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ABSTRACT 

This paper presents an overview of the recents studies on the ultrasonic transmission 

through subwavelength holes arrays. The role of the geometrical parameters of the 

perforated plates in the transmission features has been reported by using a theoretical 

model under the rigid-solid assumption. It is shown that the transmission spectrum can be 

tailored by varying the geometrical parameters. 
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1. INTRODUCTION 

The interaction of waves with periodic structures dates from, at least, the end of the XIX 

century with the study of sound reflection of one-dimensional gratings by Rayleigh [1]. 

Since then numerous authors have studied the problem. The behaviour of electromagnetic 

and mechanical waves in periodic structures was a subject of a book by Brillouin [2], that 

he tried on unifying concepts about both electromagnetic and mechanical waves. From the 

knowledge of the wave nature of electromagnetic and acoustic waves, some of the ideas 

developed for electromagnetic waves have been transferred to acoustics taking into 

account their differences: the electromagnetic wave is a vector transverse wave while 

acoustic wave is a scalar longitudinal wave.  The concept of sonic crystal for acoustics is 

based on the idea of photonic crystal for electromagnetic waves [3]. 

 

In 1998, Ebbesen et al. [4] observed enhanced transmission of light through periodic 

arrays of subwavelength holled drilled on a metal film. They observed that the light 

transmission per hole at specific frequencies, correlated with the periodicity, is much 

larger that predicted by Bethe’s theory [5]. Since then, extraordinary optical transmission 

through metallic films perforated with subwavelength apertures has atracted much 

attention and has been subject of numerous theoretical and experimental studies. A recent 

review by Garcia-Vidal et al. [6] describes the physical mechanisms and the developments 

in the transmission of light through subwavelength apertures up to 2010.  

 

As well as the case of photonic and sonic crystals, the idea of optical transmission through 

subwavelength apertures has been transferred to acoustics to obtain effects similar to 

extraordinary optical transmission. In the last six years, this area of study has received a lot 

of attention. Lu et al. [7] reported experimentally the so-called extraordinary acoustic 
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transmission through a subwavelength slit array. Zhou and Kriegsman [8] predicted 

complete sound transmission through subwavelength hole arrays by means of the 

scattering matrix technique and Hou et al. [9] reported experimentally the acoustic 

transmission through subwavelength holes arrays. The main contribution to the 

transmission peaks are the Fabry-Perot resonances inside the holes. Christensen et al. [10] 

reported theoretical results in the rigid solid limit for subwavelength slits and square holes 

arrays. Estrada et al. [11] have shown both theoretically and experimentally in the 

ultrasonic range, that, at certain frequencies, perforated plates with subwavelength holes 

arrays exhibit higher attenuation that predicted by mass law apart from the extraordinary 

acoustic transmission. This effect is due to the Wood anomaly [12]. Estrada et al. [13] also 

demonstrated that the ultrasonic transmission properties of a perforated plate with 

subwavelength holes arrays and inmersed in water, is an interplay between Fabry-Perot 

resonances inside the holes, lattice resonances in periodic arrays and elastic Lamb modes. 

Wang [14, 15] uses acoustic impedances to describe the extraordinary acoustic 

transmission by assuming piston-like behaviour at the holes apertures, and revealed that 

the singularity of the radiation impedance of the holes array is the origin of the full 

transmission. A suppresion of the full transmission peak can be achieved when the hole 

array basis is asymmetric [16]. The acoustic transmission through plates perforated with a 

quasiperiodic arrays of subwalength apertures has been studied by Hao et al. [17].  

