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Abstract 
Reinforced concrete shells for industrial and civil buildings roofings should carry 
considerable value of concentrated loads of suspended transport, technological equipment, 
suspended ceiling and so on. In this paper engineering methods to solve the problems of 
analysis of bearing capacity dealing with deformed state of reinforced concrete smooth and 
ribbed shallow shells of positive Gaussian curvature under action of concentrated load are 
considered. The solution of problems is executed on the basis of a kinematic method of 
limit equilibrium [1] in nonlinear statement with some possible schemes of failure found 
experimentally [2]. Round in the plan reinforced concrete shallow shells of positive 
curvature under the action of the concentrated load applied in the top, fail with formation of 
complete radial or local failure schemes. In the complete scheme of destruction radial 
cracks locate at full height of the shell, including a basic ring in which the reinforcement 
amounts to ultimate tensile strength. Experimental investigation carried out on models and 
full scale structures have shown that the local failure schemes  peculiar to more thin and 
shallow shells. For this shells the outline in the plan was of no importance if the zone of 
failure not border upon the contour. The zone of failure is surrounded with the ring crack 
formed in result of eccentric compression of sections, perpendicular to radial ones. In ring 
direction near to edge of a failure zone in ultimate state the reinforcement of the shell 
amounts to ultimate tensile strength. Bearing capacity of ribbed shells considerably grows 
in comparison with smooth shells. The concentrated load, as a rule, is applied in the places 
of crossing of longitudinal and transversal ribs of a shell (Fig. 1). 
 
Keywords: carrying capacity, smooth and ribbed shells, concentrated load, nonlinear 
analysis, method of limit equilibrium, local failure schemes, reinforced concrete, ultimate  
load, deformed state, plastic yield hinges, model studies, long-time load. 
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Figure 1: General view of failure zone of shallow shell under action of concentrated load 
a) smooth shell; b) ribbed shell. 

 
1. The smooth shallow shells of positive Gaussian curvature 
 
Let's consider for example the plastic deformation and carrying capacity analysis of 
reinforced concrete spherical shells under action of concentrated load in nonlinear 
statement. Experimental investigation carried out on models and full scale structures have 
shown that under concentrated load local failure of the conic form with peak in the place at 
application of this load is observed. 
In this shells the failure zone is limited by a ring cracks with the formation of plastic yield 
hinges, bear eccentric compression. 
For smooth spherical shell with rise f1 and radius of curvature R1 (Fig. 1,a) we can find the 
radius of failure zone using formula: 

r1 = 1.1 D1 +δR   ,                                                               (1) 
where: D - diameter of the punch for applying of concentrated load. 

Let accept for calculation convenience that a surface of the shell is a paraboloid of 
revolution with thickness δ and rise f1, described by equation: 

z = η ( x2 + y2), where η = r1 / f1
2 

In process of deforming of rigid-plastic shell it is possible two principle stage, if we 
consider this process as succession of limit stage (Fig. 2) [3]. 
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Figure 2: Stages of deforming of shallow shell under action of concentrated load. 

 
The first stage lies in interval from beginning of deforming to a moment when central part 
of the shell will touch with PAR (plane of axes of rotation) and is characterized by 
inequality: 

0 < w0
′ t ≤ C, 

here w0
′ t - a deflection of the shell; C - the applicata of the PAR (Fig. 2,a). 

At the first stage of the deforming the value of limit load may be determined by formula: 

             P1 = 2 π ( m + n tc ) + 2 π qs f1  [1 + k1
2 ( 2 k1 - 3 ) / ( k1 + 1 )2 - 

                         - 3 w∗ ( k1
2 - 2 k1 + k + 1 ) / ( 2 k + 2 ) ] / 3,                               (2) 

where w* = w0' t / f1 

In a limit state with w* = 0, i.e. for ideal rigid-plastic scheme: 

                Plim = 2 π M + 2 π qs f1 [1 + k1
2 ( 2 k1 - 3 ) / ( k + 1 )2 ] / 3,               (3) 

where    M = m + n f1 [1 - k1
2 / (k + 1) 2 ] .   

