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ABSTRACT 
 

Self-incompatibility (SI) comprises a compendium of molecular intraspecific barriers, 

under the control of the S-locus, which enhances outcrossing and prevents inbreeding. 

Solanaceae, Plantaginaceae and Rosaceae exhibit the Gametophytic SI (GSI) type 

where specific recognition is controlled by S-RNases and S-locus F-box (SFB) proteins 

as the female and male S-determinants, respectively. On the other hand, unlinked S-

locus genes known as modifier factors or modifier genes are also completely necessary 

for the mechanism to function. The GSI system seems to be basically preserved in 

Prunus but striking differences with Solanaceae and other Rosaceae have also been 

observed. On the basis of this background, this thesis is focused on the identification 

and characterization of modifier genes involved in Prunus GSI to improve our 

understanding of the underlying mechanism.  

Previous works in apricot (Prunus armeniaca L.) showed that an S-locus unlinked 

mutation expressed in pollen and located at the distal end of chr. 3 (M-locus) confers 

self-compatibility (SC) in the cv. ‘Canino’. In this work, another self-compatible apricot 

cultivar, named ‘Katy’, was molecular and genetically analyzed. Similarly, an S-locus 

unlinked pollen-part mutation was found to cause the loss of self-incompatible response 

in ‘Katy’. A mapping strategy based on segregation distorted loci mapped ‘Katy’ 

mutation (referred as m-mutation) at the distal end of chr. 3, in a region overlapping 

with that identified for ‘Canino’ M-locus. A new screening was carried out to identify 

additional self-compatible mutants in apricot cultivar/accessions from germplasm 

banks. Through S-genotyping, three uncategorized S-alleles were recovered and two 

new mutations putatively conferring SC by affecting the male S-determinant SFB were 

detected. Additionally, M-genotyping showed that the same mutated m-haplotype was 

shared by ‘Canino’ and ‘Katy’, but also by 17 cultivars more from North-America and 

Western-Europe. A widely distributed haplotype M1-0 was proposed as the putative m-

haplotype ancestor suggesting that it arose much later in time than SC-allele, a mutation 

in the S-locus also conferring SC in apricot. 

In order to identify this mutation, an integrative genetic, genomic and transcriptomic 

approach based on NGS data from ‘Canino’, ‘Katy’ and the self-incompatible apricot 

cultivar ‘Goldrich’ was carried out. This approach led to identify a unique 

polymorphism able to explain the self-compatible phenotype, a FaSt insertion type of 

358-bp in coupling with the m-haplotype within a gene encoding a disulfide bond A-like 



oxidoreductase (named PaMDOr). PaMDOr was found to be differentially over 

expressed in mature anthers and the FaSt insertion is predicted to produce a truncated 

protein. These two findings also support PaMDOr as the pollen-part mutated modifier 

conferring SC in apricot. 

Furthermore, phylogenetic analysis suggest PaMDOr as a putative paralogue of its 

contiguous gene (named PaM-8), that emerged after the split of the Rosaceae and 

Solanaceae and which function became essential for the proper functioning of the GSI 

system in Prunus. Aimed to shed light on the differences and similarities between the S-

RNase-based GSI systems in Rosaceae and Solanaceae, orthology relationships were 

analyzed for modifier factors. Putative orthologues were found for NaTrxh, SBP1 and 

MdABCF in Prunus but a more complex evolutionary pattern was detected for 120K, 

NaStEP and NaPCCP. Thus, in spite of the differences, it can be hypothesized that part 

of the GSI modifier factors are shared by both families. 

As a whole, the multidisciplinary strategy developed in this thesis has allowed us to 

identify a novel modifier factor (PaMDOr) essential for the self-incompatible response 

in Prunus as the most significant contribution. In addition, new sources of SC have been 

detected in apricot and the orthology analysis helped to deepen our understanding on 

evolutionary aspects of the S-RNase-based GSI system exhibited by Prunus.



