UNIVERSITAT
POLITECNICA
DE VALENCIA

Departamento de Sistemas Informaticos y Computacién

Universidad Politécnica de Valencia

Continuous Spaces in
Statistical Machine Translation

MASTER THESIS

Master en Inteligencia Artificial,
Reconocimiento de Formas e Imagen Digital

Author: Alvaro Peris Abril

Adwvisor: Francisco Casacuberta Nolla

September, 2015

Acknowledgements

The research leading to these results has received funding from the Minis-
terio de Economia y Sostenibilidad (MINECO) under grant RTC-2014-1466-4
and the Generalitat Valenciana under grant Prometeo,/2014/030.

We also gratefully acknowledge the support of NVIDIA Corporation with
the donation of the Titan X GPU used for this research.

II

Abstract

Classically, statistical machine translation relied on representations of words
in a discrete space. Words and phrases were atomically represented as indices
in a vector. In the last years, techniques for representing words and phrases in
a continuous space have arisen. In this scenario, a word is represented in the
continuous space as a real-valued, dense and low-dimensional vector. Statistical
models can profit from this richer representation, since it is able to naturally
take into account concepts such as semantic or syntactic relationships between
words and phrases. This approach is encouraging, but it also entails new chal-
lenges.

In this work, a language model which relies on continuous representations of
words is developed. Such model makes use of a bidirectional recurrent neural
network, which is able to take into account both the past and the future context
of words. Since the model is costly to train, the training dataset is reduced by
using bilingual sentence selection techniques. Two selection methods are used
and compared. The language model is then used to rerank translation hypothe-
ses. Results show improvements on the translation quality.

Moreover, a new approach for machine translation has been recently pro-
posed: The so-called neural machine translation. It consists in the sole use of a
large neural network for carrying out the translation process. In this work, such
novel model is compared to the existing phrase-based approaches of statistical
machine translation.

Finally, the neural translation models are combined with diverse machine

translation systems, in order to provide a consensus translation, which aim to
improve the translation given by each single system.

v

Resumen

Los sistemas clasicos de traduccion automética estadistica estdn basados en
representaciones de palabras en un espacio discreto. Palabras y segmentos se
representan como indices en un vector. Durante los Ultimos afios han surgido
técnicas para realizar la representacién de palabras y segmentos en un espacio
continuo. En este escenario, una palabra se representa en el espacio continuo
como un vector de valores reales, denso y de baja dimension. Los modelos esta-
disticos pueden aprovecharse de esta representaciéon mas rica, puesto que incluye
de forma natural conceptos seméanticos o relaciones sintdcticas entre palabras
y segmentos. Esta aproximacién es prometedora, pero también conlleva nuevos
retos.

En este trabajo se desarrolla un modelo de lenguaje basado en representa-
ciones continuas de palabras. Dicho modelo emplea una red neuronal recurrente
bidireccional, la cual es capaz de considerar tanto el contexto pasado como el
contexto futuro de las palabras. Debido a que este modelo es costoso de en-
trenar, se emplea un conjunto de entrenamiento reducido mediante técnicas de
seleccion de frases bilingiies. Se emplean y comparan dos métodos de seleccién.
Una vez entrenado, el modelo se emplea para reordenar hipétesis de traduccion.
Los resultados muestran mejoras en la calidad de la traduccién.

Por otro lado, recientemente se propuso una nueva aproximacion a la tra-
duccién automatica: la llamada traduccién automaética neuronal. Consiste en el
uso exclusivo de una gran red neuronal para llevar a cabo el proceso de traduc-
cién. En este trabajo, este nuevo modelo se compara al paradigma actual de
traduccién basada en segmentos.

Finalmente, los modelos de traduccién neuronales son combinados con otros

sistemas de traduccién automaética, para ofrecer una traduccién consensuada,
que busca mejorar las traducciones individuales que cada sistema ofrece.

VI

Resum

Els sistemes classics de traduccié automatica estadistica es basen en repre-
sentacions de paraules a un espai discret. Paraules i segments es representen com
a indexs a un vector. Durant els Ultims anys, han sorgit técniques per a realitzar
la representacié de paraules i segments a un espai continu. A aquest escenari,
una paraula es representa a l’espai continu com a un vector de valors reals,
dens i de baixa dimensié. Els models estadistics poden aprofitar-se d’aquesta
representacié més rica, donat que inclou de forma natural conceptes semantics
o relacions sintactiques entre paraules i segments. Es tracta d’una aproximacio
prometedora, perd comporta també nous reptes.

A aquest treball es desenvolupa un model de llenguatge basat en represen-
tacions continues de paraules. El model utilitza una xarxa neuronal recurrent
bidireccional, capa¢ de considerar tant el context passat com el context fu-
tur de les paraules. A causa de que el model és costés d’entrenar, s’empra un
conjunt d’entrenament reduit mitjancant tecniques de seleccié de frases bilin-
glies. S’utilitzen i comparen dos metodes de seleccié. Un cop entrenat, el model
s’empra per a reordenar hipotesis de traduccié. Els resultat mostren millores a
la qualitat de la traducci6.

D’altra banda, recentment es va proposar una nova aproximacio a la traduc-
ci6 automatica: 'anomenada traduccié automatica neuronal. Consisteix en 1'ts
exclusiu d’una gran xarxa neuronal per dur a terme el procés de traduccio. Al
present treball el nou model es compara amb el paradigma actual de traduccié
basada en segments.

Finalment, els models de traduccié neuronals sén combinats amb altres siste-

mes de traduccié automatica, per a oferir una traduccié consensuada, que tracta
millorar les traduccions individuals que cada sistema ofereix.

VIII

Contents

1 Statistical Machine Translation
1.1 Language Modelling
1.2 Translation Modelling
1.3 The SMT Log-linear Model
1.4 Assessment

2 Neural Language Models for Machine Translation
2.1 Recurrent Neural Networks
2.2 A Bidirectional Recurrent Language Model

3 Neural Machine Translation
3.1 Neural Machine Translation
3.2 System Combination

4 Data Selection
4.1 Feature-Decay Algorithms
4.2 Infrequent n-gram Recovery

5 Experiments and Results
5.1 Experimentation Framework
5.2 Results on Data Selection
5.3 Bidirectional Language Model for Machine Translation
5.4 Neural Machine Translation
5.5 System Combination

6 Future Work and Conclusions
6.1 Future Work
6.2 Conclusions e

Appendices
A Mathematical Symbols
B Listof Acronyms,

List of Tables
List of Figures

Bibliography

0 OO0 W= b =

11

13

17
17
21

25
25
26

29
29
31
34
37
39
43
43
44
45
45
46
47
48

49

Preface

The human being is social by nature. Language is one of the most crucial
tools developed by mankind for socializing and a fundamental form of commu-
nication. In our global society exists an important economic and social inter-
est for translating languages, which help to overcome the walls that different
languages eventually build between human relationships. Machine Translation
(MT) is the computerized approach to the translation problem: It investigates
the use of software with the aim of automatically translate text or speech from
a source natural language to another target natural language.

This research area arose in 1949, from Warren Weaver’s idea of apply some
of the Information Theory ideas from Claude Shannon. During the 1950s and
1960s, the approaches for tackling the translation problem were polarized be-
tween the empirical (which use statistical methods) and the theoretical ones.
Researchers were optimistic with regard to the machine translation and its ca-
pabilities (Koerner and Asher, 2014).

However, the results were unsatisfactory: Hardware limitations and the lack
of effective programming methods made MT impracticable. The ALPAC (Au-
tomatic Language Processing Advisory Committee) report, released in 1966,
concluded that machine translation was not worth and it presented an infeasi-
ble future. The area was then temporarily forsaken.

Ten years later, MT prospects grew once again as the rule-based machine
translation approach was developed. It was based on the extraction of linguistic
information from dictionaries and grammars by human translators, for generat-
ing the translations. Nevertheless, since 1989, the hegemony of theses systems
was broken due to the irruption of the so-called corpus-based systems.

Such systems use sets of sentence-aligned translation examples, known as
corpora or parallel texts, from one language to another. Such corpora are used
to infer the translation of new source text. Among the corpus-based systems, the
most successful approach is the statistical machine translation (SMT). In this
scenario, the translation process is driven by statistical models. For SMT, large
amount of parallel text with relevant information for the translation process is
required. These corpora are used to estimate the parameters of the referred
models. Once the parameters are estimated, the models infer the translation of
new source text.

Classically, statistical models for MT treated the words as atomic units:
They were indices in a vector. In the last years though, a new and encouraging
approach for representing words has arisen. Such representation is based on
continuous representation of words, i.e., words are represented by means of a
real-valued, dense and low-dimensional vector. Statistical models are expected
to profit from this richer representation of words, which can take into account

Chapter 0 Contents

concepts like similarity and semantic relationships between words.

Neural networks provide a powerful tool for naturally handling continuous
models. Moreover, recent advances in the deep learning field make this a promis-
ing approach, not only for machine translation, but also for many other tasks
involving the natural language processing field.

This work is focused on the use and development of such continuous mod-
els, related to machine translation. This document is structured as follows:
In Chapter 1, the statistical framework on which SMT relies is developed. In
Chapter 2, neural languages models are introduced and an architecture for lan-
guage modelling, based on a bidirectional recurrent neural network is presented.
Chapter 3 presents the recently proposed neural approach for MT, based on the
sole usage of neural networks for performing the translations. In addition, some
methods for addressing the weaknesses of such technique are proposed. Since the
training of those models is costly, two techniques for selecting the most relevant
instances for training a model are depicted in Chapter 4. Performed experi-
ments and results are shown and discussed in Chapter 5. Finally, conclusions
about the work are drawn in Chapter 6.

XIII

Chapter 1

Statistical Machine
Translation

Statistical Machine Translation tackles the translation problem using a statis-
tic formalization thereof. The goal of SMT is, given a source sentence] =
Z1...%j...27, in the source language F, to find its equivalent target sentence
yl = yi...yi...yr, in the target language £. From all possible sentence of
&, the one with the highest probability is chosen, according to the following

expression:

g1 = arg max {Pr(y{|z{)} (1.1)
I,y{

This equation requires to compute the joint probability of all possible sen-
tence pair (z{,y!). Obviously, this computation is infeasible, since it would
require to know all possible sentence in the language £. For overcoming this is-
sue, the first works on SMT tackled Equation 1.1 under a generative perspective.
Generative models apply the Bayes decision rule to this expression: Considering
that Pr(x7) is independent on 3!, Equation 1.1 can be rewritten as:

g1 = arg max {Pr(yi) - Pr(zy{|y])} (1.2)
Iy;

Hence, Pr(yf|z{) is decomposed in two different probability distributions.
Pr(yl) determines how well the sentence in the target language is formed and
is modelled by means of a language model. Pr(x{|yl) determines, given the
target sentence y!, the chances of being translated into z{. This distribution is
modelled through a translation model.

Equation 1.2 is known as fundamental equation of SMT and it encapsulates
the three main challenges of SMT (Brown et al., 1993):

1. Obtaining the language probability distribution: Pr(y{).
2. Obtaining the translation probability distribution: Pr(z{|y{).

3. Finding and effective and efficient search search method for the string
which maximizes the product, i.e., to efficiently compute arg max Lyl -

Chapter 1 1.1. Language Modelling

Since the real probability distributions are unknown, they must be esti-
mated through (parametric) statistical models. Such models have a set of pa-
rameters O, linked to either a known probability density function or a prob-
ability mass function, expressed by p(:|0©). Given a set of observed samples,
X = {x1,22,...,xN}, the log-likelihood function is defined as the logarithm of
the probability of the observed data:

N
L(©,X) =logp(z1,72,...,n[0) =) _ log p(z;|0) (1.3)
=1

Typically, the estimation of © is carried out by means of the mazimum-
likelihood (ML) estimation method, which estimates the set of parameters ©
finding the value of © which maximizes £(©,X). This value (0) is called the
maximume-likelihood estimator of ©:

A

© = argmax £(0, X) (1.4)
e

Generally, both probability distributions which are involved in Equation 1.2,
are modelled separately. Hence, exist two sets of parameters, those associated
to the language model and those associated to the translation model:

OrLm

N
éLM :argmaX{Zbgp(yn;@LM)} (1.5)

n=1

N
Oy = arg max Zlogp(mnkyn;@TM) (1.6)
Orm n=1

In the following sections, the main models classically developed in the liter-
ature for estimating the language and translation probability distributions will

be reviewed.

1.1. Language Modelling

As seen above, the goal of a language model is to estimate the probability
distribution Pr(y!), that is, to capture the linguistic regularities of a natural
language which determine how well the sentence y{ is formed, according to the
language £.

Let the sentence y! be composed of the words ¥; ...y;. Applying the chain
rule, the probability of such sentence, Pr(y{), can be rewritten as:

I

Pr(yl) = Pr(y1) - Pr(yalya) - - - Pr(yrlys, ... yr-1) = H Pr(ylyi™") (1.7)
i=1

Computing this expression is intractable, hence, some simplifications or as-
sumptions over it have to be considered.

