
Contributions to Pen & Touch
Human-Computer Interaction

PhD Thesis

Daniel Martín-Albo
Supervised by Enrique Vidal Ruiz

and Verónica Romero Gómez

May, 2016

Work partially supported by the Spanish MEC under FPU scholarship
(AP2010-0575), the EU’s 7th Framework Programme under tranScrip-
torium grant agreement (FP7/2007-2013/600707), and the Spanish
MINECO and the European RDF under the STraDA grant (TIN2012-
37475-C02-01).
c© Daniel Martín-Albo, 2016

No man was more foolish when he had not a pen in his hand,
or more wise when he had.

— Samuel Johnson, Of Goldsmith

Abstract

Computers are now present everywhere, but their potential is not
fully exploited due to some lack of acceptance. In this thesis, the pen
computer paradigm is adopted, whose main idea is to replace all in-
put devices by a pen and/or the fingers, given that the origin of the
rejection comes from using unfriendly interaction devices that must
be replaced by something easier for the user.

This paradigm, that was was proposed several years ago, has been
only recently fully implemented in products, such as the smartphones.
But computers are actual illiterates that do not understand gestures
or handwriting, thus a recognition step is required to “translate” the
meaning of these interactions to computer-understandable language.
And for this input modality to be actually usable, its recognition ac-
curacy must be high enough.

In order to realistically think about the broader deployment of pen
computing, it is necessary to improve the accuracy of handwriting
and gesture recognizers. This thesis is devoted to study different ap-
proaches to improve the recognition accuracy of those systems.

First, we will investigate how to take advantage of interaction-
derived information to improve the accuracy of the recognizer. In par-
ticular, we will focus on interactive transcription of text images. Here
the system initially proposes an automatic transcript. If necessary, the
user can make some corrections, implicitly validating a correct part of
the transcript. Then the system must take into account this validated
prefix to suggest a suitable new hypothesis. Given that in such ap-
plication the user is constantly interacting with the system, it makes
sense to adapt this interactive application to be used on a pen com-

ii ABSTRACT

puter. User corrections will be provided by means of pen-strokes and
therefore it is necessary to introduce a recognizer in charge of decod-
ing this king of nondeterministic user feedback. However, this recog-
nizer performance can be boosted by taking advantage of interaction-
derived information, such as the user-validated prefix.

Then, this thesis focuses on the study of human movements—
in particular, hand movements—from a generation point of view by
tapping into the kinematic theory of rapid human movements and
the Sigma-Lognormal model. Understanding how the human body
generates movements and, particularly understand the origin of the
human movement variability, is important in the development of a
recognition system. The contribution of this thesis to this topic is im-
portant, since a new technique (which improves the previous results)
to extract the Sigma-lognormal model parameters is presented.

Closely related to the previous work, this thesis study the benefits
of using synthetic data as training. The easiest way to train a rec-
ognizer is to provide “infinite” data, representing all possible varia-
tions. In general, the more the training data, the smaller the error. But
usually it is not possible to infinitely increase the size of a training
set. Recruiting participants, data collection, labeling, etc., necessary
for achieving this goal can be time-consuming and expensive. One
way to overcome this problem is to create and use synthetically gen-
erated data that looks like the human. We study how to create these
synthetic data and explore different approaches on how to use them,
both for handwriting and gesture recognition.

The different contributions of this thesis have obtained good re-
sults, producing several publications in international conferences and
journals.

Finally, three applications related to the work of this thesis are
presented. First, we created Escritorie, a digital desk prototype based
on the pen computer paradigm for transcribing handwritten text im-
ages. Second, we developed “Gestures à Go Go”, a web application
for bootstrapping gestures. Finally, we studied another interactive
application under the pen computer paradigm. In this case, we study
how translation reviewing can be done more ergonomically using a
pen.

ABSTRACT iii

b

Hoy en día, los ordenadores están presentes en todas partes pero
su potencial no se aprovecha debido al “miedo” que se les tiene. En
esta tesis se adopta el paradigma del pen computer, cuya idea funda-
mental es sustituir todos los dispositivos de entrada por un lápiz elec-
trónico o, directamente, por los dedos. El origen del rechazo a los
ordenadores proviene del uso de interfaces poco amigables para el
humano.

El origen de este paradigma data de hace más de 40 años, pero
solo recientemente se ha comenzado a implementar en dispositivos
móviles. La lenta y tardía implantación probablemente se deba a
que es necesario incluir un reconocedor que “traduzca” los trazos
del usuario (texto manuscrito o gestos) a algo entendible por el or-
denador.

Para pensar de forma realista en la implantación del pen com-
puter, es necesario mejorar la precisión del reconocimiento de texto
y gestos. El objetivo de esta tesis es el estudio de diferentes estrate-
gias para mejorar esta precisión.

En primer lugar, esta tesis investiga como aprovechar información
derivada de la interacción para mejorar el reconocimiento, en con-
creto, en la transcripción interactiva de imágenes con texto manuscrito.
En la transcripción interactiva, el sistema y el usuario trabajan “codo
con codo” para generar la transcripción. El usuario valida la sal-
ida del sistema proporcionando ciertas correcciones, mediante texto
manuscrito, que el sistema debe tener en cuenta para proporcionar
una mejor transcripción. Este texto manuscrito debe ser reconocido
para ser utilizado. En esta tesis se propone aprovechar información
contextual—como por ejemplo, el prefijo validado por el usuario—
para mejorar la calidad del reconocimiento de la interacción.

Tras esto, la tesis se centra en el estudio del movimiento humano—
en particular del movimiento de las manos— utilizando la Teoría Cin-
emática y su modelo Sigma-Lognormal. Entender como se mueven
las manos al escribir, y en particular, entender el origen de la variabil-
idad de la escritura, es importante para el desarrollo de un sistema
de reconocimiento, La contribución de esta tesis a este tópico es im-

iv ABSTRACT

portante, dado que se presenta una nueva técnica (que mejora los re-
sultados previos) para extraer el modelo Sigma-Lognormal de trazos
manuscritos.

De forma muy relacionada con el trabajo anterior, se estudia el
beneficio de utilizar datos sintéticos como entrenamiento. La forma
más fácil de entrenar un reconocedor es proporcionar un conjunto de
datos “infinito” que representen todas las posibles variaciones. En
general, cuanto más datos de entrenamiento, menor será el error del
reconocedor. No obstante, muchas veces no es posible proporcionar
más datos, o hacerlo es muy caro. Por ello, se ha estudiado como crear
y usar datos sintéticos que se parezcan a los reales.

Las diferentes contribuciones de esta tesis han obtenido buenos
resultados, produciendo varias publicaciones en conferencias inter-
nacionales y revistas.

Finalmente, también se han explorado tres aplicaciones relaciones
con el trabajo de esta tesis. En primer lugar, se ha creado Escritorie, un
prototipo de mesa digital basada en el paradigma del pen computer
para realizar transcripción interactiva de documentos manuscritos.
En segundo lugar, se ha desarrollado “Gestures à Go Go”, una apli-
cación web para generar datos sintéticos y empaquetarlos con un re-
conocedor de forma rápida y sencilla. Por último, se presenta un sis-
tema interactivo real bajo el paradigma del pen computer. En este
caso, se estudia como la revisión de traducciones automáticas se puede
realizar de forma más ergonómica.

c

Avui en dia, els ordinadors són presents a tot arreu i es comu-
nament acceptat que la seva utilització proporciona beneficis, tant a
individus com a organitzacions. No obstant això, moltes vegades el
seu potencial no s’aprofita totalment. Això probablement es degui al
rebuig d’algunes persones cap als ordinadors, a causa de la “por” a
utilitzar-los, tot i incrementar la seva productivitat.

En aquesta tesi s’adopta el paradigma del pen computer, on la idea
fonamental és substituir tots els dispositius d’entrada per un llapis

ABSTRACT v

electrònic, o, directament, pels dits. Aquest paradigma postula que
l’origen del rebuig als ordinadors prové de l’ús d’interfícies poc ami-
gables per a l’humà, que han de ser substituïdes per alguna cosa
més coneguda. Per tant, la interacció amb l’ordinador sota aquest
paradigma es realitza per mitjà de text manuscrit i/o gestos.

L’origen d’aquest paradigma data de fa més de 40 anys, però només
recentment s’ha començat a implementar en dispositius mòbils. La
lenta i tardana implantació probablement es degui al fet que és nec-
essari incloure un reconeixedor que “tradueixi” els traços de l’usuari
(text manuscrit o gestos) a alguna cosa comprensible per l’ordinador, i
el resultat d’aquest reconeixement, actualment, és lluny de ser òptim.

Per pensar de forma realista en la implantació del pen computer,
cal millorar la precisió del reconeixement de text i gestos. L’objectiu
d’aquesta tesi és l’estudi de diferents estratègies per millorar aquesta
precisió.

En primer lloc, aquesta tesi investiga com aprofitar informació
derivada de la interacció per millorar el reconeixement, en concret,
en la transcripció interactiva d’imatges amb text manuscrit. En la
transcripció interactiva, el sistema i l’usuari treballen “braç a braç”
per generar la transcripció. L’usuari valida la sortida del sistema do-
nant certes correccions, que el sistema ha d’usar per millorar la tran-
scripció. En aquesta tesi es proposa utilitzar correccions manuscrites,
que el sistema ha de reconèixer primer. La qualitat del reconeixement
d’aquesta interacció és millorada, tenint en compte informació con-
textual, com per exemple, el prefix validat per l’usuari.

Després d’això, la tesi se centra en l’estudi del moviment humà—
en particular del moviment de les mans—des del punt de vista gener-
atiu, utilitzant la Teoria Cinemàtica i el model Sigma-Lognormal. En-
tendre com es mouen les mans en escriure és important per al desen-
volupament d’un sistema de reconeixement, en particular, per enten-
dre l’origen de la variabilitat de l’escriptura. La contribució d’aquesta
tesi a aquest tòpic és important, atès que es presenta una nova tèc-
nica (que millora els resultats previs) per extreure el model Sigma-
Lognormal de traços manuscrits.

vi ABSTRACT

De forma molt relacionada amb el treball anterior, s’estudia el ben-
efici d’utilitzar dades sintètiques per a l’entrenament. La forma més
fàcil d’entrenar un reconeixedor és proporcionar un conjunt de dades
“infinit” que representin totes les possibles variacions. En general,
com més dades d’entrenament, menor serà l’error del reconeixedor.
No obstant això, moltes vegades no és possible proporcionar més
dades, o fer-ho és molt car. Per això, s’ha estudiat com crear i util-
itzar dades sintètiques que s’assemblin a les reals.

Les diferents contribucions d’aquesta tesi han obtingut bons resul-
tats, produint diverses publicacions en conferències internacionals i
revistes.

Finalment, també s’han explorat tres aplicacions relacionades amb
el treball d’aquesta tesi. En primer lloc, s’ha creat Escritorie, un pro-
totip de taula digital basada en el paradigma del pen computer per
realitzar transcripció interactiva de documents manuscrits. En segon
lloc, s’ha desenvolupat “Gestures à Go Go”, una aplicació web per a
generar dades sintètiques i empaquetar-les amb un reconeixedor de
forma ràpida i senzilla. Finalment, es presenta un altre sistema inter-
actiu sota el paradigma del pen computer. En aquest cas, s’estudia
com la revisió de traduccions automàtiques es pot realitzar de forma
més ergonòmica.

Acknowledgments

Ahora que empiezo a ver la claridad del final de este túnel (como diría
mi padre) me gustaría agradecer el apoyo de todos aquellos, que de
una forma u otra, han ayudado a lo largo de este viaje.

En primer lugar, me gustaría dar las gracias a mis directores. A
Enrique Vidal, que me dio la oportunidad de dedicarme a la investi-
gación y a Verónica Romero, que sin su guía y entusiasmo esta tesis
no hubiera sido posible.

I would like to thank Réjean Plamondon for welcoming me to his
group. Despite the weather I had an unforgettable time in Montreal,
while I developed what is now a very important part of this thesis.
Merci beaucoup.

Many thanks to the reviewers. Their comments and suggestions
have positively contributed to the final state of this document.

Me gustaría agradecer a mis compañeros y (ex-compañeros) del
PRHLT por el extraordinario ambiente de trabajo de estos años. En
particular, un conjunto de personas merecen una mención en espe-
cial ya que algunos de ellos ha tenido un impacto directo en esta
tesis (pido disculpas de antemano por las posibles omisiones): A Luis
Leiva que ha sido una constante referencia a lo largo de estos años. A
Paco Álvaro y Vicente Bosch, mis pacientes vecinos durante muchos
años. A Joan Puigcerver, Nico Serrano, Dani Ortiz y Jesús González
por sus siempre valiosos consejos.

Fuera del mundo de la investigación, me gustaría agradecer a Víc-
tor Carrión por su amistad, por los cafés y New York cheesecakes.

viii ACKNOWLEDGMENTS

Finalmente, me gustaría dedicar esta tesis a mis padres, a mi her-
mana y a mi hermano.

A todos vosotros, muchas gracias.

Valencia, Mayo de 2016

Contents

Abstract i

Acknowledgments vii

Contents ix

1 Introduction 1

2 Overview of Pen & Touch Recognition 7
2.1 Handwritten Text Recognition 7

2.1.1 On-line HTR System 8
2.1.2 Off-line HTR System 12

2.2 Gesture Recognition . 13
2.2.1 Recognizers . 14

2.3 Assessing the Recognition Performance 16
2.3.1 Datasets . 17

2.4 Conclusion . 21

3 Improving Interactive Transcription of Text Images 23
3.1 Overview of Interactive Transcription of Text Images . 25

3.1.1 Formal Framework 25
3.1.2 Interaction Using Isolated Typed Characters . . 27
3.1.3 Interaction Using Isolated Handwritten Words . 28
3.1.4 Assessing the Performance of Interactive Systems 31

3.2 Interaction Using Isolated Handwritten Characters . . 33
3.2.1 Formal Framework 33
3.2.2 Dynamic Language Modeling 35
3.2.3 Evaluation . 36

x CONTENTS

3.2.4 Results . 38
3.3 Interaction Using A Sequence of Handwritten Characters 41

3.3.1 Formal Framework 42
3.3.2 Dynamic Language Modeling 43
3.3.3 Evaluation . 43
3.3.4 Results . 46

3.4 Discussion . 48
3.5 Conclusion . 49

4 Improving Sigma-Lognormal Parameters Extraction 51
4.1 Overview of the Kinematic Theory 52

4.1.1 Delta-Lognormal Model 53
4.1.2 Sigma-Lognormal Model 54
4.1.3 Sigma-Lognormal Parameters Extractor 55
4.1.4 Assessing the Sigma-Lognormal Parameters Ex-

traction . 61
4.2 New Sigma-Lognormal Parameters Extractor 63

4.2.1 Preprocessing . 63
4.2.2 Stroke Extraction 64
4.2.3 Evaluation . 69
4.2.4 Results . 70

4.3 Discussion . 73
4.4 Conclusion . 75

5 Synthesizing Pen & Touch On-line Strokes 77
5.1 Overview of Stroke Synthesis 78

5.1.1 Shape-simulation Synthesis Techniques 78
5.1.2 Movement-simulation Synthesis Techniques . . 79
5.1.3 Synthesizing Strokes Using the Kinematic Theory 80

5.2 Using Synthetic Samples for Recognition Task 83
5.2.1 Evaluation . 84
5.2.2 Results . 85

5.3 Discussion . 97
5.4 Conclusion . 99

6 Applications 101
6.1 Escritoire . 101

6.1.1 Related Work . 102

CONTENTS xi

6.1.2 Interacting with Escritoire 103
6.1.3 System Implementation 103
6.1.4 Conclusion . 109

6.2 Gestures à Go Go . 109
6.2.1 Related Work . 110
6.2.2 G3 Web Service 113
6.2.3 G3 Web Application 115
6.2.4 Interacting with G3 116
6.2.5 Discussion . 119
6.2.6 Conclusion . 120

6.3 Interactive Translation Reviewing Using a Pen 120
6.3.1 Field Evaluation 121
6.3.2 Laboratory Evaluation 125
6.3.3 Discussion . 126
6.3.4 Conclusion . 127

7 Conclusions 129
7.1 Scientific Contributions 129

7.1.1 Interactive Handwritten Text Transcription . . . 130
7.1.2 Human Movement Modeling 131
7.1.3 Synthesizing Pen & Touch On-line Strokes . . . 131

7.2 Future Work . 133

A Evaluating Synthetic Gestures Human Likeness 135
A.1 Gesture Relative Accuracy Measures 135
A.2 Evaluation . 138

A.2.1 Method . 138
A.2.2 Results . 139

A.3 Conclusion . 142

List of Figures 143

List of Tables 150

Bibliography 153

1Introduction

Computers are now present everywhere and it is widely accepted that
they provide benefits to both individuals and organizations, but it is
recognized that their potential is not fully exploited due to some lack
of acceptance. Some people are afraid to use a computer even if it
appears to increase productivity: “Many workers are suspicious of new
technology, even hostile to it” [1]. According to Igbaria et al. [2], the
perceived usefulness of computers is strongly correlated with their
perceived ease of use. Given this, the ease at which information is ex-
changed between a person and a computer becomes a serious topic.
In general, user-computer interaction is expected to be efficient and
ergonomic. During the time of evolving computer technology, many
different means for user input have been invented: keyboards, mice,
trackballs, etc., and nowadays, the primary mode of interacting with
a computer is the keyboard, which is quite efficient, but not really
ergonomic. Keyboard is not really fitted for the human way of com-
municating thoughts and ideas.

A pen is more convenient than a keyboard: of all the means of
exchange, writing is probably the most precise and comfortable, as
well as the most flexible. In other words: “Use your primary and best
developed human skill, writing by hand” [3]. This idea led Alan Kay
to coin the pen computing paradigm, by building the Dynabook in
1968, which is a prototype that could be used effortlessly by untrained
users. Alan Kay considered the keyboard as an expensive and non-
ergonomic component to be replaced by a pentip position sensitive
surface superimposed on a graphic display that generates electronic
ink [4]. In practical terms, a pen computer consists of a flat display
which records and displays the traces from a user’s moving pen. The

2 CHAPTER 1. INTRODUCTION

pen replaces a keyboard and any other input devices and is also able
to recognize handwritten text—it can convert strokes to printed text [3].

The original pen computing definition focused on a pen or digi-
tal stylus as the implement of articulation. However, the influence of
Apple Inc.—and its iPhone1 and iPad— has made the pen comput-
ing paradigm to change and to also include finger-based interactions.
With finger-based interactions there is no device acquisition time (the
time to pull out and grasp the pen) so it is more direct and more con-
venient to use. On the other hand, the finger obscures more the screen
surface and is less dexterous and precise than a pen. It is possible to
enable both finger and pen interactions on the same device. For a
small amount of imprecise drawing, the hurried user should be able
to use its bare finger. In contrast, if the user is going to handwrite,
one should be able to switch to a pen, given that using a pen involves
more joints of the hand and offers higher precision and dexterity than
using a single finger [5]. In other words, gestures are more easily
drawn touching with a finger, but it is easier to write using a pen. This
is the reason for including both pen and touch, instead of just pen, in
the title of this thesis. They are different problems and therefore must
be tackled using different approaches.

Although the pen computer term2 was proposed over 40 years
ago, only recently it has been fully implemented in consumer prod-
ucts, such as the smartphones and tablets. These devices can be con-
trolled now using handwriting and gestures. Among the reasons that
could explain this slow implantation, one probably stands out. Com-
puters are actual illiterates that do not understand the most simple
strokes of a gesture, not to mention the complex strokes of hand-
writing [3]. Thus, unlike keyboard, pen and touch interactions re-
quire a recognition step to decode their non-deterministic meaning.
And for this input modality to be actually usable, its recognition ac-
curacy must be high enough. Humans seem to carry out recogni-
tion effortlessly—achieving low error—, but even though in recent
years the technology has progressed this is not the case for comput-

1During the iPhone presentation, Steve Jobs jokingly said: "Who wants a stylus?".
2In the following, the pen computer term will be used for describing a machine

that is primarily or exclusively operated using a pen and/or a finger.

CHAPTER 1. INTRODUCTION 3

ers. Computers still do not obtain as good results as those obtained
by humans and thus there is room for improvement.

In order to realistically think about the broader deployment of pen
computing, it is necessary to solve the main reason that causes the
user rejection and thus its slow implantation. This thesis is devoted
to study different approaches and strategies to improve the pen com-
puter recognition accuracy. In particular, we will focus on improv-
ing the accuracy of recognizing handwriting and gestures, which are
probably the most common ways of interacting with a pen computer.

First, we will investigate how to take advantage of interaction-
derived information to improve the accuracy of the recognizer. In par-
ticular, we will focus on interactive transcription of text images. Here
the system initially proposes an automatic transcript. If necessary, the
user can make some corrections, implicitly validating a correct part of
the transcript. Then the system must take into account this validated
prefix to suggest a suitable new hypothesis. Given that in such ap-
plication the user is constantly interacting with the system, it makes
sense to adapt this interactive application to be used on a pen com-
puter. User corrections will be provided by means of pen-strokes and
therefore it is necessary to introduce a recognizer in charge of decod-
ing this king of nondeterministic user feedback. However, this recog-
nizer performance can be boosted by taking advantage of interaction-
derived information, such as the user-validated prefix [6, 7].

Then, we will focus on the study of human movements—in par-
ticular, hand movements—from a generation point of view. Under-
standing how the human body generates movements is important in
the development of a recognition system, particularly to understand
the origin of the human movement variability. In this case, we tap
into the kinematic theory of rapid human movements, which pro-
vides the best performance in reconstructing human movements [8].

Finally, we investigate the benefits of using synthetic data to en-
large the training data. Although there are some basic forms that ev-
erybody learned, every writer has a personal and different writing
style. The easiest way of training a recognizer is to provide a huge
set of training data, representing all possible variations. Therefore, a
recognizer accuracy heavily depends on the size of the training set

4 CHAPTER 1. INTRODUCTION

used, according to the rule of thumb: the bigger, the better. But usu-
ally it is not possible to infinitely increase the size of a training set.
Recruiting participants, data collection, labeling, etc., necessary for
achieving this goal can be time-consuming and expensive. One way
to overcome this problem is to create and use synthetically generated
data that look and feel like human. We study how to create these syn-
thetic data and explore different approaches on how to use them, both
for handwriting and gesture recognition.

f

This thesis is organized in seven chapters. Chapter 2 is an overview
of the handwriting and gestures recognition formal framework. Here
the different recognition techniques (as well as the assessment mea-
sures used to evaluate their performance) used in this thesis are pre-
sented and explained. The overview of these techniques have been
gathered in one chapter, given that most of these techniques are used
throughout the entire thesis, rather than in an isolated chapter.

Chapters 3 to 5 have been conceived as units that relate to the cen-
tral topic of this thesis: contributions to improve the recognition ac-
curacy of a pen computer. These chapters enclose the scientific goals
previously presented and, to facilitate reading, are structured simi-
larly. First section is an introduction to the topic. Previous related
works, as well as their formal framework, are then reviewed. The
subsequent sections are focused on developing and testing the differ-
ent ideas proposed in this thesis.

Chapter 3 is focused on the interactive transcription of handwrit-
ten text images. This chapter discusses how interaction-derived in-
formation can provide leverage to improve the feedback recognition
accuracy. In this chapter, two different approaches are presented and
evaluated.

Chapter 4 reviews the kinematic theory of rapid human move-
ments and its associated models. A new Sigma-Lognormal param-
eters extractor is presented and evaluated.

CHAPTER 1. INTRODUCTION 5

Chapter 5 studies the origin of human movement variability tap-
ping into the Kinematic Theory. A synthetic handwriting and ges-
tures generation technique is reviewed. After that, different uses of
this technique are proposed and evaluated.

Chapter 6 presents three applications of the developments of this
thesis. First, a pen computer prototype focused on transcribing hand-
written documents is developed. After that, an application for syn-
thesizing and bootstrapping gestures is presented. Finally, we show
a real application of an interactive system where interaction-derived
information is exploited to achieve better feedback recognition accu-
racy, in this case, used for translation reviewing.

Chapter 7 summarizes the contributions of this thesis and presents
the publications resulted from this work.

2Overview of Pen & Touch
Recognition

In terms of pen computing and in addition to handwriting, a user
should be able to interact with non-textual feedback—graphics and
drawings. A way of issuing commands, selecting menu items or icons
must be provided. However, the meaning of most of these interac-
tions is unclear for the computer. In the past, many approaches have
been presented to tackle with their recognition, but all the approaches
share the same goal: to give a computer-understandable meaning to
the input data.

As previously stated, in this thesis we will focus on 2 types of in-
put data: handwriting and gestures. Handwritten text recognition
(HTR) will be outlined in Section 2.1. After that, in Section 2.2 gesture
recognition will be reviewed. Finally, this chapter concludes with the
description of the different datasets that will be used in the experi-
ments of this thesis.

2.1 Handwritten Text Recognition

HTR is the ability of a computer to receive and interpret intelligible
handwritten input from sources such as stylus, touch-screens and pa-
per documents or pictures. The introduction of HTR into commercial
products took place in early 1980s, when products such as the Pen-
cept Penpad or the Inforite point-of-sale terminal [9] were presented.
These products incorporated HTR as a replacement for keyboard in-
put. Later, advancements in electronics allowed the computing power
necessary for HTR to fit into a smaller devices, being used as input
method for PDAs. For example, the Apple Newton was one of the
first PDAs to provide a handwriting recognition system.

8 CHAPTER 2. OVERVIEW OF PEN & TOUCH RECOGNITION

HTR is classified into two different categories: on-line (such as the
devices previously highlighted) and off-line. On-line HTR involves
the automatic conversion of text as it is handwritten on a special dig-
itizer or tablet, using either an pen or a finger. Here the sensor picks
up the pen or finger-tip movements, as well as pen-up/pen-down
switching. That is, the trace of the handwriting or line drawing is
captured as a sequence of coordinate points with stroke separation
indications.

Alternatively, off-line HTR involves the automatic conversion of
text in an image into letter codes which are usable within computer
and text-processing applications. The data obtained by this form is
regarded as a static representation of handwriting. This technique
cannot use any dynamic writing information, such as the number of
pen-strokes, their order and their direction of creation.

Both on-line and off-line can be solved in a similar manner, by
using a recognition system composed of three modules. That is, pre-
processing, feature extraction and recognition. Here, the preprocessing
module is in charge of reducing spurious noise, whilst the feature ex-
traction transforms a preprocessed text into a sequence of numbers.
Finally, the recognition module transforms this sequence of numbers
into computer-understandable letter codes. The first 2 modules en-
tails different techniques depending on the nature of the data—on-
line or off-line—, however, the last module can be identical.

2.1.1 ON-LINE HTR SYSTEM

On-line HTR refers to dealing with the automatic transcription of a
message written using a digitizer or an stylus or pen. The device cap-
tures, synchronously or asynchronously, the spatial information (x,y)
with respect to a particular temporal instant. This data is accompa-
nied by information about the pressure, or sometimes just whether
there is contact with the surface (or not).

As previously stated, the architecture adopted to carry out the on-
line HTR is formed by 3 modules: preprocessing, feature extraction
and recognition. The following describes these 3 modules.

2.1.1.1. PREPROCESSING 9

2.1.1.1 Preprocessing

Prior to any recognition, the acquired data is generally preprocessed
to reduce irrelevant information and noise. Here, the preprocessing
involves two steps: spurious points elimination and noise reduction.
Sometimes, repeated points appear in a trajectory because the pen
is motionless. These points are trivially removed. In addition, the
points with null pressure (or marked as pen-up) are also removed.
Noise in the captured data can be due to erratic hand motion and/or
inaccuracy of the capture device. This noise is reduce by replacing
every point by the mean value of its neighbors [10].

2.1.1.2 Feature Extraction

For each point pt = (x(t), y(t)), we compute six time-based features [11].

Normalized vertical position The coordinates x(t) and y(t) are nor-
malized and translated such that y ∈ [0, 100] and the aspect ratio is
preserved.

Normalized first derivatives The first derivatives x′(t) and y′(t) are
calculated using:

x′(t) = ∑r
i=1 x(t + r)− x(t− r)

‖∇‖

y′(t) = ∑r
i=1 y(t + r)− y(t− r)

‖∇‖

(2.1)

being

‖∇‖ =
√

∆x2 + ∆y2 (2.2)

where r defines a sliding window of size 2r + 1 that determines the
neighbors involved in the calculation, ∆x and ∆y are, for each coor-
dinate, the distance between the smallest and largest points for the
given sliding window. Toselli et al. [12] have proved that r = 2 is a
good value to be used.

Normalized second derivatives The second derivatives are calculated
in the same manner as the first derivatives, replacing x(t) by x′(t)

10 CHAPTER 2. OVERVIEW OF PEN & TOUCH RECOGNITION

and y(t) by y′(t):

x′′(t) = ∑r
i=1 x′(t + r)− x′(t− r)

‖∇‖

y′′(t) = ∑r
i=1 y′(t + r)− y′(t− r)

‖∇‖

(2.3)

It should be noted that normalizing by ‖∇‖ entails an implicit writ-
ing speed normalization. Toselli et al. [12] proves that this technique
leads to better results than using explicit speed preprocessing tech-
niques.

Curvature The inverse of the radius of the curve in each point:

k(t) =
x′(t) y′′(t)− y′(t) x′′(t)
(x′(t)2 + y′(t)2)3/2 (2.4)

Finally, for each point pt we obtain a feature vector ft:

ft = [x(t), y(t), x′(t), y′(t), x′′(t), y′′(t), k(t)] (2.5)

2.1.1.3 Recognition

An on-line handwritten word (or sequence of words) is represented
by a sequence of any size of feature vectors, x = (f1 f2 . . . fM). The
HTR problem can be formulated as finding the most likely word (or
sequence of words) w given the feature vector sequence x. That is:

ŵ = arg max
w

Pr(w | x) (2.6)

using the Bayes’ rule

ŵ = arg max
w

Pr(x | w)Pr(w)

Pr(x)
(2.7)

where Pr(x) can be drop since it is constant for any w:

ŵ = arg max
w

Pr(w) · Pr(x | w) (2.8)

In this expression, Pr(w) represents a syntactic knowledge and Pr(x |
w) an optical or morphological knowledge.

2.1.1.3. RECOGNITION 11

Different approaches can be used to model the optical knowledge,
such as long short-term memory (LSTM) RNN [13] or hidden Markov
models (HMM) [14]. In this thesis, each character is modeled by con-
tinuous density left-to-right HMM, with a Gaussian mixture per state.
This mixture serves as a probabilistic law to the emission of feature
vectors on each model state. A HMM is a statistical model such that
if we use them to predict the next observation in a sequence, the dis-
tribution of predictions will depend only on the value of the imme-
diately preceding observation and will be independent of all earlier
observations [15]. Given a set of observations, the parameters of a
HMM can be estimated using maximum likelihood by means of the
Baum-Welch algorithm [16]. Morphological word models are built
from respective lexical entries, modeled by a stochastic finite-state
automaton which represents all possible concatenations of individ-
ual characters that may compose the word. Finally, by embedding
the character HMMs into the edges of the word automaton, a lexical
HMM is obtained. These HMMs estimate the word-conditional prob-
abilities Pr(x | w) of Equation (2.8)

An n-gram language model is employed here to approximate the
linguistic knowledge [14]. It predicts the following word by taking
into account the previous n− 1 words. For a word sequence w:

Pr(w) ≈
N

∏
i=1

P(wi | wi−1
i−n+1) (2.9)

All the above refers to recognition at word level, namely, the min-
imum unit that the recognizer is able to return is a word. The formu-
lation can be easily adapted to recognize characters. This is done by
replacing w with c in Equation (2.8). Then the problem can be now
formulated as finding the most likely character c (or sequence of char-
acters) given x:

ĉ = arg max
c

Pr(c) · Pr(x | c) (2.10)

Following the previous approach, Pr(c) is approximated using n-grams,
whilst Pr(x | c) is approximated using HMMs. In this case, the n-
gram is also responsible for modeling the way the characters are con-

12 CHAPTER 2. OVERVIEW OF PEN & TOUCH RECOGNITION

catenated to form words. Then, the HMMs here will be only in charge
of describing the optical shape or morphology of each character.

2.1.2 OFF-LINE HTR SYSTEM

Off-line HTR involves the automatic conversion of handwritten text
contained in an image into letter codes usable by a computer. The fol-
lowing describe the modules that are part of the off-line HTR system.

2.1.2.1 Preprocessing

A required step prior to recognize off-line text is to perform some com-
mon operations aimed at attenuate or remove degradation problems
that are quite common in scanned documents. Notable among these
are: smear, large background color variations, geometric distortions,
and bleed-through. There is not a perfect set of operations to fix these
problems, given that many of them must be applied depending of the
document preservation condition. Here, we use the following com-
mon operations: thresholding and noise reduction, slant and slope
correction and size normalization [17].

Thresholding and Noise Reduction The task of thresholding is to ex-
tract the text in the foreground from the background. This is achieved
by applying a two-dimensional median filter on the entire image and
subtracting the result from the original [18]. Then, a gray-level equal-
ization is applied to increase the image contrast.

Slope Correction The slope is a distortion understood as the angle
between the direction of each line with respect to the scanned doc-
ument horizontal direction. The slope is corrected by calculating
the horizontal histogram profile and applying the angle rotation that
maximizes the variance of the horizontal projection profile [17].

Slant Correction The slant is the predominant angle in the upward
and downward strokes in handwriting. Slant correcting calculates
the slant angle by using a method based on vertical histogram pro-
file. This technique seeks for the angle that maximizes the variability
between peaks and valleys on the histogram, as occurs in unslanted
text [11].

2.1.2.2. FEATURE EXTRACTION 13

Size Normalization Size normalization aims at minimizing the parts
of text with little information. Three different parts can be found in
a text line: ascenders, descenders and body. The higher height of
ascenders and descenders makes that uninformative areas, which
are mainly background, are included in the text frame to consider.
The height of the body of a text line can be obtained using a vertical
histogram profile [19]. After that, ascenders and descenders are lin-
early warped in height so that they take up less area (30% and 15%
of the total height of the image, respectively), leaving the rest for the
body [20].

2.1.2.2 Feature Extraction

Each preprocessed text line image is represented as a sequence of fea-
ture vector. First, the image is divided into a grid of N×M cells. Then
for each cell three values are calculated: normalized gray level, hori-
zontal gray-level derivative and vertical gray-level derivative. These
values are weighted to enhance the role of the central cells using a
5× 5 window centered at the current cell to obtain smoothed values.
A two-dimensional Gaussian function was used for the normalized
gray level and a one-dimensional Gaussian function for the horizon-
tal and vertical gray-level derivatives. The derivatives are computed
by least squares, fitting a linear function. Finally, the three images
that were obtained after computing these values for every cell are
vertically joined, resulting in a (3×N)-dimensional vector for every
column of the grid (M) [17]. Usually, N is set to 20 and M is set in
such a way that the grid keeps the original image aspect ratio.

2.1.2.3 Recognition

The off-line recognition module follows the same scheme to the one
proposed in Section 2.1.1.3 for on-line HTR.