RESUMEN 
 

La autocompatibilidad (AI) comprende un conjunto de barreras moleculares 

intraespecíficas, controladas por el locus S, que favorecen la polinización cruzada y 

previenen de la endogamia. Solanáceas, Plantagináceas y Rosáceas presentan la llamada 

autoincompatibilidad gametofítica (AIG) donde el reconocimiento específico está 

controlado por ARNasas-S y proteínas F-box del locus S (SFB) como los determinantes 

femenino y masculino, respectivamente. Por otra parte, genes no ligados al locus S, 

conocidos como factores o genes modificadores, son también totalmente necesarios para 

la correcta regulación del mecanismo. El sistema AIG parece estar básicamente 

conservado en Prunus pero se han observado notables diferencias con Solanáceas y 

otras Rosáceas. Con estos antecedentes, el trabajo realizado en esta tesis se ha centrado 

en la identificación y caracterización de factores modificadores de la AIG en Prunus 

con el fin de mejorar nuestro conocimiento del mecanismo subyacente.  

Trabajos previos en albaricoquero (Prunus armeniaca L.) mostraron la existencia de 

una mutación expresada en el polen y no ligada al locus S, que se localiza en el extremo 

distal del cr.3 (locus M) y que es capaz de conferir autocompatibilidad (AC) en el 

cultivar ‘Canino’. En este trabajo, otro cultivar de albaricoquero autocompatible 

llamado ‘Katy’ fue genética y molecularmente analizado. De manera parecida a 

‘Canino’, una mutación que afectaba a un factor no ligado al locus S expresado en el 

polen era el causante de la pérdida de la respuesta autoincompatible en ‘Katy’. Una 

estrategia de mapeo genético basada en la distorsión en los ratios de segregación 

permitió mapear la mutación de ‘Katy’ en el extremo distal del cr.3 (denominada 

mutación m) en una región solapante con la identificada para ‘Canino’.  

Una búsqueda para la identificación de nuevo mutantes autocompatibles en cultivares 

y/o accesiones de albaricoquero procedentes de bancos de germoplasma fue llevada a 

cabo. Por medio del genotipado del locus S, 3 alelos S no clasificados con anterioridad 

fueron hallados, mientras que 2 nuevas mutaciones autocompatibles que parecen haber 

afectado al determinante S masculino SFB fueron detectadas. Adicionalmente, el 

genotipado para el locus M mostró que el mismo haplotipo m mutado está compartido 

por ‘Canino’ y ‘Katy’, pero también por 17 cultivares más del norte de América y el 

oeste de Europa. El haplotipo M1-0, ampliamente distribuido, ha sido propuesto como 

posible ancestro del haplotipo m, sugiriendo que éste surgió mucho más tarde que el 

alelo Sc, una mutación en el locus S que también confiere AC en albaricoquero.



Con el objetivo de identificar esta mutación, un abordaje integral tanto a nivel genético 

como genómico y transcriptómico mediante datos NGS procedentes de ‘Canino’, ‘Katy’ 

y del cultivar de albaricoquero autoincompatible ‘Goldrich’, fue llevado a cabo. Esta 

aproximación sirvió para identificar un único polimorfismo capaz de explicar el 

fenotipo de AC, una inserción tipo FaSt de 358 pb en acoplamiento con el haplotipo m 

en un gen que codifica para una disulfide bond A-like oxidoreductase (PaMDOr). 

PaMDOr mostró estar diferencialmente sobre-expresado en anteras maduras, mientras 

que la inserción FaSt predice la formación de una proteína truncada. Estos dos hechos 

apoyan a PaMDOr como el factor modificador de la parte del polen que confiere AC en 

albaricoquero. 

