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Zeolites have been shown to be useful catalysts in a large variety of reactions, from acid to base and redox catalysis. e particular
properties of these materials (high surface area, uniform porosity, interconnected pore/channel system, accessible pore volume,
high adsorption capacity, ion-exchange ability, and shape/size selectivity) provide crucial features as effective catalysts and catalysts
supports. Currently, new applications are being developed from the considerable existing knowledge about these important and
remarkablematerials. Among them, those applications related to the development of processes with less impact on the environment
(green processes) and with the production of alternative and cleaner energies are of paramount importance. Hydrogen is believed
to be critical for the energy and environmental sustainability. It is a clean energy carrier which can be used for transportation and
stationary power generation. In the production of hydrogen, the development of new catalysts is one of the most important and
effective ways to address the problems related to the sustainable production of hydrogen. is paper explores the possibility to use
zeolites as catalysts or supports of catalysts to produce hydrogen from renewable resources. Speci�cally, two approaches have been
considered: reforming of biomass-derived compounds (reforming of bioethanol) and water splitting using solar energy.is paper
examines the role of zeolites in the preparation of highly active and selective ethanol steam reforming catalysts and their main
properties to be used as efficient water splitting photocatalysts.

1. Zeolites: Composition, Structure,
Properties, and Applications

Zeolites were �rst described in 1756 by the Swedish min-
eralogist Cronstedt [1]. However, the systematic research
efforts on synthetic zeolites were initiated by Barrer in the late
1930s [2, 3]. Barret offered the �rst classi�cation of zeolites
based on molecular size [4]. Inspired by the work of Barrer,
researchers at UnionCarbide developed synthesis procedures
for preparation of the �rst synthetic zeolites (i.e., zeolites A,
�, and �) that would �nd industrial applications [5–7].

Initially zeolites were applied as materials for drying
and separation substances. Later, with the development of
the concept of acid zeolite catalyst, in 1959, they were
used as catalysts in the isomerization of hydrocarbons [8].
Previously, Houdry et al. [9] used them in catalytic cracking

of hydrocarbons. Since the development of the �rst concepts,
to date many business processes based on zeolites as catalysts
have been implemented.e specialization and knowledge of
zeolites have grown so much that the International Zeolite
Association (IZA) was founded [10] and currently there are
numerous specialized scienti�c publications that collect not
only the current knowledge about these materials but also
their outstanding commercial application.

1.1. Composition and Structure. Zeolites are microporous
crystalline aluminosilicates whose chemical composition is
de�ned by the following general formula [11]:

M2/𝑛𝑛O; Al2O3, 𝑥𝑥 SiO2, and H2O, (1)

where M is a metal cation of valence 𝑛𝑛, 𝑥𝑥 𝑥 2 and 𝑦𝑦 𝑥 𝑦.
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F 1: Representation of the projection of the framework
structure of zeolites; (a) T-site connectivity only, (b) ball and stick,
(c) space �lling, and (d) (Si, Al) O4 tetrahedra.

Zeolite framework is formed from corner sharing
[SiO4]

4− and [AlO4]
5− tetrahedra which de�ne the cavities

and channels, in which the cations can be found coordinating
to the framework oxygens and/or water molecules. Figure 1
shows the different representations, typical of those used in
the literature, of the framework of one zeolite.

e ways to combine each tetrahedron are extremely
wide. e structure of the zeolite is de�ned by its corner
sharing tetrahedra of [SiO4]

4− and [AlO4]
5−, and these are

called secondary building units (SBUs) [12] (see Figure 2).
e utility of these constructions is that the angles and

distances of zeolites are contained in these SBUs, so the
structural characterization of one zeolite could be carried out
by examining the SBUs that it contains.ere are 16 different
SBUs, and the structure of each zeolite can be described using
one or more of these SBUs.

In zeolites, the organization of TO4 tetrahedra can result
in the formation of rings with different numbers of T atoms
(Si, Al). e most common rings are 4-T, 6-T, 8-T, 10-T, and
12-T; however, zeolitic structures containing 14, 18, and 30
member rings have been also synthesized [13–20].e size of
themicropores of the zeolite varies depending on the number
of members in the rings, between 4 and 12Å. On rings, T-O-
T angles vary mostly in the range 130∘–180∘.e �exibility of
this angle is one of the most important factors determining
the huge variety of existing zeolites.

1.2. Properties. Zeolites may act as molecular sieves, thus
one of their main physical properties is the porosity. e
microporous properties of zeolites make them present an
extremely large internal surface area in relation to their
external surface. Micropores are open to the outside allowing
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F 2: Basic secondary units (BSUs) to de�ne the structure of
zeolites.

the transference of matter between the intracrystalline space
and the surrounding environment.

Tridimensional networks of well-de�ned micropores can
act as reaction channels whose activity and selectivity will be
enhanced by introducing active sites. e presence of strong
electric �elds and controllable adsorption properties within
the pores will produce a unique type of catalyst, which by
itself can be considered as a catalytic microreactor.

e size of the pores and channels of zeolites ranges
between 4 and 12Å [21] and the channel system may be
mono-, bi-, or three-directional. Table 1 shows the classi�-
cation of zeolites based on the number of tetrahedrals that
form the pores and give access to the intracrystalline space
[22–25].

Summarizing, the main properties of zeolites are as
follows:

(i) high surface area,
(ii) molecular dimensions of the pores,
(iii) high adsorption capacity,
(iv) partitioning of reactant/products,
(v) possibility of modulating the electronic properties of

the active sites,
(vi) possibility for preactivating the molecules when in

the pores by strong electric �elds and molecular
con�nement.

1.3. Applications. Zeolites have a variety of industrial applica-
tions, especially as ion exchangers, adsorbents, and chemicals
catalysts.
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T 1: Zeolite classi�cation according to the pore size.

Zeolite classi�cation Number of the oxygen atoms in the opening ring Pore diameter (�) Example of zeolites
Small pore 8 3 < 𝜃𝜃 < 𝜃 Erionite, A, ITQ-3
Medium pore 10 𝜃 < 𝜃𝜃 < 𝜃 ZSM-5, ZSM-11, ITQ-1
Large pore 12 𝜃 < 𝜃𝜃 < 𝜃 X, Y, Beta, Ω, mordenite, ITQ-7, ITQ-21
Extralarge pore 18 𝜃 < 𝜃𝜃 MCM-9, VIP-5, ITQ-33

Zeolites as adsorbents are used in processes of separation
and puri�cation of gases and liquids due to their ability to
adsorb selectively molecules of different size or polarity.ey
are used in the separation of oxygen from air to remove
the water and CO2 from gas streams, separation of the
linear branched hydrocarbons, and in the elimination of
volatile organic compounds from automobile and industrial
exhausted gasses [6, 26–35].

e most important application of zeolites as ion
exchangers is the extraction of cations Ca2+ and Mg2+ of
domestic and industrial waste water [34]. Sodium zeolite A
is used in the formulation of detergents to replace polyphos-
phates and others highly polluting compounds.ey are also
used in extraction of NH4+ from waste water [33] and they
have been also used extensively in nuclear waste cleanup (i.e.,
aer thereeMile Island and Chernobyl nuclear accidents).