2.2 Gesture Recognition

Gesture recognition have existed in the industry for decades. Early
examples of commercial products that successfully incorporated ges-
tures are, e.g., PDAs like the Palm Pilot or the Apple Newton, and

14 CHAPTER 2. OVERVIEW OF PEN & TOUCH RECOGNITION

the Windows Tablet. These devices featured the Graffiti [21] and
Unistroke shorthand writing systems, which used a single stroke Ro-
man letter-like gesture vocabulary. Gesture recognition has its own
roots in HTR. Similar approaches have been used to solve this prob-
lem [5]: linear discriminant analysis [22], template matching [23], de-
cision trees [24], neural networks [25], HMMs [26], parsing gram-
mars [27], support vector machines [28], principal component anal-
ysis [29], or ad-hoc recognizers [30].

2.2.1 RECOGNIZERS

The gesture recognizers used in this thesis are based on the template
matching (or instance-based) approach. That is, a query gesture is
geometrically compared against a number of stored templates, us-
ing 1 nearest-neighbor for classification and either Euclidean distance
or a Mean Square Error (MSE) score as dissimilarity measures. Tem-
plate matchers are a very viable and a relatively simple solution for
recognizing gestures, and can be adapted to personalized user ges-
tures. Popular examples of these instance-based recognizers are the
so-called $ family1: $1 [31], $N [32], and their newer versions Protrac-
tor [33] and $N-Protractor [34], respectively. Below, we present the
different gesture recognizers used in this thesis.

2.2.1.1 $1 Recognizer

The $1 Unistroke Recognizer is a two-dimensional single-stroke rec-
ognizer designed for rapid prototyping of gesture-based user inter-
faces. For each gesture, either test or training sample, $1 preprocesses
it into a fixed-dimension vector. It employs a nearest-neighbor ap-
proach for classification, given an unknown gesture, it searches for
similar gesture templates by calculating an optimal angular distance
between the unknown gesture and each of the stored templates. Here,
an optional speed-enhancement called Protractor has been used. This
recognizer is made up of different steps that are described below.

1The name of this family of recognizers comes from their low cost and ease of
use, according to the authors: “[...] we present a $1 recognizer that is easy, cheap, and
usable almost anywhere in about 100 lines of code.”

2.2.1.2. $N RECOGNIZER 15

Preprocessing This step is intended to remove irrelevant factors, such
as different drawing speeds, different gesture locations on the screen,
and noise in gesture orientation. The preprocessing transforms the
two-dimensional trajectory of a gesture into a uniform vector rep-
resentation. Every gesture is resampled into a fixed number N of
equidistantly-spaced points [31]. Then points are translated so that
the centroid of these points becomes the origin. These steps remove
the variations in drawing speeds and locations on the screen. After
that, every gesture is rotated so that its indicative angle is aligned
with respect the closest direction of the eight major orientations. The
indicative angle is defined as the direction from the centroid to the
first point of the gesture [31]. After this preprocessing, an equal-
length vector is available for each gesture:

g = [g1, g2, . . . , gN−1, gN] (2.11)

where gi = (xi, yi) and N = 32.

Recognition $1 finds the most similar template gesture e to a given
gesture g, that minimizes a distance between them, defined as:

d(e, g) = min
− π

4 ≤θ≤ π
4

1
N

N

∑
i=1
‖gi − R(ei, θ)‖ (2.12)

where R(ei, θ) is a rotation applied to the point ei around the centroid
of the gesture, being θ the angle rotation.

2.2.1.2 $N Recognizer

$N is the extension of $1 to multistroke gestures, where all possible
stroke orders and directions are considered for each stored template.

2.2.1.3 $P Recognizer

The $1 and $N recognizers present certain limitations. For exam-
ple, $1 only handles unistroke gestures and although $N focuses on
adding support for multistrokes, the solution involves a really high
memory and temporal cost. Most limitations of the $N recognizer
come from the chronological order of drawn points, which enforces a
predefined order for strokes and points within each stroke. Thus if the

16 CHAPTER 2. OVERVIEW OF PEN & TOUCH RECOGNITION

temporal information is dropped, aspects such as the stroke number,
ordering or direction become irrelevant. Discarding the time infor-
mation makes a gesture an unordered set g = {g1, g2, . . . , gN−1, gN},
where point gi does not necessarily follow gi−1 and point g1 does not
mark the starting point of the gesture.

$P finds the most similar template e, given a gesture g, by calcu-
lating the minimum distance between two clouds of points.

2.2.1.4 Dynamic Time Warping

Finally, in addition to the $ family recognizers, we will use a nearest-
neighbor classifier with Dynamic Time Warping (DTW) as a distance
measure. Unlike $ family recognizers, DTW is an algorithm for mea-
suring similarity between two temporal sequences which may vary
in length.

Given a template gesture e = [(xi, yi, ti) | i = 1, 2, . . . , E] and a ges-
ture g = [(xj, yj, tj) | j = 1, 2, . . . , G], DTW finds an alignment between
the points of e and g, having a minimal overall distance. A dynamic
programming approach can be used to find this optimal aligment. Fi-
nally, a nearest neighbor classifier assigns the label of the most similar
template gesture e to the given gesture g:

ê = arg min
e

DTW(e, g) (2.13)

2.3 Assessing the Recognition Performance

In the last few decades, the assessment paradigm based on labeled
training and testing datasets has been adopted in the pattern recog-
nition field. In this paradigm, different approaches can be easily, ob-
jectively and automatically tested and compared, without requiring
human intervention in the process. Following this paradigm, differ-
ent objective measures have been adopted in this thesis.

Two measures are typically used to assess the quality of the tran-
scription process: the word error rate (WER) and the character error
rate (CER). The WER counts the number of differences between the

2.3.1. DATASETS 17

transcript proposed by the system and the reference transcript:

WER = 100 · Ni + Ns + Nd

Ns + Nd + Nc
(2.14)

where Ni is the number of insertions; Ns is the number of substitu-
tions; Nd is the number of deletions and Nc is the number of cor-
rect words. However, the computation of this measure is not trivial,
given that the hypothesis length can be different from the reference
length. Therefore, this metric is calculated by first aligning the rec-
ognized word sequence with the reference word sequence using dy-
namic string alignment, where 4 different situations can occur:

correct word: the reference word is the same as the aligned recog-
nized word.

substitution: the reference word and the recognized word are differ-
ent.

insertion: a recognized word can not be aligned with any from the
reference.

deletion: a reference word does not appear in the recognized.

The optimal alignment is defined as the alignment that minimizes
the Levenshtein distance [35]; i.e., the minimum number of inser-
tions, deletions and substitutions between both word sequences. This
value can be obtained using dynamic programing. On the other hand,
the calculation of the CER is analogous to the WER, but substituting
words by characters.

With respect to gesture recognition, we use the error rate (ER).
This measure is defined as the number of incorrectly recognized ges-
tures over the total of recognized gestures, expressed as a percentage.

2.3.1 DATASETS

As we mentioned before, in order to assess and compare the perfor-
mance of the different approaches and methodologies that will be
presented in this thesis, public datasets are required. In this section,

18 CHAPTER 2. OVERVIEW OF PEN & TOUCH RECOGNITION

(a) IAM Handwriting Database

(b) UNIPEN and UNIPEN-ICROW-2003 datasets

(c) IBM-UB Dataset

(d) $-GDS Dataset

(e) MMG Dataset

(f) Chars74k Dataset

Figure 2.1. Examples from the different datasets.

first handwritten text datasets—off-line and on-line—are briefly de-
scribed. After that, gesture datasets are reviewed. Figure 2.1 shows
some examples from the different datasets. These datasets were built
using a variety of different input equipments.

2.3.1.1. IAM HANDWRITING DATABASE 19

2.3.1.1 IAM Handwriting Database

The IAM Handwriting database (IAMDB) [36] contains off-line forms
of handwritten English text. It is composed of 1,539 scanned text
pages, handwritten by 657 different writers. The database is provided
at different segmentation levels, here sentence-segmented images has
been used.

2.3.1.2 UNIPEN database

The UNIPEN database [37]2 is a publicly available on-line dataset. It
comes organized into several categories: lower and uppercase letters,
digits, symbols, isolated words and full sentences.

2.3.1.3 UNIPEN-ICROW-2003 Benchmark Set

The UNIPEN-ICROW-2003 benchmark set3 was released during the
ICDAR 2003 Informal Competition for the Recognition of On-line
Words. The benchmark set is composed of 13,119 isolated on-line
free-style words written by 72 different persons. This database con-
tains 884 unique lexical word entries in Dutch, English and Italian.

2.3.1.4 IBM-UB Dataset

The IBM-UB Data Set [38] is a bi-modal—on-line and off-line— and
multilingual dataset of handwritten documents. This dataset was
collected on a CrossPad device. The CrossPad is a portable digital
notepad that used an electronic pen that produced real ink on paper
while simultaneously capturing the on-line pen trajectories. Thus, the
handwriting sample was available both as a hardcopy paper docu-
ment as well as on-line trajectory data. It contains pages of forms,
spontaneously written letters, tables of words, isolated characters, sym-
bols, etc.

The current release of data comprises two sections. IBM_UB_1
contains free form cursive handwritten pages in English. It contains
6,654 pages of on-line data collected from 43 writers (4,138 summary

2http://www.ai.rug.nl/~lambert/overslag/unipen-CDROM-train_r01_v07.tgz
3http://www.ai.rug.nl/~lambert/unipen/icdar-03-competition/

http://www.ai.rug.nl/~lambert/overslag/unipen-CDROM-train_r01_v07.tgz
http://www.ai.rug.nl/~lambert/unipen/icdar-03-competition/

20 CHAPTER 2. OVERVIEW OF PEN & TOUCH RECOGNITION

pages and 2,516 query pages). It also contains 5,934 page of off-line
data collected from 41 writers (3,714 summary pages and 2,220 query
pages). IBM_UB_2 contains handwritten pages in French collected
from 200 authors. The pages are in the form of booklets each of which
has several typed lines that the author reproduces by hand. These
lines contain short cursive sentences, or discrete characters, symbols
and/or digits.

2.3.1.5 $1-Gesture Dataset

The $1-Gesture dataset ($1-GDS) dataset4 is a reference dataset in HCI
to test unistroke-based gesture recognizers. It contains 16 unistroke
gesture classes, 5,280 samples in total. 10 users (plus 1 pilot user) pro-
vided 10 samples per class at three articulation speeds (slow, medium,
fast) using an iPAQ Pocket PC (stylus as input device). For slow
speed, users were asked to be as accurate as possible; for medium speed,
users were asked to balance speed and accuracy; for fast speed, users
were asked to go as fast as you can [31].

2.3.1.6 Mixed Multistroke Gestures Dataset

The Mixed Multistroke Gestures (MMG) dataset5 is a reference dataset
in HCI to test multistroke-based gesture recognizers. It comprises 16
multistroke gesture classes, 9,600 samples in total. 20 users provided
10 samples per class at three articulation speeds (slow, medium, fast)
using either finger (half of the users) or stylus as input devices on
Tablet PCs. Speed definitions are the same as in the $1-GDS dataset [34].

2.3.1.7 Chars74k Dataset

The Chars7k4 dataset6 comprises 62 handwritten classes (0-9, A-Z,
a-z), unistrokes and multistrokes, 3,410 samples in total. 55 users pro-
vided one sample per class using a Tablet PC at a constant sampling
rate of 100 Hz.

4https://depts.washington.edu/aimgroup/proj/dollar/xml.zip
5https://depts.washington.edu/aimgroup/proj/dollar/mmg.zip
6http://www.ee.surrey.ac.uk/CVSSP/demos/chars74k/EnglishHnd.tgz

https://depts.washington.edu/aimgroup/proj/dollar/xml.zip
https://depts.washington.edu/aimgroup/proj/dollar/mmg.zip
http://www.ee.surrey.ac.uk/CVSSP/demos/chars74k/EnglishHnd.tgz

2.4. CONCLUSION 21

2.4 Conclusion

In this chapter the recognition systems that are going to be used in
this thesis have been presented. On the one hand, both off-line and
on-line HTR systems are based on HMMs and n-grams. On the other
hand, gesture recognition is performed used the $ family of template
recognizers. Finally, the datasets that are going to be used to evaluate
the techniques presented have been briefly overviewed.

3Improving Interactive
Transcription of Text Images

In today’s digital age, almost every historical document is still in
handwritten analog form. In fact, despite the intensive use of com-
puters nowadays, there are still more handwritten documents than
printed [39]. There is a growing number of libraries whose mission
is to scan and publish those handwritten documents in digital for-
mat. But most of these scanned documents remain waiting to be tran-
scribed into an electronic format. The advantages of having an elec-
tronic transcript are countless, for example: new ways of indexing,
consulting or querying these documents.

The small number of transcribed documents is mainly due to the
laborious process involved. Given that these documents are charac-
terized by different calligraphy or print styles from diverse places
and time periods, the transcription process must be carried out by
a palaeographers, who are people specialized in reading and transcrib-
ing ancient scripts. How long it takes an expert to transcribe one of
these documents depends on many different factors: skill and exper-
tise, size and state of conservation of the document, etc. To give an
idea of how complex this task is, an expert could take hours to tran-
scribe just one difficult page.

Currently, off-line HTR systems yield good results in applications
involving form-constrained handwriting, such as postal addresses or
bank check legal amounts [40, 41]. But results are far from being
usable in unconstrained handwritten documents—such as historical
manuscripts. Thus heavy human intervention is required in order to
find and correct the mistakes made by the system. Sometimes, given
the high error rates involved, such a post-editing solution is quite in-

24 CHAPTER 3. IMPROVING INTERACTIVE TRANSCRIPTION OF TEXT IMAGES

efficient for the human, being easier for him to discard the system
output and start from scratch.

In the last years, having assumed that achieving automatically
the perfect transcript is barely impossible, different approaches have
been created in which the user and the system collaborate to perform
the transcript. The objective is to achieve a synergy, where the accu-
racy proportioned by the human transcriber is combined with the ef-
ficiency of the automatic system to achieve the final correct transcript.

For example, Toselli et al. [42–44] introduced an approach called
Computer Assisted Transcription of Text Images (CATTI), where the hu-
man is directly involved in the transcription process as he is responsi-
ble of correcting or validating the outputs. This interactive system is
based on previous works on interactive automatic translation [45, 46]
and interactive speech recognition [6]. The key idea is “to shift from
full automatism towards systems where the output is affected by human feed-
back” [7, 45]. To start, the system proposes its best hypothesis. If the
user finds that it is correct, the answer is accepted and the process
goes on with successive input data. Otherwise, the user introduces
some amendments that the system must take into account in order
to improve the new proposed output. Previous studies have proven
that interactive approaches can save significant amounts of overall
human effort [47].

Given that the interactive paradigm implies that the user is con-
tinuously interacting with the system, it is necessary to make this pro-
cess as comfortable as possible. Therefore it makes sense to use these
applications within the paradigm of pen computing. Following this
idea, Toselli et al. [48,49] presented a CATTI system focused on using
a pen as a way to interact with the system. However, as we previously
commented, the use of a pen comes at the cost of the introduction of
an on-line HTR system in charge of decoding its nondeterministic pen-
strokes.

The results of these previous works suggest that pen interactions,
even though the loss of the deterministic accuracy of traditional pe-
ripherals, can save significant amounts of user effort with respect to
fully manual transcription, as well as to non-interactive post-editing
correction. However, despite the encouraging results, these works

3.1. OVERVIEW OF INTERACTIVE TRANSCRIPTION OF TEXT IMAGES 25

fail to provide a sufficiently comfortable approach, since interaction
was limited to words. In this thesis we continue the work initiated
by Toselli et al., and present 2 new pen-stroke interaction approaches.
One focused on interactions at character level and another where in-
teractions are provided without constraining on how to interact with
the system, that is, the user can correct any subset of incorrect charac-
ters.

This chapter is structured as follows. Section 3.1 overviews CATTI
using key-stroke interactions (Section 3.1.2) and pen-stroke interac-
tions at word level (Section 3.1.3). Then subsequent sections present
the contributions of this thesis to the topic: Section 3.2 presents an
interactive system based on character-level pen-strokes, whereas Sec-
tion 3.3 presents an approach where any subset of incorrect characters
can be corrected. Each section contains different experiments to val-
idate the performance of these new approaches. Finally, conclusions
are drawn in Section 3.5.

3.1 Overview of Interactive Transcription of Text Images

This section overviews the Computer Assisted Transcription of Text
Images (CATTI) system, introduced by Toselli et al. [42]. In CATTI,
the transcription process begins with the system providing a full tran-
script (s) of a feature vector sequence (x), extracted from a scanned
image. The user validates an initial part (p′), which is error-free, and
introduces a correct word (w), thereby producing a validated prefix
(p = p′w). Then the system must take into account this new informa-
tion to suggest a suitable suffix (s). This process, shown in Figure 3.1,
is repeated until the user accepts the transcript as correct [48].

3.1.1 FORMAL FRAMEWORK

More formally speaking, the system must search for the most likely
suffix (ŝ), taking into account x and p:

ŝ = arg max
s

P(s | x, p) = arg max
s

P(x | p, s) · P(s | p) (3.1)

Given that the concatenation of p and s constitutes a full transcript hy-
pothesis, Equation (3.1) is equivalent to Equation (2.8). Thus P(x | p, s)

26 CHAPTER 3. IMPROVING INTERACTIVE TRANSCRIPTION OF TEXT IMAGES

x

s

w
p

s

w
p

s

OK

the audience cit then ackerd was particularly enthusiastic when one miss And bring

the audience cit then ackerd was particularly enthusiastic when one miss And bringat

the audience at
the awards was particularly enthusiastic when one miss And bring

the audience at the awards was particularly enthusiastic when one miss And bringAnna
the audience at the awards was particularly enthusiastic when one miss

Anna Kerima

the audience at the awards was particularly enthusiastic when one miss Anna Kerima

Figure 3.1. Example of interactive transcription. The sentence to recognize is “the
audience at the awards was particularly enthusiastic when one miss Anna Kerima”. First,
the user validates an initial part (p′), which is error-free, introducing a correction (w),
producing a validated prefix (p = p′w). Then, taking into account the validated prefix
(p), the system proposes the most probable suffix (s). The process ends when the
user accepts the suffix as a full correct transcript.

can be approximated using concatenated character HMMs as shown
in Section 2.1.1.3. On the other hand, P(s | p) is approximated using
an n-gram dynamically modified in order to cope with the increas-
ingly long consolidated prefixes [48]:

P(s | p) '
n−1

∏
j=1

P(sj | pk
k−n+1+j, sj−1

1) ·
m

∏
j=n

P(sj | sj−1
j−n+1) (3.2)

where k + m is the length of the sentence, p = pk
1 is the validated

prefix and s = sm
1 a possible suffix.

We can explicitly rely on Equations (3.1) and (3.2) to implement a
one-step decoding process as in conventional handwritten text recog-
nition systems. Here the decoder should be forced to cope with p
and then continue searching for ŝ according to the constraints from
Equation (3.2). This can be achieved by building a language model
which can be seen as the concatenation of a linear language model
which strictly accounts for the successive words in p and the suffix
language model of Equation (3.2).

3.1.2. INTERACTION USING ISOLATED TYPED CHARACTERS 27

x

s

c
p

s

the audience cit then ackerd was particularly enthusiastic when one miss And bring

the audience cit then ackerd was particularly enthusiastic when one miss And bringa

the audience a
t the awards was particularly enthusiastic when one miss And bring

Figure 3.2. Example of a step of the CATTI at character level. The sentence to tran-
scribe is “the audience at the awards was particularly enthusiastic when one miss Anna
Kerima”. First, the user validates “the audience a” (p′), which is error-free, introducing
an ‘a’ (c), producing a validated prefix (p = p′c), where the fragment of the prefix
formed by complete words (p′′) is “the audience” and the last incomplete word of the
prefix (u) is ‘a’. Then, taking into account the validated prefix (p), the system pro-
poses the most probable suffix “t the awards was particularly enthusiastic when one miss
And bring” (s), where the system output (v) is ‘t’ and the rest of the suffix (s′′) is “the
awards was particularly enthusiastic when one miss And bring”.

3.1.2 INTERACTION USING ISOLATED TYPED CHARACTERS

Following the previous work, Romero et al. [43] presented a version
of the CATTI approach using interactions at character level. Here,
as soon as the user types a new key-stroke (c), the system proposes
a suitable continuation following the same process described in Sec-
tion 3.1.

As the user operates now at the character level, the last word of
the prefix may be incomplete. In order to autocomplete this last word,
it is assumed that p is divided into two parts: the fragment of the
prefix formed by complete words (p′′) and the last incomplete word
of the prefix (u) (see Figure 3.2). In this case the system has to take
into account x, p′′ and u, in order to find ŝ, whose first part is the
continuation of u:

ŝ = arg max
s

P(x | p′′, u, s) · P(s | p′′, u) (3.3)

Again, Equation (3.3) is equivalent to Equation (2.8), given that the
concatenation of p′′, u and s constitutes a full transcript hypothesis.
Thus P(x | p′′, u, s) can be modeled with HMMs as previously shown.
On the other hand, to model P(s | p′′, u), it is assumed that the suffix
s is divided into two fragments: the first part of the suffix that cor-
responds with the final part of the incomplete word of the prefix (v)

28 CHAPTER 3. IMPROVING INTERACTIVE TRANSCRIPTION OF TEXT IMAGES

and the rest of the suffix (s′′) (see Figure 3.2). Then the second term
of Equation (3.3) can also be written as P(v, s′′ | p′′, u) and can be
decomposed into:

P(v, s′′ | p′′, u) = P(s′′ | p′′, u, v) · P(v | p′′, u) (3.4)

P(s′′ | p′′, u, v) accounts for the probability of all the whole-words in
the suffix and must ensure that uv = w is an existing word in the task
vocabulary (V). This probability can be modeled using Equation (3.2).
P(v | p′′, u) should ensure that the first part of the suffix v—usually a
word ending part—will be a possible suffix of the incomplete word u,
and can be stated as:

P(v | p′′, u) =

{ P(u,v|p′′)
∑v′ :uv′∈V P(u,v′|p′′) if uv ∈ V

0 otherwise
(3.5)

3.1.3 INTERACTION USING ISOLATED HANDWRITTEN WORDS

Toselli et al. presented a version of the CATTI system which focused
on the use of handwritten words as feedback [48,49]. The underlying
idea of this work is that the use of more ergonomic interfaces should
result in an easier and more comfortable human-machine interaction.

However, it is worth noting that the use of pen-stroke feedback
comes at the cost of the introduction of an on-line HTR system in
charge of decoding the nondeterministic feedback. This on-line recog-
nition module can be adapted to boost its performance by taking ad-
vantage of interaction-derived information (see Figure 3.3). Thus a
synergy arises between the main off-line HTR system and the feed-
back on-line system, where each system helps the other to optimize
the overall performance.

Continuing with the previous notation, x is the feature vector rep-
resenting the input image and t are the on-line pen-strokes provided
by the user intended to correct a word in the previous suffix (s′). The
position of these corrections with respect to the phrase allows us to
define the user-validated-error-free prefix (p′). Then the system has
to find a new suffix (ŝ), as a valid continuation of the prefix (p′), con-
sidering all possible decodings (d) of the on-line data (t) and some

3.1.3. INTERACTION USING ISOLATED HANDWRITTEN WORDS 29

On-line
Recognition

Feature
Extraction

Preprocessing User

Off-line
Recognition

Feature
Extraction

Preprocessing

Off-line
Handwriting

Training

Language
Model HMMs

On-line
Handwriting
& Transcript

Off-line
Handwriting
& Transcript

Pen-stroke
Interactions

HTR Context

Recognized
Feedback

ASCII Text

HMMs &
n-grams

Figure 3.3. Overview of the Computer Assisted Transcription of Text Images (CATTI)
system. Once the system has proposed a transcript, the user can provide certain
corrections in the form of pen-strokes to fix the first mistake of the system output.
This on-line corrections must be decoded first and the accuracy of this decoding can
be boosted by using contextual information.

30 CHAPTER 3. IMPROVING INTERACTIVE TRANSCRIPTION OF TEXT IMAGES

x

s

t

p

s

t
p

s

OK

the audience cit then ackerd was particularly enthusiastic when one miss And bring

the audience cit then ackerd was particularly enthusiastic when one miss And bring

the audience at
the awards was particularly enthusiastic when one miss And bring

the audience at the awards was particularly enthusiastic when one miss And bring

the audience at the awards was particularly enthusiastic when one miss Anna

Kerima

the audience at the awards was particularly enthusiastic when one miss Anna Kerima

Figure 3.4. Example of CATTI using pen-strokes as feedback to transcribe an image
containing the sentence “the audience at the awards was particularly enthusiastic when
one miss Anna Kerima”. Each interaction consists of two steps. In the first step, the
user writes some pen-strokes (t) to amend the suffix (s) proposed in the previous
step. This defines a correct prefix p′, which can be used by the on-line HTR system
to obtain a more accurate decoding of t. In the second step, a new prefix (p) is built
from the previous correct prefix p′ concatenated with the decoded pen-strokes d̂.
Using this information, the system proposes the most probable suffix. The process
ends when the user accepts the suffix as a full correct transcript.

information from s′—the erroneous word that the user wants to cor-
rect [48] (see Figure 3.4):

ŝ = arg max
s

P(s | x, s′, p′, t)

= arg max
s

∑
d

P(s, d | x, p′, s′, t)

≈ arg max
s

max
d

P(t | d) · P(d | p′, s′) · P(x | s, p′, d) · P(s | p′, d)

(3.6)

Equation (3.6) can be approximately solved using a two-step ap-
proach [48]. First, the on-line system must decode the pen-strokes (t)
into the most probable word (d̂), knowing that this decoding must be
a valid continuation of the prefix (p′):

d̂ = arg max
d

P(t | d) · P(d | p′, s′) (3.7)

3.1.4. ASSESSING THE PERFORMANCE OF INTERACTIVE SYSTEMS 31

Once d̂ has been recognized, a new consolidated prefix p is pro-
duced, joining the previous prefix (p′) and the most probable decod-
ing (d̂).

Then, the second step searches, in a similarly to Equation (3.1), for
the most probable suffix using the new consolidated prefix. These
two steps are repeated until p is accepted by the user as a full correct
transcript of x. As in Equation (2.10), P(t | d) can be approximated
using HMMs and P(d | p′, s′) can be modeled using a language model
dynamically constrained by information derived from the validated
prefix and the previous suffix s′.

3.1.4 ASSESSING THE PERFORMANCE OF INTERACTIVE SYSTEMS

Given that in this interactive framework the user is “embedded” in
the loop, the assessment measures proposed in Section 2.3 are not
enough. It is clear that WER and/or CER are no longer enough to
evaluate the system quality, given that we must also take into account
how much human effort is required to achieve the correct transcript.
In fact, we no longer focus only on errors, given that user will ensure
the required level of accuracy. Apparently, evaluating interactive sys-
tems performance would obviously require human intervention, but
this is rather expensive, slow and tedious. By carefully specifying pre-
cise goals and ground-truth, the corpus-based assessment paradigm
is still applicable in this interactive task. For example, the number of
interaction steps needed to produce a fully correct transcript can be
used to assess the user effort. This will allow us to obtain adequate es-
timates of the amount of user interaction effort that would be needed
to perform the transcription.

Different objective measures based on labeled datasets have been
adopted in this thesis to assess CATTI. Typically, the quality of the
transcription at character level for a fully-automatic system is mea-
sured by means of the CER. However, CER can not be used as a
character-level post-editing effort estimate, given that this measure
ignores the possibility of using a word processor, which may provide
word “auto-completing” capabilities. Therefore we use an alternative
definition of CER which better estimates the effort needed to post-
edit a transcription with the help of word auto-completing. This mea-

32 CHAPTER 3. IMPROVING INTERACTIVE TRANSCRIPTION OF TEXT IMAGES

sure is called post-editing key-stroke ratio (PKSR) [48]. After using
an automatic HTR system, the longest common prefix between the
hypothesis and the reference is obtained and the first mismatching
character from the hypothesis is replaced by the corresponding ref-
erence character, the system will complete the word with the most
probable word in the task vocabulary. Obviously, the rest of the sen-
tence is not changed. After this, we can define the PKSR as the sum of
these erroneous characters divided by the total number of reference
characters.

The effort needed by a human transcriber to produce correct tran-
scriptions using the CATTI system with interactions at character level
is estimated by the Key-Stroke Ratio (KSR), which can be also com-
puted using the reference transcription. In this case, replacing the
automatic HTR system for a CATTI system and taking into account
that after each user correction the system generates a new suffix. This
process is iterated until a full match with the reference is achieved.
Thus, KSR and PKSR are defined in an analogous manner, making
them comparable in a fair way.

On the other hand, the effort needed by a user to produce cor-
rect transcriptions using CATTI with interactions at word level is es-
timated using the word stroke ratio (WSR), which can be computed in
a similar manner to KSR. After each system hypothesis, the longest
common prefix between the hypothesis and the reference is obtained
and the first unmatching word from the hypothesis is replaced by the
corresponding reference word. This process is iterated until a full
match with the reference is achieved. Therefore, the WSR can be de-
fined as the number of word level user interactions that are necessary
to achieve the reference transcription of the text image considered, di-
vided by the total number of reference words. This definition makes
WER and WSR comparable.

It should be noted that measures such as the KSR and WSR ignore
the user cognitive supervision process effort; that is, only corrective
interaction steps are considered relevant in order to estimate system
performance. In our case, this is an adequate assumption, a perfect
transcript is expected and the human transcriber has to review the
whole system transcript hypothesis to guarantee its quality. Never-

3.2. INTERACTION USING ISOLATED HANDWRITTEN CHARACTERS 33

theless, in general, performance measures should take into account,
probably with different weight, the cost of both supervision and cor-
rective steps.

Finally, the relative difference between PKSR and KSR, as well as
between WER and WSR, gives a good estimate of the reduction in
human effort that can be achieved by using CATTI with respect to
using a conventional HTR system followed by human post-editing
with auto-completing. This measure will be denoted as effort reduc-
tion (EFR).

We would like to remark that testing of final and mature inter-
active systems should always be based on performance evaluations
with human beings. We must not forget that our objective is to in-
crease user comfort, instead of maximizing (or minimizing) a numer-
ical value.

3.2 Interaction Using Isolated Handwritten Characters

In previous works, user interactions were provided typing characters
on a keyboard or writing complete words using pen-strokes. Due to
the good results of these works, the idea here was to combine both
issues. Here we present a new way of interaction, called from now on
CATTI c, using pen-stroke interactions at character level.

3.2.1 FORMAL FRAMEWORK

This work focuses on the first part of Equation (3.6); i.e., the restricted
decoding of the user interactions, which can be isolated in a single
equation:

d̂ = arg max
d

P(t | d) · P(d | p′′, u′, s′) (3.8)

where P(t | d) is provided by a morphological model—HMMs are
used—of the character d. On the other hand, P(d | p′′, u′, s′) can be
modeled using a language model dynamically constrained by infor-
mation derived from the validated prefix—where p′′ are the complete
words of the prefix and u′ is the last incomplete word—and the previ-
ous suffix s′ (see Figure 3.5).

34 CHAPTER 3. IMPROVING INTERACTIVE TRANSCRIPTION OF TEXT IMAGES

x

s

t

p

s

t
p

s

OK

the audience cit then ackerd was particularly enthusiastic when one miss And bring

the audience cit then ackerd was particularly enthusiastic when one miss And bring

the audience a
t the awards was particularly enthusiastic when one miss And bring

the audience at the awards was particularly enthusiastic when one miss And bring

the audience at the awards was particularly enthusiastic when one miss A

nna Kerima

the audience at the awards was particularly enthusiastic when one miss Anna Kerima

Figure 3.5. Example of interactive transcription using CATTIc to transcribe an image
containing the sentence “the audience at the awards was particularly enthusiastic when
one miss Anna Kerima”. Each interaction consists of two steps. In the first step, the
user writes some pen-strokes (t) to amend the suffix (s) proposed in the previous
step. This defines a correct prefix p′, which can be used by the on-line HTR system
to obtain a more accurate decoding of t. In the second step, a new prefix (p) is built
from the previous correct prefix p′ concatenated with the decoded pen-strokes d̂.
Using this information, the system proposes the most probable suffix. The process
ends when the user accepts the suffix as a full correct transcript.

Equation (3.8) may lead to several scenarios, depending on the
assumptions and constraints adopted for P(d | p′′, u′, s′). The first and
simplest scenario corresponds to a naive approach where any kind of
interaction-derived information is ignored; that is, P(d | p′′, u′, s′) ≡
P(d). This scenario will be used to provide a baseline result.

In a slightly more restricted scenario, we take into account just the
information from the previous off-line HTR prediction s′. The user
interacts providing t in order to correct the first wrong character e of s′,
that follows the validated prefix p′. Clearly, the erroneous character e
should be prevented to be decoded again. This error-conditioned model
can be written as P(d | p′′, u′, s′) ≡ P(d | e).

Another scenario arises if the portion of word already validated
u′ is taken into account. That is P(d | p′′, u′, s′) ≡ P(d | u′, e). In
this case, the decoding will be clearly more accurate, since we know
beforehand that the character to be recognized should be a valid con-
tinuation of the part of word accepted so far.

3.2.2. DYNAMIC LANGUAGE MODELING 35

The last scenario arises if the set of complete words p′′ are also
taken into account. In this case, the possible decodings are constrained
to be a suitable continuation of the prefix accepted so far. This sce-
nario can be written as P(d | p′′, u′, s′) ≡ P(d | p′′, u′, e).

3.2.2 DYNAMIC LANGUAGE MODELING

Language model restrictions are implemented on the base of n-grams.
Given that only one character must be recognized, language models
can be easily modified to account for this restriction. That is, after
consuming a state of the language model during recognition, all the
outputs from that state are redirected to the language model end sym-
bol state.

The implementation of the different scenarios is performed as fol-
lows. Given that the baseline scenario P(d) does not take into account
any contextual information, only a character 1-gram is used.

The second scenario P(d | e) only considers the first wrong char-
acter. The language model probability uses an 1-gram model like the
previous one. In this case, it avoids to recognize the wrong character
by modifying its probability:

P(d | e) =

{
P(d)

1−P(e) if d 6= e

0 otherwise
(3.9)

In the next scenario, given by P(d | u′, e), the on-line HTR sub-
system counts, not only on the first wrong character, but also on the
last incomplete word of the validated prefix u′. This scenario can be
approached in two different ways: using a character language model
or a word language model. The first one uses a modified character n-
gram model conditioned by the chunk of word (u′) and the erroneous
character (e):

P(d | u′, e) =


P(d|u′kk−n+2)

1−P(e|u′kk−n+2)
if d 6= e

0 otherwise
(3.10)

where k is the length of the incomplete word u′. In the second one,
we use a word language model to generate a more refined character

36 CHAPTER 3. IMPROVING INTERACTIVE TRANSCRIPTION OF TEXT IMAGES

language model. This can be written as:

P(d | u′, e) =

{
P(d|u′)

1−P(e|u′) if d 6= e

0 otherwise
(3.11)

where

P(d | u′) =
P(u′, d)

∑
d′

P(u′, d′)
=

∑
v:u′dv∈V

P(u′, d, v)

∑
d′

∑
v′:u′d′v′∈V

P(u′, d′, v)
(3.12)

where the concatenation of u′dv is an existing word in the task vocab-
ulary (V).

