
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

 

Additional Information 

 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

http://dx.doi.org/10.1109/ICMLA.2014.23

http://hdl.handle.net/10251/68390

IEEE

Martínez-Plumed, F.; Ferri Ramírez, C.; Hernández Orallo, J.; Ramírez Quintana, MJ.
(2014). A knowledge growth and consolidation framework for lifelong machine learning
systems. 13th International Conference on Machine Learning and Applications (ICMLA
2014). IEEE. doi:10.1109/ICMLA.2014.23.



A knowledge growth and consolidation framework
for lifelong machine learning systems

Fernando Martı́nez-Plumed, Cèsar Ferri, José Hernández-Orallo, Marı́a José Ramı́rez-Quintana
DSIC, Universitat Politècnica de València, Camı́ de Vera s/n, 46022 València, Spain.

E-mails: {fmartinez,cferri,jorallo,mramirez}@dsic.upv.es

Abstract—A more effective vision of machine learning systems
entails tools that are able to improve task after task and to
reuse the patterns and knowledge that are acquired previously for
future tasks. This incremental, long-life view of machine learning
goes beyond most of state-of-the-art machine learning techniques
that learn throw-away models. In this paper we present a long-life
knowledge acquisition, evaluation and consolidation framework
that is designed to work with any rule-based machine learning
or inductive inference engine and integrate it into a long-life
learner. In order to do that we work over the graph of working
memory rules and introduce several topological metrics over it
from which we derive an oblivion criterion to drop useless rules
from working memory and a consolidation process to promote
the rules to the knowledge base. We evaluate the framework on
a series of tasks in a chess rule learning domain.

Index Terms—Lifelong machine learning, oblivion criterion,
knowledge topology and acquisition, declarative learning.

I. INTRODUCTION

The traditional view of machine learning (ML) applications
usually portrays a training dataset from which a model is learnt
and evaluated and a deployment dataset where the model is
applied. Whenever a new application task appears, the old
model is discarded and a new one is learnt from a new training
set. Recently, different areas, such as transfer learning, multi-
task learning, lifelong ML, never-ending learners or even deep
learning have tried to convert ML systems in more incremental
tools able to learn knowledge and partially reuse it for other
tasks.

The ingredients of a learning system that is able to acquire
knowledge incrementally and arrange it properly in order
to improve its performance are the following: (1) an induc-
tive inference engine (generating patterns), (2) a deductive
coverage engine (calculating knowledge interdependence), (3)
a knowledge quality analyser (evaluating knowledge utility
and consistency), (4) an oblivion procedure (discarding those
patterns that seem useless) and (5) a consolidation process
(promoting those patterns that are reliable and useful). The two
first components are common in artificial intelligence (ML and
automated deduction), but the latter three have usually been
investigated in knowledge-based systems, cognitive science
and informetrics (including bibliometrics and webometrics).

In this paper we develop a general framework that, given
rule-based inductive and deductive subsystems, is able to
constantly evaluate and arrange the rules in such a way that
long-life ML becomes possible. The framework is based on a
graph of deductive dependencies between examples and rules,
from which several topological metrics are derived, such as

support, certainty and significance. From these metrics we
derive an oblivion mechanism to remove rules from working
memory and a consolidation mechanism to promote rules to
the long-term knowledge base. We evaluate the framework
with a problem domain where several patterns about chess
rules have to be learnt. We see how the system is able to keep
the useful rules and perform differently when new tasks can
take advantage of the knowledge that has been consolidated
from previous tasks. To our knowledge, this is the first general
and comprehensive framework for life-long ML that can be
applied to a diversity of rule-based learning systems.

The rest of the paper is organised as follows. Section II
presents the architecture of our framework and defines the met-
rics used to work with rules and knowledge. The experimental
evaluation of our system is presented in Section III. Section
IV reviews other related approaches in the literature. Finally,
section V concludes the paper and outlines some future work.