Regarding to the use of zeolites as catalysts or catalysts
supports, their use is very common in industrial processes
of re�ning, petrochemicals, and �ne chemicals. e replace-
ment of conventional catalysts in many processes by zeolites
is due to improvements that these materials introduce in the
catalytic activity and selectivity.

For the commercial application of zeolites as catalysts
together with a good texture-related properties (area, poros-
ity) and a high number of active sites, zeolites must have
good thermal stability, since a large part of catalytic processes
are conducted at elevated temperatures. Moreover, it is very
frequent that the catalysts used in reactions involving hydro-
carbons are deactivated by coke deposits formed during the
reaction.us, they need to be regenerated.e regeneration
is conducted by burning the coke at temperatures above
𝜃00∘C [36–38]. e thermal stability of a zeolite depends
on the aluminum content. Al–O bonds are weaker than the
Si–O one (Al–O distance is larger than Si–O), therefore the
stability depends on aluminum content [39]. us, in order
to carry out a sufficient number of reaction-regeneration
cycles, zeolites with high thermal stability are required,
that is, zeolites with Si/Al ≥ 5 [40]. ese compositions in
some cases can be achieved by direct synthesis (i.e., Beta
and ZSM-5 zeolites), and in other cases in which it is not
possible by direct synthesis it can be achieved by chemical or
hydrothermal treatments of synthesized zeolite (i.e., zeolite
Y) [41–43].

e substitution of Si by Al together with the correspond-
ing compensation cations has another additional effect on
the properties of the zeolites, hydrophilicity/hydrophobicity
[30]. e hydrophilic-hydrophobic character has focused on
applications of great practical interest.us, the hydrophobic
zeolites are able to carry out reactions that require absence of

water, without the necessity to remove it from the medium,
because the reaction takes place almost entirely inside the
zeolite, which being hydrophobic will be water free [44]. For
example, silicalite (ZSM-5 structure with Si/Al > 1000) [45]
has very low amount of aluminum, in such a way that its
crystals (𝑑𝑑 𝑑 𝑑𝑑𝑑 g/cc) can �oat in the water [46]. By contrast,
zeolite X, with high Al content, has a pronounced hydrophilic
character, which permits separating a mixture of oxygen and
nitrogen [47] due to the higher quadrupole moment of the
nitrogen.

e negative charge associated with the tetracoordinated
aluminum is compensated by cations that can be easily
exchanged for other cations by ion exchange processes [48].
e exchange of cations is favored by the fact that the
cations are not covalently bonded to the structure; they are
placed inside the zeolite cavities compensating the defect of
charge. e size and charge of the exchanged cations are
important variables in the zeolite reactivity. Cations of large
size will leave small free spaces in the cavities difficulting
the entrance of reactants. is effect is very useful in those
reactions where the selective control is based on geometric
effects [49, 50]. Among the exchangeable cations that can
be introduced into the zeolite, the proton occupies a special
place. e protons are bonded to an oxygen bridge between
one silicon and one aluminum [51, 52]. Due to the presence
of channels and cavities of different sizes within the same
structure, as well as the existence of nonequivalent positions,
there is a paramount importance to predict minimum energy
positions, and therefore the location of the exchangeable
cations [53], and especially the localization of the protons that
will determine the activity in acid catalyzed reactions.

New scienti�c applications were considered in the 1980s
and 1990s for exploring zeolites as advanced solid state mate-
rials. Ozin et al. [54] considered that zeolites could represent
a “new frontier” of solid state chemistry with interesting
properties (nanometer dimension window, channel and cav-
ity architecture) for innovative research and development.
Among others they consider applications such as: molecular
electronics, quantum dots/chains, zeolite electrodes, batter-
ies, nonlinear optical materials, and chemical sensors. Other
applications recently reported are related to the use of zeolites
as low k dielectric materials for microprocessors [55].

Future trends in zeolites include (i) discovery of new
zeolitic materials, (ii) continuous use in petroleum re�ning
(high octane and reformulated gasoline, processing of heavy
crudes, production of diesel, and so forth), (iii) use in
the preparation of organic chemical intermediates or end-
products, and (iv) use in sustainable processes to produce
biocompounds and green fuels.
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Considering the future trends, it is quite evident that
zeolites are of great interest for the industry, especially due
to the potential they present in �elds that are of paramount
importance for the future of our industrialized society, such
as raw material transformation, environmental pollution
control, and energy production and storage.

is paper focuses on the application of zeolites for
energy production. Speci�cally, the use of zeolites in the
production of hydrogen from renewable energy sources
is collected: biomass (ethanol reforming) and solar (water
splitting).

2. Zeolites for Hydrogen Production

e future energy economy will have an important role for
hydrogen (H2) as a clean and CO2-neutral energy source
[56]. us, it has been projected as one of the few long-term
sustainable clean energy carriers. Currently the synthesis
of molecular hydrogen occurs mostly by nonsustainable
methods such as steam reforming (SR) of natural gas or
gasi�cation of coal, which is associated with the emission
of large quantities of greenhouse gases (GHG), especially
carbon dioxide (CO2) [57–60]. us, to realize the full
bene�ts of a hydrogen economy, increased energy security,
diverse energy supply, and reduced air pollution, hydrogen
must be produced cleanly and efficiently from available
renewable resources.Hydrogen can be produced from renew-
able resources (e.g., biomass and water) using renewable
energy sources (e.g., sunlight, wind, wave, or hydropower)
[61–66].

Two important approaches are considered in this paper
to produce hydrogen from renewable sources and reduce the
CO2 emissions. One approach is to apply reforming methods
to biomass-derived compounds, for example, bioethanol.
Because biomass consumes atmospheric carbon dioxide
(CO2) during growth, it can have a small net CO2 impact
compared with fossil fuels. e second approach considers
the production of hydrogen by water splitting using solar
energy. Hydrogen production by water splitting corresponds
to those methods including outside the C-cycle. is process
is very attractive due to the potential to use the solar energy
which is very abundant.

e use of catalysts to improve the production of hydro-
gen by reforming of bioethanol and water splitting has been
reported. Among them, zeolites seem to have a promised
future as catalysts and catalysts supports. Here we will review
�rst the use of di�erent zeolites in the production of hydrogen
by ethanol (or bioethanol) steam reforming. We will show
the in�uence that the zeolites have as supports to prepare
ethanol reforming catalysts with high activity, selectivity, and
stability. Second, we will show the last advances in the use of
the zeolites to produce hydrogen by water splitting process
and the promised future that these materials have by taking
advantage of solar energy.