Finally, the last scenario uses all the available information; i.e., the
erroneous character (e), the last incomplete word of the prefix (u′) and
the rest of the prefix (p′′). This can be written as:

P(d | p′′, u′, e) =

{
0 if d = e

P(d|u′,p′′)
1−P(e|u′,p′′) if d 6= e

(3.13)

Using a word n-gram model we can generate a more refined char-
acter language model as in the previous case, so:

P(d | u′, p′′) =
P(d, u′ | p′′kk−n+2)

∑
d′

P(d′, u′ | p′′kk−n+2)
=

∑
v:u′dv∈V

P(u′, d, v | p′′kk−n+2)

∑
d′

∑
v′:u′d′v′∈V

P(u′, d′, v′ | p′′kk−n+2)

(3.14)

3.2.3 EVALUATION

In order to validate this approach, we will simulate the process of
a user transcribing a text image using CATTI c. This system is com-
posed of two recognition modules: one (off-line) in charge of tran-
scribing the text images and another (on-line) in charge of decoding
the user feedback. For each sentence, the CATTI c proposes a new po-
tential transcript. If the answer contains any mistakes, the user must
provide some feedback in the form of an isolated character to correct

3.2.3.1. EXPERIMENTAL DETAILS 37

the first erroneous character of the transcript. This feedback will be
decoded by the on-line HTR system. Once the error is corrected and
having a new consolidated prefix, the system generates a new poten-
tial suffix. This process runs until the transcription is equal to the
reference.

The performance of this approach will be compared against a full
post-editing approach and a CATTI system using key-strokes, as the
one presented by Romero et al. [43]. The introduction of pen-strokes
as feedback leads to a more ergonomic and easier way of working,
although at the cost of having to handle the nondeterministic nature
of the signal. So the aim of the evaluation is to answer the following
questions:

• which is the lowest error we can achieve from the feedback
recognition?

• how much the effort is increased by using CATTI c instead of
using a CATTI system with a deterministic device?

To answer the first question we will evaluate the impact of decod-
ing the user feedback making use of the different language models
presented in Section 3.2.2, each of which provides different degrees
of contextual information. The performance of these scenarios will be
assessed using the CER, labeled in the experiments as error rate (ER).

To answer the second question, we will tap into effort assessment
measures: the PKSR, KSR and EFR—which are defined in Section 3.1.4.
The experimental details are described below.

3.2.3.1 Experimental Details

Both the interaction recognizer and the transcription system used here
follow the same architecture as the one presented in Section 2.1. The
former is an on-line HTR system and the latter is an off-line HTR sys-
tem.

Two datasets have been used in the experiments (see Section 2.3.1).
We employed IAMDB, an off-line handwritten text dataset, as a doc-
ument to be transcribed. To better focus on the essential issues of the

38 CHAPTER 3. IMPROVING INTERACTIVE TRANSCRIPTION OF TEXT IMAGES

considered problems, punctuation marks (excluding the exclamation
and interrogation marks), diacritics, or different word capitalizations
were removed from the IAMDB dataset transcripts. From the 2,324
sentences that conform IAMDB, 200 were chosen as test sentences,
leaving the rest to train the off-line HTR system. For each test sen-
tence, the system proposes a new potential transcript. If this hypoth-
esis contains any mistake, some corrections must be introduced by
the user. This process is iterated until a full match with the reference
is obtained. The IAMDB consists of hand-copied sentences from the
much larger electronic text LOB dataset [50], which contains about
one million running words. This dataset was used, after removing
the test sentences, to train the n-grams.

On-line isolated character samples, extracted from the UNIPEN
dataset, are used to simulate user corrections. A random on-line sam-
ple of that character is chosen for each test writer from the UNIPEN
dataset. Three arbitrary writers were chosen to simulate user interac-
tion and 17 were used as on-line HTR training data.

As a summary, the set of mistranscribed characters is formed by
1,581 lowercase letters, 41 numerical digits, and 5 symbols. Therefore,
a total of 4,881 characters—1,627 for each test writer—were chosen as
on-line test set from the UNIPEN dataset.

3.2.4 RESULTS

Table 3.1 shows the writer-averaged feedback decoding ER for the
5 different language models that embody the restrictions discussed
in Section 3.2.2. The first one (CU) corresponds to a 1-gram estima-
tion of P(d), which is used here as a baseline. The second scenario
(CUe) is a error-conditioned character 1-gram estimate of P(d | e) de-
fined in Equation (3.9). The third one (CBe) corresponds to a prefix-
and-error-conditioned character 2-gram P(d | u′, e) defined in Equa-
tion (3.10)). The fourth (WUe) is a prefix-and-error-conditioned word
1-gram (Equation (3.11)). Finally, the last one (WBe) is a whole-prefix-
and-error conditioned word 2-gram P(d | p′′, u′, e) (Equation (3.13)).
The best result, an ER of 4.3%, is achieved by the WBe scenario. This
represents a relative accuracy improvement of 38.6% with respect to

3.2.4. RESULTS 39

Error Rate Rel. Improv.

CU CUe CBe WUe WBe WUe WBe

7.0 6.9 6.4 5.0 4.3 28.6 38.6

Table 3.1. On-line feedback recognition system error rates for the different language
models. From left to right: character 1-gram (CU), character error-conditioned 1-
gram (CUe), prefix-and-error-conditioned character 2-gram (CBe), prefix-and-error-
conditioned word 2-gram (WUe), whole-prefix-and-error conditioned word bi-gram
(WBe). The relative accuracy improvements for WUe and WBe, with respect to the
baseline, are shown in the last two columns. All results are percentages and averaged
for the 3 writers.

the baseline scenario. As expected, the more contextual information
used, the highest feedback decoding accuracy.

In the case that a character is recognized incorrectly—which oc-
curs more or less 4 times out of 100—the user can try to introduce
again that character. We simulated this process by choosing another
instance of that character of the same writer from the test set. In order
to avoid recognizing the same character, the probability of that char-
acter is set to zero in the language model. Results are shown in Fig-
ure 3.6. As we can see, after just one more attempt the ER reduction is
significant while KSR increment is minimal. Moreover, it is clear that
the cognitive cost of making this kind of correction is rather small,
since the main difficulty lies in finding the wrong character inside the
phrase and not in the correction process itself.

Table 3.2 compares the effort-related results of using CATTI c with
respect to using a CATTI system with deterministic interactions, such
as using a keyboard. To make the results comparable, we assume
that the cost of pressing a key is similar to performing a key-stroke.
According to these results, both—keyboard and pen—interactive sys-
tems involves less effort than using a post-editing approach system.
The expected user effort for the more ergonomic CATTI c, is only slight
higher than that of using a keyboard. Clearly, this is thanks to the
improved on-line feedback decoding accuracy achieved by means of
contextual-interaction-derived constraints.

40 CHAPTER 3. IMPROVING INTERACTIVE TRANSCRIPTION OF TEXT IMAGES

1 2 3 4 5

1

2

3

4

10

10.2

10.4

10.6
ER

Number of attempts

Er
ro

rR
at

e
(%

)
KSR

Ke
y-

St
ro

ke
Ra

tio
(%

)

Figure 3.6. Error Rate and Key-Stroke Ratio as a function of the number of times that
the user tries to make the correction using pen-strokes.

KSR EFR

PKSR Keyboard Pen Keyboard Pen

13.5 9.6 10.0 28.9 25.9

Table 3.2. From left to right, estimated effort comparison. PKSR obtained with the
post-editing auto-completing approach (first column), KSR achieved with a CATTI sys-
tem using a keyboard (second column) and CATTIc (third column). Overall EFR of
a CATTI system using a keyboard (fourth column) and CATTIc (fifth column) with
respect to a post-editing auto-completing approach. The value of the third column is
calculated under the assumption that if the system fails to recognize a character the
user proceeds to enter it again with the keyboard, thereby combining two corrections.
All results are percentages.

3.3. INTERACTION USING A SEQUENCE OF HANDWRITTEN CHARACTERS 41

the audience cit then ackerd was particularly enthusiastic when one miss And bring

the audience cit then ackerd was particularly enthusiastic when one miss And bring

the audience at
the awards was particularly enthusiastic when one miss And bring

the audience at the awards was particularly enthusiastic when one miss And bring

the audience at the awards was particularly enthusiastic when one miss An

na Kerima

the audience at the awards was particularly enthusiastic when one miss Anna Kerima

Figure 3.7. Example of interactive transcription using CATTIc∗ to transcribe an im-
age containing the sentence “the audience at the awards was particularly enthusiastic
when one miss Anna Kerima”. Each interaction consists of two steps. In the first step,
the user writes some pen-strokes (t) to amend the suffix (ŝ) proposed in the previous
step. This defines a correct prefix p′, which can be used by the on-line HTR subsys-
tem to obtain a more accurate decoding of t. In the second step, a new prefix (p) is
built from the previous correct prefix p′ concatenated with the decoded on-line hand-
written text d̂. Using this information, the system proposes the most probable suffix.
The process ends when the user accepts the suffix as a full correct transcription.

3.3 Interaction Using A Sequence of Handwritten Charac-
ters

Previous works [43, 48] and CATTI c results suggest that pen-stroke
based interactions are more efficient and more ergonomic than fully-
manual transcription, as well as to post-editing correction, even tak-
ing into account the loss of the deterministic accuracy of traditional
peripherals. However, despite the good results, these previous works
fail to provide a sufficiently comfortable approach since they restrict
user corrections—whole words or isolated characters. A better inter-
active system would be the one that allows the user to correct any
subset of characters, starting from the first mistranscribed word, leav-
ing the system to complete the remaining part, if needed.

We present here CATTI c∗, our second approach on interaction us-
ing pen-stroke interactions, but in this case using a sequence of char-
acters. As seen in Figure 3.7, the user can produce corrections to fix a
set of characters of the first incorrect word in the transcription. These

42 CHAPTER 3. IMPROVING INTERACTIVE TRANSCRIPTION OF TEXT IMAGES

pen-strokes interactions may represent an isolated character, a word
substring or an entire word.

However, this new, hopefully, more ergonomic and friendlier in-
teraction level entails important difficulties and challenges which are
addressed in the following sections. In particular, to cope with word
substring feedback, different language models have been studied. We
also have studied how to take advantage of the contextual informa-
tion derived from the interaction process to improve the accuracy of
the feedback decoding system.

3.3.1 FORMAL FRAMEWORK

Again, as in Section 3.2.1 we focus on the first step of Equation (3.6)
i.e., the restricted decoding of the user interactions:

d̂ = arg max
d

P(t | d) · P(d | p′′, u′, s′) (3.15)

Equation (3.15) is equivalent to Equation (3.8), the difference lies in
that now t consists of a set of strokes that may comprise from one char-
acter to a whole word, going through all the intermediate substring
sizes. Again, P(t | d) is provided by HMMs and P(d | p′′, u′, s′) can be
approached by a language model dynamically constrained by infor-
mation derived from the interaction process. As in Section 3.2.2, dif-
ferent scenarios arise depending on the assumptions and constraints
adopted for P(d | p′′, u′, s′).

The first and simplest scenario corresponds to a naive approach
where any kind of interaction-derived information is ignored; that is,
P(d | p′′, u′, s′) ≡ P(d). This scenario will be used as a baseline result
in the later experiments.

A more restrictive scenario arises when we regard the portion of
word already validated (u′). In this case the decoding can be more
accurate, since we know beforehand that the sequence of pen-strokes
to decode must be a valid continuation of the part of word accepted
so far. This scenario can be written as P(d | p′′, u′, s′) ≡ P(d | u′).

The last scenario emerges if we add, to the previous one, the set
of complete words p′′. In this case, the possible decodings are con-

3.3.2. DYNAMIC LANGUAGE MODELING 43

strained to be a suitable continuation of the whole prefix accepted so
far. This scenario can be written as P(d | p′′, u′, s′) ≡ P(d | p′′, u′).

3.3.2 DYNAMIC LANGUAGE MODELING

Language model restrictions are implemented on the base of n-grams.
As we mentioned earlier, the baseline scenario, given by P(d), (being
d = {c1, c2, ..., cl}) does not take into account any information derived
from the interaction. Here, character n-grams have been used for
modeling P(d).

The next scenario, given by P(d | u′), is approached also using a
character n-gram language model, but it is conditioned by the frag-
ment of word (u′). This can be written as [48]:

P(d | u′) =
n−1

∏
i=1

p(ci | ci−1
1 , u′kk−n+i+1) ·

l

∏
i=n

p(ci | ci−1
i−n+1) (3.16)

where u′ = {u′1, u′2, . . . , u′k}. The first term of (3.16) accounts for the
probability of the n − 1 characters of the suffix, whose probability
is conditioned by known characters from the validated prefix, and
the second one is the usual n-gram probability for the rest of the un-
known characters.

The scenario defined by P(d | p′′, u′) uses the last incomplete
word of the prefix (u′) and the complete words of the prefix (p′′). This
scenario has been approached using a character n-gram model condi-
tioned by p′ = p′′ u′ (where ‘ ’ is a white space). We can restrict this
model in a similar manner to (3.16):

P(d | p′) =
n−1

∏
i=1

p(ci | ci−1
1 , p′zz−n+i+1) ·

l

∏
i=n

p(ci | ci−1
i−n+1) (3.17)

where p = {p1, p2, . . . , pz}.

3.3.3 EVALUATION

In order to validate CATTI c∗, we will simulate the process of a user
transcribing a text image using this system. This system is composed
of two recognition modules: one (off-line) in charge of transcribing

44 CHAPTER 3. IMPROVING INTERACTIVE TRANSCRIPTION OF TEXT IMAGES

the text images and another (on-line) in charge of decoding the user
feedback. For each sentence, CATTI c∗ proposes a new potential tran-
script. If the answer contains any mistakes, the user must provide
some rectifications. In order to increase the reproducibility and sim-
plify the experiments, we assumed that the user rectifications correct
from the beginning of the erroneous fragment until the end of the first
mistranscribed word; i.e., if the system recognizes the word january,
but the reference is janitor, the sample used as correction is itor.
Although the system will accept all the possible subsequences: i, it,
ito and itor. On the other hand, if the first character of a word is
incorrect, we simulate that the user writes the whole word. Once the
error is corrected and having a new consolidated prefix, the system
generates a new potential suffix. This process runs until the transcrip-
tion is equal to the reference.

CATTI c∗ will be compared against a full post-editing approach
and a CATTI system providing corrections using a keyboard, as the
one presented by Toselli et al. [42]. As mentioned earlier, the introduc-
tion of pen-strokes as feedback leads to a more ergonomic and easier
way of working, although at the cost of having to handle the non-
deterministic nature of the signal. However, high error rates causes
user rejection, so the aim of the evaluation is to answer the following
questions:

• which is the lowest error we can achieve from the feedback
recognition?

• how much the effort is increased by using CATTI c∗ instead of
using CATTI with a deterministic device?

To answer the first question we will evaluate the impact of decod-
ing the user feedback making use of the different language models
presented in Section 3.3.2, each of which provides different degrees
of contextual information. The performance of these scenarios will be
assessed using the more pessimistic WER, labeled in the results as er-
ror rate (ER), instead of the CER. That is, if just a character of the user
feedback is recognized incorrectly, the whole answer is considered as
erroneous. A priori, it would seem more logical to make use of the

3.3.3.1. EXPERIMENTAL SETUP 45

CER, given that a sequence of characters is expected as output. How-
ever, the reason behind of using the WER is that the user is obliged
to perform again the whole amendment even if only one character is
incorrectly recognized.

To answer the second question, we will tap into effort assessment
measures, which are defined in Section 3.1.4. The following section
will provide more details about the experimental setup.

3.3.3.1 Experimental Setup

Both the interaction recognizer and the transcription system used here
follow the same architecture as the one presented in Section 2.1. The
former is an on-line HTR system and the latter is an off-line HTR sys-
tem.

Two datasets have been used in the experiments (see Section 2.3.1).
We employed IAMDB, an off-line handwritten text dataset, as a doc-
ument to be transcribed. The same partitions and preprocessing as
in Section 3.2.3.1 have been used here, that is: 200 sentences as test set,
leaving the remaining 2,124 sentences to train the off-line HTR system.
After simulating the interactive transcription process of those 200 test
sentences, the set of mistranscribed character sequences is formed by
2,262 sequences, being 1,848 of them complete words.

The LOB dataset [50] has been used again, after removing the test
sentences, to train the language models based on n-grams. Character
n-grams with n = 9 have been trained. This value has been cho-
sen taking into account the histogram of average lengths of the LOB
dataset words.

The on-line UNIPEN dataset has been employed again to simu-
late user interactions. The same configuration as in Section 3.2.3.1
has been used, that is 3 test writers and 17 as training data. Unfortu-
nately, UNIPEN dataset does not contain any of the required samples
that should be written by the user to interact with the system. There-
fore, these words had to be generated by concatenating the different
characters of the word. Here a non-connection concatenation tech-
nique was used, where random characters from each test writer were
put together to form the sequence of characters. Each character was

46 CHAPTER 3. IMPROVING INTERACTIVE TRANSCRIPTION OF TEXT IMAGES

aligned along a word baseline, except if it had a descender, in this
case, the character baseline was raised 1/3 of its height. Moreover,
a small noise was introduced for each character in its vertical and
horizontal position. More details about the technique can be found
in [49]. As as summary, a total of 2,262 test tokens (414 word frag-
ments and 1,848 complete words) were generated—754 tokens for
each test writer. Training data was produced in a similar fashion, us-
ing the 17 training writers. For each of these writers, the 1,000 most
frequent Spanish and English words were synthesized using the pre-
vious technique. In addition, a random-selected sample of digits and
symbols were chosen. Altogether, 34,714 training tokens were avail-
able for training the on-line recognizer—2,042 tokens for each train-
ing writer.

3.3.4 RESULTS

Table 3.3 reports the average feedback decoding error considering the
different scenarios described in Section 3.3.2. The first one, called here
CN, corresponds to the baseline given by P(d). We used a 9-gram
character model constructed using the characters of isolated words,
since in this scenario there is no need of context between words. The
second scenario (P(d | u′)), called here CNp, uses the same character
9-gram language model as above, but in this case is prefix-conditioned.
The third one, called W-CNp, is a a whole-prefix-conditioned charac-
ter 9-gram (P(d | p′′, u′)). This language model has been constructed
using separated characters of words grouped in pairs, thus this lan-
guage model contains information about how words are connected.
Finally, the last column represents our best system, created by com-
bining the best results—CNp for word fragments and M-CNp for com-
plete words. This approach can be easily implemented by taking into
account the position of the pen when the user is writing. If the pen
is at the beginning of a word, M-CNp would be used to recognize. If
the pen is in any other position, CNp would be use. As expected, the
more information available, the highest feedback decoding accuracy.
The excellent result achieved by CNp recognizing word fragments is
probably due to the way that language model is created, since it only
uses isolated words.

3.3.4. RESULTS 47

CN CNp W-CNp Comb.

Word Fragments 11.4 3.2 8.5 3.2
Complete Words 12.7 12.7 10.9 10.9

Average 12.5 11.0 10.5 9.5

Table 3.3. On-line feedback recognition system error rates for the different language
models. From left to right: character 9-gram (CN), prefix-conditioned character 9-
gram (CNp), whole-prefix-conditioned character 9-gram (W-CNp) and the combina-
tion using the best language model for word fragments and the best scenario for
complete words (Comb.). All results are percentages and averaged for the three test
writers.

WSR EFR

WER Keyboard Pen Keyboard Pen

25.1 21.5 23.1 14.3 8.0

Table 3.4. From left to right, estimated effort comparison. A post-editing auto-
completing approach (first column), a CATTI system using a keyboard (second col-
umn) and CATTIc∗ (third column). Last two columns show the overall effort re-
duction comparison of CATTI using a keyboard and CATTIc∗ with respect to the
post-editing auto-completing approach. All results are percentages.

As a final overview, Table 3.4 compares the estimated user effort
results. The first column shows the WER achieved using post-editing
corrections. The second one, shows the WSR achieved by a CATTI
system using a deterministic interface, such as the keyboard. The
third column shows the CATTI c∗ WSR using the best feedback decod-
ing approach (last column in Table 3.3). This value is calculated un-
der the simplification that if the system fails to recognize a sequence
of characters, the user proceeds to enter it again with the keyboard,
thereby counting two corrections. Finally, the last two columns show
the EFR for the CATTI system using a keyboard and CATTI c∗ with
respect to post-edition with auto-completing. According to these re-
sults, the expected CATTI c∗ user effort is only slightly higher than
that of using a deterministic interaction system and still better than a
post-editing approach.

48 CHAPTER 3. IMPROVING INTERACTIVE TRANSCRIPTION OF TEXT IMAGES

3.4 Discussion

Experiments presented in this chapter support the benefits of employ-
ing interactive transcription systems, such as CATTI c and CATTI c∗,
using pen-strokes rather than transcription followed by human post-
editing. From the results, we observe that the use of the more er-
gonomic feedback modality comes at the cost of only a reasonably
small number of additional interaction steps needed to correct the
few feedback decoding errors. The number of these extra steps is kept
very small thanks to the system ability to use interaction-derived con-
straints to considerably improve the on-line HTR feedback decoding
accuracy. Clearly, this would not have been possible if a conventional
off-the-shelf on-line HTR decoder were trivially used for the correc-
tion step.

With respect to feedback decoding error rates, results in Tables 3.1
and 3.3 are not directly comparable as they are. As we mentioned
before, the results of CATTI c are provided using the CER, whereas
the CATTI c∗ results are provided using WER as a measure. This is
because we believe that it is unfair to evaluate the second approach
using the CER. However, to make a comparison between both ap-
proaches, we can roughly estimate the CER of the second system. In
this approach, there is a total of 754 user interactions and their mean
length is 6 characters. Thus, on average, there are 4,524 characters in
this test set. If we assume that every misrecognized token was due to,
more or less, 1 or 2 misrecognized characters (for example, the refer-
ence is “liver”, but the system output was “lover” or “lovers”) that
makes a total of 144 misrecognized characters, resulting in a CER of
2%. Therefore, according to these CER values, CATTI c∗ is better than
the CATTI c from a recognition accuracy viewpoint.

Moreover, respecting user effort, the number of interactions using
CATTI c is higher than if CATTI c∗ is used—1627 and 754 interactions
per user, respectively. Even though CATTI c∗ corrections are longer,
we believe that it is always preferable the system that minimizes the
number of user interactions. Probably the most expensive process,
according to user effort, is to find the errors in transcription. How-
ever, our user effort estimation ignores the associated cognitive cost
of finding the mistakes in the transcript and only takes into account

3.5. CONCLUSION 49

the effort of making the correction. This is because we can not quan-
tify this cost by using the corpus-based paradigm. We will retrieve
this topic later on in Section 6.3, where experiments with real users
are conducted in a similar interactive scenario.

3.5 Conclusion

In this chapter, a computer assisted approach to transcribe text im-
ages has been reviewed. This approach combines the efficiency of
automatic HTR with the accuracy of the user. The user corrections
become part of an increasingly longer validated recognition. This
validated contextual information is exploited by the system to sug-
gest better answers. Different types of interaction have been also re-
viewed: interaction using a keyboard and pen-strokes.

Two different new ways of interaction, called CATTI c and CATTI c∗,
have been presented. Experiments have been performed using differ-
ent datasets to prove the validity of these new approaches.

4Improving Sigma-Lognormal
Parameters Extraction

Understanding how the human body moves—hand movements, in
particular—is important in the development of a handwriting or ges-
ture recognition system. Writing and drawing are among one of the
most complicated tasks carried out by humans. They require sensory-
motor control mechanisms involving a large spectrum of cerebral ac-
tivities in order to produce complex movements.

Concretely, handwriting has been studied in many fields of re-
search. Many of these works rely on a stroke generation model that as-
sumes that complex movements are made up of simple strokes, called
rapid-aimed movements. These rapid-aimed movements share a ve-
locity profile which is approximately bell-shaped [51–56], asymmet-
ric [57,58] and its bell-shaped form is always preserved, existing only
changes in the scale [55, 59–62].

Different models have been proposed over the years to tentatively
explain how the central nervous system generates and controls the
kinematics of human movements. For example, equilibrium point
models [63]; behavioral models [64]; kinematic models [65, 66]; mod-
els using the minimum principle [67], where different variables are
minimized: movement time [68], acceleration [69], jerk [62], snap [70]
and torque changes [56]. Many models exploit the properties of var-
ious functions to reproduce human movements: exponentials [71],
Gaussians [72], beta functions [73], splines [74], and trigonometrical
functions [75].

Among these models, the kinematic theory of rapid human move-
ments1 [66], and its associated Sigma-Lognormal model [76], provides

1Also known as just the Kinematic Theory.

52 CHAPTER 4. IMPROVING SIGMA-LOGNORMAL PARAMETERS EXTRACTION

the most solid framework to date for the study of the production of
human handwriting. This framework takes into account different
psychophysiological features, such as the neuromuscular response
time, and has been shown to outperform many other approaches [8].

The Kinematic Theory has been used to, among other things: an-
alyze how children learn to write [77]; generate synthetic human-
like samples [76, 78–80]; develop biomedical tools for neurodegener-
ative disorders diagnosis [81, 82]; and design signature verification
systems [83, 84].

Most of these previous works are built upon the Sigma-Lognormal
extractor presented by O’Reilly and Plamondon [85]. In order to ana-
lyze the strokes that composes a movements, and given that strokes
are “hidden” in the movement, an extractor is necessary to automat-
ically uncover them. As a results, the Sigma-Lognormal extractor
provides the set of lognormals that better approximates the original
trajectory. However, although the performances reported by those
works are good, there is still room for improvement in order to reach a
more accurate and robust lognormal extraction. Continuing the work
initiated by O’Reilly and Plamondon regarding Sigma-Lognormal ex-
traction, we present in this chapter a new Sigma-Lognormal extractor,
hopping for a more accurate and robust extraction.

This chapter is organized as follows. Section 4.1 overviews the
Kinematic Theory and its associated models, as well as the technique
used to extract the Sigma-Lognormal model for a given trajectory.
Then Section 4.2 presents a new Sigma-Lognormal extractor. This ex-
tractor is compared with the state-of-the-art extractor in Section 4.2.3.
Finally, a discussion and some conclusions are provided in Section 4.3
and Section 4.4, respectively.

4.1 Overview of the Kinematic Theory

The Kinematic Theory, presented by Réjean Plamondon, was aimed
at explaining the generation and control of rapid human movements.
This theory has been proved in the past years to be one of the best
approaches to describe the global properties of the neuromuscular
networks involved in a synergistic action [86, 87]. It proposes expla-

4.1.1. DELTA-LOGNORMAL MODEL 53

nations about the emergence of the basic kinematic relationships and
psychophysical laws that have been consistently reported in the stud-
ies dealing with rapid human movements [86].

The reader should note that the use of the word “rapid” in the
kinematic theory name is due to historical reasons, as its first model
was aimed at studying truly rapid movements, such as those involved
in creating handwritten signatures. However, the theory has been
generalized to any type of movements [76].

The basic idea behind the Kinematic Theory is that the neuromus-
cular network involved in the production of a rapid-aimed movement
can be considered as a linear system made up of a large number of
coupled subsystems [66,88,89]. For example, when writing on a piece
of paper we use primarily, from the shoulder down to the joints of
the fingers, each of which must be controlled by the muscle groups
attached to them. The resulting velocity profile of a specific neuro-
muscular system converges toward a lognormal function, that is:

‖~v(t)‖ = DΛ(t; t0, µ, σ2) (4.1)

being

Λ(t; t0, µ, σ2) =
1

σ
√

2π(t− t0)
exp

[−(ln(t− t0)− µ)2

2σ2

]
(4.2)

where D describes the amplitude of the input command; t0 is the time
occurrence of the input command; µ is the neuromuscular system
time delay on a logarithmic time scale and σ is the neuromuscular
system response time on a logarithmic time scale.

There are many models derived from this lognormal paradigm.
Among them, two stand out: the Delta-Lognormal model (∆Λ) and
the Sigma-Lognormal model (ΣΛ).

4.1.1 DELTA-LOGNORMAL MODEL

According to the Delta-Lognormal model, the production of a rapid
movement requires the activation of two neuromuscular system, one
agonist and the other antagonist to the direction of the movement.
Both systems are simultaneously activated by two input commands at

54 CHAPTER 4. IMPROVING SIGMA-LOGNORMAL PARAMETERS EXTRACTION

a time t0. These synchronous commands propagate in parallel across
the two neuromuscular systems, being both described by a lognormal
impulse response. The Kinematic Theory predicts that the velocity
profile magnitude of a rectilinear movement is completely described
by a Delta-Lognormal equation [66, 90]:

‖~v(t)‖ = D1Λ1(t; t0, µ1, σ2
1)− D2Λ(t; t02 , µ2, σ2

2) (4.3)

4.1.2 SIGMA-LOGNORMAL MODEL

The Sigma-Lognormal Model is the latest and more complete repre-
sentation in the family of models supported by the Kinematic The-
ory [76]. Unlike the Delta-Lognormal model, the Sigma-Lognormal
model does not assume that the involved neuromuscular systems are
working in precisely opposite directions. The synergy emerging from
the interaction and coupling of many of these neuromuscular systems
results in the generation of any complex movements, not limited to
single stroke, such as the Delta-Lognormal model.

The generation of these complex movements obeys the lognormal-
ity principle [77]. This principle states that a user in total control of his
movements produces the minimum number of perfect strokes in or-
der to generate the intended trajectory. In contrast, when she is not in
full control, the produced strokes will not be ideal lognormals or she
will use a large number of these to produce the movement. Therefore,
the lognormality of velocity profiles can be interpreted as reflecting
the behavior of users who are ideal motion planners.

According to the Sigma-Lognormal model, the velocity of a com-
plex movement is described by the temporal overlap of the velocities
(~vi(t)) of each involved stroke [91]:

~v(t) =
N

∑
i=1

~vi(t) =
N

∑
i=1

[
cos φi(t)
sin φi(t)

]
DiΛ(t; t0i , µi, σ2

i) (4.4)

where N represents the number of strokes and φi(t) is the direction
profile for each stroke, described by an error function:

φi(t) = θsi +
θei − θsi

2

[
1 + erf

(
ln(t− t0i)− µi

σi
√

2

)]
(4.5)

4.1.3. SIGMA-LOGNORMAL PARAMETERS EXTRACTOR 55

Finally, the x(t) and y(t) Cartesian coordinates can be calculated
integrating ~v(t): [

x(t)
y(t)

]
=

[
x0
y0

]
+

N

∑
i=1

∫ t

t0i

~vi(τ)dτ (4.6)

or alternatively, x(t) and y(t) can also be computed directly from the
Sigma-Lognormal parameters [85]:[

x(t)
y(t)

]
=

[
x0
y0

]
+

N

∑
i=1

Di

θei − θsi

[
sin φi(t) − sin θsi

− cos φi(t) + cos θsi

]
(4.7)

Six Sigma-Lognormal parameters completely describe a stroke [87,
90, 92, 93]:

Pi = {t0i , Di, µi, σi, θsi , θei} (4.8)

The parameters reflect both the motor control process and the neuro-
muscular response. The parameter t0i indicates the instant when the
stroke is sent to the input of the neuromuscular system. The space
features are defined by the length D, the starting direction θsi and
the ending direction θei . The lognormal impulse response of the neu-
romuscular system is characterized by the logtime delay µi and the
logresponse time σi.

Finally, as illustrated in Figure 4.1, if the strokes are executed se-
quentially, that is, the end point of the ith stroke is concatenated to the
start point of the i + 1th stroke, the result is called action plan [94, 95].

4.1.3 SIGMA-LOGNORMAL PARAMETERS EXTRACTOR

Parameters extraction is an essential step for Sigma-Lognormal repre-
sentation. Given that strokes are “hidden” in a complex movement, a
Sigma-Lognormal parameters extractor is needed to perfom a kind of
“reverse engineering” process to uncover the values of the parameters
that best explain the observed velocity profile.

Many attempts have been conducted to develop algorithms for
that purpose. O’Reilly and Plamondon presented a Sigma-Lognormal
parameters extractor, based on the XZERO algorithm [96]. Below we
briefly describe the steps performed by this extractor.

56 CHAPTER 4. IMPROVING SIGMA-LOGNORMAL PARAMETERS EXTRACTION

1

2

3

4

5

6

Figure 4.1. A handwritten letter ‘a’. The fiducial trajectory (green thick line) is de-
scribed by the temporal overlap of a series of strokes, called virtual trajectory (black
dashed arcs), connecting a sequence of virtual targets (1-6 black circles). Each stroke
is described by a lognormal equation.

4.1.3.1 Preprocessing

A preprocessing is applied to enhance the quality of the signal. The
signal is interpolated using cubic splines and re-sampled to 200 Hz
[85]. Then, the observed velocity2 magnitude profile is calculated us-
ing:

‖~v(t)‖ =
√

x′(t)2 + y′(t)2 (4.9)

where the prime symbol refers to the first derivative with respect to t,
which is computed using Equation (2.1). After that, a low-pass filter
is applied to the speed to smooth the noise.

4.1.3.2 Stroke Identification

To estimate the Sigma-Lognormal parameters, strokes must first be
identified in the velocity magnitude profile. This is achieved by look-

2Hereinafter we denote the observed velocity as~v(t), the analytic velocity as~v(t).
Analogously, the observed position is denoted as ~x(t) and ~y(t) and the computed
position as ~x(t) and ~y(t).

4.1.3.2. STROKE IDENTIFICATION 57

p1

p2

p3

p4

p5

time

sp
ee

d

Figure 4.2. An example of a lognormal velocity magnitude profile. The black dots
indicate, from left to right: the beginning of the lognormal (p1), where ‖~v(t)‖ ≈ 0;
first inflexion point (p2); local maximum velocity (p3); second inflexion point (p3)
and the end of the lognormal (p5), where ‖~v(t)‖ ≈ 0.

ing for local maxima (p3; see Figure 4.2) in ‖~v(t)‖. Then, for each
local maximum, 2 inflection points (p2 and p4) are sought in its vicin-
ity. Inflection points are found by looking for changes in the sign
of the curvature defined in Equation (2.4), or alternatively, points on
‖~v(t)‖ at which the second derivative changes its sign. Finally, two
local minima (p1 and p5), are estimated. We consider as local minima
those values in ‖~v(t)‖ with a magnitude of less than 1% of its local
maximum. This calculation results in 5 characteristic points for each
stroke. Each characteristic point is located at a certain time t and has
a velocity magnitude ‖~v(t)‖.

It is important to remark that the selection of these characteristic
points must be robust, given that superposition can drift their loca-
tion and noise can generate false positive identifications. First, their
location is corrected taking into account the expected variability of µ
and σ [85].