The classic approach to language modelling, the so-called n-gram language
models make Markov assumptions, considering that a word y; depends only on
its m — 1 preceding words. The value of n defines the order of the n-gram.
Considering this assumption, Equation 1.7 is rewritten as:

Chapter 1 1.1. Language Modelling

I

Pry) =~ [[p(ilviZhin) (1.8)
i=1

The estimation of the probability p(yi\yfjl +1), is performed through a ML
estimator, counting and normalizing:

i—1
P(yi|y;:711+1) = C(yz_—?ﬂ)
Zyi C(yi—n-',-l)

where c(ygjl +1) corresponds to the number of occurrences of the n-gram yZ:}l 41
in the training corpus.

(1.9)

1.1.1. Smoothing of n-gram Language Models

Since the estimation of n-gram language models is based on counts, if in test
phase an unseen word is found, its counts would be zero and the model would
output the null probability for the full sequence. This behaviour is obviously
undesired. For dealing with this problem, the development of the so-called
smoothing techniques is required. This term describes techniques for adjusting
the maximum likelihood estimate of probabilities to produce more accurate
and softer probabilities. These techniques tend to produce a more uniform
distribution, increasing low probabilities (zero or almost equal to zero) and
decreasing high probabilities (one or almost equal to one). Besides preventing
null probabilities, the smoothing methods also improve the global performance
of the model (Chen and Goodman, 1998).

In SMT, the most widely used smoothing method is the so-called Kneser-Ney
discount (Kneser and Ney, 1995), which is an extension of the absolute discount-
ing method. This latter method interpolates high-order and lower-order n-gram
models. The high-order distribution is created by reserving a probability mass
from each non-zero count, that is, subtracting to each count a fixed discount
D < 1. Lower-order distributions are smoothed versions of the lower-order
maximum likelihood distributions. But in the case that seldom or no counts
are present in the higher-order distribution, the lower-order distribution repre-
sents an important factor of the global model. Thus, if in the training data are
few counts, an important part of the power of the high-order model is on the
lower-order models.

The goal of the Kneser-Ney discount is to optimize the lower-order distribu-
tions in order to achieve a good performance in this situation. They proposed
the following smoothing equation:

maz{c(yi_,.,)—D,0} . i
Z yc(y;l +1) lf C(yz—n-i-l) > 0
Yi e

PN (Wily b) = (1.10)

V(yZ:}LH) 'pKN(i‘/i|y§:rlL+2)v if C(yf—n+1) =0

where (y:~} 4+1) is chosen to make the sum of the probability for all possible
event equal to 1. Therefore, the lower-order distribution is interpolated with all
words, not only with the words with zero counts in the higher order distribution.

Chapter 1 1.2. Translation Modelling

1.2. Translation Modelling

Translation modelling tackles the probability Pr(z{|y!) from Equation 1.2.
A good translation model should assign high probability to strings z{ which
are good translations of f{, even if they are incorrectly formed; checking the
correctness of a sentence is a task for the language model.

1.2.1. Single-Word Alignment Models: IBM Models

The first approach to translation modelling in modern SMT were the single-
word alignment models. They relied on the concept of alignment. According
to Brown et al. (1993), an alignment between two strings, 7 in the source
language F and 3! in the target language &, is a correspondence which indicates,
for each word of the string x7, the word from the y{ string from which it arose:

aC1..Jx0..I (1.11)

where a; = 7 if the j-th source position (x;) is aligned with the i-th target
position (y;). In addition, an artificial position is generated and placed in index
0 (for convention). It means that the word from x{ which is aligned with this
null position, is aligned with no word from sentence y.

Let A(x7,y) be the set of all possible alignments between two sentences
o, yl; and let Pr(z{,a{|yl) be the probability of, given the alignment hidden
variable af, to translate the sentence z{ into y!. The translation probability
can be rewritten as:

Pr(zflyl) = Y Pr(z{,afly) (1.12)
aj e Az yl)
Since |y| = I and |z| = J, I x J possible connections can be formed between

the strings. Hence, A(x{,y!) contains 277 alignments, which may represent a
computational challenge.

IBM Models

In 1993, IBM researchers developed the so-called IBM models (Brown et al.,
1993). They defined five models, based on the concept of alignment between
words. The starting point is the following derivation of Equation 1.12:

J
P?“(Jfl » A1 ‘yl PT ‘]|y1 H a]‘le_laajl_l7y]{) ' Pr(a:j|${_1,a]1,y{) (113)

This equation states that, regardless of the form of Pr(x{,af|y!), it can
always be decomposed in a product of terms in this way. This establishes a
sequential way of building a translation. When a string z{ is generated, the
following steps are followed:

1. The length of x{ is chosen, according to 3. This is modelled by the length
distribution Pr(J|y}).

Chapter 1 1.2. Translation Modelling

2. Tt is decided where to connect the j-th position of z, (a;), given the knowl-
edge from the built-so-far sentence and alignments from x (:L'Jfl, a{fl) and
the input string (yf). The alignment distribution Pr(a;|zl" al™", yl)
copes with this task.

3. Finally, the identity of the j-th word in the generated string (x;) is de-
termined, given the knowledge provided by the input string y{, the built-
so-far target sentence 2771 and the current alignments, including the one
generated in the last step (a]). This is achieved by the lezical distribution
PT(.%']‘|CL'J1‘71, CL{, y{)

This formulation enforces to iterate over points 2 and 3. As the iteration
process is carried on, decisions which build up the target string are taken, based
on the previous knowledge from the string. In all five models, points 1 and
3 are common. Length distribution is assumed to be a Gaussian distribu-
tion, Pr(J|y{) ~ N(J|I). Lexical probability is approximated by a statisti-
cal dictionary of words, Pr(z;|z~" a],yl) ~ l(2§]ya;). The models variate
the assumptions made in step 2, specifically about the alignment distribution
Pr(ajlzl™" al™", y1). In short, these differences are:

= Model 1: The alignment distribution is meant to be uniform.

= Model 2: The alignment distribution Pr(a;|z] ", a]” ", yl) is estimated
by a zero-order model t(a;|i, J, I) which defines dependencies between ab-
solute word positions of target and source sentences.

= Model 3: A fertility model n(¢|y) is included. It represents, for each
target word y, the probability that y generates ¢ source words. The choice
of ¢ depends only on y. The distribution Pr(aj\mjl_l, al™t yl) is approx-
imated by a zero-order model, the so-called distortion model, d(i|a;, J,I);
which models the dependencies between absolute word positions of source

and target sentences.

= Model 4 and Model 5: A first-order distortion model with dependencies
between relative word positions of source and target sentences is used.

Models 3 and 4 are deficient. Deficiency is the property of a model of not
concentrating all of its probability on the events of interest, but wasting its
probability on the so-called generalized strings (strings with alignment positions
with many words and positions with none). Model 5 consists in a reformulation
of Model 4 which avoids deficiency. Nevertheless, Model 5 has a significantly
larger number of parameters than Model 4, which may prevent its practical
usage. Deficiency can be seen as the price paid for having computationally
tractable models.

In addition to the IBM models, other word-alignment models can be defined.
Especially interesting are those based on homogeneous hidden Markov models
(HMM). The assumptions taken in this case are similar those from Model 2, but
in the HMM approach, a first-order model is used. The alignment probability
is then computed as:

Pr(a;la]~"] yl) = tlajlaj_1, J. 1) (1.14)

Chapter 1 1.2. Translation Modelling

Hence, Equation 1.12 can be formulated as a HMM:

J
Pr(zi|y) » N(JII)> Ht(aj|aj,17 J, D)l(2;5]ya,) (1.15)

where the alignment model t(aj|a;—1,J,I) would be the transition probabil-
ity of the HMM and the statistical dictionary [(z;|ya;) would be the emission
probability.

The parameters of each model are estimated by means of (an approximated
version of) the Expectation-Mazimization algorithm (EM) (Dempster et al.,
1977). The approximation is necessary since there is not a closed formula for
applying an iterative version of the algorithm. Hence, only brute force can be
applied.

The great disadvantage of these models is that they, by ignoring alignments
larger than one word, miss the contextual information. For tackling this prob-
lem, a new family of models was developed: The so-called multi-word alignment
models, which were able to capture contextual information.

1.2.2. Phrase-Based Models

In order to solve the inability of single-word alignment models for capturing
contextual information beyond one word, multi-word alignment models were
proposed. In this approach, alignments are formed between groups of words
from source and target sentences, instead of just between single words.

The basic concept behind a multi-word alignment is a phrase. A phrase is
defined as a set of one or more consecutive words of the source or the target
sentences. Given a sentence z{, an unspecified phrase from it is denoted by: 7.

Phrase-based (PB) models make use of the so-called statistical dictionaries
of phrase pairs (Zens et al., 2002), which consist in sets of bilingual phrases. A
bilingual phrase is a pair of m source words and n target words. If they are
extracted from a bilingual corpus, the following constraints must be satisfied:

1. The words in the phrase are consecutive.

2. They are consistent with the word alignment matrix: The m source words
must be aligned only to the n target words and vice versa.

Figure 1.1 shows an example of word aligned pair and the set of bilingual
phrases generated from it.

Under the phrase-based framework, the translation of a source sentence z{
to a target sentence y! is computed following the steps:

1. Segmentation of the source sentence into K phrases x1 = ZX. This intro-
duces the hidden variable .

2. Translation of each source phrase into target phrases. The segmentation
of the target phrase introduces another hidden variable, ~.

3. Reordering of the target phrases in order to generate the target sentence

yl = yK. Similarly to word-based translation, an alignment variable
« must be defined. In this case, the alignments are produced between
phrases.

Chapter 1 1.2. Translation Modelling

Source phrase | Target phrase

ja well
" " n]] ja, well,
ja, guten Tag well, hello

hello = " " B " | ja, guten Tag. well, hello.

7 ' u . ' ' , guten Tag , hello

well H , guten Tag. , hello.
s - o 20 . guten Tag hello
— g é@ guten Tag. hello.
=
0 . .
(a) Word aligned sentence pair. (b) Bilingual phrases.

Figure 1.1: Aligned sentence pair and set of bilingual phrases extracted from
the alignments. Example borrowed from Zens et al. (2002).

Hence, three additional hidden variables must be included in order to work
with bilingual phrases. u and « constitute the so-called bisegmentation of source
and target sentences. A bisegmentation of length K of a sentence pair (xl Jyh),
represents a segmentation of the sentence pair into K phrases: (1;7%)(1 <
K < min(I,J)). A bisegmentation is a phrase-level alignment of a sentence
pair.

Phrase-based models are inspired in word-level HMM (Equation 1.15). In-
cluding all hidden variables into the probability computation, the following ex-
pression is reached:

K
(|y1 ‘]|I ZZZZH ak|ak 15)p(Zk 1+1‘y’YaA 1+1)
K —

pi aft k=
(1.16)
In this approach, instead of a statistical dictionary, phrase tables p(Z|y) are
used; and the first-order alignment model g(ay|ag—1, K) works at phrase level
instead of at word level.
If monotonic alignments are assumed (aj = k), alignments would be created
sequentially:

(|y1 ‘]|I ZZZ Hp ,uk 1+1|y’yk 1+1) (117)

KKk;l

The monotonicity restriction allows to a faster probability computation. But
it also should be noted that it can lead to many translation errors in languages
with different phrase order, for example, English-German or English-Japanese.

Since we are interested only in the sentence with highest probability, the
search problem is usually tackled via the maximum approximation:

K

Pr(aily)) ~ N(J|I) mgXTaXH;aXQaXHq aglog—1, K)p(alt lyacs)
4 1 1 p—1

(1.18)

Chapter 1 1.8. The SMT Log-linear Model

1.3. The SMT Log-linear Model

The first SMT systems tackled the translation process through generative
models (Equation 1.2). More recent approaches replaced such models by dis-
criminative models, which directly model the posterior probability Pr(yf|z{)
(Equation 1.1). Most current SMT systems rely on these approach, more pre-
cisely, on the so-called log-linear model. This model consists in a set of feature
functions h., (z{.y{), each one with a corresponding weight \,,:

M
exp (Zle Am b (2, y{))
M rJr
i ()

Since the denominator of this expression is independent from the target
sentence y!, it can be omitted in the search process:

Pryl|z]) = (1.19)

M
gll = argmax Z /\mhm(xi]a y{) (120)
I,y{ m=1
Among the functions h,, included in the SMT systems more frequently, the
following features can be found:

1. The target language model p(yi).

2. The phrase-based model and inverse phrase-based model, p(ef|f{) and
p(fi|el). They are extracted from the phrase tables (Equation 1.16).

3. A reordering model g(aj|aj_1).

4. A target word penalty (wl) and phrase penalty (pK). Due to the nature
of statistical models, they tend to obtain short sentences and few number
of phrases. These penalties aim to overcome this issue, obtaining a more
adequate length of the output sentence and number of phrases.