Adicionalmente, análisis filogenéticos sugieren que PaMDOr como un posible parálogo 

de su gen contiguo (llamado PaM-8) que surgió después de la división de Rosáceas y 

Solanáceas, cuya función ha llegado a ser esencial para el correcto funcionamiento del 

sistema autoincompatible en Prunus. A fin de arrojar cierta luz en las diferencias y 

similitudes entre los sistemas de AIG basado en ARNasas-S de Rosáceas y Solanáceas, 

las relaciones de ortología para factores modificadores fueron estudiadas. Ortólogos 

candidatos fueron encontrados para NaTrxh, SBP1 y MdABCF, sin embargo, un patrón 

evolutivo más complejo fue observado para NaStEP, 120K y NaPCCP. De modo que, a 

pesar de las diferencias, se puede hipotetizar que una parte de los modificadores de la 

AIG están compartidos por las dos familias.  

En resumen, el estudio multidisciplinario desarrollado durante esta tesis ha permitido 

encontrar un novedoso factor modificador (PaMDOr) esencial para la respuesta 

autoincompatible en Prunus. Además, nuevas fuentes de AC han sido detectadas en 

albaricoquero y análisis de ortología ayudaron a profundizar en el entendimiento de los 

aspectos evolutivos del sistema de AIG basado en ARNasas-S en Prunus.



RESUM 
 

L’autocompatibilitat (AI) comprèn un conjunt de barreres moleculars intraespecífiques, 

controlades pel locus S, que afavorixen la pol·linització creuada i prevé de l’endogàmia. 

Solanàcies, Plantaginàcies i Rosàcies presenten l’anomenada AI gametofítica (AIG) on 

el reconeixement específic està controlat per ARNases-S i proteïnes F-box del locus S 

(SFB) com a determinants femení i masculí, respectivament. Per un altra banda, gens no 

lligats al locus S, coneguts com factors o gens modificadors, són també totalment 

necessaris per a la correcta regulació del mecanisme. El sistema AIG pareix estar 

bàsicament conservat en Prunus, però s’han observat notables diferències amb 

Solanàcies i altres Rosàcies. Amb estos antecedents, el treball realitzat durant aquesta 

tesi se ha focalitzat en la identificació i caracterització de factors modificadors de l’AIG 

en Prunus a fi d millorar el nostre enteniment del mecanisme subjacent.  

Treballs previs a l’albercoquer (Prunus armeniaca) mostraren l’existència d’una 

mutació expressada al pol·len no lligada al locus S, la qual està localitzada a l’extrem 

distal del cr.3 (locus M), es capaç de conferir autocompatibilitat (AC) al cultivar 

‘Canino’. En aquest treball, un altre cultivar d’albercoquer autocompatible anomenat 

‘Katy’ va ser genètica i molecularment analitzat. De manera pareguda a ‘Canino’, una 

mutació que afecta a un factor no lligat al locus S expressat al pol·len era la causa de la 

perduda de la resposta autoincompatible en ‘Katy’. Una estratègia de mapeig genètic 

basada en la distorsió en els ratis de segregació va permetre mapetjar la mutació de 

‘Katy’ a l’extrem distal del cr.3 (denominat mutació m) en una regió solapant amb la 

identificada per a ‘Canino’.  

Una recerca per a la identificació de nous mutants autocompatibles en cultivars i/o 

accessions d’albercoquer procedents de bancs de germoplasma va ser portada a terme. 

Mitjançant el genotipatge del locus S, 3 al·lels S no classificats amb anterioritat van ser 

trobats, mestres que dos noves mutacions AC que pareixen haver afectat al determinant 

S masculí SFB varen ser detectades. Amés, el genotipatge del locus M va mostrar que el 

mateix haplotip m mutat està compartit per ‘Canino’ i ‘Katy’, però també per 17 

cultivars més del nord d’Amèrica i l’oest d’Europa. El haplotip M1-0, ampliamente 

distribuït, ha sigut proposat com a possible ancestre del haplotip m, sugerint que aquest 

va sorgir més tard que el al·lel Sc, una mutació al locus S que també conferix AC a 

l’albercoquer.