In (2, 3): k = Rb (δ - α′) + q’s / qs ;    k1 = 1 + n / qs;  
n and m - linear values of normal forces and bending moment in eccentrically compressed 
section of the shell in the circular plastic hinge; qs - linear force in reinforcement of tensile 
zone is equal  As Rs; As – reinforcing steel area and Rs – design strength of tensile 
reinforcement; q’s – linear force in reinforcement of compression zone is equal 0,5 As R’s; 
R’s – design strength of compression reinforcement; Rb – prism strength of concrete;           
tc –  distance from circular plastic hinge (base of cone) to PAR (the plane of axis of 
rotation); a’ – distance from lower surface of the shell to the reinforcement net. 
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Considering (2) we can see that when a local scheme of failure is used, increase of 
deflection involves decrease of value of load P, as in the case of failure of the shell along 
all its surface, and that means instability of equilibrium. 
A load Plim (3) may be named “Upper critical limit load”. 
Let’s find the value of the load P1′, when its mean part will touch with PAR.  
Position of PAR in determined by applicata C: 

C = w0
′ t = f1 k1 / ( k + 1 ),  and  wcr

∗ = k1 / ( k + 1 )                                               (4) 
Substituting a value of wcr

∗ to (3) we shall have: 

P1′ = 2 π M′ + 2 π qs f1 [ 1 + ( k1
3 - 3 k1 k - 3 k1 ) /  (2 + 2k )2 ] / 3,                   (5) 

where M′ = m + n f1 [1 - k1 / (k + 1) ]. 
 

If deflection of the centre of shell w0
′ t > C then  PAR crosses twice a section of the shell, 

and second state of deforming begins (Fig. 2,a). 

For this state we shall obtain following equation for estimation the value of  limit load PII: 

PII = 2π (m + n tc) + 2π qs  [ λ ( k + 1 ) + γ r ] / r1                                        (6) 

Here: λ = l1 (C1 - a r1 ) - η ( l1 - l2 )3 / 3 + a ( l1  + l2)2 / 2 + l2 (η l2 / 3 - a / 2); 
                   γ = η r2 / 3 + a r1 / 2 - C1;            a = (C1 - η l2

2 ) / ( r1 - l2  ),                   (7) 
where:           l1 = r1 k1 / ( k + 1 ). 
According the deflection  w0′ t we shall obtain  l2 and  С1 from equations: 

              l2 = w0′ t / (2 r1 η ) - l1 / 2;          C1 = η l2
2  + w0′ t ( r1 - l2 ) / r1                             (8) 

The load P1′ (5) is recommended as designing for spherical shells. The formula (6) for PII  
are used for calculation of carrying capacity of the shell of positive Gaussian curvature with 
different main radii of curvature R1 and R2 (Fig. 3). 

Originally, for smaller radius of curvature (for example, R1) calculation of bearing capacity 
of shell P1

' under the formula (5) is conducted. Basic unknowns during calculation of  M are 
the meanings of limiting values of  bending moment  m and normal forces  n on border of a 
failure zone. 
Meanings  n determine from a condition of balance of internal forces, thus accept ξ = ξR. 
(Here  ξ - relative height of a compressed zone of concrete in section, and ξR is limiting 
meaning, at which the destruction of a compressed zone of concrete and tensile 
reinforcement can come simultaneously). Bending moment m find rather middle axis of 
section. 
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Figure 3: Stages of  deforming of shallow shell of positive Gaussian curvature under action 

of concentrated load: a, b – in directions of radius R1 and R2; c – reinforcement in cross 
section. 