It should be noted that the log-linear framework accepts the inclusion of more
models. For instance, the toolkit Moses (see Section 5.1.1) include lexicalized
reordering models or additional neural models (Baltescu et al., 2014; Devlin
et al., 2014).

The learning of the weights A, usually follows a criterion of minimization
of an error function, typically (1 — BLEU) (see Section 1.4). The weights are
fixed in order to maximize the performance over a validation set. Different op-
timization algorithms are proposed in the literature, for instance, MERT (Och,
2003), downhill simplex (Melder and Nead, 1965), MIRA (Hasler et al., 2011)
or PRO (Hopkins and May, 2011).

1.4. Assessment

The evaluation of automatic translations is still an open problem. Evalua-
tion metrics can be categorized into two main categories: Human evaluation and
automatic evaluation. With respect to the former, human evaluation generally
produces high quality metrics. But on the other hand, it is prohibitively slow

Chapter 1 1.4. Assessment

and expensive: First, human linguists must define criteria for evaluating ade-
quacy and fluency. Next, human judges must analyse system translations and
evaluate them in terms of such criteria. Besides its cost, human evaluation must
deal with the ambiguity inherent to the human being: Two judges can diverge
with respect to the same translation and qualify it differently. This makes the
use of human evaluation unrealistic.

Hence, it is necessary to develop automatic metrics, which try to follow a
similarity with human evaluation. Automatic metrics must be objective, infor-
mative, efficient and cheap. These methods usually compare the output of the
system with high-quality human translations, called references. In this work,
the translation performance has been evaluated using the most extended metric
in the research community: BLEU (Papineni et al., 2002).

BLEU

BLEU (BiLingual Evaluation Understudy) aims to model the correspondence
between the translation generated by the MT system and the one produced by
a human translator. The metric is based on the so-called n-gram precision.
The n-gram precision counts the number of candidate words from the system
translation which appear in the reference sentence, and divides this count by
the total number of words of the translation from the system. Since a system
can generate too many suitable n-grams, it is necessary to restrict such counts.
This restriction produces the modified n-gram precision, where the counts of an
n-gram w are clipped following:

Ceiip(w) = min(c(w), Maxz_Ref C(w))

where c(w) are the counts of w in the hypothesis sentence and Max_ Ref_C(w)
are the maximum counts of w in a single reference sentence in the reference
corpus.

The basic computation unit for BLEU score is a sentence and the computa-
tion is extended to the whole test corpus. Finally, an unique modified precision
score for the entire corpus is generated by 1. computing the n-gram matches
sentence by sentence and 2. adding the clipped n-gram counts for all these can-
didate sentences. Finally, this result is normalized by the number of candidate
n-grams in the test corpus:

. X Cci w
Dy = ZCE{Candzdates} ZWEC lp() (121)

ZC’E{C@ndidates} ZW’EC’ CCliP(W/)

Moreover, a translated sentence should be neither excessively long or short.
This must be also reflected in the metric: System translations longer than ref-
erences are naturally penalized by the modified n-gram precision. For handling
shorter translations, it is introduced the so-called brevity penalty (BP), which
penalizes short translations following:

1, ift >r
BP = (1.22)
el=%, ift<r

9

where ¢ is the length of the system hypothesis and r is the length of the reference
sentence.

Chapter 1 1.4. Assessment

BLEU score uses a weighted geometric mean of the n-grams for combining
them. Each n-gram has a weight w,, such that 22[:1 wy, = 1. Typically this
weight is set to w,, = % The maximum order of the n-grams considered by the
metric is generally fixed to N = 4. This value was set according to experimental
results (Papineni et al., 2002). Hence, the final BLEU score is computed as:

N
BLEU = BP - exp <Z W, logpn> (1.23)

n=1

Perplexity

For evaluating a language model, the metric must measure how similar the
estimated distribution of the model, determined by the parameters ©p s, with
respect to the real (and unknown) probability distribution Pr(y{). The most
extended metric in evaluation of statistical language models is the Perplexity.
It is defined over the empirical estimation of the cross entropy of those distri-
butions. Let T = {y1,92,...,yn} be a set of test samples and O, the set of
language model parameters. The cross entropy is defined as:

N
H(Prip(-|0ca)) = =Y Pr(ys) - logs p(y:Orm) (1.24)

i=1

Perplexity is then computed as:

PPL(Pr;p(-|@pn)) = 2H(PripC109La)) (1.25)

The perplexity of a language model can be seen as the ability of the model
of predicting a sample. It also can be understood as the geometric average of
the branching factor of the given language with respect the model. It measures
either the model performance and the complexity of the task.

Other Metrics

METEOR, (Denkowski and Lavie, 2014) is a specific language metric, which
makes use of the available electronic language resources (like WordNet or Snow-
ball Stemmer) for the evaluation. The scoring is based on alignments between
a hypothesis and a reference sentence. Over these alignments, four matches are
considered: Both alignments are equal, the stem of both alignments is the same,
both alignments are synonyms and both alignments are considered a paraphrase.
The harmonic mean of the precision and recall of each matcher is computed.
The final score provided by meteor is this mean, penalized by differences in
word order. According to their authors, METEOR outperforms the BLEU met-
ric with respect to correlation with human measures, making it more similar to
human judgement. The main drawback of this metric is that, since it makes use
of specific language resources, its usage is limited to few pairs of languages. In
this work, METEOR was used to compute alignments between different system
hypothesis, in a combination system (Section 3.2.1).

Apart from these, many other techniques for assessing translations have
been proposed in the literature, like word error rate (WER), translation edit
rate (TER) (Snover et al., 2006) or NIST (Doddington, 2002).

10

Chapter 2

Neural Language Models
for Machine Translation

The classic models for machine translation and language modelling (those
seen in the previous chapter) rely on a discrete representation space. Thanks
to the smoothing techniques (e.g. Chen and Goodman (1998)), the n-gram lan-
guage models tackle the data sparseness problem, being capable of obtaining
predictions for non-seen events. This leads to simple, robust and fast models,
which may be trained over huge amounts of data. But of course, this simplic-
ity entails weaknesses: Since words are merely treated as indices in a vector,
concepts such as similarity or semantic relationships between words are missing.

Moreover, the n-gram model, only considers few context words: Typically,
the order of n-gram models typically ranges from 2 to 5, therefore the model
takes from 1 to 4 context words and long-term relationships are lost (Bengio
et al., 2003). Increasing the order of the n-gram further than 5 is generally
ineffectual, due to data scarcity: High-order n-grams are less frequent than
lower-order ones. When considering high-order n-grams, most times is an unseen
n-gram hence, the model backs off to lower order n-grams, making the high-
order ineffective. In order to address these issues, more complex approaches for
language modelling were developed.

In the last years, one of the most explored and successful approaches rely on
a distributed representation of words: A real-valued, dense and low-dimensional
representation in a continuous space. In these models, probability estimation
is carried out in this continuous space, typically by means of a neural network.
Furthermore, given the nature of continuous models, the learned function is
inherently smoothed.

In this chapter, a model belonging to this family is proposed. It aims to
overcome the aforementioned drawbacks of n-gram language models: First, by
projecting the words into a continuous space, the model profits from richer
representations of words. Second, by using a bidirectional recurrent neural
network, the context of a word is determined not only by its preceding words,
but also by its following words.

11

Chapter 2 2.1. Recurrent Neural Networks

2.1. Recurrent Neural Networks

A recurrent neural network (RNN) is a class of artificial neural network where
the connections between units form a directed cycle. This creates an internal
state of the network which allows it to model a discrete-temporal behaviour.

Given an input sequence of vectors X7 = xy,...,xr, a RNN produces an output
sequence y1 =yi,...,yr, computed as:

h; = fh(Xtyhtfl) (2~1)

vt = fo(he) (2.2)

where h; is the hidden state of the network at time-step ¢, f;, is a hidden state
function and f, is an output function.

Different choices of h, f;, and f, lead to the different RNN architectures pro-
posed in literature, like Jordan networks (Jordan, 1990) or Elman networks (El-
man, 1990). Figure 2.1 shows the latter architecture, which consists in an input
layer, a self-connected hidden layer and an output layer. Here, previous func-
tions are defined as:

hy = fr(xe,hy_1) = (W T hy_y + U ay) (2.3)
yi = fo(hy) = o(Vhy) (2.4)

where W, U,V are the recurrent, input and output weight matrices respectively,
¢ is a non-linear activation function, commonly sigmoid or hyperbolic tangent,
and o is the output activation function. An usual choice for o is the softmaz
function (Equation 2.10).

These three weight matrices form the set of parameters of the model and are
typically estimated by a stochastic gradient descend method, using the back-
propagation through time algorithm (Werbos, 1990), for minimizing a cost func-
tion under some optimality criterion, typically cross-entropy between the output
of the system and the training data probability distribution.

Yt{l }T’t YtTH
O Output layer
h,_ I h h; 4 I
h; hy hyyy
— >)) Recurrent layer

@
]
!

1
Xi—1

{

"0
Lod e
N

Figure 2.1: Elman architecture of a RNN, unfolded three steps in time.

2.1.1. Bidirectional Neural Networks

A drawback of regular RNNs is that the input sequence is only scanned in
one direction, normally from past to future. In order to capture both past and

12

Chapter 2 2.2. A Bidirectional Recurrent Language Model

future context, bidirectional recurrent neural networks (BRNN) were proposed
by Schuster and Paliwal (1997). The main idea is to have two independent
recurrent layers: One layer process the input sequence in forward time direction
(from 1 to T), while the other layer process the input sequence reversed in
time (from 7" to 1). Since hidden layers have no interaction between them,
bidirectional RNNs can be trained using the same algorithms as those used for
unidirectional RNNs. Following prior notation, a bidirectional RNN is defined
as:

hi‘ = fh(xta hfffl) - ¢(W:h£71 + UTXt)
h? = fh(Xt, hEJrl) = ¢(Wgh,]?+1 + UTXt>
yi = fo(h},h?) = (VT (k! + h})) (2.7)

where hf is the forward layer and h? is the backward layer.

As before, U and V are the matrices associated to the input and output
layers, while W and W, are the weight matrices of the forward and backward
layers. The output is a combination produced by the output function f, of
both backward and forward layers. A scheme of this architecture is shown in
Figure 2.2.

Output layer

Backward layer

Forward layer

Input layer

Xt—1 Xt Xit+1

Figure 2.2: Bidirectional architecture of a RNN, unfolded in time. For the
sake of clarity, forward components are blue-coloured and backward components
are red-coloured.

2.2. A Bidirectional Recurrent Language Model
As stated in Section 1.1, the task of statistical language modelling consists in

estimating the probability distribution over a sequence of words Pr(y!),y; € &,
where £ is a large but finite vocabulary set.

13

Chapter 2 2.2. A Bidirectional Recurrent Language Model

2.2.1. Neural Language Modelling: Related Work

One of the first neural language models was proposed by Bengio et al. (2003).
They defined a function f over a subsequence of n words f(yi,...,Yi—nt1) &
Pr(yl), which had the goal of producing a low perplexity. Note that the model
maintained the same assumption than an n-gram approach: To discard depen-
dencies further than n words.

The key contribution of this work was the decomposition of f(y;, ..., Yi—n+1)
in two parts:

= Word embedding: Consisted in a mapping for each word index of the
vocabulary to a continuous space. A word embedding is a function c :
N — R™ from any element y € £ to a real vector ¢(y) € R™, being m the
size of the vector.

= Word probability function: An estimation of the posterior probability
of the words, performed in the continuous space. This is achieved by
means of a feed-forward or recurrent neural network. The output of this
neural network is a vector which i-th element estimates the probability

Pr(y; =iy).

These both parts were trained jointly, with the maximization of the log-
likelihood of the training data as objective function. Thus, the model had more
power of generalization than classic n-grams and was able to deal better with
the curse of dimensionality of the data.

From this work, many other researchers followed these ideas. Bengio et al.
(2003) and Schwenk (2013) performed the probability estimation through a
feedforward neural network. Mikolov (2012) used a recurrent neural network
(RNN) for this purpose. In his model, the projection layer was removed, words
were mapped directly to the hidden layer of an Elman network. Sundermeyer
et al. (2012) combined both models, having a projection layer connected to a
recurrent layer with long short-term memory (LSTM) units. Pascanu et al.
(2014) extended the recurrent architecture, which led to deep RNNs, and they
were applied to language modelling with satisfactory results.

In the field of SMT, neural language models also have recent applications:
Baltescu et al. (2014) coupled a feedforward neural language model into the SMT
decoder. Wang et al. (2014) approximated a neural language model with an n-
gram language model, according to bilingual information extracted from the
phrase table. Devlin et al. (2014) extended the original neural language model
from Bengio et al. (2003), and developed a neural translation model. This model
could be integrated into a hierarchical decoder and offered impressive results in
terms of translation performance.