Amb l’objectiu d’identificar aquesta mutació, un abordatge integral tant a nivell genètic 

com genòmic i transcriptòmic mitjançant diversos tipus de dades NGS provinents de 

‘Canino’, ‘Katy’ i del cultivar d’albercoquer autoincompatible ‘Goldrich’ va ser portat 

terme. Aquesta aproximació va permetre identificar un únic polimorfisme capaç 

d’explicar el fenotip d’AC, es tracta d’una inserció de 358 pb en adaptament amb el 

haplotip m en un gen que codifica per a disulfide bond A-like oxidoreductase 

(PaMDOr). PaMDOr va mostrar estar diferencialment sobre-expressat en anteres 

madures, mentres que la inserció FaSt prediu la formació d’una proteïna truncada. Estos 

dos fets recolzen a PaMDOr com al factor modificador de la part del pol·len que 

conferix AC en albercoquer.  

A més a més, anàlisis filogenètics suggerixen que PaMDOr podria ser un paràlog del 

seu gen contigu (anomenat PaM-8) que va sorgir després de la divisió de Rosàcies i 

Solanàcies, en la qual la funció ha arribat a ser fonamental per al correcte funcionament 

del sistema d’AIG a Prunus. A fi de tirar certa llum en quant a les diferències i 

similituds entre els sistemes d’AIG basats en ARNases-S de Rosàcies i Solanàcies, les 

relacions d’ortologia per als factors modificadors va ser estudiat. Ortòlogs candidat van 

ser trobats per a NaTrxh, SBP1 i MdABCF, no obstant, un patró evolutiu més complex 

va ser observat per a NaSTeP, 120K i NaPCCP. De tal manera que, a pesar de les 

diferències, es pot plantejar la hipòtesi de que una part dels modificadors de l’AIG estan 

compartits per les dues famílies.  

En resum, l’estudi multidisciplinari desenvolupat en aquesta tesi ha permés trobar un 

nou factor modificador (PaMDOr) fonamental per a la resposta autoincompatible a 

Prunus. Amés, noves fonts d’AC han sigut detectades a l’albercoquer i l’anàlisi 

d’ortologia varen ajudar a profunditzar a l’enteniment dels aspectes evolutius del 

sistema de l’AIG basada en ARNases-S a Prunus.  
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1. Reproductive barriers in plants. Strategies to avoid inbreeding  

Plants have a predominantly sessile lifestyle, this circumstance has carried to 

develop hermaphrodite flowers maintaining the capacity to reproduce without the need 

of a mate throughout their evolutionary history (Rea & Nasrallah, 2008). The idea 

behind this affirmation was hypothesized by Fisher (1941), who proposed self-

fertilizing as strategy that ensures the offspring. Barrett (2002) estimated that 

approximately 20% of the angiosperm species use selfing as sexual reproduction 

strategy, which also allows a rapid colonization of unoccupied space (Pannell & Barrett, 

1998). This behavior has a high cost: the inbreeding depression. Thus, plants have 

evolved different strategies on the basis of their ecological and biological context to 

prevent it. 

  Strategies aimed to prevent selfing in plants were already reported by Charles 

Darwin. In his work ‘The different forms of flowers on plants of the same species’ 

(published in 1877) he described species that elaborate alternative floral morphologies, 

exemplified by Primula vulgaris, where two floral morphs differ reciprocally from one 

another in the positions in which anthers and stigmas are located in flowers (Figure 

In1a). This strategy, currently known as heterostyly, is part of a variety of strategies that 

expect to separate spatially (hercogamy) or temporally (dichogamy) mature pollination 

intermediaries of the plant sexual structures. In addition to heterostyly, divided in 

distyly (Figure In1a) and tristyly depending on the number of floral morphs that differ 

reciprocally, enantiostily (Figure In1b) and flexistyly (Figure In1c) are other examples 

also included in this group of phenomena. These strategies possess their maximum 

expression in plants having unisexual flowers (~10% of plant species), a condition 

referred as dicliny (that involve various combinations of female, male and 

hermaphrodite flowers at plant and population levels) (Figure In1d).  
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Figure In1. Morphological strategies developed by heteromorphic plants to prevent inbreeding.  
a) distily, b) enantiostily, c) flexistily and d) dicliny. Image taken from Barret (2002) 

 

Global distinct floral morphology mentioned until now refers to heteromorphic 

flowers which reproductive goal is to promote cross-pollination (Barrett, 2002). 