2.1. Zeolites as Constituents of Catalysts for the Sustainable
Production of Hydrogen via Ethanol/Bioethanol Reforming.
Among the liquid biomass-derived molecules that can be

used as hydrogen source, primary alcohols are interesting
compounds because they can be converted to hydrogen by
steam reforming using moderate reaction conditions. e
most part of the reforming studies related to alcohols from
biomass is focused on ethanol. Ethanol is considered an inter-
esting alternative for the sustainable hydrogen production
because of (i) its low toxicity; (ii) its low production costs; (iii)
the fact that it is a relative clean fuel in terms of composition;
(iv) its relatively high hydrogen content; (v) its availability and
easiness of handling.

Catalytic hydrogen production from ethanol can be
performed by (i) steam reforming (SR), represented by the
reaction (2), (ii) partial oxidation (PO), represented by
the reaction (3), and (iii) autothermal reforming (ATR),
represented by the reaction (4) as follows:

C2H5OH + 3H2O ⟶2CO2 + 6H2

ΔH0 = +173.3 kJ/mol,
(2)

C2H5OH + 1.5O2 ⟶ 2CO2 + 3H2

ΔH0 = −552.0 kJ/mol,
(3)

C2H5O + 𝑥𝑥O2 + (3 − 2𝑥𝑥)H2O ⟶2CO2 + (6 − 2𝑥𝑥)H2

ΔH0 = 173.3 − 𝑥𝑥
∗552 kJ/mol.

(4)

e SR of ethanol, reaction (2), is an endothermic
reaction which takes place at temperatures between 673 and
1073K and with a kinetic slower than the PO reaction.
SR operates at lower temperature and produces a higher
number ofmolecules ofH2 permolecule of converted ethanol
(H2/C2H5OH = 6), thus the overall efficiency of this reaction
is higher than that obtained by PO processes.

e PO of ethanol, reaction (3), occurs between 973 and
1273K. It is an exothermic reaction. It has several advantages:
allows working with adiabatic reactors without the necessity
to supply external heat and the kinetics is rapid. Obtaining
hydrogen from bioethanol by reaction PO is an option that
has been rarely investigated, because it would involve the
separation of water included in raw bioethanol, which would
mean a high energy cost.

e third option combines the advantages of both
approaches, SR and PO. is option includes the simultane-
ous reaction of ethanol with water vapor and oxygen in an
oxidative reforming process (autothermal reforming, ATR),
reaction (4). e input of the external heat is not necessary
since it is generated by introducing small amounts of oxygen.
emoles of H2 obtained permole of ethanol are higher than
that in the case of the PO reaction but lower than that in the
case of SR.

e choice of the reforming route is based on the type
of fuel cell, the demands and volume of the system, and
management strategy. Nevertheless, the SR of ethanol has
been the most studied route. e amount of published
studies on the SR of ethanol is lower than that on
hydrocarbons or methanol. Several reviews about the
development of catalysts applied to ethanol SR have
been published lately [67–70]. Catalytic materials such as
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F 3: Structure of delaminated zeolite ITQ-2 [103].

metallic oxides (ZnO, MgO, V2O5, Al2O3, TiO2, La2O3,
CeO2, SmO3) [71–73], supported metals (Co/ Al2O3,
Co/La2O3, Co/SiO2, Co/MgO, Co/ZrO2, Co–ZnO, Co/
TiO2, Co/V2O5, Co/CeO2, Co/Sm2O3, Co/CeO2–ZrO2,
Co/ C, Ni/La2O3, Ni/(La2O3–Al2O3), Ni/Al2O3, Ni/MgO,
Ni–Cu/SiO2, Ni–Cu/Al2O3, Ni–Cu–K/Al2O3) [74–85], and
precious metals supported on oxides (Rh/TiO2, Rh/SiO2,
Rh/CeO2, Rh/ZrO2, Rh/Al2O3, Rh/MgO, Rh/Al2O3,
Rh/CeO2–ZrO2, Rh–Au/CeO2, Rh–Pt/CeO2, Pd/CeO2,
Pt/CeO2, Au/CeO2, Pd/Al2O3, Pt–Pd/CeO2) [86–99] are
reported in these reviews.

ermodynamic analyses have shown that a high con-
version of ethanol to hydrogen is possible above 523K and
also that the highwater/ethanolmolar ratio of raw bioethanol
is bene�cial to increase hydrogen yield and to decrease the
formation of byproducts such as methane, carbonmonoxide,
and carbon deposition. Table 1 shows a summary of the
possible reaction pathways followed by the ethanol during its
catalytic SR.e extension in which each reaction takes place
over the catalyst will depend on the nature of metal, type of
precursor, preparation method, type of support, presence of
additives, and operating conditions.

Among them, it is found that support plays an important
role in the preparation of highly active and selective ethanol
steam reforming catalysts since it helps in the dispersion of
metal catalyst and enhances its activity via metal-support
interactions. Speci�cally, it has been found that high surface
areas of the support improve the catalytic activity [73, 100],
and the particular topology or crystalline structure of one
support can affect the metal dispersion of the metallic parti-
cles improving their stability against sinterization [101, 102].
Taking this into account, the singular structure of zeolites
would make these materials attractive to be used as supports
for dispersing active metal phases [102–105].

Campos-Skrobot et al. [103] reported the �rst work in
the steam reforming of ethanol using zeolites as support.
Speci�cally, they studied the Y-zeolite exchanged with Na.
According to the results reported by these authors, the NaY
zeolite had the prime function of increasing the surface area,
aiming higher reforming reaction efficiency. Potassium and
rhodium were added to NaY zeolite in order to improve
reforming performance. ey found that the addition of
Rh and K allowed to prepare an ethanol steam reforming
catalyst with high activity and H2 selectivity. Best conversion

Swollen

material

Calcined

NU6(2)

NU6(1)

Sonication

ITQ-18

Calcined Co0

CT
M
A
+

F 4: Synthesis of delaminated zeolite ITQ-18 (adapted from
[105]).

valueswere achieved for higherH2O/ethanol ratio and higher
reagent �ow. ey also veri�ed that reagent �ow has greater
in�uence on hydrogen yield than K addition.ey concluded
that NaY zeolite-supported Rh can be considered promising
catalyst for ethanol steam reforming, when compared with
other existing studies.

Chica et al. [102, 105] also studied zeolitic materials as
support of catalyst for the SR of bioethanol. ey used two
delaminated zeolites (ITQ-2 and ITQ-18) with high external
surface area (835 and 611m2/g, resp.) to support Ni and Co.

ITQ-2 delaminated zeolite consists of thin sheets of
2.5 nm in height presenting a hexagonal array of “cups”
(0.7 nm × 0.7 nm) that penetrate into the sheet from both
sides connected by a double 6-member ring (MR) window
(Figure 3) [102]. ITQ-18 is another delaminated zeolite which
has been obtained by expanding and exfoliating a laminar
precursor of NU-6 zeolite [106] (Figure 4). e singular
structure of these delaminated zeolites, and particularly the
very high and well-de�ned external surface area, makes these
materials very attractive to be used as supports for dispersing
active metal phases.

