

el
,

B
L

E
S

S
,

M
u

s-
k
et

,
R

A
C

E
R

,
S

G
A

,
Q

u
a
k
e,

R
ep

ti
le

,
D

ig
-

in
o
rm

,
B

lu
e,

F
io

n
a
,

D
A

G
-

C
o
n

,
C

o
ra

l,
M

u
ffi

n
K

m
ea

n
s,

H
S

H
R

E
C

B
a
se

-o
p

er
a
ti

o
n

s
&

W
h

o
le

R
ea

d
s:

R
e-

ca
ll
,

P
re

ci
si

o
n

,
F

S
co

re
,

G
a
in

,
A

s-
se

m
b

ly
(C

o
n
ti

g
s

&
S

ca
ff

o
ld

s:
N

G
A

5
0
,

L
G

A
5
0
,

G
M

,
L

M
,

U
A

,
M

M
,

C
o
v
er

a
g
e)

y

F
R

E
C

lu
y

n
D

.
m

el
a

n
og

a
st

er
,

H
.

sa
p

ie
n

s
-

C
lu

st
er

in
g

(m
a
p

re
p

re
se

n
ta

ti
v
e

se
-

q
u

en
ce

in
a

cl
u

st
er

)
y

[6
1
]

y
y

P
h

iX
,

W
h

ea
t

-
S

p
ec

ifi
ci

ty
,

S
en

si
ti

v
it

y
n

R
E

C
O

U
N

T
y

y
B

.
vu

lg
a

ri
s,

D
.

m
el

a
n

og
a

st
er

,
E

.
co

li
,

M
.

m
u

sc
u

lu
s

fr
ec

N
u

m
m

a
p

p
ed

re
a
d

s,
C

h
a
n

g
es

ex
p

re
s-

si
o
n

o
f

k
n

o
w

n
g
en

es
,

fa
ls

el
y

m
a
p

p
ed

re
a
d

s
to

th
e

w
ro

n
g

g
en

o
m

e

y

P
re

m
ie

r
y

y
E

.
co

li
R

ep
ti

le
P

ro
b

a
b

il
it

y
er

ro
r

co
rr

ec
ti

o
n

,
g
a
in

,
to

ta
l

n
u

m
b

er
o
f

g
ro

u
n

d
tr

u
th

er
ro

rs
in

th
e

se
q
u

en
ci

n
g

re
a
d

s
ex

cl
u

d
in

g
th

o
se

in
th

e
fi

rs
t

k
-m

er

n

P
re

m
ie

r
T

u
rb

o
y

y
E

.
co

li
,

C
.

el
eg

a
n

s
R

ep
ti

le
,

M
u

s-
k
et

,
H

iT
E

C
,

S
H

R
E

C
,

Q
u

a
k
e

N
u

m
.

E
rr

s.
C

o
rr

ec
tl

y
R

ec
o
v
er

ed
,

S
en

-
si

ti
v
it

y,
N

u
m

.
E

rr
s.

F
a
ls

el
y

In
tr

o
d

u
ce

d
,

G
a
in

n

k
G

E
M

n
y

H
ep

a
ti

ti
s

C
Q

u
a
si

R
ec

o
m

b
S

en
si

ti
v
it

y,
P

o
si

ti
v
e

P
re

d
ic

te
d

V
a
lu

e
n

C
o
n

cl
u

d
ed

APPENDIX D

Correctors’ Performance

158 APPENDIX D. CORRECTORS’ PERFORMANCE

T
ab

le
D

.1
:

A
lg

or
it

h
m

s’
p

er
fo

rm
an

ce
on

d
iff

er
en

t
d
at

as
et

s

D
a
ta

se
t

G
e
n

o
m

e
T

e
c
h

R
e
a
d

s
M

il
*
*

#
B

a
se

s
M

il
*
*

P
r
o
g
r
a
m

s
M

e
m

G
B

R
t

m
in

s
(N

u
m

T
h

)
G

a
in

N
5
0
*

C
o
n

cl
u

d
ed

S
R

R
0
3
4
5
0
9

1
E

.
co

li
K

1
2

M
G

1
6
5
5

Il
lu

m
.

1
0
.4

2
1
0
0

R
ep

ti
le

4
.6

1
6
5
.6

(1
)

0
.7

8
9

-
P

a
r.

R
ep

-
ti

le
(h

)

-
0
.3

8
d

1
1
9
.8

6
d

2
(5

1
2
)

0
.7

8
9
d

1
0
.8

3
9
d

2
-

C
lo

u
d

R
S

-
-

0
.0

4
3

7
6
8
4
5
(V

)
C

h
u

n
g

et
a

l.
-

5
6
.5

3
(8

0
)

-
5
9
.8

(A
)(

p
)

N
ID

S
2
(o

)
S

.
a

u
re

u
s

Il
lu

m
.

3
.8

1
3
8

C
U

D
A

-
E

C
(d

,l
)

-
3
.6

3
er

1
6
.8

8
er

2
(1

)
0
.9

9
5

-

S
H

R
E

C
(l

)
1
2
.3

1
(-

)
0
.9

6
-

C
o
ra

l
1
.7

4
.2

5
(4

)
0
.9

3
7

-
Q

a
m

a
r(

l)
2

1
6
.2

5
(-

)
0
.9

7
7

-
H

iT
E

C
-

-
0
.9

3
3

-

S
R

R
0
0
6
3
3
1

M
.

a
ga

la
ct

ia
e

P
G

2
M

a
P

G
Il

lu
m

.
1
.7

6
1

D
ec

G
P

U
(c

)
-

1
.1

8
(4

)
-

7
.4

(V
)

4
.7

(A
)

C
U

D
A

-
E

C
2
(j

)
-

1
.0

1
(1

)
-

2
.9

(E
)

S
R

R
0
1
6
1
4
6

S
.

a
u

re
u

s
Il

lu
m

.
4
.4

2
2
6
.6

D
ec

G
P

U
(c

)
-

6
.4

6
(4

)
-

3
4
.8

(V
)

3
4
.8

(A
)

C
U

D
A

-
E

C
2
(j

)
-

4
.4

8
(1

)
-

3
2
.5

(E
)

N
ID

S
3
(o

)
E

.
co

li
Il

lu
m

.
2
.6

9
1
.7

H
iT

E
C

-
-

0
.9

0
4

-
Q

a
m

a
r(

l)
2
.3

1
5
.4

8
(-

)
0
.7

3
1

-

S
R

R
0
3
1
2
5
9

S
.

ce
re

vi
si

a
e

Il
lu

m
.

7
.5

2
6
9
.5

E
C

H
O

-
-

0
.2

1
1

-
F

io
n

a
3
.2

1
4
.6

4
(8

)
0
.5

8
8

-

N
D

IS
1
2
(o

)
H

.
a

ci
n

o
n

y
ch

is
Il

lu
m

.
8
.2

2
9
5
.2

C
U

D
A

-
E

C
(d

,l
)

-
7
.5

6
er

1
1
4
.8

er
2
(1

)
0
.9

9
7

-

H
iT

E
C

-
-

0
.9

1
2

-

159
T

a
b

le
D

.1
C

o
n
ti

n
u

ed
fr

o
m

p
re

v
io

u
s

p
a
g
e

D
a
ta

se
t

G
e
n

o
m

e
T

e
c
h

R
e
a
d

s
M

il
*
*

#
B

a
se

s
M

il
*
*

P
r
o
g
r
a
m

M
e
m

G
B

R
t

m
in

s
(N

u
m

T
h

)
G

a
in

N
5
0

(k
b

)*

Q
a
m

a
r(

l)
1
0
.6

3
8
.0

3
(-

)
0
.5

0
3

-

E
R

R
0
2
2
0
7
5

E
.

co
li

K
1
2

M
G

1
6
5
5

Il
lu

m
.

2
2
.7

4
6
0
0

F
io

n
a

1
6
.8

5
5
6
.4

3
(8

)
0
.9

8
6

-
L

ig
h
te

r
-

-
-

9
8
5
5
5
(V

)
T

ro
w

el
8

9
.9

(3
2
)

0
.9

7
6

1
0
7
.4

(S
)

1
1
3
.7

(V
)

M
u

sk
et

(g
)

-
0
.4

1
(2

)
0
.9

7
5

1
3
.2

(S
g
)

P
re

m
ie

r
T

u
rb

o
F

a
n

o
p

-
-

0
.9

7
9

-

P
re

m
ie

r
T

u
rb

o
A

-V
it

er
b

i

-
-

0
.9

8
2

-

S
R

R
0
6
5
3
9
0

C
.

el
eg

a
n

s
Il

lu
m

.
3
3
.8

6
8
0
0

R
A

C
E

R
(f

)
1
6
.7

5
5
1
.2

(1
)

0
.6

5
9

-
M

u
sk

et
-

3
5
.8

1
(2

)
-

9
.2

(S
g
)

P
re

m
ie

r
T

u
rb

o
F

a
n

o
p

-
-

0
.8

9
2

-

P
re

m
ie

r
T

u
rb

o
A

-V
it

er
b

i

-
-

0
.8

9
4

-

K
a
re

ct
1
4
7
.8

3
1
0
2
.9

3
0
.8

7
5

-

B
F

C
-b

f
-

-
-

3
3
7
0
0
(V

)

3
3
.7

(A
)(

)

B
F

C
-h

t
-

-
-

3
4
8
0
0
(V

)

3
4
.2

(A
)

S
R

R
0
2
2
8
6
8

S
.

a
u

re
u

s
U

S
A

3
0
0

Il
lu

m
.

1
5
.5

6
3
1
0
0

B
L

E
S

S
0
.0

1
6
(1

)
0
.8

9
4

-
P

o
ll

u
x

-
3
.6

7
(-

)
-

1
7
7
1
(V

)
F
A

D
E

-
0
.1

(F
P

G
A

)
0
.8

7
9

-
K

a
re

ct
2
.5

8
3
.2

5
(1

2
)

0
.9

9
4

2
7
.5

(V
)

2
4
.6

(S
g
)

2
4
.1

(C
)

160 APPENDIX D. CORRECTORS’ PERFORMANCE

T
a
b

le
D

.1
C

o
n
ti

n
u

ed
fr

o
m

p
re

v
io

u
s

p
a
g
e

D
a
ta

se
t

G
e
n

o
m

e
T

e
c
h

R
e
a
d

s
M

il
*
*

#
B

a
se

s
M

il
*
*

P
r
o
g
r
a
m

M
e
m

G
B

R
t

m
in

s
(N

u
m

T
h

)
G

a
in

N
5
0

(k
b

)*

S
R

R
0
1
6
3
9
0

S
.

a
u

re
u

s
Il

lu
m

.
1
0
.3

5
2
5
.3

C
U

D
A

-
E

C
2
(j

)
-

6
.1

6
(1

)
-

2
8
.2

(E
)

S
R

R
0
1
1
1
8
6

M
.

ca
n

et
ti

i
Il

lu
m

.
1
0
.6

8
0
9
.4

C
U

D
A

-
E

C
2
(j

)
-

1
5
.7

1
(1

)
-

8
.6

(E
)

S
R

R
0
1
6
3
9
9

S
.

a
u

re
u

s
Il

lu
m

.
1
2
.7

9
6
5
.7

C
U

D
A

-
E

C
2
(j

)
-

2
1
.4

1
(1

)
-

3
7
.6

(E
)

S
R

R
0
2
6
4
4
6

M
.

tu
be

rc
u

lo
si

s
Il

lu
m

.
2
0

3
0
0
0

C
U

D
A

-
E

C
2
(j

)
-

-
-

2
.9

(E
)

E
R

R
1
6
1
5
4
1

B
.

pe
rt

u
ss

is
Io

n
2
.5

3
5
7
.4

F
io

n
a

3
3
2
(8

)
0
.7

2
8

-
S

R
R

4
4
3
3
7
3

C
.

el
eg

a
n

s
C

B
4
8
5
6

Il
lu

m
.

8
3

1
6
6
0
0

F
io

n
a

2
2
.2

7
4
4
5
.0

6
(8

)
0
.2

5
2

-

S
R

R
4
9
2
0
6
0

D
.

m
el

a
n

og
a

st
er

Il
lu

m
.

2
5
.9

3
9
0
0

F
io

n
a

3
3
.5

5
1
0
8
.1

2
(8

)
0
.3

1
3

-

S
R

X
0
1
6
2
1
0

D
.

m
el

a
n

og
a

st
er

4
5
4

4
.7

2
6
0
0

F
io

n
a

1
8

2
4
0
.7

(8
)

0
.6

4
6

-

S
R

R
6
1
1
1
4
0

E
.

co
li

K
1
2

M
G

1
6
5
5

Io
n

4
.6

6
7
5
4
.1

F
io

n
a

9
1
1
8
.3

(8
)

0
.8

1
2

-

S
R

R
6
2
0
4
2
5

E
.

co
li

K
1
2

M
G

1
6
5
5

Io
n

4
.2

3
7
2
1
.8

F
io

n
a

8
4
9
.2

(8
)

0
.7

4
-

S
R

R
2
5
4
2
0
9

E
.

co
li

O
1
0
4

Io
n

0
.9

7
1
7
7
.7

F
io

n
a

2
1
5
.2

(8
)

0
.6

9
3

-
S

R
R

1
2
3
8
5
3
9

H
.

sa
p

ie
n

s
Io

n
1
8
6
.1

3
3
2
9
0
0

F
io

n
a

2
4
4

1
1
8
7
.1

(8
)

0
.4

6
6

-
E

R
R

1
6
1
5
4
3

P
.

fa
lc

ip
a

ru
m

3
D

7
Io

n
1
.9

5
3
0
7
.7

F
io

n
a

3
2
0
.5

(8
)

0
.5

4
1

-

E
R

R
0
0
5
1
4
3

P
.

sy
ri

n
ga

e
B

7
2
8
a

Il
lu

m
.

