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ABSTRACT 

The overall aim of this study was to assess the moisture loss kinetics and the structural 

changes induced by both conventional and ultrasonically assisted convective drying of 

eggplant tissue. Three sets of drying experiments (at 40 ºC and 1 m/s) were carried out: 

conventional air drying and ultrasonically assisted drying at two different levels of 

applied ultrasonic power, 45 and 90 W. The microstructure of the dried samples was 

studied by Scanning Electron Microscopy. 

The application of ultrasound during the convective drying of eggplant led to a 

significant reduction of the drying time. The ultrasonic effect was dependent on the 

power applied, thus, the higher the power, the faster the moisture loss. The 

microstructure of eggplant endocarp was greatly affected during conventional air 

drying, probably due to the long drying times. This microstructure was better preserved 

after the application of a moderate ultrasonic power (45 W), due to the shorter drying 

time and the mild mechanical effects of ultrasound on the endocarp cells. 

Key-words: ultrasound, dehydration, modeling, microstructure 
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1. INTRODUCTION

Eggplant is a relevant crop in North America, Asia and the Mediterranean area. Its 

limited shelf life is one of the main restrictions on the trade of eggplant as a fresh 

product. Dehydration constitutes an alternative with which to provide more stable 

eggplant products, which may be shipped to foreign markets or used the whole year 

round (Akpinar and Bicer, 2005). 

Convective drying is the most traditional dehydration method used to preserve foods; it 

mainly consists of forcing air through the product to be dried. This drying process 

involves chemical, physical, structural and nutritional changes, linked to the water loss 

and the high temperatures applied (Concellón et al., 2007; Hernando et al., 2008), which 

affect the product quality. In such a way, Hung and Duy (2012) reported the reduction 

of bioactive compounds content in eggplant by hot air drying. Actually, the structural 

changes are more intense in high porosity products, such as eggplant. 

The convective drying of eggplant has already been reported in literature (Akpinar and 

Bicer, 2005; Wu et al., 2007; Doymaz, 2011; Doymaz and Göl, 2011; Garcia-Perez et 

al., 2011), but only a few works have addressed the effect of drying on the product’s 

structure. Thus, Chaves and Avanza (2004) studied the shrinkage of eggplant slabs 

during hot air drying and Doymaz and Göl (2011) addressed the effect of blanching 

prior to hot air drying. Otero et al. (1998) tested the effects of high-pressure-assisted 

freezing and conventional air-freezing on the microstructure of eggplant tissue. Other 

authors have added enzymes and calcium to eggplant tissue in order to test how this 

protects the microstructure during drying (Banjongsinsiri et al., 2004). 

On the other hand, as the convective drying process is one of great relevance on an 

industrial level, it has been rigorously addressed in literature (Mulet et al., 2005; 
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Doymaz, 2011; Doymaz and Göl, 2011). Despite the strenuous efforts made to improve 

it, the loss of product quality and the high energy demand are still considered as big 

challenges that have to be met (McMinn and Magee, 1999). In order to shorten the 

drying time or decrease the air drying temperatures, the combination of additional 

energy sources with forced air have been tested, such as microwave and infrared 

radiation (Orsat et al., 2007). In this sense, high power ultrasound is of great interest due 

to the fact that its effects on kinetics are based on mechanical mechanisms more than on 

heating effects, which leads to a shorter drying time without significantly heating the 

product. Thus, ultrasonically assisted convective drying allows the use of milder drying 

temperatures than conventional drying. Both aspects, drying time and temperature 

reduction, are considered relevant in order to better preserve the product quality during 

drying. The potential of the application of high power ultrasound to several fruits and 

vegetables during their drying has been reported (Da-Mota and Palau, 1999; Gallego-

Juarez et al., 1999; Garcia-Perez et al., 2007; Garcia-Perez et al., 2009). Actually, these 

works have focused on gaining insight into the effects of ultrasound on the mass 

transport phenomena. However, the same ultrasonic mechanisms that accelerate the 

mass transfer process may also induce some kinds of changes to the product structure. 