2.2.2. A Bidirectional Recurrent Language Model

In the RNN framework, information about the history (y1,...,y;—1) is repre-
sented in the hidden recurrent layer (h;). Thus, sequence probability is rewritten
as:

I
Y1, .-, y1) = Hp(yi|hi) (2.8)

i=1

14

Chapter 2 2.2. A Bidirectional Recurrent Language Model

If BRNN are considered, the probability is conditioned by both forward and
backward layers (hg, th7 respectively):

I
Py, ur) = [ply: i, by) (2.9)
i=1

In the proposed language model architecture, input words are one-hot vec-
tors, binary vectors with all elements set to 0 except the index which represents
the input word, which is set to 1. Those vectors are projected into the continu-
ous space through a projection layer and then fed to the BRNN. As architectural
choices of the network, the hidden function (f) is the sigmoid function. The
output function (f,) is modelled through a 2-layer perceptron. The activation
function of its first layer is the sigmoid function. This first layer is fully con-
nected to the output layer, which makes use of the softmax cost function in
order to obtain correct output probabilities:

_exp(z)
- K

> k=1 exp(zk)
where z; is the k-th output unit. Each output unit represents a word in the
vocabulary, hence, the output layer is vocabulary-sized.

At test time, the probability of a sentence is normalized with respect to the
length of the sentence, in order to prevent benefits to short sentences (Graves,
2013). Since using the full vocabulary is computationally unaffordable, a short-
list is used: Only the most K frequent words are taken into account. The rest
are mapped to a special token <UNK>. Figure 2.3 shows a scheme of the model.

o (1) (2.10)

p(yis1 = k[hi, hp)
21, (k-th output)

Output layer

Output
intermediate layer

N
3 C_b" 7 Recurrent layers
Projection layer

>
-] Input layer
Yi

Figure 2.3: Architecture of the bidirectional language model, similarly de-
picted as in Sundermeyer et al. (2014). Input and output layers have the size
of the vocabulary.

15

Chapter 3

Neural Machine Translation

Despite the idea of using neural networks for machine translation was con-
ceived long ago (Castano et al., 1997), in the last years novel and encouraging
approaches for neural machine translation (NMT) were developed. NMT em-
ploys only a large neural network for performing translations: The inputs of the
network are the source sentences and its outputs are the translations. In the last
year, two similar models for NMT were independently proposed by Sutskever
et al. (2014) and Cho et al. (2014). Both works rely on the encoder-decoder
framework: The encoder reads a source sentence and projects it into a continu-
ous, fixed-length representation, while the decoder takes this representation and
outputs a sentence in the target language, which corresponds to the translation
of the source sentence, as shown in Figure 3.1.

It is too cold in the room .

Decoder

[Cl7 C2y..uy Cm]

Encoder

En la habitacion hace demasiado frio .

Figure 3.1: Main idea of NMT: The encoder represents the source sentence in
Spanish as a distributed vector (c). The decoder takes this representation and
projects it into the corresponding sentence in the target language (English).

3.1. Neural Machine Translation

The differences between the models proposed in the literature mainly depend
on specific architectural choices made upon this framework. Sutskever et al.
(2014) used a deep LSTM neural network, while Cho et al. (2014) used a LSTM-
like unit in order to integrate the neural network model into a phrase-based
system. Bahdanau et al. (2014) extended this latter idea, allowing the neural

17

Chapter 3 3.1. Neural Machine Translation

network to learn the alignments and decode the translations by itself. In the
following sections, this model is described.

In the encoder-decoder framework, a variable-length word input sequence is
mapped into a fixed-size vector. This vector is later decoded this vector into
anther variable-length word sequence, in the target language. Given a set of
training pairs, X = {(x1,vy1),..., (N, yn)}, the training objective of the model
is to maximize the conditional log-likelihood (Equation 3.1) over the training
set:

N
1
— 1 1
mgx 37 3 logpe(snle) (3.

where x, = x1,...,2; is an input sentence of length J, y, = y1,...,ys is an
output sentence of length I and © is the set of parameters. Note that J may
differ from I.

3.1.1. Encoder

The encoder is a RNN which reads each input sequence of words z{ =
x1,...,2y and encloses it into a context vector c. After reading each input
element z;, the hidden state of the RNN h; changes. When the whole input
sequence has been read, the hidden state is a compendium of the sequence. The
context vector c is built by applying a non-linear function to the hidden state
sequence:

h; = f(zj,hj—1) (3.2)
c=gq({hy,...,h;}) (3.3)

where h; € R™ is the hidden state at a time j and f and ¢ are non-linear
functions.

The architectural choices taken for the encoder consist in a bidirectional
RNN (Section 2.1.1), which forward states are fed with the ordered input se-
quence (from z; to z;) and its backward states read the reverse-ordered input
sequence (from z; to x1). Thus, the forward layer (hﬁ) computes a sequence
of forward hidden states (h!,--- hf), while the backward layer (h?) computes
similarly a sequence of backward hidden states (h,--- hb). For each word

x;, an annotation h; is obtained by concatenating both forward and backward
T
T T . .
states: h; = [hg ;h}’] . Therefore, h; contains a representation of the pre-

ceding and following words of z;. Given the RNN nature, the hidden state h;
of a word z;, will focus on the surrounding words of ;.

3.1.2. Decoder

The decoder is trained to generate the output sentence y! =y, ..., y; given
the previous predicted words and the context vector c. Applying the chain rule,
the following expression is obtained:

I
p(y1s - yr) = [[p@Wil{yr, - 9i1},0) (3.4)

i=1

18

Chapter 3 3.1. Neural Machine Translation

In order to have tractable models, it is assumed that only exist direct de-
pendencies with the previous generated word (y;—1). In a RNN scope, each
conditional probability is modelled as:

p(wil{y1, s yi-1},€) = g(yi-1,8i, ¢) (3.5)

where g is a non-linear function and s; is the hidden state of the decoder RNN.

Note that, in this approach, each sentence is represented in the fixed-size
vector c. If the sentence is long, the context vector will be unable to correctly
capture all the information and relationships within the sentence. This phe-
nomenon was noticed by Cho et al. (2014), who observed that the performance
of the system was greatly decreased when long sentences were involved. In or-
der to overcome this issue, Bahdanau et al. (2014) employed a different context
vector c¢; for each target word y;, i.e. a wvariable-length context vector. In this
way, long sentences will have long sequences of context vectors, being capable
of properly representing all the sentence information and relationships.

By defining a different context vector at each time step (c;), Equation 3.5 is
rewritten as:

p(yi\{yh ---ayi—l}aci) = 9(%—1,52‘7%) (3.6)

The context vector c¢; is computed as a weighted sum of the sequence of
annotations outputted by the encoder:

J
C; = Zaijhj (37)
j=1

where a;; is the weight assigned to each annotation h;. This weight is computed
following the softmax function:
Oéij = —JeXp(ez]) (38)
> k=1 ¢xP(€ik)
where e;; = a(s;_1,h;) is a score provided by a soft alignment model, which
measures how well the inputs around position j and outputs around position
match. Figure 3.2 shows the architecture of the NMT system.

Unlike the output layer of the neural language models, where the normaliza-
tion (denominator from Equation 3.8) was done for all the vocabulary, in this
case, is performed for all input annotations, which have a tractable size. Hence,
the computation of Equation 3.8 is computationally tractable.

Soft Alignment Model

The alignment model is based on the immediately previous state of the
decoder RNN, s;_;, and on the annotation for the source sentence h;. Since it
needs to be evaluated J x I times, it cannot be an expensive model. Because of
this, the alignment model consists in a single-layer perceptron. The alignment
score is computed following:

a(si_l, h]) = V;r tanh(Wasi_l + Uahj) (39)

19

Chapter 3 3.1. Neural Machine Translation

where W, € lexm, U, € R™ X2m and v, € R™" are the weight matrices. m
is the number of units of hidden layer of the encoder RNN and m/ is the number
of units of the hidden layer of the decoder RNN.

Yi—1 Yi

A

Si—1

R R v

Ha| i) T3 T

Figure 3.2: Architecture of the neural translation model (Bahdanau et al.,
2014). The encoder components are red coloured and the components of the
decoder are blue coloured.

3.1.3. Generating translations

Although the means differ, the final goal of a NMT system is the same as
the classic one (Equation 1.1). Given a test sentence xy in the source language,
its translation @{ will be the sentence in the target language with maximum
posterior probability. That means, gj{ is obtained through:

1 = argmax {p(y1|e{)} (3.10)
I7y1

g

The search space is all possible sentence in the target language. An optimal
resolution of this optimisation is completely unaffordable. Hence, sub-optimal
strategies must be used in order to generate translations. One of the most
popular search strategies is the so-called beam search.

The beam search method maintains at each moment a small number (B) of
partial hypotheses. In this case, a partial hypothesis is the prefix of a translation.
At each time-step, each partial hypothesis is augmented with all possible word
of the target language but, once again, all but the B hypotheses with most
probability are discarded.

The process continues until the end-of-sequence symbol is generated. In this
case, the partial hypothesis is considered to be a complete one.

20

Chapter 3 3.2. System Combination

3.2. System Combination

A way for enhancing the quality of machine translation is to combine the out-
puts of several MT systems. Different MT engines have different strengths and
weaknesses. An appropriate combination of them, profiting from the strengths
and addressing the weaknesses, can lead to some enhancement over the per-
formance of the single systems. The translation procedure of NMT systems is
completely different than the one of PB systems, therefore, it may add informa-
tion that PB systems are not able to capture. From the other point of view, PB
systems may help the NMT system, helping to tackle the rare word problem.

Diverse approaches for combination of systems were proposed in the litera-
ture: The first works were focused on combination of automatic speech recog-
nition systems (Fiscus, 1997). Gonzalez-Rubio et al. (2011) combined N-best
lists with a minimum Bayes-risk technique. Heafield et al. (2009) developed a
two-stages approach: First, common words and phrases among the hypothe-
ses were identified. Next, the final translation was decoded from the space of
combinations. Other family of combination methods rely on exploiting the so-
called confusion networks (Bangalore et al., 2001; Matusov et al., 2008; Rosti
et al., 2012). In this work, for performing the combination, we used a method
belonging to this latter category.

3.2.1. Combination through Confusion Networks

In this approach, the different MT systems are treated as black-boxes which
output translation hypotheses, that is, only the output hypotheses of the MT
systems are considered. The main idea is to collapse all hypotheses into a con-
fusion network (CN). The decoding of the CN will provide the final translation.

A confusion network is a weighted directed graph which represents a finite-
state automaton, with initial and final nodes. The edges are labelled with
(sequences of) words. A CN has the property that all paths from the initial
node to the final node, visit all nodes.

Let M be the number of MT systems to be combined. Therefore, each sen-
tence in the test set generates M translation hypotheses y1,...,yar. It is possible
to collapse those hypotheses, into a single confusion network. For doing this,
an alignment between translations must be computed. Then, a translation is
chosen as the primary one (y,,) and the rest (y,,1 <n < M,n # m) are aligned
following the structure of the primary. The empty string € is also considered in
the construction of the network. Figure 3.3 shows an example of CN.

In this approach arise three key questions:

1. How to align and reorder the words from the different hypotheses?
2. Which hypothesis is considered to be the primary one?

3. How to decode a CN? Additional features should be used?
Since in this work the combination system used was the one developed in Fre-

itag et al. (2014), their particular choices with respect these issues are briefly
explained below.

21

Chapter 3 3.2. System Combination

una confirmacién de una
O O © @@@—»ﬂl
€ confirmando € €

Figure 3.3: Example of a confusion network built from three systems, which
hypotheses are: 1. “una confirmaciéon de la transmision”, 2. “confirmando
una transmision” and 3. “confirmando transmisién”. The primary hypothesis
was the first one. Symbol € denotes the empty word. Let the path coloured in
red be the path with highest score. Hence, the combined hypothesis provided
by the CN is “confirmando la transmisién”.

1. Aligning and reordering hypotheses

In order to provide flexibility between close hypothesis (e.g. misspellings,
synonyms, etc.), METEOR alignments (see Section 1.4) are used. The confu-
sion network is initialized according the primary translation and the secondary
hypotheses are consecutively aligned in the confusion network using METEOR
alignments.

2. Selecting the primary hypothesis

The selection of the primary hypothesis is a key point of the combination
system, because it decides the ordering of the words of the consensus translation.
Since there is no a-priori information about which is the best hypothesis, all
hypotheses are considered as primary one time. Hence, M confusion networks
are generated for each sentence in the test set. The final confusion network is
an union of all these networks, which is jointly decoded.

3. Decoding a confusion network

A weighted combination of features is used for scoring the edges of the net-
work. The weights assigned to the features must be tuned on a development
set. This is done by means of the MERT (Och, 2003) method. The baseline
system include four types of features:

1. M binary voting features: If the word of an edge is in the hypothesis of
the system m (1 < m < M), the feature value is 1; otherwise, is 0.

2. Primary system binary feature: Has a value of 1 for the primary hypothesis
and 0 for the rest.

3. Language model: An n-gram language model trained over the hypotheses
data.

4. Word penalty: Takes into account the number of generated words. Note
that, although the path in a confusion network has always the same length,
the number of generated words can vary, due to the e transitions.