The angle of rotation of edge of shell in result of a deflection of centre of  shell on value 
w0

′t = C  at hinged fastening of a contour would be ϕ = C / r. Elastic fixing of edge causes 
the angle of rotation  ϕ′ = ϕ / 2 [4]. In this case on a contour of failure zone there is the 
moment M = i ϕ′, where i - moment from unit angle of rotation of edge of shell. 
 We shall find the "elastic" characteristics of edge of a shell: 

                 i = β / (2α3);        α = 1.306 / (R1δ) 0.5;        β = 0.8 Ebl / R1
2.                     (9)  

According to the normative documents accept usually 
                                                Ebl = 0.75 Eb ϕb1 / ϕb2,                                                (10) 

where Eb - initial module of deformation of concrete; ϕb1 and ϕb2 - factors, taking into 
account increase of deformations of structure due to short-term and long-term creep of  
concrete. Factor 0,75 takes into account heterogeneity of concrete and probable 
imperfections of thickness of  structure. As usual ϕb1 = 0.85; ϕb2 = 2. 
By substituting in expression for meaning  C from (4), we shall receive: 

M = i f1 k1 / [2r1 (k + 1)]                                                             (11) 
At correctly chosen meaning of height of a compressed zone in considered eccentrically 
compressed section with small eccentricities the meaning of moments m and M from (11) 
should coincide. Their coincidence is searched by the step-by-step method using variation 
of meanings ξ ≥ ξR. Found meanings " m = M " and "n" substitute in (5) for determination 
of value P1

′. 
We similarly find from (5) value P1

′ for the shell with radius of curvature of other direction 
R2 and rise f2 (Fig. 3,b). If it will appear, that the deflection of the shell with radius R2 will 
be larger than one of the shell with radius R1 (w2 > w1), as a critical deflection of all system 
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is accepted maximum of calculated deflections (w2 = wcr). In this case the limiting 
deformed state of the shell with radius R1 is responsed to a stage, resulted on Fig. 3,a, when 
the centre of an shell is located below PAR and it twice crosses the cross section. As it was 
shown above, in this case, the value of limit load PII should be determined under the 
formula (6). The same analysis but for a shell with radius of curvature R2 it is necessary to 
carry out in case will appear, that the deflection of an shell with radius R1 will be greater. 
Receiving the values of limit loads for spherical shells with radii of curvature R1 and R2, the 
value of limit load P for the considered shell, we shall find as their half-sum. 
As an example we shall choose smooth reinforced concrete shell (Fig.1,a and 3) and we 
shall nominate the geometrical and strength-producting properties of the basic variant of the 
shell structure to value of carrying capacity of which we shall hereinafter compare results 
of multi-alternative analyses when changing parameters of curvature of surface [6]. For the 
basic variant radii of curvature of a structure R1 and R2 have accepted of 23.4 m and 46.8 m 
respectively (R1:R2 = 1:2) and thickness of shell  δ = 6 cm. The shell is reinforced with two 
layers of  welded  fabric  of  wire of ∅4 mm, located with space of 10 cm in both directions 
(As = As′ = 0.0126 cm2/cm). The fabrics are located equally spaced 1.5 cm from the top and 
bottom surface of the shell (a′=1.5 cm, ho = 4.5 cm Fig. 3,c). The strength of the 
reinforcement was Rs = 365 MPa. The shell is carried out of concrete with the prism 
strength of Rb = 14.5 MPa (class of concrete B25 according to Russian Codes). 

For the basic variant the analysis has shown the carrying capacity of P = 72.05 kN. The 
values of a failure zone are given by the dimensions of half-axes of elliptic failure scheme 
(Fig.1,a) r1 = 137.84 cm and r2 = 191.83 cm. 

Initial rises of  part of a shell in  zone of failure (Fig 3,a,b) have been of f1 = 4.813 cm and 
f2 = 4.683 cm. The deflection of point of load application to the moment of failure has 
amounted to wcr = 4.597 cm, that confirms essential deformation of a surface of shell and 
necessity of taking into account of a deformed state.   
 
 
 

The diagram of relationship of value of ultimate 
load P on the ratio of radii of curvature R2/R1 (R1 = 
const) are shown in Fig. 4, where it can be noted 
that with increase of R2/R1 the carrying capacity of 
shell  decreases  almost  linearly  up to R2/R1=2.2,  
and then it does not change practically. It is 
connected with that for a shell  with R2=R1×2.2 in 
limit state the deflection wcr is found equal to the 
rise of shell f2 (Fig. 4). The further increase of 
curvature radius value R2 only approaches the 
behavior of such shell to cylindrical one with 
radius of curvature R = R1. It is established by the 
analyses that the carrying capacity of such 
cylindrical shell has been of P=68.15 kN, while the 
shell of positive Gaussian curvature with R2/R1=4 
had the carrying capacity of P=68.26 kN (Fig.4). 