In this sense, structural changes have already been reported for other ultrasonically-

assisted food processes, such as brining (Sanchez et al., 2001) and meat ageing (Stadnik 

et al., 2008). Therefore, the microstructural studies are of great interest in order to 

evaluate the application of ultrasound in convective drying processes on an industrial 

scale. 

The overall aim of this study was to assess the moisture loss kinetics and the structural 

changes induced by both the conventional and the ultrasonically assisted convective 
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drying of eggplant tissue. This strategy aims to identify any common ground existing 

between the effects induced by the ultrasonic application on both material structure and 

mass transfer kinetics. 

2. MATERIALS AND METHODS

2.1.Drying experiments 

Cylindrically shaped samples (height 2 cm and diameter 2.4 cm) were obtained from the 

flesh of eggplants purchased in local markets (Solanum melongena var. Black Enorma). 

For obtaining peeled samples, eggplant was sliced (thickness 2 cm) and cylinders were 

taken out using a 2.4 cm hole puncher. The moisture content of the fresh eggplant was 

determined by placing samples at 70 ºC in a vacuum oven (absolute pressure 26.7 kPa, 

Vaciotem-T, JP Selecta, Spain) until reaching constant weight, following AOAC 

standards (AOAC, 1997). 

Drying experiments were conducted in an ultrasonically assisted convective drier, 

which has already been described in the literature (Garcia-Perez et al., 2009; Garcia-

Perez et al., 2011). An air borne ultrasonic device constitutes the drying chamber 

(volume 2.4 L), it includes an aluminium vibrating cylinder (internal diameter 100 mm, 

height 310 mm and thickness 10 mm) driven by a piezoelectric composite transducer 

(21.7 kHz). Drying air goes through the vibrating cylinder where samples are placed. 

Conventional convective drying experiments (AIR) were carried out on eggplant 

cylinders, keeping the air velocity (1 m/s) and temperature (40 ºC) constant. 

Ultrasonically assisted (AIR+US) convective drying experiments were carried out at 

two different power levels (specific electric power applied to the ultrasonic transducer), 

45 and 90 W, and maintaining the same air velocity and temperature as in conventional 
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drying experiments (AIR). Thus, ultrasonic power densities of 18.5 (AIR+US-45W) and 

37.0 W/L (AIR+US-90W) were tested. Before drying, samples were sealed using plastic 

film and kept cold (4 ºC) until drier was properly fitted to experimental conditions 

(average storage time 10 minutes). In every case, the AIR and AIR+US experiments 

were carried out at least three times and prolonged until the samples lost 80% of the 

initial weight. 

2.2.Drying process modelling 

A diffusion model based on the 2
nd

 Fick’s law was used to describe the moisture loss

kinetics of eggplant cylinders (Mulet et al., 2005; Hadrich and Kechaou, 2009). Eq. 1 

shows the differential equation of diffusion for isotropic solids and finite length 

cylindrical geometry considering the effective moisture diffusivity to be constant (Simal 

et al., 1998): 

2 2

p p p p

e 2 2

W (r,x,t) W (r,x,t) W (r,x,t) W (r,x,t)1
= D + +

t x r r r

    
 

    
(1) 

Where Wp is the local moisture (dry basis, kg water/kg dry matter), t is the time (s), De 

is the effective moisture diffusivity (m
2
/s) and x and y represent the axial and radial

pathways for mass transport, respectively. 

The hypotheses assumed to solve Eq. 1 are listed as follows: 

 The initial moisture content and temperature are uniform inside the sample due

to the previous tempering period of the sealed samples. 

 Sample volume does not remain constant during drying due to the shrinkage

brought about by the water loss. Thus, mass transport should be addressed as a 

moving boundary problem. 
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 The solid symmetry in both radial and axial pathways.

 A significant external resistance to water transfer due to the low air velocity (1

m/s) (Garcia-Perez et al., 2009), which forces the water flux between the solid 

surface and the air flow to be considered in both axial and radial pathways. 

