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Abstract 

In the report the non-linear deformations and stability of thin shells are considered in view 

of initial geometrical imperfections. The energy balance low for shell deformation includes 

usually three components: strain energy depending on viscid and inviscid forces, work of 

external forces, kinetic energy.  

At quasistatic loading for steady branches it is possible to neglect components depending 

on viscous and dynamic forces. Frequently and the transient process is considered as static 

at which these components are neglected also, but in this case it is necessary to follow 

along a static curve of deformation, to select independent parameters of a solution as 

external load becomes unknown, and to search for methods of a detour of singular points. 

As a result the solution of a nonlinear problem of shell stability becomes very complicated. 

It is possible to go on "medium" path - to neglect the kinetic energy by leaving the 

component connected with viscid forces. This approach is a basis of a method of an 

additional viscosity (Yakushev [1-3]), which allows on a uniform algorithm to discover 

steady prebuckling and postbuckling states, to determine the upper and lower critical loads 

in view of initial geometrical imperfections and nonlinear properties of a material. Such 

approach gives a number of computing advantages, as the solution depends only on one 

parameter - time, there is no necessity to search for methods of the detour of singular 

points. 

 

Keywords: shell stability, nonlinear deformation, initial geometrical imperfection, added- 

viscosity method, finite element method. 

1. Introduction 

Shells of different forms are widely used in modern technologies. They give an opportunity 

to design light weight components required in aerospace, automobile industry, civil 

structures etc. One of the major steps of solving engineering problems for shells is to 

investigate their stability. Nowdays designers can use not only heuristical and experimental 

methods but also advanced mathematical modelling algorithms/techniques for this purpose. 
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However, to accurately predict the critical loads, it is essential to carry out nonlinear 

analysis. 

With the growing complexity of shell structures there is an important need for having a 

reliable accuracy of prediction of their critical loads. Many modern finite element packages 

use a special treatment for this purpose. But most of them are based on linear theory of 

stability. In this case the structural stability analysis is governed by a system of linear 

uniform equations and eigen-value problem. Critical load is given by the lowest eigen 

value. But sometimes a real critical load can differ from the theoretical one by twice or 

more. And in this case the theoretical results are corrected on special tables which are based 

on many experiments. Unfortunately this method is not suitable for many shells because 

there is no experimental data for analogous constructions. 

Experimental investigations of stability of shells is too expensive and the information 

obtained is also not sufficient. Analytical methods make too many simplifications and 

hence their applications are very limited. Only numerical simulation can provide acceptable 

solutions at affordable cost. To approach the theoretical and experimental results it is 

necessary to use methods of nonlinear analysis. 

2. Additional viscosity technique 

Several methods are now available for investigation of sub-critical and transcritical 

behavior of nonlinear shells. They are depended on nonlinear equations, which are used in 

the investigation. Generally, the nonlinear equations must take inertia forces and viscosity 

into account. Then the solution depends uniquely on time, and the existence of transient 

process is a stability criterion. This is the most valid approach, since it uses the equations of 

motion. However, certain difficulties are encountered in solving them. 

As a result, the most thoroughly developed methods are those based on the use of static 

equations, among them one is the parameter-continuation method (Grigolyuk et al. [4]). 

But it is necessary in this approach to follow the variation of the solution along the 

deformation curve, and the parts of the curve that correspond to unstable states may not be 

excluded from consideration. 

To a certain degree, the advantage of both approaches can be used by introducing an 

additional viscosity into static equation (Yakushev [1-3, 5-10]). As a result, the solution 

depends uniquely on only one parameter - time. Numerical solution of equations is simpler 

than the dynamics of the shell is considered, and algorithms are quite universal. For a 

constant external load, the added-viscosity technique reduces to an iterative process that 

converges well, even around critical loads, something that cannot always be said of other 

iterative schemes. 

The additional viscosity may be added either in the relations between the strain and stress 

deviators - rheological viscosity (see section 3) or in the equilibrium equations in the form 

of additional external forces proportional to speeds of the displacement - external viscosity 

(see section 5). 