3
.5

5
2
5
5
.7

F
io

n
a

1
.6

3
2
.7

3
(8

)
0
.9

1
3

-

E
R

R
2
3
6
0
6
9

S
.

a
u

re
u

s
Io

n
1
.3

3
3
5
5
.9

F
io

n
a

3
4
3
.7

(8
)

0
.6

4
9

-
S

R
R

0
7
0
5
9
6

S
.

a
u

re
u

s
2
1
2
7
5

4
5
4

0
.1

8
9
5
.9

F
io

n
a

1
1
2
.3

(8
)

0
.6

9
8

-
S

R
X

0
3
9
4
4
1

S
.

ce
re

vi
sa

e
U

C
5

4
5
4

0
.6

9
1
9
2
.1

F
io

n
a

2
1
3
.1

(8
)

0
.3

6
-

N
ID

S
4
(o

)
D

.
m

el
a

n
og

a
st

er
(s

im
)

Il
lu

m
.

Q
a
m

a
r(

l)
0
.2

0
.8

(-
)

0
.9

8
3

-

161
T

a
b

le
D

.1
C

o
n
ti

n
u

ed
fr

o
m

p
re

v
io

u
s

p
a
g
e

D
a
ta

se
t

G
e
n

o
m

e
T

e
c
h

R
e
a
d

s
M

il
*
*

#
B

a
se

s
M

il
*
*

P
r
o
g
r
a
m

M
e
m

G
B

R
t

m
in

s
(N

u
m

T
h

)
G

a
in

N
5
0

(k
b

)*

N
ID

S
5
(o

)
B

.
vu

lg
a

ri
s

Il
lu

m
.

Q
a
m

a
r(

l)
1
.5

1
9
.0

6
(-

)
0
.5

7
4

-
S

R
X

0
0
1
8
1
4

A
ci

n
et

o
b

a
ct

er
A

D
P

1
Il

lu
m

.
1
8
.1

6
5
2
.7

Q
a
m

a
r(

l)
8
.6

2
3
.0

8
(-

)
0
.4

1
8

-

S
R

R
0
0
1
6
6
5

2
E

.
co

li
K

1
2

M
G

1
6
5
5

Il
lu

m
.

1
0
.4

7
4
9
.4

Q
a
m

a
r(

l)
4
.5

5
8
.8

(-
)

0
.9

1
3

-

S
R

R
0
8
8
7
5
9

L
.

la
ct

is
N

Z
5
5
2
2

Il
lu

m
.

4
.3

7
1
5
7
.3

R
A

C
E

R
(f

)
0
.4

2
.6

1
(1

)
0
.9

2
-

S
R

R
3
6
1
4
6
8

T
.

pa
ll

id
u

m
Il

lu
m

.
7
.1

3
2
4
9
.7

R
A

C
E

R
(f

)
0
.4

7
.7

(1
)

0
.9

2
3

-
S

R
R

3
9
6
5
3
6

E
.

co
li

7
5
a

Il
lu

m
.

3
.4

5
2
5
9
.1

R
A

C
E

R
(f

)
1
.3

1
5
.8

5
(1

)
0
.8

3
9

-
D

R
R

0
0
0
8
5
2

B
.

su
bt

il
is

1
6
8

Il
lu

m
.

1
.7

5
2
6
4

R
A

C
E

R
(f

)
1
.3

1
4
.6

8
(1

)
0
.9

3
5

-
S

R
R

3
9
6
5
3
2

E
.

co
li

7
5
b

Il
lu

m
.

4
.3

4
3
2
5
.6

R
A

C
E

R
(f

)
1
.4

1
9
.7

8
(1

)
0
.7

7
8

-
S

R
R

3
9
6
6
4
1

P
.

a
er

u
gi

n
o

sa
M

P
A

O
1

Il
lu

m
.

9
.3

3
3
5

R
A

C
E

R
(f

)
1

8
.3

(1
)

0
.8

9
5

-

S
R

R
3
5
3
5
6
3

L
.

in
te

rr
og

a
n

s
L

Il
lu

m
.

3
.5

3
7
0
6
.6

R
A

C
E

R
(f

)
0
.8

2
7
.7

5
(1

)
0
.9

0
8

-

S
R

R
3
9
7
9
6
2

L
.

in
te

rr
og

a
n

s
C

Il
lu

m
.

3
.5

6
7
1
2
.7

R
A

C
E

R
(f

)
0
.8

2
1
.9

6
(1

)
0
.8

9
2

-

S
R

R
0
6
5
2
0
2

H
.

in
fl

u
en

za
e

K
W

2
0

Il
lu

m
.

1
1
.9

6
1
0
0
0

R
A

C
E

R
(f

)
0
.8

2
1
.1

5
(1

)
0
.8

4
3

-

N
ID

S
6
(o

)
/

E
R

X
0
0
2
5
0
8

E
.

co
li

K
1
2

M
G

1
6
5
5

P
a
cB

io
/

Il
-

lu
m

/ 1
4
.2

1
1
0
0

/
2
8
0
0

p
ro

o
v
re

a
d

1
9
.6

1
1
5
8
(-

)
-

-

N
ID

S
7
(o

)
/

S
R

X
1
5
8
5
5
2

A
.

th
a

li
a

n
a

P
a
cB

io
/

Il
-

lu
m

/ 4
3
.2

1
1
2
8

/
9
5
0
0

p
ro

o
v
re

a
d

4
3
.6

2
4
9
1
2
0
(-

)
-

-

N
ID

S
8
(o

)
/

S
R

X
2
4
6
9
0
4

S
R

X
2
4
6
9
0
5

S
R

X
2
4
6
9
0
6

S
R

X
2
4
7
3
6
1

S
R

X
2
4
7
3
6
2
(a

)

H
.

sa
p

ie
n

s
P

a
cB

io
/

Il
-

lu
m

/ 7
7
.1

1
5
4
.2

1
1
8
.6

1
8
2
.2

7
8
.6

3
9
3

/
1
5
6
0
0

3
1
2
0
0

2
3
9
0
0

3
6
8
0
0

1
5
9
0
0

p
ro

o
v
re

a
d

4
0
.1

3
2
9
4
7
2
0
(-

)
-

-

162 APPENDIX D. CORRECTORS’ PERFORMANCE

T
a
b

le
D

.1
C

o
n
ti

n
u

ed
fr

o
m

p
re

v
io

u
s

p
a
g
e

D
a
ta

se
t

G
e
n

o
m

e
T

e
c
h

R
e
a
d

s
M

il
*
*

#
B

a
se

s
M

il
*
*

P
r
o
g
r
a
m

M
e
m

G
B

R
t

m
in

s
(N

u
m

T
h

)
G

a
in

N
5
0

(k
b

)*

N
ID

S
9
(o

)
/

E
R

X
0
1
1
2
0
0

E
R

X
0
1
1
1
8
6

H
.

sa
p

ie
n

s
P

a
cB

io
/

Il
-

lu
m

/ 7
3
.5

1
6
4
.3

1

1
3
8

/
7
4
0
0

4
8
0
0

p
ro

o
v
re

a
d

8
.1

5
0
4
0
(-

)
-

-

S
R

R
0
0
0
8
7
0

E
.

co
li

U
T

I8
9

4
5
4

0
.2

1
5
5
.6

H
ec

to
r(

e)
-

2
.8

3
(2

)
0
.8

5
3

-
S

R
R

6
3
9
3
3
0

E
.

co
li

O
1
0
4

4
5
4

0
.5

9
3
7
0
.9

H
ec

to
r(

e)
-

8
(2

)
0
.9

5
5

-
S

R
R

9
5
7
9
9
3

S
.

en
te

ri
ca

A
T

C
C

5
1
9
5
5

4
5
4

0
.1

8
1
0
1
.2

H
ec

to
r(

e)
-

4
(2

)
0
.8

8
2

-

N
ID

S
1
0
(o

)
/

E
R

R
0
2
2
0
7
5

E
.

co
li

K
1
2

M
G

1
6
5
5

P
a
cB

io
/

Il
-

lu
m

0
.0

3
/

2
.3

9
8

/
2
3
1

L
o
R

D
E

C
0
.9

6
1
0
(1

6
)

0
.8

9
9

-

N
ID

S
1
1
(o

)
/

S
R

R
5
6
7
7
5
5

S
.

ce
re

vi
si

a
e

W
3
0
3

P
a
cB

io
/

Il
-

lu
m

0
.2

6
/

4
.5

1
5
0
0

/
4
5
0

L
o
R

D
E

C
0
.9

2
1
7
(1

6
)

0
.8

1
9

-

E
R

R
2
4
4
1
6
4

E
R

R
2
4
4
1
6
5

E
R

R
2
4
4
1
6
6

/
E

R
R

2
4
4
1
5
6

M
.

u
n

d
u

la
tu

s
P

a
cB

io
/

Il
-

lu
m

4
.1

7
/

3
4
5
.0

9
6
8
0
0

/
3
5
0
0
0

L
o
R

D
E

C
(i

)
4
.6

1
1
7
4
7
(4

8
)

0
.8

5
4

-

E
R

R
3
3
0
0
0
8

P
.

a
er

u
gi

n
o

sa
P

A
O

1
Il

lu
m

.
5
.0

9
1
4
0
0

B
lu

e(
b

,e
)

1
.3

+
0
.45

.4
+

6
.3

(8
)

-
1
3
2
(V

)

S
R

R
3
5
2
3
8
4

S
.

ce
re

vi
si

a
e

S
2
8
8
C

Il
lu

m
.

2
6
.0

3
4
0
0
0

T
ro

w
el

1
0
.4

1
4
.1

(3
2
)

0
.1

5
2

2
3
.2

(S
)

3
6
.8

(V
)

S
R

R
0
6
0
0
9
8

D
.

m
el

a
n

og
a

st
er

Il
lu

m
.

1
8
.9

6
3
6
0
0

T
ro

w
el

1
9
.3

1
8
.4

(3
2
)

0
.4

2
1

7
.8

(S
)

8
.9

(V
)

S
R

R
0
1
8
2
9
4

D
.

m
el

a
n

og
a

st
er

Il
lu

m
.

9
.4

6
1
4
0
0

T
ro

w
el

1
5
.4

8
.4

(3
2
)

0
.5

7
4

0
.7

(S
)

0
.5

(V
)

S
R

R
0
1
8
2
9
2

D
.

m
el

a
n

og
a

st
er

Il
lu

m
.

1
2
.2

4
1
1
0
0

T
ro

w
el

5
.4

4
.2

(3
2
)

0
.5

8
5

0
.3

(S
)

0
.2

(V
)

S
R

R
0
1
8
2
9
3

D
.

m
el

a
n

og
a

st
er

Il
lu

m
.

8
.5

4
7
6
9

T
ro

w
el

4
.1

3
.1

(3
2
)

0
.5

4
2

0
.2

(S
)

0
.1

(V
)

S
R

R
0
6
7
3
8
8

H
.

sa
p

ie
n

s
h

g
1
9

m
R

N
A

Il
lu

m
.

9
.9

9
7
4
9
.9

T
ro

w
el

-
-

0
.1

6
8

-

163
T

a
b

le
D

.1
C

o
n
ti

n
u

ed
fr

o
m

p
re

v
io

u
s

p
a
g
e

D
a
ta

se
t

G
e
n

o
m

e
T

e
c
h

R
e
a
d

s
M

il
*
*

#
B

a
se

s
M

il
*
*

P
r
o
g
r
a
m

M
e
m

G
B

R
t

m
in

s
(N

u
m

T
h

)
G

a
in

N
5
0

(k
b

)*

S
R

R
0
6
7
3
8
9

H
.

sa
p

ie
n

s
h

g
1
9

m
R

N
A

Il
lu

m
.

1
7
.7

7
1
3
0
0

T
ro

w
el

-
-

0
.1

1
4

-

S
R

R
0
6
7
3
9
0

H
.

sa
p

ie
n

s
h

g
1
9

m
R

N
A

Il
lu

m
.

1
1
.5

7
8
6
8

T
ro

w
el

-
-

0
.1

2
2

-

S
R

A
0
0
0
1
5
6

E
.

co
li

U
T

I8
9

4
5
4

0
.4

5
2
7
6
.5

H
S

H
R

E
C

3
1
2
.2

3
(-

)
-

4
.3

(V
)

N
ID

S
1
(o

)
E

.
co

li
D

H
1
0
B

S
O

L
iD

2
.8

3
1
4
1
.5

H
S

H
R

E
C

3
.7

4
1
.1

1
(-

)
-

0
.5

(V
)

S
R

R
0
2
2
9
1
8

1
E

.
co

li
4
7

Il
lu

m
.

7
.2

6
7
7
.2

C
lo

u
d

R
S

-
-

0
.2

2
1
7
.7

(V
)

S
R

A
0
4
8
6
6
4

E
.

co
li

O
1
0
4

Il
lu

m
.

5
.8

1
8
0
0

P
o
ll
u

x
-

3
.0

1
(-

)
-

3
7
(V

)
S

R
R

0
2
3
7
9
4

/
S

R
R

0
2
3
7
9
6

H
.

p
y
lo

ri
st

ra
in

V
2
2
5
d

4
5
4

0
.2

7
6
5

K
a
re

ct
1
.4

7
1
.1

3
(1

2
)

0
.9

5
6

-

S
R

R
0
1
7
9
7
2

/
S

R
R

0
2
9
6
0
6

Z
.

m
o

bi
li

s
su

b
sp

.
m

o
b

il
is

Z
M

4

4
5
4

0
.2

1
4
0

K
a
re

ct
0
.9

2
1
.1

7
(1

2
)

0
.9

4
6

-

B
2
2
-7

3
0

E
.

co
li

D
H

1
0
B

Io
n

0
.4

9
1
6
0

K
a
re

ct
3
.6

1
4
.2

3
(1

2
)

0
.9

5
5

-
G

a
g
e

S
.

S
a
p

ie
n

s
ch

r1
4

S
.

S
a
p

ie
n

s
Il

lu
m

.
3
6

3
6
8
6

K
a
re

ct
8
1
.3

0
4
7
.4

8
(1

2
)

0
.8

3
2

-

S
R

R
5
1
9
9
2
6

E
.

co
li

Il
lu

m
.

0
.8

2
0
1

A
C

E
6
.2

(q
)

3
4
.2

3
(1

6
)(

q
)

-(
r)

-
S

R
R

1
2
0
0
7
9
7

M
.

tu
be

rc
u

lo
si

s
Il

lu
m

.
1
.4

3
4
8
.2

A
C

E
1
.8

(q
)

1
8
.2

1
(1

6
)(

q
)

-(
r)

-
S

R
R

1
2
0
3
0
4
4

S
.

en
te

ri
ca

Il
lu

m
.