Taking the previous hypotheses into consideration, the following initial and boundary 

conditions were fixed to solve Eq. 1: 

Wp(r,x,0) = W0 in   0 ≤ x ≤ L; 0 ≤ r ≤R   at   t = 0          (2) 

pW (0,x,t)
=0

r




 in   r = 0; 0 ≤ x ≤ L   at   t > 0        (3) 

 p

e ss e air

W (R,x,t)
D ρ k (R,x,t)

r
 


  


 in   r = R;0 ≤ x ≤ L   at   t > 0        (4) 

pW (r,0,t)
0

x





in   x = 0 ; 0 ≤ r ≤ R   at   t > 0        (5) 

 p

e ss e air

W (R,x,t)
D ρ k (R,x,t)

r
 


  


 in   x = L;0 ≤ r ≤ R   at   t > 0        (6) 

Where: L is the sample half height (m), R the sample radius (m), W0 the initial moisture 

content, ρss the dry solid density, k the mass transfer coefficient (kg water/m
2
/s), e the

water activity (Garcia-Perez et al., 2011) and air the relative humidity of the drying air. 

Eggplant shrinkage has already been reported in previous works, thus, Garcia-Perez et 

al. (2011) reported Eq. 7 using the toluene displacement technique, depicting the change 

in eggplant volume (V) as regards the average moisture content (W). 

2

0 0

V W
0.929 0.112; r  0.99

V W
          (7) 

Where subscript 0 indicates the initial state. 
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An implicit finite difference method was applied to solve the diffusion problem (Mulet 

et al., 2005), as reported by Garcia-Perez et al. (2011). A computational procedure 

written in Matlab code (The MathWorks, Inc., Natick, MA, USA) allowed the local 

moisture distribution to be obtained and, by integration, the average moisture content of 

the solid, as a function of drying time, effective moisture diffusivity and mass transfer 

coefficient. 

In order to evaluate the influence of the ultrasonic application on the overall mass 

transport, it is of great importance to identify the kinetic parameters, the effective 

moisture diffusivity (De) and the mass transfer coefficient (k), due to the fact that they 

are related to the internal and external resistance to mass transfer. De determines the 

water’s ability to move inside the material (Castell-Palou and Simal, 2011). It is an 

intrinsic and structural property of the material, but, due to its kinetic aspect, it is also 

influenced by external factors, like temperature. According to the literature (Da-Mota 

and Palau, 1999; Gallego-Juarez et al., 1999), the ultrasonic mechanisms should be 

expected to speed up the water’s mobility in the material and, as a consequence, the De 

should improve. In the case of parameter k, it determines the kinetic of the water 

movement from the solid surface to the air flow. k is mainly controlled by the flow 

turbulence, and obviously the boundary layer thickness. Ultrasonic waves produce great 

turbulence in the interfaces leading to an increase in k value. Both parameters, De and k, 

were simultaneously estimated by fitting the proposed diffusion model to the 

experimental drying kinetics. The fitting procedure consists of minimizing the squared 

differences between the experimental and the calculated average moisture content 

separately for the different experimental conditions assayed. For that purpose, the 

SIMPLEX optimization method available in Matlab (fminsearch function) was used. In 
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order to determine the accuracy of the fit, the percentage of explained variance (%VAR, 

Eq. 8) and the mean relative error (%MRE, Eq. 9) were calculated. 

2

tW

2

W

S
%VAR = 1 - ×100

S

 
 
 

       (8) 

 
 
 
 


N

ei ci

ei
i=1

W -W100
%MRE =

N W
       (9) 

where S
2

W and S
2

tW are the variance of the sample and the estimation, respectively, Wei

and Wci are the experimental and calculated average moisture contents and N the 

number of experimental points in the drying kinetic. 

A statistical procedure was performed in order to assess whether the application of 

power ultrasound (at 2 levels: 45 and 90 W) provokes a significant increase in the 

kinetic parameters (De and k), as compared to conventional convective drying. Thus, 

analyses of variance (ANOVA) and LSD intervals (p<0.05) were determined by using 

the software package of Statgraphics® Plus 5.1 (StatPoint, Inc., Warrenton, VI, USA). 

2.3.Microstructural analysis 

The microstructure of fresh, AIR and AIR+US (45 and 90 W) dried samples was 

studied using Cryo-SEM and SEM techniques. AIR dried samples were considered a 

control sample in order to identify the influence of power ultrasound on the structure of 

dried samples. 