 

The role of the geometrical parameters of the hole array is important in the ultrasonic 

transmission through perforated plates and has been subject of several studies [18-22]. The 

purpose of this paper is to describe and summarize theoretically the set of geometrical 

parameters that affect the ultrasonic transmission through subwavelength holes arrays. A 

rigid solid model is used to calculate ultrasound transmission. The calculations with the 
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rigid solid model predicts well the transmission dips and full transmission peaks, but 

there are some transmission peaks, specially at oblique incidence, that the rigid solid 

model can not predict. These discrepancies can be attributed to the assumption made 

about the behaviour of the solid part of the device, namely zero energy transmission 

across the solid part of the plate. The parameter that quantifies the transmission of 

acoustic energy between semi-infinites media is the impedance ratio. A high contrast of 

impedances between the solid and the fluid, involves minor discrepancies between rigid 

solid model calculations and measurements. This is easily understood because a perfect 

match of impedances mean a perfect fluid-solid coupling and a full transmission of 

energy between fluid and solid, whereas a perfect rigid solid implies an infinite contrast 

of impedances. If only normal transmission coefficient is considered, the differences 

between rigid solid model and measurement data, as expected, are lower because the 

wave vector has no component in the plate. A very different situation occurs when we 

take into account oblique incidence. In this case, measurements depicts a scenario when 

new peaks of transmission appear and a complex interplay between maxima and minima 

occurs, this makes clear that the limitations of the rigid solid model [13].  

 

2. BASIC THEORY. RIGID SOLID MODEL. 

Consider a plate of thickness  t  which is perforated with P cylindrical holes of radius 0

ir  

in positions determined by their centres ir , as schematically shown in Figure 1. For the 

study of the pressure field, we split the space in three regions, namely incident region [I], 

holes in plate region [II] and radiation region [III]. 

Assuming an incident plane wave  0i t
e

 k r
 impinging in the plate, the pressure field in the 

incidence region (region [I] in the Figure 1) is the sum of the incident and the scattered  
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wave, and can be written, dropping the time dependence  i te  , in terms of a series of 

planes waves, in the form [23] 

        0 0 2i q z i qz

I e e d Q 
     

Q r Q r
r Q  (1) 

where  0 0 0,qk Q  is the wave vector, 0k c , 
2 2

0q k Q  .  

The pressure field inside the holes (region [II] in the Figure 1) is expanded as a traveling 

wave in the z direction and a standing wave in the transverse one. Using cylindrical waves 

to take advantage of the symmetry of the problem, and yields 

  
     0

1 0 1

if

0 otherwise

i

P
imi i

m mn i mn i i

i m nII

J Q e z r




 

  


   

 



 r r r r
r  (2) 

where 
2 2

0

i i

mn mnq k Q  ,  ...mJ  is the Bessel function of the first kind and order m and 

 i

mn z  is defined as   
i i
mn mniq z iq zi i i

mn mn mnz e e      .  

In the radiation region (region [III] in the Figure 1), the pressure field is expanded in plane 

waves and can be written as  

 
   

   2i q z h

III e d Q 
   

Q r
r Q

 (2) 

The P holes are periodically distributed throughout the whole plate, and can be considered 

as a lattice basis with a unit cell area S and defined by the vectors  1 2,a a . In this way, the 

coefficients   
Q  can be expanded in Fourier series [24], giving the following discrete 

pressure field equations for regions [I] and [III] 

      02
i i q z

I e e 
    G GQ r Q r

G

G

r  (3) 

 
 

  i q z h

III e 
   G GQ r

G

G

r

 (4) 

where 0 GQ Q G , G  is the reciprocal lattice vector, and 
2 2

0q k Q G G .  
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If we model the plate as a rigid solid (RSM),then the sound field inside the solid vanishes, 

and the polar eigenfunctions inside each hole must satisfy  0 0i

m mn iJ Q r  , that is, zero 

normal velocity at the hole walls.  

To determine the coefficients  

G
 and  

G
 in the equations (2),(4) and (5), we impose the 

continuity of the pressure and normal velocity in the interfaces holes between the regions 

[I] and [II], i.e. at 0z   and the regions[II] and [III], ( z h  ).  