1
.7

4
3
3
.1

A
C

E
2
.6

(q
)

2
7
.1

3
(1

6
)(

q
)

-(
r)

-
S

R
R

1
2
0
6
0
9
3

S
.

en
te

ri
ca

Il
lu

m
.

1
.9

4
7
2
.2

A
C

E
3
.3

(q
)

3
0
.8

3
(1

6
)(

q
)

-(
r)

-
S

R
R

1
1
9
8
9
5
2

L
.

m
o

n
oc

y
to

-
ge

n
es

Il
lu

m
.

2
.1

5
0
7
.7

A
C

E
2
.7

(q
)

2
9
.4

(1
6
)(

q
)

-(
r)

-

S
R

R
1
1
1
9
2
9
2

P
.

sy
ri

n
ga

e
Il

lu
m

.
2
.5

6
3
9
.8

A
C

E
3
.6

(q
)

4
1
.5

3
(1

6
)(

q
)

-(
r)

-
S

R
R

1
1
5
1
3
1
1

B
.

d
en

ti
u

m
Il

lu
m

.
3
.9

9
8
4
.2

A
C

E
2
.6

(q
)

5
3
.9

6
(1

6
)(

q
)

-(
r)

-
S

R
R

5
2
2
1
6
3

E
.

co
li

Il
lu

m
.

1
1
.1

2
8
0
6
.5

A
C

E
3
6
(q

)
3
8
7
.7

6
(1

6
)(

q
)

-(
r)

-
S

R
R

1
2
0
2
0
8
3

O
.

ts
u

ts
u

ga
-

m
u

sh
i

Il
lu

m
.

1
0
.3

3
1
0
4
.9

A
C

E
1
5
.3

(q
)2

9
1
.8

6
(1

6
)(

q
)

-(
r)

-

E
R

R
4
0
0
3
7
3

M
.

tu
be

rc
u

lo
si

s
Il

lu
m

.
2

3
1
6

A
C

E
1
.6

(q
)

2
2
.5

4
(1

6
)(

q
)

-(
r)

-
E

R
R

2
3
0
4
0
2

S
.

en
te

ri
ca

Il
lu

m
.

3
.2

3
2
5
.7

A
C

E
1
.3

(q
)

3
1
.3

7
(1

6
)(

q
)

-(
r)

-
E

R
R

4
2
2
5
4
4

S
.

ce
re

vi
si

a
e

Il
lu

m
.

4
.7

4
7
7
.6

A
C

E
2
.4

(q
)

4
1
.4

7
(1

6
)(

q
)

-(
r)

-
S

R
R

8
0
1
7
9
7

L
.

p
n

eu
m

o
p

h
il

a
Il

lu
m

.
8
.8

8
8
5

A
C

E
5
(q

)
8
6
.7

3
(1

6
)(

q
)

-(
r)

-

164 APPENDIX D. CORRECTORS’ PERFORMANCE

T
a
b

le
D

.1
C

o
n
ti

n
u

ed
fr

o
m

p
re

v
io

u
s

p
a
g
e

D
a
ta

se
t

G
e
n

o
m

e
T

e
c
h

R
e
a
d

s
M

il
*
*

#
B

a
se

s
M

il
*
*

P
r
o
g
r
a
m

M
e
m

G
B

R
t

m
in

s
(N

u
m

T
h

)
G

a
in

N
5
0

(k
b

)*

S
R

R
1
1
9
1
6
5
5

E
.

co
li

Il
lu

m
.

1
1
.7

1
1
8
4
.3

A
C

E
2
.9

(q
)

9
4
.1

5
(1

6
)(

q
)

-(
r)

-
S

R
R

4
9
0
1
2
4

E
.

co
li

Il
lu

m
.

2
1
.5

2
1
5
5
.3

A
C

E
9
.6

(q
)

1
3
0
(1

6
)(

q
)

-(
r)

-
S

R
X

2
1
8
9
8
9

C
.

el
eg

a
n

s
Il

lu
m

.
3
1
.6

3
1
6
4
.2

A
C

E
2
1
.2

(q
)2

6
2
.1

(1
6
)(

q
)

-(
r)

-
S

R
R

5
4
3
7
3
6

C
.

el
eg

a
n

s
Il

lu
m

.
5
7
.7

5
8
2
9
.8

A
C

E
2
8
.1

(q
)4

4
3
.0

3
(1

6
)(

q
)

-(
r)

-
S

R
R

8
2
3
3
7
7

D
.

m
el

a
n

og
a

st
er

Il
lu

m
.

6
3

6
3
0
1
.4

A
C

E
2
9
.9

(q
)4

5
0
.5

5
(1

6
)(

q
)

-(
r)

-

S
R

R
9
8
8
0
7
5

D
.

m
el

a
n

og
a

st
er

Il
lu

m
.

7
5
.9

7
6
6
9
.7

A
C

E
3
5
.5

(q
)5

3
3
(1

6
)(

q
)

-(
r)

-

E
R

X
0
6
9
7
1
5

H
.

sa
p

ie
n

s
Il

lu
m

.
1
3
5
7
.7

1
3
7
1
3
2
.9

A
C

E
1
9
0
.6

(q
)8
9
8
2
.2

(1
6
)(

q
)

-(
r)

-
E

R
X

0
6
9
5
0
4

H
.

sa
p

ie
n

s
Il

lu
m

.
1
6
3
7
.8

1
6
5
4
1
9
.5

A
C

E
2
2
4
.9

(q
)1
0
8
0
7
.4

(1
6
)(

q
)

-(
r)

-
E

R
X

0
6
9
5
0
5

H
.

sa
p

ie
n

s
Il

lu
m

.
1
7
0
8
.1

1
7
2
5
2
5
.1

A
C

E
2
2
7
.7

(q
)1
1
2
7
1
.6

(1
6
)(

q
)

-(
r)

-

**
-

in
fo

rm
at

io
n

ta
ke

n
fr

o
m

N
C

B
I

S
R

A
se

rv
ic

e
w

h
en

av
a
il

a
b

le
,

ex
tr

a
ct

ed
b
y

u
s

o
r

co
p

ie
d

fr
o
m

th
e

o
ri

g
in

a
l

a
rt

ic
le

*
-

T
h

e
le

tt
er

s
b

et
w

ee
n

p
a
re

n
th

es
is

st
a
n

d
fo

r:
V

-
V

el
ve

t,
S

-
S

o
a
p

d
eN

ov
o
,

E
-

E
d

en
a
,

S
g

-
S

G
A

,
A

-
A

B
y
S

S
,

C
-

C
el

er
a
,

A
-

A
L

L
P

A
T

H
S

-L
G

a
-

P
ac

B
io

co
rr

ec
te

d
w

it
h

a
sa

m
p

le
a
t

5
0
x

co
ve

ra
g
e

fr
o
m

a
ll

Il
lu

m
.

d
a
ta

se
ts

b
-

R
es

ou
rc

es
u

se
d

fo
r

p
re

p
a
ri

n
g

th
e

d
a
ta

se
t

+
re

so
u

rc
es

u
se

d
fo

r
co

rr
ec

ti
n

g
th

e
d

a
ta

c
-
D
e
c
G
P
U

al
so

n
ee

d
s

a
G

P
U

,
th

e
ta

b
le

co
n
ta

in
s

th
e

re
su

lt
fo

r
1
x
G

P
U

ex
ec

u
ti

o
n

d
-
C
U
D
A
-E

C
al

so
n

ee
d

s
a

G
P

U
,

th
e

ta
b

le
co

n
ta

in
s

th
e

re
su

lt
fo

r
1
x
G

P
U

ex
ec

u
ti

o
n

a
n

d
1
x
C

P
U

e
-

A
p

p
ro

x
im

at
e

va
lu

es
fo

r
ru

n
ti

m
e

ex
tr

a
ct

ed
fr

o
m

th
e

ch
a
rt

in
th

e
p

a
p

er
f

-
T

h
e

d
a
ta

se
t

w
as

fi
lt

er
ed

u
si

n
g

B
W

A
g

-
T

h
e

d
at

as
et

h
as

a
3
0
x
,

sa
m

p
le

d
a
t

ra
n

d
o
m

fr
o
m

th
e

o
ri

g
in

a
l

h
-

R
u

n
ti

m
e

fo
r

d
(H

a
m

m
in

g
d

is
ta

n
ce

b
et

w
ee

n
tw

o
k
-m

er
s)

b
ei

n
g

1
a
n

d
2

i
-
L
o
R
D
E
C

ra
n

on
th

re
e

se
rv

er
s,

m
em

o
ry

u
sa

g
e

fo
r

o
n

e
se

rv
er

,
ru

n
n

in
g

ti
m

e
fo

r
a
ll

th
re

e
in

p
a
ra

ll
el

w
it

h
a
ll

C
P

U
s

u
se

d
j

-
C

om
b

in
ed

ru
n

n
in

g
ti

m
e

o
f

th
e

se
q
u

en
ti

a
l

co
u

n
ti

n
g

o
n

th
e

C
P

U
a
n

d
p
a
ra

ll
el

er
ro

r
co

rr
ec

ti
o
n

o
n

th
e

G
P

U

165
T

a
b

le
D

.1
C

o
n
ti

n
u

ed
fr

o
m

p
re

v
io

u
s

p
a
g
e

D
a
ta

se
t

G
e
n

o
m

e
T

e
c
h

R
e
a
d

s
M

il
*
*

#
B

a
se

s
M

il
*
*

P
r
o
g
r
a
m

M
e
m

G
B

R
t

m
in

s
(N

u
m

T
h

)
G

a
in

N
5
0

(k
b

)*

l
-

G
ai

n
ca

lc
u

la
te

d
b
y

u
s

u
si

n
g

th
e

va
lu

es
fo

r
T

P
,

F
P

,
F

N
g
iv

en
b
y

th
e

a
u

th
o
rs

a
n

d
th

e
fo

rm
u

la
in

[1
]

k
-

P
ro

fi
le

s
T

1
-

W
it

h
al

l
m

a
p

p
ed

re
a
d

s;
T

2
-

ex
cl

u
d

in
g

re
a
d

s
¿

1
0

er
ro

rs
m

-
D

iff
er

en
t

p
ro

fi
le

s
fo

r
th

e
a
li

g
n

er
a
n
d

k
-m

er
=

1
0

n
-

T
h

e
au

th
or

s
d

o
n

ot
ex

p
li

ci
tl

y
p

in
p

o
in

t
th

e
d

a
ta

se
t,

it
’s

o
u

r
in

fe
re

n
ce

o
-

N
ID

S
-

N
on

-I
n

d
ex

ed
D

a
ta

S
et

s
-

d
a
ta

se
ts

th
a
t

d
o
n

’t
h

av
e

a
sh

o
rt

n
a
m

e
fr

o
m

a
n

in
d

ex
en

g
in

e
li

ke
th

e
N

C
B

I
S

R
A

re
p

o
p

-
V

al
u

e
of

th
e

co
rr

ec
te

d
N

5
0

a
s

o
b

ta
in

ed
b
y

u
si

n
g

th
e

G
A

G
E

[7
8
]

a
p

p
ro

a
ch

q
-

A
p

p
ro

x
im

at
e

va
lu

es
ca

lc
u

la
te

d
b
y

u
s

fr
o
m

th
e

d
a
ta

se
ts

in
fo

a
n

d
th

e
n
u

m
b

er
s

p
er

M
b

g
iv

en
b
y

th
e

a
u

th
o
rs

r
-

D
u

e
to

n
on

-s
ta

n
d

ar
d

p
er

b
a
se

a
p

p
ro

a
ch

a
n

d
m

u
lt

ip
le

ty
p

es
o
f

g
a
in

,
w

e
o
m

it
th

e
re

su
lt

s
fo

r
A

C
E

s
-

N
50

fo
r

sc
aff

ol
d

s

166 APPENDIX D. CORRECTORS’ PERFORMANCE

The following datasets from Table D.1 were denoted with NIDS
followed by an index:

• NIDS1 - http://solidsoftwaretools.com/gf/project/

ecoli2x50/

• NIDS2 - http://genomic.ch/edena/mw2Reads.seq.gz

• NIDS3 - http://clcbio.com/index.php?id=1290

• NIDS4 - http://sharcgs.molgen.mpg.de/data/AC006575.
reads.gz

• NIDS5 - http://sharcgs.molgen.mpg.de/data/

ZR-47B15.reads_prb.gz

http://sharcgs.molgen.mpg.de/data/ZR-47B15.reads_

seq.gz

• NIDS6 - https://github.com/PacificBiosciences/

DevNet/wiki/E%20coli%20K12%20MG1655%20Resequencing

• NIDS7 - PacBio DevNet Arabidopsis P5C3 N50 8109 bp

• NIDS8 - https://github.com/

PacificBiosciences/DevNet/wiki/H.