Ni and Co were supported on pure silica ITQ-2 and
Co on ITQ-18 with low aluminum content (Si/Al = 100).
For comparison reasons, catalysts based on amorphous silica
containing the same amount of Co and Ni (20wt.%) were
also prepared. High catalytic activity, selectivity, and stability
(again coke deposition) were reported for the delaminated
zeolite-based catalysts. e excellent catalytic performance
exhibited was attributed to the combination of three effects.
It was attributed �rst to the absence or very low concen-
trations of acid sites in the delaminated ITQ-2 and ITQ-
18 zeolites, respectively. e absence of acid sites would
help to decrease the dehydration reaction that leads to the
formation of ethylene and subsequent formation of coke, the
main causative of the catalyst deactivation. It was attributed
second to its high external surface, which can provide a
large surface for coke deposition and help to slow down
the deactivation effects, and third to the especial structure
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of these delaminated zeolites formed by array of “cups”
distributed along of sheets (see Figures 3 and 4), which
can provide an excellent position for the stabilization of the
Ni and Co metal particles improving their dispersion and
preventing their agglomeration during the reduction and
reaction stages. An important conclusion was that while an
amorphous support such as SiO2 leads to Co and Ni-based
catalysts with low stability, the use of delaminated zeolites,
with a crystalline structure, allowed to prepare a much more
stable bioethanol steam reforming catalyst.

In the before reported studies, zeolites are acting as simple
supports for metals for ethanol steam reforming [102–105].
However, since zeolites exhibit functional properties such as
ion exchange, the charge state of the metal could affect the
SR of ethanol. In this line, Inokawa et al. [104] compared
the ethanol reforming properties of zeolite Y supporting
transition metals and encapsulating transition metal cations.

ey studied the catalytic activity of conventional zeolite
Y with a Si/Al ratio of 2.75, loaded with Ni and Co and
their cations. e results obtained suggest that transition
metals selectively enhanced the dehydrogenation of ethanol.
In addition, the incorporated transition metal cations by
ion exchange led to the production of mainly C2H4 during
ethanol steam reforming, indicating that the presence of
the cations accelerates the dehydration of ethanol. us,
the presence of transition metal cations in zeolite Y seems
to have a signi�cant in�uence on the ethanol reforming
reaction. ese authors suggest that conventional zeolites
supporting transitionmetals aremore attractive for industrial
applications than zeolites with a high Si/Al ratio supporting
noble metals, due to advantages of cost and availability,
although the H2 yields produced by Y zeolite containing Co
and Ni cations were inferior to that for zeolite Y supporting
Rh [103]. In addition, they think that H2 production from
ethanol using zeolites with low or medium Si/Al ratios
supporting transition metals such as Co and Ni could be
improved by the removal of the metal cations within the
zeolites.

One important factor affecting the stability of steam
reforming catalysts is the formation of carbonaceous
deposits. ese deposits can block the active sites and
�nally encapsulate the metallic particles deactivating the
catalyst completely. erefore, the stability of the catalysts is
directly related to their tendency to form carbon. e coke
formation on the catalysts during reforming of ethanol is due
to the imbalance between their formation and consumption
reactions (Table 2). is balance formation/consumption is
determined by the reaction conditions and especially by the
selected catalyst composition: active phase and support.

In order to reduce the coke formation over zeolite-
based catalysts and increase the ethanol SR activity at
low temperature, Kwak et al. [107] prepared MgO/zeolite
Y catalysts loaded with bimetallic Ni-Ga. e impregna-
tion of Ga between the Ni and Mg components led to
signi�cantly higher reforming activity compared to the
conventional Ni/Mg/zeolite Y catalyst. e main products
from steam reforming over the Ni/Ga/Mg/zeolite Y catalyst
were only H2 and CH4 at above 550∘C, and the cata-
lytic performances depended on the amount of Ga. H2

production and ethanol conversion were maximized over
Ni(10)/Ga(30)/Mg(30)/zeolite Y at 973K, ethanol : H2O =
1 : 3, and a gas hourly space velocity (GHSV) of 6740 h−1.is
high performance was maintained for up to 59 h.

ese authors also studied the deactivation of these
catalysts. ey found that deactivation was largely retarded
in the zeolite-based catalyst containing Ga compared to that
of the catalyst withoutGa.e authors reported that aer 60 h
the XRD peaks of the carbon and Ni metal were too enlarged
while the other peaks assigned to metal or metal oxides
species were very small (Figure 5). e improved stability
at the slower deactivation rate achieved with the Ni/Ga
sample could not be unequivocally attributed to carbon
formation. e simultaneous addition of Ni/Ga could also
have depressed the sintering between the Ni and the support,
contributing to retard of the catalytic deactivation.

It is clear that basicity decreases signi�cantly the for-
mation of coke since it contributes to the inhibition of
side reactions that would lead to the formation of coke
precursors (Table 2). In this sense, Inokawa et al. [108]
studied the ethanol steam reforming over Ni supported on
zeolite Y with basicity controlled by the exchange of alkali
cations. As a result, it was found that the exchange of
Na+ for K+ and Cs+ affected not only characteristics of the
zeolites such as adsorption and basicity but also those of
Ni, such as reducibility and catalytic activity. Ion exchange
mainly brought an increase of basic sites, which were slightly
strengthened. It was found that Ni species on the Cs-Y zeolite
were reduced at a lower temperature than Na-Y zeolite. H2
production at 573K was improved in the order of Ni/Na-
Y < Ni/K-Y < Ni/Cs-Y, according to the size of the cation
in the zeolite and the amount of basic sites. Improvement of
the catalytic performance was considered to be due to the
increase of basic sites, which weaken the OH bond of ethanol
adsorbed on the zeolite. In terms of elementary reactions, the
dehydrogenation reaction of ethanol was accelerated by the
basicity of the zeolite, whereas the dehydration reaction that
produces ethylene was inhibited.

e basicity of the zeolite was found to be effective for
the inhibition of coke deposition, because Ni/Cs-Y with
higher H2 production than Ni/Na-Y also exhibited higher
resistance to carbon deposition. In summary, an increase of
the zeolite basicity by cation exchange can selectively promote
the dehydrogenation of ethanol by Ni on the zeolite and
improve H2 production and resistance to carbon deposition.