Taking advantage of the orthogonality of the exponentials and Bessel functions on the unit 

cell, we obtain [23] 

        0

1 0 1 1 0 1

1
2 0 2 0

P P
j i i ij i i

m n mn mn mm nn ij mm nn mn mn

i m n i m n

I q M P
S

  
   

     

     

     GQ Q (5) 

     
1 0 1 1 0 1

1
0 2

P P
i i ij i i

mn mn mm nn ij mm nn mn mn

i m n i m n

q h M P h
S

  
   

   

     

      GQ

 (6) 

where the coefficients in the above equations are defined by means of the formulas (8), 

(9), (10) and (11) 

  
   i j

mn m nij

mm nn

I I
M

q

 

  
G G

G

G G

Q Q
Q  (7) 

   
0

2

0

iri i

mn m mn jP J Q rdr  r r  (8) 

    
02

0 0

i
i

r
i ii i im

mn m mnI e J Q r e e rdrd


    
  G GQ r Q r

GQ  (9) 

   mn mn

i
iq z iq zi i i mn

mn mn mn i

mn

i
z e e

q z
    

   


 (10) 

and the  

G
 coefficients are related to the  

G
 by means of 

    
1 0 1

1
0

iP
i imn
mn mn

i m n

q
I

S q


 


  

 G G

G

Q  (11) 
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    
1 0 1

1
iP

i imn
mn mn

i m n

q
I h

S q


 


  

   G G

G

Q  (12) 

Truncating the series (6) and (7) in m n M  and rearranging, we obtain the following 

system of 2  M M P   equations in the variables i

mn   witch can be solved, for each pair 

frequency  and angle of incidence 0Q , by means of standard procedures  

 

   

 

0

1 1 1

1 1 1

2

0

P M M
ij i ij i j

mm nn mn mm nn mn m n

i m n

P M M
ij i ij i

mm nn mn mm nn mn

i m n

A B I

C D

 

 

 

     

  

 

   

  

    

   





Q

 (13) 

where the matrices A,B,C and D are defined by 

 

1
2

1
2

i
mn

i
mn

ij i i ij

mm nn ij mm nn mn mn mm nn

ij i i ij

mm nn ij mm nn mn mn mm nn

iq hij ij

mm nn mm nn

iq hij ij

mm nn mm nn

A P q M
S

B P q M
S

C B e

D A e

  

  

     

     



   

   

 

 

 

 

 (14) 

At this point, the coefficients  

G
 can be obtained evaluating back the eqs. (12) and (13). 

The ultrasound transmission coefficient is then calculated from the ultrasound power 

radiated by an infinite plate [25]  

  
 

 

2

20
0,2 2 2

0
8

z
x y z z h

Vck i p
Re d Q V

k Q




 



 


    
     

    
 

Q
Q F F  (15) 

where x yF F  means double spatial Fourier transform. This formula applied to our case 

yields 

 
 

 

2

0 0 , ,  

T q
Re

q


 

  


  

   
  

 G
G

G

 (16) 

 

3. RESULTS AND DISCUSSION 
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When an ultrasonic wave impinges onto a subwavelength perforated plate, a typical 

transmission spectrum is obtained. Figure 2(a) shows calculated transmitted ultrasound 

power coefficient as a function of frequency, f, in water at normal incidence for a plate 

drilled with square lattice subwavelength holes arrays of diameter d = 2 mm, lattice period 

p = 4 mm and plate thickness t = 2 mm. It can be clearly seen a pronounced transmission 

peak at 250 kHz followed by a minimun transmission value. The transmission peak is 

related to the Fabry–Perot resonances inside the holes while the minimum transmission is 

just the Wood anomaly similar to those observed in optical gratings [12]. Wood anomalies 

are an effect observed in the spectrum of ligth when ligth impinges in optical diffraction 

gratings. It was observed rapid variations in the intensity of specific diffracted spectral 

orders in narrow frequency bands. The minimum is produced by a coherent interference.  

The Wood anomaly for normal incidence is given by

2 2

2 2m n

c p p

     
    

   
, where p 

is the lattice period, m, n are called Miller indices and c is the speed of ultrasound in 

water. The positions of the Wood anomaly are 370 kHz and 520 kHz for (m,n) = (1, 0) 

and (1, 1),  respectively. Figure 2(b) shows calculated transmitted ultrasound power 

coefficient as a function of both the frequency and the incidence angle. It is seen the strong 

angle dependence of the Wood anomalies. The transmission peaks also exhibit angle-

dependent behaviour. 