-sapiens-10x-Sequence-Coverage-with-PacBio-data

• NIDS9 - http://www.stanford.edu/~kinfai/human_

cerebellum_PacBioLR.zip

• NIDS10 - https://github.com/PacificBiosciences/

DevNet/wiki/E%20coli%20K12%20MG1655%20Hybrid%

20Assembly

• NIDS11 - https://github.com/

PacificBiosciences/DevNet/wiki/

Saccharomyces-cerevisiae-W303-Assembly-Contigs

http://solidsoftwaretools.com/gf/project/ecoli2x50/
http://solidsoftwaretools.com/gf/project/ecoli2x50/
http://genomic.ch/edena/mw2Reads.seq.gz
http://clcbio.com/index.php?id=1290
http://sharcgs.molgen.mpg.de/data/AC006575.reads.gz
http://sharcgs.molgen.mpg.de/data/AC006575.reads.gz
http://sharcgs.molgen.mpg.de/data/ZR-47B15.reads_prb.gz
http://sharcgs.molgen.mpg.de/data/ZR-47B15.reads_prb.gz
http://sharcgs.molgen.mpg.de/data/ZR-47B15.reads_seq.gz
http://sharcgs.molgen.mpg.de/data/ZR-47B15.reads_seq.gz
https://github.com/PacificBiosciences/DevNet/wiki/E%20coli%20K12%20MG1655%20Resequencing
https://github.com/PacificBiosciences/DevNet/wiki/E%20coli%20K12%20MG1655%20Resequencing
https://github.com/PacificBiosciences/DevNet/wiki/H.-sapiens-10x-Sequence-Coverage-with-PacBio-data
https://github.com/PacificBiosciences/DevNet/wiki/H.-sapiens-10x-Sequence-Coverage-with-PacBio-data
https://github.com/PacificBiosciences/DevNet/wiki/H.-sapiens-10x-Sequence-Coverage-with-PacBio-data
http://www.stanford.edu/~kinfai/human_cerebellum_PacBioLR.zip
http://www.stanford.edu/~kinfai/human_cerebellum_PacBioLR.zip
https://github.com/PacificBiosciences/DevNet/wiki/E%20coli%20K12%20MG1655%20Hybrid%20Assembly
https://github.com/PacificBiosciences/DevNet/wiki/E%20coli%20K12%20MG1655%20Hybrid%20Assembly
https://github.com/PacificBiosciences/DevNet/wiki/E%20coli%20K12%20MG1655%20Hybrid%20Assembly
https://github.com/PacificBiosciences/DevNet/wiki/Saccharomyces-cerevisiae-W303-Assembly-Contigs
https://github.com/PacificBiosciences/DevNet/wiki/Saccharomyces-cerevisiae-W303-Assembly-Contigs
https://github.com/PacificBiosciences/DevNet/wiki/Saccharomyces-cerevisiae-W303-Assembly-Contigs

167

• NDIS12 - http://sharcgs.molgen.mpg.de/data/reads_

seq.gz

http://sharcgs.molgen.mpg.de/data/reads_prb.gz

http://sharcgs.molgen.mpg.de/data/reads_seq.gz
http://sharcgs.molgen.mpg.de/data/reads_seq.gz
http://sharcgs.molgen.mpg.de/data/reads_prb.gz

168 APPENDIX D. CORRECTORS’ PERFORMANCE

Table D.2: Testing configurations used by the authors

Program CPU RAM(GB) OS Notes
Blue 32xIntel E5-4640 cores @

2.4GHz
512 Ubuntu

DecGPU 2xIntel Xeon E5506 CPUs
@ 2.13 GHz

16 Linux

DecGPU AMD Opteron 2378 CPUs
@ 2.4 GHz

8 Linux Node from a cluster;
video card: NVIDIA
Tesla S1070

SHREC Intel Xeon @ 2.6 GHz - -
CUDA-
EC

AMD Opteron dual core @
2.2 GHz

2 Fedora 8 video card: NVIDIA
GeForce GTX 280

proovread 32 cores 192 - HPC
proovread 4 cores 8 - Single grid node; Cor-

rection of the genomic
human dataset

Hector 2xIntel Xeon X5650 @ 2.66
GHz

96 Ubuntu
12.04

Trowel 64xAMD Opteron 6274
cores @2.2 GHz

512 Linux

Coral 4xAMD Opteron CPUs
@2.6 GHz

32 Ubuntu 8.04

Qamar 8xIntel Core i7 cores
@2.93GHz

11.8 Ubuntu

Musket 2xIntel Xeon X5650 CPUs
@2.67 GHz

96 Ubuntu
12.04

Par. Rep-
tile

2xAMD Barcelona 3 (quad
core) CPUs @ 2.3 GHz

8 Debian Node in a cluster;
SunFire X2200 blade;
Authors used up to
128 nodes

RACER 24xAMD Opteron cores @
2.1 GHz

98 Red Hat,
CentoOS
5.5m

LoRDEC 16 cores @ 2.53 GHz 32 Linux Multiple servers with
this configuration

CUDA-
EC2

Intel i7 @2.67GHz 8 Fedora 10 Video card: NVIDIA
Tesla C1060

BLESS 2xintel Xeon X5650
@2.67GHz

24 Scientific
Linux

Fiona 8xIntel Xeon X5550
@2.67Ghz

72 Debian 6

Fiona 32 virtual cores 370 Configuration used for
SRR1238539

Reptile 2xAMD Barcelona 3 (quad
core) CPUs @ 2.3 GHz

8 Debian SunFire X2200 blade

HSHREC 8xIntel Xeon cores
@3.66GHz

32 - JVM 1.6

REDEEM Intel Xeon @ 3.16 GHz - - -
Pollux Intel Core i7-3820 @ 3.60

GHz
64 Linux -

FADE 16xIntel Xeon X5650 24 - -
Chung et
al.

8xIntel Xeon @ 2.33 GHz
cores

16 - 10 nodes in a Hadoop
Cluster

Chung et
al.

8xIntel Xeon @ 2.33 GHz
cores

64 - Single machine

ACE 16xIntel Xeon ES-2667
cores @ 2.9 GHz

256 SUSE 3.8.6-
2

-

Bibliography

BIBLIOGRAPHY 169

[1] Yang X, Chockalingam SP, Aluru S. A survey of error-
correction methods for next-generation sequencing. Briefings
in bioinformatics. 2013;14(1):56–66.

[2] Tahir M, Sardaraz M, Ikram AA, Bajwa H. Review of
Genome Sequence Short Read Error Correction Algorithms.
American Journal of Bioinformatics Research. 2013;3(1):1–9.

[3] Zimin A, Stevens KA, Crepeau MW, Holtz-Morris A, Kori-
abine M, Marçais G, et al. Sequencing and assembly of the
22-Gb loblolly pine genome. Genetics. 2014;196(3):875–890.

[4] Nystedt B, Street NR, Wetterbom A, Zuccolo A, Lin YC,
Scofield DG, et al. The Norway spruce genome sequence and
conifer genome evolution. Nature. 2013;497(7451):579–584.

[5] Friz CT. The biochemical composition of the free-living
Amoebae¡ i¿ Chaos chaos, amoeba dubia¡/i¿ and¡ i¿ Amoeba
proteus¡/i¿. Comparative biochemistry and physiology.
1968;26(1):81–90.

[6] Ilie L, Fazayeli F, Ilie S. HiTEC: accurate error correc-
tion in high-throughput sequencing data. Bioinformatics.
2011;27(3):295–302.

[7] Ross MG, Russ C, Costello M, Hollinger A, Lennon NJ,
Hegarty R, et al. Characterizing and measuring bias in se-
quence data. Genome Biol. 2013;14(5):R51.

[8] Loman NJ, Misra RV, Dallman TJ, Constantinidou C, Ghar-
bia SE, Wain J, et al. Performance comparison of benchtop
high-throughput sequencing platforms. Nature biotechnol-
ogy. 2012;30(5):434–439.

170 BIBLIOGRAPHY

[9] Kelley DR, Schatz MC, Salzberg SL. Quake: quality-aware
detection and correction of sequencing errors. Genome Biol.
2010;11(11):R116.

[10] Greenfield P, Duesing K, Papanicolaou A, Bauer DC. Blue:
correcting sequencing errors using consensus and context.
Bioinformatics. 2014;p. btu368.

[11] Kao WC, Chan AH, Song YS. ECHO: a reference-free
short-read error correction algorithm. Genome research.
2011;21(7):1181–1192.

[12] Zhao Z, Yin J, Li Y, Xiong W, Zhan Y. An efficient hy-
brid approach to correcting errors in short reads. Modeling
Decision for Artificial Intelligence. 2011;p. 198–210.

[13] Liu Y, Schröder J, Schmidt B. Musket: a multistage k-mer
spectrum-based error corrector for Illumina sequence data.
Bioinformatics. 2013;29(3):308–315.

[14] Liu Y, Schmidt B, Maskell DL. CUSHAW: a CUDA compati-
ble short read aligner to large genomes based on the Burrows–
Wheeler transform. Bioinformatics. 2012;28(14):1830–1837.

[15] Salmela L, Schröder J. Correcting errors in short reads by
multiple alignments. Bioinformatics. 2011;27(11):1455–1461.

[16] Qu W, Hashimoto Si, Morishita S. Efficient frequency-based
de novo short-read clustering for error trimming in next-
generation sequencing. Genome research. 2009;19(7):1309–
1315.

[17] marketsandmarkets com. Next Generation Sequencing
(NGS) Market by Platforms (Illumina HiSeq, MiSeq, HiSeqX

BIBLIOGRAPHY 171

Ten, NextSeq 500,Thermo Fisher Ion Proton/PGM), Bioin-
formatics (Exome Sequencing, RNA-Seq, ChIP-Seq), Tech-
nology (SBS, SMRT) & by Application (Diagnostics, Person-
alized Medicine) – Global Forecast to 2020; 2014. Accessed:
2014-09-09. .

[18] Illumina. Human whole-genome sequencing power; 2015.
Available from: http://www.illumina.com/systems/

hiseq-x-sequencing-system.html.

[19] Check Hayden E. Is the $1,000 genome for real?;
2015. Available from: http://www.nature.com/news/

is-the-1-000-genome-for-real-1.14530.

[20] Institute NHGR. International Human Genome Sequencing
Consortium Announces ”Working Draft” of Human Genome;
2000. Available from: https://www.genome.gov/10001457.

[21] Sanger F, Nicklen S, Coulson AR. DNA sequencing with
chain-terminating inhibitors. Proceedings of the National
Academy of Sciences. 1977;74(12):5463–5467.

[22] Illumina. Specification Sheet: Illumina HiSeq X Series; 2015.
Available from: http://www.illumina.com/documents/

products/datasheets/datasheet-hiseq-x-ten.pdf.

[23] Illumina. Specification Sheet: HiSeq 3000/HiSeq
4000 Sequencing Systems; 2015. Available
from: https://www.illumina.com/content/dam/

illumina-marketing/documents/products/datasheets/

hiseq-3000-4000-specification-sheet-770-2014-057.

pdf.

[24] Illumina. Specification Sheet: NextSeq Series Specifica-
tions; 2015. Available from: http://www.illumina.

http://www.marketsandmarkets.com/Market-Reports/next-generation-sequencing-ngs-technologies-market-546.html
http://www.illumina.com/systems/hiseq-x-sequencing-system.html
http://www.illumina.com/systems/hiseq-x-sequencing-system.html
http://www.nature.com/news/is-the-1-000-genome-for-real-1.14530
http://www.nature.com/news/is-the-1-000-genome-for-real-1.14530
https://www.genome.gov/10001457
http://www.illumina.com/documents/products/datasheets/datasheet-hiseq-x-ten.pdf
http://www.illumina.com/documents/products/datasheets/datasheet-hiseq-x-ten.pdf
https://www.illumina.com/content/dam/illumina-marketing/documents/products/datasheets/hiseq-3000-4000-specification-sheet-770-2014-057.pdf
https://www.illumina.com/content/dam/illumina-marketing/documents/products/datasheets/hiseq-3000-4000-specification-sheet-770-2014-057.pdf
https://www.illumina.com/content/dam/illumina-marketing/documents/products/datasheets/hiseq-3000-4000-specification-sheet-770-2014-057.pdf
https://www.illumina.com/content/dam/illumina-marketing/documents/products/datasheets/hiseq-3000-4000-specification-sheet-770-2014-057.pdf
http://www.illumina.com/content/dam/illumina-marketing/documents/products/datasheets/datasheet-nextseq-500.pdf

172 BIBLIOGRAPHY

com/content/dam/illumina-marketing/documents/

products/datasheets/datasheet-nextseq-500.pdf.

[25] Illumina. HiSeq 2500 Specifications; 2015. Available
from: http://www.illumina.com/systems/hiseq_2500_

1500/performance_specifications.html.

[26] Illumina. Specification Sheet: HiScan SQ System; 2012.
Available from: http://www.illumina.com/documents/

products/datasheets/datasheet_hiscansq.pdf.

[27] Illumina. Specification Sheet: Genome AnalyzerIIx Sys-
tem; 2011. Available from: https://support.illumina.

com/content/dam/illumina-marketing/documents/

products/datasheets/datasheet_genome_analyzeriix.

pdf.

[28] Illumina. Specification Sheet: Genome AnalyzerIIe Sys-
tem; 2010. Available from: http://www.illumina.com/

documents/products/datasheets/datasheet_genome_

analyzer_IIe.pdf.

[29] Illumina. Specification Sheet: Genome AnalyzerII Sys-
tem; 2009. Available from: http://tucf.org/htseq_

GenomeAnalyzer_SpecSheet.pdf.

[30] Illumina. Specification Sheet: Genome Analyzer System;
2007. Available from: http://www.geneworks.com.au/

library/GenomeAnalyzer_SpecSheet.pdf.

[31] Illumina. Specification Sheet: MiSeq System; 2015. Avail-
able from: http://www.illumina.com/content/dam/

illumina-marketing/documents/products/datasheets/

datasheet_miseq.pdf.

http://www.illumina.com/content/dam/illumina-marketing/documents/products/datasheets/datasheet-nextseq-500.pdf
http://www.illumina.com/content/dam/illumina-marketing/documents/products/datasheets/datasheet-nextseq-500.pdf
http://www.illumina.com/content/dam/illumina-marketing/documents/products/datasheets/datasheet-nextseq-500.pdf
http://www.illumina.com/systems/hiseq_2500_1500/performance_specifications.html
http://www.illumina.com/systems/hiseq_2500_1500/performance_specifications.html
http://www.illumina.com/documents/products/datasheets/datasheet_hiscansq.pdf
http://www.illumina.com/documents/products/datasheets/datasheet_hiscansq.pdf
https://support.illumina.com/content/dam/illumina-marketing/documents/products/datasheets/datasheet_genome_analyzeriix.pdf
https://support.illumina.com/content/dam/illumina-marketing/documents/products/datasheets/datasheet_genome_analyzeriix.pdf
https://support.illumina.com/content/dam/illumina-marketing/documents/products/datasheets/datasheet_genome_analyzeriix.pdf
https://support.illumina.com/content/dam/illumina-marketing/documents/products/datasheets/datasheet_genome_analyzeriix.pdf
http://www.illumina.com/documents/products/datasheets/datasheet_genome_analyzer_IIe.pdf
http://www.illumina.com/documents/products/datasheets/datasheet_genome_analyzer_IIe.pdf
http://www.illumina.com/documents/products/datasheets/datasheet_genome_analyzer_IIe.pdf
http://tucf.org/htseq_GenomeAnalyzer_SpecSheet.pdf
http://tucf.org/htseq_GenomeAnalyzer_SpecSheet.pdf
http://www.geneworks.com.au/library/GenomeAnalyzer_SpecSheet.pdf
http://www.geneworks.com.au/library/GenomeAnalyzer_SpecSheet.pdf
http://www.illumina.com/content/dam/illumina-marketing/documents/products/datasheets/datasheet_miseq.pdf
http://www.illumina.com/content/dam/illumina-marketing/documents/products/datasheets/datasheet_miseq.pdf
http://www.illumina.com/content/dam/illumina-marketing/documents/products/datasheets/datasheet_miseq.pdf

BIBLIOGRAPHY 173

[32] Scientific TF. Ion Proton System Specifica-
tions; 2015. Available from: http://www.

thermofisher.com/es/en/home/life-science/

sequencing/next-generation-sequencing/

ion-torrent-next-generation-sequencing-workflow/

ion-torrent-next-generation-sequencing-run-sequence/

ion-proton-system-for-next-generation-sequencing/

ion-proton-system-specifications.html.