Ni and Co have been the active sites more studied in
the SR of ethanol using zeolites as support. Nevertheless,
other metals as Sn have been also found actives. Lee et al.
[109] studied the production of hydrogen using Y zeolite
promoted with Sn and K. ey studied the effects of the Sn
and K presence on the H2 production and on the catalytic
deactivation. ey reported that the Sn component played
an important role in the oxidation of the feed gases during
ethanol reforming, while the addition of the K depressed
the formation of CH4 or others hydrocarbon intermediates.
Based on the results of H2-TPR and NH3-TPD, they suggest
that the reduction of Sn oxides (Sn4+ to Sn0) on SnO2-
K2O/Y catalyst at low temperatures easily occurs compared



ISRN Chemical Engineering 7

T 2: Reaction network for the steam reforming of bioethanol.

Reaction Equation
Reforming with excess of water CH3CH2OH + 3H2O⟶ 2CO2 + 6H2

Reforming with de�cit of water CH3CH2OH + H2O⟶ 2CO + 4H2

CH3CH2OH + 2H2 ⟶ 2CH4 + H2O

Dehydrogenation CH3CH2OH⟶ C2H4O + H2

Acetaldehyde decomposition C2H4O⟶ CH4 + CO
Acetaldehyde reforming C2H4O + H2O⟶ 3H2 + 2CO

Dehydration CH3CH2OH⟶ C2H4 + H2O
Coke formation C2H4 ⟶ polymeric deposits (coke)

Decomposition
CH3CH2OH⟶CO + CH4 + H2

2CH3CH2OH⟶ C3H6O + CO + 3H2

CH3CH2OH⟶ 0.5CO2 + 1.5 CH4

Methanation CO + 3H2 ⟶ CH4 + H2O
CO2 + 4H2 ⟶ CH4 + 2H2O

Decomposition of methane CH4 ⟶ 2H2 + C

Boudouard reaction 2CO⟶ CO2 + C

Water gas shi reaction CO + H2O⟶ CO2 + H2
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(h) Ni/Ga/Mg/zeolite Y(10, 30, 30) after reaction

(g) Ni/Ga/Mg/zeolite Y(10, 30, 30)

(f) Ni/Ga/Mg/zeolite Y(10, 20, 30) after reaction

(e) Ni/Ga/Mg/zeolite Y(10, 20, 30)

(d) Ni/Ga/Mg/zeolite Y(10, 10, 30) after reaction

(c) Ni/Ga/Mg/zeolite Y(10, 10, 30)

(b) Ni/Mg/zeolite Y(10, 30) after reaction

(a) Ni//Mg/zeolite Y(10, 30)

5 20 40 60 80 100

F 5: Comparison of XRD patterns of the catalysts, Ni(10)/Ga(x)/Mg(30)/zeolite Y (𝑥𝑥 𝑥 𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥𝑥, according to the reaction
temperature, before and aer reaction [107].

to conventional Ni/𝛾𝛾-Al𝑥O𝑥 catalysts. In addition, the acidity
of theNi/𝛾𝛾-Al𝑥O𝑥 catalyst induced by the existingAl is higher
than that presented in the SnO𝑥-K𝑥O/Y catalyst. us, the
condensation of ethanol on the last catalyst is more difficult
and consequently the formation of the coke is lower, and
eventually the higher activity over SnO𝑥-K𝑥O/ZY catalyst is
maintained.

Considering all the above mentioned, it seems that
the use of zeolites as metal support to prepare active and

stable reforming catalyst to produce hydrogen could be an
attractive option since they have a high external surface
area and can be prepared with neutral behaviors if they
synthesized all silica, with high Si/Al ratios or exchangedwith
alkaline metals. However, pore opening of zeolites can limit
their application to the reforming of large molecules. us,
mesoporous molecular sieves with size-tunable mesopores
have attracted a great deal of attention because of their
controllable structure and composition [110, 111]. However,
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unlike zeolites, the wall of the mesoporous is amorphous, not
crystalline. erefore, mesoporous aluminosilicates cannot
exhibit the excellent catalytic properties unlike acidic zeolites.
Moreover, their hydrothermal stability is especially low. To
overcome this problem, one strategy has been the generation
ofmesoporosity on zeolites [112–114].e presence ofmeso-
pores in the crystalline of the zeolite would be equivalent to
increasing the external surface of the zeolites making a larger
number of pore openings accessible to the large reactants
[115–121]. On the other hand, the presence of mesoporous
could improve the diffusion affecting the ion exchange
processes and catalytic reaction [122–129]. Although ethanol
is a small molecule from biomass processing, most part of
the molecules from biomass susceptible to be reformed are
large (i.e., glycerin, sugars, cellulose, lignin, hemicellulose,
and so forth), making the mesopore-modi�ed zeolites an
attractive material to prepared hydrothermally stable steam
reforming catalysts. In this line, da Costa Serra et al. [130]
studied the effect of mesopores-modi�ed mordenite zeolite
promoted with Ni in the steam reforming of bioethanol.ey
reported the alkaline treatment of a commercial mordenite
to generate mesoporosity (Figure 6).e idea was to generate
mesoporosity in the commercial mordenite zeolite in order
to improve the exchange of alkaline cation (to remove the
acidity) and create good positions for the incorporation
and stabilization of Ni metallic particles (active sites for
steam reforming of bioethanol). ey found that reforming
activity of catalyst based on mesopores-modi�ed mordenite
was signi�cantly higher than that shown by the commercial
one (without mesopores). e lower size of the Ni metal-
lic particles supported on mesopores-modi�ed mordenite
were the main factor responsible for this high activity. H2
selectivity and catalytic stability were also found higher
for the mesopore-modi�ed material. ey reported that
the formation of coke precursors (favored by acid sites)
and the subsequent deposition of carbon was lower in the
mesopore-modi�ed mordenite. is effect is explained by
the generated mesoporosity, which would improve �rst the
Na exchange and thus, the neutralization of the acid sites,
and second the diffusion of the reactants and products,
avoiding the blockage of micropores. Indeed, for the same
Na exchange conditions, the amount of Na exchanged was
foundhigher in themesopores-modi�edmordenite (4.2 wt.%
against 2.9 wt.% for original mordenite), suggesting that
the presence of mesopores would improve the exchange of
protons (responsible of acid sites) by sodium cations. On
the other hand, they observed a higher enlargement of the
Ni metallic particles supported on not treated mordenite
(without mesopores), suggesting that generated mesoporos-
ity could be contributing to the generation of good position
for the incorporation and stabilization of Ni metallic par-
ticles, avoiding or decreasing the Ni sinterization and thus,
improving the catalytic activity and stability.