II. APPROACH

The acquisition of learnt patterns after several tasks cannot
be understood as a naive accumulation of what has been learnt.
New rules can be redundant or inconsistent with old ones or
may build upon previously acquired knowledge. Despite some
notable efforts [1]–[3], the integration of ML with knowledge
acquisition is still mostly unresolved. One of the key issues
is that learning systems must be capable of learning new
things (plasticity) without losing previously learned concepts
(stability). This is called the The Stability-Plasticity dilemma
[4].

In this work we take a different approach by considering
that we start with an inductive engine (e.g., a rule learning
algorithm, an inductive logic programming (ILP) system or an
inductive programming (IP) system) and a deductive engine
(e.g., a coverage checker, an automated deduction system
or a declarative programming language) and, over them, we
construct a long-life ML system (see Figure 1).

Fig. 1: Architecture of the long-life learning framework.



For this purpose, several issues have to be addressed: (1)
The inductive engine can generate many possible hypotheses
and patterns. Once brought to working memory we require
metrics to evaluate how these hypotheses behave and how they
are related. (2) As working memory and computational time
are limited, we need an oblivion criterion to discard some
rules. (3) The deductive engine checks the coverage of each
hypothesis independently, using the consolidated knowledge as
auxiliary rules, but not other working rules. As a result, only
when new knowledge is consolidated we can use it for new
problems or for more difficult examples of the same problem.
(4) The promotion of rules into consolidated knowledge must
avoid unnecessarily large knowledge bases and the consolida-
tion of rules that are useless, too preliminary or inconsistent.
This means that rules must promoted and demoted.

One of our design considerations is that the approach should
work with any inductive engine that is able to generate rules,
such as association rule algorithms, IP systems such as gErl
[5], or ILP systems such as Progol [6]. Actually, we must also
provide a deductive engine for the representation language.

Let us now describe some notation that will be necessary
to describe how the framework works in more detail.

A. Notation

We consider that ‘rules’ are used for expressing examples
(denoted as e or, alternatively, as e+ and e− when we refer
to positive and negative examples), patterns and background
knowledge. The set of all possible rules is denoted by R,
where R ⊂ R is the working space or memory, and B ⊂ R
is the background or consolidated knowledge base.

We represent the rules as vertexes or nodes V in an acyclic
directed graph G(V,A) that we call coverage graph, because
the directed edges A represent the coverage relations between
the different rules1 as determined by the deductive engine.
Hence, if there is an edge a = (x, y) (or x→ y), then y is said
to be directly covered by x using B2. The set of ancestors and
successors of a node v are defined as anc(v) = {x|x → v}
and suc(v) = {y|v → y} (respectively). Figure 2 shows an
example of Coverage Graph of a well-known ILP problem:
family relationship. In this problem, the task is to define the
target relation daughter(X,Y ), which states that person X is
daughter of person Y . The problem consists of three positive
examples, two negative ones, and seven selected rules that try
to generalise and solve the problem (Table I right), whereas B
is composed of the relations female and parent (Table I left).
Note that the rules in B have not been included in the graph
for clarity, although they belong to the initial consolidated
knowledge.

B. Metrics

From the coverage graph, we derive several indicators to
determine which rules are more relevant, useful and consistent.

1We say that a rule ρa is covered by another rule ρb if ρb θ-subsumes ρa,
namely, ρb ≺ ρa iff exists an substitution θ such that ρbθ ⊆ ρa.

2For simplicity, the coverage graphs do not include the edges for the
transitive closure of the covering relation, i.e., if a node x covers nodes y
and z, but y also covers z, only the edges x→ y and y → z are included.

Fig. 2: Coverage Graph of the family relations problem.
Green and red nodes refer to positive and negative examples
respectively. The graph shows rule IDs according to Table I.