[33] Scientific TF. Ion PGM System Specifica-
tions; 2015. Available from: http://www.

thermofisher.com/es/en/home/life-science/

sequencing/next-generation-sequencing/

ion-torrent-next-generation-sequencing-workflow/

ion-torrent-next-generation-sequencing-run-sequence/

ion-pgm-system-for-next-generation-sequencing/

ion-pgm-system-specifications.html.

[34] Scientific TF. 5500 W & 5500xl W Se-
ries; 2015. Available from: https://www.

thermofisher.com/es/en/home/life-science/

sequencing/next-generation-sequencing/

solid-next-generation-sequencing/

solid-next-generation-sequencing-systems-reagents-accessories.

html.

[35] Scientific TF. 5500 & 5500xl Series; 2013. Avail-
able from: http://www.appliedbiosystems.com/

absite/us/en/home/applications-technologies/

solid-next-generation-sequencing/

next-generation-systems.html.

[36] Scientific TF. SOLiD System accuracy with the Ex-
act Call Chemistry module; 2011. Available from:

http://www.thermofisher.com/es/en/home/life-science/sequencing/next-generation-sequencing/ion-torrent-next-generation-sequencing-workflow/ion-torrent-next-generation-sequencing-run-sequence/ion-proton-system-for-next-generation-sequencing/ion-proton-system-specifications.html
http://www.thermofisher.com/es/en/home/life-science/sequencing/next-generation-sequencing/ion-torrent-next-generation-sequencing-workflow/ion-torrent-next-generation-sequencing-run-sequence/ion-proton-system-for-next-generation-sequencing/ion-proton-system-specifications.html
http://www.thermofisher.com/es/en/home/life-science/sequencing/next-generation-sequencing/ion-torrent-next-generation-sequencing-workflow/ion-torrent-next-generation-sequencing-run-sequence/ion-proton-system-for-next-generation-sequencing/ion-proton-system-specifications.html
http://www.thermofisher.com/es/en/home/life-science/sequencing/next-generation-sequencing/ion-torrent-next-generation-sequencing-workflow/ion-torrent-next-generation-sequencing-run-sequence/ion-proton-system-for-next-generation-sequencing/ion-proton-system-specifications.html
http://www.thermofisher.com/es/en/home/life-science/sequencing/next-generation-sequencing/ion-torrent-next-generation-sequencing-workflow/ion-torrent-next-generation-sequencing-run-sequence/ion-proton-system-for-next-generation-sequencing/ion-proton-system-specifications.html
http://www.thermofisher.com/es/en/home/life-science/sequencing/next-generation-sequencing/ion-torrent-next-generation-sequencing-workflow/ion-torrent-next-generation-sequencing-run-sequence/ion-proton-system-for-next-generation-sequencing/ion-proton-system-specifications.html
http://www.thermofisher.com/es/en/home/life-science/sequencing/next-generation-sequencing/ion-torrent-next-generation-sequencing-workflow/ion-torrent-next-generation-sequencing-run-sequence/ion-proton-system-for-next-generation-sequencing/ion-proton-system-specifications.html
http://www.thermofisher.com/es/en/home/life-science/sequencing/next-generation-sequencing/ion-torrent-next-generation-sequencing-workflow/ion-torrent-next-generation-sequencing-run-sequence/ion-pgm-system-for-next-generation-sequencing/ion-pgm-system-specifications.html
http://www.thermofisher.com/es/en/home/life-science/sequencing/next-generation-sequencing/ion-torrent-next-generation-sequencing-workflow/ion-torrent-next-generation-sequencing-run-sequence/ion-pgm-system-for-next-generation-sequencing/ion-pgm-system-specifications.html
http://www.thermofisher.com/es/en/home/life-science/sequencing/next-generation-sequencing/ion-torrent-next-generation-sequencing-workflow/ion-torrent-next-generation-sequencing-run-sequence/ion-pgm-system-for-next-generation-sequencing/ion-pgm-system-specifications.html
http://www.thermofisher.com/es/en/home/life-science/sequencing/next-generation-sequencing/ion-torrent-next-generation-sequencing-workflow/ion-torrent-next-generation-sequencing-run-sequence/ion-pgm-system-for-next-generation-sequencing/ion-pgm-system-specifications.html
http://www.thermofisher.com/es/en/home/life-science/sequencing/next-generation-sequencing/ion-torrent-next-generation-sequencing-workflow/ion-torrent-next-generation-sequencing-run-sequence/ion-pgm-system-for-next-generation-sequencing/ion-pgm-system-specifications.html
http://www.thermofisher.com/es/en/home/life-science/sequencing/next-generation-sequencing/ion-torrent-next-generation-sequencing-workflow/ion-torrent-next-generation-sequencing-run-sequence/ion-pgm-system-for-next-generation-sequencing/ion-pgm-system-specifications.html
http://www.thermofisher.com/es/en/home/life-science/sequencing/next-generation-sequencing/ion-torrent-next-generation-sequencing-workflow/ion-torrent-next-generation-sequencing-run-sequence/ion-pgm-system-for-next-generation-sequencing/ion-pgm-system-specifications.html
https://www.thermofisher.com/es/en/home/life-science/sequencing/next-generation-sequencing/solid-next-generation-sequencing/solid-next-generation-sequencing-systems-reagents-accessories.html
https://www.thermofisher.com/es/en/home/life-science/sequencing/next-generation-sequencing/solid-next-generation-sequencing/solid-next-generation-sequencing-systems-reagents-accessories.html
https://www.thermofisher.com/es/en/home/life-science/sequencing/next-generation-sequencing/solid-next-generation-sequencing/solid-next-generation-sequencing-systems-reagents-accessories.html
https://www.thermofisher.com/es/en/home/life-science/sequencing/next-generation-sequencing/solid-next-generation-sequencing/solid-next-generation-sequencing-systems-reagents-accessories.html
https://www.thermofisher.com/es/en/home/life-science/sequencing/next-generation-sequencing/solid-next-generation-sequencing/solid-next-generation-sequencing-systems-reagents-accessories.html
https://www.thermofisher.com/es/en/home/life-science/sequencing/next-generation-sequencing/solid-next-generation-sequencing/solid-next-generation-sequencing-systems-reagents-accessories.html
http://www.appliedbiosystems.com/absite/us/en/home/applications-technologies/solid-next-generation-sequencing/next-generation-systems.html
http://www.appliedbiosystems.com/absite/us/en/home/applications-technologies/solid-next-generation-sequencing/next-generation-systems.html
http://www.appliedbiosystems.com/absite/us/en/home/applications-technologies/solid-next-generation-sequencing/next-generation-systems.html
http://www.appliedbiosystems.com/absite/us/en/home/applications-technologies/solid-next-generation-sequencing/next-generation-systems.html

174 BIBLIOGRAPHY

https://tools.thermofisher.com/content/sfs/

brochures/cms_091372.pdf.

[37] Biosciences P. PacBio RS II; 2015. Available from: http:

//files.pacb.com/pdf/PacBio_RS_II_Brochure.pdf.

[38] Biosciences P. PacBio RS; 2015. Available from: http://

files.pacb.com/pdf/PacBio_RS_Brochure.pdf.

[39] 454 R. GS FLX+ System; 2015. Available from: http://

454.com/products/gs-flx-system/index.asp.

[40] 454 R. GS Junior System; 2015. Available from: http://

454.com/products/gs-junior-system/index.asp.

[41] 454 R. GS Junior+ System; 2015. Available from: http://

454.com/products/gs-junior-plus-system/index.asp.

[42] Technologies ON. Specification MinION & PromethION;
2015. Available from: https://www.nanoporetech.com/

community/specifications.

[43] Fuller CW, Middendorf LR, Benner SA, Church GM, Harris
T, Huang X, et al. The challenges of sequencing by synthesis.
Nature biotechnology. 2009;27(11):1013–1023.

[44] Cock PJ, Fields CJ, Goto N, Heuer ML, Rice PM. The
Sanger FASTQ file format for sequences with quality scores,
and the Solexa/Illumina FASTQ variants. Nucleic acids re-
search. 2010;38(6):1767–1771.

[45] Biosystems A. Overview of SOLiDTM Sequencing Chemistry;
2013. Available from: http://www.appliedbiosystems.

com/absite/us/en/home/applications-technologies/

solid-next-generation-sequencing/

https://tools.thermofisher.com/content/sfs/brochures/cms_091372.pdf
https://tools.thermofisher.com/content/sfs/brochures/cms_091372.pdf
http://files.pacb.com/pdf/PacBio_RS_II_Brochure.pdf
http://files.pacb.com/pdf/PacBio_RS_II_Brochure.pdf
http://files.pacb.com/pdf/PacBio_RS_Brochure.pdf
http://files.pacb.com/pdf/PacBio_RS_Brochure.pdf
http://454.com/products/gs-flx-system/index.asp
http://454.com/products/gs-flx-system/index.asp
http://454.com/products/gs-junior-system/index.asp
http://454.com/products/gs-junior-system/index.asp
http://454.com/products/gs-junior-plus-system/index.asp
http://454.com/products/gs-junior-plus-system/index.asp
https://www.nanoporetech.com/community/specifications
https://www.nanoporetech.com/community/specifications
http://www.appliedbiosystems.com/absite/us/en/home/applications-technologies/solid-next-generation-sequencing/next-generation-systems/solid-sequencing-chemistry.html
http://www.appliedbiosystems.com/absite/us/en/home/applications-technologies/solid-next-generation-sequencing/next-generation-systems/solid-sequencing-chemistry.html
http://www.appliedbiosystems.com/absite/us/en/home/applications-technologies/solid-next-generation-sequencing/next-generation-systems/solid-sequencing-chemistry.html

BIBLIOGRAPHY 175

next-generation-systems/solid-sequencing-chemistry.

html.

[46] Biosciences P. How does SMRT work?; 2014. Available
from: http://www.pacificbiosciences.com/products/

smrt-technology/.

[47] Zhu P, Craighead HG. Zero-mode waveguides for single-
molecule analysis. Annual review of biophysics. 2012;41:269–
293.

[48] Technologies ON. DNA: Nanopore sequencing; 2015. Avail-
able from: https://nanoporetech.com/applications/

dna-nanopore-sequencing.

[49] Lieberman KR, Cherf GM, Doody MJ, Olasagasti F, Kolodji
Y, Akeson M. Processive replication of single DNA molecules
in a nanopore catalyzed by phi29 DNA polymerase. Jour-
nal of the American Chemical Society. 2010;132(50):17961–
17972.

[50] Schulz MH, Weese D, Holtgrewe M, Dimitrova V, Niu S,
Reinert K, et al. Fiona: a parallel and automatic strategy
for read error correction. Bioinformatics. 2014;30(17):i356–
i363.

[51] Mikheyev AS, Tin MM. A first look at the Oxford
Nanopore MinION sequencer. Molecular ecology resources.
2014;14(6):1097–1102.

[52] Wirawan A, Harris RS, Liu Y, Schmidt B, Schröder J. HEC-
TOR: a parallel multistage homopolymer spectrum based er-
ror corrector for 454 sequencing data. BMC bioinformatics.
2014;15(1):131.

http://www.appliedbiosystems.com/absite/us/en/home/applications-technologies/solid-next-generation-sequencing/next-generation-systems/solid-sequencing-chemistry.html
http://www.appliedbiosystems.com/absite/us/en/home/applications-technologies/solid-next-generation-sequencing/next-generation-systems/solid-sequencing-chemistry.html
http://www.appliedbiosystems.com/absite/us/en/home/applications-technologies/solid-next-generation-sequencing/next-generation-systems/solid-sequencing-chemistry.html
http://www.pacificbiosciences.com/products/smrt-technology/
http://www.pacificbiosciences.com/products/smrt-technology/
https://nanoporetech.com/applications/dna-nanopore-sequencing
https://nanoporetech.com/applications/dna-nanopore-sequencing

176 BIBLIOGRAPHY

[53] Wang XV, Blades N, Ding J, Sultana R, Parmigiani G. Esti-
mation of sequencing error rates in short reads. BMC bioin-
formatics. 2012;13(1):185.

[54] Sahli M, Shibuya T. Qamar–A More Accurate DNA Sequenc-
ing Error Correcting Algorithm. International Proceedings of
Chemical, Biological & Environmental Engineering. 2012;31.

[55] Bragg LM, Stone G, Butler MK, Hugenholtz P, Tyson GW.
Shining a light on dark sequencing: characterising errors
in Ion Torrent PGM data. PLoS computational biology.
2013;9(4):e1003031.

[56] Nakamura K, Oshima T, Morimoto T, Ikeda S, Yoshikawa
H, Shiwa Y, et al. Sequence-specific error profile of Illumina
sequencers. Nucleic acids research. 2011;p. gkr344.

[57] Schirmer M, Ijaz UZ, D’Amore R, Hall N, Sloan WT, Quince
C. Insight into biases and sequencing errors for amplicon
sequencing with the Illumina MiSeq platform. Nucleic acids
research. 2015;p. gku1341.

[58] Illumina. TruSeq R© DNA PCR-Free Sample Preparation Kit;
2013. Available from: http://www.appliedbiosystems.

com/absite/us/en/home/applications-technologies/

solid-next-generation-sequencing/

next-generation-systems/solid-sequencing-chemistry.

html.

[59] Biosciences S. Accel-NGS R© DNA Library Kit for Ion Tor-
rent; 2015. Available from: http://www.swiftbiosci.com/
products/accel-ngs-dna-library-kit.