 

3.1. Influence of plate thickness 

It is seen from the open tube Fabry-Perot resonant condition 
2

t n


 , where  is the 

wavelength and n  N, that the resonant transmission peaks are directly related to the plate 

thickness, therefore when the plate thickness increases, more transmission maxima will 
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appear and they will move toward lower frequencies. Fig. 3 shows calculated transmitted 

ultrasound power coefficient as a function of frequency, f, in water at normal incidence for 

a plate drilled with subwavelength holes arrays of diameter d = 2 mm, square lattice period 

p = 4 mm and for four different values of the plate thickness, t = 2, 3, 4, and 5. It is seen 

that as thickness increases from 2 to 3 mm the second order Fabry-Perot resonance (n = 2) 

appears at 330 kHz. The position of the peaks do not agree precisely with those calculated 

with the open tube Fabry-Perot condition due to it is highly influenced by the array 

periodicity. When the plate thickness is 5 mm the second, third and fourth order 

resonances are visualized.  Due to the lattice period is the same for all the plate thickness 

the positions of the Wood anomalies (370 kHz and 520 kHz) do not change.  

 

3.2. Influence of hole filling fraction 

The hole filling fraction is a parameter that has a large impact on the ultrasonic 

transmission through perforated plates [18]. For a square array, the hole filling fraction, 

ff, is given by 
2

24

d

p


, where d is the hole diameter and p is the lattice period. Thus, the 

hole filling fraction can be modified by varying the diameter or the lattice period. 

Calculated transmitted ultrasound power coefficient as a function of frequency, f, in water 

at normal incidence for a plate drilled with subwavelength holes arrays of diameter d = 3 

mm, plate thickness t = 4 mm and for three square lattice periods p = 4, 6 and 8 mm, is 

shown in  Figure 4. As the filling fraction decreases, more transmission dips show up 

resulting from Wood anomaly and these dips move toward lower frequencies. The 

position of the transmission peaks related to the Fabry–Perot resonances are influenced 

by displacement of the Wood anomalies. It can also be observed that the transmission 
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peaks become narrower as the filling fractions decrease, as in the case of diffraction 

gratings [26].  

 

Figure 5 shows the calculated results for a plate of thickness t = 4 mm, square lattice 

period p = 6 mm and for three holes diameters d = 2, 3 and 4 mm. In this case, as the 

lattice period is constant, the positions of transmission dips corresponding to the Wood 

anomaly remains at the same frequencies when the filling fraction varies.  The 

transmission peaks related to the Fabry–Perot resonances become narrower as the filling 

fractions decrease just like results obtained by varying lattice periods. 

 

3.3. Influence of lattice geometry 

A periodical repetition of N holes throughout the plate can be considered as a lattice 

basis with unit-cell area S and defined by the primitive vectors  ,a b . For normal 

incidence, the Wood anomaly condition is given by 
c


 G , where 1 2m n G a a , is 

the reciprocal lattice vector and m, n are the Miller indices. For a square array the 

primitive vectors are 1

2

p


a x  and 2

2

p


a y , and for a triangular array the primitive 

vectors are 1

2 1

3p

  
  

 
a x y and 2

2 1

3p

  
  

 
a x y . Therefore, the frequencies at 

which the transmission dips related with Wood anomaly occur are directly related with 

the lattice geometry. Figures 6(a-c) show the calculated results for a plate of thickness t = 

4 mm, hole diameter d = 2 mm and for three different lattice periods p = 4, 5 and 6 mm, 

respectively arranged with both square and triangular lattice hole arrays. Comparison 

between results obtained for both square and triangular lattices reveals that the 
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transmission dips corresponding to Wood anomalies appear at lower frequencies in the 

square lattices [19]. As the filling factor of the square lattice is lower than triangular one, 

the transmission peaks of the square lattice geometries are narrower than the triangular 

ones.  

 

3.4. Two periodic hole arrays 

Two periodic holes arrays arrangement consists in a primary square array which is 

decorated with a larger secondary array that can be square or rectangular. The symmetry 

of the resulting structure is given by the symmetry of the secondary array and consists in 

a cell with many holes and lattice constant large enough to include all the holes. The 

transmission properties of a plate perforated with the so called double periodicity can be 

explored by considering a rectangular compound holes array as described in Figure 7. 