Background Knowledge Rules
ID Rule ID Rule
k1 parent(ann, mary) 1 daughter(mary,ann)
k2 parent(ann, tom) 2 daughter(eve,tom)
k3 parent(tom, eve) 3 daughter(tom,ann)
k4 parent(tom, ian) 4 daughter(eve,ann)
k5 female(ann) 5 daughter(cris,tom)
k6 female(mary) 100 daughter(X,Y)← female(Y),parent(Y,mary)
k7 female(eve) 59 daughter(eve,tom)← female(eve),parent(tom,eve)

20 daughter(eve,tom)← female(eve)
35 daughter(eve,Y)← female(eve)
73 daughter(X,tom)← female(X),parent(tom,X)
110 daughter(X,Y)← female(X),parent(Y,X)

TABLE I: Left: Background Knowledge for the family rela-
tions problem. Right: Rules of this problem in Prolog notation.

To illustrate these metrics, Table II shows some measures of
significance and interestingness for the graph in Figure 2.

ID Size Cert+ Cert- Sup+ Sup- Perm Cons Opt
1 18.429 1 0 1 0 0.755 true 1
2 18.429 1 0 1 0 0.823 true 1
3 18.429 0 -1 0 -1 0.755 false -1
4 18.429 0 -1 0 -1 0.755 false -1
5 18.429 1 0 1 0 0.12 true 1

100 7.562 0.462 -0.761 0.5 -1.5 0.431 false -0.299
59 18.791 0.462 0 0.5 0 -0.649 false 0.231
20 11.591 0.462 0 0.5 0 0.317 false 0.231
35 8.784 0.226 -0.462 0.5 -0.5 0.113 false 0
73 10.369 0.623 0 1.5 0 0.042 true 0.934

110 4.754 0.494 0 2 0 1.198 true 0.988

TABLE II: Metrics for the rules on the right side of Table I.

1) Support: The support of a rule aims at representing how
important a rule is in terms of coverage: the higher number
of examples covered, the higher the support value is. All
the rules have two kinds of support, positive and negative.
The examples have a fixed support value Supf that is given
initially as: Sup+f (e

+) = 1, Sup−f (e
+) = 0, Sup+f (e

−) = 0

and Sup−f (e
−) = −1. For the rest of nodes, Sup+f (v) and

Sup−f (v) are 0. From here, we propagate the support through
the acyclic graph backwards:

Sup+(ρ) = Sup+f (ρ) +
∑

ν∈suc(ρ)

Sup+(ν)

|anc(ν)|
Sup−(ρ) = Sup−f (ρ) +

∑
ν∈suc(ρ)

Sup−(ν)
|anc(ν)|

Note that as we divide the support of the outcoming nodes
by |anc(ν)|, the support is conservative. This means that the
positive and negative supports of rule ρ are always an under-
estimate of how many positive and negative rules, respectively,
ρ covers. For instance, the positive example with ID= 1 in
Figure 2 is covered by the rules with IDs 100 and 110, so both
of them receive half of its support (a positive support equal to



0.5 and a negative support equal to 0). The reason for this is
that if too many rules are covering the same examples, their
support is shared and reduced, thus avoiding many rules for a
few examples.

2) Certainty or groundedness: The certainty or ground-
edness of a rule means how much we can trust in it, and
its value decreases as the length of the paths that connect
the rule to the example increases. This is natural since a
concept that is too far from the actual examples is more
general than them and, thus, it is less grounded. All the
rules have two kinds of groundedness, the positive and the
negative one. The examples have, in general, the highest
possible certainty (they are the only ones in which we can
trust completely, assuming a learning scenario without noise).
Certf is a fixed value assigned to the examples with the initial
values Cert+f (e

+) = 1, Cert−f (e
+) = 0, Cert+f (e

−) = 0

and Cert−f (e
−) = −1. As we want positive certainty to go

between 0 and 1 and negative certainty between −1 and 0, we
use a logistic function L(x) = 1

1+e−x :

Cert+(ρ) = 2L
(
Cert+f (ρ) +

∑
ν∈suc(ρ)

Cert+(ν)
)− 1

Cert−(ρ) = 2L
(
Cert−f (ρ) +

∑
ν∈suc(ρ)

Cert−(ν)
)− 1

3) Optimality or Significance: Support and certainty are
related metrics but are focussed on different things, in a similar
way as support and confidence in association rules. With
the aim of integrating support and certainty, we define the
optimality or significance of a rule ρ:

Opt(ρ) =

{−(Sup(ρ)) · Cert(ρ)) if (Sup(ρ) < 0) ∧ (Cert(ρ) < 0)

Sup(ρ) · Cert(ρ) otherwise

where Sup(ρ) = Sup+(ρ) + Sup−(ρ) and Cert(ρ) =
Cert+(ρ) + Cert−(ρ).