All the works mentioned above have been centered in the
reforming of ethanol or bioethanol in gas phase.Nevertheless,
in the literature the use of zeolites in the reforming of ethanol
in liquid phase is also reported. Aqueous phase reforming
(APR) has been recently reported by Dumesic et al. [131–
133]. is process operates at low temperatures (<573K), at

which the WGS reaction is also thermodynamically favored,
making it capable of producing hydrogen with high yields.
e low reaction temperature minimizes the decomposition
reactions and, hence, avoids carbonization and catalyst deac-
tivation. Tang et al. [134] studied the feasibility of platinum-
loaded NaY zeolite catalysts for APR of methanol and
ethanol. e feasibility of APR of ethanol was demonstrated
on the Pt/NaY catalysts. e results were compared with the
data on Pt/𝛾𝛾-Al2O3 catalysts. At 538K, the 0.5 wt % Pt/NaY
achieved higher H2 selectivity and lower alkane selectivity
than the 3wt % Pt/𝛾𝛾-Al2O3 catalyst with similarly high
ethanol conversion of ∼97% on both catalysts. e zeolite-
based catalysts, with the advantages of high activity, reduced
use of precious metal, and low cost of zeolite materials,
deserve further investigations. ey report that research is
ongoing into the effect of substrate properties on the catalytic
performance of platinum catalysts in APR reactions.

2.2. Zeolites as Constituents of Photocatalysts for the
Sustainable Production of Hydrogen via Water Splitting

2.2.1. Solar Energy and Water Splitting Reaction. e
incidence of solar energy on the surface of the earth
(180.000 TW) by far exceeds all human energy needs [135].
us, it is easy to understand that the solar energy could
be considered one of the most important renewable energy
sources potentially available on earth.

Undoubtedly, solar energy is the largest renewable
carbon-free resource amongst all other renewable energy
options. However, to make use this energy by the currently
human technology, solar energymust be captured, converted,
and stored in order to assure a continuous supply of energy
and to overcome the diurnal cycle and the intermittency of
the terrestrial solar resource.

Among the different energy carriers capturing the solar
energy, hydrogen from photocatalytic water splitting is con-
sidered as one of the most promised carriers since it allows
storing solar energy in the form of chemical energy and
makes available solar energy for 24 hours a day, 7 days a week.

In the photocatalytic water splitting, hydrogen is pro-
duced from water using sun light and specialized semicon-
ductors. e semiconductor uses light energy to directly
dissociate water molecules into hydrogen and oxygen. e
water splitting takes place when the semiconductor is irra-
diated with light in the presence of an electron donor and
acceptor, oxidizing OH− ions to produce O2 and reducing
H+ ions to H2. Speci�cally, the electrons in the valence
band of the photocatalyst are excited to the conduction
band, while the holes are le in the valence band. is,
therefore, creates the negative-electron (e−) and positive-
hole (h+) pairs. is stage is referred to the semiconductor’s
“photo-excited” state, and the energy difference between the
valence band and the conduction band is known as the “band
gap.” is must correspond to the wavelength of the light
for it to be effectively absorbed by the photocatalyst. Aer
photoexcitation, the excited electrons and holes separate
and migrate to the surface of the photocatalyst. In the
photocatalytic water-splitting reaction, they are used as a
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F 6: TEMmicrophotographs of original and alkaline treated mordenite to generate mesoporosity. Adapted from [130].

reducing agent and oxidizing agent to produce H2 and O2,
respectively. A schematic representation of the principle of
the photocatalytic system for water is shown in Figure 7
[136]. As it can be seen, �rst, that O–H bonds of two
water molecules need to be broken with the simultaneous
formation of one O=O double bond as follows [137]:

H2O ⟷ O2 + 4e
− + 4H+,

Eanodic = 1.23V − 0.059 pH V (NHE) .
(5)

Since this reaction requires a high oxidizing potential,
1.23V versus NHE (normal hydrogen electrode) (pH = 0),
the top level of valence band has to be more positive than
this potential, so that the photogenerated holes have enough
energy to oxidize water. is reaction releases four protons
(H+) and four electrons (e−), which need to be combined to
form two H2 molecules, as follows [136]:

4H+ + 4e− ⟷ 2H2,

Ecathodic = 0V − 0.059 pH V (NHE) .
(6)

erefore, the conduction band of the semiconductor has to
be more negative than water reduction potential (0 V versus
NHE (pH = 0)). us, water molecules are oxidized by the
holes to form O2 and are reduced by the electrons to form
H2 for overall water splitting.erefore, the theoretical mini-
mum band gap for water splitting is 1.23 eV that corresponds
to light wavelength of about 1000 nm.

2.2.2. Semiconductors and Zeolites for Water Splitting. Cur-
rently, the photocatalytic water splitting over semiconductor
materials is an area of great interest due to the potential of
hydrogen as a clean-energy fuel source. Since the initial works
of Fujishima and Honda [138], who discovered that water
can be photoelectrochemically decomposed into hydrogen
and oxygen using a semiconductor (TiO2) electrode under
UV irradiation, an extensive variety of materials (TiO2, CdS,
ZnO, ZrO2, titanates, niobates, and tantalates) [139–151]
have been reported to be effective for the photocatalytic
decomposition of water.

Initial efforts in this area involved large bandgap (Eg >
3.0 eV) semiconductors that used only UV light. Currently,
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+

F 7: Schematic diagram of band edge requirements for water
splitting reaction. Adapted from [137].

the most important efforts are being focused on using visible
light as the energy source [152–170] as the ultimate goal to
produce hydrogen fuel using solar energy. While the overall
redox potential of the reaction

H2O + h𝜈𝜈𝜈 H2 +
1
2
O2 (7)

is only −1.23 eV (1000 nm) at pH 7, the crucial reaction for
hydrogen production is believed to be the initial one-electron
transfer to H+ ion

H+ + eaq
− 𝜈 Haq

•, (8)

where EH = −2.5V at pH 7, which falls energetically within
the visible region of light.

Taking into account the basic mechanism and reactions
of photocatalytic water splitting process, the photocatalysts
should meet several characteristics with respect to semicon-
ducting and electrochemical properties [171–175] as follows:
(1) narrow band gap (1.23 eV < Eg < 3.0 eV) and band
edge potentials suitable for overall water splitting to be acti-
vated under visible light, (2) successive separation of photo-
excited electrons from reactive holes, (3) minimum energy
losses associated with charge transport and recombination
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of photo-excited charges, (4) corrosion and photocorrosion
resistivity in aqueous mediums, (5) facilitated electron trans-
fer properties fromphotocatalyst surface towater, and (6) low
production cost.

Tomeet part of the abovementioned expectations, exten-
sive studies have been performed based on the use of support
where effective photocatalysts have been impregnated [176–
183]. e major incentives for implementing the supported
photocatalyst idea are (1) inhibition of the back electron
transfer as limiting parameter in redox systems, (2) taking
advantage of nanosized semiconductors while using them in
easily separable microsized level of the support, (3) utilizing
the support to add more solid chemical promoters, and (4)
structural and chemical characteristics of the support by
itself.