The compound array is drilled on a plate of thickness t = 4 mm. The lattice is rectangular 

with constants a1 = 16 mm and a2 = 4 mm and the basis consists in nine holes, eigth of 

them of diameter d1 = 1 mm and equally spaced, and the ninth, with a diameter d2 =3 mm, 

drilled in the centre of the array. This array of holes can be regarded as a superposition of 

two arrays. The primary array is a rectangular distribution of holes having diameter d2 =3 

mm and rectangular unit cell of dimensions a1 = 16 mm and a2 = 8 mm whereas the 

secondary array is a square distribution of holes having diameter d1 = 1 mm and a unit cell 

period of a2/2 = 4 mm. Figures 8(a) and 8(b) show the calculated transmitted ultrasound 

power coefficient as a function of frequency, f, in water for the primary and secondary 

array respectively. Although the plate thickness is the same, the position of the 

transmission peaks related to Fabry-Perot resonances shift considerably by the effect of the 

hole size and the period [19]. The transmission of the plate with two periodic holes arrays 

is depicted in Figure 8(c). It could be seen that the transmission spectrum is simply the 
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addition of the primary and secondary array spectrum with the transmission peaks at the 

same frequencies than the simple arrays [20], and it is in this sense that it can speak of 

double periodicity. 

 

 

3.5. Multiple-sublattice periodic hole arrays 

When two or more holes are arranged in a unit cell, the resulting structure is a multiple-

sublattice periodic holes array. With increasing the number of holes per unit cell and 

varying the spacing between holes, the number of resonances will increased and the 

transmission spectrum will change. The question of the interaction between different 

resonances is answered by considering 4 x 4 multiple-sublattice holes arrays placed in 

water. In each 4 x 4 squared holes arrays considered, the plate thickness is t = 3 mm, the 

period of the unit cell is a = 5 mm, the hole diameter d = 0.7 mm and three values of 

inter-hole distances within the unit cell, p, are considered. The values of p considered 

are a/4, a/5 and a/6. Figure 9 shows the multiple-sublattice hole unit cells considered. 

Calculated transmitted ultrasound power coefficient as a function of frequency, f, in water 

at normal incidence of the three 4 x 4 multiple-sublattice holes arrays considered, are 

showed separately in Figures 10 (a-c) for the samples with the inter-hole distance a/4, a/5 

and a/6, respectively. When the inter-hole distance within the unit cell is a/4 (Fig. 10a), 

the resulting sample is a square lattice holes array with period a/4. The transmission 

peaks correspond to the Fabry-Perot resonances, and transmission dip at the frequency 

around 1180 kHz correspond to the Wood anomaly. By reducing the inter-hole distance 

to a/5 (Fig. 10b), new transmission dips resulting from Wood anomaly corresponding to 

the period of the unit cell appear. It is also observed that the amplitude of the first order 

Fabry-Perot resonance peak is invariable but the amplitude of the second and higher 

orders is reduced. A remarkable feature is that the first order Fabry-Perot resonance 
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splits into two peaks. When the inter-hole distance is a/6, the amplitude reduction of the 

second and higher orders Fabry-Perot resonance peaks is more important, and the 

splitting of the first order Fabry-Perot resonance peak remains invariable. The splitting 

arises from the interference between holes [16, 21]. When the phase difference between 

holes in a unit cell approaches , the interference is destructive. Whether the inter-hole 

distance reduces within a unit cell, the transmission spectrum will tend to become a 

spectrum with only one hole per unit cell [21]. 

 

3.6. Fractal-featured hole arrays 

Previously, only periodic distribution of holes had been addressed. An example of 

aperiodic structures is the fractal one. A well known fractal structure is the Sierpinski 

Carpet, which construction follows an iterative process. The effect of the geometry self-

similarity on the transmission spectrum is analyzed using three iterative generations of 

the Sierpinsky Carpet. A square distribution of holes having diameter 0.5 mm was used 

as a first step and a unit cell period a = 1.5 mm. The second iterative generation was 

made with a square distribution of holes having diameters 0.5 mm and 1.5 mm, and a 

unit cell period a = 4.5 mm. The third and last iterative generation was made with a 

square distribution of holes having diameters 0.5 mm, 1.5 mm and 4.5 mm, and a unit 

cell period a = 13.5 mm. Figures 11(a-c) show a schematic diagram of the iterative  

generations considered. In all samples considered, the plate thickness was 4 mm. 