 

Figure 4: Relationship of carrying 
capacity of smooth shallow shell on 
the ratio of radii of curvature. 
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2. The ribbed shallow shells of positive Gaussian curvature 
In reinforced concrete ribbed shell of Positive Gaussian curvature concentrated load is 
applied in the place of crossing of longitudinal and transversal ribs of a shell (Fig.1,b). In 
the limit state the local failure of the conic form with peak in a place of the application of 
concentrated load is observed [7]. The failure zone is limited by a ring crack crossing the 
ribs with formation in them of plastic yield hinges. The sections of ribs in these plastic 
hinges bear eccentric compression, thus compressed zone of ribs, as a rule, is crushed 
earlier, than yield in the reinforcement of ribs is reached. In place of the location of 
concentrated load the plastic hinge will be also formed, however the bending moment plays 
a more substantial role here and first the lower reinforcement of ribs reaches the yield. 

In ribbed shell the main part of the 
concentrated load is perceived by ribs 
together  with a part of  shell plate. The 
ultimate load can be found from equality 
of work of external and internal forces on 
the appropriate displacements in the 
failure zone. As an example the formula 
for definition of ultimate value of 
concentrated load applied to ribbed shell 
is given. The scheme of forces interaction 
in the zone of failure under action of  
concentrated load are shown in the Fig. 5. 
Location of plastic hinges are determined 
by angular coordinates ξy

0 and ξx
0. If one 

denotes distances from the points of force 
application to the plastic hinges by ly and 

lx, then angular coordinates in radians 
can be found from expressions:  
 

                                                ξy
0 = ly / Ry ;   ξx

0 = lx / Rx,                                                  (12) 
ly = 1.71 (4 Iny Ry

2 / δnx )1/2 ;   lx = 1.71 (4 Inx Rx
2 / δny )1/2 ,                      (13) 

where Iпy and Iпx – inertia moments per unit with the shell cross section. Crossing 
respectively by planes ZOX and ZOY; δnx and δny – transformed shell thickness in sections, 
crossing accordingly by planes ZOY and ZOX. When determining the ultimate load value 
P the strength of two mutually perpendicular section along ribs is considered (Fig. 1,b). It 
was anticipated in this case, that the rib, being in Y direction, together with a part of shell 
plate, adjoining it, would perceive a part of total load Py, while the rib of another direction – 
Px [9]. 

Py = 2 [2 Rx
2 qsy (ξx

0 - sinξx
0) + Ny Ry (1 / cosξy

0 - 1) + Rs Asy zsy+ My + mk Y ] / (Ry tgξy
0)    

(14) 
Here: Rx , Ry – radii of shell curvature up to middle surface of the shell plate; qsy linear 
force, perceiving the reinforcing steel located in the tensile zone of the shell plate; Asy – 
bottom reinforcement of the rib in the sections under concentrated load; Rs – its design 
strength; zsy – distance from rib reinforcement to the middle of shell plate; My – ultimate 

Figure 5: The scheme of forces interaction  
in the failure zone under concentrated load. 
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moment perceiving by the rib in the ring hinge under eccentric compression; mk – value of 
the linear bending moment in the ring plastic hinge of shell plate; X, Y parameters, taking 
into account the for and sizes of the ring hinges. 
Ultimate load part Px is defined similarly to (14) with substitution of indices indicating the 
direction of forces.  
Summary ultimate load:                   P = Px + Py                                                                (15) 
The deflection value directly does not enter into formulas for  Px and Py, however all 
geometrical parameters, and also the values of M and N corresponding with deformed state 
of shells in a stage close to failure. The  values of N and M calculate simultaneously with 
deformations of system by the method of successive approximation to the ultimate value  N 
and M laying [7]. The analysis of deformed state of the shell in the failure zone make for 
conditional arches representing of the ribs of shell in the direction of axes X and Y with 
parts of the shell plate and rises fx and fy. In the general cases deformation wx and wy are not 
equal among themselves. For a critical deflection of all system the maximal size of a 
deflection is accepted. Angular coordinates ξy

0 and ξx
0 and radii of curvature Rx and Ry 

recalculate according to the found critical deflection and together with the found ultimate 
values Mx, My, Nx and Ny substitute in the equation (14) and obtain the carrying capacity of 
the ribbed shells under concentrated load action with regard to deformation of the system 
by the moment of failure. 