Among the different supports used to prepare effi-
cient water splitting photocatalysts, zeolites are presented
as promising materials. Zeolites exhibit high surface area,
unique nanoscaled porous structure, and ion exchange prop-
erties which can be used in the design of highly efficient pho-
tocatalysts [184]. Unique photocatalytic properties, which
cannot be realized in normal catalytic systems, have been
observed recently in such modi�ed spaces [185–190]. It is
important to note that zeolites can also provide speci�c
photophysical properties such as the control of charge trans-
fer and electron transfer processes [191–194] which is very
important in photocatalytic reactions.

ere are several advantages that zeolites afford as sup-
port or host of semiconductor particles. For example, the pore
sizes of the host supportmaterial control the resulting particle
size of the supported semiconductor. Particle size is a crucial
factor in the dynamics of electron/hole recombination pro-
cesses, especially in semiconductor nanomaterials, and that
the movement of electrons and holes is primarily governed
by the well-known quantum con�nement [195]. Generally, a
decrease in particle size could be expected to lead to a higher
efficiency in photocatalysis [196–201]. is was because the
bulk charge recombination of photogenerated electrons and
holes, dominant in the well-crystallized large semiconductor
particles, was reduced by decreasing particle size. Reduction
in particle size could also lead to a larger surface area and an
increased available surface active sites [202–204].

�ecreasing particle size has a known bene�cial effect
on catalyst efficiency [205–208]. Furthermore, encapsulation
into a porous structure should provide some protection
against surface-mediated reactions that corrode the catalyst,
as exposed surface area will be limited. In addition, a major
factor that limits the efficiency of the most part of the
photocatalysts is electron-hole recombination.

e incorporation of photocatalysts into the micropore
structure of zeolite in order to prepare nanoparticles is an
attempt to improve their photocatalytic activity and photo-
stability. Small nanoparticles show a higher photocatalytic
activity compared to the bulk materials due to changes in
the surface area, band gap, morphology, and generation of
surface defects [209, 210]. In addition, the incorporation of
photocatalyst into solid matrices as zeolites is reported to
suppress photocorrosion and improve the activity for water
reduction. e incorporated nanoparticles, whose sizes are

determined by the nanometric size of zeolite cages, show
some novel physical properties such as blue shi of optical
absorption spectra, increased photooxidation potentials, and
third-order nonlinear optical properties. In this line, Sathish
et al. [211] reported the preparation of cadmium sulphide
(CdS) nanoparticles by precipitation process using different
zeolite matrices as templates (H-Y, HZSM5 and H-𝛽𝛽). In
this study, the micropores of zeolites were used as molds to
prepare nanoparticles of CdS with different sizes. Aer the
removal of zeolite phase, the CdS nanoparticles were used as
catalysts for the photocatalytic decomposition of water. e
hydrogen evolution ratewas foundhigher than that presented
by the bulk samples which correlated quite well with the
particle size and surface area.

Of particular interest is the use of zeolites as support,
because of the well-de�ned microporous structure and ion-
exchange properties, as was mentioned before. One of the
�rst work reported in the literature about the use of zeolites
as support to produce hydrogen by water splitting process
was carried out by Fox and Pettit [209]. ey studied the
photocatalytic hydrogen evolution on zeolite-supported CdS
particles modi�ed by surface modi�cation with an appropri-
ate hydrogen evolution catalyst (Pt or ZnS). Particles formed
within the zeolite cavities aggregate upon exposure to water,
and small clusters were isolated within individual cavities
only in nonaqueous solvents at low CdS loading levels (<3%).
Sustained hydrogen evolution required the presence of an
added sacri�cial donor (S2−/SO3

2−). Platinum deposited on
the photoactive CdS surface is exclusively found inside the
cavity, where it was inaccessible to large anionic reagents.

Ryu et al. [212] also studied the water splitting activity of
CdS particles supported on several micro- and mesoporous
silicas (zeolites: Y and L, mesoporous: SBA-15). Speci�cally,
they studied the hydrogen production from water/ethanol
solutions using visible light. All catalysts were active in
the photocalytic water splitting with the following order
of photoreactivity: zeolite-Y > SBA-15 > zeolite-L. ey
found that optimization of reaction conditions (i.e., pH, ionic
strength, and water-to-alcohol ratios) was critical to achieve
a high level of hydrogen production. Preventing loss of CdS
during the course of the photoreaction is also paramount to
create a stable, long-term use catalyst. Speci�cally, they found
that there was an efficient dispersion of CdS nanoclusters into
the cages and micropores of zeolite Y, and the quantum con-
�nement of hydrated CdS increased the reduction potential
for the bound proton to hydrogen atom electron transfer,
and �nally the con�ned CdS supercluster in a more efficient
chromophore in the visible portion of the spectrum.

e water splitting activity with visible light using
CdS nanocomposites (quantum-sized (Q-sized) CdS,
CdS nanoparticles embedded in zeolite cavities (CdS/
zeolite), and CdS quantum dots (Q-CdS) deposited on
KNbO3 (CdS/KNbO3 and Ni/NiO/KNbO3/CdS)), was
also investigated by Ryu et al. [213]. ey reported that
the rate of H2 production in alcohol/water mixtures and
other electron donors at 𝜆𝜆 𝜆 400 nm was clearly higher
in the the hybrid catalysts, including zeolite-based
photocatalyst. e relative order of reactivity as a function
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of catalyst is Ni(0)/NiO/KNbO3/CdS >Ni(0)/KNbO3/CdS >
KNbO3/CdS > CdS/NaY-zeolite > CdS/TiY-zeolite > CdS,
while the reactivity order with respect to the array of electron
donors is 2-propanol > ethanol >methanol > sul�te > sul�de.

Titanium exchanged zeolites have been also studied in the
water splitting reaction. Yue and Khan [214] were one of the
�rst reporting the use of titano-zeolites to produce hydrogen
by water splitting. In their study, the Ti was exchanged and
incorporated into the framework of zeolite A. Speci�cally,
they studied the effect of several variables on the photoas-
sisted production of hydrogen over this titanium-exchanged
zeolite. During the reaction, oxygen tended to react with
titanium ions exchanged on zeolite forming titanium oxides
ultimately leaving the zeolite surface thereby creating vacant
sites. ese vacant sites were occupied by hydrogen, aer
the absorbed hydrogen was successfully displaced from the
zeolite structure by the addition of base.

Zeolites containing titanium in their framework have
been also used as support of CdS nanoparticles. In this line,
Guan et al. [215, 216] studied the water splitting activity of
CdS encapsulated on ETS-4 and ETS-10 titanosilicalite zeo-
lite. ey found a stable photocatalytic activity under visible
light irradiation (𝜆𝜆 > 420 nm) in aqueous solution containing
Na2S and Na2SO3 as electron donors. Speci�cally, the cat-
alytic activity for the zeolite-based photocatalysts was found
higher than that for CdS bulk (17.5 and 13,3 𝜇𝜇mol H2/h/g
catalyst forCdS/ETS-4 andCdS/ETS-10. resp., and, 8.3𝜇𝜇mol
H2/h/g catalyst for CdS bulk). ese results seem to indicate
that the encapsulation of CdS in these titanosilicalite zeolites
is effective for separating charge-carries photogenerated in
CdS and for improving the activity as well as the stability.