This formula tries to emphasise differences between the
positive and negative variants of Sup and Cert.

C. Working space: oblivion mechanism
The optimality of a rule ρ is a core metric to determine its

usefulness, but it is also important to see if ρ is covered by
another rule of higher optimality. If it is the case, ρ is mostly
redundant and it could be discarded safely. This idea leads to
the following definition for the permanence of a rule:

Perm(ρ) = Opt(ρ)− argmax
ν∈anc(ρ)

Opt(ν) +
1

size(ρ)

where size refers to the size (in bits) of the rule (definition
available at [7]). Inspired by the MML philosophy [8], [9], the
last term allows us to give more preference to those rules that
are shorter.

The lower the value of permanence a rule has, the higher
possibilities it has to be forgotten, depending on an oblivion
threshold. Figure 3 shows the evolution of the coverage graph
in Figure 2 through four oblivion steps3. Due to space limita-
tion, we do not include in the paper the measures for the rules,

3In this example, we have forgotten one rule at a time, but the actual pace
and number of rules to forget can be tuned to the purpose of the system. For
instance, oblivion can be triggered when the number of rules exceeds a given
threshold and several rules can be forgotten at a time. In this way, the graph
and the metrics do not have to be recalculated for each step of the system.

which are available at [7]. Following with the example, in step
1 we see that rule number 59 is redundant because it is covered
by a more significant rule (with ID 110, Opt(110) = 1.34,
Opt(59) = 0.231), and it has the lowest value of permanence
(Perm(59) = −0.649 and Perm(110) = 1.55). Thus, rule 59
is forgotten, the coverage graph is redrawn and the metrics are
recalculated.

In case there is an oblivion step that deletes any leaf node,
its support is distributed equally among the rules that cover
it, and added to the “fixed” or intrinsic support of these rules.
Similarly, the certainty and its fixed values are also ‘inherited’
upwards (but not distributed).

D. Consolidated knowledge: promotion and demotion

Some of the rules with good indicators in the working space
have to be eventually promoted to consolidated knowledge
(or belief). This has to be a careful process, as the consol-
idated knowledge will be used by the deductive engine to
calculate coverage. This means that an inconsistent rule that is
promoted to the consolidated knowledge may have important
consequences on the behaviour of the system.

We will set a threshold θp on the optimality to consolidate
or promote a rule to a belief status. B is therefore continuously
grown with new rules. The promotion system is mirrored by
a demotion system, with the use of another threshold θd such
that if any rule in B has a lower value of optimality, then the
rule is demoted to the working space. The original background
knowledge (B0) cannot be demoted (and forgotten).

In the example in Figure 3, we have established θp equal
to the average optimality (using the absolute value |Opt(ρ)|
before averaging) of all the rules in the working space. Then,
in step 1, all the rules that exceed this average value (0.695)
will be consolidated to the background base (rules 1, 2, 5,
73 and 110). Any rule that is promoted to the consolidation
step cannot be target of the oblivion mechanism until it is
demoted to the working space again (in the example, we have
considered a demoting threshold θd equal to θp). Thus, in
step 2, rule 1 has the lowest permanence value (Perm(1) =
−0.357) but 35 (Perm(35) = −0.113) is forgotten instead,
because the former is a consolidated rule.