Low Temperature Scanning Electron Microscopy (Cryo-SEM) 

Unpeeled samples containing both flesh and skin were used for the Cryo-SEM analysis. 

This permitted a study into the effect of the drying conditions on the different eggplant 
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tissues (external and internal) to be carried out. The experimental set-up involves a 

cryostage CT-1500C (Oxford Instruments, Witney, UK) coupled to a Jeol JSM-5410 

scanning electron microscope (Jeol, Tokyo, Japan). Samples were immersed in slush N2 

(at -210 ºC) and then quickly transferred to the cryostage at 1 kPa, where sample 

fracture took place. The sublimation was carried out at -95 ºC and the final point was 

determined by direct microscopic observation (5 kV). Once again in the cryostage unit, 

the sample was gold-coated using an ionization current of 2 mA and applying vacuum 

(0.2 kPa) for 3 min. A scanning electron microscope was used to carry out the 

observation at 15 kV, using a working distance of 15 mm and at -130 ºC. 

Scanning Electron Microscopy (SEM) 

For the SEM study, cubic (3x3x3 mm) samples of the eggplant flesh were obtained with 

a stainless steel cutter. The samples were fixed in a solution of 2.5% glutaraldehyde in 

0.1 M (pH 7.3) cacodylate buffer for 24 h at 4ºC, dehydrated in a series of 10, 20, 40, 

60, 80 and 100% ethanol (ethanol:water, v/v) every 20 min, rinsed in acetone and 

ultradehydrated by critical point with CO2 (1100 psi, 31.5 5 ºC) in a POLARON E3000 

instrument. Then, they were gold-coated using POLARON E6100 Equipment (10-

4mbar, 20 mA, 80 s) and observed through a Jeol JSM 6300 Scanning Electron 

Microscope (15 kV, 15 mm). 

3. RESULTS AND DISCUSSION

3.1. Moisture loss kinetics 

Under every condition tested, the drying of eggplant cylinders took place in the falling 

rate period (Figure 1), thus, the initial moisture content was considered to coincide with 

the critical moisture content. The drying experiments were prolonged until samples lost 
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80% of their initial weight, which gives a moisture content of close to 3 dry basis. The 

experimental results showed that the conventionally dried samples (AIR) needed 

approximately 25,000 s (7 hours) to reach this moisture content. In the case of the 

ultrasonically assisted drying experiments (AIR+US), the drying time was only 13,000 s 

(3.5 hours) when 45 W were applied to the ultrasonic transducer and 6,500 s (1.8 hours) 

for an applied power of 90 W. Then, by applying power ultrasound at the tested powers 

(45 and 90 W), the drying time was shortened by 50% and 75%, respectively. This 

aspect is highly relevant in terms of the global efficiency of industrial drying, since the 

shortening of the drying time not only enhances the energy efficiency of the drying 

stage but also the industrial production capacity. Therefore, ultrasound may be 

considered as a novel technology which has the potential to be applied in convective 

drying processes of agri-food products on an industrial scale. Moreover, bearing in 

mind the low heating capacity of ultrasound, a specific application in the drying of heat 

sensitive products or in low temperature drying processes is of even greater interest. 

In previous works carried out on other products, such as carrot, lemon peel (Garcia-

Perez et al., 2009) or persimmon (Garcia-Perez et al., 2007), the ultrasonic application 

was less efficient at shortening the drying time than in the case of eggplant. This fact 

could be explained considering that high porosity products, like eggplant, are more 

prone to the mechanical effects produced in the material (Garcia-Perez et al., 2009). 

Ultrasound produces alternative expansions and compressions in the materials where 

ultrasonic waves are travelling through. The continuous mechanical stress makes it 

easier for water to flow out due to the fact that the molecules are forced to move to the 

sample surface. This effect is called the “sponge effect” due to its similarity to when a 

sponge is squeezed and released. The highly porous nature of eggplant (Boukouvalas et 
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al., 2006) means it has a low structural resistance to the mechanical effects and this 

could be the main reason for the fact that ultrasonic application is highly effective in 

eggplant tissue. 