Three criteria are applied then to retain only the meaningful char-
acteristic point sets. The first criterion states that the area under the
curve delimited by p1 and p5 must be greater than the mean minus
one standard deviation of the area under the curve of all selected char-
acteristic point series. The second criterion states that the maximum

58 CHAPTER 4. IMPROVING SIGMA-LOGNORMAL PARAMETERS EXTRACTION

value of a characteristic point series (that is, ‖~v(t3)‖) is not more than
15 times smaller than the maximum value of ‖~v(t)‖. A third condition
is applied, it states that the value of t3 of a series taken to estimate a
new lognormal should be greater than those used previously, thus
ensuring the progression of the algorithm.

4.1.3.3 Stroke Extraction

After stroke identification, sets of characteristic points are available.
The following procedure is applied for each set of characteristic points
in the order of their time occurrence:

1. The Sigma-Lognormal model parameters are calculated as shown
in Sections 4.1.3.4 and 4.1.3.5.

2. The analytic estimated speed is subtracted from the observed
velocity magnitude profile.

The intuition behind this approach is that it is believed to provide
a better estimate of each lognormal, given that it minimizes the speed
superposition effects from the left neighbor; i.e., i − 1th stroke, by
removing first its extracted value.

However, if the last set of characteristic points is reached without
having obtained a satisfactory result, the extractor toggles a second
mode, where the remaining lognormals are estimated as in the origi-
nal mode, but in this case in the order of their area under the curve.
Figure 4.3 shows an example of the stroke extraction using this tech-
nique.

4.1.3.4 Velocity Estimation

The Robust XZERO algorithm [85, 97] is used to estimate the speed-
related parameters, i.e.; σ, µ, t0 and D, for every lognormal. This
algorithm exploits time and velocity constraints on 3 of the lognormal

4.1.3.4. VELOCITY ESTIMATION 59

0 0.2 0.4 0.6 0.8
0

0.5

1
MODE 1 1

time (s)

sp
ee

d
(m

/s
)

0 0.2 0.4 0.6 0.8
0

0.5

1
MODE 1 2

time (s)

sp
ee

d
(m

/s
)

0 0.2 0.4 0.6 0.8
0

0.5

1
MODE 1 3

time (s)

sp
ee

d
(m

/s
)

0 0.2 0.4 0.6 0.8
0

0.5

1
MODE 1 4

time (s)

sp
ee

d
(m

/s
)

0 0.2 0.4 0.6 0.8
0

0.5

1
MODE 1 5

time (s)

sp
ee

d
(m

/s
)

0 0.2 0.4 0.6 0.8
0

0.5

1
MODE 1 6

time (s)

sp
ee

d
(m

/s
)

0 0.2 0.4 0.6 0.8
0

0.5

1
MODE 2 7

time (s)

sp
ee

d
(m

/s
)

0 0.2 0.4 0.6 0.8
0

0.5

1
MODE 2 8

time (s)

sp
ee

d
(m

/s
)

Figure 4.3. Step-by-step example of the Sigma-Lognormal extraction using the 2-
mode-based extractor. The reading order is left-right, top-bottom. The solid black
line indicates the velocity magnitude profile to be reconstructed, whilst the green
dot indicates the following ‖~v(t3)‖ to be extracted. The dotted black line shows the
lognormal equation extracted, and subtracted from the velocity magnitude, in the
previous step.

60 CHAPTER 4. IMPROVING SIGMA-LOGNORMAL PARAMETERS EXTRACTION

characteristic points3 (pα):

tα = t′α
‖~v(tα)‖ = ‖~v (t′α)‖

(4.10)

where α ∈ {2, 3, 4}. Left-side terms are observed values, obtained
from the velocity magnitude profile whilst the right-side terms are
calculated analytically.

The estimate of σ, µ, t0 and D can be carried out using differ-
ent two-element combinations of the lognormal characteristic points
and Equations (4.11) to (4.15) that are derived from Equation (4.10).

σ2 =



−2− 2 ln rαβ −
1

(2 ln rαβ)
, if α = 2, β = 3

−2 + 2
√

1 + ln2 rβα, if α = 2, β = 4

−2− 2 ln rβα −
1

(2 ln rβα)
, if α = 3, β = 4

(4.11)

where rij = ‖~v(ti)‖/‖~v(tj)‖.

µ = ln
(

tα − tβ

e−aα − e−aβ

)
(4.12)

t0 = tα − eµ−ai (4.13)

D = ‖~v(tα)‖ σ
√

2π exp
(

µ +
a2

α

2σ2 − aα

)
(4.14)

where α, β ∈ {2, 3, 4}, α < β and

ai =


3
2 σ2 + σ

√
σ2

4 + 1, if i = 2

σ2, if i = 3
3
2 σ2 − σ

√
σ2

4 + 1, if i = 4

(4.15)

The parameters are computed using all the possible combinations
of p2, p3 and p4 in order to provide more robustness to the estimation.
Once all the estimates are available, the set of calculated parameters
which minimizes the least-square error with respect to the original
velocity magnitude profile is kept as solution.

3Although constraints are also met for p1 and p5, they are not very robust in
practice and therefore it is not recommended to take them into account.

4.1.3.5. STROKE DIRECTION ESTIMATION 61

4.1.3.5 Stroke Direction Estimation

At this point, the direction parameters (θs and θe) remain still un-
known. Nevertheless, since each stroke occurs along a pivot, it can
be proved that the angular variation is proportional to the distance
traveled along the trajectory [66]. This property can be exploited to
perform a linear interpolation that computes the angular parameters
θs and θe using Equations (4.5) and (4.16) to (4.19).

θs = φ(t3)− ∆φ · (d(t3)− d(t1)) (4.16)
θe = φ(t3)− ∆φ · (d(t5)− d(t3)) (4.17)

where

∆φ =
φ(t4)− φ(t2)

d(t4)− d(t2)
(4.18)

and

d(ti) =


0, if i = 1
D
2 [1 + erf(−ai/σ

√
2)], if i = 2, 3, 4

D, if i = 5

(4.19)

4.1.3.6 Optimization

Once the extraction process is terminated and in order to enhance the
result, a global velocity optimization is performed for each extracted
stroke. This is done using the method of least squares [85], where the
Sigma-Lognormal parameters are modified in order to minimize the
differences with respect to the original speed.

4.1.4 ASSESSING THE SIGMA-LOGNORMAL PARAMETERS EXTRAC-
TION

A good extraction result is expected to have the following properties:

• The velocity reconstruction quality should be higher than the
preset threshold.

• For a given velocity reconstruction, the smallest number of strokes
is always desirable.

62 CHAPTER 4. IMPROVING SIGMA-LOGNORMAL PARAMETERS EXTRACTION

• The shape reconstruction quality should be the highest as possi-
ble.

The extraction quality will evaluated using 3 measures. The first
measure is the signal to noise ratio (SNR) between the original and
the reconstructed velocity profile (SNRv):

SNRv = 10 log

(
∑T

t=1 ‖~v(t)‖2

∑T
t=1 ‖~v(t)−~v(t)‖2

)
(4.20)

where ~v(t) is the analytic velocity, ~v(t) is observed velocity and T is
the duration of the handwriting signal.

Previous works suggest that different SNRv thresholds can be used
to quantify what is considered as a good reconstruction [98], although
in general values higher than 15-20 dB are considered to be a reference
baseline [99].

As mentioned before, the generation of a human movement obeys
the lognormality principle [77]. This principle states that a user in
perfect control of his movements produces the minimum number of
“perfect” lognormal strokes in order to generate the intended trajec-
tory. The second measure evaluates the reconstruction quality accord-
ing to the previous statement, calculating the ratio between the SNRv
and the number of extracted lognormals (nbLog or N in equations):

SNRv/nbLog = 10 log

(
∑T

t=1 ‖~v(t)‖2

N ∑T
t=1 ‖~v(t)−~v(t)‖2

)
(4.21)

where N is the number of lognormal strokes used in the reconstruc-
tion. The higher the measure, the better. Given two reconstructions
with the same number of strokes, a bigger SNRv is always preferable,
and vice versa, if the same SNRv is achieved, a smaller number of
lognormal strokes is desirable. Moreover, this measure can also be
estimated using the precalculated SNRv value from Equation (4.20)
using:

SNRv/nbLog = SNRv − 10 log(N) (4.22)

The third measure, the SNRs, evaluates how similar is the recon-
structed Cartesian coordinates with respect to the original ones. It is

4.2. NEW SIGMA-LOGNORMAL PARAMETERS EXTRACTOR 63

calculated as the signal to noise ratio (SNR) between the original and
the reconstructed shape:

SNRs = 10 log

(
∑T

t=1[x(t)2 + y(t)2]

∑T
t=1[(x(t)− x(t))2 + (y(t)− y(t))2]

)
(4.23)

where x(t) and y(t) are the original positions, whilst x(t) and y(t) are
the reconstructed ones. The higher the measure, the better.

We use the SNRs given that, in the context of handwriting or ges-
ture recognition, shape deviations are usually more problematic than
speed deviations, since some preprocessing techniques include a speed
normalization step [12] and recognition systems usually rely on shape-
based off-line information [100].

4.2 New Sigma-Lognormal Parameters Extractor

Although the results obtained by the Sigma-Lognormal Parameters
extractor outlined in Section 4.1.3 are good, there is still room for im-
provement in order to reach better levels of accuracy, robustness and
flexibility. Here we present a new powerful extractor to identify log-
normal strokes and estimate their Sigma-Lognormal parameters.

In the following sections, we present the different steps performed
to extract and estimate the strokes from a given signal. Given that
many of these steps are common to the previous extractor, here we
will focus on preprocessing and stroke extraction. After that, we conduct
a rigorous experimentation using a public dataset to assess the capa-
bilities of this new approach to identify and extract a better Sigma-
Lognormal representation.

4.2.1 PREPROCESSING

As the extraction approach that we are going to use is velocity-based,
it is more prone to spatial deviations as the input size gets larger. Ac-
cording to Equation (4.4), the velocity of the handwriting is the sum
of each stroke velocity. Therefore, errors in the angle estimation are
propagated over the whole signal, leading to increased spatial devia-
tions for longer signals (see Figure 4.6) [79].

64 CHAPTER 4. IMPROVING SIGMA-LOGNORMAL PARAMETERS EXTRACTION

Intuition says that it would be most appropriate to divide the sig-
nal into smaller pieces. Where each piece could be analyzed and ex-
tracted independently, thus minimizing the accumulation of the spa-
tial errors. For this reason, here a representation where the original
signal is chopped into smaller pieces, is used. Here, segmentation
is perfomed at pen-stroke level, preserving only those that are pen-
down, which are in fact components [101].

Then, for each pen-stroke, its signal is interpolated using cubic
splines and re-sampled to 200 Hz. Moreover, zero velocity truncation
is enforced at the beginning and end of the velocity magnitude profile
by keeping the signal artificially still at the start and end position for
50 ms sampled at 200 Hz.

4.2.2 STROKE EXTRACTION

Given an initial velocity magnitude profile ~v(t), the goal is to ac-
count for the biggest amount of velocity, and therefore for the biggest
amount of strokes present in the signal, by using lognormal equa-
tions. Each lognormal equation is represented by a set of character-
istic points, which are obtained using the same technique as the one
used in Section 4.1.3.

However, the stroke extraction method used in Section 4.1.3 is
based on a greedy technique that extracts the sets of characteristic
points from left to right. But the lognormal extraction order is really
important. Given two partially overlapped strokes, the quality of the
reconstruction if the leftmost is extracted first will be different than
if the rightmost is extracted first. This is because the strokes tend
to alter the characteristic points of their neighbors, due to the velocity
overlap. In addition, the maximum velocity magnitude value of a log-
normal stroke can be “hidden” under another stroke (see Figure 4.4;
where a hidden local maximum is discovered in the second sub-figure
by subtracting another stroke), thus being “invisible” to the extraction
technique. On the other hand, according to the lognormality princi-
ple, the number of extracted strokes must be the minimized whilst the
SNRv must be maximized. That is, given two reconstructions with the
same quality, the one with the lowest number of strokes is most desir-
able.

4.2.2. STROKE EXTRACTION 65

Considering the above, this problem can be expressed as (not only)
estimating the minimum set of lognormal strokes (but also) in their
best extraction order that reconstructs better the velocity magnitude
profile. Therefore, a greedy approach is not powerful enough to solve
this problem.

Here a Breadth-first search (BFS) algorithm [102] was used as a strat-
egy to drive the extraction. BFS is an algorithm that expands level-by-
level and examines all combination of sequences by systematically
searching through every vertex.

As said before, the lognormal extraction order is really impor-
tant. The BFS algorithm provides the extraction robustness required,
given that it estimates all the combinations of extractions in different
order. In addition, BFS is so named because it expands the frontier
uniformly across the breadth of the frontier. That is, the algorithm
discovers all the vertices containing partial extractions at level k be-
fore discovering any at k + 1. Therefore this technique will always
minimize the number of extracted strokes.

More technically speaking, BFS produces a breadth-first tree with
root s that stores all reachable extractions in different vertices. For
a given velocity magnitude profile stored in a vertex u, the charac-
teristic points sets are found and a child vertex v is created for each
one. Every sibling of v holds a lognormal equation, which is a recon-
struction of one of the characteristic points set found in the velocity
magnitude stored in u; as well as a reference to its parent u; an esti-
mate of how good is this solution so far; and a new velocity profile
magnitude, where the estimated velocity is subtracted from its parent
velocity magnitude. Once this is performed, the BFS algorithm con-
tinues expanding a new level, in which now every vertex v becomes
a parent vertex u. We must emphasize that, for each expanded parent
vertex u, the sets of characteristic points must be recalculated. This
is because, as said before, the subtraction of a lognormal stroke may
discover other strokes that a priori were hidden. Figure 4.4 illustrates
the stroke extraction using the BFS algorithm on a velocity profile
magnitude sample.

Usually a breadth-first search ends when the vertex sought is found
or, if it is not found, when every vertex is a leaf, that is, every vertex

66 CHAPTER 4. IMPROVING SIGMA-LOGNORMAL PARAMETERS EXTRACTION

0 0.2 0.4 0.6 0.8
0

0.5

1
1

time (s)

sp
ee

d
(m

/s
)

0 0.2 0.4 0.6 0.8
0

0.5

1
2

time (s)

sp
ee

d
(m

/s
)

0 0.2 0.4 0.6 0.8
0

0.5

1
3

time (s)

sp
ee

d
(m

/s
)

0 0.2 0.4 0.6 0.8
0

0.5

1
4

time (s)

sp
ee

d
(m

/s
)

0 0.2 0.4 0.6 0.8
0

0.5

1
5

time (s)

sp
ee

d
(m

/s
)

0 0.2 0.4 0.6 0.8
0

0.5

1
6

time (s)

sp
ee

d
(m

/s
)

0 0.2 0.4 0.6 0.8
0

0.5

1
7

time (s)

sp
ee

d
(m

/s
)

0 0.2 0.4 0.6 0.8
0

0.5

1
8

time (s)

sp
ee

d
(m

/s
)

Figure 4.4. Step-by-step example of the Sigma-Lognormal extraction using the here
proposed BFS-based extractor. The reading order is left-right, top-bottom. The ve-
locity magnitude used is the same as in Figure 4.3. The solid black line indicates the
velocity profile to be reconstructed, whilst the green dots indicate the ‖~v(t3)‖ sib-
lings to be extracted. The dotted black line shows the lognormal equation extracted,
and subtracted from the velocity magnitude, in the previous step. In this example,
a beam width of 1 has been used and some steps have been omitted for the sake of
clarity.

4.2.2. STROKE EXTRACTION 67

has no children. In this case, the BFS procedure is executed repeatedly
until: a) a given vertex holds a reconstruction that is considered good
enough. That is, its calculated SNRv is bigger than a preset threshold;
b) the height of the tree is bigger than a maximum value; or c) there is
not any set of characteristic points left to explore. The a) option can be
considered the optimal solution. If b) or c) options were the case, the
best solution so far is returned. We tap on the lognormality principle
to define what is the best solution so far, which is the solution with
the highest value of SNRv/nbLog (see Equation (4.21)).

The SNRv/nbLog is used, instead of just SNRv, to avoid overfit-
ting. Let us assume a reconstruction that will never reach the SNRv
threshold. The extractor will try to indefinitely add new lognormal
equations (modeling probably noise), that will only slightly increment
the SNRv value. Therefore we can not consider the best solution as the
one with the highest SNRv.

A beam search pruning approach is used to maintain tractability,
given that the number of vertices to explore can easily explode be-
cause of the problematic discussed above. A priority queue, sorted
decreasingly according to the values of SNRv, is used to implement
the beam search pruning. Thus for each level k, only a predetermined
number (w) of the most promising vertices are kept, pruning the rest of
the siblings. With an infinite beam width, no vertices are pruned and
beam search is identical to BFS.

The procedure in Figure 4.5 shows how the extraction works. First,
some attributes are attached to each vertex. The attribute n holds the
number of extracted lognormals so far; two quality estimators (SNRv
and SNRv/nbLog) are stored in the attributes m and r, respectively;
the Sigma-Lognormal parameters are stored in the attribute g and the
predecessor of the current node in the attribute p.

Lines 2 to 7 initializes the values of the different attributes of ini-
tial solution (s) and the best solution so far (b). Lines 8 and 9 initialize
Q to the queue containing just the initial solution s. The while loop
of lines Lines 10 and 29 and the for loop of lines Lines 11 and 27 it-
erate as long as there are remaining vertices. Line 12 initializes R as
the auxiliary queue. R is necessary to implement the beam search
prune. Lines 13 and 14 is the optimal stop criteria. If the current SNRv

68 CHAPTER 4. IMPROVING SIGMA-LOGNORMAL PARAMETERS EXTRACTION

1: procedure STROKE_EXTRACTION(signal)
2: s.g = None
3: s.p = None
4: s.s = signal
5: s.m = b.m = 0.0
6: s. r = b.r = -inf
7: s.n = 0
8: Q = []
9: Q.append(s)

10: while Q :
11: R = []
12: for u in Q :
13: if u.m >= mmin :
14: return u
15: cps = identify_strokes(u.s)
16: for cp in cps :
17: z.g = pars_estimation(cp)
18: z.s = u.s - getspeed(u.g)
19: z.m = calculate_snr(signal, u.s)
20: z.n = u.n + 1
21: z.r = calculate_snr_nblog(z.m, z.n)
22: z.p = u
23: if z.n >= nblogsmax :
24: continue
25: if z.r > b.r :
26: b = z
27: R.append(z)
28: R.sort(key=lambda x: x.m)
29: Q = R[: w]

30: return b

Figure 4.5. Pythonic pseudo code for the Sigma-Lognormal extractor. The meaning
given by Python to statements, operators and methods has been used. Block struc-
ture is denoted using indentation.

4.2.3. EVALUATION 69

value u.m is bigger than the preset threshold, the procedure ends.
Line 15 identifies the new set of characteristic points that are candi-
dates (see Section 4.1.3). The for loop of lines 16 and 27 considers each
set of candidate points (cp) in the list of sets of candidates. Line 17 per-
forms the velocity and angle parameters estimation explained in Sec-
tion 4.1.3. Line 18 calculates the velocity profile of the reconstruc-
tion using Equation (4.4). Lines 19 and 21 compute the SNRv and
SNRv/nbLog using Equations (4.20) and (4.22), respectively. Line 20
increments the number of lognormals and line 22 records u as the
parent of z. Lines 23 and 24 discard solutions with a high number of
lognormals. Lines 25 and 26 are in charge of keeping updated the best
solution throughout the procedure according to the highest value of
SNRv/nbLog ratio, as previously explained. Line 27 queues the new
solution v in the auxiliary queue R. Lines 28 and 29 implement the
beam search prune. Line 28 sorts the queue R taking into account
the value of the SNRv stored in x.m. Line 29 stores only the w most
promising elements of the auxiliary list R in Q, where w is the beam
width. If the procedure arrives to Line 30 without finding an optimal
solution, it will return the best solution so far stored in b.

4.2.3 EVALUATION

We conducted a rigorous experimentation using two public datasets.
The aim of this evaluation is to investigate whether the extractor pre-
sented in Section 4.2 provides a better Sigma-Lognormal representa-
tion. We compared our extractor against a baseline, the extractor de-
scribed in Section 4.1.3 [85].

We evaluated both extractors taking into account quantitative cri-
teria in terms of kinematics quality and shape fitness quality. The
experimental details are described below.

4.2.3.1 Experimental Setup

The minimum value of SNRv was set to 25 dB for both extractors. The
beam search threshold for the new extractor was set to 2. Other pa-
rameters, common to both extractors, were set to the values proposed
in [85].

70 CHAPTER 4. IMPROVING SIGMA-LOGNORMAL PARAMETERS EXTRACTION

We reconstructed samples from the following public datasets: the
Unipen-ICROW-03 benchmark set and the IBM-UB Data Set (see Sec-
tion 2.3.1). We chose these datasets as they are composed of isolated
words.

A total of 13,119 on-line words from the Unipen-ICROW-03 bench-
mark set and 63,683 on-line words contained in the query part of the
IBM-UB dataset have been reconstructed.

The IBM-UB dataset has been chosen for the experiments given
that the samples of this dataset do not contain pen-ups. Thus the
same preprocessing from Section 4.2.1 has been used for the baseline
extractor. Therefore, results on this dataset can be used to make a
pure lognormal extraction comparison, not influenced by the different
preprocessing.

4.2.4 RESULTS

First, Figure 4.6 shows a visual comparison of the signal reconstruc-
tion using both extractors. Quality measures (SNRv, SNRv/nbLog
and SNRs) are shown in Figure 4.7. With respect to the Unipen-ICROW-
03 dataset, the average SNRv for the new extractor was 25.6± 2.2 dB,
whilst the baseline extractor achieved 21.5± 5.9 dB. Here, we must
remark that the baseline extractor is not able to achieve the minimum
preset threshold of 25 dB. The average SNRv value for the new extrac-
tor on the IBM-UB dataset was 27.2± 1.6 dB (mean ± SD), whereas
for the baseline extractor was 25.4± 2.5 dB. In this dataset, both ex-
tractors are able to surpass the minimum present threshold of 25 dB.
The differences in the SNRv averages were found to be statistically
significant for both datasets (Welch’s two-sample t-test, p < .0001).
According to these results, the new extractor provides a better (higher
average SNRv) and more consistent (lower SD values) velocity mag-
nitude profile reconstruction.

The new extractor achieved an average value of 41± 14 extracted
strokes, whilst the baseline approach had an average of 30 ± 11 ex-
tracted strokes on the Unipen-ICROW-03 dataset. With respect to
IBM-UB dataset, an average of 40± 15 extracted strokes with the new
extractor whilst the baseline extractor had a median value of 43± 18
extracted strokes. The differences in the the average number of ex-

4.2.4. RESULTS 71

Original Baseline New Approach

Figure 4.6. Reconstruction examples using both extractors. The solid black lines
are the original signals, the dotted blue line are the reconstruction using the new ap-
proach and the dashed green line are the reconstruction using the baseline approach.

72 CHAPTER 4. IMPROVING SIGMA-LOGNORMAL PARAMETERS EXTRACTION

0 10 25 400

0.2

0.4

0.6

SNRv

Baseline New Extractor

0 10 20
SNRv /nbLog

Unipen-ICROW-03

0 25 50
SNRs

0 10 25 400

0.2

0.4

0.6

SNRv

0 10 20
SNRv /nbLog

IBM_UB

0 25 50
SNRs

Fr
eq

ue
nc

y
De

ns
ity

Figure 4.7. Density histograms showing the quality measures.

tracted lognormals were found to be statistically significant for both
datasets (Welch’s two-sample t-test, p < .0001). The new extractor
obtains a more similar value in both datasets. However, if we take
into account the SNRv/nbLog ratio, the baseline extractor achieved
an average value of 9.8± 2.2 dB per lognormal, whereas the new ex-
tractor achieved 7.5± 4.0 dB per lognormal for the Unipen-ICROW-03
dataset. As we can see, although the number of extracted lognormals
by the new approach was higher for this dataset, we can see that its
SNRv/nbLog is higher. With respect to the IBM-UB dataset, the base-
line obtained an average value of 9.5± 3.1 dB per lognormal, whereas
the new extractor achieved 11.5± 2.2 dB per lognormal.

Taking into account the SNRs, the average value on the Unipen-
ICROW-03 dataset for the new extractor was 32.2± 5.0 dB and for the
baseline approach was 30.6± 9.1 dB. The average SNRs on the IBM-

4.3. DISCUSSION 73

nbLog SNRv SNRv/nbLog SNRs

Unipen-ICROW-03
New Extractor 41± 14 25.6± 2.2 9.8± 2.2 32.2± 5.0
Baseline 30± 11 21.5± 5.9 7.5± 4.0 30.6± 9.1

IBM-UB
New Extractor 40± 15 27.2± 1.6 11.5± 2.2 34.3± 4.4
Baseline 43± 18 25.4± 2.5 9.5± 3.1 32.5± 5.7

Table 4.1. Summary of the extraction results for the IBM-UB (top) and ICROW-03
(bottom) datasets. From left to right, average value± SD for: the number of extracted
lognormals (nbLog), SNRv, SNRv/nbLog and SNRs. All measures, except nbLog, are
expressed in dB.

UB dataset for the new approach was 34.3± 4.4 dB and 32.5± 5.7 dB
for the baseline extractor. According to a Welch’s two-sample t-test,
the SNRs average differences between both approaches are statisti-
cally significant (p < .0001). Thus the new extractor provides a better
(higher average SNRs) and more consistent (lower SD values) shape
reconstruction.

As a final overview, Table 4.1 shows a summary of these results.
According to them, the new Sigma-Lognormal extractor provides a
significantly better performance than the baseline extractor.

4.3 Discussion

Although in this chapter lognormal-based models have been mainly
applied to handwriting analysis, many studies have shown that they
can be successfully applied to other types of movements. For exam-
ple: reproducing wrist movement and eye saccades [89], 2D and 3D
arm movements [103], and more recently, stroke gestures [104]. In
other words, the Kinematic Theory provides a complete parametric
representation space to study motor control behavior. This mathe-
matical demonstration suggests that the asymptotic convergence to-
ward lognormal impulse responses and velocity patterns can be inter-
preted as reflecting the behavior of subjects who are in total control
of their movements. Among other interesting findings, it has been

74 CHAPTER 4. IMPROVING SIGMA-LOGNORMAL PARAMETERS EXTRACTION

shown a migration toward lognormality as young children grow up
and the deviation from lognormality with aging [77]. Additionally,
from a mathematical point of view, the Kinematic Theory is a theory
of convergence toward smoothness. The lognormal function is an op-
timal descriptor of the velocity profiles: the smoothest velocity being
reached when the energy associated with the convergence error to-
ward lognormality is minimized. As such, the Kinematic Theory can
be considered as an ultimate minimization theory.

Given that a stroke minimization is assumed, the reconstruction
of a signal with the less strokes is more desirable. The new approach
is able to minimize the number of extracted lognormals surpassing
the preset SNRv threshold, and thus to maximize the SNRv/nbLog
ratio, thanks to the breadth-first search technique used to control the
stroke extraction.

However, what is preferable: a reconstruction with the biggest
SNRv possible or a reconstruction that surpasses a certain preset SNRv
threshold? That is, should the extraction technique reconstruct per-
fectly the handwriting (including noise from different sources and
therefore incurring in over-fitting)? The answer to this questions is
“probably depends on the purpose of the reconstruction”. For exam-
ple, if the purpose is to analyze a subject handwriting on medical
grounds, is likely that a very high SNRv value is desired. Given that,
the reconstruction needs to model every little detail that might be in-
dicative of some type of medical disorder [81,105]. On the other hand,
if the purpose is to generate synthetic handwriting, it could be inter-
esting to require a smaller SNRv value, using the Sigma-Lognormal
extraction as a pre-processing technique itself, removing some of the
error that the capture device could have introduce. This statement
is supported by previous works, where different degrees of reliabil-
ity were suitable to model different forms of handwriting. For exam-
ple, a SNRv ≥ 15 dB is enough to model gestures [99], whilst hand-
written text requires SNRv ≥ 25 dB [98] and signatures a SNRv ≥
30 dB [83, 84]. Our new approach not only allows tuning this param-
eter, but also maximizing the SNRv/nbLog ratio, that is, minimizing
the number of lognormals and maximizing the SNRv. So the user is
able to set a smaller value where coarser reconstructions are permissi-

4.4. CONCLUSION 75

ble, whereas a bigger value can be set if a very accurate reconstruction
is required.

A current limitation of our Sigma-Lognormal extractor is the time
complexity. Given that a BFS is performed, using the big O notation,
the time complexity, can be expressed as O(w s), where w is the beam
width and s is the number extracted lognormals. This high computa-
tional cost can be reduced using a data structure to store precomputed
primitives. In this case, the number of strokes that it would be neces-
sary to estimate could be greatly reduced, given that a high number
of lognormal equations are shared between the current state and its
successors as well as with the neighboring intermediate solutions.

4.4 Conclusion

In this chapter, a new method for the Sigma-Lognormal parameters
extraction has been proposed. Different experiments have been per-
formed to evaluate this new Sigma-Lognormal extractor. The new ap-
proach achieves excellent results, outperforming the state-of-the-art
Sigma-Lognormal parameters extractor in terms SNRv, SNRv/nbLog
and SNRs.

5Synthesizing Pen & Touch
On-line Strokes

A pen computer relies heavily on a recognizer, as it gives a meaning to
the user stroke-based interactions. The recognizer accuracy depends
mostly on the size of the training set used. As a rule of thumb: the
bigger the training set, the better the recognition accuracy.

Usually it is not possible to have a sufficiently large training set
using natural human samples. Recruiting participants, data collec-
tion, labeling, etc. necessary for achieving this goal is rather time-
consuming and expensive.

One way to overcome this problem is to create and use synthet-
ically generated training data that looks and feels like human. Tra-
ditionally, the use of synthetic samples has been regarded as bad
idea. However, stroke synthesis, which is the artificial generation of
human-like strokes, has recently become a hot topic with increasing
interest [80, 83, 106, 107].

In this chapter, we tap into the Kinematic Theory and its Sigma-
Lognormal model to generate synthetic human-like strokes. We pro-
pose and evaluate 2 different scenarios where synthetic samples are
employed as training data. In the first case, synthetic samples are
used to enlarge the existing training set with the objective of reduc-
ing the error rate. In the latter, synthetic samples are used instead
of real ones. This experiment aims to reduce the human effort while
collecting data.

This chapter is organized as follows. Section Section 5.1 is a review
of different stroke synthesis techniques. After that, in Section 5.1.3,
a technique to synthesize strokes is reviewed. Section 5.2.1 presents
and tests different scenarios where synthetic samples are used as train-

78 CHAPTER 5. SYNTHESIZING PEN & TOUCH ON-LINE STROKES

ing. Finally, conclusions are drawn in Section 5.3 and Section 5.4, re-
spectively.

5.1 Overview of Stroke Synthesis

Stroke synthesis techniques can be divided into two categories accord-
ing to their principles: “bottom-up” approaches, also called shape
simulation, where the outcome is generated or “top-down” approach-
es, which are also called movement simulation, where the neuromus-
cular acts of writing are simulated [108].

5.1.1 SHAPE-SIMULATION SYNTHESIS TECHNIQUES

Shape-simulation synthesis can be classified into generation or con-
catenation techniques. Generation techniques synthesize a new sam-
ple for a given writing unit, whilst concatenation techniques join prim-
itives to form letters or words. At the same time the generation tech-
niques can be subdivided into:

Perturbation-based techniques: This group of techniques alter a sam-
ple to obtain a new one. The alterations include size, thick-
ness and slant modifications at stroke [109] or line level [110].
Perturbation-based techniques are easy to apply, but the results
can be unnatural due to non-calibrated parameter settings [111].

Fusion-based techniques: These techniques take some samples and
fuse parts of them to generate a new one [112].

Model-based techniques: They capture the variations in handwrit-
ing from many samples to generate a model [108, 110, 113–115].

Concatenation techniques refers to any synthesis approach that
combines input samples to generate outputs. The usual input units
are characters or words, although sub-characters has been also used.
With respect to concatenation techniques, these can be subdivided ac-
cording to the type of connection they use:

5.1.2. MOVEMENT-SIMULATION SYNTHESIS TECHNIQUES 79

No-connection techniques: This group of techniques paste input units,
one next to another to form output units of higher semantic
level [116, 117].

Direct-connection techniques: These techniques paste letters together
such that their ending ligatures directly connect to the starting
ligature of the next letter [118].

Modeled-connection techniques: These techniques add new connec-
tion ligatures synthesized by parametric curves [108–110, 113].

5.1.2 MOVEMENT-SIMULATION SYNTHESIS TECHNIQUES

Movement simulation is a top-down approach to stroke synthesis
where the neuromuscular system involved in the generation is sim-
ulated.

Hollerbach [119] approach to stroke synthesis, proposes to model
strokes as horizontal and vertical oscillations. The horizontal one con-
trols the stroke shape, whilst the vertical controls the height. Based
on the oscillatory approach proposed by Hollerbach, Gangadhar et
al. [120] used a neural-network-based model where stroke velocities
were expressed as oscillatory neural activities. Simard and LeCun [121]
presented an approach where time trajectories were modeled using
an oversampled reverse time delay neural network architecture. This
network generate outputs that can control the pentip. Bayoudh et
al. [122] approach proposes to use the principle of analogical propor-
tion to synthesize new samples from an existing limited set of real
samples. Here, each character is modeled as a sequence of Freeman
chain codes including a set of anchorage points. Slim et al. [123]
proposes to model strokes using electromyographic signals obtained
from the forearm muscles. A radial basis function (RBF) neural net-
work learns how to generate the Cartesian coordinates using the elec-
tromyographic signals. Finally, one of the most notable synthesis tech-
niques is based on the ideas presented by Plamondon. Djioua and
Plamondon [97] presented a technique for synthesizing handwriting
strokes using the Kinematic Theory and its Sigma-Lognormal model.

80 CHAPTER 5. SYNTHESIZING PEN & TOUCH ON-LINE STROKES

Figure 5.1. Five samples of the word home written by the same person.

In the following section, the origin of handwriting variability ac-
cording to the Kinematic Theory is explained, as well as its associated
synthetic generation technique.

5.1.3 SYNTHESIZING STROKES USING THE KINEMATIC THEORY

As shown in Figure 5.1, if a person is asked to write something in
particular several times, stroke variability can be observed. Different
kinematic models provide insights with respect to the origin of the
“infinite” variability observed in handwriting.

For example, the Kinematic Theory predicts that human variabil-
ity is produced by modifications in the action plan and/or due to the
intrinsic variability of each stroke. This statement is supported by dif-
ferent studies that have demonstrated the strong connection between
handwriting variability and the distortion of the Sigma-Lognormal
parameters [80, 124]. Variations in µi and σi mimic peripheral noise,
like a person who instantiates the same intention and executes it with
an upper limb slightly different from one trial to another. On the other
hand, the t0i , Di, θsi and θei variations refer to central fluctuations that
might occur in the temporal or geometric position of the action plan
from one trial to another, reflecting, for example, attention changes.