In the first case a viscosity should be added in a way that instant strain changes are avoided 

in the correlation’s obtained (Yakushev [1]). Otherwise, the inertia forces will have to be 
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considered to ensure a continuous temporal description of the transition from the pre-

critical to post-critical state under the stability loss. Strain changes will be defined at all 

points in time and the inertia forces will be ignored only if the rheological equations do not 

contain a time stress derivative (Yakushev ([1]). The simplest creep model that meets this 

requirement is the Focht body : 

  2 ( )
ij ij ij
s G e eη= +&     (1) 

Where 
ij
e  and 

ij
s  are the strain and stress deviators respectively, η  is a constant, G is shear 

modulus. We can take dimensionless time /T t η=  and get rid of value η . 

The introduction of additional viscosity in the relations between the strain and stress 

deviators reduces the problem at each time-step to solving of a linear system of elliptical-

type equations with coefficients of a linear system of surface coordinates. This is especially 

convenient when such numerical methods as finite differences or finite elements are used. 

We have to solve a nonlinear system of algebraic equations: 

  0+ =
0 1

K Q K     (2) 

where Q - a column of unknowns, K0 and K1 - matrices depended on Q and external load 

respectively. 

The convergence of the iterations is determined by the form of matrix K0 [1]. Applications 

of rheological viscosity to the study of the shell stability showed good results. A high 

convergence of iterations process is achieved near and at the critical loads. This procedure 

does not cause any specific difficulties and high convergence is obtained at even higher 

loads with zero initial value (Yakushev [1-3, 5-10]). 

The loading should be gradual and not continuous and the solutions should be computed for 

some external load values to a prescribed level, i.e., till the velocities of displacement 

become lower than the given value. Step-by-step load change allows determination of pre 

and post-buckling states and critical loads. 

3. Ffinite element formulation. 

To solve the problem, an algorithm based on finite element formulation and using 

rheological viscosity was developed (Yakushev [7]). It is capable of analyzing static 

nonlinear deformation of shallow shells based on Timoshenko’s hypothesis. It is possible to 

model geometrically nonlinear deformation and stability of shells to determine the upper 

and lower critical loads, pre and post-buckling states. 

A computational model is created using a developed preprocessor utility, with initial 

information about geometry of shell, material properties and external load. A 12-noded 

curved triangular element is used (Yakushev [7]). It is based on Timoshenko’s theory and 

describes shallow shells. The element is considered in Gauss coordinates situated on the 

surface of the shell. There are five unknowns in this element namely, displacement normal 

to the shell surface, two displacements in the plane of surface and two angles or rotation of 

inclination of line original to the normal surface. The element has a third order 

approximation of displacement normal to the surface and second order for tangent 

displacement and angles. Hence, there will not be any locking problem for the element. 
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Approach based on added-viscosity technique is useful in examination of space shell 

structures, compared to parameter continuation method. Application of method of 

rheological viscosity in stability problem of shallow shells, taking into account of 

geometric nonlinearity, is considered. A triangular curvilinear lagrangian element (Figure 

1) is used in finite element formulation. Based on the nonlinear theory of shallow shells, 

expressions for membrane, bending and shear deformations are recorded as follows: 

 
2

, , , ,

1
( ) ; ; ; ( 1,2)

2
i i i i i i i i i i iu k w w w iε χ θ τ θ= + + = = + =    (3) 

 
12 1,2 2,1 ,1 ,2 12 1,2 2,1

;u u w wε χ θ θ= + + = +    (4) 

There are five unknowns in this element. w  is displacement normal to the shell surface, 

Figure 1: 12-node Triangle Element. 

1
u , 

2
u  are two displacements in the plane of surface and 

1
θ , 

2
θ  are two angles or rotation 

of inclination of line original to the surface. Vectors for generalized deformations E , and 

for internal forces and moments and shear forces E , are obtained as, 

 
1 2 12 1 2 12 1 2

[ , , , , , , , ]Tε ε ε χ χ χ τ τ=E    (5) 

 
1 2 12 1 2 12 1 2

[ , , , , , , , ]� � � M M M Q Q=F    (6) 

For orthotropic material matrix of elastic constants is obtained as, 
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Form a generalized matrix of elastic constants of 8 x 8 size as, 
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   (9) 

A relationship between general force vector and deformation vector is given as, 
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 ( )η
•

= +F D E E    (10) 

Let us define general displacement vector U , distributed R  and concentrated loads cR  as, 