[60] Gen G. Fast, PCR free DNA library construction for
454; 2015. Available from: http://resource.jerei.com/

10896/13041512044595_0.pdf.

http://www.appliedbiosystems.com/absite/us/en/home/applications-technologies/solid-next-generation-sequencing/next-generation-systems/solid-sequencing-chemistry.html
http://www.appliedbiosystems.com/absite/us/en/home/applications-technologies/solid-next-generation-sequencing/next-generation-systems/solid-sequencing-chemistry.html
http://www.appliedbiosystems.com/absite/us/en/home/applications-technologies/solid-next-generation-sequencing/next-generation-systems/solid-sequencing-chemistry.html
http://www.appliedbiosystems.com/absite/us/en/home/applications-technologies/solid-next-generation-sequencing/next-generation-systems/solid-sequencing-chemistry.html
http://www.appliedbiosystems.com/absite/us/en/home/applications-technologies/solid-next-generation-sequencing/next-generation-systems/solid-sequencing-chemistry.html
http://www.swiftbiosci.com/products/accel-ngs-dna-library-kit
http://www.swiftbiosci.com/products/accel-ngs-dna-library-kit
http://resource.jerei.com/10896/13041512044595_0.pdf
http://resource.jerei.com/10896/13041512044595_0.pdf

BIBLIOGRAPHY 177

[61] Sleep JA, Schreiber AW, Baumann U. Sequencing error cor-
rection without a reference genome. BMC bioinformatics.
2013;14(1):367.

[62] Wijaya E, Frith MC, Suzuki Y, Horton P. Recount: ex-
pectation maximization based error correction tool for next
generation sequencing data. In: Genome Inform. vol. 23.
World Scientific; 2009. p. 189–201.

[63] Dohm JC, Lottaz C, Borodina T, Himmelbauer H. Substan-
tial biases in ultra-short read data sets from high-throughput
DNA sequencing. Nucleic acids research. 2008;36(16):e105–
e105.

[64] Schröder J, Schröder H, Puglisi SJ, Sinha R, Schmidt B.
SHREC: a short-read error correction method. Bioinformat-
ics. 2009;25(17):2157–2163.

[65] Shi H, Schmidt B, Liu W, Müller-Wittig W. A parallel algo-
rithm for error correction in high-throughput short-read data
on CUDA-enabled graphics hardware. Journal of Computa-
tional Biology. 2010;17(4):603–615.

[66] Shao W, Boltz VF, Spindler JE, Kearney MF, Maldarelli F,
Mellors JW, et al. Analysis of 454 sequencing error rate, er-
ror sources, and artifact recombination for detection of Low-
frequency drug resistance mutations in HIV-1 DNA. Retro-
virology. 2013;10(1):18.

[67] Luo C, Tsementzi D, Kyrpides N, Read T, Konstantinidis
KT. Direct comparisons of Illumina vs. Roche 454 sequencing
technologies on the same microbial community DNA sample.
PloS one. 2012;7(2):e30087.

178 BIBLIOGRAPHY

[68] Gilles A, Meglécz E, Pech N, Ferreira S, Malausa T, Martin
JF. Accuracy and quality assessment of 454 GS-FLX Tita-
nium pyrosequencing. BMC genomics. 2011;12(1):245.

[69] Quail MA, Smith M, Coupland P, Otto TD, Harris SR, Con-
nor TR, et al. A tale of three next generation sequencing plat-
forms: comparison of Ion Torrent, Pacific Biosciences and
Illumina MiSeq sequencers. BMC genomics. 2012;13(1):341.

[70] Koren S, Schatz MC, Walenz BP, Martin J, Howard JT,
Ganapathy G, et al. Hybrid error correction and de novo as-
sembly of single-molecule sequencing reads. Nature biotech-
nology. 2012;30(7):693–700.

[71] Salmela L, Rivals E. LoRDEC: accurate and efficient long
read error correction. Bioinformatics. 2014;p. btu538.

[72] Hackl T, Hedrich R, Schultz J, Förster F. proovread: large-
scale high accuracy PacBio correction through iterative short
read consensus. Bioinformatics. 2014;p. btu392.

[73] Au KF, Underwood JG, Lee L, Wong WH. Improving PacBio
long read accuracy by short read alignment. PLoS One.
2012;7(10):e46679.

[74] Technologies ON. The MinIONTM device:
a miniaturised sensing; 2014. Available
from: https://nanoporetech.com/technology/

the-minion-device-a-miniaturised-sensing-system/

the-minion-device-a-miniaturised-sensing-system.

[75] Loman NJ, Quinlan AR. Poretools: a toolkit for analyzing
nanopore sequence data. Bioinformatics. 2014;30(23):3399–
3401.

https://nanoporetech.com/technology/the-minion-device-a-miniaturised-sensing-system/the-minion-device-a-miniaturised-sensing-system
https://nanoporetech.com/technology/the-minion-device-a-miniaturised-sensing-system/the-minion-device-a-miniaturised-sensing-system
https://nanoporetech.com/technology/the-minion-device-a-miniaturised-sensing-system/the-minion-device-a-miniaturised-sensing-system

BIBLIOGRAPHY 179

[76] Watson M, Thomson M, Risse J, Talbot R, Santoyo-Lopez
J, Gharbi K, et al. poRe: an R package for the visualization
and analysis of nanopore sequencing data. Bioinformatics.
2014;p. btu590.

[77] Goodwin S, Gurtowski J, Ethe-Sayers S, Deshpande P,
Schatz M, McCombie WR. Oxford Nanopore Sequencing
and de novo Assembly of a Eukaryotic Genome. bioRxiv.
2015;p. 013490.

[78] Salzberg SL, Phillippy AM, Zimin A, Puiu D, Magoc T,
Koren S, et al. GAGE: A critical evaluation of genome
assemblies and assembly algorithms. Genome research.
2012;22(3):557–567.

[79] Molnar M, Ilie L. Correcting Illumina data. Briefings in
Bioinformatics. 2014;p. bbu029.

[80] Pautasso M. Ten Simple Rules for Writing a Literature Re-
view. PLoS computational biology. 2013;9(7):e1003149.

[81] Carnwell R, Daly W. Strategies for the construction of a
critical review of the literature. Nurse education in practice.
2001;1(2):57–63.

[82] Keele S. Guidelines for performing systematic literature re-
views in software engineering. Technical report, EBSE Tech-
nical Report EBSE-2007-01; 2007.

[83] Kitchenham B. Procedures for performing systematic re-
views. Keele, UK, Keele University. 2004;33:2004.

[84] Aita T, Ichihashi N, Yomo T. Probabilistic model based
error correction in a set of various mutant sequences analyzed
by next-generation sequencing. Computational biology and
chemistry. 2013;47:221–230.

180 BIBLIOGRAPHY

[85] Prosperi MC, Salemi M. QuRe: software for viral quasis-
pecies reconstruction from next-generation sequencing data.
Bioinformatics. 2012;28(1):132–133.

[86] Macalalad AR, Zody MC, Charlebois P, Lennon NJ, New-
man RM, Malboeuf CM, et al. Highly sensitive and specific
detection of rare variants in mixed viral populations from
massively parallel sequence data. PLoS computational biol-
ogy. 2012;8(3):e1002417.

[87] Zagordi O, Bhattacharya A, Eriksson N, Beerenwinkel N.
ShoRAH: estimating the genetic diversity of a mixed sample
from next-generation sequencing data. BMC bioinformatics.
2011;12(1):119.

[88] Simpson JT, Durbin R. Efficient de novo assembly of large
genomes using compressed data structures. Genome research.
2012;22(3):549–556.

[89] Zimin AV, Marçais G, Puiu D, Roberts M, Salzberg SL,
Yorke JA. The MaSuRCA genome assembler. Bioinformat-
ics. 2013;29(21):2669–2677.

[90] Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, et al. SOAPde-
novo2: an empirically improved memory-efficient short-read
de novo assembler. Gigascience. 2012;1(1):18.

[91] Marçais G, Yorke JA, Zimin A. QuorUM: an error corrector
for Illumina reads. arXiv preprint arXiv:13073515. 2013;.

[92] Golan D, Medvedev P. Using state machines to model the
Ion Torrent sequencing process and to improve read error
rates. Bioinformatics. 2013;29(13):i344–i351.

BIBLIOGRAPHY 181

[93] Joppich M, Schmidl D, Bolger AM, Kuhlen T, Usadel B.
PAGANtec: OpenMP Parallel Error Correction for Next-
Generation Sequencing Data. In: OpenMP: Heterogenous
Execution and Data Movements. Springer; 2015. p. 3–17.

[94] Genomeweb. Roche Shutting Down 454 Se-
quencing Business; 2013. Available from:
http://www.genomeweb.com/sequencing/

roche-shutting-down-454-sequencing-business.

[95] Pevzner PA, Tang H, Waterman MS. An Eulerian path ap-
proach to DNA fragment assembly. Proceedings of the Na-
tional Academy of Sciences. 2001;98(17):9748–9753.

[96] Shi H, Schmidt B, Liu W, Muller-Wittig W. Accelerating er-
ror correction in high-throughput short-read DNA sequenc-
ing data with CUDA. In: Parallel & Distributed Process-
ing, 2009. IPDPS 2009. IEEE International Symposium on.
IEEE; 2009. p. 1–8.

[97] Chaisson M, Pevzner P, Tang H. Fragment assembly with
short reads. Bioinformatics. 2004;20(13):2067–2074.

[98] Yang X, Dorman KS, Aluru S. Reptile: representa-
tive tiling for short read error correction. Bioinformatics.
2010;26(20):2526–2533.

[99] Zhao X, Palmer LE, Bolanos R, Mircean C, Fasulo D, Wit-
tenberg GM. EDAR: an efficient error detection and removal
algorithm for next generation sequencing data. Journal of
computational biology. 2010;17(11):1549–1560.

[100] Comaniciu D, Ramesh V, Meer P. The variable bandwidth
mean shift and data-driven scale selection. In: Computer
Vision, 2001. ICCV 2001. Proceedings. Eighth IEEE Inter-
national Conference on. vol. 1. IEEE; 2001. p. 438–445.

http://www.genomeweb.com/sequencing/roche-shutting-down-454-sequencing-business
http://www.genomeweb.com/sequencing/roche-shutting-down-454-sequencing-business

182 BIBLIOGRAPHY

[101] Medvedev P, Scott E, Kakaradov B, Pevzner P. Error cor-
rection of high-throughput sequencing datasets with non-
uniform coverage. Bioinformatics. 2011;27(13):i137–i141.

[102] Yang X, Aluru S, Dorman KS. Repeat-aware modeling
and correction of short read errors. BMC bioinformatics.
2011;12(Suppl 1):S52.

[103] Liu Y, Schmidt B, Maskell DL. DecGPU: distributed er-
ror correction on massively parallel graphics processing units
using CUDA and MPI. BMC bioinformatics. 2011;12(1):85.

[104] Shi H, Schmidt B, Liu W, Müller-Wittig W. Quality-score
guided error correction for short-read sequencing data using
CUDA. Procedia Computer Science. 2012;1(1):1129–1138.

[105] Shah AR, Chockalingam S, Aluru S. A parallel algorithm
for spectrum-based short read error correction. In: Parallel
& Distributed Processing Symposium (IPDPS), 2012 IEEE
26th International. IEEE; 2012. p. 60–70.

[106] Nikolenko SI, Korobeynikov AI, Alekseyev MA. BayesHam-
mer: Bayesian clustering for error correction in single-cell
sequencing. BMC genomics. 2013;14(Suppl 1):S7.

[107] Ilie L, Molnar M. RACER: Rapid and accurate correction of
errors in reads. Bioinformatics. 2013;p. btt407.

[108] Song L, Florea L, Langmead B. Lighter: fast and memory-
efficient error correction without counting. bioRxiv. 2014;.

[109] Heo Y, Wu XL, Chen D, Ma J, Hwu WM. BLESS: Bloom
filter-based error correction solution for high-throughput se-
quencing reads. Bioinformatics. 2014;p. btu030.

BIBLIOGRAPHY 183

[110] Milicchio F, Prosperi MC. HErCoOl: High-throughput Er-
ror Correction by Oligomers. In: Computer-Based Medical
Systems (CBMS), 2014 IEEE 27th International Symposium
on. IEEE; 2014. p. 227–232.

[111] Lim EC, Müller J, Hagmann J, Henz SR, Kim ST, Weigel
D. Trowel: a fast and accurate error correction module for
Illumina sequencing reads. Bioinformatics. 2014;p. btu513.

[112] Li H. BFC: correcting Illumina sequencing errors. Bioinfor-
matics. 2015;p. btv290.

[113] Duma D, Cordero F, Beccuti M, Ciardo G, Close TJ, Lonardi
S. Scrible: Ultra-Accurate Error-Correction of Pooled Se-
quenced Reads. In: Algorithms in Bioinformatics. Springer;
2015. p. 162–174.

[114] Sheikhizadeh S, de Ridder D. ACE: Accurate Correction of
Errors using K-mer tries. Bioinformatics. 2015;p. btv332.

[115] Ramachandran A, Heo Y, Hwu Wm, Ma J, Chen D. FPGA
accelerated DNA error correction. In: Proceedings of the
2015 Design, Automation & Test in Europe Conference &
Exhibition. EDA Consortium; 2015. p. 1371–1376.

[116] Fan L, Cao P, Almeida J, Broder AZ. Summary cache: a
scalable wide-area web cache sharing protocol. IEEE/ACM
Transactions on Networking (TON). 2000;8(3):281–293.

[117] Marinier E, Brown DG, McConkey BJ. Pollux: platform
independent error correction of single and mixed genomes.
BMC bioinformatics. 2015;16(1):10.

[118] Gu Y, Liu X, Zhu Q, Dong Y, Brown CT, Pramanik S. A new
method for DNA sequencing error verification and correction

184 BIBLIOGRAPHY

via an on-disk index tree. In: Proceedings of the 6th ACM
Conference on Bioinformatics, Computational Biology and
Health Informatics. ACM; 2015. p. 503–504.

[119] Rani PJ, Srikanth G. An Efficient Indexing Method for Box
Queries in NDDS Spaces using BoND-tree. IEEE TKDE.
2014;11(25):2629–2643.

[120] Miclotte G, Heydari M, Demeester P, Audenaert P, Fostier J.
Jabba: Hybrid Error Correction for Long Sequencing Reads
Using Maximal Exact Matches. In: Algorithms in Bioinfor-
matics. Springer; 2015. p. 175–188.