Moreover, additional features can be added:

5. Additional language model: Another n-gram language model, trained over
additional data (e.g. the monolingual corpus used for training the SMT
systems).

22

Chapter 3 3.2. System Combination

6. IBM-1 models: Lexical IBM-1 models, direct and inverse, obtained from
training data (see Section 1.2.1).

Decoding a network consists in finding the path which maximizes the value
of these features. The consensus translation § is generated concatenating the
words associated to such path. A complete overview of the system is depicted
in Figure 3.4.

Base
features
Y ——»]
Y2 —» Alignment and Confusion . Decoding N
reordering network Scoring =Y
Yar generation
A A

| |
s \\ 7 \\
/EXtI'ay / 11
v, (BMA

~ ~

\
7

Figure 3.4: Scheme of the combination of systems. Dashed lines refer to
optional components to the baseline system. i,...,yy are the translation
hypotheses of M MT engines for the same sentence. Such hypotheses are aligned
and reordered, building a CN. The edges of the CN are scored according to the
features and finally decoded, producing the consensus translation g.

23

Chapter 4

Data Selection

Corpora used for training classic SMT systems are typically much larger than
the test set. Hence, the training data probably contains noise and sentences
which are irrelevant for a specific task. On the other hand, large neural models,
as the described before, present an elevated training time complexity. Such large
corpora introduce computational challenges at the training stage. Therefore,
techniques of bilingual sentence selection (BSS), which choose the most adequate
subset of training sentences for a given test set, are appropriate in this case.

A simple selection strategy could simply maximize the coverage of the source
part of the test set. But in a translation scenario, a source sentence has poten-
tially many translations. Thereby, to follow this strategy seems inadequate for
covering the (unknown) target side of the test set. In order address this issue
and include as many eventual translations as possible, the strategy followed by
some BSS methods is to increase the informativeness of the selection.

The informativeness of the selection is increased by selecting the most rel-
evant instances of a large dataset. Under an active learning perspective, this
large dataset would be the instance pool, from where data is selected. In this
scenario, the full training set is considered to be the instance pool. In this work,
two BSS strategies which rely on this reasoning are explored: A feature-decay
algorithm and an adapted domain adaptation algorithm.

4.1. Feature-Decay Algorithms

Feature-Decay algorithms (FDA) aim to increase the variety of the selection
by iteratively choosing sentences whose features are not already included in the
selection. Under this scope, a feature is an n-gram.

The process followed by FDA is as follows: First, it is decided a maximum
order for the features. The n-grams of the source part of the test set are then
extracted. The method considers n-grams from order 1 up to the maximum
order. Such features are initially scored, according to an initialization function
init. Next, the iterative process starts: The sentences belonging to the source
part of the training set are scored, according to a sentence scoring function
i, which depends on the current scores of the features. Note that, because of
this, the scores of the sentences will depend only on the m-grams appearing
in the test set. The sentence with highest score is then selected. Each time

25

Chapter 4 4.2. Infrequent n-gram Recovery

a sentence is selected, the scores of the features are recomputed, following a
decay function. This function usually reduces the value of the features already
selected. Therefore, it is expected that, in following iterations, different features
will be included in the selection. The process continues selecting sentences and
decaying features, until the selection has the desired size.

Particular choices in the initialization, scoring and decaying functions pro-
vide different selection methods, such as n-gram coverage or TF-IDF (Eck et al.,
2005).

4.1.1. FDAS5

FDA5 (Bigici and Yuret, 2015) is an instantiation of a feature-decay algo-
rithm, which is controlled under 5 parameters. Features are initialized following;:

init(w) = log (|X]/c(w))[w] (4.1)

where X is the full training corpus and c(w) are the counts of the feature w in
X. Parameters ¢ and [control the behaviour of the initialization function.

The features decay following a polynomial and an exponential factor, con-
trolled by the parameters ¢ and d. At each iteration, the feature score is recom-
puted as:

decay(w) = init(w)(1 + L(w))~¢dt™ (4.2)

being L(w) the number of times that the feature w has been included in the
selection.

Finally, score of a sentence x is the sum of all feature values of the sentence,
scaled by a sentence-length factor s:

i(x) = Xl Z score(w) (4.3)

wEF(x)

where w € F'(x) are the features included in x.

4.2. Infrequent n-gram Recovery

Infrequent n-gram recovery (Gascé et al., 2012) is another BSS technique
which follows a similar philosophy than FDA5. The infrequent n-gram recovery
technique increases the diversity of the selection by choosing the n-grams with
lower appearance frequency in the training corpus.

Similarly to FDA, this method assigns an infrequency score i to each sen-
tence, which is updated according the selection process goes on. As in the
previous approach, at each iteration, the sentence with the highest score is se-
lected.

In order to control the selection, a infrequency threshold ¢ is set. The se-
lection process runs while at least one sentence x with infrequency score i(x)
lower than t is still in the training set. Note that this stop criterion slightly
differs from the one followed by FDA5, where instances were included while the
size of the selection is lower than a determined value.

26

Chapter 4 4.2. Infrequent n-gram Recovery

The infrequency score of a source sentence x is computed as:

i(x)= Y min(l,N(w)) max(0,t — C(w)) (4.4)
weF(T)

being F(T) the set of features of the source test set, and w one of them. C(w)
and N (w) are the counts of the feature w in the whole source training set and in
the sentence x, respectively.

This approach requires the rescoring of the full training set at each iteration.
Since this can be prohibitively costly, only the sentences with the highest scores
are taken into account. This is achieved storing in the list S only the B sentences
with higher score.

The infrequent n-gram recovery method mainly differs from the FDA5 tech-
nique in the fact that, in the latter technique, the infrequency score of a sentence
depends only on the scores of the features of the sentence, which are extracted
from the test set. Hence, as the selection process is carried on, this strategy
leads to selections very influenced by the test set. In the case of the infrequent n-
gram recovery, the infrequency score is based both on the features of a sentence
and on the full training corpus. This makes that the test set has less weight
in the selection process, which aims to balance the selection of representative
instances from both training and test sets.

27

Chapter 5

Experiments and Results

In this work, two main experimentation lines were developed. In the first
place, the proposed neural language model was tested on a hypotheses rescor-
ing task. For training such model, data had to be selected, according to the
aforementioned techniques. Hence, experiments for obtaining the best selection
for each task were priorly carried out (Section 5.2). Once the reduced corpus
was obtained, the BRNN language model was used to rescore N-best lists of
hypotheses (Section 5.3).

The second line referred to neural machine translation. First, experiments on
pure NMT were run (Section 5.4). Finally, all translation systems (including the
rescored ones) were successfully combined using the confusion network approach
(Section 5.5), obtaining the best results of the work.

5.1. Experimentation Framework

Before deepening into each experiment and its results, an brief overview of
the main software used in this work is given in this section. In addition, the
translation tasks on which the experiments were carried out are also described
in Section 5.1.2. For the sake of clarity, all translation results are expressed in
%BLEU, although we abuse of notation and refer it just as BLEU.

5.1.1. Software

Two translation toolkits were used for the development of this work. The
neural components of the work were built using a Python library. In this section,
the main features of such software are briefly highlighted.

Thot

Thot! (Ortiz-Martinez and Casacuberta, 2014) is an open-source machine
translation toolkit. Thot is still under construction, but it already implements a
state-of-art phrase-based translation system and tools to estimate all the statis-
tical models involved in the machine translation process. Moreover, it is able to
update incrementally and in real time its models, after receiving a new sample,
which makes it appropriate for active and interactive learning scenarios.

Thttp://daormar.github.io/thot

29

http://daormar.github.io/thot

Chapter 5 5.1. FExperimentation Framework

Moses

Moses® (Koehn et al., 2007) is one of the most popular machine transla-
tion toolkits. Nowadays, it is considered as the standard statistical machine
translation system. It currently supports phrase-based machine translation, hi-
erarchical phrase-based machine translation and syntax-based translation.

GroundHog

GroundHog® is a framework built on the top of Theano* (Bastien et al.,
2012), a Python library which allows the efficient definition, evaluation and
optimization of mathematical expressions involving multi-dimensional arrays.
Groundhog eases the building of complex models based on recurrent neural net-
works. The bidirectional language model developed in this work (Section 2.2),
as well as the neural machine translation model (Section 3.1), were built using
the tools provided by GroundHog.

5.1.2. Tasks

In this work, the experimentation process was conducted on two tasks: FU
and Xerox. In both tasks, the test set was fixed and known beforehand. All
corpora were tokenized and lowercased. The training set was also shuffled, in
order to remove eventual correlations in data. For the creation of a development
set, sentences were randomly extracted from the training set. The size of the
development set was similar to the test set of each respective task. In the
following sections, these parallel corpora are described.

Xerox task

The Xerox task consisted in the translation of sentences extracted from the
user manuals of Xerox printers. Table 5.1 shows the information related to the
partitions. The translation direction was English to Spanish.

Spanish | English
Sentences 56k

Training Running words 747k 662k
Vocabulary 14k 11k

Development Sentences 1012
Running words 16k | 14k

Test Sentences 1125
Running words 10k | 8k

Table 5.1: Xerox corpus statistics: Number of sentences, words and vocabulary
size for each one of the three data sets, training, development and test, for both
languages (k and M stand for thousands and millions, respectively).

2http://www.statmt.org/moses
Shttp://github.com/lisa-groundhog/GroundHog
4http://deeplearning.net/software/theano

30

http://www.statmt.org/moses
http://github.com/lisa-groundhog/GroundHog
http://deeplearning.net/software/theano

Chapter 5 5.2. Results on Data Selection

EU task

The EU translation task consisted in a selection from the Bulletin of the
European Union (Khadivi and Goutte, 2003). Table 5.2 shows the information
related to the partitions. In this case, the translation was performed from
Spanish to English.

Spanish | English
Sentences 214k
Training Running words 5.89M 5.20M

Vocabulary 54k 40k

Development Sentences 500
Running words 82k | T3k

Test Sentences 800
Running words 23k | 20k

Table 5.2: EU corpus statistics: Number of sentences, words and vocabulary
size for each one of the three data sets, training, development and test, for both
languages.

5.2. Results on Data Selection

For selecting an appropriate number of sentences, different configurations
for the selection techniques were tested. The test set required by the selection
techniques was built appending both development and test sets. For measuring
the quality of the selection, n-gram language models were trained over the target
side of the selected data and their perplexities were computed. The order of the
n-grams ranged from 3 to 5. Since the neural language model only considers a
reduced vocabulary, in order to provide a fair comparison in terms of perplexity,
the n-gram models were trained using the same vocabulary than the neural
model. The selection was chosen looking for a good balance between complexity
and quality.

The order of the n-grams used as features in both techniques was set to 5.In
the case of FDAJ, different configurations of the parameters of the algorithm
were tested, sampling the values of the five main parameters (see Section 4.1.1).
The best parameter values were found at i =1 =s=1,d = 0.5, ¢ = 0. In the
case of the infrequent n-gram recovery technique, the parameter ¢ was sampled
in order to provide selections of different sizes.

5.2.1. Xerox

Figure 5.1 shows the perplexity of the different n-gram language models
according to the number of selected words in the source part of the corpus. In
both selection techniques, 4 and 5-gram models behavioured similarly, while the
3-gram models had a worse performance.

In the case of FDADB, perplexity was slightly increased as more words were
selected. This means that FDA5 was able to make good small selections. As the
selection size increased, noisy instances were included and hence, the perplexity
rose. Infrequent n-gram recovery behaved differently: When required to perform

31

Chapter 5 5.2. Results on Data Selection

small selections, the performance was poor. As the sizes of the selections were
increased, the method was able to rapidly improve its effectiveness.

90

90

3-gram — 3-gram —
80 4-gram 1 80 4-gram
> 70t 5-gram — | > 70) 5-gram — |
5 6of A o 60y —
2 50r 2 50r
j} [}
O 40E o 40t
30 4 30
20 20
4-10% 1-10° 3.10° 610° 4-10% 1-10° 3.10° 610°
Training words Training words
(a) FDA5S (b) Infrequent n-gram recovery.

Figure 5.1: Perplexity of n-gram language models according to the number of
selected words, for both selection techniques.

This is probably because this technique, besides taking into account the
source test set for selecting the data, also considers the training corpus. If the
infrequency threshold is strict, the technique is forced to capture representative
features from both training and test sets with few sentences. That is, the method
must maintain a trade-off between representative events from the training corpus
and from the test set. Hence, it is likely that the test set had more events which
could not be taken into account by small selections. As the infrequency threshold
was relaxed, the chances of having a representative selection of the test set were
increased and therefore, the performance also rose.

Values of the selection size which offered a good compromise between quality
and complexity were found around 120k-150k source words. FDA was hence
requested to select 120k source words and the infrequency threshold was set to
t = 10, which entailed a selection of 147k source words. Table 5.3 shows the
details of the selections, compared with the full corpus.

