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Abstract 
Depending on their geometry, supports, material and loads configuration, shells can 
experience a reduction in the buckling load. If this happens, the shell is said to be sensitive 
to imperfections. Several approximate methods contemplate the phenomenon of instability 
in concrete shells, above all that which is based on the IASS Recommendations. In the 
latter there are some curves reflecting the influence of the initial geometric imperfections in 
the buckling load for simple geometric models, such as the sphere and the cylinder. In 
recent decades, different revisions of the Recommendations have been carried out referring 
to the way the value of the imperfections is quantified. However, new curves, which reflect 
the influence of imperfections in models with different geometries to those mentioned 
above, have not been stated. In this study, a method similar to that used by Dulácska and 
Kollár [1, 5] is implemented to determine the imperfection sensitivity factor in the case of 
shells with geometries such as a spherical dome and barrel vault. 
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1. Introduction 
The buckling load of shells constructed in homogeneous elastic material sharply decreases 
with increasing initial imperfection amplitude w0. This decrease is due to the magnitude of 
the imperfection itself and the eccentricity e0 of the compressive force caused by this 
imperfection. In the case of homogeneous material shells, the stiffness of the shell cross 
section is practically independent of the eccentricity, so it is sufficient to investigate only 
the decrease of the buckling load with increasing imperfection alone. However, the plastic 
deformation, the load bearing capacity provided by the shell wall, and the stiffness of the 
cracked reinforced concrete cross section are heavily dependent on the eccentricity of the 
normal force applied. The influence of the imperfection w0 and that of the eccentricity e0 of 
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the normal force may be dealt with separately. However, a relationship between both may 
be stated (Kollár and Dulácska [5]). 
In the late 70s, IASS Working Group No. 5 [3] devised a document of recommendations 
for reinforced concrete shells. The section on stability analysis includes a procedure based 
on the results of some previous research, particularly on the work of Kollár and Dulácska 
[4]. The procedure involves several factors which affect the linear buckling load to take into 
account geometric imperfection, creep and shrinkage of concrete, cracking, reinforcement 
and material non-linearity. Scordelis [9] and Medwadowski [8] observed that the method 
provides conservative results in the case of spherical domes. However, Kollár [6] compared 
the theoretical predictions with experimental results and found great similarity. The first 
review of the Recommendations was prepared by Kollár [7]. Years later, Medwadowski [8] 
went back to revise the initial and the Kollár proposals, presenting some modifications and 
suggestions. 
These analytical solutions have the advantage of using abacuses and simple formulas to 
obtain the buckling load, but have the disadvantage of predicting this type of behaviour 
only for certain theoretical cases (sphere and cylinder), not being able to deal with 
structures with other geometries. 
In this paper, the influence of imperfection on the buckling load is studied for the case of 
shells of different geometries (such as spherical dome and barrel vault) to those studied in 
the IASS Recommendations. 

2. Initial geometric imperfection 

2.1. Imperfection sensitivity factor for homogeneous elastic material 
The value of this factor is one if the shell is not sensitive to imperfection, and is otherwise 
less than one. The initial geometric imperfection sensitivity factor (ρhom = pcr

upper/pcr
lin) is the 

relationship of the upper critical load (pcr
upper) with respect to the buckling critical load for 

linear homogeneous material (pcr
lin). The parameters relating to plain concrete and 

reinforced concrete shells are denoted by ρc and ρrc, respectively. 
The calculation of ρhom is often difficult. Some cases may be found in technical literature. 
Figure 1 shows the variation of ρhom with respect to w0/e, where w0 is a measure of the 
imperfection and e is the thickness of the shell. The curves A, B and C belong to laterally 
compressed long (L2/Re = 10000), medium (L2/Re = 1000) and short (L2/Re = 100) 
cylinders, respectively, with L length and R radius. The curve D is for spheres and axially 
compressed cylinders. 
The initial imperfection consists of accidental imperfection w0,accid, due to erection 
inaccuracies, and calculable imperfection w0,calc, quantified by the bending theory of shells. 
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Figure 1: Initial geometric imperfection sensitivity factor (ρhom = pcr

upper/pcr
lin) in concrete 

shells, using concrete as homogeneous material (IASS Working Group No. 5 [3]) 