[121] Salmela L. Correction of sequencing errors in a mixed set of
reads. Bioinformatics. 2010;26(10):1284–1290.

[122] Zhao Z, Yin J, Zhan Y, Xiong W, Li Y, Liu F. PSAEC: an
improved algorithm for short read error correction using par-
tial suffix arrays. Frontiers in Algorithmics and Algorithmic
Aspects in Information and Management. 2011;p. 220–232.

[123] Larsson NJ, Sadakane K. Faster suffix sorting. Theoretical
Computer Science. 2007;387(3):258–272.

[124] Savel DM, LaFramboise T, Grama A, Koyutürk M. Suffix-
Tree Based Error Correction of NGS Reads Using Multiple
Manifestations of an Error. In: Proceedings of the Interna-
tional Conference on Bioinformatics, Computational Biology
and Biomedical Informatics. ACM; 2013. p. 351.

[125] Chen CC, Chang YJ, Chung WC, Lee DT, Ho JM. CloudRS:
An error correction algorithm of high-throughput sequencing
data based on scalable framework. In: Big Data, 2013 IEEE
International Conference on. IEEE; 2013. p. 717–722.

BIBLIOGRAPHY 185

[126] Gnerre S, MacCallum I, Przybylski D, Ribeiro FJ, Bur-
ton JN, Walker BJ, et al. High-quality draft assemblies
of mammalian genomes from massively parallel sequence
data. Proceedings of the National Academy of Sciences.
2011;108(4):1513–1518.

[127] Chung WC, Chang YJ, Lee D, Ho JM. Using geometric
structures to improve the error correction algorithm of high-
throughput sequencing data on MapReduce framework. In:
Big Data (Big Data), 2014 IEEE International Conference
on. IEEE; 2014. p. 784–789.

[128] David M, Dzamba M, Lister D, Ilie L, Brudno M. SHRiMP2:
sensitive yet practical short read mapping. Bioinformatics.
2011;27(7):1011–1012.

[129] Langmead B, Salzberg SL. Fast gapped-read alignment with
Bowtie 2. Nature methods. 2012;9(4):357–359.

[130] Ono Y, Asai K, Hamada M. PBSIM: PacBio reads sim-
ulator—toward accurate genome assembly. Bioinformatics.
2013;29(1):119–121.

[131] Allam A, Kalnis P, Solovyev V. Karect: accurate
correction of substitution, insertion and deletion errors
for next-generation sequencing data. Bioinformatics.
2015;31(21):3421–3428.

[132] Schreiber AW, Shi BJ, Huang CY, Langridge P, Baumann
U. Discovery of barley miRNAs through deep sequencing of
short reads. BMC genomics. 2011;12(1):129.

[133] Do CB, Batzoglou S. What is the expectation maximization
algorithm? Nature biotechnology. 2008;26(8):897–900.

186 BIBLIOGRAPHY

[134] Beißbarth T, Hyde L, Smyth GK, Job C, Boon WM, Tan
SS, et al. Statistical modeling of sequencing errors in SAGE
libraries. Bioinformatics. 2004;20(suppl 1):i31–i39.

[135] Dempster AP, Laird NM, Rubin DB. Maximum likelihood
from incomplete data via the EM algorithm. Journal of the
Royal Statistical Society Series B (Methodological). 1977;p.
1–38.

[136] Yin X, Song Z, Dorman K, Ramamoorthy A. PRE-
MIER—PRobabilistic error-correction using Markov infer-
ence in errored reads. In: Information Theory Proceedings
(ISIT), 2013 IEEE International Symposium on. IEEE; 2013.
p. 1626–1630.

[137] Yin X, Song Z, Dorman K, Ramamoorthy A. PREMIER
Turbo: Probabilistic error-correction using Markov inference
in errored reads using the turbo principle. In: Global Con-
ference on Signal and Information Processing (GlobalSIP),
2013 IEEE. IEEE; 2013. p. 73–76.

[138] Artyomenko A, Mancuso N, Skums P, Mandoiu I, Zelikovsky
A. kGEM: An Expectation Maximization Error Correc-
tion Algorithm for Next Generation Sequencing of Amplicon-
based Data. In: Proc. International Symposium Bioinformat-
ics Research and Applications; 2013. .

[139] Shen J, Cong Q, Grishin NV. The complete mitochondrial
genome of Papilio glaucus and its phylogenetic implications.
Meta gene. 2015;5:68–83.

[140] Wang C, Grohme MA, Mali B, Schill RO, Frohme M. To-
wards decrypting cryptobiosis-analyzing anhydrobiosis in the
tardigrade milnesium tardigradum using transcriptome se-
quencing. PloS one. 2014;9(3).

BIBLIOGRAPHY 187

[141] MacManes MD, Eisen MB. Characterization of the tran-
scriptome, nucleotide sequence polymorphism, and natural
selection in the desert adapted mouse Peromyscus eremicus.
PeerJ. 2014;2:e642.

[142] Alkio M, Jonas U, Declercq M, Van Nocker S, Knoche M.
Transcriptional dynamics of the developing sweet cherry
(Prunus avium L.) fruit: sequencing, annotation and expres-
sion profiling of exocarp-associated genes. Horticulture Re-
search. 2014;1.

[143] Gupta V, Markmann K, Pedersen CN, Stougaard J, Ander-
sen SU. shortran: a pipeline for small RNA-seq data analysis.
Bioinformatics. 2012;28(20):2698–2700.

[144] Henkel CV, Dirks RP, Jansen HJ, Forlenza M, Wiegertjes
GF, Howe K, et al. Comparison of the exomes of com-
mon carp (Cyprinus carpio) and zebrafish (Danio rerio). Ze-
brafish. 2012;9(2):59–67.

[145] Dominova I, Sorokin D, Kublanov I, Patrushev M,
Toshchakov S. Complete genome sequence of Salinar-
chaeum sp. strain HArcht-Bsk1T, isolated from hyper-
saline Lake Baskunchak, Russia. Genome announcements.
2013;1(4):e00505–13.

[146] Riedel T, Fiebig A, Petersen J, Gronow S, Kyrpides NC,
Göker M, et al. Genome sequence of the Litoreibacter arenae
type strain (DSM 19593T), a member of the Roseobacter
clade isolated from sea sand. Standards in genomic sciences.
2013;9(1):117.

[147] Xu Q, Chen LL, Ruan X, Chen D, Zhu A, Chen C, et al.
The draft genome of sweet orange (Citrus sinensis). Nature
genetics. 2013;45(1):59–66.

188 BIBLIOGRAPHY

[148] Jiao WB, Huang D, Xing F, Hu Y, Deng XX, Xu Q,
et al. Genome-wide characterization and expression anal-
ysis of genetic variants in sweet orange. The Plant Journal.
2013;75(6):954–964.

[149] Lada AG, Stepchenkova EI, Waisertreiger I, Noskov VN,
Dhar A, Eudy JD, et al. Genome-wide mutation avalanches
induced in diploid yeast cells by a base analog or an
APOBEC deaminase. PLoS Genet. 2013;9(9):e1003736.

[150] Fujimoto MS, Bodily PM, Okuda N, Clement MJ, Snell Q.
Effects of error-correction of heterozygous next-generation
sequencing data. BMC bioinformatics. 2014;15(Suppl 7):S3.

[151] Schatz MC, Maron LG, Stein JC, Wences AH, Gurtowski J,
Biggers E, et al. Whole genome de novo assemblies of three
divergent strains of rice, Oryza sativa, document novel gene
space of aus and indica. Genome biology. 2014;15(11):506.

[152] Coates RC, Podell S, Korobeynikov A, Lapidus A, Pevzner
P, Sherman DH, et al. Characterization of cyanobacterial hy-
drocarbon composition and distribution of biosynthetic path-
ways. PloS one. 2014;9(1).

[153] Rödelsperger C, Neher RA, Weller AM, Eberhardt G, Witte
H, Mayer WE, et al. Characterization of genetic diversity in
the nematode Pristionchus pacificus from population-scale
resequencing data. Genetics. 2014;196(4):1153–1165.

[154] Nguyen TT, Hayes BJ, Ingram BA. Genetic parameters
and response to selection in blue mussel (Mytilus gallo-
provincialis) using a SNP-based pedigree. Aquaculture.
2014;420:295–301.

[155] Nobu MK, Tamaki H, Kubota K, Liu WT. Metagenomic
characterization of ‘Candidatus Defluviicoccus tetraformis

BIBLIOGRAPHY 189

strain TFO71’, a tetrad-forming organism, predominant in
an anaerobic–aerobic membrane bioreactor with deteriorated
biological phosphorus removal. Environmental microbiology.
2014;16(9):2739–2751.

[156] Suzuki S, Horinouchi T, Furusawa C. Prediction of antibiotic
resistance by gene expression profiles. Nature communica-
tions. 2014;5.

[157] Hill-Cawthorne GA, Hudson LO, El Ghany MFA, Piepen-
burg O, Nair M, Dodgson A, et al. Recombinations in
Staphylococcal Cassette Chromosome ¡italic¿mec¡/italic¿ El-
ements Compromise the Molecular Detection of Methicillin
Resistance in ¡italic¿Staphylococcus aureus¡/italic¿. PLoS
ONE. 2014 06;9(6).

[158] Koch P, Platzer M, Downie BR. RepARK-de novo creation
of repeat libraries from whole-genome NGS reads. Nucleic
acids research. 2014;p. gku210.

[159] Busk PK, Lange M, Pilgaard B, Lange L. Several genes
encoding enzymes with the same activity are necessary for
aerobic fungal degradation of cellulose in nature. PloS one.
2014;9(12):e114138.

[160] Gilchrist AS, Shearman DC, Frommer M, Raphael KA, Desh-
pande NP, Wilkins MR, et al. The draft genome of the
pest tephritid fruit fly Bactrocera tryoni: resources for the
genomic analysis of hybridising species. BMC genomics.
2014;15(1):1153.

[161] Burke GR, Walden KKO, Whitfield JB, Robertson HM,
Strand MR. Widespread Genome Reorganization of an Ob-
ligate Virus Mutualist. PLoS Genet. 2014 09;10(9).

190 BIBLIOGRAPHY

[162] Kenny NJ, Namigai EK, Marlétaz F, Hui JH, Shimeld SM.
Draft genome assemblies and predicted microRNA comple-
ments of the intertidal lophotrochozoans Patella vulgata
(Mollusca, Patellogastropoda) and Spirobranchus (Pomato-
ceros) lamarcki (Annelida, Serpulida). Marine genomics.
2015;.

[163] Fitak RR, Mohandesan E, Corander J, Burger PA. The de
novo genome assembly and annotation of a female domes-
tic dromedary of North African origin. Molecular ecology
resources. 2015;.

[164] Le Duc D, Renaud G, Krishnan A, Almén MS, Huynen L,
Prohaska SJ, et al. Kiwi genome provides insights into evolu-
tion of a nocturnal lifestyle. Genome biology. 2015;16(1):1–
15.

[165] Fiebig A, Loof TG, Babbar A, Itzek A, Koehorst JJ, Schaap
PJ, et al. Comparative Genomics of Streptococcus pyogenes
M1 isolates differing in virulence and propensity to cause
systemic infection in mice. International Journal of Medical
Microbiology. 2015;305(6):532–543.

[166] Lambert D, Carrillo CD, Koziol AG, Manninger P, Blais BW.
GeneSippr: A Rapid Whole-Genome Approach for the Iden-
tification and Characterization of Foodborne Pathogens such
as Priority Shiga Toxigenic ¡italic¿Escherichia coli¡/italic¿.
PLoS ONE. 2015 04;10(4).

[167] Cong Q, Borek D, Otwinowski Z, Grishin NV. Tiger Swallow-
tail Genome Reveals Mechanisms for Speciation and Cater-
pillar Chemical Defense. Cell reports. 2015;10(6):910–919.

[168] Jünemann S, Prior K, Albersmeier A, Albaum S, Kalinowski
J, Goesmann A, et al. GABenchToB: A Genome Assem-

BIBLIOGRAPHY 191

bly Benchmark Tuned on Bacteria and Benchtop Sequencers.
PLoS ONE. 2014 09;9(9).

[169] Walter MC, Öhrman C, Myrtennäs K, Sjödin A, Byström
M, Larsson P, et al. Genome sequence of Coxiella burnetii
strain Namibia. Standards in genomic sciences. 2014;9:22.

[170] Nikolaichik Y, Gorshkov V, Gogolev Y, Valentovich L, Ev-
tushenkov A. Genome sequence of Pectobacterium atrosep-
ticum strain 21A. Genome announcements. 2014;2(5).

[171] Engel P, Stepanauskas R, Moran NA. Hidden Diversity
in Honey Bee Gut Symbionts Detected by Single-Cell Ge-
nomics. PLoS Genet. 2014 09;10(9).

[172] Aeschlimann SH, Jönsson F, Postberg J, Stover NA, Petera
RL, Lipps HJ, et al. The draft assembly of the radically or-
ganized Stylonychia lemnae macronuclear genome. Genome
biology and evolution. 2014;6(7):1707–1723.

[173] Kleigrewe K, Almaliti J, Tian IY, Kinnel RB, Korobeynikov
A, Monroe EA, et al. Combining Mass Spectrometric
Metabolic Profiling with Genomic Analysis: A Powerful Ap-
proach for Discovering Natural Products from Cyanobacte-
ria. Journal of natural products. 2015;78(7):1671–1682.

[174] Grob C, Taubert M, Howat AM, Burns OJ, Dixon JL, Rich-
now HH, et al. Combining metagenomics with metapro-
teomics and stable isotope probing reveals metabolic path-
ways used by a naturally occurring marine methylotroph.
Environmental microbiology. 2015;.

[175] Neumann AM, Balmonte JP, Berger M, Giebel HA, Arnosti
C, Voget S, et al. Different utilization of alginate and other
algal polysaccharides by marine Alteromonas macleodii eco-
types. Environmental microbiology. 2015;.

192 BIBLIOGRAPHY

[176] Lada AG, Kliver SF, Dhar A, Polev DE, Masharsky AE,
Rogozin IB, et al. Disruption of Transcriptional Coactiva-
tor Sub1 Leads to Genome-Wide Re-distribution of Clus-
tered Mutations Induced by APOBEC in Active Yeast Genes.
PLoS Genet. 2015 05;11(5).