Notwithstanding, the majority of plant species have homomorphic flowers, that is, all 

flowers have exactly the same morphology. Thus, the proximity and simultaneous 

maturity of reproductive organs significantly increase the possibility of self-pollination. 

It is in this context where the commonly known as ‘self-incompatibility’ systems 

operate.  

 

2. Historical evolution of the self-incompatibility concept 

Using C. Darwin own words: 

It is an extraordinary fact that with many species, flowers fertilised with 

their own pollen are either absolutely or in some degree sterile; if 

fertilised with pollen from another flower on the same plant, they are 

sometimes, though rarely, a little more fertile; if fertilised with pollen 

from another individual or variety of the same species, they are fully 

fertile; but if with pollen from a distinct species, they are sterile in all 

possible degrees, until utter sterility is reached. We thus have a long 

series with absolute sterility at the two ends;—at one end due to the 

sexual elements not having been sufficiently differentiated, and at the 

a b c 

d 
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other end to their having been differentiated in too great a degree, or in 

some peculiar manner. 

The fertilisation of one of the higher plants depends, in the first place, 

on the mutual action of the pollen-grains and the stigmatic secretion or 

tissues, and afterwards on the mutual action of the contents of the 

pollen-grains and ovules. Both actions, judging from the increased 

fertility of the parent plants and from the increased powers of growth in 

the offspring, are favored by some degree of differentiation in the 

elements which interact and unite so as to form a new being. 

 

This fragment (p.455) from ‘The effects of cross and self-fertilisation in the 

vegetable kingdom’  (1878) denotes how Darwin was able to value a pattern widely 

spread in plants pursuing to avoid self-pollination. He coined this phenomenon as self-

sterility, describing it as a consequence of pollen-pistil interaction. By that time, Mendel 

had already published his results about heredity rules but they were not rediscovered 

until 1900. Hence, this lack of knowledge in genetics led Darwin to attribute to the 

environment influence the cause of self-sterility (McClure, 2009). Nevertheless, 

botanists and geneticists from first decades of the 20th century observed that self-

sterility described by Darwin followed genetic rules proposed by Mendel. The works of 

Compton (1913), East & Park (1917), East & Mangelsdorf (1925), East & Yarnell 

(1929) and East (1932) highlighted that Darwin’s self-sterility was actually a reaction of 

compatibility/incompatibility between pollen and pistil, laying the foundations of the 

currently known as self-incompatibility systems.  

 

3. Genetics of self-incompatibility. Gametophytic and sporophytic systems.  

Self-incompatibility (SI) is defined as a reproductive barrier which inhibits 

fertilization by either self-pollen or pollen from closed related plants preventing 

inbreeding and enhancing outcrossing in flowering plants (de Nettancourt 2001). SI has 

been reported in more than half of plant species and represents the most extended tool to 

avoid inbreeding in the plant kingdom (Igic & Kohn 2001). 

Classic genetic studies established that most SI systems in angiosperms are 

controlled by a single multiallelic locus termed S-locus. This locus contains at least two 

linked genes acting as determinants, one of them specifically expressed in pollen (male 

S-determinant) and the other in the pistil (female S-determinant) (de Nettancourt, 2001). 
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Conventionally, alleles from S-determinants are referred to belong to the same S-

haplotype because they are genetically linked (McCubbin & Kao, 2000). Therefore, 

pollen rejection during incompatible reactions is triggered when the two expressed male 

and female S-determinant alleles come from the same S-haplotype (Figure In2a). 