These fluctuations can be simulated by introducing local and/or
global variations to the Sigma-Lognormal parameters. We understand
as local variations those that only affects one stroke, whereas global
variations affect all the strokes that compose a movement. In practice,
local and global fluctuations are mixed, so different deformations can

5.1.3. SYNTHESIZING STROKES USING THE KINEMATIC THEORY 81

be created by varying these parameters

D′i = Di ± K± ki

θ′si
= θsi ± Ps ± ρsi

θ′ei
= θei ± Pe ± ρei

t′0i
= t0i ± τi

µ′i = µi ±M± ∆µi

σ′i = σi ± S± ∆σi

(5.1)

where local variability is presented by lowercase Greek letters, whilst
global variability is represent using uppercase Greek letters.

Several predictions can be made concerning variability. First, in
terms of global fluctuations, variability of the parameter Di produces
an enlargement or shrinkage of the handwriting. Moreover, varia-
tions of the directional parameters (θsi and θei) produces rotational
effects. Peripheral parameters (µi and σi) variations, involves smooth-
ing and sharpening effects in the handwriting. This is because modifi-
cations of these parameters causes an increase or decrease in the rate
of overlapping between neighboring strokes, leading to smoother or
sharper trajectories. The global variability of t0i does not result in any
pattern deformation. The local fluctuations of each parameter lead to
non-uniform deformations, characterized by local scale changes, rota-
tions, smoothing and sharpening.

An example of applying distortions to the Sigma-Lognormal pa-
rameters can be observed in Figure 5.2. As can be seen, variability in
Di affects in the scale of the trajectory and the velocity but not in the
profile. Moreover, variability in θsi and θei affects the trajectory but
not the velocity. But fluctuations in µi affects both the trajectory and
the velocity profile magnitude. These variations leads to a smoother
trajectory. On the other hand, alterations in σi affects also both the
trajectory and the velocity profile magnitude, but in this case these
variations leads to a sharper trajectory. Care should be taken with
alterations of t0, given that this parameter is very sensitive even to
small variations. Finally, local variations affect locally the trajectory
and the velocity profile.

82 CHAPTER 5. SYNTHESIZING PEN & TOUCH ON-LINE STROKES

D

0 1 2 3 4
0

1

2

3

time (s)

sp
ee

d
(m

/s
)

θ

0 1 2 3 4
0

0.5

1

1.5

time (s)
sp

ee
d

(m
/s

)

µ

0 1 2 3 4 5
0

0.5

1

1.5

time (s)

sp
ee

d
(m

/s
)

σ

0 1 2 3 4
0

0.5

1

1.5

time (s)

sp
ee

d
(m

/s
)

t0

0 1 2 3 4
0

0.5

1

1.5

time (s)

sp
ee

d
(m

/s
)

Local

0 1 2 3 4
0

1

2

time (s)

sp
ee

d
(m

/s
)

Figure 5.2. The green lines are the original handwriting, whereas black lines are the
handwriting using variations in the Sigma-Lognormal parameters. First row: Global
variations (K = 2) in Di. Second row: Global variations (Ps = Pe = 0.4) in θsi and θei .
Third row: Global variations (M = 0.1) in µi. Fourth row: Global variations (S = 0.1)
in σi. Fifth row: Variations of (τi = 0.1) t0 Sixth row: Local variations (ki = 0.1,
ρsi = ρse = 0.05, τi = 0.0, ∆µi = 0.1, ∆σi = 0.1).

5.2. USING SYNTHETIC SAMPLES FOR RECOGNITION TASK 83

5.2 Using Synthetic Samples for Recognition Task

A serious problem in automatic recognition is the dependency of vir-
tually all available recognition methods on large amounts of training
data. Any method for handwriting or gesture recognition needs to be
trained (e.g., neural networks, nearest neighbors classifiers, hidden
Markov models, or support vector machine).

The most straightforward way to expand the training would be
to collect additional human samples. But collecting real samples is
a rather expensive and time consuming process. Alternatively, the
training set can be expanded or replaced with synthetic samples.

Here we follow the approach reviewed in Section 5.1.3 for the
generation of synthetic samples. A number of previous works have
shown that the distortion of the Sigma-Lognormal parameters results
in the generation of realistic human-like synthetic signatures [124],
which in turn improves an existing recognizer’s accuracy [80].

So far, this technique has been normally evaluated from the per-
spective of classification performance and not from the perspective
of how “human-like” the synthesized gestures really are. A notable
exception is a study by Galbally et al. [84] that examined the human
likeness of synthetic handwriting. While it was found a high degree
of similarity between synthesized and human handwriting, it is un-
clear whether this will hold for stroke gestures.

We address this open question in Appendix A, where we show
that the Kinematic Theory produces stroke gestures that “look and
feel” the same as human-generated gestures. We used relative mea-
sures to compare geometric, kinematic, and articulation aspects of
thousands of human and synthetic gestures and found no practical
differences between both populations.

In the following section we propose (and evaluate) 2 different sce-
narios where synthetic samples—handwriting and gestures—are em-
ployed as training data. In the first case, synthetic samples are used
to enlarge the existing training set with the objective of reducing the
error rate. In the latter, synthetic samples are used instead of real
ones. This experiment aims to reduce the human effort while collect-
ing data.

84 CHAPTER 5. SYNTHESIZING PEN & TOUCH ON-LINE STROKES

5.2.1 EVALUATION

We conducted a rigorous experimentation over different public da-
tasets, in order to illustrate the value of this synthetic sample genera-
tion technique applied to handwriting and gesture recognition.

First, in Section 5.2.2.1, we perform a study regarding synthetic
gesture variability. If we just copy one gesture sample over and over
again to artificially increase the number of samples, we could incur
in a case of overfitting, since the recognizer may not learn the “true”
nature of each gesture class.

Then, in Section 5.2.2.2, we perform an experiment where we in-
vestigate the effect of including user-specific synthetic handwriting
in a multi-writer dataset in contrast to use only real samples. This
could be really useful within an interactive framework (as in Chap-
ter 3), where user feedback could be incrementally used to adapt the
recognition system to a specific user.

After that, in Section 5.2.2.3, different experiments are carried out
to illustrate the value of this technique as a means to replicate human-
generated datasets, in particular, gesture datasets. We compared the
performance of synthetic samples with that of human samples in terms
of: articulation speed, size of gesture vocabulary and input device.

5.2.1.1 Experimental Setup

We generated synthetic samples for the following public datasets: $1-
GDS, MMG, chars74k1 and Unipen-ICROW-03 (see Section 2.3.1 for
more details).

Each sample in every dataset was modeled according to Equa-
tion (4.4) using the Sigma-Lognormal extractor presented in Section 4.2.
After that, the Sigma-Lognormal parameters were distorted accord-
ing to:

p′i = pi + U (−npi , npi) (5.2)

where pi are the Sigma-Lognormal parameters, U (a, b) is a contin-
uous uniform distribution and npi = { ki, ρsi , ρei , τi, ∆µi, ∆σi} using

1No timestamps are available in the chars74k dataset, so temporal information
must be estimated for reconstruction from the given sampling rate.

5.2.2. RESULTS 85

1 1 1

1 1 1

Figure 5.3. Human and synthetic samples, all samples picked at random. The sam-
ples on the left column are human generated, whilst center and right columns are
synthesized.

ki = 0.15, ρsi = ρei = 0.06, τi = 0.005, ∆µi = ∆σi = 0.1 as noise val-
ues [84]. Finally, the Cartesian coordinates (x,y) were retrieved using
Equation (4.7). Figure 5.3 provides a comparison of synthesized an
real samples of the $1-GDS and MMG datasets.

5.2.2 RESULTS

Below we describe each experiment and show its results.

5.2.2.1 Synthetic Gesture Variability

Here, we compare the variability of the synthesized samples against
their original human samples, using different values of variability.
We investigated this topic with the $1-GDS, MMG and chars74k da-
tasets.

Samples were synthesized in batches of N ∈ {10, 100, 1000} ele-
ments each using a modified version of Equation (5.2):

p′i = pi + ξ · U (−npi , npi) (5.3)

86 CHAPTER 5. SYNTHESIZING PEN & TOUCH ON-LINE STROKES

(a) ξ = 0.2 (b) ξ = 0.5

(c) ξ = 0.7 (d) ξ = 1.0

Figure 5.4. Visualizing the effect of the ξ parameter on gesture variability while
synthesizing 50 samples.

5.2.2.2. USING SYNTHETIC SAMPLES ON WRITER ADAPTATION 87

where ξ ∈ {0.0, 0.5, 1.0}. Figure 5.4 illustrates the visual effect of
this parameter on gesture variability. Then, we computed the mean
squared error (MSE) of each synthetic sample with respect to the hu-
man sample from which it was generated. MSE values close to zero
indicate that synthetic samples and their human counterparts look
very similar. In contrast, higher MSE values indicate that synthetic
samples diverge in shape from their human counterparts. Strokes
were resampled in such a way that a human sample and its synthe-
sized samples had the same number of points. MSE was averaged for
each batch, variability level, and dataset.

Table 5.1 shows the results. As expected, it was found that syn-
thetic samples are more variable as ξ increases. In general, we ob-
served that requesting a small number of synthetic samples (10 sam-
ples per gesture) provides slightly less variable samples. Interestingly,
for a given value of ξ, variability was found to increase as the num-
ber of requested synthetic samples increases, though we suspect it is
because the MSE is underestimated for small batch sizes. Indeed, the
standard error (SE) gets smaller as the number of samples gets larger,
because the mean of a large sample is likely to be closer to the true
population mean.

We also examined the intra-class variability of human gestures,
distance-wise; i.e., how variable is a human gesture sample as com-
pared to the rest of the human samples that belong to the same ges-
ture class. No difference was found regarding the number of requested
synthetic samples. The Pearson’s correlation coefficient was found to
be greater than 0.94 in all datasets, which indicates, for the human
datasets, a large agreement regarding how users articulated gestures.
Then, comparing synthetic gestures with their human counterparts re-
sulted in Pearson’s correlation coefficients decreasing as ξ increased;
see Table 5.2. This was unsurprising and indicates that samples syn-
thesized with a low variability degree look much more similar to the
human samples from which they were generated.

5.2.2.2 Using Synthetic Samples on Writer Adaptation

For a given handwriting recognition task, a user-specific system will
outperform a user-independent system. This statement is true as long

88 CHAPTER 5. SYNTHESIZING PEN & TOUCH ON-LINE STROKES

N
ξ

$1
-G

D
S

M
M

G
ch

ar
s7

4k

M
ea

n
SD

SE
M

ea
n

SD
SE

M
ea

n
SD

SE

0.
0

55
4.

9
71

5.
9

56
.6

16
9.

7
17

5.
7

9.
5

75
.2

10
1.

3
3.

6
10

0.
5

57
9.

4
77

4.
4

61
.2

25
0.

1
27

1.
7

14
.7

35
9.

8
40

7.
6

14
.7

1.
0

59
3.

6
73

1.
1

57
.8

49
0.

4
70

4.
9

38
.2

11
81

.5
14

49
.3

52
.5

0.
0

55
4.

9
71

3.
9

17
.8

16
9.

7
17

5.
7

3.
0

75
.2

10
1.

3
1.

1
10

0
0.

5
57

6.
8

75
4.

7
18

.8
25

6.
1

27
3.

4
4.

6
37

7.
2

40
8.

3
4.

6
1.

0
62

2.
1

82
3.

1
20

.5
49

3.
4

62
8.

2
10

.7
12

98
.9

14
48

.9
16

.6

0.
0

55
4.

9
71

3.
6

5.
6

16
9.

7
17

5.
7

0.
9

75
.2

10
1.

3
0.

3
10

00
0.

5
57

2.
5

74
1.

3
5.

8
26

1.
8

28
0.

3
1.

5
38

6.
4

42
6.

8
1.

5
1.

0
62

1.
4

81
3.

3
6.

4
49

8.
7

64
6.

0
3.

5
13

16
.2

14
52

.7
5.

2

Ta
bl

e
5.

1.
G

es
tu

re
va

ri
ab

ili
ty

re
su

lt
s

fo
r

di
ff

er
en

tn
um

be
r

of
sy

nt
he

si
ze

d
sa

m
pl

es
an

d
di

ff
er

en
tv

al
ue

s
of

th
e

pa
ra

m
et

er
ξ

(s
ee

Fi
g-

ur
e

5.
4

fo
r

ea
ch

da
ta

se
t.

Fr
om

le
ft

to
ri

gh
t:

M
SE

m
ea

n
va

lu
e,

st
an

da
rd

de
vi

at
io

n
(S

D
)a

nd
st

an
da

rd
er

ro
r

(S
E)

.

5.2.2.2. USING SYNTHETIC SAMPLES ON WRITER ADAPTATION 89

Dataset Pearson’s ρ

ξ = 0.0 ξ = 0.5 ξ = 1.0

$1-GDS 0.94 0.94 0.93
MMG 0.94 0.93 0.89
chars74k 1.00 0.99 0.97

Table 5.2. Correlation for different values of the parameter ξ. Batch size did not
make any difference in this study.

as the training set is big enough to obtain a good estimate of the user
writing style. Usually this is not possible, since asking the user for
a certain amount (usually big) of training samples is rather cumber-
some and tedious. Under these conditions, one way to improve the
system performance is to make use of the some multi- user existing
knowledge, so that only a minimum amount of user-specific training
data is sufficient to model the new writing style. Such a training pro-
cedure is often referred to as user or, in this case, writer adaptation.

Here we investigate the effect of adding synthetic samples in a
multi-writer dataset in contrast to use only real samples. Further-
more, we analyze the impact of the number of collected samples from
the specific writer used for adaptation. This experiment was con-
ducted using the Unipen-ICROW-03 dataset and a HMM recognizer
with a configuration similar to Section 2.1.1. The Unipen-ICROW-03
dataset was split as follows. We defined a training set, called trn,
composed of 10,496 words from 56 writers. From the remaining 16
writers, which contained 2,623 words altogether, we randomly split
70% of the words as a test set, named tst, and the rest (a 30%) as an
adaptation set, called adp. Therefore, the number of words per writer
on average was 112 for tst and 50 for adp. To prevent the results from
being influenced by the choice of these two partitions, we performed
five trials. Results will we reported as the average for all trials.

In addition, a closed 1-gram language model was used here. The
underlying vocabulary consists of 884 words, which included all the
words seen in trn, adp and tst (some of these words appear in adp
and/or tst, but not in trn). The language model was trained taking

90 CHAPTER 5. SYNTHESIZING PEN & TOUCH ON-LINE STROKES

replicated or synthetic samples (s)

10 20 50 100 150 200

#
w

ri
te

r-
sp

ec
ifi

c
sa

m
pl

es
(w

) 20 11.7 11.4 10.2 9.5 9.5 8.9
35 10.8 10.2 9.4 8.2 8.2 8.6
50 10.4 9.8 8.7 8.1 8.5 8.5

20 11.0 10.4 9.5 8.9 8.5 8.4
35 9.9 9.1 7.9 7.0 6.6 6.4
50 9.6 8.8 7.6 7.0 6.9 6.9

Table 5.3. Test set recognition error (%) for different values of s and w. Top: Using
only real replicated adaptation samples. Bottom: Using both real and synthetic
adaptation samples. Results are averaged for all writers.

into account the frequency of occurrence of the words which appear
in trn and it is uniform for the remaining words.

To carry out this experiment, various morphological models have
been created varying the amount (20, 35, 50) of words (w) chosen from
adp. We generate a number s ∈ {10, 20, 50, 150, 200, 250} of synthetic
words for each real word. For example, the model with w = 20 and
s = 150, has 20 writer-specific samples plus 3000 (20 · 150) synthetic
samples, making a total of 3, 020 words (in addition to the multi-
writer data). As we aim to know whether the human-like variability
present in the synthetic words improves the recognition results, we
compare this approach with a baseline case, where only real samples
are used for adaptation. Analogously to the approach using synthetic
samples, we create the same number of models, but instead of using
synthetic samples, we replicate each real word s times. This replica-
tion is equivalent to weigh the importance of the new sample relative
to the rest [125]. This way, we can make a fair comparison between
this baseline and the approach using synthetic words.

Table 5.3 shows the recognition error performance for the baseline
and different morphological models using real and synthetic samples.
The results presented are averaged for all writers and for the five
proposed trials. The baseline approach obtained a 10.3% error rate.
The approach using synthetic samples obtained a recognition error of

5.2.2.2. USING SYNTHETIC SAMPLES ON WRITER ADAPTATION 91

0 50 100 150 200

7

8

9

10

Number of replicated or synthetic samples (s)

Er
ro

rR
at

e
(%

)

Replicated Synthetic

Figure 5.5. Evolution of the recognition rate for w = 35 real words and a varying
number of s.

Error Rate Rel. Improv.

Baseline AR AS Baseline AR

10.3 8.2 6.4 37.9 22.0

Table 5.4. Best recognition error rates for the different approaches. From left to right:
baseline scenario without using adaptation data (Baseline); adaptation using repli-
cated data (AR) and adaptation using synthetic data (AS). Last 2 columns show the
relative improvement between AS and Baseline and relative improvement between
AS and AR. All results are percentages and averaged for the different writers and
trials.

6.4% (using 200 synthetic samples for each real word), outperforming
the best recognition rate of the adaptation baseline (8.1% replicating
100 times each real sample).

Figure 5.5 shows the evolution of the recognition rate when using
35 real samples (w = 35) and a varying number of synthetically gen-
erated or replicated samples. As we can see, the slope of the ER using
replicated samples is less steep than the one using synthetic samples.
The ER using synthetic samples achieves a better overall result than
the approach using replicated samples. Moreover, the scenario using
replicated samples suffers from overfit (ER starts to increase at the

92 CHAPTER 5. SYNTHESIZING PEN & TOUCH ON-LINE STROKES

range of 150-200 samples), which is not apparent for the scenario us-
ing synthetic samples.

Finally, Table 5.4 shows a summary of the best results using repli-
cated and synthetic samples. As we can see, the adaptation approach
improves by 22% the accuracy of the best adaptation baseline and by
38% the baseline scenario (no adaptation).

5.2.2.3 Replicating Human Gesture Samples

The objective of the following experiments is to compare the recogni-
tion accuracy of a system trained with only real gestures and another
trained with one real sample (generation template) plus a set of syn-
thetic gestures, having the same number of training samples in both
cases. $ family of recognizers and DTW (see Section 2.2.1) have been
used in the experiments.

Two different human gestures were chosen as generation template:
the gesture sample with the smallest SNRv (as long as it is more than
15 dB) and the gesture sample with the highest SNRv. After that, two
different sets of synthetic samples are generated from them. Synth−

are synthetic samples generated using the gesture template with the
smallest SNRv and Synth+ are the synthetic samples generated using
the gesture template with the highest SNRv. The purpose of this is
to assess whether the reconstruction quality affects the generation of
synthetic samples.

We conducted a number of user-dependent and user-independent
tests. With respect to user-dependent, for each user, the recognizer is
trained using a number of the user’s gesture examples, and one exam-
ple is used for testing. This is repeated for all users, and results are
aggregated. Each user provided 10 examples of each gesture, so we
increased the number of templates from 1 to 9. On the other hand, re-
garding user-independent tests, we used a leaving-one-user-out pro-
cedure: for each user, the recognizer is trained using the rest of the
users and one user is left out for testing. This is repeated for all users,
and results are aggregated.

As commented before, we compared the performance of synthetic
samples with that of human samples in terms of: articulation speed,

5.2.2.3. REPLICATING HUMAN GESTURE SAMPLES 93

1 5 9
0

5

10

15

20

Er
ro

r(
%

)

Slow speed
$1 DTW $N $P

1 5 9

Number of Human templates

Medium speed

1 5 9

Fast speed

1 5 9
0

5

10

15

20

Er
ro

r(
%

)

Slow speed

1 5 9

Number of Synth− templates

Medium speed

1 5 9

Fast speed

1 5 9
0

5

10

15

20

Er
ro

r(
%

)

Slow speed

1 5 9

Number of Synth+ templates

Medium speed

1 5 9

Fast speed

Figure 5.6. Impact of synthetic samples on articulation speed. User-dependent tests.
Error bars denote 95% confidence intervals. Synth− and Synth+ denote synthesized
samples using the worst and best reconstructed human sample of each gesture, re-
spectively.

size of gesture vocabulary and input device. The experiment taking
into account different articulation speeds was conducted over the $1-
GDS and MMG gesture datasets, as they were the ones that provided
up to 3 articulation speeds: slow, medium, and fast. We tested the
$1-GDS dataset with $1 and DTW, whereas MMG dataset was tested
with $N and $P.

The user-dependent results are shown in Figure 5.6. Synthetic
samples were found to achieve very similar performance to that of
human samples. This observation was consistent for all articulation

94 CHAPTER 5. SYNTHESIZING PEN & TOUCH ON-LINE STROKES

speeds and number of templates, using either the best and worst re-
constructed human samples. Differences between human and syn-
thetic samples (either worst (Synth−) and best (Synth+) case exam-
ples) were not statistically significant (two-tailed paired t-tests with
Bonferroni correction, p > 0.05/6). It is interesting to note that $1
and $P perform quite well with just one loaded template; these recog-
nizers are about as twice accurate as DTW and $N, respectively. Then,
when the number of templates increases, differences fall away. With
all user’s templates loaded, all recognizers are very accurate (greater
than 99%).

User-independent test results are shown in Figure 5.7. As in user-
dependent, we noticed that synthetic samples provide similar perfor-
mance to that of human samples. This was also consistent for all
articulation speeds and number of templates, using either the best
(Synth+) and worst (Synth−) generation template. Differences be-
tween human and synthetic samples were not found to be statisti-
cally significant (two-tailed paired t-tests with Bonferroni correction,
p > 0.05/6). Again, $1 and $P performed better than DTW and $N
with just one loaded template. With all user’s templates loaded, all
recognizers provide similarly competitive advantage.

The next experiment evaluates the use of synthetic samples on a
large gesture vocabulary. Usually, when the number of gesture classes
in a dataset increases, the accuracy of a recognizer tends to decrease.
This is so because of potential collisions introduced by perceptually
similar classes. Some examples of such potential collisions occur in
this dataset with i and j; o, O, and 0; c and C, etc.

To test this hypothesis, we used the chars74k dataset. In chars74k
dataset 55 users provided 1 sample per gesture class, so we can fol-
low a procedure akin user-dependent tests. Given that this dataset
includes multistroke samples, we tested $N and $P. The results are
shown in Figure 5.8.

While differences between human and synthetic samples were not
statistically significant (two-tailed paired t-tests with Bonferroni cor-
rection, p > 0.05/2), the recognizers performed worse in comparison
to the results they achieved on the MMG dataset, as predicted; see
Figure 5.6. Overall, it was found that synthetic samples achieved bet-

5.2.2.3. REPLICATING HUMAN GESTURE SAMPLES 95

1 5 10
0

5

10

15

20

Er
ro

r(
%

)

Slow speed
$1 DTW $N $P

1 5 10

Number of Human templates

Medium speed

1 5 10

Fast speed

1 5 10
0

5

10

15

20

Er
ro

r(
%

)

Slow speed

1 5 10

Number of Synth− templates

Medium speed

1 5 10

Fast speed

1 5 10
0

5

10

15

20

Er
ro

r(
%

)

Slow speed

1 5 10

Number of Synth+ templates

Medium speed

1 5 10

Fast speed

Figure 5.7. Impact of synthetic samples on articulation speed. User-independent
tests. 95% confidence intervals are below 0.1%. Synth− and Synth+ denote synthe-
sized samples using the worst and best reconstructed human sample of each gesture,
respectively.

ter results. This is true for samples synthesized from the best recon-
structed samples as well as for samples synthesized from the worst
reconstructed samples. For instance, with one loaded template, error
rates surpassed 50% in case of human samples, while $N achieved
34.1% and 19.7% for the worst and best cases, whereas $P achieved
19.0% and 12.8%, respectively.

As usual, increasing the number of templates improved recog-
nition accuracy. Although, this time the best improvements were
achieved, by far, by the synthetic samples. Both $N and $P stabilized

96 CHAPTER 5. SYNTHESIZING PEN & TOUCH ON-LINE STROKES

  








Er
ro

r(
%

)
Human

$N $P

  

Number of templates

Synth−

  

Synth+

Figure 5.8. Impact of synthetic samples on a large gesture vocabulary (chars74k
dataset, 62 classes). 95% confidence intervals are below 1%. Synth− and Synth+

denote synthesized samples using the worst and best reconstructed human sample
of each gesture, respectively.

around 30% error using up to 9 human samples as gesture templates,
while achieving competitive results with synthetic samples, the error
ranging between 8.0% ($N, worst case) and 1.9% ($P, best case). These
results are encouraging and of potential interest for the design of ges-
ture sets that use a large number of classes as part of their gesture
vocabulary.

In addition, we wondered if there was any difference when users
draw gestures with different input devices. Luckily, the MMG dataset
allows us to test two conditions: finger and stylus. We conducted
both user-dependent and user-independent tests. The 3 articulation
speeds were averaged for these experiments. We followed the same
procedure as in the previous experiments. First, user-dependent tests
were performed.

The results are shown in Figure 5.9. This time, human samples
performed better that their synthetic counterparts for 1 loaded tem-
plate. This was found to be statistically significant for finger (two-
tailed paired t-tests with Bonferroni correction, p < 0.05/4) but not
for stylus with best case examples. Then, as soon as the number
of templates increased, all conditions performed equally and statis-
tically similar. With 9 templates, all recognizers achieved 99% of ac-
curacy for both devices, using either human or synthetic samples.

Then, user-independent tests were performed using the same pro-
cedure as in the previous experiments. The results are shown in Fig-

5.3. DISCUSSION 97

  










Er
ro

r(
%

)

Human
$N $P

  

Number of Finger templates

Synth−

  

Synth+

  










Er
ro

r(
%

)

Human

  

Number of Stylus templates

Synth−

  

Synth+

Figure 5.9. Impact of synthetic samples on input device. User-dependent tests. Er-
ror bars denote 95% confidence intervals. Synth− and Synth+ denote synthesized
samples using the worst and best reconstructed human sample of each gesture, re-
spectively.

ure 5.10. We observed the same pattern as in the previous user-de-
pendent experiments. With one loaded template, human samples
achieved better accuracy. This was found to be statistically significant
for both devices (two-tailed paired t-tests with Bonferroni correction,
p < 0.05/4). With 5 templates per gesture, the best case samples per-
formed equally similar to the original dataset samples. Then, with 9
templates loaded, all conditions performed equally and statistically
similar. Further, all recognizers achieved more than 99% of accuracy
for both devices, using 10 samples either of human or synthetic na-
ture.

5.3 Discussion

According to the Kinematic Theory, the actual variability in handwrit-
ing articulation might come from two sources: the action plan of the
user and the actual execution process. This is reflected by fluctuations
in the control parameters (t0, D, θ) and in the peripheral parameters

98 CHAPTER 5. SYNTHESIZING PEN & TOUCH ON-LINE STROKES

  






Er
ro

r(
%

)
Human

$N $P

  

Number of Finger templates

Synth−

  

Synth+

  






Er
ro

r(
%

)

Human

  

Number of Stylus templates

Synth−

  

Synth+

Figure 5.10. Impact of synthetic samples on input device. User-independent tests.
95% confidence intervals are below 1%. Synth− and Synth+ denote synthesized
samples using the worst and best reconstructed human sample of each gesture, re-
spectively.

(µ, σ). The µ and σ variations mimic peripheral noise, like a writer
who instantiates the same gesture intention and executes it with an
upper limb slightly different from one trial to another. The t0, D and θ
variations refer to central fluctuations that might occur in the geomet-
ric and temporal position of the virtual targets of the action plan from
one trial to another, reflecting for example attention changes. Combin-
ing both types of variations, the central and peripheral noise values
being empirically tuned, reflects real-life situations like performing
the same movement under different psychophysiological conditions.

The results of this chapter confirm previous works that report im-
proved accuracy when training with a dataset that is extended with
synthetic data [79, 80, 84]; e.g., from words or signatures collected
from various writers sitting in front of a digitizer tablet, to sentences
written on a whiteboard using full arm movements while standing up.
In other words, while in practice there might be inherent differences
between the generation of handwriting or gestures, it has been shown

5.4. CONCLUSION 99

that Sigma-Lognormal synthesized samples are actually reflective of
how users produce them. Such a generalization has lead to postulate
the underlying existence of a lognormality principle that guides hu-
man beings throughout their life, from the early steps of their motor
learning processes to increasing departure from the ideal lognormal
behavior, as the control of the fine motricity begins to decline with
age and illness [77]. Finally, we should mention that Plamondon et
al. have conducted several studies regarding human perception to-
ward synthetic samples, showing showed that users cannot tell real
and synthetic signatures apart [84].

Our work builds upon this fundamental notion, however we are
the first to use the Sigma-Lognormal model to study finger writing
behavior (see Section 5.2.2.3). This corroborates the prediction of the
Kinematic Theory, where it is theorized that every human movement
has a lognormal impulse response that results from the limiting be-
havior of a large number of interdependent neuromuscular networks.

5.4 Conclusion

This chapter has focused on synthetic stroke generation. Samples are
synthesized using lognormal-based deformations on velocity profiles,
which produces human-like results and ultimately helps a recognizer
to perform well on unseen data. The experiments have been con-
ducted using different types of recognizers. From template-matching
recognizers, which typically achieve competitive accuracy with few
training examples per gesture class, to HMMs, that is, recognizers
that require a large number of training samples.

6Applications

In this chapter we present 3 applications where the work of this thesis
has been applied to. Section 6.1 presents Escritorie, a prototype of
digital desk for interactive handwritten document analysis and text
recognition.

Then, Section 6.2 presents “Gestures à Go Go”, a web service, plus
an accompanying web application, for bootstrapping gestures based
on the work of Chapters 4 and 5.

Finally, Section 6.3 shows another example of an interactive appli-
cation used within the pen computing paradigm. In this case, using
the knowledge gained in Chapters 3 to 5, we study how translation re-
viewing can be done more ergonomically using a pen. This study was
performed under the CASMACAT (Cognitive Analysis and Statistical
Methods for Advanced Computer Aided Translation) project, funded
by the Seventh Framework Programme for Research and Technologi-
cal Development of the European Community.

6.1 Escritoire

Although digital data are increasingly more widely used, many doc-
uments are still on paper. Ideally, those documents should become
accessible as a machine-readable text for searching, browsing, and
editing. To bridge the gap between the analog and the digital, paper
handwritten documents need to be captured [126], analyzed and tran-
scribed.

102 CHAPTER 6. APPLICATIONS

We present Escritoire1, a system that takes a step into this direc-
tion. The user works in a digital desk environment that combines the
advantages of paper documents and the digital world, allowing an
intuitive, natural and comfortable way to annotate, modify and work
with both paper and digital documents in a seamless manner. This
desk is continuously monitored using two cameras. The first one al-
lows Escritoire to perform high-resolution scans. The second one is
used by the built-in gesture recognizer. Escritoire automatically pre-
processes the captured images, obtaining an adequate representation
for the subsequent steps. Finally, if the document is handwritten, a
multimodal interactive transcription process is carried out using a
tablet where the user interacts with the comfort provided by a pen.

The major challenges in designing and implementing such system
are: real-time performance, accurate detection of documents, reliable
detection and interpretation of the user gestures, preprocessing and
layout analysis of camera-based captured handwritten documents, in-
teractive transcription and customized interfaces design.

Below we comment on prior works that bear direct relevance with
the digital desk presented here.

6.1.1 RELATED WORK

There is a huge body of research on capture of paper documents.
Liang et al. [126] present a survey regarding the state-of-the-art on
the document capture and detection. Lampert et al. [127] presents a
prototype where capture is triggered by some pointing gestures and
performed using a consumer camera. Unfortunately, this system only
deals with printed documents, for which transcription can be car-
ried out using OCR. User interface design is not an easy task, mainly
because designers do not tend to follow any strict rule-based proce-
dure. Several studies on user-friendly interfaces, have been carried
out. Terry and Mynatt [128] presents a set of shortcomings in cur-
rent user interfaces along with some guidelines. Given that design
involves personal stylistic preferences, Eisenstein and Puerta [129]
present a system that applies an adaptive algorithm to interface de-
sign. Many works have been carried out on layout analysis and text

1Video demo at: https://www.prhlt.upv.es/showcase/htr/docs/video-HP.avi.mid.flv

https://www.prhlt.upv.es/showcase/htr/docs/video-HP.avi.mid.flv

6.1.2. INTERACTING WITH ESCRITOIRE 103

line segmentation. However, unsupervised segmentation quality does
not reach the acceptable levels needed by end-user applications in-
volving handwritten documents [130, 131].

6.1.2 INTERACTING WITH ESCRITOIRE

Escritoire interface combines real and digital objects. On the one
hand, there are physical objects, such as the different sheets of pa-
per to be captured, the tablet to perform interactive transcription, etc.
On the other hand, there are the different digital assets, such as the
digital folders or the GUI elements (see Figure 6.1).

We will present the system by following Alice—a hypothetical
user—while she uses the digital desk. Alice wants to transcribe a
handwritten document. So she places the sheet in the capture zone
(Figure 6.1a) and points with her index finger the capture button (Fig-
ure 6.1b). Escritoire captures and preprocesses the document, gener-
ating a better representation. Escritoire automatically detects that the
document is handwritten and proceeds to transcribe it. After this, Al-
ice decides to save the document for now. She aims with her index
finger at the digital document and moves it into one of the available
folders (Figure 6.1c).

Sometime later, Alice realizes that the system proposed transcrip-
tion was not entirely correct. So she aims with her index finger at
the folder to open it and extracts the saved transcribed document. Al-
ice points at the Tablet button (Figure 6.1b) to send the document to
the (physical) interactive transcription tablet (Figure 6.1d). When she
is happy with the result, she clicks the Return to Escritoire button at
the tablet interface and the document returns modified to the digital
desktop.

6.1.3 SYSTEM IMPLEMENTATION

A system comprising a digital desktop can be devised in many differ-
ent ways: a conventional screen providing interactions using a dig-
itizer tablet; or a screen projected in a real desk, where interactions
are provided using a digital pen; or directly work in a large desktop-
sized multi-touch screen. Figure 6.2a shows the prototype that we
have built. We decided to use a physical desk where the screen was

104 CHAPTER 6. APPLICATIONS

Digital
Folder

Digital
Folder

Digital

Document

Digital
Document

Paper

Document

Send
to

Tablet
Print Capture

Tablet
d

a
b

c

Figure 6.1. Escritoire user interface mock-up. (a) Capture zone where a real docu-
ment is placed to be digitized. (b) Action buttons: The first button, labeled on the
real interface with a tablet icon, allows the user to transfer a transcribed document to
the tablet to improve the transcription. The second one, tagged with a printer icon,
allows the user to print a copy of a digitized document. Finally, by pressing the but-
ton tagged with a camera and after a five-seconds countdown, any document located
in the capture zone will be digitized. (c) Documents can be stacked or arranged into
folders in Escritoire, similarly to traditional desktops. (d) A physical tablet used to
perform interactive transcription.

projected. In our opinion, this was the simplest and cheapest way to
create a prototype. Due to the distance between the desktop and the
projector, a short throw projector (InFocus IN1503) was chosen, allow-
ing us to display the proper image size. Two cameras were used: a
fixed-location high-resolution camera (Canon EOS 1100D) is responsi-
ble for capturing documents. This camera is zoomed and focused on
the capture zone (Figure 6.1a). This type of set-up provides us with
a more robust configuration (same light conditions, less geometric
distortions due to perspective, etc.), therefore simplifying the subse-
quent steps. A camera with a depth sensor (Microsoft Kinect) was used
to detect the finger gestures. Finally, the interactive transcription is
carried out using a Lenovo Thinkpad Tablet 2 instead of directly on the

6.1.3.1. GESTURE MONITORING AND DETECTION 105

(a) (b)

Figure 6.2. (a) Escritoire prototype showing two digitized documents. (b) A sheet of
paper near the capture zone, showing the five-seconds countdown.

desktop. This decision is based on previous experience. We realized
that, due to the minimum font size and the projector resolution, try-
ing to write directly on the desktop is cumbersome and inaccurate.