Modelling contributed not only to the quantification of the ultrasonic effects, but also 

helped to separate them into external and internal resistance to mass transport. The 

results of the modelling are shown in Table 1. Explained variance values higher than 

99% and mean relative errors lower than 2% were obtained for the proposed diffusion 

model. Both statistical parameters highlight a close fit of the experimental drying 

kinetics. Therefore, the assumptions considered in the diffusion model resolution seem 

adequate to characterize mass transport during eggplant drying under these experimental 

conditions. 

The effective moisture diffusivity for conventional drying kinetics (AIR, De=4.91 10
-10

m
2
/s) was similar (Table 1) to other values reported for this product in literature

(Akpinar and Bicer, 2005; Doymaz, 2011). Thus, Doymaz and Göl (2011) reported, for 

the drying of eggplant slices (0.5 and 1 cm thickness) at 2 m/s and temperatures ranging 

from 50-80 ºC, effective diffusivities from 0.93 to 8.84 10
-10

 (m
2
/s). The application of

power ultrasound led to a significant increase of De (p<0.05), involving a reduction of 

the internal resistance to mass transfer. Thus, the De value of eggplant for ultrasonically 

assisted drying at 90 W (AIR+US-90W) is almost one order of magnitude higher than 

the value obtained in conventional drying experiments (AIR). As already mentioned, 

this fact could be linked to the “sponge effect”, that is the alternative expansions and 

contractions of the material, produced by ultrasound. The effects of power ultrasound 

were dependent on the power applied. The De identified for the ultrasonically assisted 

drying experiments performed at 45 W (AIR+US-45W) showed an intermediate value 
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between those obtained in AIR and AIR+US-90W experiments. The higher the applied 

power, the greater the effects produced by ultrasound. This fact has already been 

observed in the ultrasonically assisted drying of other foodstuffs (Garcia-Perez et al., 

2009), and it was also observed in other ultrasonic applications, such as osmotic 

dehydration (Carcel et al., 2007a) or brining (Carcel et al., 2007b). 

As regards the influence of ultrasound on the external resistance to mass transport, the 

modeling of the drying kinetics of eggplant cylinders (Table 1) showed a significant 

(p<0.05) increase of k parameter when ultrasound was applied. Thus, the identified 

value increased from 1.79 to 3.29 10
-3

 (kg w/m
2
/s) for AIR+US-45W experiments and 

reached 5.89 10
-3

 (kg w/m
2
/s) for AIR+US-90W experiments. As already mentioned,

power ultrasound has the ability of improving the mass transfer coefficient (k) due to 

the reduction of the boundary layer thickness by a mechanical stirring of the gas 

medium that ultrasonic waves produce at the interfaces. Ultrasonic applications involve 

oscillating velocities, micro-streaming and pressure variation at the interfaces (Gallego-

Juarez et al., 1999), which greatly increase the turbulence leading to an improvement in 

the water transport from the solid surface to the air medium. 

The modeling of drying kinetics highlighted the fact that power ultrasound had a 

significant effect on both internal and external water transfer during eggplant 

dehydration. According to this, some kind of ultrasonic effect on both internal and 

external eggplant structural tissues should be expected. 

3.2.Microstructure of fresh eggplant 

The microstructure of raw eggplant is shown in Figures 2 (Cryo-SEM technique) and 3 

(SEM technique). As can be observed, the epidermis is a continuous layer of rounded 
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cells, closely packed and covered by a uniform and non-porous waxy layer. In a cross 

section of eggplant, under the epidermis, two main tissues may be observed (Figures 2A 

and 2B). An external layer named the epicarp, which has hardly any intercellular spaces, 

contains anthocyanins that provide the typical purple color of the Mediterranean 

eggplant varieties. It mainly consists of 4-5 layers of rounded cells (10-25 m). Under 

the epicarp, and practically taking up the remainder of the fruit flesh, is found a spongy, 

white structure named the endocarp (Figure 2C and 2D). As the microstructural 

observation progresses to the inner part of the fruit (following the radial direction), the 

cells get progressively bigger and large intercellular spaces can also now be observed. 