 
1 2, 1 2

[ , , , ]
T

u u w θ θ=U    (11) 

 
1 2 1 2

[ , , ,0,0] , [ , , ,0, ]T c c c c

z z
R R R R R R= =R R    (12) 

 

From Lagrange principle, 

 0
T T T c

S S

ds dsδ δ δ− − =∑∫ ∫E F U R U R    (13) 

S  is a region or integration. The summation is conducted on all finite element nodes. The 

generalized displacements and curvatures in finite elements are obtained as, 
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= +

= − = ÷ = = ÷

∑ ∑

∑    (14) 

Thickness h is linear function of coordinates: 

 
3

1

1 2

1

( , )
k

k

k

h � L L h
=

=∑    (15) 

In a similar way expressions for curvature 
1
k , 

2
k  and component of surface load are 

written. Coordinates x1 and x2 are quadratic functions of coordinates: 

 
6

2

1 2

1

( , )
k

i k i

k

x � L L x
=

=∑    (16) 

Where 1

1 2
( , )

k
� L L , 2

1 2
( , )

k
� L L  and 3

1 2
( , )

k
� L L  - two-dimensional basic functions from L  

coordinates. 

In such a way as described above, for nodes 1, 2, 3 there are five functions 
1
u , 

2
u , w , 

1
θ , 

2
θ , for nodes 4, 5, 6 there are four functions 

1
u , 

2
u , 

1
θ , 

2
θ , but for nodes 7-12 there is 

only single sagging function w . Thus the element has 12 nodes and 33 degree of freedom. 

4. Result and discussion. 

The stability analysis of a typical cylindrical panel with an initial local dent under uniform 

pressure is carried out. To investigate the influence of initial imperfections on the critical 

pressure, a cycle of calculations was carried out with introduction of an additional normal 

displacement representing a local dent. The mathematical expectation and a root-mean-

square deviation of critical pressure in the dependence on the magnitude of a root-mean-

square deviation of the dent depth were found. The probability density function has some 

points of breaks in curve of the second kind, which are due to presence of minima in the 

mutual dependence of the critical load and the dent depth [8]. 
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In Figure 2 the initial and different deformed forms at a postbuckling state are shown. 

Closer examination an of the stability of the panel is presented in [8]. 

5. Stability of shallow shells. 

An algorithm for solving of nonlinear problems of deformation and stability of shallow 

shells is developed in view of initial geometrical imperfections in a shape and in a contour 

of the shell. For this purpose the dynamic equations involving damping are used. w  is a 

normal displacement, 
0

w  - a initial shape function, Φ  - a stress function. The external 

normal pressure is defined by q , t  is a time. x  and y  - spatial coordinates, h  - a 

thickness, ( , )L w Φ - a nonlinear operator. 

 

[ ]

2
2 4

02

4 2
0 0 0

( ) ( , ),

1 1
( ) ( , ) ( , ) .

2
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k

w w D q
w w L w

t h ht

w w L w w L w w
E

µ γ
∂ ∂

+ = −∇ Φ + ∇ − + + Φ
∂∂

∇ Φ = −∇ − − −

   (17) 

The solution of the problem is as follows in several steps: 1. Natural frequencies mnω , 

eigenfunctions for normal displacement ( , )mnW x y%  and stress function ( , )mnF x y%  for own 

oscillations of the ideal shell shape and contour are found. m  and n  - numbers of 

oscillation mode. 2. w  and Φ  are decomposed in series on earlier retrieved eigenfunctions 

with unknown coefficients ( )mnW t  and ( )mn tΦ . 3. The initial imperfections are 

decomposed in series under own eigenfunctions with known coefficients 0
mnW . 4. The 

initial shape defect and its derivative near the contour are taken into account by adding in 

the series of additional term 0 ( , )bW x y . We can apply these equations to obtain: 
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%

   (18) 

5. The obtained series are substituted in the equations (17). 6. ( , )mnW x y%  offer property of 

an orthogonality with weighting function ( , )x yρ . For the stress functions ( , )mnF x y%  we 

select the special function ( , )kl x yψ , which is orthogonal to 4 ( , )mnF x y∇ . These properties 

note as follows: 
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The second relations in (19) is very important, because of it simplifies the derivation of an 

iteration scheme for solving of the equations (17). 