6.1.3.1 Gesture monitoring and detection

The Kinect of Escritoire monitors the work area searching for possi-
ble user gestures. To date, we use a simple set of gestures that are
performed using one or the two index fingers. The current set of ges-
tures includes:

Select: the system will select the item shown on Escritoire under the
finger.

Move: after selecting an item, the user can translate it by just moving
the hand around.

106 CHAPTER 6. APPLICATIONS

tdm
tdM

(a) (b)

Figure 6.3. (a) Maximum and minimum threshold for defining a pixel of interest.
tdm and tdM were empirically tunned. (b) Example (with n = 4) of convex hull for
different hand positions.

Rotate: pointing both index fingers to a document and rotating hands.

Zoom: pointing both index fingers to a document and pinch open or
close.

Since the set of gestures is performed with the index fingers, our
system must be able to detect them. The first step in order to achieve
this is to be able to differentiate the hands from the background. As
the virtual desktop is displayed over the desk surface, we could not
use any color-based technique (e.g., skin detection) to segment the
hands.

Here we used the depth map provided by the Kinect, which cap-
tures depth information under any ambient light condition. From this
depth image we need to isolate the pixels of interest (Figure 6.3a). We
will calculate for every pixel contained in the depth image if they are a
pixel of interest. Equation (6.1) provides the formal definition of pixel
of interest (Sij). We compute the depth median value for every pixel
(ηdij) during a period of 2 seconds. This way we can obtain a more
stable value, minimizing the influence of outlayers derived from the
sensor. Then, we calculate the difference between ηdij with respect to
the current depth value (cdij). If this difference is within a minimum
(tdm) and a maximum (tdM) threshold we can say that the current pixel
is a pixel of interest.

Sij =

{
True if tdm ≤ ηdij − cdij ≤ tdM

False otherwise
(6.1)

6.1.3.2. DOCUMENT CAPTURE AND MANAGEMENT 107

After segmenting the pixels of interest from the depth image, we
want to know whether a group of pixels of interest are a hand. Pre-
vious to this, we apply a closing to the image, to remove any possible
internal small hole and an opening, to remove any small noise object.
As a simplification, we will assume that the biggest volumes, with
a maximum of two, exceeding a certain area threshold, will be con-
sidered hands. This area threshold was empirically tunned to distin-
guish between noise and actual hands.

Once the hand—or hands—has been segmented from the back-
ground, the location of the index finger(s) must be found. We as-
sumed that the user is always interacting with the system in front
of the desk, thus the hands will always point forward. We also assume
that the user hand has only 3 different states: pointing with the index
finger, hand with the fingers clenched or flat.

Therefore, to distinguish between these cases we perform the fol-
lowing process. First, we compute the convex hull [132] of the con-
tours that we consider hands. Then we apply the following technique:
if the distance between the higher y-value vertex of the convex hull
contour and the next n y-value vertex is for any case greater than a
threshold dt, we will say that the highest y-value point of this contour
is the tip of an index finger (where n and dt are parameters to be opti-
mized). Otherwise, we assume that the user has the hand flat or with
the fingers clenched. Figure 6.3b illustrates this process. Once we
have found the tip of the index finger(s), a simple Nearest Neighbor
tracking algorithm was applied to track their consecutive positions.
After this, a Kalman filter [133] is applied to the tracked path(s) in
order to reduce the noise.

Finally, depending on the number of fingers that the system has
recognized and their position with respect to the desktop (located
over a document, a button, etc), we can clearly identify the user ges-
ture and react with the corresponding action.

6.1.3.2 Document capture and management

The document capture is carried out using a Canon EF-S 18-55mm f/3.5-
5.6 IS II objective. The capture is performed when Alice selects the
camera button. The system automatically will show the capture area,

108 CHAPTER 6. APPLICATIONS

Figure 6.4. From left to right: a paper document, its digital version shown on Es-
critoire and tablet.

where the sheet must be placed in order to be captured. Figure 6.2b
shows a captured document and the countdown. Alice can work with
the document on Escritoire once it has been captured. As previously
explained, there are several options: the document can be moved, ro-
tated and zoomed. In addition, documents can be archived in folders.

6.1.3.3 Handwritten Text Recognition

Once the document has been captured, it is automatically transcribed.
The HTR system employed here is the same as in Section 2.1.2. If Alice
is not satisfied with the result, she moves the document to the tablet
icon on the desktop and the document is transfered to the tablet to per-
form interactive transcription2 (see Figure 6.4). In this tablet, she inter-
acts with the system using handwritten text and stroke gestures—to
perform certain actions such as: delete, insert, etc.

2Demo available at: http://cat.prhlt.upv.es/iht/

http://cat.prhlt.upv.es/iht/

6.1.4. CONCLUSION 109

6.1.4 CONCLUSION

We have presented Escritoire, a pen computer prototype to manage
documents, where digital and paper documents coexist. Currently,
the system allows us to capture documents, organize documents or
perform interactive transcription.

Right now, interaction with documents is integrated using fin-
ger gestures. However, these finger gestures are very simple. Fur-
ther work regarding this topic is performed in the following section,
where we present a web application to easily design gesture sets, by
bootstrapping synthetic samples, that can be deployed with a ready-
to-use recognizer.

6.2 Gestures à Go Go

Gestures are increasingly becoming a predominant input modality
in today’s user interfaces (UIs). Gesture interaction is possibly one
of the most researched areas in Human-Computer Interaction (HCI),
with a long history that started as early as 1960, with the Sketchpad
project [134] and the RAND tablet [135].

Gestures can be mid-air (more prominent in gaming applications)
or stroke based. We are particularly interested in the latter type, mo-
tivated by the fact that stroke gestures are becoming more and more
relevant to mainstream products such as touchscreen-capable devices
like smartphones and tablets (such as the Escritoire tablet).

Stroke gestures have existed in the industry for decades. Early
examples of commercial products that successfully incorporated ges-
tures are, e.g., PDAs like the Palm Pilot or the Apple Newton, and the
Windows Tablet. These devices featured the Graffiti and Unistroke
shorthand writing systems, which used a single stroke Roman letter-
like gesture vocabulary. Today, stroke gestures are mostly used in
consumer devices for executing simple actions, such as pinching a pic-
ture to zoom in/out, swiping to reveal an options menu, or panning
to switch between apps. Nevertheless, stroke gestures are increas-
ingly being incorporated to facilitate random access to smartphone
contents, such as invoking a command hidden in an advanced set-
tings menu or quickly searching for a friend’s email in the contacts

110 CHAPTER 6. APPLICATIONS

list. Therefore, it is expected that stroke gestures will make a notable
impact in consumers’ lives.

In general, any application that is driven by gestures must rely on
some recognition-based techniques. These techniques often require
expert knowledge in pattern recognition or machine learning, some-
thing that is typically beyond the reach of many developers and UI
designers. Furthermore, recruiting participants, data collection and
labeling, etc. necessary for using these techniques are usually time-
consuming and expensive. Thus, it is important to investigate how to
empower developers to quickly collect gesture samples.

Here we present “Gestures à Go Go” (G3), a web service plus an ac-
companying web tool for bootstrapping stroke gesture samples based
on the kinematic theory of rapid human movements [66,89]. The user
only has to perform a gesture sample once, and G3 will generate from
tens to thousands of synthetic human-like samples.

This aims for creating better gesture recognizers, eliminating the
overhead of recruiting and data collection, and reducing the need
for expert knowledge in machine learning. Together with the synthe-
sized data, a number of gesture recognizers are available in different
programming languages, thus allowing developers to create a com-
petitive recognizer in a few clicks. As such, the outcome of G3 can be
directly incorporated into production-ready applications.

6.2.1 RELATED WORK

There is a huge body of research on gesture interaction. Over the past
few years, new touchscreen-based products have taken off rapidly,
boosting the popularity of stroke gestures as commands and sym-
bols. An excellent integrative review of the state-of-the-art research
on stroke gestures is provided by Zhai et al. [5]. Below we comment
on prior works that bear direct relevance to this application.

6.2.1.1 Gesture Boostrapping

Training data is the key factor to build a competitive gesture recog-
nizer. For instance, the Freehand Formula Entry System (FFES) sug-
gests 20–40 examples per symbol per user [136]. Koch et al. [137]

6.2.1.1. GESTURE BOOSTRAPPING 111

studied gesture recognition using a Nintendo Bluetooth Wiimote con-
troller as input, and found that 120 training patterns of accelerometer-
based data are a lower bound; below that threshold the error rate
increased dramatically.

A number of approaches are aimed at simplifying the process of
designing gesture sets. An interesting example is Gesture Script [138],
which allows developers to describe the structure of a gesture and its
parts. With this information, Gesture Script synthesizes new gesture
samples by changing the relative scale of each part and their rotation
angles. Unfortunately, Gesture Script can only deal with unistroke
gestures that are performed in a unique way. Besides, having to pro-
vide too detailed information for each gesture can be difficult and
time-consuming for the user.

Gesture Marks [139] allows users to access applications and web-
sites using gestures without having to define them first, by means
of crowdsourcing and the combination of gesture and handwriting
recognizers. Gestalt [140] supports the entire process of applying ma-
chine learning: implementing a classification pipeline, analyzing data
as it moves through that pipeline, and easily transitioning between
them. CrowdLearner [141] enables developers to quickly acquire a
usable recognizer for their specific applications by spending a mod-
erate amount of money (about $10) in a short period of time (about 2
hours).

Notable systems aimed at building gesture recognizers tailored
to developers and end-users include MAGIC [142, 143] and Gesture
Follower [144]. Both systems provide the user with a means of gener-
ating synthetic gesture samples in 3D space. MAGIC performs local
perturbations to the resampled points of a gesture, whereas Gesture
Follower introduce some variations to a gesture template using Vi-
viani’s curve formulation. These tools decrease the number of itera-
tions needed to build a fast and stable gesture recognition interface,
however there is no evidence that they can produce human-like sam-
ples. Further, these artificially generated samples usually perform
poorly since they are not sufficiently variable for high-quality train-
ing [80]. However, these prior projects demonstrate the ongoing im-

112 CHAPTER 6. APPLICATIONS

portance of and interest in improving gesture recognition by acquir-
ing large data samples.

6.2.1.2 Gesture Design Tools

Gesture design tools are well studied in the HCI community [145,146].
Example-based approaches like GRANDMA [22], GDT [147], Gesture
Coder [148], or Gesture Studio [149] allow developers to create and
test gestures by recording examples.

There are a number of similar systems tailoring end-users. For
instance, EventHurdle [150] is a visual gesture-authoring tool to sup-
port designers’ explorative prototyping. It supports remote gestures
from a camera, handheld gestures with physical sensors, and touch
gestures by utilizing a touchscreen. Also, designers can visually de-
fine and modify gestures through interaction workspace and graphi-
cal markup language with hurdles. A CAPpella [151] is another pro-
gramming by demonstration environment intended for end-users. It
allows users to program their desired behavior without writing any
code, by demonstrating it to the system and by annotating the rele-
vant portions of the demonstration. GestIT [152] allows declarative
and compositional definition of gestures for different categories (e.g.
multitouch and full-body gestures).

Other tools like iGesture [153] and InkKit [154] offer several al-
gorithms through a high-level interface. However, they are more in-
tended for recognition benchmarking. In this line, Beuvens and Van-
derdonckt [155] devised a desktop application for facilitating the in-
tegration of gestures in UIs by describing the roles of the gesture spe-
cialist and other stakeholders involved in the development life cycle.
G3 preserves these core interactions, though its goal goes further.

6.2.1.3 Gestures as A Service

To close this related work section, we should mention a number of
previous works that offered gesture development over the Web. First,
Seghbroeck et al. [156] described WS-Gesture, a framework that al-
lows users to control different devices based on the DPWS (Devices
Profile Web Services) standard. Although an important piece of the

6.2.2. G3 WEB SERVICE 113

framework, gesture recognition itself was not the topic of their re-
search.

Second, Vatavu et al. [157] developed Gesture Profile for Web Ser-
vices (GPWS), an event-driven architecture based on the service-ori-
ented architecture (SOA) standard. GPWS focuses on delivering ges-
ture recognition services, for which a user must provide the data re-
quired to train a recognizer.

Third, MAGIC 2.0 [158] is a web-based prototype that allows users
to interface with the MAGIC framework [142]. Users can design mo-
tion gesture datasets while testing for and preventing false positives,
which is important for sensor-based prototypes, as the user may ac-
cidentally trigger unintended gestures.3 Thus MAGIC is related to
gesture classification systems, instead of gesture bootstrapping. G3
fills this gap and optionally allows for quickly creating a ready-to-
use, simple gesture recognizer that is suitable for use on prototypes
in different programming languages.

6.2.2 G3 WEB SERVICE

The web service4 was designed with simplicity and ease of use in
mind. Therefore, a single URL is made available as endpoint, accept-
ing: the number of desired synthetic samples (10 by default), the de-
gree of gesture variability (ξ, 1.0 by default) and an example gesture.

For instance, the following HTTP request will return 15 synthetic
samples having a relatively high variability degree:
POST / synthesize HTTP /1.1
Host: http :// g3. service .url
Content -Type: application /json

{ " gesture ": "{· · ·}", " num_samples ": 15, " variability ": 0.75 }

where "gesture" points to a JSON-formatted string representing a
stroke sequence:
{ "id1 ":[[x1 ,y1 ,t1]· · ·[xM ,yM ,tM]], · · ·, "idN ":[· · ·] }

3This phenomenon is related to the well-known “Midas Touch problem” in eye-
gaze interaction: the sensors cannot be used directly as a pointer device, because the
sensors are always “on.”

4More details at https://g3.prhlt.upv.es/about/

114 CHAPTER 6. APPLICATIONS

Each stroke is a tuple of 2D coordinates plus timestamp, and has an
ID in order to make the format compatible with multitouch gestures.

We should mention that the ξ parameter is just meant for fine-
tuning while operating the G3 interface: while 1.0 is a reasonable
choice (it provides more diverse gesture exemplars), setting it to 0.0 is
useful for research (e.g. inspect sample reconstruction, test and com-
pare different noise generation techniques) or user adaptation pur-
poses (replicating the same sample is equivalent to weighing its im-
portance in a dataset).

On the other hand, if no timestamps are available, the web ser-
vice accepts an optional third parameter to set a sampling frequency
(200 Hz by default). For instance, assuming that in the previous exam-
ple the coordinates do not have associated timestamps but we know
they were acquired at 100 Hz, we can specify such sampling rate as
follows:

POST / synthesize HTTP /1.1
Host: http :// g3. service .url
Content -Type: application /json

{ " gesture ": "{· · ·}", " num_samples ": 15,
" variability ": 0.75 , "rate ": 100 }

The web service returns a JSON-encoded string:

HTTP /1.1 200 OK
Connection : close

{
" success ": true , " error_code ": null ,
" samples ": [gesture01 , · · ·, gesture15]

}

The success property informs about the bootstrapping result: true
if success, false otherwise. Each synthesized gesture sample has the
same number of strokes as the original gesture, and is resampled ac-
cording to the user’s articulation speed5 Finally, JSONP requests are
possible, in order to enable cross-domain communication.

5Estimated either from the timestamps or the optional rate parameter.

6.2.3. G3 WEB APPLICATION 115

6.2.3 G3 WEB APPLICATION

The web service alone might not be of practical use for novice devel-
opers or UI designers, as they may not be familiar with machine learn-
ing techniques or gesture recognition algorithms. For that reason, we
release a web-based application6 interfacing with the web service that
allows users to make the most of its potential. A detailed overview is
given in the next section.

The web application incorporates a number of template-matching
recognizers (see next section), so that it is possible to build a working
prototype together with the synthesized data. Further, being open
source, our application allows anyone interested to contribute to im-
proving it. For instance, an envisioned task is that of including a par-
ticular gesture recognizer in a particular programming language. To
do so, currently a developer must put the source code of said rec-
ognizer in a special folder inside the application’s working directory
together with a g3manifest.json file. The following is an example:

{
"name ": "NN -DTW", " description ": "NN classifier with DTW",
" author ": "mlpy", " version ": "3.4.0" , " language ": " Python ",
" website ": "http :// example .com/dtw /",
" capabilities ": [" unistrokes "],
" preprocessor ": "/ path/to/file"

}

Here, the interesting part is the file indicated in the preprocessor
property. This file takes as input a gesture set in JSON format and
outputs a working gesture recognizer in a ZIP file. The preprocessor
instructs our tool how to build the recognizer, e.g. feeding a tem-
plate library with the new samples provided or even training a so-
phisticated classifier. Thus, our tool abstracts away the recognizer’s
implementation. The capabilities option provides additional infor-
mation about the recognizer; e.g. whether it can deal with multistroke
gestures or if it only targets unistroke gestures. This is used to inform
the user prior selecting a combination of recognizer plus program-
ming language (see Figure 6.5).

116 CHAPTER 6. APPLICATIONS

a b

c

d

e

f g

Figure 6.5. G3 user interface. a: Drawing area. The dot indicates the starting point
of each gesture pen-stroke. b: Options area. Besides the number of gestures to gen-
erate, advanced options allow the user to indicate e.g. a desired variability degree.
c: Collection area. Each gesture is presented as an ordered list, with the possibility
of adding or removing gesture examples. d: Export area. The user can optionally
export a gesture recognizer available in different programming languages. e: Import
area. A JSON file comprising a collection of gesture examples can be submitted. f:
Reconstruction area. A reconstruction of the user gesture is used for later synthesis.
g: Synthetic gestures area. Generated samples appear here.

6.2.4 INTERACTING WITH G3

Like prior example-based systems, our web application allows devel-
opers to quickly create a gesture set plus a suitable gesture recognizer.
However, within G3 interface the developer simply demonstrates one
example of each gesture. The web application currently supports
unistroke, multistroke, and multitouch gestures drawn on a 2D can-
vas. Below we introduce our tool by following a developer, Alice, as
she creates a set of customized gestures. Alice needs to build a recog-
nizer that handles 5 different gestures in her application.

6Demo at https://g3.prhlt.upv.es/

https://g3.prhlt.upv.es/

6.2.4.1. EXAMPLE-BASED DEMONSTRATION OF GESTURES 117

6.2.4.1 Example-based Demonstration of Gestures

For each gesture, Alice records just one example by drawing on the
web canvas. We are not aware of any other tool that requires such a
small user intervention at this time. Next, G3 verifies that the gesture
data is of enough quality for later synthesis. It is considered so when
SNRv ≥ 15 dB (see Section 4.1.4). When the SNRv of the provided ges-
ture example is below that threshold, G3 informs Alice so that she can
draw the gesture again. The reasons why a gesture might not achieve
a proper SNRv include: too fast-paced execution (low number of cap-
tured points), under-resourced hardware (e.g. an old smartphone), or
simply a symptom of possible problems in the user’s motor control
system [77].

6.2.4.2 Synthesizing Additional Examples

Once a gesture has been drawn, Alice chooses the desired number of
samples that will be synthesized as well as the degree of variability
for such synthetic samples. Next, she clicks on the Submit button and
G3 displays a list with the synthetic gesture samples.

6.2.4.3 Iterative Refinement

Alice does not like 2 of the synthesized gestures, so she clicks on Re-
move icon attached to each gesture and requests 2 additional samples.
When she is happy with the result, she clicks on the Store button and
the samples of the current gesture are saved. The original hand-made
gesture is also stored together with the synthetic samples.

6.2.4.4 Exporting Gesture Data

After gesture synthesis, Alice immediately has a gesture set of an ar-
bitrary size (e.g., 20 samples for each of the 5 gestures provided, 100
samples overall). By clicking on the Export button, the data are ex-
ported as a JSON file. G3 will remember the generated gesture set, in
case Alice wants to modify some of the gestures later.

Alice also decides to try a number of the recognizers provided by
the G3 interface, so she selects the desired combination of recognizer

118 CHAPTER 6. APPLICATIONS

plus programming language and clicks on the Export button. As a re-
sult, Alice gets a recognizer together with the synthesized gesture set.
G3 currently features the $ family and DTW in different programming
languages (JavaScript, ActionScript, Python, C#, Java, C++, PHP),
which are well-suited for experimentation by developers and UI de-
signers. Excepting JavaScript, not all combinations of recognizer plus
programming language are available at this time.

6.2.4.5 Incorporating a Recognizer

In case a recognizer is created within G3, incorporating it in the devel-
oper’s application is analogous to prior works [138, 141, 148]. Alice
will add the recognition module containing the implemented algo-
rithms and the gesture files as created and exported from G3. We have
decided not to incorporate recognizers that require extensive training
because such approaches do not fit our desire of quickly providing
users with a simple and ready-to-use gesture recognizer.

6.2.4.6 Importing Gesture Data

Alice remembers that some time ago she downloaded a small dataset
consisting of 2 examples per gesture, 16 different gestures in total.
Now she wants to generate a bigger dataset to train a custom recog-
nizer, so she prepares a JSON file according to the following specifica-
tion:

{
"a gesture label ": [gesture01 , · · ·, gestureN],
. . .,
" another gesture label ": [gesture01 , · · ·, gestureN]

}

where each gesture follows the format described in subsection 6.2.2.
She then clicks on the Upload button and the collection module gets
updated (Figure 6.5, D). Next, she goes through each imported ges-
ture and requests the desired number of samples. As previously com-
mented, if some of the uploaded samples were reconstructed with
SNRv < 15 dB, G3 interface will inform Alice. Finally, she clicks on
the Export button and she gets delivered the synthesized dataset, and
optionally an accompanying gesture recognizer.

6.2.5. DISCUSSION 119

6.2.5 DISCUSSION

The fundamental advantage of G3 over other approaches is that the
user just needs to draw one example of each gesture. Then, samples
are synthesized using lognormal-based deformations on velocity pro-
files, which produces human-like results and ultimately helps a rec-
ognizer to perform well on unseen data.

With G3, the user can request more or less diverse samples, ac-
cording to the ξ parameter. However, we should mention that such
parameter is just for fine-tuning. This is so because it has been shown
that generally people tend to perform gestures consistently and it is
hard to manually introduce variation [138]. That said, we believe that
practitioners would use ξ = 1.0 most of the time, as it provides more
diverse gesture exemplars, whereas researchers might want to exper-
iment with other values.

In most interactive applications, a gesture is generally submitted
as a stream of asynchronous timestamped events. Interestingly, be-
cause G3 has access to a model of the original human gesture, it can
return reconstructed samples in a variety of ways, e.g., unevenly or
uniformly distributed coordinates either in space or time. Right now
G3 transforms the original stream into constant frequency; i.e., the
resulting synthesized coordinates are uniformly distributed in time.
This allows to fix downsampled pen-strokes that were acquired with
under-resourced hardware; see e.g. the last 2 examples of human-
made gestures in the MMG dataset (Figure 5.3). Ultimately, this ap-
proach may have a significant impact on the design of template-based
gesture recognizers, since some preprocessing steps prior to recogni-
tion (e.g. resampling) could be omitted.

We should point out that a synthesized gesture has the same num-
ber of pen-strokes as the original gesture after reconstruction, because
G3 uses only 1 example for bootstrapping, aimed at unburdening the
user. While this is not a limitation for synthesizing unistroke ges-
tures (for obvious reasons), one might want synthesized multistroke
gestures to have a different number of pen-strokes than their human
counterparts. If so, the user can simply provide another example of
the same gesture executed with a different number of pen-strokes.

120 CHAPTER 6. APPLICATIONS

An actual limitation of our current implementation is related to
temporal performance. While G3 actually does not mind generat-
ing either ten or thousand gesture samples from one given exam-
ple, the payload resides in the reconstruction process, which is pro-
portional to the number of points (pen-stroke-wise) and the number
of pen-strokes. For instance, generating 1,000 samples of each ges-
ture in the $1-GDS dataset took on average 68.7% of the processing
time (SD=13.1%) in reconstructing each human sample. The same
procedure took a bit more time in the MMG dataset (82.1% ± 16.5%)
since there are multistroke samples. Results with the chars74k dataset
stayed in between (76.1% ± 15.5%) since there are less multistroke
samples than unistrokes.

6.2.6 CONCLUSION

G3 is an intuitive web application that offers active design exploration
by prototyping gesture datasets and deploying them with ready-to-
use recognizers. At the moment, G3 can only process 2D gestures.
Thus, in future work we would like to extend it for processing 3D
gestures, derived from e.g. accelerometers, Kinects, Wii controllers,
and similar devices.

6.3 Interactive Translation Reviewing Using a Pen

This section shows another example of an interactive application used
within the pen computing paradigm. In this case, we focus on how
translation reviewing can be done more ergonomically using a pen.
This work was developed under the CASMACAT project.

The objective of this project was to build the next generation trans-
lator’s workbench to improve productivity, quality, and work prac-
tices in the translation industry. Different cognitive studies were car-
ried out of actual translator behavior, based on key logging and eye
tracking. The acquired data was examined for how interfaces with en-
riched information are used, to determine translator types and styles,
and to build a cognitive model of the translation process.

Based on insights gained in these studies, novel types of assistance
to human translators were developed. One of these was the use of a

6.3.1. FIELD EVALUATION 121

R01 R02 R03

Years of translator training 4 4 5
Years of professional experience 8 3 31
Reviewing experience ! ! !

Have you ever used a pen for reviewing? % % %

Table 6.1. Profile of the reviewers.

pen in a reviewing scenario, where the user is likely to introduce less
changes. Previous works have shown that, from the user viewpoint,
the use of a pen is better than a keyboard when there is pointing,
writing or drawing involved [159–161].

The objective here was to study how to take advantage of the dif-
ferent contributions of this thesis to improve the performance of the
reviewing reviewing system using a pen.

6.3.1 FIELD EVALUATION

The reviewers were sitting in front of a computer screen and had
a WACOM tablet with a pen. Reviewers were supposed to amend
translation mistakes using the pen using handwritten text and a set
of gestures—deletion, insertion and undo—. Before starting the eval-
uation, the reviewers were briefly instructed on how to use the pen.

Two rounds of pen reviewing with 3 different reviewers were per-
formed. Table 6.1 shows information about the 3 reviews. The first
round was performed using an on-line HTR system similar to the
one presented in Section 2.1.1, where interactions were provided at
word level as in Section 3.1.3. Gesture recognition was performed us-
ing MinGestures [30]. HMMs were trained with the the IBM-UB-1
dataset, whereas the EMEA dataset [162] was used to train 2-gram
language models, with a 5,000 words as vocabulary. In order to im-
prove recognition rates, the system was writer-adapted using 100 dif-
ferent words prior to the experiment as shown in Section 5.2.2.2. On
the other hand, the second round was performed employing a com-
mercial handwritten text recognizer.

122 CHAPTER 6. APPLICATIONS

Figure 6.6. CASMACAT pen reviewing user interface.

Then, a baseline scenario was set, were the reviewers performed
the corrections using a keyboard.

6.3.1.1 Results

Reviewers’ feedback was collected through talk-aloud interviews. We
started each interview with an informal conversation, where we asked
each reviewer about their subjective perception of the pen recognition
accuracy. In the first round of experiments, users estimated that pen
recognition accuracy was about 50%, whereas the accuracy for the
second round of experiments was 80% recognition. After this infor-
mal start, we continued collecting reviewers’ feedback through these
three basic questions:

• How would you evaluate revision using a pen: 1 (very dissatisfy-
ing) - 5 (very satisfying)?

6.3.1.1. RESULTS 123

• According to your own personal opinion, what are the advan-
tages and disadvantages of using a pen for revision (as com-
pared to using a keyboard)?

• How would you suggest to make the pen interaction more suc-
cessful (more productive)?

Two out of the three reviewers in the study evaluated the use of
a pen for reviewing purposes as 2 (dissatisfying), whereas the third
rated it as 3 (neutral). When asked to enumerate possible advantages
and disadvantages of reviewing using a pen, all participants men-
tioned recognition errors as the main disadvantage, together with the
time spent to handwrite their corrections. R02 said: “Despite 100%
successful recognition using a pen, I think I will never be as fast as typing”.
As a way to make pen interaction more successful, R01 suggested to
make the pen window bigger in order to have more freedom of move-
ment. The same participant also suggested to increase the separation
between words in the pen reviewing mode in order to make the ges-
ture for insertion more accurate and less error-prone. R02 and R03
mentioned that user experience can be improved if the pen could be
directly used on the screen instead of having to use an external tablet
to handwrite while looking at the computer screen. R01, R02 and R03
perceived gestures as very useful. In the second round, the users no-
ticed that the handwriting recognizer was more accurate. However,
they did not change their opinion with respect the pen as a tool for
reviewing.

The results of the different scenarios can be found in Figure 6.7.
As we can see, reviewers spent more time in the first pen round than
in the second. This is probably due to the fact that the recognizer
committed more errors and, thus, reviewers had to spend more time
retrying to introduce the correct text. Second, we can observe that,
for reviewers R01 and R02, pen reviewing was just a bit slower than
the baseline—using a keyboard—. Although we had expected that
for small number of correction pen could be faster, it was also ex-
pected that handwriting would be slower than typing. In addition,
in handwriting one must wait the for the server recognition response.
In average, the server took 355ms to return the answer, whereas in
95% of the cases is was lower than 800ms, which could explain part

124 CHAPTER 6. APPLICATIONS

R01 R02 R03
0
1
2
3
4
5
6

Reviewer

tim
e

(s
)

Keyboard Pen Round 1 Pen Round 2

Figure 6.7. Time (in seconds) that reviewers spent on each segment normalized by
source character. The time accounts for the total time spent in the segment from the
moment it was opened until it was closed. Segments that were not modified are not
considered in this plot.

of the difference between pen and keyboard. Also, we should note
that pen only allows to work at word level at this moment. However,
keyboard interactions can be at subword level. For example, we ob-
served that aripiprazole was frequently replaced by aripiprazol.
When using the keyboard, the correction consisted in just one mouse
movement and click followed by a character deletion with the key-
board. Conversely, the whole word had to be written with the pen.
Taking all that into account, the differences between keyboard and
the second round of pen are rather small for R01 and R02. In con-
trast, R03 performed very bad with the pen. R03 was not only the
reviewer with most experience (by large) but also the one who com-
plained most about the pen system limitations. Thus, we deduce that
for some reason R03 did not get used to that kind of interaction.

One of our assumptions was that working with the pen should
allow for starting with the corrections earlier. Thus, for each segment
we computed the time from the moment the segment was opened to
the first interaction. The differences in the medians7 indicate that R01
took 302 ms more with pen than with keyboard, whereas R02 and R03

7Medians values are reported, instead of the means, since they are more robust.

6.3.2. LABORATORY EVALUATION 125

used 520ms and 3s more, respectively. As expected, R03 was the one
who performed worst.

6.3.2 LABORATORY EVALUATION

Our on-line HTR system did not performed as well as expected, there-
fore we decided to create a dataset from the pen evaluation in the sec-
ond round to run lab experiments that could identify the problems
of our system. Thus, we analyze and compare here the performance
of our recognizer and a commercial HTR system in order to close the
gap observed during the evaluation. The pen-strokes captured in the
second round of pen reviewing were manually annotated and thereby
built into an experimental dataset. Then using this dataset, we report
results of using the contributions of this thesis to in order to improve
the pen recognition accuracy.

6.3.2.1 Experimental Setup

The target was to recognize 266 handwriting samples obtained from
the second round, performed by 3 different reviewers. Three different
setups were used, including the commercial one used in the second
round.

The configuration of our system was the same as the one used
in Section 6.3.1, except for the language model. Two different lan-
guage models were tested in these experiments. LM1 is a closed 2-
gram language model, consisting of 5,080 words, which included the
5,000 most frequent words in training plus 80 unseen test words. The
purpose of this language model is to make sure that all the words
which are going to appear in the test set—all the words which the
writers actually wrote—have a chance of being recognized. The 2-
gram language model was trained taking into account the frequency
of occurrence of the words which appear in training and it is uniform
for the remaining words. On the other hand, LM2 is an open vocabu-
lary 2-gram language model, which included the 2,000 most frequent
words in training and the 5,000 most probably words from the source
sentences, altogether 6,072 words. The rate of running out of vocab-
ulary words is 15.4%. Therefore, this is the minimum error which
could ever be achieved using a word-based recognizer.

126 CHAPTER 6. APPLICATIONS

System Error

Commercial 14%
Commercial (*) 12%

LM1
Initial Result 22%
Writer Adaptation 15%
Writer Adaptation (*) 11%

LM2
Writer Adaptation 33%
Writer Adaptation (*) 26%

Table 6.2. E-pen handwritten text recognition results. (*) indicates case insensitive.

6.3.2.2 Results

Results are shown in Table 6.2. In this case, results are better and
the improvement with the writer-adapted system is bigger. On the
other hand, since the recognizer is word based, in the open vocabu-
lary experiments there is a minimum possible error of 15.4% because
of the 80 test words which can never be recognized. Therefore, results
should be considered better than they appear. In fact it is expected
that many of the out-of-vocabulary errors can be recovered by using
a word-based recognizer which can also work at the character level
as a back-off method.

6.3.3 DISCUSSION

The evaluation of the pen as a reviewing tool has provided us with
very valuable information. First, we have discovered that pen inter-
actions for reviewing needs a specific user interface. Probably, a pen
on a tactile screen would have been a much better choice since users
can directly place the pen where they have their sight fixated. This
fact was already acknowledged by reviews in the reviewers’ feedback.
Previously to the evaluation we had argued whether this could be a
problem or not, and we had arguments in favor and against both,
tablet and digitizer pen. Indeed, we had performed an early test with
a Lenovo tablet with pen technology. However, that suggested that

6.3.4. CONCLUSION 127

the CASMACAT interface was too resource hungry for that kind of de-
vices. Thus, a digitizer tablet with a desktop computer was our only
choice. It would be interesting to see if their views become more pos-
itive after some more hours of interaction with the pen and changing
the setup to a tactile screen.

Secondly, reviewers have shown their preference for a full-screen
writing experience, as sometimes they found themselves writing on
the border of the pen area. On the other hand, font sizes should be
bigger and word separation wider so as to allow the user to be more
precise when issuing gestures. Not only that, but the GUI should be
redesigned to fit reviewers’ needs. Furthermore, the HTR recognition
accuracy is very important, given that is the main factor why produc-
tivity suffers when compared to the keyboard. Users are typically
willing to accept error rates up to about 3% before deeming the tech-
nology as too encumbering [163]. On the positive side, gestures were
perceived as very useful., suggesting that a mixture of gestures and
keyboard could be a good choice.