The maximum values of both imperfections are unlikely to coincide. According to the 
probability theory, the higher of the following values must be taken to chose the design 
imperfection w0,design (Kollár and Dulácska [5]) 
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Small deviations that may occur when estimating this design value are considered by using 
a safety factor. In the case of preferring a more conservative way of designing, both types 
of imperfections may be taken into account at the same time. 
To obtain w0,accid, Kollár and Dulácska [5] proposed the following expression 

 
3500,0

Rw accid ≈  (2) 

where 21RRR =  if the shell is double curvature, with R1 and R2 being the mean principal 
radii of curvature of the shell. In the case of a sphere, both radii have the same value. 
Eq. (2) is an approximate expression to quantify the accidental imperfection of a shell. 
Using this approach and modelling the shell by finite elements, the influence of the 
accidental imperfection may be stated by means of a geometric nonlinear analysis, which 
takes into account the effect of large displacements. However, it must be borne in mind that 
this equation is only valid for carefully erected shells (by using rigid formwork) and for R 
between 20 and 80 m approximately with the thickness between 50 and 70 mm. 
By the method of the IASS Recommendations, the linear buckling load Pcr

lin is used as a 
starting point, and the effect of large deformations is considered by the bending deflection 
of the shell (w0’= w0,calc = bending deflection), which may be estimated numerically or 
experimentally. Then, with the ratio deflection/thickness (w0’/e) and Figure 1, the upper 
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critical load pcr
upper for homogeneous elastic material is obtained. If the geometry of the 

shell does not match any of the curves shown in Figure 1, and in the absence of further 
information, the curve D for spheres and axially compressed cylinders must be used. 
Since the geometry of the actual shell differs from the theoretical design, if the post-
buckling effect is important, the IASS Recommendations propose to reduce the linear 
critical load in a similar way, i.e., estimating the deviation w0’’ = w0,accid on the surface and 
using the ratio w0’’/e and Figure 1. 
If both effects are present simultaneously, the reduction procedure must be performed at the 
same time using the geometric imperfection as w0 = w0’ + w0’’. 

2.2. Imperfection sensitivity factor for inhomogeneous nonlinear material 
So far, the influence of geometric imperfection on the critical buckling load of concrete 
shells has been studied, with concrete considered a homogeneous and linear material, 
although in reality this is not true. Creep, plasticity, reinforcement and cracking have an 
important role in the calculation. In order to quantify these effects in real structures, it is 
necessary to provide a correction in the sensitivity factor of homogeneous material ρhom by 
using several factors to modify the linear buckling load 
The method of the IASS Recommendations provides an approximation of the buckling load 
by applying factors to reduce the bifurcational critical load, also called linear buckling load, 
for a geometrically perfect shell, that is homogenous and made of linear elastic material. 
The design buckling load pd is obtained by applying four factors to the bifurcational load 

 crd pp 4321 ααααγ =  (3) 

where 
γ = factor of safety, 
pcr = bifurcational or linear buckling load, 
α1 = imperfection sensitivity factor, 
α2 = creep factor, 
α3 = cracking and reinforcement factor, and 
α4 = inelasticity of concrete factor. 
The linear buckling load pcr of the perfect homogeneous shell must be calculated 
accurately, preferably by a FEM linear elastic analysis. Loads, material, geometry, support 
conditions and, just in case, the structural elements connected to the shell must be 
represented in the FE model correctly. 

3. Imperfection sensitivity factor for several geometries of shells 

3.1. Introduction 
The curves of the influence of geometric imperfection in the critical buckling load of shells 
have only been defined for certain geometrical models (spheres and cylinders). For this 
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reason, in the absence of further information, the IASS recommends to use the safest curve 
(curve D for a sphere under radial pressure and axially compressed cylinder). However, this 
approach in most cases is too conservative. Thus, it may be useful to obtain new curves for 
other geometries in order to have a better approximation of their structural behaviour 
against imperfection. 
In this section, the curves for several geometrical models of single curvature are presented. 
Previously, validation of the method is performed by obtaining the curves corresponding to 
spheres and cylinders and by comparing them with the curves of the IASS 
Recommendations (Tovar [10]). 