Due to these properties it is possible to receive a set of equations for normal displacement 

in which in the left part there are the derivatives of the coefficient only for one component 

( )mnW t . Moreover for each component of the stress function ( )mn tΦ  we have the separate 

equation: 

2
1 0 1

2

2 0 2 0

( , , , ) ( , ),

( , ) ( , ).

mn mn
mn mn mn mn

mn mn mn

d W dW
E q W W L W

dtdt

E W W L W W

µα γβ+ = Φ + Φ

Φ = +

 (20) 

1 0( , , , )mnE q W W Φ  и 2 0( , )mnE W W  - linear parts, 1 ( , )mnL W Φ  и 2 0( , )mnL W W  - nonlinear 

parts of the equations. 

However, the integration of this system encounters difficulties related to its stiffness, which 

results from the fact that the frequencies mnω  increase sharply with increasing numbers m  

and n . So the special finite difference scheme for a solution on time is used. It is grounded 

on the fact, that the rigidity of a system is connected to the linear part of the equations in 

main. Therefore the linear part is approximated under the implicit scheme, and nonlinear on 

explicit. 

5. *umerical results. 

Let us consider shortly stability of imperfect spherical domes (Yakushev [2,3,9]). Emphasis 

was placed on the agreement with the experimental results by Yamada S. et al. [11]. 

The distribution of initial geometrical imperfection for a specimen named in this paper as 

C98 is shown in Figure. 3. Left side is the experimental data (Yamada S. et al. [11]), right 

side is a result of our approximation. For obviousness the vertical scale is enlarged in 800 

times in comparison with two remaining directions. The specimen had the radius of 

curvature R=1.81m, the base radius a=0.17m, the thickness 30.97 10h m−= ⋅ , geometrical 

parameter 7.29b = , Young’s modulus  93 10E Pa= ⋅  and Poisson’s ratio respectively. 

0.36ν = , upper critical pressure 799Pa  (dimensionless value 0.75cruq = ), lower critical 

pressure 192Pa  ( 0.18crlq = ). 

Figure 4 shows by dash-and-dot line the nonlinear association between dimensionless 

pressure q  and volume 
r

V : 
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It was gained as a result of the step-by-step changes of pressure q . For each value q  

iterative process was conducted till a moment of convergence. The pressure was varied 

with little step near upper 0.731cruq =  and lower critical 0.191crlq =  pressures for more 

calculation accuracy of these values. After the transition to the stable postbuckling state 

(points 1-2-3-4-5) the pressure was decreased and the shell went through 5-7-8-9-10-11-12 

to the point 13 corresponding to stable prebuckling state. In all cases the horizontal parts of 

the curves correspond to stability loss of the shell. It was observed between points 1-5 

(upper critical pressure), 7-8 at 0.248q = , 9-13 at lover critical pressure. The shell forms 

are shown in Figure 5. The numbers near them correspond to the numbers in Figure 4. The 

portion of the curve from 0 to 1 accords with the prebuckling stable states, in Figure 5 they 

are closely spaced.  

The simulation when the volume 
r

V  step by step changed was carried out also, in this case 

the pressure q  was determined from the decision. The pressure versus volume is shown in 

Figure 4 by a continuous line with circles, which show values of volume 
r

V  for which 

calculation was carried out. When pressure has reached the critical value 0.731cruq =  the 

stability loss took place, and the shell has passed from a state 1 to 14. 

Figure 6 shows the distributions of the normal displacement for different states: picture 

0 corresponds to initial state at 0q = , when 0W W= ; 1 – stable prebuckling state at 

0.5q = ; 2 - stable prebuckling state at 0.730q = ; 4 – start of the stability loss at 

0.731q = . Here for obviousness the vertical scale is enlarged in 116 times in comparison 

with two remaining directions. 
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Figure 2: The initial and different postbuckling  forms of the cylindrical panel. 
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Figure 3: Comparison of distribution of initial imperfections (1- experiments, 2- 

approximation). 

Figure 4: Pressure 
q  versus volume rV  for the specimen named in [1] as C98. 

 
Figure 5: The dome forms for different pressures and the transient from the pre-buckling to 

stable post-buckling state and back 
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 Figure 6: The distribution of the normal displacement 

W  for different pressures 
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