III. EXPERIMENTS

As mentioned in section II, one of the issues in other
learning systems is the Stability-Plasticity dilemma. We claim
that our approach is able to address this issue in a lifelong
learning process. For this purpose, we have conducted an
experimental evaluation to explore the following questions:
(a) is it possible to generate a large repository of consolidated
knowledge assessing the usefulness of the rules? and (b) is
our approach able to forget or revise the existing knowledge
in order to generate a reusable knowledge base? We illustrate
these features in one single domain. The ultimate goal of these
experiments is to see whether the framework is general enough
to work with any inductive and deductive engine. Additional
information not included in the paper about the rules and their
measures for each experiment is available at [7].



Fig. 3: Coverage Graph of the family problem. Green and red nodes refer to positive and negative examples respectively.
Nodes with a thick grey square represent the rules to be forgotten. Nodes with a thick blue square represent consolidated rules.

A. Methodology

We focus on learning a model of legal moves of dif-
ferent pieces of chess from a set of legal (positive) and
illegal (negative) move examples (extracted from [10]). Each
example corresponds to a move on an empty board of a
specific piece, and is represented by a triple from the domain
Piece× Pos× Pos, where the second and third components
are, respectively, the piece’s initial position and its destination
on the chessboard. Positions are expressed as tuples from the
domain File × Rank where files (a-h) stand for columns
and ranks (1-8) stand for rows. For instance, using a Prolog
notation (as in the example in the previous section), the fact
move(knight,pos(d,5),pos(e,3)) represents a legal
move of the knight from position (d,5) to (e,3). The only
background predicate used is the absolute difference, diff(X,Y),
that calculates the distance between X and Y , where both X
and Y can be ranks or files (see Table III).

ID Rule ID Rule 
K1 project(a,1).   

K11 
 

rdiff(Rank1,Rank2,Diff) :- 
 rank(Rank1), rank(Rank2), 
 Diff1 is Rank1-Rank2, 
 abs(Diff1,Diff). 

K2 project(b,2).   
K3 project(c,3).   
K4 project(d,4). 
K5 project(e,5).   

K12 

fdiff(File1,File2,Diff) :- 
 file(File1), file(File2), 
 project(File1,Rank1), 
 project(File2,Rank2), 
 Diff1 is Rank1-Rank2, 
 abs(Diff1,Diff). 

K6 project(f,6).  
K7 project(g,7).   
K8 project(h,8). 
K9 abs(X,X) :- X>=0. 
K10 abs(X,Y) :- X<0, Y is -X. 

TABLE III: Background knowledge for the chess problem.

A random set of 50 chess moves (positive and negative
examples) from all chess pieces except the pawn (rook, bishop,
knight, queen and king) is given. We also consider that an
inductive engine is generating rules during the whole process
and they are arriving to the system in a random order. In our
case, we have taken the rules generated by the ILP system
Progol [6] (50 in total). To determine how many examples
and rules are given to the system for each step, we use (with
replacement4) a geometric distribution Pr(X = k) = (1 −
p)k−1 · p, where k is the number of examples or rules, and p
is the probability of success (we set it to 0.5).

In the first experiment, we show how the oblivion mecha-
nism works. This tries to represent a situation where we have a
limited working space, for which we have considered that the
maximum number of rules in it is 60. Hence, every time this
value is exceeded the oblivion process is launched, forgetting

4This allows us to better mimic a situation where a (usually memory-less)
inductive engine can produce rules it has already generated.

up to 50% of the most meaningless rules (lowest Perm value).
Also, we have set the consolidation criterion for rules to those
above a threshold of significance (optimality) greater than 1.0
(the average of the absolute value of the example optimalities).

Figure 4 shows the evolution of the system in 500 steps.
Now, the variations in the amount of consolidated rules (dotted
grey line) and rules in the working space (dotted yellow line)
allows us to observe how the oblivion mechanism works (every
30 steps approximately). At step 500, the system reaches a
stable situation in which the number of consolidated rules and
the average optimality of all the rules in the working space
becomes almost constant. The appearance of new rules in
the system or the execution of the oblivion mechanism has
a slight effect, with the exception of the average optimality
of the consolidated rules that is highly correlated with the
oblivion mechanism: every time it runs, the working space is
cleaned of useless rules. This strongly affects the metrics of
the consolidated rules (and to a lesser extent to the whole set
of rules), which have to be recalculated.