3.2. Sphere and cylinder. Validation of analysis method 
To study the behaviour of the models against accidental geometric imperfection, the critical 
buckling load for each design is calculated by a linear analysis (pcr

lin) and a geometric 
nonlinear analysis (pcr

upper). Relating both results, the imperfection sensitivity factor (ρhom) 
is obtained for a given value of w0’’. 
Eq. (2) is used to quantify the accidental imperfection in the shell up to values of w0/e = 1 
and higher, although this level has not been exceeded in this work in order to state a 
methodology similar to that in the IASS Recommendations. Each design was analysed for a 
thickness of 50, 60 and 70 mm; these values being within the range of validity of Eq. (2). 
A tolerance of forces and displacements of 0.0001% has been used in the nonlinear analysis 
in order to obtain results with sufficient accuracy. 
A mesh size that leads to a relative error less than or equal to 1% in the critical buckling 
load has been chosen. It does not lead to an excessively large computational cost and the 
obtained results have an acceptable error. 
The influence of the boundary conditions in the model is not very crucial if the edges are 
not weaker than the shell itself, since most shells experience local buckling rather than 
global buckling (Kollár and Dulácska [5]). As a priori buckling behaviour of each shell is 
unknown, all designs have been analysed with different restrictions (degrees of freedom) at 
their edges. Figure 2 shows a graphical summary of ρhom for several thicknesses and 
boundary conditions. 
Using the validated method and following the same criteria stated in this section for the 
mesh size and the tolerance of forces and displacements, other usual geometrical 
configurations in the erection of shells are analysed. 

3.3. Barrel vault and cylindrical shell 
The influence of the imperfection is analysed for several boundary conditions to simulate 
different behaviour: barrel vault (supported on right edges) or cylindrical shell (supported 
on curve edges). The results are shown in Figure 3. 

3.4. Spherical domes 
In this section, the imperfection sensitivity is analysed considering several types of 
configurations for a spherical dome. Reduced domes are particularly interesting because 

1717



Proceedings of the International Association for Shell and Spatial Structures (IASS) Symposium 2009, Valencia 
Evolution and Trends in Design, Analysis and Construction of Shell and Spatial Structures 

 

their arches do not exceed the so-called neutral line, defined by the parallel between 
compressed parallels (upper cap) and tensioned parallels (lower cup). It is not usual to erect 
domes reduced more than 36º. Domes with an angle of 90º, 60º, 36º and 20º and a dome on 
a polygonal base with an angle of 36º have been used in this study (Figure 4). 
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Figure 2: Imperfection sensitivity factor. Sphere and axially compressed cylinder; laterally 
compressed short, medium and long cylinder. Thicknesses of 5, 6 and 7 cm. Hinged, 

clamped and free supports 

Simple boundary conditions such as those which have been used (hinges and clamps) have 
little influence on results. However, there are sometimes cases where the critical load of 
spherical domes is reduced, not only because of imperfections, but also because of the 
boundary conditions on which they are supported (Gioncu [2]). 
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Figure 3: Imperfection sensitivity factor (ρhom). (a) Cylindrical shells (C.S.) with hinged 
supports on curve edges. (b) Cylindrical shells (C.S.) with clamped supports on curve 

edges. (c) Barrel vaults (B.V.) supported on right edges 
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w0 = geometric imperfection; e = thickness; sb = square base; IASS = curves from IASS [3] 
Figure 4: Imperfection sensitivity factor (ρhom). Spherical domes 
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4. Conclusions 
The main conclusions of this study can be summarised in the following points: 
• Axially compressed models present the most unfavourable imperfection sensitivity 

factor, with a trend of the curves similar, or even below those in the IASS 
Recommendations for spheres and cylinders subjected to axial compression. Most 
models when laterally compressed, usually adopt intermediate values between the short 
and the long cylinder, except for the cases of spherical domes. 

• The behaviour of the spherical dome is mainly conditioned by the angle (taken from the 
ridge). The worst case is the hemisphere (with values slightly higher than the sphere). 

• There are no significant differences in the behaviour against imperfection between 
hinged and clamped supported shells. However, a reduction of the stiffness at the 
supports such as allowing horizontal displacement, presents a significant importance, 
since it causes a significant reduction in the imperfection sensitivity factor. 

• In general, a minimum configuration of supports provides an imperfection sensitivity 
factor near to one. However, significant changes in distribution and the number of 
supports may cause significant increases in imperfection sensitivity. 

• The IASS Recommendations to quantify the influence of geometric imperfection in 
shells whose behaviour is not known with certainty, by means of the curves for spheres 
and axially compressed cylinders, is too conservative. 
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