Figures 12(a-c) show the calculated transmitted ultrasound power coefficient as a function 

of frequency, f, in water at normal incidence for each of the three iterations considered. 

The transmission spectrum of the square distribution of holes with diameter d = 0.5 mm 

and a unit cell period a = 1.5 mm is depicted in Figure 12(a). The transmission peaks 

observed correspond to the Fabry-Perot resonances. The transmission dip corresponding 
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to Wood anomaly is out of frequency range (around 980 kHz). The transmission 

spectrum of the second iterative generation, made with holes having diameters 0.5 mm 

and 1.5 mm and unit cell period of 4.5 mm is showed in Figure 12(b). The resulting 

structure is an arrangement that consists in two periodic holes arrays having a primary 

square array which is decorated with a larger secondary square array. The transmission 

spectrum is the addition of the primary and secondary array spectrum. One remarkable 

feature if the existence of a transmission dip at 165 kHz due to a destructive interference 

between the holes of the primary and secondary array [16, 21]. The third iteration made 

with holes having diameters 0.5 mm, 1.5 mm and 4.5 mm, and a unit cell period a = 

13.5 mm, is depicted in Figure 12(c). Like in the second iteration case, the transmission 

spectrum has the characteristics peaks and dips of each contributed array.  

 

3.7. Effect of lattice vacancies 

Perforated plates with subwavelength holes arrays containing holes vacancies in their 

unit cells show particular ultrasound transmission properties. The effect of the holes 

vacancies on the ultrasound transmission spectrum is analyzed using 3 x 3 squared holes 

arrays placed in water. The holes having diameter 3mm were drilled on a plate of 

thickness t = 2 mm. A unit cell period of 15 mm was considered and the inter-hole 

distances within the unit cell was 5 mm. Calculated transmitted ultrasound power 

coefficient as a function of frequency, f, in water at normal incidence of plates with no 

vacancies and plates with one two or three vacancies in their unit cells, are showed 

separately in Figures 13 (a-d). When there are no vacancies in the unit cell (Fig. 13a), the 

resulting sample is a square lattice holes array with unit cell period 5mm. The 

transmission peak corresponds to the Fabry-Perot resonance, and the transmission dip at 

the frequency 296 kHz correspond to the Wood anomaly for (m,n) = (1, 0). The effect of 
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a vacancy in the unit cell is showed in Figure 13b. In this case, the periodicity is broken 

and new transmission dips resulting from Wood anomaly corresponding to unit cell 

period of 15 mm appear. As could be expected, the amplitude of the Fabry-Perot 

resonance peak is reduced. As more vacancies are created in the unit cell (Fig. 13c-d), 

the transmission dips resulting from Wood anomaly remain invariable and there is a 

reduction in the amplitude of the Fabry-Perot resonance peak. Further investigation 

toward the effect of lattice vacancies in subwavelength perforated plates is needed.  

 

4. CONCLUSIONS 

The role of the geometrical parameters on the ultrasonic transmission through 

subwavelength holes arrays has been analized by using a theoretical model under the 

rigid-solid assumption. It has been pointed out that the transmission spectrum exhibit 

peaks because of the Fabry-Perot resonances and dips related to the Wood anomaly. The 

number and position of the transmission peaks depend on the plate thickness and they 

become narrower as the filling fractions decrease. The transmission dips corresponding to 

the Wood anomalies depend on the lattice period and geometry. When a plate is drilled 

with two periodic subwavelength holes arrays, the transmission spectrum is simply the 

addition of the primary and secondary array spectrum. Multiple-sublattice and fractal-

featured hole arrays have been analyzed. Prospective applications of the results presented 

in this paper can be anticipated, such as in the development of underwater sound screening 

materials, ultrasonic filters, ultrasonic medical instrumentation and non-destructive 

inspections. 
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FIGURE CAPTIONS 

 