This tissue is characterized by tubular, interconnected cells and a high porosity was 

observed, particularly in the more internal zones (Figure 2D). In the Scanning Electron 

Microscopy (SEM) images, the cell walls from the different tissues and the intercellular 

connections between them can be clearly distinguished. Figure 3 shows a computer 

typesetting of two micrographs in which the whole tissue, from the external cellular 

layers of the epicarp to the interior endocarp layers, can be observed. This image shows 

the link between the epicarp and endocarp with an interconnection between cells 

through the walls. These SEM observations also show the larger intercellular spaces that 

exist in the internal tissue (endocarp), compared to the external one (epicarp and 

epidermis). 

In the following sections, the influence of the different drying methods on internal 

(endocarp) and external (epicarp and epidermis) microstructure will be addressed. 
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3.3.Effects of drying on internal microstructure (endocarp) 

The conventional convective drying experiments (AIR) involved microstructural 

changes in the endocarp showing a high degree of degradation and a compacting 

process, as can be observed in the images obtained by Cryo-SEM (Figure 4). These 

effects on the endocarp tissue of eggplant may be linked to the lengthy exposure to 

forced air at 40 ºC in AIR experiments. The effects on the endocarp of the ultrasonically 

assisted dried samples (AIR+US) were, in overall terms, less important than in AIR 

samples, but this was dependent on the ultrasonic power applied. The cells of the 

endocarp of AIR+US-45W samples (Figure 4C) still maintained their individuality and 

intact cell walls were even found. As the intensity of the applied power increased, the 

drying effects became more intense. As a consequence, a highly compacted tissue 

appeared in AIR+US-90W dried samples (Figure 4D), although some spaces were also 

found to be occupied by air. 

These microstructural changes in the endocarp can also be observed in the images 

obtained by the SEM technique (Figure 5). The SEM micrographs show that the cell 

walls of AIR+US-45W dried samples (Figure 5C) are better preserved compared to AIR 

dried samples, although the tissue is more compacted. In the AIR dried samples, 

individual cells can hardly be identified due to a generalized degradation of the tissue. 

The ultrasonic waves applied at the highest level of power (90 W) induced a great 

compaction of the internal tissue (Figure 5D), even bearing in mind the fact that the 

drying time was shorter (Figure 1). 

The alternating expansions and contractions brought about by the ultrasonic wave when 

travelling in a medium could promote the degradation of endocarp cells. The effect on 

the endocarp structure was dependent on the applied ultrasonic power. The higher the 
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acoustic intensity used, the more intense were the compressions and expansions 

produced by the ultrasound and the more marked the effect on the internal 

microstructure. This could also be related with the fact that the effective moisture 

diffusivity increased as more ultrasonic power was applied (Figure 1, Table 1). 

When 45 W (50% of the maximum acoustic power tested) was applied (AIR+US-45W), 

ultrasound was highly efficient in terms of the drying rate, since the drying time was 

reduced by around 45% when compared to AIR experiments (Figure 1). Therefore, by 

applying a mild ultrasonic power, the length of exposure to air drying was drastically 

shortened, which reduced the structural damage associated with air (Figure 5C), thus 

subjecting the endocarp cells to relatively weak compressions and expansions. When 

the ultrasonic power was applied at the maximum level tested, 90 W (AIR+US-90W), 

the compressions and expansions of the endocarp tissue were much more intense 

inducing a greater compaction of the internal tissue (Figure 5D). This stress observed in 

the internal microstructure could also make the moisture leave the matrix at a faster rate 

and it could be responsible for the significant (p>0.05) increase in the effective 

diffusivity. 

Therefore, if both the moisture loss kinetic and the internal microstructure are taken into 

account, the ultrasonically assisted drying of eggplant at 45 W was the most favorable, 

since by applying this mild ultrasonic power, the length of exposure to air drying was 

significantly shortened. 
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3.4.Effects of drying on external microstructure (epicarp and 

epidermis) 

The drying process also affected the external microstructure of eggplant. The 

conventional convective air drying (AIR) involved the separation of epicarp and 

epidermis (Figure 6B). The samples dried by ultrasound (AIR+US) did not show this 

effect, but wrinkles appeared on the epidermic surface due to the tissue compression 

(Figure 6C and 6D). 