6.3.4 CONCLUSION

We have tackled the problem of the reviewer under two perspectives.
First, we have studied the use of the pen to correct translator’s mis-
takes. Second, we have analyzed the reviewers’ corrections in order
to find patterns that could be performed automatically.

7Conclusions

The work presented in this thesis has focused on improving the pen
computer recognition accuracy. A pen computer is computer that al-
lows a user to interaction with it by using a pen or touch-based inter-
actions. This interaction methods are the most precise and comfort-
able, as well as the most flexible. However, pen and touch interactions
require a recognition step to decode their non-deterministic meaning.
In this thesis we have focused first on investigating how to take ad-
vantage of interaction-derived information to improve the accuracy
of the pen computer recognizer, particularly in the context of inter-
active handwritten text recognition. Then, we have focused on the
study of human movements—in particular, hand movements—from
a generation point of view using the kinematic theory of rapid human
movements. Understanding how the human body generates move-
ments is important in the development of a recognition system, par-
ticularly to understand the origin their variability. Finally, we have
investigated the benefits of using synthetic data to enlarge the train-
ing data.

7.1 Scientific Contributions

The different contributions of this thesis have been materialized in
publications. As a result, 2 journals (plus 1 more submitted) and 5
conference papers have been generated. Besides these publications,
an additional journal publication has been published with content
closely related to this thesis. Below we sum up the different scientific
contributions.

130 CHAPTER 7. CONCLUSIONS

7.1.1 INTERACTIVE HANDWRITTEN TEXT TRANSCRIPTION

Previously, multimodal interaction had been studied only at whole-
word level. However, character-level pen-stroke interactions may lead
to more ergonomic and friendly interfaces. Empirical tests show that
this approach can save significant amounts of user effort with respect
to both fully manual transcription and non-interactive post-editing
correction. Multimodal interaction at character-level was studied in:

• Daniel Martín-Albo, Veróncia Romero, Alejandro H. Toselli and,
Enrique Vidal. Character-level interaction in multimodal com-
puter-assisted transcription of text images. Iberian Conference on
Pattern Recognition and Image Analysis (IbPRIA), 2011, pp. 684-
691.

Previous work was extended with fine-grained multimodal inter-
actions that allow taking advantage of interaction-derived context to
signicantly improve feedback decoding accuracy. This was presented
in:

• Daniel Martín-Albo, Veróncia Romero, Alejandro H. Toselli and,
Enrique Vidal. Multimodal Computer-Assisted Transcription of
Text Images at Character-Level Interaction. International Journal
of Pattern Recognition and Artificial Intelligence (IJPRAI), 2012.

Finally, a more natural way of interaction, using pen-strokes form-
ing character sequences was presented in:

• Daniel Martín-Albo, Verónica Romero, and Enrique Vidal. In-
teractive Off-line Handwritten Text Transcription Using On-line
Handwritten Text as Feedback. International Conference on Doc-
ument Analysis and Recognitio (ICDAR), 2013.

The pen computer prototype Escritoire was published in:

• Daniel Martín-Albo, Verónica Romero, and Enrique Vidal. Es-
critoire: A Multi-touch Desk with e-Pen Input for Capture, Man-
agement and Multimodal Interactive Transcription of Handwrit-

7.1.2. HUMAN MOVEMENT MODELING 131

ten Documents. Iberian Conference on Pattern Recognition and Im-
age Analysis (IbPRIA), 2015, pp. 471-478.

7.1.2 HUMAN MOVEMENT MODELING

A new approach to better extract and estimate the lognormal primi-
tives and parameters was developed. Through a comprehensive eval-
uation using 32,000 words from a public database, we show that our
approach greatly improves the state-of-the-art extractor. This work
was presented in:

• Daniel Martín-Albo, Réjean Plamondon and, Enrique Vidal. Im-
proving Sigma-Lognormal Parameter Extraction. International
Conference on Document Analysis and Recognitio (ICDAR), 2015.

Web users often have a specific goal in mind comprising various
stages that are reflected, as executed, by their mouse cursor move-
ments. Therefore, is it possible to detect automatically which parts
of those movements bear any intent and discard the parts that have
no intent? We analyzed more than 10,000 browsing sessions compris-
ing about 5 million of data points, and compared different segmenta-
tion techniques to detect discrete cursor chunks that were then recon-
structed with the Sigma-Lognormal model. Our main contribution is
thus a novel methodology to automatically tell chunks with and with-
out intention apart. We also contribute with kinematic compression,
a novel application to compress mouse cursor data while preserving
most of the original information. This work was published in:

• Daniel Martín-Albo, Luis A Leiva, Jeff Huang, Réjean Plamon-
don. Strokes of insight: User intent detection and kinematic
compression of mouse cursor trails. Information Processing &
Management, 2016.

7.1.3 SYNTHESIZING PEN & TOUCH ON-LINE STROKES

We investigate the effect of adding synthetic samples in a multi-writer
training dataset in:

132 CHAPTER 7. CONCLUSIONS

A method for the automatic generation of synthetic handwriting
was developed. To generate a new synthetic sample, first a real word
is modelled using the Sigma- lognormal model. Then the Sigma-
lognormal parameters are randomly perturbed within a range, intro-
ducing human-like variations in the sample. The experimental results
confirm the great potential of the Kinematic Theory applied to writer
adaptation. This work was presented in:

• Daniel Martín-Albo, Réjean Plamondon and, Enrique Vidal. Train-
ing of On-line Handwriting Text Recognizers with Synthetic Text
Generated Using the Kinematic Theory of Rapid Human Move-
ments. International Conference on Frontiers in Handwriting Recog-
nition (ICFHR), 2014.

Training a high-quality gesture recognizer requires providing a
large number of examples to enable good performance on unseen, fu-
ture data. However, recruiting participants, data collection, and label-
ing, etc., necessary for achieving this goal are usually time consuming
and expensive. Thus, it is important to investigate how to empower
developers to quickly collect gesture samples for improving UI usage
and user experience. In response to this need, we introduce Gestures
à Go Go (g3), a web service plus an accompanying web application
for bootstrapping stroke gesture samples based on the Kinematic The-
ory. This work was presented in:

• Luis A. Leiva, Daniel Martín-Albo, and Réjean Plamondon. Ges-
tures à Go Go: Authoring Synthetic Human-like Stroke Ges-
tures Using the Kinematic Theory of Rapid Movements. ACM
Transactions on Intelligent Systems and Technology, 2015.

Finally, we quantify the variability of synthetic gestures in:

• Daniel Martín-Albo, Luis A. Leiva, and Réjean Plamondon. Does
the Kinematic Theory of Rapid Human Movements Produce Ac-
tual Human-like Stroke Gestures? Interacting with Computers,
2016. In revision.

7.2. FUTURE WORK 133

7.2 Future Work

Finally, we identify the future research directions we intend to explore
to extend the work presented in this thesis.

With respect to interactive transcription, there is still room for
improvement. So far, if the feedback is provided by means of pen-
strokes, the recognition is carried out using a two-step approach as
seen in Section 3.1.3. Pen-strokes are decoded into the most probable
sequence of characters and then this information is used to form a
prefix, which is used by the off-line HTR system to provide a better
transcript. However, this approach is too simplistic given that this ap-
proach can be formulated in only one step, where both the main and
the feedback data stream help each-other to optimize overall accuracy.
For example, Confusion Networks have been previously studied for
the combination of handwriting and speech recognition with good
results [164, 165]. Results show that several errors can be corrected
by combining the off-line on-line HTR systems outputs, reducing the
required human effort, and allowing to speed up the transcriber task.

The Kinematic Theory provides a well-established and solid frame-
work for the study of the production of human movements and in
previous works it has been shown that a computer mouse is reliable
enough to be considered as a velocity acquisition device [166]. Yet to
date, the Sigma-Lognormal model has not been used to study mouse
cursor movements on websites. There has never been any study into
treating cursor trails as the result of complex human motor control
behaviors. After all, given that a mouse cursor movement is derived
from a human movement, it makes sense to use the Sigma-Lognormal
model to study user intent on websites from mouse cursor trails.

Moreover, hand-held touch-capable devices have become one of
the most popular and fastest growing consumer products. It seems
logical therefore to think of such devices as Personal Digital Body-
guards (PDBs), in charge for example of biometrical, biomedical, and
neurocognitive (active) monitoring. However, the realization of this
vision is a difficult challenge. Indeed, handwriting entails complex
neuromotor skills. Producing a handwritten message requires the
performance of numerous cognitive tasks leading to the production
of words from the motor action plans that have been learned over the

134 CHAPTER 7. CONCLUSIONS

years. According to the Kinematic Theory, these plans activate spe-
cific neuromuscular networks to produce a given pen tip trajectory
by combining lognormal strokes, the fundamental units of handwrit-
ing movements, and superimposing them in time.

Most of the research regarding this theory has been done in well-
controlled protocols and experimental setups, using standard digitiz-
ers characterized by their stable sampling frequency and high spa-
tial resolution. One practical question that emerges when it comes to
making a technology transfer toward hand-held devices (e.g. tablets,
phablets, smart-phones...) is the following. Is today’s hardware ready
for such a move?

Finally, at the moment, the Sigma-Lognormal parameters extrac-
tor can only process 2D trajectories. Thus, in future work we would
like to extend it for processing 3D gestures, derived from e.g. ac-
celerometers, Kinects, Wii controllers, and similar devices. Actually,
this kind of data can be reconstructed using lognormals provided that
the torsion is taken into account [103], which just requires introducing
an additional parameter to the Sigma-Lognormal model.

AEvaluating Synthetic Gestures
Human Likeness

Training a high-quality gesture recognizer requires providing a large
number of examples to enable good performance on unseen, future
data. However, recruiting participants, data collection and labeling,
etc. necessary for achieving this goal are usually time-consuming
and expensive. In order to address this issue, previous works have
proposed a technique to synthesize strokes [80, 83, 104] based on the
Kinematic Theory and its associated Sigma-Lognormal model.

However, researchers have evaluated this technique from the per-
spective of classification performance and not from the perspective
of how “human-like” the synthesized gestures really are. A notable
exception is a study by Galbally et al. [84] that examined the human
likeness of synthetic handwritten signatures. While it was found a
high degree of similarity between synthesized and human signatures,
it is unclear whether this will hold for stroke gestures. In sum, a ded-
icated evaluation has been pending for too long.

In this appendix, we prove that the Sigma-Lognormal model pro-
duces synthetic stroke gestures that hold similar characteristics as
human-generated gestures by computing relative measures compar-
ing geometric, kinematic, and articulation aspects using GREAT [167]
(Gesture RElative Accuracy Toolkit).

A.1 Gesture Relative Accuracy Measures

This toolkit evaluates the deviation of each sample gesture with re-
spect to a gesture task axis. The gesture task axis is a fixed exam-
ple gesture, reflective of relative differences between individual ex-
ecutions, that serves as a reference against which the measures are

136 APPENDIX A. EVALUATING SYNTHETIC GESTURES HUMAN LIKENESS

computed. Here we chose the k-medoid of each gesture class as task
axis, as it is less sensitive to alignment errors (see Figure A.1). The
k-medoid can be defined as the closest user-articulated sample to the
median gesture1. Second, unistroke gestures were aligned in their
chronological order of input; whilst multistroke gestures were aligned
using the point-cloud matching procedure [168], which is invariant to
the number of strokes and stroke ordering. Prior to alignment, ges-
tures were resampled to 32 points and centered at the origin.

Geometric accuracy measures captures tendencies of the users to
stretch and bend strokes during articulation. They evaluate the devi-
ation of each sample gesture in terms of:

Shape Error represents the average absolute deviation of the candi-
date gesture points from the task axis in terms of the Euclidean
distance.

Shape Variability computes the standard deviation of the distances
between the points of the candidate and the task axis.

Length Error measures the user tendency to stretch pen-strokes with
respect to the task axis.

Size Error captures the user tendency to stretch pen-strokes in terms
of the area size.

Bending Error measures the user tendency to bend the pen-strokes
of the articulated handwriting with respect to the gesture task
axis.

Bending Variability computes the standard deviation of the differ-
ences in turning angle.

The kinematic accuracy measures evaluate articulation differences
in the time domain, and capture how fluent or smooth the handwrit-
ing is in terms of:

Time Error measures the duration difference between the candidate
and the task axis.

1We modified GREAT to compute the task axes shown in Figure A.1.

A.1. GESTURE RELATIVE ACCURACY MEASURES 137

(a) centroid (b) medoid

(c) k-centroid (d) k-medoid

Figure A.1. Different task axes (green lines) of a multistroke gesture from the MMG
dataset. Being more robust to noise and outliers, the k-medoid was chosen to com-
pute all relative measures.

138 APPENDIX A. EVALUATING SYNTHETIC GESTURES HUMAN LIKENESS

Time Variability represents the standard deviation of the differences
between timestamps measured at each individual point on the
gesture path.

Speed Error measures the difference in the velocity magnitude pro-
files of the candidate and the gesture task axis.

Speed Variability represents the standard deviation of the local dif-
ferences between the velocity magnitude profiles.

Finally, articulation accuracy measures how consistent users are
in producing the individual pen-strokes of gestures. The articulation
accuracy measures are:

Stroke Count Error reports the difference in the number of strokes
between the candidate and the task axis.

Stroke Ordering Error is an indicator of the stroke ordering accuracy.
That is, if the candidate gesture has been articulated in the same
way as the gesture task axis, the ordering error will be low.

A.2 Evaluation

In order to address the fundamental question regarding human like-
ness, we replicated 2 public datasets: $1-GDS and MMG datasets
(see Section 2.3.1).

A.2.1 METHOD

Each gesture sample in both datasets was modeled according to Equa-
tion (4.4) using the Sigma-Lognormal parameters extractor presented
in Section 4.2. Gesture primitives were then distorted according to
Equation (5.2), using nµ = nσ = 0.1, t0 = 0.005, nD = 0.15, nθs =
nθe = 0.06, the same values used by Galbally et al. [84]. Finally, the
Cartesian coordinates (x,y) were retrieved using Equation (4.7).

Next, we used GREAT to compute geometric, kinematic, and artic-
ulation features of synthetic and human stroke gestures production.

A.2.2. RESULTS 139

A.2.2 RESULTS

To begin, we analyzed all input speeds together. We used unpaired
two-sample t-tests (two-tailed, Bonferroni corrected) both for user-
independent and user-dependent tests. In user-independent tests, all
measures are computed considering each gesture sample as an inde-
pendent observation, whereas user-dependent tests are computed for
each user and then results are aggregated.

Figures A.2 and A.3 summarize the results. As can be observed,
we did not find statistically significant differences between synthe-
sized and human-generated gestures in most cases. Interestingly, sig-
nificant differences in Speed Error/Variability in the MMG dataset ap-
peared because mostly half of the timestamps in the human samples
are duplicated (M = 1.7, SD = 0.3) possibly due to being acquired
with “higher-than millisecond” precision.

However, how important are these results? When examining large
samples, significance testing can be misleading because even small
differences are likely to produce a statistically significant result. In-
deed, as shown in the results, differences between populations are
rather small; see e.g., Shape Variability: 5.5 vs. 6.9 px (GDS, user-
independent) or Speed Error: 1.7 vs. 0.6 px/ms (MMG, user-depen-
dent). Furthermore, the observed effect sizes in all cases suggest
low practical significance (Cohen’s d < 0.2, (M = 0.13, SD = 0.1).
This was true both for user-dependent and user-independent tests. It
should be noted that effect sizes have consequential validity, as they
describe the magnitude of the differences.

Next, we split each dataset in terms of input speed and repeated
the same analysis. Again, we did not find statistically significant dif-
ferences in most cases (not discussed for brevity’s sake) with similarly
low effect sizes. We also analyzed the MMG dataset in terms of input
device (stylus vs. finger) and observed the same outcome. Therefore,
we conclude that there is no practical difference in gesture produc-
tion between human and synthesized samples and that they “look
and feel” the same. In other words, synthesized gestures are actually
reflective of how users produce stroke gestures.

140 APPENDIX A. EVALUATING SYNTHETIC GESTURES HUMAN LIKENESS

0
5

10
15
20

Human Synthetic

♠

Shape Error (px)

User Independent User Dependent

0
2
4
6
8

10

Human Synthetic

♠♣

Shape Variability (px/ms)

0

20

40

60

Human Synthetic

♠

Length Error (px)

0
1,000
2,000
3,000
4,000

Human Synthetic

Size Error (px)

0

0.2

0.4

0.6

Human Synthetic

Bending Error (rad)

0
0.2
0.4
0.6
0.8

1

Human Synthetic

Bending Variability (rad)

0
200
400
600

Human Synthetic

Time Error (ms)

0

100

200

300

Human Synthetic

Time Variability (ms)

0

0.2

0.4

0.6

Human Synthetic

♠

Speed Error (px/ms)

0

0.2

0.4

0.6

Human Synthetic

Speed Variability (px/ms)

N/A
(unistroke gestures)

Stroke Count Error

0
20
40
60
80

100

Human Synthetic

Stroke Ordering Error (px)

Figure A.2. Overall results with human and synthesized gestures for GDS dataset.
Green circles denote user-independent tests and blue squares denote user-dependent
tests. 95% confidence intervals are all below 1%, so they are omitted. A statistically
significant difference between populations (p < .05/12) is denoted with green clubs
for user-independent tests and blue for spades user-dependent tests.

A.2.2. RESULTS 141

0
5

10
15
20

Human Synthetic

♠

Shape Error (px)

User Independent User Dependent

0
2
4
6
8

10

Human Synthetic

♠♣

Shape Variability (px/ms)

0

20

40

60

Human Synthetic

♠

Length Error (px)

0
1,000
2,000
3,000
4,000

Human Synthetic

Size Error (px)

0

0.2

0.4

0.6

Human Synthetic

Bending Error (rad)

0
0.2
0.4
0.6
0.8

1

Human Synthetic

Bending Variability (rad)

0
200
400
600

Human Synthetic

Time Error (ms)

0

100

200

300

Human Synthetic

Time Variability (ms)

0

0.2

0.4

0.6

Human Synthetic

♠

Speed Error (px/ms)

0

0.2

0.4

0.6

Human Synthetic

Speed Variability (px/ms)

N/A
(unistroke gestures)

Stroke Count Error

0
20
40
60
80

100

Human Synthetic

Stroke Ordering Error (px)

Figure A.3. Overall results with human and synthesized gestures for MMG dataset.
Green circles denote user-independent tests and blue squares denote user-dependent
tests. 95% confidence intervals are all below 1%, so they are omitted. A statistically
significant difference between populations (p < .05/12) is denoted with green clubs
for user-independent tests and blue spades user-dependent tests.

142 APPENDIX A. EVALUATING SYNTHETIC GESTURES HUMAN LIKENESS

A.3 Conclusion

We fail to reject the null hypothesis that there is difference between hu-
man and synthesized gestures. Taking into account the large number
of observations involved in each comparison, we conclude that syn-
thesized stroke gestures are articulated very similar to their human
counterparts. Therefore, there is no practical difference in gesture pro-
duction between human and synthesized samples and that they look
and feel the same. In other words,the kinematic theory of rapid human
movements produces actual synthetic human-like stroke gestures. It
is thus reliable to generate synthetic datasets this way, since the over-
all performance and behavior of gesture samples will be consistently
similar to that of actual users.

List of Figures

2.1 Examples from the different datasets. 18

3.1 Example of interactive transcription. The sentence to rec-
ognize is “the audience at the awards was particularly enthusi-
astic when one miss Anna Kerima”. First, the user validates
an initial part (p′), which is error-free, introducing a cor-
rection (w), producing a validated prefix (p = p′w). Then,
taking into account the validated prefix (p), the system pro-
poses the most probable suffix (s). The process ends when
the user accepts the suffix as a full correct transcript. 26

3.2 Example of a step of the CATTI at character level. The sen-
tence to transcribe is “the audience at the awards was particu-
larly enthusiastic when one miss Anna Kerima”. First, the user
validates “the audience a” (p′), which is error-free, introduc-
ing an ‘a’ (c), producing a validated prefix (p = p′c), where
the fragment of the prefix formed by complete words (p′′)
is “the audience” and the last incomplete word of the prefix
(u) is ‘a’. Then, taking into account the validated prefix
(p), the system proposes the most probable suffix “t the
awards was particularly enthusiastic when one miss And bring”
(s), where the system output (v) is ‘t’ and the rest of the
suffix (s′′) is “the awards was particularly enthusiastic when
one miss And bring”. 27

144 LIST OF FIGURES

3.3 Overview of the Computer Assisted Transcription of Text
Images (CATTI) system. Once the system has proposed a
transcript, the user can provide certain corrections in the
form of pen-strokes to fix the first mistake of the system
output. This on-line corrections must be decoded first and
the accuracy of this decoding can be boosted by using con-
textual information. 29

3.4 Example of CATTI using pen-strokes as feedback to tran-
scribe an image containing the sentence “the audience at the
awards was particularly enthusiastic when one miss Anna Ker-
ima”. Each interaction consists of two steps. In the first
step, the user writes some pen-strokes (t) to amend the suf-
fix (s) proposed in the previous step. This defines a correct
prefix p′, which can be used by the on-line HTR system to
obtain a more accurate decoding of t. In the second step,
a new prefix (p) is built from the previous correct prefix p′

concatenated with the decoded pen-strokes d̂. Using this
information, the system proposes the most probable suffix.
The process ends when the user accepts the suffix as a full
correct transcript. 30

3.5 Example of interactive transcription using CATTI c to tran-
scribe an image containing the sentence “the audience at the
awards was particularly enthusiastic when one miss Anna Ker-
ima”. Each interaction consists of two steps. In the first
step, the user writes some pen-strokes (t) to amend the suf-
fix (s) proposed in the previous step. This defines a correct
prefix p′, which can be used by the on-line HTR system to
obtain a more accurate decoding of t. In the second step,
a new prefix (p) is built from the previous correct prefix p′

concatenated with the decoded pen-strokes d̂. Using this
information, the system proposes the most probable suffix.
The process ends when the user accepts the suffix as a full
correct transcript. 34

3.6 Error Rate and Key-Stroke Ratio as a function of the num-
ber of times that the user tries to make the correction using
pen-strokes. 40

LIST OF FIGURES 145

3.7 Example of interactive transcription using CATTI c∗ to tran-
scribe an image containing the sentence “the audience at the
awards was particularly enthusiastic when one miss Anna Ker-
ima”. Each interaction consists of two steps. In the first
step, the user writes some pen-strokes (t) to amend the suf-
fix (ŝ) proposed in the previous step. This defines a correct
prefix p′, which can be used by the on-line HTR subsystem
to obtain a more accurate decoding of t. In the second step,
a new prefix (p) is built from the previous correct prefix p′

concatenated with the decoded on-line handwritten text
d̂. Using this information, the system proposes the most
probable suffix. The process ends when the user accepts
the suffix as a full correct transcription. 41

4.1 A handwritten letter ‘a’. The fiducial trajectory (green thick
line) is described by the temporal overlap of a series of
strokes, called virtual trajectory (black dashed arcs), con-
necting a sequence of virtual targets (1-6 black circles). Each
stroke is described by a lognormal equation. 56

4.2 An example of a lognormal velocity magnitude profile. The
black dots indicate, from left to right: the beginning of the
lognormal (p1), where ‖~v(t)‖ ≈ 0; first inflexion point (p2);
local maximum velocity (p3); second inflexion point (p3)
and the end of the lognormal (p5), where ‖~v(t)‖ ≈ 0. . . . 57

4.3 Step-by-step example of the Sigma-Lognormal extraction
using the 2-mode-based extractor. The reading order is
left-right, top-bottom. The solid black line indicates the
velocity magnitude profile to be reconstructed, whilst the
green dot indicates the following ‖~v(t3)‖ to be extracted.
The dotted black line shows the lognormal equation ex-
tracted, and subtracted from the velocity magnitude, in
the previous step. 59

146 LIST OF FIGURES

4.4 Step-by-step example of the Sigma-Lognormal extraction
using the here proposed BFS-based extractor. The read-
ing order is left-right, top-bottom. The velocity magnitude
used is the same as in Figure 4.3. The solid black line
indicates the velocity profile to be reconstructed, whilst
the green dots indicate the ‖~v(t3)‖ siblings to be extracted.
The dotted black line shows the lognormal equation ex-
tracted, and subtracted from the velocity magnitude, in
the previous step. In this example, a beam width of 1 has
been used and some steps have been omitted for the sake
of clarity. 66

4.5 Pythonic pseudo code for the Sigma-Lognormal extractor.
The meaning given by Python to statements, operators and
methods has been used. Block structure is denoted using
indentation. 68

4.6 Reconstruction examples using both extractors. The solid
black lines are the original signals, the dotted blue line
are the reconstruction using the new approach and the
dashed green line are the reconstruction using the baseline
approach. 71

4.7 Density histograms showing the quality measures. 72

5.1 Five samples of the word home written by the same person. 80
5.2 The green lines are the original handwriting, whereas black

lines are the handwriting using variations in the Sigma-
Lognormal parameters. First row: Global variations (K =
2) in Di. Second row: Global variations (Ps = Pe = 0.4)
in θsi and θei . Third row: Global variations (M = 0.1) in
µi. Fourth row: Global variations (S = 0.1) in σi. Fifth
row: Variations of (τi = 0.1) t0 Sixth row: Local variations
(ki = 0.1, ρsi = ρse = 0.05, τi = 0.0, ∆µi = 0.1, ∆σi = 0.1). . 82

5.3 Human and synthetic samples, all samples picked at ran-
dom. The samples on the left column are human gener-
ated, whilst center and right columns are synthesized. . . 85

5.4 Visualizing the effect of the ξ parameter on gesture vari-
ability while synthesizing 50 samples. 86

5.5 Evolution of the recognition rate for w = 35 real words
and a varying number of s. 91

LIST OF FIGURES 147

5.6 Impact of synthetic samples on articulation speed. User-
dependent tests. Error bars denote 95% confidence inter-
vals. Synth− and Synth+ denote synthesized samples us-
ing the worst and best reconstructed human sample of
each gesture, respectively. 93

5.7 Impact of synthetic samples on articulation speed. User-
independent tests. 95% confidence intervals are below 0.1%.
Synth− and Synth+ denote synthesized samples using the
worst and best reconstructed human sample of each ges-
ture, respectively. 95

5.8 Impact of synthetic samples on a large gesture vocabulary
(chars74k dataset, 62 classes). 95% confidence intervals are
below 1%. Synth− and Synth+ denote synthesized sam-
ples using the worst and best reconstructed human sample
of each gesture, respectively. 96

5.9 Impact of synthetic samples on input device. User-dependent
tests. Error bars denote 95% confidence intervals. Synth−

and Synth+ denote synthesized samples using the worst
and best reconstructed human sample of each gesture, re-
spectively. 97

5.10 Impact of synthetic samples on input device. User-independent
tests. 95% confidence intervals are below 1%. Synth− and
Synth+ denote synthesized samples using the worst and
best reconstructed human sample of each gesture, respec-
tively. 98

6.1 Escritoire user interface mock-up. (a) Capture zone where
a real document is placed to be digitized. (b) Action but-
tons: The first button, labeled on the real interface with a
tablet icon, allows the user to transfer a transcribed docu-
ment to the tablet to improve the transcription. The second
one, tagged with a printer icon, allows the user to print a
copy of a digitized document. Finally, by pressing the but-
ton tagged with a camera and after a five-seconds count-
down, any document located in the capture zone will be
digitized. (c) Documents can be stacked or arranged into
folders in Escritoire, similarly to traditional desktops. (d)
A physical tablet used to perform interactive transcription. 104

148 LIST OF FIGURES

6.2 (a) Escritoire prototype showing two digitized documents.
(b) A sheet of paper near the capture zone, showing the
five-seconds countdown. 105

6.3 (a) Maximum and minimum threshold for defining a pixel
of interest. tdm and tdM were empirically tunned. (b) Exam-
ple (with n = 4) of convex hull for different hand positions. 106

6.4 From left to right: a paper document, its digital version
shown on Escritoire and tablet. 108

6.5 G3 user interface. a: Drawing area. The dot indicates the
starting point of each gesture pen-stroke. b: Options area.
Besides the number of gestures to generate, advanced op-
tions allow the user to indicate e.g. a desired variability
degree. c: Collection area. Each gesture is presented as
an ordered list, with the possibility of adding or removing
gesture examples. d: Export area. The user can optionally
export a gesture recognizer available in different program-
ming languages. e: Import area. A JSON file comprising a
collection of gesture examples can be submitted. f: Recon-
struction area. A reconstruction of the user gesture is used
for later synthesis. g: Synthetic gestures area. Generated
samples appear here. 116

6.6 CASMACAT pen reviewing user interface. 122

6.7 Time (in seconds) that reviewers spent on each segment
normalized by source character. The time accounts for the
total time spent in the segment from the moment it was
opened until it was closed. Segments that were not modi-
fied are not considered in this plot. 124

A.1 Different task axes (green lines) of a multistroke gesture
from the MMG dataset. Being more robust to noise and
outliers, the k-medoid was chosen to compute all relative
measures. 137

LIST OF FIGURES 149

A.2 Overall results with human and synthesized gestures for
GDS dataset. Green circles denote user-independent tests
and blue squares denote user-dependent tests. 95% con-
fidence intervals are all below 1%, so they are omitted.
A statistically significant difference between populations
(p < .05/12) is denoted with green clubs for user-independent
tests and blue for spades user-dependent tests. 140

A.3 Overall results with human and synthesized gestures for
MMG dataset. Green circles denote user-independent tests
and blue squares denote user-dependent tests. 95% con-
fidence intervals are all below 1%, so they are omitted.
A statistically significant difference between populations
(p < .05/12) is denoted with green clubs for user-independent
tests and blue spades user-dependent tests. 141

List of Tables

3.1 On-line feedback recognition system error rates for the dif-
ferent language models. From left to right: character 1-
gram (CU), character error-conditioned 1-gram (CUe), prefix-
and-error-conditioned character 2-gram (CBe), prefix-and-
error-conditioned word 2-gram (WUe), whole-prefix-and-
error conditioned word bi-gram (WBe). The relative accu-
racy improvements for WUe and WBe, with respect to the
baseline, are shown in the last two columns. All results are
percentages and averaged for the 3 writers. 39

3.2 From left to right, estimated effort comparison. PKSR ob-
tained with the post-editing auto-completing approach (first
column), KSR achieved with a CATTI system using a key-
board (second column) and CATTI c (third column). Over-
all EFR of a CATTI system using a keyboard (fourth col-
umn) and CATTI c (fifth column) with respect to a post-
editing auto-completing approach. The value of the third
column is calculated under the assumption that if the sys-
tem fails to recognize a character the user proceeds to enter
it again with the keyboard, thereby combining two correc-
tions. All results are percentages. 40

LIST OF TABLES 151

3.3 On-line feedback recognition system error rates for the dif-
ferent language models. From left to right: character 9-
gram (CN), prefix-conditioned character 9-gram (CNp), whole-
prefix-conditioned character 9-gram (W-CNp) and the com-
bination using the best language model for word fragments
and the best scenario for complete words (Comb.). All re-
sults are percentages and averaged for the three test writ-
ers. 47

3.4 From left to right, estimated effort comparison. A post-
editing auto-completing approach (first column), a CATTI
system using a keyboard (second column) and CATTI c∗
(third column). Last two columns show the overall effort
reduction comparison of CATTI using a keyboard and CATTI c∗
with respect to the post-editing auto-completing approach.
All results are percentages. 47

4.1 Summary of the extraction results for the IBM-UB (top)
and ICROW-03 (bottom) datasets. From left to right, av-
erage value ± SD for: the number of extracted lognormals
(nbLog), SNRv, SNRv/nbLog and SNRs. All measures, ex-
cept nbLog, are expressed in dB. 73

5.1 Gesture variability results for different number of synthe-
sized samples and different values of the parameter ξ (see Fig-
ure 5.4 for each dataset. From left to right: MSE mean
value, standard deviation (SD) and standard error (SE). . . 88

5.2 Correlation for different values of the parameter ξ. Batch
size did not make any difference in this study. 89

5.3 Test set recognition error (%) for different values of s and
w. Top: Using only real replicated adaptation samples.
Bottom: Using both real and synthetic adaptation samples.
Results are averaged for all writers. 90

152 LIST OF TABLES

5.4 Best recognition error rates for the different approaches.
From left to right: baseline scenario without using adapta-
tion data (Baseline); adaptation using replicated data (AR)
and adaptation using synthetic data (AS). Last 2 columns
show the relative improvement between AS and Baseline
and relative improvement between AS and AR. All results
are percentages and averaged for the different writers and
trials. 91

6.1 Profile of the reviewers. 121
6.2 E-pen handwritten text recognition results. (*) indicates

case insensitive. 126

Bibliography

[1] Fortune, The new computer revolution. cover story, June, 1993.

[2] M. Igbaria, J. Iivari, and H. Maragahh, Why do individuals use
computer technology? A finnish case study, Information &
management 29 (1995), no. 5, 227–238.

[3] A. Meyer, Pen computing: a technology overview and a vision,
ACM SIgCHI Bulletin 27 (1995), no. 3, 46–90.

[4] R. Plamondon and S. N. Srihari, On-line and off-line handwriting
recognition: A comprehensive survey, IEEE Trans. on Pattern
Analysis and Machine Intelligence 22 (2000), no. 1,.

[5] S. Zhai, P. O. Kristensson, C. Appert, T. H. Andersen, and
X. Cao, Foundational issues in touch-screen stroke gesture design-an
integrative review, Foundations and Trends in
Human-Computer Interaction 5 (2012), no. 2, 97–205.

[6] E. Vidal, L. Rodríguez, F. Casacuberta, and I. García-Varea,
Interactive pattern recognition, in Proc. MLMI, pp. 60–71, 2007.

[7] A. H. Toselli, E. Vidal, and F. Casacuberta, Multimodal
interactive pattern recognition and applications. Springer Science
& Business Media, 2011.

[8] R. Plamondon, A. M. Alimi, P. Yergeau, and F. Leclerc,
Modelling velocity profiles of rapid movements: a comparative study,
Biol. Cybern. 69 (1993), no. 2,.

[9] E. Anson, The device model of interaction, SIGGRAPH Comput.
Graph. 16 (1982), no. 3, 107–114.

154 BIBLIOGRAPHY

[10] S. Jaeger, S. Manke, J. Reichert, and A. Waibel, Online
handwriting recognition: the npen++ recognizer, Int. Journal on
Document Analysis and Recognition 3 (2001), no. 3,.

[11] M. Pastor, A. Toselli, and E. Vidal, Writing speed normalization
for on-line handwritten text recognition, in Proc. Intl. Conf. on
Document Analysis and Recognition (ICDAR), pp. 1131–1135,
2005.

[12] A. H. Toselli, M. Pastor, and E. Vidal, On-line handwriting
recognition system for tamil handwritten characters, in Proc. Iberian
Conference on Pattern Recognition and Image Analysis,
pp. 370–377, 2007.