Instead, if S-alleles differ to each other, pollen tube will be potentially able to reach the 

ovary and fertilize the ovule (Iwano & Takayama, 2012; McClure et al., 2011; 

Takayama & Isogai, 2005). According to the time of gene action in the stamen, most 

types of self-incompatibility can be classified into the sporophytic and the gametophytic 

groups (de Nettancourt 2001). In the first one, the pollen phenotype is determined by 

the genotype of the diploid pollen-parent (Figure In2b), while in the second it is 

determined by the genotype of the individual microspore (Figure In2c).  

 

 

Incompatibility mechanisms are not only restricted to intraspecific barriers, but 

they have also been associated to interespecific crossability barriers, and particularly 

with the so-called unilateral incompatibility (UI). UI is a particular case within 

interspecific barriers where crosses are feasible in one direction rather than the other 

way round, suggesting that there are not gross differences in the requirements for pollen 

Figure In2. Self-Incompatibility 
genetics. a) schematic representation of 
the S-locus. Red and blue rectangles 
symbolize male and female S-
determinants, while orange arrows and 
green lines incompatible and compatible 
crosses, respectively. Image taken from 
Takayama & Isogai (2005). b) schematic 
drawing of cross-compatibility response in 
a diploid Gametophytic Self-
Incompatibility (GSI) system. Three 
different types of crosses are shown: 
incompatible, fully-compatible and semi-
compatible. c) schematic drawing of cross-
compatibility response in a diploid 
Sporophytic Self-Incompatibility (SSI) 
system. Interactions of co-dominance and 
dominance-recessiveness are indicated by 
colored dots in pollen surface. S1 (blue 
dots) and S2 (red dots), and S3 (green dots) 
and S4 (purple dots) alleles are co-
dominant, whereas S3 allele dominates 
over S2 allele. Images b) and c) have been 
taken from Nasrallah (2005). 

 

a 

b 

c 
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tube development (Hancock et al., 2003). The UI general rule was defined as the SI x 

SC rule by Lewis & Crowe (1958) and means that pollen from self-compatible species 

is rejected by self-incompatible species meanwhile the reciprocal cross tends to be 

compatible. Thereafter, the phenomenon of UI has been extensively described in several 

plant species (Heslop-Harrison, 1982; Hiscock & Dickinson, 1993; Chen & Adelberg, 

2000; Martin, 1967; Pandey, 1981; Layne & Sherman, 1986). Mechanisms controlling 

interspecific pollination have received less attention (McClure et al., 2000), but factors 

involved in SI mechanisms in Solanaceae (Li & Chetelat, 2010, 2014; Murfett et al., 

1996; Tovar-Méndez et al., 2014) and Brassicaceae (Kitashiba & Nasrallah, 2014) have 

also been observed to be related to UI supporting a connection between SI and UI. 

 

4. Self-incompatibility as an agronomic relevant trait  

Self-incompatibility did not only generate interest among evolutionists and 

geneticists regarding its implication in plant evolution but also among plant breeders. 

Public institutions and private companies developing plant breeding programs soon 

focused their interest on SI. Since 1911 the John Innes Horticultural Institution studied 

incompatibility and sterility in plums, cherries and apples and extended the studies to 

pears at the end of the 1930´s (Crane and Lewis, 1942). For instance, cross-pollinations 

were used to define intercompatible groups in sweet cherry cultivars by Crane and 

Brown (1937) and, later on, a pollen irradiation program produced the first self-

compatible cultivars within this strictly self-incompatible species (Lewis and Crowe, 

1954). In 1940, the Japanese seed company Sakata Seed Co., introduced the F1-hybrid 

cabbage cv. Suteni Kanran by using SI trait, and this success was followed by the Takii 

& Co. Ltd Company that introduced the cabbage cvs. Choko-1c and Choko-1cc in 1950 

(Watanabe, 2008). Interest on SI trait was not only confined to fruit trees (Rosaceae) 

and cabbages (Brassicaceae) but also extended to other important crop species such as 

potato (Pushkarnath, 1942) [Solanum tuberosum; Solanaceae], cacao (Cope, 1962) 