It should be noted that, although infrequent n-gram recovery selected a
larger number of words, the number of sentences of the selection was lower
than the one provided by FDAD5, i.e., the sentences chosen by infrequent n-
gram recovery were longer than those selected by FDA5. This phenomenon is
produced because infrequent n-gram recovery selects the sentence which most
infrequent features have. It is likely that, the longer a sentence is, the more
infrequent features has. The criterion followed by FDA5 is based on features
scores, being invariant to the sentence length.

Spanish | English
Full training set Sentences 56k
Running words 747k | 662k
Sentences 9 181
FDAS selection Running words 136k [120k
Infrequent n-gram Sentences 8 959
selection Running words 165k | 147k

Table 5.3: Statistics for the full EU corpus, for the selection obtained by
FDAS5 and infrequent n-gram recovery techniques and for the test set.

32

Chapter 5 5.2. Results on Data Selection

5.2.2. EU

In Figure 5.2 are shown the perplexities obtained by the different n-gram
language models according to the number of source words selected by both
selection techniques. Infrequent n-gram recovery behavioured similarly than in
the previous task: A bad performance with small selections, which was rapidly
enhanced as the infrequency threshold is relaxed. FDAJ5 depicted a similar
conduct, unlike in the previous task.

The differences shown by FDA5 between tasks were due to the difficulty
of both tasks: Xerox was an easier one and hence, the selection strategy was
able to achieve good results even with small selections. In the EU task, this
was not possible: It was necessary to include more events for having a fairly
good selection. Even though, FDA5 obtained better selections than infrequent
n-gram recovery, which suggests that the first technique is more appropriate for
selecting few data.

It is also remarkable that perplexity enhancements were more noticeable
when the size of the selection was smaller than one million of words. From here,
there were not important differences, which was an expected phenomenon: From
one million words ahead, only remained few informative features to add. The
inclusion of more instances in the selection did not contribute to add valuable
information, therefore, the enhancement in terms of perplexity was low.

90 T 90

3-gram — ' 3-gram —
80+ 4-gram 1 80+ 4-gram 1
5-gram — 5-gram —
2 70t 9 — 2 70t 9 p
3 3
5 60 o 60r
o @ 50
& 50 o [
40+ 40t
30 - 30 -
1-10° 1-108 1-107 1-10° 1-108 1-107
Training words Training words
(a) FDA5S (b) Infrequent n-gram recovery.

Figure 5.2: Perplexity of n-gram language models according to the number of
selected words, for both selection techniques.

Considering these results, for selecting the reduced corpus used to train
the neural network, FDA5 was asked to select one million of source words.
The infrequency parameter of infrequent n-gram recovery was set to ¢ = 25.
Statistics of the corpora are shown in Table 5.4.

Spanish | English
Full training set Sentences 213k
Running words 50M | 5.2M
Sentences 33k
FDA5 selection Running words IM | 891k
Infrequent n-gram Sentences 39k
selection Running words 1.3M | 11M

Table 5.4: Statistics for the full EU corpus, for the selection obtained by
FDA5 and infrequent n-gram recovery techniques and for the test set.

33

Chapter 5 5.83. Bidirectional Language Model for Machine Translation

5.3. Bidirectional Language Model for Machine
Translation

Once the neural language model was trained with the selected data, it was
used to rescore N-best lists generated by Thot and Moses translation toolkits.

In the case of Thot, the N-best lists were obtained executing a weight adjust-
ment process, by means of the downhill simplex optimization method (Melder
and Nead, 1965), using BLEU as function to maximize. At each iteration of
the optimization process, a 200-best list was generated and merged with the
list of the previous iteration. The process continued until no new elements were
included in the N-best list. The neural language model rescored such lists and
another weight adjustment process for the development set was run. At test
time, these re-adjusted weights were used.

In the case of Moses, an unique 2500-best list was generated by the decoder.
This list was rescored and the weights of the log-linear model were re-estimated
running an additional iteration of MERT (Och, 2003). Once again, at test time,
the new weights were used.

The hyperparameters of the neural language models (size of the projection
layer, size of the recurrent layers and size of the output intermediate layer),
were chosen following a perplexity minimization criterion. The learning rate
was initially set to 1 and it was halved at the start of each training epoch if
the validation entropy did not decrease a 0.3% with respect the previous one
(Mikolov, 2012). Following Pascanu et al. (2014), the network was initialized
using the standard deviations of a Gaussian white noise distribution.

The neural language model was used solely and also linearly interpolated
with the n-gram language model from the original system, following the expres-
sion:

Pinter (Y1) = ApprNN (Y1) + (1= Npa(yl) (5.1)

where ppryn(yi) and p,(y!) are the probabilities assigned to the sentence yi
by the BRNN and n-gram language models respectively. pinser(y?) is the re-
sulting interpolated probability of the sentence y{. A € [0, 1] is the interpolation
coefficient, which determines the importance given to the neural model with re-
spect to the n-gram model. A was determined by sampling in the development
set. The sampling interval was [0.1,0.9], with a step of 0.1.

5.3.1. Xerox

Table 5.5 reports the perplexities obtained by the different language models.
For obtaining a valid comparison of perplexity, all models were trained with
the same vocabulary. The shortlist used by the neural model had a size of
K = 6,000. The neural network had a projection layer of 500 units, forward
and backward layer of 120 units and intermediate output layer of 240 units.

34

Chapter 5 5.83. Bidirectional Language Model for Machine Translation

Language model | Perplexity
Full 5-gram 49.1
FDA5 5-gram 394
Infrequent 5-gram 49.3
FDA5 BRNN 51.3
Infrequent BRNN 70.1

Table 5.5: Perplexity obtained by the different language models for the Xerox
task. Full 5-gram row refers to a 5-gram trained over the complete corpus. The
rest of language models are trained over the selection provided by the different
techniques.

The bidirectional neural model trained with the data selected by the FDA5S
method obtained a similar perplexity than a 5-gram language model trained with
all available data. On the other hand, the selection given by infrequent n-gram
recovery was useless for training a competitive neural model: An important loss
on perplexity was produced.

This was also reflected on the translations results. As shown in Table 5.6, the
neural network trained with the data provided by infrequent n-gram recovery,
worsened the performance; the interpolation with an n-gram language model
could neither achieve enhancements. The reasons for this are probably found in
the particularities of the task commented above (Section 5.2.1).

However, the neural model trained with the FDA5 selection did enhance the
translation quality, in the case of being interpolated with an n-gram language
model. The optimal values for the interpolation weight were found at A = 0.5
in the case of the FDA5 network, for both translation toolkits; in the case of
infrequent n-gram recovery, the best values were found at A = 0.2 in the case
of Thot and A = 0.1 in the case of Moses. Note that in these latter cases,
since the network was unable to add valuable information, the systems worked
better when a low importance was given to the neural model, which represented
a source of noise.

Language model Thot | Moses
5-gram 58.6 63.8
FDA5 BRNN 58.2 63.1
Infrequent BRNN 57.2 61.9
FDA5 BRNN + 5-gram 60.1 64.4
Infrequent BRNN + 5-gram | 58.5 63.8

Table 5.6: Test set BLEU score for the different language models and selection
techniques. The “+ 5-gram” suffix indicates that the neural language model was
linearly interpolated with the original 5-gram language model.

5.3.2. EU

In this task, the vocabulary was limited to 10, 000 words. The neural network
language model had a size of the projection layer of 620 units, the forward

35

Chapter 5 5.83. Bidirectional Language Model for Machine Translation

and backward layers had 200 units each one and the intermediate output layer
contained 400 units. Again, for obtaining a valid comparison of perplexity, all
models were evaluated over the same vocabulary.

Table 5.7 shows the perplexities obtained by the different language mod-
els. The neural models presented perplexities slightly higher than the n-gram
language models. Attending to the different selection techniques, the neural
language model trained with the FDAJ5 selection performed better than the one
trained with the infrequent n-gram recovery corpus, but such differences were
smaller than in the previous task.

Language model | Perplexity
Full 5-gram 34.6
FDA5 5-gram 38.7
Infrequent 5-gram 374
FDA5 BRNN 53.2
Infrequent BRNN 59.1

Table 5.7: Perplexity obtained by the different language models. Full n-gram
row refers to an n-gram trained over the complete corpus. Both neural models
were trained over selected instances. In order to provide a fair comparison in
terms of perplexity, all models were trained using the same vocabulary (10,000
words).

Regarding the translation quality, Table 5.8 shows the BLEU scores obtained
by the different language models for the test set. The optimal values for the
interpolation weight were found at A = 0.6 in the case of Thot (for both selection
techniques), at A = 0.5 in the case of Moses with FDA5 and A = 0.4 in the case
of Moses with infrequent n-gram recovery.

Language model Thot | Moses
5-gram 46.1 49.4
FDA5 BRNN 45.2 48.4
Infrequent BRNN 44.7 48.1
FDA5 BRNN + 5-gram 47.5 50.3
Infrequent BRNN + 5-gram | 47.1 50.0

Table 5.8: Test set BLEU score for the different language models and selection
techniques.

The results show a similar behaviour of the BRNN language model trained
with a FDA5 selection than in the Xerox task: The sole use of the network
worsened the performance of the system, but a linear interpolation with an
n-gram language model enhanced the translation quality. In this case, the
selection provided by infrequent n-gram recovery was closer to the test set.
This was reflected either in the perplexity and in the BLEU scores. Although
the translation quality was still slightly worse than FDAJ5, the system was also
enhanced with the use of the BRNN language model trained with the infrequent
n-gram recovery selection.

36

Chapter 5 5.4. Neural Machine Translation

5.3.3. Conclusions on the Bidirectional Language Model
and Data Selection

In all experiments, the best results were obtained by performing a linear
interpolation of the neural language model with an n-gram language model.
The sole use of the neural language model worsened the performance of the
system. This was probably because neural models have issues with seldom seen
events. If a word appears very infrequently, the estimation of the parameters
of the network is poor. The interpolation of models aimed to overcome this
problem: The flaws of the network with rare words were corrected by the n-
gram language model. In addition, since the n-gram model was trained with all
available data, it acted as a back-off model, helping the neural model to cope
with the reduction of the training corpus. As result, the interpolation of models
was able to improve the performance of the system.

Hence, results showed that both approaches, neural and n-gram-based, were
complementary: Because of their nature, n-gram language models were robust
modellers of local dependencies. The neural network introduced additional in-
formation, which was usefully profited by system. Although differences in the
results obtained were statistically non-significant, a trend in them was observed.
The fact that both systems (Moses and Thot) were enhanced confirms this ten-
dency.

With regard to the selection techniques, it was observed that FDA5 provided
better results in all cases than infrequent n-gram recovery. The latter technique
suffered a decreasing in the performance when the training and test sets were
dissimilar. This was the case of the Xerox task, where none enhancements
were obtained. In the case of the EU task, the selection provided was more
representative of the test set, and hence, some improvements over the baseline
system were found.

Meanwhile, FDA5 found adequate selections for each translation task. Since
it considered the test set, it was able to adapt to the requirements of such corpus
and it was not influenced by the training set and its noise, as infrequent n-gram
recovery did.

This suggests that infrequent n-gram recovery is more sensible to dissimilar-
ities between training and test sets. Hence, it should be used in cases where the
training and test sets are meant to be similar or when the test set is unknown
beforehand, therefore, the process must be guided by the training set. FDAB,
due to the strategy which follows, is more flexible to differences in the training
and test sets and provide selections which fit better the test set. Because of
this, in our experimental setup, it obtained better results.

5.4. Neural Machine Translation

The same translation tasks were tackled by means of the NMT system. The
model had a large set of hyper-parameters which needed to be experimentally
tuned. The more sensible hyper-parameters were the following: Size of the
vocabulary, size of the word embedding, number of hidden units of the recurrent
layers of the encoder and decoder RNN (we used the same number of units for
both the encoder and the decoder).

Table 5.9 shows the configurations of the best models for both tasks. In the

37

Chapter 5 5.4. Neural Machine Translation

case of the Xerox task, the full vocabulary was taken into account, since it had
a tractable size. In the case of the EU task, the short-list approach was used
(as done in the case of the neural language model). The words which were not
included in the short-list were mapped to the special token <UNK>. The size of
the short-list was IC = 11,000 words, which had a coverage of approximately
the 98% of the training corpus.

Xerox | EU
Source vocabulary 11k 11k
Target vocabulary 14k 11k

Source corpus coverage | 100% | 97.6%
Target corpus coverage | 100% | 98.6%

Word embedding 520 620
Hidden units 500 1000
BLEU (55.3 T 41.6

Table 5.9: Main NMT hyper-parameters and results for both tasks.

On the need of GPUs for training deep models

The training complexity of the NMT model is elevated. Working with deep
neural networks requires the usage of graphics processing units (GPU), which
greatly boost the computation power. Thanks to the Nvidia Hardware Grant
program, we were able to run the NMT experiments on a Nvidia Titan X GPU.
This enormously accelerated the training process.

‘ " CPU— ‘ " CPU—

5105 T GPU E 5.105 GPU i
" (%]
3 3
B3105F B3105F
o o
))

1-10°] 1-10°

4104] 4104 -)

1 10 40 100 200 1 10 40 100 300
Training hours Training hours
(a) Xerox task. (b) EU task.