The second experiment we carried out tries to show the
capability of our approach to learn of new knowledge from
previously consolidated concepts. This experiment is divided
into two phases. In the first phase we provided the system
with the rules and examples of moves of the rook and bishop
(15 and 30 rules respectively). The consolidation criterion
has not been changed, but the maximum number of rules
in the working space has been reduced to 15 and also the
percentage of meaningless rules that are forgotten for each
oblivion process (30%). In the first 100 steps of Figure 5
we can see that, due to the lower maximum number of rules
allowed in the working space and the lower percentage of
rules forgotten, the oblivion mechanism runs here every few
steps, showing non-constant sawtooth-like wave ramps for
the number of rules in the working system (dotted yellow).
However, the number of consolidated rules remains constant
almost from the beginning. The set of consolidated rules after
100 steps perfectly generalises all the legal moves of the rook
and the bishop pieces (see Table IV). In the second phase, we
provided the system with a new set of rules and examples
(10 and 20 rules respectively) only representing moves of
the queen. Apart from using the background knowledge that
is provided initially, it should also be possible to use the
previously learnt general moves from the rook and the bishop
in order to express the moves of the queen. This is what the
inductive engine can take advantage of. Table V shows the set
of consolidated rules which consists of the previously learnt



0

0,5

1

1,5

2

2,5

3

0

10

20

30

40

50

60

70

1 26 51 76 101 126 151 176 201 226 251 276 301 326 351 376 401 426 451 476

#Examples #Rules #Cons #Population AvgOpt AvgOptCons

Fig. 4: Evolution of the chess problem: #Examples and #Rules show the examples that arrive and the rules that are generated
by the inductive engine for each step, #Cons shows how many rules there are in the consolidate knowledge (initially the
background knowledge), #Population shows the total number of rules, AvgOpt shows the average optimality for all rules and
AvgOptCons the average optimality for all consolidated rules.

rules that generalise the legal moves from the rook and bishop,
and a new set of rules that represents the legal moves of the
queen. This latter set includes a pair of rules (q29 and q25) that
use the rook and bishop rules and represent all the possible
moves of the queen: q25, which covers both the horizontal
and vertical moves of the queen; and q29, which covers the
same move as the rule q23 (diagonal movement) but it is more
likely to be forgotten in case of demotion due to its larger size.

IV. RELATED WORK

The results of the experiments presented in Section III
show that our approach is able of incremental and continual
learning based on the reuse of knowledge. This is the context
of Lifelong Machine Learning [11], or LML, and related
to areas such as Multiple Task Learning, Transfer Learning,
Reinforcement Learning or Incremental Learning, have similar
objectives.

One distinctive trait of our approach is that we use a
rule-based approach and knowledge is arranged by coverage.
This is different to other lifelong learning approaches that
use explanation-based neural networks (EBNN) [12], back-
propagation neural networks [13], [14] and reinforcement
learning approaches [15]. Another important difference is that
here we do not work with a task-to-task mapping as in transfer
learning.

Closer to our approach we find ELLA (Efficient Lifelong
Learning Algorithm) [16] and NELL (Never-Ending Language
Learner) [17], which are another approaches to LML able to
consolidate knowledge within a long-term domain knowledge
structure. However they do not introduce oblivion mecha-
nisms that could eliminate obsolete knowledge and lack the
layered view of knowledge of a covering graph. Henderson
[18] presents an inductive inference system that automatically
acquires knowledge employed for solving harder problems
through experience of solving easier tasks. This work is
centred on abstract learning and the generalisation of rules,
but does not grow the existing knowledge base systematically.

From a very different point of view, our coverage graph
is also highly influenced by those problems related to link
analysis in web graphs such as the HITS algorithm [19],
PageRank [20] or SALSA [21]. Other related ideas appear
in areas of informetrics, but in our case it is not reputation but
explanatory relevance and consistency what matter.