[Theobroma cacao L.; Malvaceae] sunflower (Pinthus, 1959) [Helianthus annus L.; 

Asteraceae], rye (Lundqvist, 2010) [Secale cereale (L.) M. Bieb.; Gramineae], pummelo 

(Soost, 1964) [Citrus grandis osbeck; Rutaceae], etc. Usefulness of self-

(in)compatibility trait in plant breeding and production has been proved for different 

objectives. Few of them are briefly summarized next.  
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4.1. S-genotyping facilitates pollination control 

In crops exhibiting SI systems, cultivars serving as pollen donors “pollenizers” 

are commonly interspersed in the orchards since fruit set depends largely on cross-

pollinations. For instance, in diploid fruit tree species having gametophytic self-

incompatibility (GSI), out-crosses can be classified into three types: incompatible, semi-

compatible and fully compatible when the two progenitors share both S-alleles, only one 

or none of them, respectively (Figure In2b). Obviously in semi-compatible crosses half 

of the available pollen grains are rejected and this fact has been shown to have a 

significant impact on fruit set and yield (fruit size) in different Rosaceae species such as 

apple, European pears and Japanese plums grown in sub-optimal regions (i.e. the 

Mediterranean basin) for growth and pollination (Sapir et al., 2008; Schneider et al., 

2005; Zisovich et al., 2005). The use of “pollenizers” is not exclusive of stone and pome 

fruit trees but it is also common in other species (Woodcock, 2012). Therefore, for seed 

and fruit industry it is important to know how many genetically different compatibility 

groups exist within a particular species, since this knowledge would help to select 

adequately those combinations of cultivars that may work effectively in orchards 

settings to produce regular cropping. In those species where the S-determinants have 

already been identified, molecular genotyping has progressively replaced controlled 

pollination, pollen tube growth tests and enzymatic assays used to determine the S-

genotype, accelerating the identification of new S-alleles, since these methods do not 

depend on the environmental conditions and do not require adult plants in the case of 

trees (Yamane & Tao, 2009).  

 

4.2. SI as an alternative to androsterility for developing hybrids. 

Heterosis or hybrid vigor is a phenomenon largely pursued by breeders because 

of F1 progenies frequently show higher yields and exhibit other interesting traits 

favoring adaptation to production conditions including, for instance, a better response to 

abiotic stresses. In fact, hybrids are the most usual form of commercial cultivars in 

many crop species such as maize, sorghum, tomato, pepper, etc. (Kempe & Gils, 2011). 

However, due to the breeder´s selection, most cultivated crop species are self-

compatible and, therefore, hybrid production requires an efficient pollination control 

system to prevent undesired self-fertilization of the female parent. Methods range from 

the non-biological technologies, including manual or mechanical removal of the anthers 

and gametocide chemical agents, to the biological systems, commonly based on nuclear 
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or cytoplasmic-encoded male sterility and diverse techniques to restore fertility in the F1 

hybrid (Kempe & Gils, 2011). SI has been reported as an advantageous alternative to 

male sterility in many cases, especially for those crop species with entomophilous 

pollination since pollen-collecting bees rarely visit male-sterile plants (Kaothien-

Nakayama et al., 2009). Nonetheless, SI systems integrated in breeding programs lead 

to self-incompatible F1 hybrids, obtained either from two self-incompatible parents or a 

self-incompatible female and a self-compatible male parent, and this is a handicap for 

those crops commercialized for their seeds (oilseed rape) or fruits (stone and pome 

fruits) (Figure In3). Indeed, not only self-incompatible female lines but also self-

compatible F1 hybrids are demanded by breeding programs (Kaothien-Nakayama et al., 

2009). 

 

 
 

In Brassicaceae SI has been widely used for hybrid seed production in the 

generally self-incompatible vegetable types of diploids Brassica oleracea and B. rapa. 