The algorithms for program based on this analysis are worked out for personal computers. 
Using this program the multi-alternative analyses are carried out, in which varied: ratio of 
radii of curvature Rx / Ry; depth of ribs hx and hy, including flange; thickness of flange hf; 
reinforcement of ribs Asx, Asy, A’sx, A’sy; reinforcement of ribs in the joint under 
concentrated load Aspx, Aspy; specific ultimate tensile forces of the reinforcing wire fabrics in 
the flange qsx, qsy; strength of concrete Rb [6]. 

As the basic variants of analysis of ribbed shells of Positive Gaussian curvature with the 
dimensions of 18x24 m in plane is accepted. Such shells were applies as roof of industrial 
buildings, in which concentrated load are transferred to shells from suspended crane 
equipment. Radii of curvature for shell are Rx = 39,01m and Ry = 23,96 m. The rib spacing 
in  direction of X-axis is 3.0 m, and in Y-direction of 6.0 m. The ribs have trapezoidal cross 
section, their dimensions and reinforcement are shown in fig. 6. The reinforcing  bars are 
accepted of class A-III (according to Russian Codes) with strength of Rs = 365 MPa. The 
shell is made of concrete with strength of Rb = 14.5 MPa.  

 

Figure 6: The constructive schemes of ribs for ribbed shell. 
a) the longitudinal ribs; b) the transversal ribs. 
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In result of the computation of carrying capacity of the basic variant of shell the ultimate 
value of concentrated load P =154.96 kN is received (Fig.7). 
 

 
 
 
 
 
 
 

 
 
 
 
 
In this case the 
rib, located in direction of X-axis, with a part of field contiguous to it (flange), supports the 
part of complete load Px = 61.56 kN, and the rib of other direction - Py = 93.39 kN. The 
dimensions of failure area are determined in distances to plastic hinges:  lx = 300 cm and ly 
= 294.7 cm.  

The relationships of value of ultimate load P and its components   Px  and  Py   from  the  
ratio of  radii of curvature  Rx/Ry   from 1 up to 4 are for this shell resulted in fig. 7, where it 
can be noted that with increase of value Rx/Ry (Ry = const) the carrying capacity decreases 
almost linearly up to Rx/Ry = 2.5. Further increases of value Rx/Ry, especially in range from 
3 up to 4, does not result in appreciable decrease of ultimate load. It is explained by that 
when Rx = 3Ry the coming of the limit state is accompanied by the shell deflection w under 
force, equal  rise of shell in the failure area in direction of X-axis. For this case the ultimate 
load is rather close to the carrying capacity of ribbed cylindrical shell with radius R = Ry = 
23.96 m and the same geometrical characteristics of ribs and the same reinforcement, the 
difference between them is 1.7 % only. 
 
3. The influence of long-time load action 
Since the estimation of the ribbed shell carrying capacity is done according to upper 
critical load it is advisable to evaluate possible growth of deflection as a result of long-time 
load action. Investigation of effect of concentrated long-time load action on reinforced 
concrete shell carrying capacity was experimentally conducted on reinforced concrete 
model 2 × 2 m [7]. The model was a ribbed shallow shell with the field 6 m thick and ribs 
30 m high and spacings 50 × 50 m. The shell was loaded by means of a lever device with 
concentrated load applied at the point of ribs intersection. Similar models had been studied 
and tested till failure under short time effect of concentrated loading. Long-time load P1t  = 
5,56 kN made up 0,77 at short time failure load Pst. By the moment of loading the concrete 
prism strength was 39,3 MPa, modulus of elasticity E = 26100 MPa. The model was 
covered with waterproof layer: the test was conduct on constant temperature and humidity 
of working premises. Model failure occurred on 129 day since  the moment of loading. The 

Figure 7: Relationship of 
carrying capacity of ribbed 
shell on the ratio of radii of 
curvature Rx /Ry. 
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shell deflection diagram in the point of concentrated load action after loading and in 
process of long-time deformation during t = 129 days is presented in Fig 8,a.  