V. CONCLUSIONS

In this paper we have presented a new framework to deal
with lifelong machine learning, where knowledge is promoted
from working space to consolidated knowledge (and vice
versa). We have also introduced an oblivion mechanism to
discard those rules that are useless. The framework is modular
and easily adaptable to many inductive engines that are able
to output rules (or other units of knowledge) provided that we
have a deductive engine to check coverage between the rules,
in order to create the coverage graph. The use of oblivion
criteria can be used to help tuning the system according to
how much space there is available, and most especially, about
how many rules can be processed in a reasonable time by
the deductive engine, as the working space graph needs to be
recalculated for every step.

The goal of this work was to evaluate the framework in gen-
eral terms. From the experiments we have seen that the metrics
and thresholds work reasonably well. Additional evaluation is
needed with more and different problems and other inductive
and deductive engines in order to get further information about
the quality of the metrics we have defined and the use of
thresholds for forgetting, promoting and demoting.

REFERENCES

[1] E. Sommer, K. Morik, J.-M. Andr, and M. Uszynski, “What online ma-
chine learning can do for knowledge acquisitiona case study,” Knowledge
Acquisition, vol. 6, no. 4, pp. 435 – 460, 1994.

[2] E. Sommer, “Fender: An approach to theory restructuring,” in Machine
Learning: ECML-95. Springer, 1995, pp. 356–359.

[3] G. I. Webb, J. Wells, and Z. Zheng, “An experimental evaluation
of integrating machine learning with knowledge acquisition,” Machine
Learning, vol. 35, no. 1, pp. 5–23, 1999.



0

0,5

1

1,5

2

2,5

3

3,5

0

5

10

15

20

25

1 26 51 76 101 126 151 176
#Examples #Rules #Cons #Population AvgOpt AvgOptCons

Fig. 5: Evolution of the same indicators as in Figure 4 for the incremental chess problem (rook and bishop moves in the first
100 steps, and queen moves in the following 100 steps). We see a non-constant sawtooth-like picture for the number of rules in
the working space whereas the consolidated rules became constant in each different learning process, and the global optimality
becomes stable between 1 and 1.5.

ID Rule Size Cert+ Cert- Sup+ Sup- Perm Cons Opt 
b10 move(bishop,pos(A,B),pos(C,D)) :- rdiff(B,D,E), fdiff(A,C,E). 7.924 0.905 0.0 1.833 0.0 1.784 true 1.658 
r15 move(rook,pos(A,B),pos(A,C)). 18.133 0.761 0.0 2.0 0.0 1.419 true 1.522 
r16 move(rook,pos(A,B),pos(C,B)). 18.133 0.761 0.0 1.5 0.0 1.038 true 1.141 

TABLE IV: Consolidated rules and metrics (from left to right: size, positive and negative certainty, positive and negative
support, permanence, is consolidated?, and optimality) for the chess problem (rook and bishop moves) at step 100. All the
legal moves for these pieces are covered by the rules and no better rules can be obtained.

ID Rule Size Cert+ Cert- Sup+ Sup- Perm Cons Opt 
b10 move(bishop,pos(A,B),pos(C,D)) :- rdiff(B,D,E), fdiff(A,C,E). 7.924 0.905 0.0 1.833 0.0 1.784 true 1.658 
r15 move(rook,pos(A,B),pos(A,C)). 18.133 0.761 0.0 2.0 0.0 1.577 true 1.522 
r16 move(rook,pos(A,B),pos(C,B)). 18.133 0.761 0.0 1.5 0.0 1.196 true 1.141 
q23 move(queen,pos(A,B),pos(C,D)) :- rdiff(B,D,E),fdiff(A,C,E). 12.384 0.905 0.0 1.333 0.0 1.286 true 1.206 
q29 move(queen,pos(A,B),pos(C,D)) :- move(bishop,pos(A,B),pos(C,D)) 18.428 0.905 0.0 1.333 0.0 1.26 true 1.206 
q25 move(queen,pos(A,B),pos(C,D)) :- move(rook,pos(A,B),pos(C,D)) 18.428 0.964 0.0 2.0 0.0 1.982 true 1.928 

TABLE V: Consolidated rules and metrics (same as in Table IV) for the chess problem at step 200 (the 100 firsts steps for
learning the rook and bishop moves, and the 100 following steps for learning the queen moves). All queen legal moves are
covered by taking advantage of previously learned moves of rook and bishop pieces, whose legal moves are also covered.