[177] Boudreau PD, Monroe EA, Mehrotra S, Desfor S, Ko-
robeynikov A, Sherman DH, et al. Expanding the Described
Metabolome of the Marine Cyanobacterium Moorea pro-
ducens JHB through Orthogonal Natural Products Work-
flows. PloS one. 2015;10(7).

[178] De Wit P, Pespeni MH, Palumbi SR. SNP genotyp-
ing and population genomics from expressed sequences–
current advances and future possibilities. Molecular ecology.
2015;24(10):2310–2323.

[179] Taniguti LM, Schaker PD, Benevenuto J, Peters LP, Car-
valho G, Palhares A, et al. Complete genome sequence of
Sporisorium scitamineum and biotrophic interaction tran-
scriptome with sugarcane. PloS one. 2015;10(6):e0129318.

[180] Li X, Fan D, Zhang W, Liu G, Zhang L, Zhao L, et al. Out-
bred genome sequencing and CRISPR/Cas9 gene editing in
butterflies. Nature communications. 2015;6.

[181] D’Agostino N, Golas T, Van de Geest H, Bombarely A, Da-
wood T, Zethof J, et al. Genomic analysis of the native
European Solanum species, S. dulcamara. BMC genomics.
2013;14(1):356.

[182] Ištvánek J, Jaroš M, Křenek A, Řepková J. Genome assembly
and annotation for red clover (Trifolium pratense; Fabaceae).
American journal of botany. 2014;101(2):327–337.

BIBLIOGRAPHY 193

[183] Yang R, Dai Z, Chen S, Chen L. MicroRNA-mediated gene
regulation plays a minor role in the transcriptomic plasticity
of cold-acclimated zebrafish brain tissue. BMC genomics.
2011;12(1):605.

[184] Zawada AM, Rogacev KS, Rotter B, Winter P, Marell
RR, Fliser D, et al. SuperSAGE evidence for CD14++
CD16+ monocytes as a third monocyte subset. Blood.
2011;118(12):e50–e61.

[185] Roccaro M, Ahmadinejad N, Colby T, Somssich IE. Iden-
tification of functional cis-regulatory elements by sequential
enrichment from a randomized synthetic DNA library. BMC
plant biology. 2013;13(1):164.

[186] Ollier M, Radosevic-Robin N, Kwiatkowski F, Ponelle F,
Viala S, Privat M, et al. DNA repair genes impli-
cated in triple negative familial non-BRCA1/2 breast can-
cer predisposition. American journal of cancer research.
2015;5(7):2113.

[187] Fertin G, Jean G, Radulescu A, Rusu I. Hybrid de novo
tandem repeat detection using short and long reads. BMC
medical genomics. 2015;8(Suppl 3):S5.

[188] Yan L, Wang X, Liu H, Tian Y, Lian J, Yang R, et al. The
Genome of Dendrobium officinale Illuminates the Biology of
the Important Traditional Chinese Orchid Herb. Molecular
plant. 2014;.

[189] Weirather JL, Afshar PT, Clark TA, Tseng E, Powers LS,
Underwood J, et al. Characterization of fusion genes and
the significantly expressed fusion isoforms in breast cancer
by hybrid sequencing. Nucleic Acids Research. 2015;p. 1.

194 BIBLIOGRAPHY

[190] Mulley JF, Hargreaves AD. Snake venom gland cDNA se-
quencing using the Oxford Nanopore MinION portable DNA
sequencer. bioRxiv. 2015;p. 025148.

[191] Engström PG, Tommei D, Stricker SH, Ender C, Pollard
SM, Bertone P. Digital transcriptome profiling of normal and
glioblastoma-derived neural stem cells identifies genes associ-
ated with patient survival. Genome medicine. 2012;4(10):1–
20.

[192] Cox MP, Peterson DA, Biggs PJ. SolexaQA: At-a-glance
quality assessment of Illumina second-generation sequencing
data. BMC bioinformatics. 2010;11(1):485.

[193] Rizk G, Lavenier D, Chikhi R. DSK: k-mer counting with
very low memory usage. Bioinformatics. 2013;p. btt020.

[194] Deorowicz S, Debudaj-Grabysz A, Grabowski S. Disk-
based k-mer counting on a PC. BMC bioinformatics.
2013;14(1):160.

[195] Marçais G, Kingsford C. A fast, lock-free approach for ef-
ficient parallel counting of occurrences of k-mers. Bioinfor-
matics. 2011;27(6):764–770.

[196] Zerbino DR, Birney E. Velvet: algorithms for de novo short
read assembly using de Bruijn graphs. Genome research.
2008;18(5):821–829.

[197] Bloom BH. Space/time trade-offs in hash coding with allow-
able errors. Communications of the ACM. 1970;13(7):422–
426.

[198] Fichot EB, Norman RS. Microbial phylogenetic profiling
with the Pacific Biosciences sequencing platform. Micro-
biome. 2013;1(1):10.

BIBLIOGRAPHY 195

[199] Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP,
Milton J, Brown CG, et al. Accurate whole human genome
sequencing using reversible terminator chemistry. Nature.
2008;456(7218):53–59.

[200] Hillier LW, Marth GT, Quinlan AR, Dooling D, Fewell G,
Barnett D, et al. Whole-genome sequencing and variant dis-
covery in C. elegans. Nature methods. 2008;5(2):183–188.

[201] Kozarewa I, Ning Z, Quail MA, Sanders MJ, Berriman M,
Turner DJ. Amplification-free Illumina sequencing-library
preparation facilitates improved mapping and assembly of
(G+ C)-biased genomes. Nature methods. 2009;6(4):291–
295.

[202] Yoo AB, Jette MA, Grondona M. SLURM: Simple linux util-
ity for resource management. In: Job Scheduling Strategies
for Parallel Processing. Springer; 2003. p. 44–60.

[203] Li R, Li Y, Kristiansen K, Wang J. SOAP: short oligonu-
cleotide alignment program. Bioinformatics. 2008;24(5):713–
714.

[204] Li H, Durbin R. Fast and accurate short read align-
ment with Burrows–Wheeler transform. Bioinformatics.
2009;25(14):1754–1760.

[205] Miller JR, Koren S, Sutton G. Assembly algorithms for next-
generation sequencing data. Genomics. 2010;95(6):315–327.

[206] Bradnam KR, Fass JN, Alexandrov A, Baranay P, Bechner
M, Birol I, et al. Assemblathon 2: evaluating de novo meth-
ods of genome assembly in three vertebrate species. Giga-
Science. 2013;2(1):1–31.

196 BIBLIOGRAPHY

[207] Darling AE, Tritt A, Eisen JA, Facciotti MT. Mauve assem-
bly metrics. Bioinformatics. 2011;27(19):2756–2757.

[208] Hernandez D, François P, Farinelli L, Øster̊as M, Schrenzel J.
De novo bacterial genome sequencing: millions of very short
reads assembled on a desktop computer. Genome research.
2008;18(5):802–809.

[209] Massingham T, Goldman N. simNGS and simLibrary–
software for simulating next-gen sequencing data; 2012.

[210] Holtgrewe M. Mason–a read simulator for second generation
sequencing data. Technical Report FU Berlin. 2010;.

[211] Huang W, Li L, Myers JR, Marth GT. ART: a next-
generation sequencing read simulator. Bioinformatics.
2012;28(4):593–594.

[212] Dohm JC, Lottaz C, Borodina T, Himmelbauer H. SHAR-
CGS, a fast and highly accurate short-read assembly algo-
rithm for de novo genomic sequencing. Genome research.
2007;17(11):1697–1706.

[213] Patel RK, Jain M. NGS QC Toolkit: a toolkit for qual-
ity control of next generation sequencing data. PloS one.
2012;7(2):e30619.

[214] Schmieder R, Edwards R. Quality control and preprocessing
of metagenomic datasets. Bioinformatics. 2011;27(6):863–
864.

[215] Mozilla Foundation. ’Epic Citadel’ Demo Shows
the Power of the Web as a Platform for Gam-
ing; 2013. Accessed: 2016-01-30. https:

//blog.mozilla.org/futurereleases/2013/05/02/

epic-citadel-demo-shows-the-power-of-the-web-as-a-platform-for-gaming/.

https://blog.mozilla.org/futurereleases/2013/05/02/epic-citadel-demo-shows-the-power-of-the-web-as-a-platform-for-gaming/
https://blog.mozilla.org/futurereleases/2013/05/02/epic-citadel-demo-shows-the-power-of-the-web-as-a-platform-for-gaming/
https://blog.mozilla.org/futurereleases/2013/05/02/epic-citadel-demo-shows-the-power-of-the-web-as-a-platform-for-gaming/

BIBLIOGRAPHY 197

[216] Tilkov S, Vinoski S. Node. js: Using JavaScript to build high-
performance network programs. IEEE Internet Computing.
2010;(6):80–83.

[217] Goecks J, Nekrutenko A, Taylor J, et al. Galaxy: a com-
prehensive approach for supporting accessible, reproducible,
and transparent computational research in the life sciences.
Genome Biol. 2010;11(8):R86.

[218] Sims D, Sudbery I, Ilott NE, Heger A, Ponting CP. Se-
quencing depth and coverage: key considerations in genomic
analyses. Nature Reviews Genetics. 2014;15(2):121–132.

[219] Peng Y, Leung HC, Yiu SM, Chin FY. IDBA–a practical
iterative de Bruijn graph de novo assembler. In: Research
in Computational Molecular Biology. Springer; 2010. p. 426–
440.

[220] Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ,
Birol I. ABySS: a parallel assembler for short read sequence
data. Genome research. 2009;19(6):1117–1123.

[221] Hoffmann S, Otto C, Kurtz S, Sharma CM, Khaitovich P,
Vogel J, et al. Fast mapping of short sequences with mis-
matches, insertions and deletions using index structures.
PLoS computational biology. 2009;5(9):e1000502.

[222] KA W. DNA Sequencing Costs: Data from the NHGRI
Genome Sequencing Program (GSP); 2014. Accessed: 2014-
04-20. .

[223] Gotoh O. An improved algorithm for matching biological
sequences. Journal of molecular biology. 1982;162(3):705–
708.

198 BIBLIOGRAPHY

[224] Aarno D, Zeek E, Smoot M. Templatized C++ Command
Line Parser Library; 2013. Accessed: 2014-01-10. .

[225] Chaisson MJ, Tesler G. Mapping single molecule sequenc-
ing reads using basic local alignment with successive refine-
ment (BLASR): application and theory. BMC bioinformat-
ics. 2012;13(1):238.

[226] NCBI. The NCBI C++ Toolkit; 2014. Accessed: 2014-02-09.
.

[227] YourKit. YourKit Java Profiler; 2014. Accessed: 2014-04-09.
http://www.yourkit.com/overview/index.jsp.

[228] EJ-Technologies. EJ-Technologies JProfiler; 2014. Ac-
cessed: 2014-04-09. http://www.ej-technologies.com/

download/jprofiler/files.

[229] Margulies M, Egholm M, Altman WE, Attiya S, Bader JS,
Bemben LA, et al. Genome sequencing in microfabricated
high-density picolitre reactors. Nature. 2005;437(7057):376–
380.

[230] Kumar S, Blaxter ML. Comparing de novo assemblers for
454 transcriptome data. BMC genomics. 2010;11(1):571.

[231] Earl D, Bradnam K, John JS, Darling A, Lin D, Fass J, et al.
Assemblathon 1: a competitive assessment of de novo short
read assembly methods. Genome research. 2011;21(12):2224–
2241.

[232] Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M,
Lander ES, Getz G, et al. Integrative genomics viewer. Na-
ture biotechnology. 2011;29(1):24–26.

http://tclap.sourceforge.net/
http://www.ncbi.nlm.nih.gov/toolkit
http://www.yourkit.com/overview/index.jsp
http://www.ej-technologies.com/download/jprofiler/files
http://www.ej-technologies.com/download/jprofiler/files

BIBLIOGRAPHY 199

[233] Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, Ra-
jandream MA, et al. Artemis: sequence visualization and
annotation. Bioinformatics. 2000;16(10):944–945.

[234] Chevreux B, Wetter T, Suhai S. Genome sequence assembly
using trace signals and additional sequence information. In:
German Conference on Bioinformatics; 1999. p. 45–56.

	Introduction
	Motivation
	Objectives
	Contributions
	Published Contributions

	Document Organization

	State of the Art
	Motivation
	Sequencing Technologies
	Illumina/Solexa
	Roche 454
	Ion Torrent/PGM
	Abi SOLiD
	Pacific Biosciences
	Oxford Nanopore

	Errors in NGS
	GC Content

	Benefits of Error Correction

	Error Correction
	Approach
	Conditions

	Technology support
	Software Categories
	K-Spectrum Based (ksb)
	Suffix Trie/Array Based (stab)
	Multiple Sequence Alignment Based (msab)
	Read Cluster Based (rcb)
	Probabilistic Models Based (pmb)
	Recommendations

	Discussion
	Challenges
	Data Preparation and Post-processing Steps
	K-mer
	Repetitive Regions
	Ploidy
	Read Trimming and Splitting
	Unknown/Uncalled Bases
	Low-Coverage Regions and Uniformity
	Parameters
	Single Threaded vs Parallel
	Operating System and Programming Language
	License and availability:
	Recommendations

	Testing
	Methods
	Gain/Specificity/Sensitivity
	Assembly
	Genomes Used for Testing
	Real vs. Artificial Datasets
	Resource Consumption
	Testing details
	Recommendations

	MuffinEC - Error Corrector
	Materials and Methods
	k-mers Count and Histogram
	Initial Reads Grouping
	Greedy Grouping
	Group Refining
	Error Correction

	Calculations
	Implementation
	Parameters

	Results and Discussion
	Testing Methodology
	Resource Consumption Testing
	Scalability
	Profiling
	Parameter Robustness

	Short Aligning Results
	Assembly Results
	Unknown Bases
	Resource Demands

	Discussion and Conclusion

	MuffinInfo - NGS Information Extractor
	Methods
	Extensibility
	Results
	Conclusion

	Conclusion
	Published results
	Software

	Error correction in real projects
	Recommendations

	External Testing of Error Correctors
	Testing Methods for Correctors
	Correctors' Performance