As regards the waxy compounds on the epidermis, they were not affected by the AIR 

drying experiments (Figure 7A). However, the ultrasonically assisted drying 

experiments (AIR+US) led to the waxy compound spreading over the epidermis (Figure 

7B and 7C), causing the characteristic uniformity of this layer to be lost. Comparing the 

AIR+US-45W and 90W experiments, it can be observed that an increase in the applied 

ultrasonic power provoked a more intense spread of waxy compounds (Figure 7B and 

7C). 

The spread of waxy compounds showed that ultrasound did affect the external surface 

of the samples and, therefore, the solid-air interface. Ortuño et al. (2010) already 

observed the effect that applying power ultrasound during drying has on the waxy 

compounds of the orange peel epidermis. The observed effects are probably linked to 

the aforementioned stirring of the air medium mechanisms associated with ultrasound 

application (Gallego-Juarez et al., 1999). The oscillating velocities, micro-streaming 

and pressure variation at the interfaces should not only reduce the boundary layer 

thickness, thus  improving mass transfer phenomena, as has been shown by the 

significant increase in the mass transfer coefficient of moisture (Table 1), but also 

contribute to the degradation of the interface microstructure. 
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4. CONCLUSIONS

Ultrasonic application during the convective drying of eggplant led to a significant 

(over 70%) shortening of the drying time at the maximum ultrasonic power tested (90 

W). From the modeling, it was found that the reduction in the drying rate was linked to 

the improvement in both the mass transfer coefficient and the effective moisture 

diffusivity. The influence of ultrasound on internal and external mass transport was 

related with the effects on the internal (endocarp) and external (epicarp and epidermis) 

microstructure of the dried eggplant. Thus, the microstructure was better preserved by 

the application of a moderate ultrasonic power (45 W) than by conventional air drying, 

due to the shortening of the drying time and the weak mechanical effects of ultrasound 

on the endocarp cells. Therefore, the ultrasonically assisted drying of eggplant may be 

considered an efficient alternative to conventional convective drying as regards energy 

consumption (reduction of drying time) and quality in terms of the stability of the 

microstructure after processing. 
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FIGURE CAPTIONS 

Figure 1. Conventional (AIR) and ultrasonic assisted (AIR+US) convective moisture 

loss kinetics of eggplant cylinders (height 2 cm and diameter 2.4 cm) carried out at 40 

ºC and 1 m/s. 

Figure 2. Cryo-SEM. Cross section of raw eggplant (2A and 2B). Detail of endocarp 

cells next to epicarp (2C) and in the inner tissue (2D). epi: epidermis; ed: endocarp; ep: 

epicarp. 

Figure 3. SEM. Raw eggplant. Computer typesetting of two cross sections of eggplant 

where epicarp (ep) and endocarp (ed) can be observed. 

Figure 4. Cryo-SEM. Endocarp from raw eggplant (A) and dried eggplant samples: 

AIR (B), AIR+US-45W (C) and AIR+US-90W (D) samples. 

Figure 5. SEM. Endocarpic tissue in raw eggplant (A) and in dried eggplant samples: 

AIR (B), AIR+US-45W (C) and AIR+US-90W (D). 

Figure 6. Cryo-SEM. Raw eggplant (A) and dried eggplant samples: AIR (B), 

AIR+US-45W (C) and AIR+US-90W (D). 

Figure 7. Cryo-SEM. Detail of the scattering of waxy compounds on the epidermis of 

dried eggplant samples: AIR (A), AIR+US-45W (B) and AIR+US-90W (C). 
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Table 1. Modelling of conventional (AIR) and ultrasonic assisted (AIR+US) convective 1 

drying kinetics of eggplant cylinders (height 2 cm and diameter 2.4 cm) carried out at 2 

40 ºC and 1 m/s. Subscripts (A,B,C) and (X,Y,Z) show homogeneous groups 3 

established from LSD intervals (p<0.05). 4 

5 

De

(10
-10

 m
2
/s)

k 

(10
-3

 kg w/m
2
/s)

%VAR %MRE 

AIR 4.91A 1.79X 99.99 0.45 

AIR+US-45W 9.47B 3.29Y 99.90 1.03 

AIR+US-90W 15.27C 5.89Z 99.92 1.12 
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