[4] M. Mermillod, A. Bugaiska, and P. Bonin, “The stability-plasticity
dilemma: investigating the continuum from catastrophic forgetting to
age-limited learning effects,” Frontiers in psychology, vol. 4, 2013.

[5] F. Martı́nez-Plumed, C. Ferri, J. Hernández-Orallo, and M. Ramı́rez-
Quintana, “Learning with configurable operators and RL-based heuris-
tics,” in New Frontiers in Mining Complex Patterns, ser. Lecture Notes
in Computer Science, 2013, vol. 7765, pp. 1–16.

[6] S. Muggleton, “Inverse entailment and progol,” New Generation Com-
puting, vol. 13, no. 3-4, pp. 245–286, 1995.

[7] F. Martı́nez-Plumed, C. Ferri, J. Hernández-Orallo, and M. Ramı́rez-
Quintana, “Coverage graph metrics, consolidation and oblivion
mechanisms for lifelong machine learning,” Tech. Rep., 2014. [Online].
Available: http://users.dsic.upv.es/∼fmartinez/papers/ICMLA14 TR.pdf

[8] M. Li and P. M. Vitányi, An Introduction to Kolmogorov Complexity
and Its Applications, 3rd ed. Springer Publishing Company, 2008.

[9] C. Wallace, Statistical and Inductive Inference by Minimum Message
Length (Information Science and Statistics). Springer, 2005.

[10] S. Muggleton, M. Bain, J. Hayes-michie, and D. Michie, “An experi-
mental comparison of human and machine learning formalisms,” in In
Proc. of 6th International Workshop on Machine Learning. Morgan
Kaufmann, 1989, pp. 113–118.

[11] S. Thrun, “Is learning the n-th thing any easier than learning the first,”
in Advances in Neural Information Processing Systems, vol. 8, 1996,
pp. 640–646.

[12] ——, Explanation-Based Neural Network Learning: A Lifelong Learn-
ing Approach. Boston, MA: Kluwer Academic Publishers, 1996.

[13] D. L. Silver and R. E. Mercer, “The parallel transfer of task knowledge

using dynamic learning rates based on a measure of relatedness,” in
Connection Science Special Issue: Transfer in Inductive Systems, 1996,
pp. 277–294.

[14] D. L. Silver and R. Poirier, “Machine life-long learning with csmtl
networks.” in AAAI. AAAI Press, 2006.

[15] M. B. Ring, “Child: A first step towards continual learning,” in Machine
Learning, 1997, pp. 77–104.

[16] E. Eaton and P. L. Ruvolo, “Ella: An efficient lifelong learning algo-
rithm,” in Proceedings of the 30th International Conference on Machine
Learning (ICML-13), vol. 28, 2013, pp. 507–515.

[17] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R. H. Jr., and
T. M. Mitchell, “Toward an architecture for never-ending language
learning,” in Proceedings of the Twenty-Fourth Conference on Artificial
Intelligence (AAAI 2010), 2010.

[18] R. Henderson, “Cumulative learning in the lambda calculus,” Ph.D.
dissertation, Imperial College London, 2014.

[19] J. M. Kleinberg, “Authoritative sources in a hyperlinked environment,”
J. ACM, vol. 46, no. 5, pp. 604–632, Sep. 1999.

[20] S. Brin and L. Page, “The anatomy of a large-scale hypertextual web
search engine,” Comput. Netw. ISDN Syst., vol. 30, no. 1-7, pp. 107–117,
Apr. 1998.

[21] R. Lempel and S. Moran, “The stochastic approach for link-structure
analysis (salsa) and the tkc effect,” Comput. Netw., vol. 33, no. 1-6, pp.
387–401, Jun. 2000.