Figure 5.3: GPU vs CPU performance in the training of the neural model for
MT. It was observed a boost of approximately 10x when using the GPU.

In order to illustrate this acceleration, Figure 5.3 shows the differences in
speed obtained by using a GPU or a CPU. It is plotted the number of training
updates of the model with respect to the time. The models are those from
Table 5.9. The experiments on CPU were run using 4 Intel Xeon E5-2450 cores,
which made use of the Intel MKL optimization libraries. Using a GPU instead
of a CPU greatly boosted the process (~ 10x).

The increasing of the computation power allowed to a better training of the
model, yielding to enhancements up to 14 and 8 BLEU points with respect to
the CPU training, on the Xerox and EU tasks respectively.

38

Chapter 5 5.5. System Combination

5.4.1. Conclusions on Neural Machine Translation

Although promising, neural machine translation still underperformed classic
phrase-based systems. As main flaws can be highlighted the handling of rare
words and the vocabulary limitation. In the first case, NMT systems can only
afford the usage of a limited vocabulary. Out-of-vocabulary (OOV) words are
mapped to the <UNK> token. Therefore, NMT systems are unable to translate
OOV words. In the case of the handling of rare words, if a word has been
seen seldom times, it will be probably poorly estimated. This can derive in
confusion between words, close in the continuous space but far in the meaning.
Such confusion leads to erroneous translations.

Phrase-based systems suffer less from these problems, because 1. they can
use a much larger vocabulary, having less OOV words and 2. PB systems
are able to correctly translate extremely rare events, since they are based on
counts and can remember such singularities. Some works already noticed such
problems and tried to overcome them, by pre- and post-processing the training
data (Luong et al., 2014), sampling a large target vocabulary (Jean et al., 2014)
or including an external LM to guide the translation process (Gulcehre et al.,
2015). While “vanilla” NMT could not beat the existing PB systems, the above
mentioned works were able to obtain better results than the existing state-of-
the-art PB system.

NMT has also other minor issues which may difficult its usage. In the first
place, the model has a considerable set of hyperparameters which are task-
dependent and must be experimentally chosen. In addition, the training com-
plexity of the model makes cumbersome an adequate sampling of the hyperpa-
rameters. Because of this, the usage of NMT systems require the use of a GPU,
in order to accelerate computations. Otherwise, the process can be prohibitively
long.

5.5. System Combination

The combination experiments were performed between three MT systems:
Moses, Thot and NMT. In addition, the best rescored versions (from Section 5.3)
were also included as additional systems. Hence, the combination module con-
sidered 5 systems. For obtaining the best configuration for each task, different
orders of the n-gram language model trained over the hypotheses were explored.
The sampling interval was from 2 to 5. It was also added an additional n-gram
language model, trained over the target training corpus of each task. The order
of this extra language model was the same than the one used as base feature.

5.5.1. Xerox

Figure 5.4 shows the results obtained by the different configurations of the
combination process. The combination of systems always enhanced the perfor-
mance of the baseline system. The baseline was determined by the best single
system, in this case, Moses rescored with the bidirectional LM.

39

Chapter 5 5.5. System Combination

T
69 | Best single system ——

Base features
| Extra LM -3 |
g
ﬂ B 4
m e
66 - 7
[¥
65 b |
¥
64 ‘ |
2 : : |

n-gram order

Figure 5.4: Results of the system combination varying the order of the n-
gram for the Xerox task. The best single system was obtained by the rescoring
of N-best lists from Moses.

The inclusion of an additional language model was beneficial when the order
of the n-gram was larger than 3. With lower orders, the additional model only
added noise.

This was probably due to particularities of the test set: Since the sentences
belonging to this set were quite short, averaging 7 words per sentence, only few
long-term dependencies could be found. The existing short-term relationships
could be correctly modelled by a low-order n-gram (2 and 3-gram). Hence,
low-order n-gram models worked reasonably well. The information added by a
low-order extra LM did not helped the system because short-term relationships
were already captured by the baseline model. Therefore, the inclusion of a
language model trained over the full corpus distorted the original estimations.

When higher-order extra LM were included, the performance of the system
was enhanced, since it included longer-term relationships. Since the test set
was made up of short sentences, the estimation of longer-term relationships (4
words) was improvable. The additional LM, trained over more data, aided to the
estimation of such events, enhancing the performance of the system. Table 5.10
shows the best results obtained by each configuration.

System BLEU
Moses 63.8
Moses + BRNN 64.4
Thot 58.6
Thot + BRNN 60.1
Neural MT 55.3
System combination 66.7
+ Extra language model | 66.9

Table 5.10: BLEU of the combination of MT systems for the Xerox task.

40

Chapter 5 5.5. System Combination

5.5.2. EU

Figure 5.5 shows the results of the combination of systems, varying the order
of the n-gram language model, for both the base and the additional language
model. In this case, a smoother behaviour was observed. The additional LM
included in every case relevant information and hence, provided enhancements
with respect the analogous configuration without extra LM.

55 ‘
Best single system ——
Base features
54 |- |
Extra LM -3¢
53 |- |
>
w
o}
o
52 - |
"""""""" D
e
7l _
*
50 ‘ |
2 3 4 |

n-gram order

Figure 5.5: Results of the system combination varying the order of the n-gram
for the EU task. The best single system was obtained by the rescoring of N-best
lists from Moses.

In this task, high-order language models had a better performance than
lower-order LM, unlike in the previous task. This is because the sentences in
the EU test set are much larger than the test sentences of the Xerox task (25
versus 7 words per sentence, respectively). Hence, higher-order LM could be
fully profited in the EU task, while the Xerox task had less chances of having
regularities beyond 2 words. Table 5.11 shows the performance of the single
systems and the best result achieved by the combination of systems, with and
without the extra LM.

System BLEU
Moses 49.4
Moses + BRNN 50.3
Thot 46.1
Thot + BRNN 47.5
Neural MT 41.6
Basic system combination 51.5
+ Extra language model | 51.7

Table 5.11: BLEU of the combination of MT systems for the EU task.

5.5.3. Conclusions on System Combination

The experiments conducted showed a good behaviour of the combination of
MT systems. Since the systems to be combined had a different nature (PB, PB

41

Chapter 5 5.5. System Combination

+ neural rescoring, NMT'), the nature of the translations produced was different.
This allowed the combination system to add information from diverse sources,
which was useful for enhancing the global translation quality. Moreover, the
inclusion of an extra language model, trained over larger corpora may help to
enhance the systems. The additional LM contributed with information which,
although missing in the test set, was valuable for obtaining better translations.

Finally, it was observed that the optimal order of the n-gram language mod-
els which produced the best results depended on each test set. In the case of a
set with short sentences (like the Xerox task), low-order models worked better
than higher-order models, because the estimation of large n-grams could not be
correctly performed. On the other hand, if the test set was made up of long sen-
tences (EU task), high-order models overcame lower-order models, since more
long-term relationships could be found and high-order n-grams could properly
take them into account.

42

Chapter 6

Future Work and
Conclusions

6.1. Future Work

The use of continuous representations of words and phrases is nowadays a
hot topic in the natural language processing research community. Perspectives
on the application of continuous models and deep learning techniques are en-
couraging. Nowadays, a big research effort is being spent in the deployment of
models for tackling almost every field of the discipline.

In the machine translation area the use of continuous models is also widespread.
But it is still required deeper research, in order to exploit the full potential of
such powerful models.

Enhancing the NMT

Neural machine translation has some issues (usage of large vocabularies,
handling of unknown words, training difficulty), which, although they are be-
ing actively tackled, must still be improved. Some works, which address such
drawbacks, already beat a state-of-the-art phrase-based system. These results
support the neural approach to MT, even though it is still needed more inves-
tigation.

Other Structured Prediction Problems

Machine translation belongs to the so-called structured prediction problems.
Such techniques aim to predict structured objects (e.g. natural language strings,
parse trees, graphs, etc.), rather than scalar or discrete values (as in the case
of classification or regression methods). Besides MT, the encoder-decoder ap-
proach results appropriate for other generic structured prediction problems.
Other tasks are currently being tackled using this approach: The description
of multimedia content, like images (Vinyals et al., 2014; Xu et al., 2015) or
videos (Venugopalan et al., 2015); conversational modelling (Vinyals and Le,
2015), speech recognition (Chorowski et al., 2015), etc. To explore such re-
search lines would also be an interesting work.

43

Chapter 0 6.2. Conclusions

6.2. Conclusions

In this thesis, a language model was developed, based on a bidirectional
neural network. It allowed the system to profit from both the past and the
future context of words. The training complexity of such model is elevated. For
reducing the training time, we explored and compared two different selection
techniques, FDA5 and infrequent n-gram recovery. The first one behavioured
better than the latter one, because it was focused on a known test set. Infre-
quent n-gram recovery considered also the training set, producing more noisy
selections (for this given test set).

The results obtained in the translation task showed that the neural language
model, trained with an appropriate subset of all available data, improved the
system, when it was interpolated with an n-gram language model. The inclusion
of the n-gram language model was beneficial because of two main reasons: First,
since the n-gram language model was trained with all data, it backed off the
neural model, addressing the bias introduced by the selection. And second,
both models complement naturally: The n-gram language models are robust
modellers of short-term relationships, while recurrent neural networks are able
to consider larger contexts. Therefore, a combination of the models can profit
from these advantages.

Moreover, we made use of the neural approach to machine translation, which
relies on the mapping of the source language into a continuous space and its
posterior decoding, from this continuous space to the target language space.
According to our experiments, NMT performed worse than classic phrase-based
approach (in terms of BLEU). Nevertheless, the neural approach could pro-
vide additional translation knowledge. For testing this, we conducted exper-
iments on system combination, considering three different approaches to MT:
Phrase-based, neural rescoring of PB systems and NMT. Results on the com-
bination experiments showed improvements over the best single system in all
experiments. The combination module can be seen as an interpolation between
systems, which combines discrete and continuous spaces. As commented above,
a combination of different techniques can be positive, because each approach
entails its own strengths and weaknesses. The combination aims to maximize
the strengths while minimizing the weaknesses.

Another conclusion drawn from this work relates to the computational chal-
lenges that such complex systems present. A workaround for overcoming this
issue is the development of techniques which allow to work with smaller datasets
while trying to keep the performance of a complete corpus. However, for ex-
ploiting the power of continuous models to the full, the use of a GPU becomes
mandatory.

Finally, some of the work developed in this thesis was submitted and ac-
cepted (Peris and Casacuberta, 2015) in the XXXI edition of the congress of
the Sociedad Espatiola para el Procesamiento del Lenguaje Natural (SEPLN).

44

Symbols and Acronyms

A. Mathematical Symbols

O R T WL %

m(lemU{)

5 > >
3

[0}

: Source language vocabulary
: Target language vocabulary
: Source sentence of length J
: Target sentence of length I

: Estimated target sentence

: Log-likelihood function

: Set of parameters of a model

: Position in y! aligned with position j of z{

: Set of all possible alignments between x7{ and y!
: Number of occurrences

: Alignment model

: Statistical dictionary

: Source phrase

: Target phrase

: Number of phrases in which a sentence is divided
: Source sentence segmentation

: Target sentence segmentation

: Phrase alignment

: Feature function in a log-linear model

: Weight of a feature function in a log-linear model
: Linear interpolation weight

: n-gram

: Empty string

: RNN hidden layer at timestep ¢

: BRNN forward layer at timestep ¢

: BRNN backward layer at timestep ¢

: Size of the short-list

: Dimension of the word embedding

: Encoder-decoder context vector

: Soft alignment model

: Beam size

: Feature extraction function

: Source language training corpus

: Source language test set

45

B. List of Acronyms

BLEU
BRNN
CN
FDA
GPU
HMM
LM
MERT
MT
NMT
0]0)%
PB
RNN
SMT
™

: BiLingual Evaluation Understudy
: Bidirectional Recurrent Neural Network
: Confusion Network

: Feature-Decay Algorithm

: Graphics Processing Unit

: Hidden Markov model

: Language Model

: Minimum Error Rate Training

: Machine Translation

: Neural Machine Translation

: Out-Of-Vocabulary

: Phrase-Based

: Recurrent Neural Network

: Statistical Machine Translation

: Translation Model

46

List of Tables

5.1 Xerox corpus statistics Lo 30
5.2 EU corpus statistics L. 31
5.3 Selected corpora from the Xerox task 32
5.4 Selected corpora from the EU task 33
5.5 Perplexity of language models for the Xerox task 35
5.6 BLEU scores for the Xerox task 35
5.7 Perplexity of language models for the EU task. 36
5.8 BLEU scores for the EU task 36
59 NMTresults 38
5.10 Xerox system combination results L0 40
5.11 EU system combination results 41

47

List of Figures

1.1

2.1
2.2
2.3

3.1
3.2
3.3
3.4

5.1
5.2
5.3
5.4
5.5

Aligned sentence pair and extrated phrases.