Dubey et al. [217] reported the use of zeolite Y to prepare
highly efficient water splitting catalysts under visible light.
ey reported the incorporation in the zeolite Y of tita-
nium dioxide (TiO2), heteropolyacid (HPA), and transition
metals like cobalt (Co). ey got a photocatalyst where the
TiO2 was effectively dispersed and stabilized on the zeolite
surface. e high efficiency of the composite photocatalyst
was explained by the synergetic work of TiO2 with Co and
heteropolyacid,whichmade thematerial active in visible light
for photoreduction of water to hydrogen. ey also reported
that the aluminosilicate framework of zeolite also contributed
towards delayed charge separation.

In the previous studies, zeolites have been used for the
separated incorporation of nanoparticles of CdS and titanium
(as titanium oxide particles (TiO2) or Ti3+ taking part of
the zeolite framework). In this way improved water splitting
catalysts were obtained. Recently works carried out byWhite
et al. [218] report the incorporation of both semiconductors
in zeolite Y. ey observed improvements in H2 evolution
rates of ∼300 for CdS/TiO2 zeolite Y over TiO2 zeolite Y
and ∼18 for CdS/TiO2 zeolite Y over CdS zeolite Y. ese
improvements exceed colloidal binary systems reported in
the literature. On the other hand, improvements in the H2
evolution rate of the ternary system Pt/CdS/TiO2-zeolite
Y was not as marked, as compared to the best colloidal
ternary systems reported in the literature. ey proposed
an interesting model to explain the colocalization of the

TiO2 and CdS nanoparticles supported on zeolite Y. is
model explains quite well the high activity of binary system
(CdS/TiO2, zeolite Y) and also why the incorporation of Pt
did not improve the catalytic activity of the ternary system
(Pt/CdS/YiO2, zeolite Y).emain reasonwas that Pt needed
to be associated only with TiO2 for best H2 evolution, and
the zeolite promoted self-assembly did not provide a route for
positioning the Pt only on the TiO2 particles. New strategies
for the incorporation of Pt will be required in order to
promote the association of Pt only with TiO2.

3. Conclusions

e intense exploitation of fossil fuels to satisfy the globally
growing energy demand has caused an increase of CO2 in
the atmosphere and, therefore, a signi�cant global warming
(green-house effect). Furthermore, the reserves of fossil fuels
on earth are �nite and no matter how long they will last,
a cleaned and renewable energy alternative independent of
fossil fuels has to be developed for the future. Hydrogen
could be a good option because it exhibits the greatest heating
value (39.4 kWh/kg) of all chemical fuels. Its combustion
to heat or power is simple and clean. When combusted
with oxygen, hydrogen forms water and no pollutants are
generated or emitted. About 95% of the hydrogen we use
today comes from reformingnatural gas. But to realize the full
bene�ts of a hydrogen economy, increased energy security,
diverse energy supply, and reduced air pollution, hydrogen
must be produced cleanly, efficiently, and affordably from
available renewable resources.us, renewables are a desired
energy source for hydrogen production. However, there are
many challenges to produce hydrogen from renewables and
probably the major one is developing new catalytic process
to produce sustainable hydrogen and reducing the cost to be
competitive with the current fuels (gasoline and diesel).

Zeolites are presented as excellent catalysts and support of
catalysts due to their very special physicchemical properties.

(i) High surface area.
(ii) Molecular dimensions of the pores.
(iii) High adsorption capacity.
(iv) Partitioning of reactant/products.
(v) Possibility of modulating the electronic properties of

the active sites.
(vi) Possibility for preactivating the molecules when in

the pores by strong electric �elds and molecular
con�nement.

Currently, new scienti�c applications have been devel-
oped for these materials. Among them, the production of
green fuels from renewable sources is the focus of a large part
of the research efforts.

Two different routes to produce sustainable hydrogen
using zeolites have been described and revised in this paper.
One of them is based on the biomass conversion via indirect
thermochemical conversion to intermediate products. e
indirect thermochemical option is related to the conversion
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of biomass to biofuels (bioethanol, biodiesel, biogas), fol-
lowed by catalytic steam reforming of them to hydrogen.
An advantage of this approach is that the biofuels, as an
intermediate product, have a higher energy density than
the biomass feedstock and can be transported more easily.
Speci�cally, this paper has considered the steam reforming
of bioethanol.

Renewable bioethanol is an interesting hydrogen source
through steam reforming, but its C–C bond promotes parallel
reactions, mainly coke and by-products formation. In this
way, good ethanol reforming catalysts are still needed. e
use of zeolites has been able to improve the catalytic activity,
selectivity, and stability of the bioethanol steam reforming
catalysts. It has been reported that zeolites play an important
role in the preparation of highly active and selective ethanol
steam reforming catalysts since they help in the dispersion of
metal active sites and enhance their activity viametal-support
interactions. Speci�cally, it has been found that high surface
areas of the support improve the catalytic activity and that the
particular topology or crystalline structure of one support can
affect themetal dispersion of themetallic particles improving
their stability against sinterization.

Another interesting option analyzed in this paper, with
enormous potential but requiring more development time,
has been the photocatalytic decomposition of water using
solar energy, which is also called water splitting. In the
photolysis of water, solar photons area is used to produce
hydrogen directly via electrochemical systems. is method
involves the dissociation of water into hydrogen and oxygen
directly at the surface of a semiconductor through the
irradiation of the semiconductor by solar photons. e
photovoltaic semiconductor material acts as a catalyst to
produce hydrogen directly at the semiconductor and water
interface.

It has been shown that among the different supports used
to prepare efficient water splitting, photocatalysts zeolites
are presented as promising materials. Zeolites exhibit high
surface area, unique nanoscaled porous structure, and ion
exchange properties which can be used in the design of
highly efficient photocatalyst. In addition, zeolites can also
provide speci�c photophysical properties such as the control
of charge transfer and electron transfer processes which are
very important in photocatalytic reactions.

It has been seen that there are several advantages that
zeolites afford as support or host of semiconductor particles.
For example, the pore sizes of the host support material
control of the resulting particle size of the supported semi-
conductor. Semiconductors such as TiO2 and CdS have been
incorporated in zeolites in order to improve their photocat-
alytic activity and photostability. Small nanoparticles of these
semiconductors incorporated in zeolites have been reported
to show a higher photocatalytic activity compared to the
bulk materials due to changes in the surface area, band gap,
morphology, and generation of surface defects. In addition,
the incorporation of photocatalyst into zeolites helps to
suppress photocorrosion and improve the activity for water
reduction. Although the studies presented here using zeolites
can be considered promising, the major problem to solve
would be to �nd a semiconductor material that had the right

photoelectrochemical properties, while being economical
and robust enough to withstand the severe chemical and
physical environment.
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