 
Figure 8: The shell deflection diagram (a) and curve of the time depended strains (b). 

Upon the loading shell deflection was 6,8 mm and prior the failure – 19,1 mm, i.e. 
increased by 2,8 times. As shown in Fig. 8,a, the most significant increase in deflection 
was observed during the first 17 days upon loading. If the deflection value prior to the 
moment of failure is to be assumed as 100 %, then upon 17 days the deflection increases 
by 15,7 %. During a long period of secondary creep (about 109 days) the deflection was 
monotonously growing and increased by 32 %. Upon 126 days the stage of deflection 
dramatic growth began. For only 3 days the deflection grew 16 mm to 19,1 mm, i.e. by 16 
% with subsequent failure. Relative fibre strain diagrams in section along the loaded rib are 
given in Fig. 9 (a – upper surface, b – lower surface). 
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Figure 9: Relative fibre strain diagram in section along the loaded rib. 

In Fig. 9,a – curve 1- relative strain at once after loading; 2 – over 52 days; 3 – over 70 
days; 4 – over 110 days; 5 – on 128 days. The diagrams have the same nature as under the 
short-time load test. Maximum values of compression and tension stresses correspond to 
location of central (under concentrated load) and support (at points of intersection with 
ring crack) plastic hinges. In support hinges relative strains of compressed concrete on 
underside of ribs of ribs at the moment of loading of  the rest were (120…140) 10-5, and 
increased like deflections to the moment of failure by 2,3 – 3 times. The curve of the time 
depended strains is presented in Fig. 8,b. 

The model failure diagram is similar to those previously obtained under short-time load 
test through the model deflection is essentially greater. It becomes understandable with 
analysis of section stressed states in support plastic hinges of the rib. 

Under long-time loading the normal forces in plastic hinges are essentially less than those 
render short-time loading since the sustained load is only a part of the temporary one. The 
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limit state of the eccentrically compressed section is reached at the expense of moment 
component primary grown directly depending on deflection growth in the failure zone. 

 
Figure 10: Graphical determination of moment of achievement of ultimate state of rib 

cross-section on contour failure zone. 

It is seen from Fig. 10 that curve 1 reflecting the time-depending growth of moments and 
normal forces in the rib section in the failure zone has intersected curve 2 representing 
section strength under eccentric compression, at point with coordinates M = 19,2 kN⋅cm 
and N = 10,90 kN. It is characteristic of the given failure that design combination of 
ultimate moments and normal force corresponds to the case of eccentric compression with 
considerable eccentricities while under short-time loading rib section failure always 
occurred with eccentric compression at small eccentricities (point 3 on curve 2, Fig. 10). 
Comparison of design and actual deflections shows their closeness as well as critical time 
value prior to the moment of failure. The calculation has indicated that long-time ultimate 
load corresponding to critical time t → ∞ equals 4,24 kN that is 0,58 of short-time ultimate 
load. 

4. Conclusion 
Conducted researches have shown that smooth and ribbed reinforced concrete shell with 
surface of positive Gaussian curvature are capable to bear rather heavy concentrated load 
of the suspended equipment, including crane. The tests on models and full scale shell 
structures have confirmed local character of failure in a zone of the application of 
concentrated load. In that case of failure the values of ultimate load being rather close to 
real one can be received by numerical analyses using the method of limit equilibrium in 
nonlinear approach. Multi-alternative analyses, carried out by this method have allowed to 
reveal influence of the different factors, including geometry of surface, thickness of shell 
and depth of its ribs, strength of concrete and long-time effect of loading on carrying 
capacity of smooth and ribbed reinforced concrete shells. 
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