RNN architecture
BRNN architecture
Architecture of a BRNN language model

Main idea of NMT
Architecture of a NMT system
Example of a confusion network
System combination schemeo

Perplexities of language models for data selections from Xerox . .
Perplexities of language models for data selections from EU . . .
GPU vs CPU performance in NMT
Xerox combination results for different n-gram orders
EU combination results for different n-gram orders

48

12
13
15

17
20
22
23

Bibliography

Bahdanau, D., Cho, K., and Bengio, Y. (2014). Neural machine translation
by jointly learning to align and translate. Technical report, arXiv preprint
arXiv:1409.0473.

Baltescu, P., Blunsom, P., and Hoang, H. (2014). OxLM: A neural language
modelling framework for machine translation. The Prague Bulletin of Math-
ematical Linguistics, 102(1):81-92.

Bangalore, S., Bordel, G., and Riccardi, G. (2001). Computing consensus trans-
lation from multiple machine translation systems. In Automatic Speech Recog-
nition and Understanding, 2001. ASRU’01. IEEE Workshop on, pages 351—
354. IEEE.

Bastien, F., Lamblin, P., Pascanu, R., Bergstra, J., Goodfellow, I. J., Bergeron,
A., Bouchard, N., and Bengio, Y. (2012). Theano: new features and speed
improvements. Deep Learning and Unsupervised Feature Learning NIPS 2012
Workshop.

Bengio, Y., Ducharme, R., Vincent, P., and Janvin, C. (2003). A neural proba-
bilistic language model. Machine Learning Research.

Bicici, E. and Yuret, D. (2011). Instance selection for machine translation using
feature decay algorithms. In Proceedings of the Sixth Workshop on Statistical
Machine Translation, pages 272-283. Association for Computational Linguis-
tics.

Bigici, E. and Yuret, D. (2015). Optimizing instance selection for statistical
machine translation with feature decay algorithms. IEEE/ACM Transactions
on Audio, Speech, and Language Processing, 23(2):339-350.

Brown, P. F., Pietra, V. J. D., Pietra, S. A. D., and Mercer, R. L. (1993).
The mathematics of statistical machine translation: Parameter estimation.
Computational linguistics, 19(2):263-311.

Castafio, M. A., Casacuberta, F., and Vidal, E. (1997). Machine translation
using neural networks and finite-state models. Theoretical and Methodological
Issues in Machine Translation (TMI), pages 160-167.

Chen, S. F. and Goodman, J. (1998). An empirical study of smoothing tech-
niques for language modeling. Technical Report TR-10-98, Computer Science
Group, Harvard U., Cambridge, MA.

49

Chapter 6 Bibliography

Cho, K., van Merrienboer, B., Giilgehre, C., Bougares, F., Schwenk, H., and
Bengio, Y. (2014). Learning phrase representations using RNN encoder-
decoder for statistical machine translation. CoRR, abs/1406.1078.

Chorowski, J., Bahdanau, D., Serdyuk, D., Cho, K., and Bengio, Y. (2015).
Attention-based models for speech recognition. CoRR, abs/1506.07503.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood
from incomplete data via the em algorithm. Journal of the royal statistical
society. Series B (methodological), pages 1-38.

Denkowski, M. and Lavie, A. (2014). Meteor universal: Language specific trans-
lation evaluation for any target language. In Proceedings of the EACL 2014
Workshop on Statistical Machine Translation.

Devlin, J., Zbib, R., Huang, Z., Lamar, T., Schwartz, R., and Makhoul, J.
(2014). Fast and robust neural network joint models for statistical machine
translation. In Proceedings of the 52nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pages 1370-1380.
Association for Computational Linguistics.

Doddington, G. (2002). Automatic evaluation of machine translation quality
using n-gram co-occurrence statistics. In Proceedings of the second interna-
tional conference on Human Language Technology Research, pages 138—145.
Morgan Kaufmann Publishers Inc.

Eck, M., Vogel, S., and Waibel, A. (2005). Low cost portability for statistical
machine translation based on n-gram frequency and TF-IDF. In International
Workshop on Spoken Language Translation (IWSLT), pages 61-67.

Elman, J. L. (1990). Finding structure in time. Cognitive science, 14(2):179-211.

Fiscus, J. G. (1997). A post-processing system to yield reduced word error
rates: Recognizer output voting error reduction (rover). In Automatic Speech
Recognition and Understanding, 1997. Proceedings., 1997 IEEE Workshop on,
pages 347-354. IEEE.

Freitag, M., Huck, M., and Ney, H. (2014). Jane: Open source machine trans-
lation system combination. In Proc. of the Conf. of the European Chapter
of the Assoc. for Computational Linguistics (EACL), Gothenburg, Sweden,
pages 29-32.

Gascd, G., Rocha, M.-A., Sanchis-Trilles, G., Andrés-Ferrer, J., and Casacu-
berta, F. (2012). Does more data always yield better translations? In Pro-
ceedings of the 13th European Chapter of the Association for Computational
Linguistics, pages 152-161.

Gonzélez-Rubio, J., Juan, A., and Casacuberta, F. (2011). Minimum bayes-
risk system combination. In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human Language Technologies,
pages 1268-1277. Association for Computational Linguistics.

Graves, A. (2013). Generating sequences with recurrent neural networks.
arXiv:1308.0850 [cs.NE].

50

Chapter 6 Bibliography

Gulcehre, C., Firat, O., Xu, K., Cho, K., Barrault, L., Lin, H.-C., Bougares, F.,
Schwenk, H., and Bengio, Y. (2015). On using monolingual corpora in neural
machine translation. arXiv:1503.03535.

Hasler, E., Haddow, B., and Koehn, P. (2011). Margin infused relaxed algorithm
for moses. The Prague Bulletin of Mathematical Linguistics, 96:69-78.

Heafield, K., Hanneman, G., and Lavie, A. (2009). Machine translation sys-
tem combination with flexible word ordering. In Proceedings of the Fourth
Workshop on Statistical Machine Translation, pages 56—60. Association for
Computational Linguistics.

Hopkins, M. and May, J. (2011). Tuning as ranking. In Proceedings of the Con-
ference on Empirical Methods in Natural Language Processing, pages 1352—
1362. Association for Computational Linguistics.

Jean, S., Cho, K., Memisevic, R., and Bengio, Y. (2014). On using very large
target vocabulary for neural machine translation.

Jordan, M. I. (1990). Artificial neural networks. chapter Attractor Dynamics
and Parallelism in a Connectionist Sequential Machine, pages 112-127. IEEE
Press, Piscataway, NJ, USA.

Khadivi, S. and Goutte, C. (2003). Tools for corpus alignment and evalua-
tion of the alignments (deliverable d4.9). Technical report, Technical report,
TransType2 (IST-2001-32091).

Kneser, R. and Ney, H. (1995). Improved backing-off for m-gram language
modeling. In Acoustics, Speech, and Signal Processing, 1995. ICASSP-95.,
1995 International Conference on, volume 1, pages 181-184. IEEE.

Koehn, P., Hoang, H., Birch, A., Callison-Burch, C., Federico, M., Bertoldi, N.,
Cowan, B., Shen, W., Moran, C., Zens, R., et al. (2007). Moses: Open source
toolkit for statistical machine translation. In Proceedings of the 45th annual
meeting of the ACL on interactive poster and demonstration sessions, pages
177-180. Association for Computational Linguistics.

Koerner, E. F. K. and Asher, R. E. (2014). Concise history of the language
sciences: from the Sumerians to the cognitivists. Elsevier.

Luong, T., Sutskever, 1., Le, Q. V., Vinyals, O., and Zaremba, W. (2014).
Addressing the rare word problem in neural machine translation.

Matusov, E., Leusch, G., Banchs, R. E., Bertoldi, N., Dechelotte, D., Federico,
M., Kolss, M., Lee, Y.-S., Marino, J. B., Paulik, M., et al. (2008). System
combination for machine translation of spoken and written language. Audio,
Speech, and Language Processing, IEEE Transactions on, 16(7):1222-1237.

Melder, J. A. and Nead, R. (1965). A simplex method for function minimization.
The Computer Journal, 7(4):308-313.

Mikolov, T. (2012). Statistical Language Models based on Neural Networks. PhD
thesis, Brno University of Technology.

o1

Chapter 6 Bibliography

Och, F. J. (2003). Minimum error rate training in statistical machine transla-
tion. In Proceedings of the 41st Annual Meeting on Association for Compu-
tational Linguistics-Volume 1, pages 160-167. Association for Computational
Linguistics.

Ortiz-Martinez, D. (2011). Advances in Fully-Automatic and Interactive Phrase-
Based Statistical Machine Translation. PhD thesis, Universidad Politécnica
de Valencia.

Ortiz-Martinez, D. and Casacuberta, F. (2014). The new Thot toolkit for fully-
automatic and interactive statistical machine translation. In Proceedings of
the 14th Conference of the Furopean Chapter of the Association for Compu-
tational Linguistics (EACL), pages 45-48.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002). BLEU: a method
for automatic evaluation of machine translation. In Proceedings of the 40th
annual meeting on association for computational linguistics, pages 311-318.
Association for Computational Linguistics.

Pascanu, R., Gulcehre, C., Cho, K., and Bengio, Y. (2014). How to construct
deep recurrent neural networks.

Peris, A. and Casacuberta, F. (2015). A bidirectional recurrent neural language
model for machine translation. Procesamiento del Lenguaje Natural, 55:109—
116.

Rosti, A.-V., He, X., Karakos, D., Leusch, G., Cao, Y., Freitag, M., Matsoukas,
S., Ney, H., Smith, J., and Zhang, B. (2012). Review of hypothesis alignment
algorithms for mt system combination via confusion network decoding. In
NAACL 2012 Seventh Workshop on Statistical Machine Translation, pages
191-199, Montreal, Canada.

Schuster, M. and Paliwal, K. K. (1997). Bidirectional recurrent neural networks.
IEEE Transactions on Signal Processing, 45(11):2673-2681.

Schwenk, H. (2013). CSLM - a modular open-source continuous space language
modeling toolkit. In INTERSPEECH, pages 1198-1202. ISCA.

Snover, M., Dorr, B., Schwartz, R., Micciulla, L., and Makhoul, J. (2006). A
study of translation edit rate with targeted human annotation. In Proceedings
of association for machine translation in the Americas, pages 223-231.

Stolcke, A. (2002). Srilm - an extensible language modeling toolkit. pages
901-904.

Sundermeyer, M., Alkhouli, T., Wuebker, J., and Ney, H. (2014). Transla-
tion modeling with bidirectional recurrent neural networks. In Proceedings of
the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pages 14-25. Association for Computational Linguistics.

Sundermeyer, M., Schliiter, R., and Ney, H. (2012). LSTM neural networks for
language modeling. In Interspeech, pages 194-197.

Sutskever, 1., Vinyals, O., and Le, Q. V. (2014). Sequence to sequence learning
with neural networks. CoRR, abs/1409.3215.

52

Chapter 6 Bibliography

Venugopalan, S., Xu, H., Donahue, J., Rohrbach, M., Mooney, R., and Saenko,
K. (2015). Translating videos to natural language using deep recurrent neu-
ral networks. In Proceedings of the 2015 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language
Technologies, pages 1494-1504. Association for Computational Linguistics.

Vinyals, O. and Le, Q. V. (2015). A neural conversational model. CoRR,
abs/1506.05869.

Vinyals, O., Toshev, A., Bengio, S., and Erhan, D. (2014). Show and tell: A
neural image caption generator.

Wang, R., Zhao, H., Lu, B.-L., Utiyama, M., and Sumita, E. (2014). Neu-
ral network based bilingual language model growing for statistical machine
translation. In Proceedings of the 2014 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages 189-195. Association for
Computational Linguistics.

Werbos, P. J. (1990). Backpropagation through time: what it does and how to
do it. Proceedings of the IEEE, 78(10):1550-1560.

Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A. C., Salakhutdinov, R., Zemel,
R. S., and Bengio, Y. (2015). Show, attend and tell: Neural image caption
generation with visual attention. CoRR, abs/1502.03044.

Zens, R., Och, F. J., and Ney, H. (2002). Phrase-based statistical machine
translation. In KI 2002: Advances in Artificial Intelligence, pages 18-32.
Springer.

53

	Statistical Machine Translation
	Language Modelling
	Translation Modelling
	The SMT Log-linear Model
	Assessment

	Neural Language Models for Machine Translation
	Recurrent Neural Networks
	A Bidirectional Recurrent Language Model

	Neural Machine Translation
	Neural Machine Translation
	System Combination

	Data Selection
	Feature-Decay Algorithms
	Infrequent n-gram Recovery

	Experiments and Results
	Experimentation Framework
	Results on Data Selection
	Bidirectional Language Model for Machine Translation
	Neural Machine Translation
	System Combination

	Future Work and Conclusions
	Future Work
	Conclusions

	Appendices
	Mathematical Symbols
	List of Acronyms

	List of Tables
	List of Figures
	Bibliography