[13] A. Graves, M. Liwicki, S. Fernández, R. Bertolami, H. Bunke,
and J. Schmidhuber, A novel connectionist system for
unconstrained handwriting recognition, Pattern Analysis and
Machine Intelligence, IEEE Transactions on 31 (2009), no. 5,
855–868.

[14] F. Jelinek, Statistical Methods for Speech Recognition. MIT Press,
1998.

[15] C. M. Bishop, Pattern Recognition and Machine Learning.
Springer, 2006.

[16] L. E. Baum, An Inequality and Associated Maximization Technique
in Statistical Estimation for Probabilistic Functions of a Markov
Process, Inequalities 3 (1972).

[17] A. H. Toselli, A. Juan, J. González, I. Salvador, E. Vidal,
F. Casacuberta, D. Keysers, and H. Ney, Integrated handwriting
recognition and interapretation using finite-state models, Int.
Journal of Pattern Recognition and Artificial Intelligence 18
(2004), no. 04, 519–539.

[18] E. Kavallieratou and E. Stamatatos, Improving the quality of
degraded document images, in Proc. Int. Conf. Document Image
Analysis for Libraries, 2006.

BIBLIOGRAPHY 155

[19] M. Pastor, Aportaciones al reconocimiento automático de texto
manuscrito. PhD thesis, Universitat Poliécnica de Valéncia,
2007.

[20] V. Romero, M. Pastor, A. Toselli, and E. Vidal, Criteria for
handwritten off-line text size normalization, Proc. VIIP 6 (2006).

[21] A. Butter and D. Pogue, Piloting Palm: The Inside Story of Palm,
Handspring, and the Birth of the Billion-Dollar Handheld Industry.
John Wiley & Sons, Inc., 1st ed., 2002.

[22] D. Rubine, Specifying gestures by example, Proc. annual Conf. on
Computer graphics and interactive techniques (SIGGRAPH)
25 (1991), no. 4, 329–337.

[23] S. D. Connell and A. K. Jain, Template-based on-line character
recognition, Pattern Recognition 34 (2000), no. 1, 1–14.

[24] A. Belaid and J. Haton, A syntactic approach for handwritten
formula recognition, IEEE Trans. on Pattern Analysis and
Machine Intelligence 6 (1984), no. 1, 105–111.

[25] R. Marzinkewitsch, Operating computer algebra systems by
hand-printed input, in Proc. ISSAC, pp. 411–413, 1991.

[26] M. Koschinski, H. J. Winkler, and M. Lang, Segmentation and
recognition of symbols within handwritten mathematical
expressions, in Proc. ICASSP, pp. 2439–2442, 1995.

[27] G. Costagliola, V. Deufemia, G. Polese, and M. Risi, A parsing
technique for sketch recognition systems, in Proc. VLHCC,
pp. 19–26, 2004.

[28] C. Bahlmann, B. Haasdonk, and H. Burkhardt, On-line
handwriting recognition with support vector machines: A kernel
approach, in Proc. Intl. Workshop on Frontiers in Handwriting
Recognition (IWFHR), pp. 49–54, 2001.

[29] V. Deepu, S. Madhvanath, and A. G. Ramakrishnan, Principal
component analysis for online handwritten character recognition, in
Proc. Intl. Conf. on Pattern Recognition (ICPR), pp. 327–330, 2004.

156 BIBLIOGRAPHY

[30] L. A. Leiva, V. Alabau, V. Romero, A. H. Toselli, and E. Vidal,
Context-aware gestures for mixed-initiative text editing UIs,
Interact. Comput. 27 (2014), no. 1,.

[31] J. O. Wobbrock, A. D. Wilson, and Y. Li, Gestures without
libraries, toolkits or training: A $1 recognizer for user interface
prototypes, in Proc. Annual ACM Symp. on User Interface Software
and Technology (UIST), pp. 159–168, 2007.

[32] L. Anthony and J. O. Wobbrock, A lightweight multistroke
recognizer for user interface prototypes, in Proc. Graphics Interface
(GI), pp. 245–252, 2010.

[33] Y. Li, Protractor: a fast and accurate gesture recognizer, in Proc.
SIGCHI Conf. on Human Factors in Computing Systems (CHI),
pp. 2169–2172, 2010.

[34] L. Anthony and J. O. Wobbrock, $N-protractor: a fast and
accurate multistroke recognizer, in Proc. Graphics Interface (GI),
pp. 117–120, 2012.

[35] J. B. Kruskal and M. Liberman, The symmetric time-warping
problem: from continuous to discrete, Time Warps, String Edits
and Macromolecules: The Theory and Practice of Sequence
Comparison (1983) 125–161.

[36] U.-V. Marti and H. Bunke, A full english sentence database for
off-line handwriting recognition, in Proc. Intl. Conf. on Document
Analysis and Recognition (ICDAR), pp. 705–708, 1999.

[37] I. Guyon, L. Schomaker, R. Plamondon, M. Liberman, and
S. Janet, Unipen project of on-line data exchange and recognizer
benchmarks, in Proc. Intl. Conf. on Pattern Recognition (ICPR),
pp. 29–33, 1994.

[38] A. Shivram, C. Ramaiah, S. Setlur, and V. Govindaraju,
IBM_UB_1: A dual mode unconstrained english handwriting
dataset, in Proc. Intl. Conf. on Document Analysis and Recognition
(ICDAR), 2013.

BIBLIOGRAPHY 157

[39] L. Febvre and H.-J. Martin, The coming of the book: the impact of
printing 1450-1800, vol. 10. 1997.

[40] G. Dimauro, S. Impedovo, R. Modugno, and G. Pirlo, A new
database for research on bank-check processing, in Proc. Workshop
on Frontiers in Handwriting Recognition, pp. 524–528, 2002.

[41] S. Srihari and E. Keubert, Integration of handwritten address
interpretation technology into the united states postal service remote
computer reader system, in Proc. Intl. Conf. on Document Analysis
and Recognition (ICDAR), pp. 892–896, 1997.

[42] A. H. Toselli, V. Romero, L. Rodríguez, and E. Vidal, Computer
Assisted Transcription of Handwritten Text, in Proc. Intl. Conf. on
Document Analysis and Recognition (ICDAR), pp. 944–948, 2007.

[43] V. Romero, A. Toselli, and E. Vidal, Character-level interaction in
computer-assisted transcription of text images, in Proc. Intl. Conf.
on Frontiers in Handwriting Recognition (ICFHR), pp. 539–544,
2010.

[44] V. Romero, A. H. Toselli, and E. Vidal, Multimodal interactive
handwritten text transcription, vol. 80. World Scientific, 2012.

[45] J. Civera, J. Vilar, E. Cubel, A. Lagarda, S. Barrachina,
F. Casacuberta, E. Vidal, D. Picó, and J. González, A syntactic
pattern recognition approach to computer assisted translation, in
Proc. Joint IAPR Int. Workshops SSPR and SPR, 2004.

[46] S. Barrachina, O. Bender, F. Casacuberta, J. Civera, E. Cubel,
S. Khadivi, A. L. H. Ney, J. Tomás, and E. Vidal, Statistical
approaches to computer-assisted translation, Computational
Linguistics (2008) 3–28.

[47] L. Leiva, V. Romero, A. Toselli, and E. Vidal, Evaluating an
interactive-predictive paradigm on handwriting transcription: A
case study and lessons learned, in Proc. Computer Software and
Applications, pp. 610–.617, 2011.

[48] A. H. Toselli, V. Romero, M. Pastor, and E. Vidal, Multimodal
interactive transcription of text images, Pattern Recognition 43
(2010), no. 5, 1814–1825.

158 BIBLIOGRAPHY

[49] V. Romero, A. H. Toselli, and E. Vidal, Multimodal Interactive
Handwritten Text Transcription. World Scientific Publishing,
2011.

[50] S. Johansson, E. Atwell, R. Garside, and G. Leech, The tagged
lob corpus. user’s manual, Norwegian Computing Center for the
Humanities (1986).

[51] A. P. Georgopoulos, J. F. Kalaska, and J. T. Massey, Spatial
trajectories and reaction times of aimed movements: effects of
practice, uncertainty, and change in target location, J.
Neurophysiology 46 (1981), no. 4, 725–743.

[52] P. Morasso, Spatial control of arm movements, Experimental
brain research 42 (1981), no. 2, 223–227.

[53] J. Soechting and F. Lacquaniti, Invariant characteristics of a
pointing movement in man, J. Neuroscience 1 (1981), no. 7,
710–720.

[54] W. Abend, E. Bizzi, and P. Morasso, Human arm trajectory
formation., Brain: a journal of neurology 105 (1982), no. 2,
331–348.

[55] C. G. Atkeson and J. M. Hollerbach, Kinematic features of
unrestrained vertical arm movements, J. Neuroscience 5 (1985),
no. 9, 2318–2330.

[56] Y. Uno, M. Kawato, and R. Suzuki, Formation and control of
optimal trajectory in human multijoint arm movement, Biol.
Cybern. 61 (1989), no. 2, 89–101.

[57] H. Nagasaki, Asymmetric velocity and acceleration profiles of
human arm movements, Experimental Brain Research 74 (1989),
no. 2, 319–326.

[58] H. N. Zelaznik, R. A. Schmidt, and S. C. Gielen, Kinematic
properties of rapid aimed hand movements, J. Motor Behavior 18
(1986), no. 4, 353–372.

BIBLIOGRAPHY 159

[59] J. M. Hollerbach and T. Flash, Dynamic interactions between limb
segments during planar arm movement, Biological Cybernetics 44
(1982), no. 1, 67–77.

[60] J. Ruitenbeek, Invariants in loaded goal directed movements,
Biological Cybernetics 51 (1984), no. 1, 11–20.

[61] J. Soechting, Effect of target size on spatial and temporal
characteristics of a pointing movement in man, Experimental Brain
Research 54 (1984), no. 1, 121–132.

[62] T. Flash and N. Hogan, The coordination of arm movements: an
experimentally confirmed mathematical model, J. Neuroscience 5
(1985), no. 7, 1688–1703.

[63] A. Feldman, Functional tuning of the nervous system with control
of movement or maintenance of a steady posture, Biophysics 11
(1966), no. 1, 565–578.

[64] A. J. W. M. Thomassen, P. J. G. Keuss, and G. van Galen, Motor
aspects of handwriting, Acta Psychol. 54 (1983), no. 1–3, 354.

[65] D. E. Meyer, J. E. K. Smith, S. Kornblum, R. A. Abrams, and
C. E. Wright, Speed-accuracy tradeoffs in aimed movements:
Toward a theory of rapid voluntary action, Atten. and Perform. 13
(1990), no. 23, 173–226.

[66] R. Plamondon, A kinematic theory of rapid human movements:
Part I: Movement representation and generation, Biol. Cybern. 72
(1995), no. 4, 295–307.

[67] S. E. Engelbrecht, Minimum principles in motor control, J.
Mathematical Psychology 45 (2001), no. 3, 497–542.

[68] J. D. Enderle and J. W. Wolfe, Time-optimal control of saccadic eye
movements, IEEE T. Biomedical Engineering 1 (1987) 43–55.

[69] P. Neilson, The problem of redundancy in movement control: the
adaptive model theory approach, Psychol. Res. 55 (1993), no. 1,
99–106.

160 BIBLIOGRAPHY

[70] S. Edelman and T. Flash, A model of handwriting, Biol. Cybern.
57 (1987), no. 1-2, 25–36.

[71] R. Plamondon and F. Lamarche, Modelization of handwriting: A
system approach, in Graphonomics: Contemporary Research in
Handwriting, pp. 169–183, 1986.

[72] F. Leclerc, R. Plamondon, and G. Lorette, Des gaussiennes pour
la modélisation des signatures et la segmentation des tracés
manuscrits, Trait. Signal 9 (1992), no. 4, 347–358.

[73] M. A. Alimi, Beta neuro-fuzzy systems, 2003.

[74] P. Morasso, F. A. Mussa Ivaldi, and C. Ruggiero, How a
discontinuous mechanism can produce continuous patterns in
trajectory formation and handwriting, Acta Psychol. 54 (1983),
no. 1, 83–98.

[75] F. J. Maarse, The Study of Handwriting Movement: Peripheral
Models and Signal Processing Techniques. Swets & Zeitlinger,
1987.

[76] R. Plamondon and M. Djioua, A multi-level representation
paradigm for handwriting stroke generation, Hum. Mov. Sci. 25
(2006), no. 4–5, 586–607.

[77] R. Plamondon, C. O’Reilly, C. Rémi, and T. Duval, The
lognormal handwriter: learning, performing, and declining, Front.
Psychol. 4 (2013), no. 1, 945:1–945:14.

[78] D. Martín-Albo, R. Plamondon, and E. Vidal, Training of on-line
handwriting text recognizers with synthetic text generated using the
kinematic theory of rapid human movements, in Proc. Intl. Conf. on
Frontiers in Handwriting Recognition (ICFHR), pp. 543–548, 2014.

[79] A. Fischer, R. Plamondon, C. O’Reilly, and Y. Savaria,
Neuromuscular representation and synthetic generation of
handwritten whiteboard notes, in Proc. Intl. Conf. on Frontiers in
Handwriting Recognition (ICFHR), 2014.

BIBLIOGRAPHY 161

[80] R. Plamondon, C. O’Reilly, J. Galbally, A. Almaksour, and
E. Anquetil, Recent developments in the study of rapid human
movements with the kinematic theory: Applications to handwriting
and signature synthesis, Pattern Recognition Letters 35 (2014)
225–235.

[81] R. Plamondon, C. O’reilly, and C. Ouellet-Plamondon, Strokes
against stroke—strokes for strides, Pattern Recognition 47 (2014),
no. 3, 929–944.

[82] A. Van Gemmert, R. Plamondon, and C. O’Reilly, Using the
sigma-lognormal model to investigate handwriting of individuals
with parkinson’s disease, in Int. Conf. Graphonomics, pp. 119–122,
2014.

[83] J. Galbally, R. Plamondon, J. Fierrez, and J. Ortega-Garcia,
Synthetic on-line signature generation. Part I: Methodology and
algorithms, Pattern Recognition 45 (2012), no. 7, 2610–2621.

[84] J. Galbally, J. Fierrez, J. Ortega-Garcia, and R. Plamondon,
Synthetic on-line signature generation. Part II: Experimental
validation, Pattern Recognition 45 (2012), no. 7, 2622–2632.

[85] C. O’Reilly and R. Plamondon, Development of a
sigma-lognormal representation for on-line signatures, Pattern
Recognition 42 (2009), no. 12, 3324–3337.

[86] R. Plamondon and A. M. Alimi, Speed/accuracy trade-offs in
target-directed movements, Behavioral and Brain Sciences 20
(1997), no. 02, 279–303.

[87] W. Guerfali and R. Plamondon, A new method for the analysis of
simple and complex planar rapid movements, J. Neuroscience
Methods 82 (1998), no. 1,.

[88] C. Ghez and J. Krakauer, Voluntary movement, Principles of
neural science 3 (1991) 622–624.

[89] R. Plamondon, A kinematic theory of rapid human movements.
Part II: Movement time and control, Biol. Cybern. 72 (1995), no. 4,
309–320.

162 BIBLIOGRAPHY

[90] R. Plamondon, C. Feng, and A. Woch, A kinematic theory of
rapid human movement. part IV: a formal mathematical proof and
new insights, Biological Cybernetics 89 (2003), no. 2, 126–138.

[91] R. Plamondon and W. Guerfali, The 2/3 power law: When and
why?, Acta psychologica 100 (1998), no. 1, 85–96.

[92] W. Guerfali and R. Plamondon, The delta lognormal theory for the
generation and modeling of cursive characters, in Proc. Intl. Conf. on
Document Analysis and Recognition (ICDAR), pp. 495–498, 1995.

[93] T. Varga, D. Kilchhofer, and H. Bunke, Template-based synthetic
handwriting generation for the training of recognition systems, in
Proc. Biennial Conf. of the Int. Graphonomics Society, pp. 206–211,
2005.

[94] D. Bullock, S. Grossberg, and C. Mannes, A neural network
model for cursive script production, Biol. Cybern. 70 (1993), no. 1,
15–28.

[95] C. M. Privitera and R. Plamondon, A system for scanning and
segmenting cursively handwritten words into basic strokes, in Proc.
Intl. Conf. on Document Analysis and Recognition (ICDAR),
pp. 1047–1050, 1995.

[96] C. O’Reilly and R. Plamondon, A software assistant for the design
and analysis of neuromuscular tests, in Proc. BIOCAS,
pp. 107–110, 2007.

[97] M. Djioua and R. Plamondon, An interactive system for the
automatic generation of huge handwriting databases from a few
specimens, in Proc. Intl. Conf. on Pattern Recognition (ICPR),
pp. 1–4, 2008.

[98] D. Martín-Albo, R. Plamondon, and E. Vidal, Improving
sigma-lognormal parameter extraction, in Proc. Intl. Conf. on
Document Analysis and Recognition (ICDAR), 2015.

[99] L. A. Leiva, D. Martín-Albo, and R. Plamondon, Gestures à go
go: Authoring synthetic human-like stroke gestures using the
kinematic theory of rapid movements, ACM Transactions on
Intelligent Systems and Technology. In press.

BIBLIOGRAPHY 163

[100] M. Liwicki, A. Graves, H. Bunke, and J. Schmidhuber, A novel
approach to on-line handwriting recognition based on bidirectional
long short-term memory networks, in Proc. Intl. Conf. on Document
Analysis and Recognition (ICDAR), 2007.

[101] R. Plamondon and F. Maarse, Writing generation model for health
care neuromuscular system investigation, IEEE T. on Systems,
Man and Cybernetics (1989), no. 5, 1–16.

[102] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson,
Introduction to Algorithms. The MIT Press, 3rd ed., 2001.

[103] N. Leduc and R. Plamondon, A new approach to study human
movements: The three dimensional Delta-Lognormal model, in Proc.
Biennial Conf. of the Intl. Graphonomics Society (IGS), pp. 98–102,
2001.

[104] A. Almaksour, E. Anquetil, R. Plamondon, and C. O’Reilly,
Synthetic handwritten gesture generation using sigma-lognormal
model for evolving handwriting classifiers, in Proc. Biennial Conf. of
the Int. Graphonomics Society, 2011.

[105] C. O’Reilly and R. Plamondon, Design of a neuromuscular
disorders diagnostic system using human movement analysis, in Int.
Conf. Information Science, Signal Processing and their Applications
(ISSPA), pp. 787–792, IEEE, 2012.

[106] M. Helmers and H. Bunke, Generation and use of synthetic
training data in cursive handwriting recognition, in Pattern
Recognition and Image Analysis, pp. 336–345. 2003.

[107] E. Anquetil, L. Miclet, S. Bayoudh, et al., Synthetic on-line
handwriting generation by distortions and analogy, in Proc.
Biennial Conf. of the Int. Graphonomics Society, pp. 10–13, 2007.

[108] J. Wang, C. Wu, Y.-Q. Xu, and H.-Y. Shum, Combining shape and
physical models for online cursive handwriting synthesis, Int. J.
Document Analysis and Recognition 7 (2005), no. 4, 219–227.

[109] Z. Lin and L. Wan, Style-preserving english handwriting synthesis,
Pattern Recognition 40 (2007), no. 7, 2097–2109.

164 BIBLIOGRAPHY

[110] J. Wang, C. Wu, Y.-Q. Xu, H.-Y. Shum, and L. Ji, Learning-based
cursive handwriting synthesis, in Proc. Intl. Conf. on Frontiers in
Handwriting Recognition (ICFHR), pp. 157–162, 2002.

[111] T. Varga and H. Bunke, Perturbation models for generating
synthetic training data in handwriting recognition, in Machine
Learning in Document Analysis and Recognition, pp. 333–360,
2008.

[112] Y. Zheng and D. Doermann, Handwriting matching and its
application to handwriting synthesis, in Document Analysis and
Recognition, 2005. Proceedings. Eighth International Conference on,
pp. 861–865, 2005.

[113] P. Rao, Shape vectors: an efficient parametric representation for the
synthesis and recognition of hand script characters, Sadhana 18
(1993), no. 1, 1–15.

[114] O. Stettiner and D. Chazan, A statistical parametric model for
recognition and synthesis of handwriting, in Int. Conf. Pattern
Recognition, vol. 2, pp. 34–38, 1994.

[115] H. Choi, S.-J. Cho, and J. H. Kim, Generation of handwritten
characters with bayesian network based on-line handwriting
recognizers, in Proc. Intl. Conf. on Document Analysis and
Recognition (ICDAR), p. 995, 2003.

[116] I. Guyon, Handwriting synthesis from handwritten glyphs, in Proc.
Intl. Conf. on Frontiers in Handwriting Recognition (ICFHR),
pp. 140–153, Citeseer, 1996.

[117] C. Jawahar and A. Balasubramanian, Synthesis of online
handwriting in indian languages, in Proc. Intl. Conf. on Frontiers in
Handwriting Recognition (ICFHR), 2006.

[118] R. Saabni and J. El-Sana, Efficient generation of comprehensive
database for online arabic script recognition, in Proc. Intl. Conf. on
Document Analysis and Recognition (ICDAR), pp. 1231–1235,
2009.

BIBLIOGRAPHY 165

[119] J. M. Hollerbach, An oscillation theory of handwriting, Biological
Cybernetics 39 (1981), no. 2, 139–156.

[120] G. Gangadhar, D. Joseph, and V. S. Chakravarthy, An oscillatory
neuromotor model of handwriting generation, Int. Journal on
Document Analysis and Recognition 10 (2007), no. 2, 69–84.

[121] P. Simard and Y. LeCun, Reverse tdnn: an architecture for
trajectory generation, in NIPS, pp. 579–588, 1991.

[122] S. Bayoudh, H. Mouchère, L. Miclet, and E. Anquetil, Learning
a classifier with very few examples: analogy based and knowledge
based generation of new examples for character recognition, in
Machine Learning: ECML, pp. 527–534, 2007.

[123] M. A. Slim, A. Abdelkarim, and M. Benrejeb, Handwriting
process modelling by artificial neural networks, Int. J. Comput. Inf.
Syst. Ind. Manag. Appl 5 (2013) 297–307.

[124] M. Djioua and R. Plamondon, Studying the variability of
handwriting patterns using the kinematic theory, Hum. Mov. Sci.
28 (2009), no. 5, 588–601.

[125] R. Duda, P. Hart, and D. Stork, Pattern Classification. Wiley,
2001.

[126] J. Liang, D. Doermann, and H. Li, Camera-based analysis of text
and documents: a survey, Int. Journal on Document Analysis
and Recognition (IJDAR) (2005) 84–104.

[127] C. H. Lampert, T. Braun, A. Ulges, D. Keysers, and T. M.
Breuel, Oblivious document capture and real-time retrieval, in Int.
Workshop on Camera Based Document Analysis and Recognition,
pp. 79–86, 2005.

[128] M. Terry and E. D. Mynatt, Recognizing creative needs in user
interface design, in Proc. C&C, pp. 38–44, 2002.

[129] J. Eisenstein and A. Puerta, Adaptation in automated
user-interface design, in Proc. Int. Conf. on Intelligent User
Interfaces, pp. 74–81, 2000.

166 BIBLIOGRAPHY

[130] U.-V. Marti and H. Bunke, Text Line Segmentation and Word
Recognition in a System for General Writer Independent
Handwriting Recognition, in Proc. Intl. Conf. on Document
Analysis and Recognition (ICDAR), pp. 159–163, 2001.

[131] D. Keysers, F. Shafait, and T. M. Breuel, Document image zone
classification - a simple high- performance approach, in Proc. Int.
Conf. on Computer Vision Theory, pp. 44–55, 2007.

[132] A. Andrew, Another efficient algorithm for convex hulls in two
dimensions, Information Processing Letters 9 (1979), no. 5,
216–219.

[133] R. E. Kalman, A new approach to linear filtering and prediction
problems, Transactions of the ASME–Journal of Basic
Engineering (1960).

[134] I. E. Sutherland, Sketchpad: A man-machine graphical
communication system, Tech. Rep. 296, Lincoln Laboratory, MIT,
1963.

[135] M. Davis and T. Ellis, The RAND tablet: A man-machine graphical
communication device, in Proc. American Federation of Information
Processing Societies (AFIPS), pp. 325–331, 1964.

[136] S. Smithies, K. Novins, and J. Arvo, Equation entry and editing
via handwriting and gesture recognition, Behav. Inform. Technol.
20 (2001), no. 1, 53–67.

[137] P. Koch, W. Konen, , and K. Hein, Gesture recognition on few
training data using slow feature analysis and parametric bootstrap,
in Proc. IEEE Intl. Joint Conf. on Neural Networks (IJCNN), 2010.

[138] H. Lü, J. A. Fogarty, and Y. Li, Gesture Script: Recognizing
gestures and their structure using rendering scripts and
interactively trained parts, in Proc. SIGCHI Conf. on Human
Factors in Computing Systems (CHI), pp. 1685–1694, 2014.

[139] T. Ouyang and Y. Li, Bootstrapping personal gesture shortcuts
with the wisdom of the crowd and handwriting recognition, in Proc.
SIGCHI Conf. on Human Factors in Computing Systems (CHI),
pp. 2895–2904, 2012.

BIBLIOGRAPHY 167

[140] K. Patel, N. Bancroft, S. M. Drucker, J. Fogarty, A. J. Ko, and
J. Landay, Gestalt: Integrated support for implementation and
analysis in machine learning, in Proc. Annual ACM Symp. on User
Interface Software and Technology (UIST), pp. 37–46, 2010.

[141] S. Amini and Y. Li, CrowdLearner: Rapidly creating mobile
recognizers using crowdsourcing, in Proc. Annual ACM Symp. on
User Interface Software and Technology (UIST), pp. 163–172, 2013.

[142] D. Ashbrook and T. E. Starner, MAGIC: A motion gesture design
tool, in Proc. SIGCHI Conf. on Human Factors in Computing
Systems (CHI), pp. 2159–2168, 2010.

[143] D. K. H. Kohlsdorf and T. E. Starner, MAGIC summoning:
Towards automatic suggesting and testing of gestures with low
probability of false positives during use, J. Mach. Learn. Res. 14
(2013), no. 1, 209–242.

[144] B. Caramiaux, N. Montecchio, A. Tanaka, and F. Bevilacqua,
Adaptive gesture recognition with variation estimation for
interactive systems, ACM T. on Interactive Intell. Syst. (2014).

[145] J. I. Hong and J. A. Landay, SATIN: A toolkit for informal
ink-based applications, in Proc. Annual ACM Symp. on User
Interface Software and Technology (UIST), pp. 63–72, 2000.

[146] K. Kin, B. Hartmann, T. DeRose, and M. Agrawala, Proton:
Multitouch gestures as regular expressions, in Proc. SIGCHI Conf.
on Human Factors in Computing Systems (CHI), pp. 2885–2894,
2012.

[147] A. C. Long, J. A. Landay, and L. A. Rowe, Implications for a
gesture design tool, in Proc. SIGCHI Conf. on Human Factors in
Computing Systems (CHI), pp. 40–47, 1999.

[148] H. Lü and Y. Li, Gesture Coder: A tool for programming
multi-touch gestures by demonstration, in Proc. SIGCHI Conf. on
Human Factors in Computing Systems (CHI), pp. 2875–2884,
2012.

168 BIBLIOGRAPHY

[149] H. Lü and Y. Li, Gesture Studio: Authoring multi-touch
interactions through demonstration and declaration, in Proc.
SIGCHI Conf. on Human Factors in Computing Systems (CHI),
pp. 257–266, 2013.

[150] J.-W. Kim and T.-J. Nam, EventHurdle: Supporting designers’
exploratory interaction prototyping with gesture-based sensors, in
Proc. SIGCHI Conf. on Human Factors in Computing Systems
(CHI), pp. 267–276, 2013.

[151] A. K. Dey, R. Hamid, C. Beckmann, I. Li, and D. Hsu, A
CAPpella: Programming by demonstration of context-aware
applications, in Proc. SIGCHI Conf. on Human Factors in
Computing Systems (CHI), pp. 33–40, 2004.

[152] L. D. Spano, A. Cisternino, F. Paternò, and G. Fenu, GestIT: A
declarative and compositional framework for multiplatform gesture
definition, in Proc. ACM SIGCHI Symp. on Engineering Interactive
Computing Systems (EICS), pp. 187–196, 2013.

[153] B. Signer, U. Kurmann, and M. C. Norrie, iGesture: A general
gesture recognition framework, in Proc. Intl. Conf. on Document
Analysis and Recognition (ICDAR), pp. 954–958, 2007.

[154] B. Plimmer and I. Freeman, A toolkit approach to sketched
diagram recognition, in Proc. British HCI Group Annual Conference
on People and Computers, pp. 205–213, 2007.

[155] F. Beuvens and J. Vanderdonckt, Designing graphical user
interfaces integrating gestures, in Proc. ACM Intl. Conf. on Design
of Communication (SIGDOC), pp. 313–322, 2012.

[156] G. van Seghbroeck, S. Verstichel, F. D. Turck, and B. Dhoedt,
WS-Gesture, a gesture-based state-aware control framework, in Proc.
IEEE Intl. Conf. on Service-Oriented Computing and Applications
(SOCA), pp. 1–8, 2010.

[157] R.-D. Vatavu, C.-M. Chera, and W.-T. Tsai, Gesture profile for
web services: An event-driven architecture to support gestural
interfaces for smart environments, in Proc. Ambient Intelligence
(AmI), pp. 161–176, 2012.

BIBLIOGRAPHY 169

[158] D. Kohlsdorf, T. E. Starner, and D. Ashbrook, MAGIC 2.0: A
web tool for false positive prediction and prevention for gesture
recognition systems, in Proc. IEEE Intl. Conf. on Automatic Face &
Gesture Recognition and Workshops (FG), pp. 1–6, 2011.

[159] R. Plamondon and R. Baron, A dedicated microcomputer for
handwritten interaction with a software tool: system prototyping,
Journal of microcomputer applications 9 (1986), no. 1, 51–61.

[160] R. Plamondon and R. Baron, On-line recognition of handprinted
schematic pseudocode for automatic fortran code generator, in
Proceedings of the Eight International Conference on Pattern
Recognition, pp. 741–744, 1986.

[161] F. Nouboud and R. Plamondon, A handwriting interface to a
schematic pseudocode generator, Pattern
Recognition-Architectures, Algorithms & Applications, World
Scientific, Singapore (etc.) (1991) 301–310.

[162] J. Tiedemann, News from OPUS - A collection of multilingual
parallel corpora with tools and interfaces, in Recent Advances in
Natural Language Processing, pp. 237–248. John Benjamins,
Amsterdam/Philadelphia, 2009.

[163] M. LaLomia, User acceptance of handwritten recognition accuracy,
in Proc. SIGCHI Conf. on Human Factors in Computing Systems
(CHI), pp. 107–108, 1994.

[164] S. Ishimaru, H. Nishizaki, and Y. Sekiguchi, Effect of confusion
network combination on speech recognition system for editing, in
Proc. of APSIPA Annual Summit and Conf, vol. 4, pp. 1–4, 2011.

[165] E. Granell and C.-D. Martínez-Hinarejos, Multimodal output
combination for transcribing historical handwritten documents, in
Computer Analysis of Images and Patterns, pp. 246–260, Springer,
2015.

[166] C. O’Reilly and R. Plamondon, Can computer mice be used as
low-cost devices for the acquisition of planar human movement
velocity signals?, Behav. Res. Methods 43 (2011), no. 1, 229–238.

170 BIBLIOGRAPHY

[167] R.-D. Vatavu, L. Anthony, and J. O. Wobbrock, Relative accuracy
measures for stroke gestures, in Proc. Intl. Conf. on Multimodal
Interaction (ICMI), pp. 279–286, 2013.

[168] R.-D. Vatavu, L. Anthony, and J. O. Wobbrock, Gestures as point
clouds: a $p recognizer for user interface prototypes, in Proc. Intl.
Conf. on Multimodal Interaction (ICMI), pp. 273–280, 2012.

	Abstract
	Acknowledgments
	Contents
	1 Introduction
	2 Overview of Pen & Touch Recognition
	2.1 Handwritten Text Recognition
	2.1.1 On-line HTR System
	2.1.2 Off-line HTR System

	2.2 Gesture Recognition
	2.2.1 Recognizers

	2.3 Assessing the Recognition Performance
	2.3.1 Datasets

	2.4 Conclusion

	3 Improving Interactive Transcription of Text Images
	3.1 Overview of Interactive Transcription of Text Images
	3.1.1 Formal Framework
	3.1.2 Interaction Using Isolated Typed Characters
	3.1.3 Interaction Using Isolated Handwritten Words
	3.1.4 Assessing the Performance of Interactive Systems

	3.2 Interaction Using Isolated Handwritten Characters
	3.2.1 Formal Framework
	3.2.2 Dynamic Language Modeling
	3.2.3 Evaluation
	3.2.4 Results

	3.3 Interaction Using A Sequence of Handwritten Characters
	3.3.1 Formal Framework
	3.3.2 Dynamic Language Modeling
	3.3.3 Evaluation
	3.3.4 Results

	3.4 Discussion
	3.5 Conclusion

	4 Improving Sigma-Lognormal Parameters Extraction
	4.1 Overview of the Kinematic Theory
	4.1.1 Delta-Lognormal Model
	4.1.2 Sigma-Lognormal Model
	4.1.3 Sigma-Lognormal Parameters Extractor
	4.1.4 Assessing the Sigma-Lognormal Parameters Extraction

	4.2 New Sigma-Lognormal Parameters Extractor
	4.2.1 Preprocessing
	4.2.2 Stroke Extraction
	4.2.3 Evaluation
	4.2.4 Results

	4.3 Discussion
	4.4 Conclusion

	5 Synthesizing Pen & Touch On-line Strokes
	5.1 Overview of Stroke Synthesis
	5.1.1 Shape-simulation Synthesis Techniques
	5.1.2 Movement-simulation Synthesis Techniques
	5.1.3 Synthesizing Strokes Using the Kinematic Theory

	5.2 Using Synthetic Samples for Recognition Task
	5.2.1 Evaluation
	5.2.2 Results

	5.3 Discussion
	5.4 Conclusion

	6 Applications
	6.1 Escritoire
	6.1.1 Related Work
	6.1.2 Interacting with Escritoire
	6.1.3 System Implementation
	6.1.4 Conclusion

	6.2 Gestures à Go Go
	6.2.1 Related Work
	6.2.2 g3 Web Service
	6.2.3 g3 Web Application
	6.2.4 Interacting with g3
	6.2.5 Discussion
	6.2.6 Conclusion

	6.3 Interactive Translation Reviewing Using a Pen
	6.3.1 Field Evaluation
	6.3.2 Laboratory Evaluation
	6.3.3 Discussion
	6.3.4 Conclusion

	7 Conclusions
	7.1 Scientific Contributions
	7.1.1 Interactive Handwritten Text Transcription
	7.1.2 Human Movement Modeling
	7.1.3 Synthesizing Pen & Touch On-line Strokes

	7.2 Future Work

	A Evaluating Synthetic Gestures Human Likeness
	A.1 Gesture Relative Accuracy Measures
	A.2 Evaluation
	A.2.1 Method
	A.2.2 Results

	A.3 Conclusion

	List of Figures
	List of Tables
	Bibliography