Figure 1. Scheme of the (a) ‘xz’ plane and (b) ‘xy’ plane of the unit cell. Grey regions 

correspond to the rigid solid whereas the surrounding fluid is divided in three regions as 

indicated by the labels in (a). The vector  ir r  in (b) represents the projection over 

the z = 0 plane of the vector defined from the centre of each hole to the appropriate 

points in the hole fluid region [II]. 
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Figure 2. (a) Calculated transmitted ultrasound power coefficient for a plate drilled with 

square lattice subwavelength holes arrays of diameter d = 2 mm, lattice period p = 4 mm 

and plate thickness t = 2 mm (a) as a function of frequency in water at normal incidence. 

(b)  as a function of both the frequency and the incidence angle.  

 

Figure 3. Calculated transmitted ultrasound power coefficient as a function of frequency, f, 

in water at normal incidence for a plate drilled with square lattice subwavelength holes 

arrays of diameter d = 2 mm, lattice period p = 4 mm and for plate thickness (a) t = 2 mm, 

(b) t = 3 mm, (c) t = 4 mm and (d) t = 5 mm. 

 

Figure 4. Calculated transmitted ultrasound power coefficient as a function of frequency, f, 

in water at normal incidence for a plate drilled with square lattice subwavelength holes 

arrays of diameter d = 3 mm, plate thickness t = 4 mm and for three lattice periods p = 4, 6 

and 8 mm. 

 

Figure 5. Calculated transmitted ultrasound power coefficient as a function of frequency, f, 

in water at normal incidence for a plate of thickness t = 4 mm, drilled with square lattice 

subwavelength holes arrays of lattice period p = 6 mm and for three holes diameters d = 2, 

3 and 4 mm. 

 

Figure 6. Comparison of calculated transmitted ultrasound power coefficient as a function 

of frequency, f, in water at normal incidence for a plate arranged with square and 

triangular lattice hole arrays. The plate thickness was t = 4 mm, hole diameter d = 2 mm 

and for lattice periods (a) p = 4 mm, (b) p = 5 mm and (c) p = 6 mm.  
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Figure 7. Schematic diagram of the compound hole array considered. 

 

Figure 8. Calculated transmitted ultrasound power coefficient as a function of frequency, f, 

for (a) the primary array and (b) the secondary array. 

 

Figure 9. Schematic diagram of the multiple-sublattice hole unit cells. 

 

Figure 10. Calculated transmitted ultrasound power coefficient as a function of frequency, 

f, in water at normal incidence of 4 x 4 multiple-sublattice holes arrays. The plate 

thickness is t = 3 mm, the period of the unit cell is a = 5 mm, the hole diameter d = 0.7  

and the inter-hole distance (a) p = a/4, (b) p = a/5 and (c) p = a/6. 

 

Figure 11. Schematic diagram of the iterative generations of the Sierpinski Carpet 

pattern. (a) First iteration with circular holes of diameter 0.5 mm and unit cell period 1.5 

mm. (b) Second one with circular holes of diameters 0.5 mm and 1.5 mm and unit cell 

period 4.5 mm. (c) Third iterative generation with circular holes of diameters 0.5 mm, 

1.5 mm and 4.5 mm and unit cell period 13.5 mm. 

 

Figure 12. Calculated transmitted ultrasound power coefficient as a function of frequency, 

f, in water at normal incidence for (a) First iteration with circular holes of diameter 0.5 

mm and unit cell period 1.5 mm. (b) Second one with circular holes of diameters 0.5 

mm and 1.5 mm and unit cell period 4.5 mm. (c) Third iterative generation with circular 

holes of diameters 0.5 mm, 1.5 mm and 4.5 mm and unit cell period 13.5 mm. 
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Figure 13. Calculated transmitted ultrasound power coefficient as a function of frequency, 

f, in water at normal incidence of 3 x 3 squared holes arrays. The holes diameter was 

3mm and the plate thickness 2 mm. A unit cell period of 15 mm was considered and the 

inter-hole distances within the unit cell was 5 mm. (a) No vacancies in the unit cell. (b) 

One vacancy in the unit cell. (c) Two vacancies in the unit cell. (d) Three vacancies in 

the unit cell. 
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