However, the derived amphi-diploid oilseed rape (B. napus) is naturally self-compatible 

and introgression of S-alleles from parental species was required to produce hybrid 

seeds (Rahman, 2005). Genetic modification to introgress SI in Brassica was already 

proposed by Nasrallah et al. (1991) but to date it has not been yet reported. SI is seen as 

a promising alternative for a hybrid breeding system in other species such as wheat 

(Whitford et al., 2013) and ryegrass (Pembleton et al., 2015) but until now the lack of 

knowledge on the S and Z SI determinants in grasses has hindered this option. In a 

wider sense, hybrid production might be potentially achieved by transferring S-

determinants. Recently, Lin et al. (2015) have reached this goal conferring SI to the 

Figure In3: Systems to develop F1 
hybrids based on the use of self-
incompatibility 
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self-compatible Arabidopsis thaliana (SSI system) throughout the use of Papaver S-

determinants (GSI system) (de Graaf et al., 2012; Lin et al., 2015).  

 

4.3. Removing interspersed pollinators while increasing fruit set and quality 

SI restricts fertilization and fruit setting in many fruit tree crops. In terms of crop 

production, SC is a desired trait because it avoids the use of cross-pollinators, growing a 

single cultivar as a ‘solid block’. In addition, it is also a crucial factor to control fruit set 

and yield. For instance, by definition in semi-compatible crosses half of the pollen is 

rejected (in contrast with fully-compatible crosses) which might reduce yield. In 

addition, in some genera, such as Malus and Pyrus, where many ovules could 

potentially be fertilized, a reduction in the number of fertilization events might result in 

a lower number of seeds and, subsequently, low-quality fruits. In these and other 

species, SC is mostly tied to satisfactory fruit set producing high yields or even over-

cropping (Goldway et al., 2007). However, while SC may facilitate a reduction in the 

number of hives required it is generally accepted that it can not guarantee full yields in 

many crops (i.e. sunflower, canola, sour cherry, almond, apricot, etc.) where cross-

pollination is needed to ensure maximum set (Schneider et al., 2001; Zhang & 

Hiratsuka, 2005). Conversely, the presence of honey bee colonies might induce ‘over-

pollination’ when growing self-compatible stone fruits (i.e. sour cherry, peach or 

apricot). This phenomenon leads to an overly heavy fruit set and high yield by weight 

resulting in a high proportion of undersized fruits of reduced value (Woodcock, 2012). 

In self-incompatible crops, commercial self-compatible cultivars are mostly the 

result of spontaneous style- or pollen-part mutations conferring SC, subsequently 

selected by growers and breeders. SC is usually the indirect result of selection for early 

blooming (frequently associated with early ripening) since pollinating insects and/or 

mates could be limited in early spring. This is the case of several cultivars in several 

stone fruit trees (Yamane & Tao, 2009). Unlike this process, induced mutations leading 

to SC by irradiating pollen with X-ray and successive crosses has given a number of 

self-compatible commercial cultivars in sweet cherry (Ushijima et al., 2004). In other 

species such as sunflower, self-compatible cultivars were introduced in the 60´s also 

through traditional breeding programs (Astiz et al., 2011) while in turnip (Brassica 

rapa) only a few self-compatible cultivars are available (Zhang et al., 2013). 

Notwithstanding, the reported uses of SC are not based upon the knowledge of 

SI controlling factors. A first attempt in this regard can be credited to Broothaerts et al. 
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(2004) who developed a self-fertile apple cultivar by silencing the S-RNase gene-

expression in the pistil (female S-determinant; see section 6.1) which results in un-

arrested pollen tube growth and fertilization. More recently, Jung et al. (2012) 

developed a self-compatible Brassica rapa line by RNAi mediated S-locus gene 

silencing.  

 

5. Molecular mechanisms underlying self-incompatibility 

Three SI systems have been molecularly characterized to date, but a plethora of 

studies are being developed in many others. The capital part for the depth molecular 

knowledge in these 3 systems has been the elucidation of the S-components (Figure 

In4).  

 
Figure In4. The different self-incompatibility systems which S-factors have been elucidated in 
angiosperms. The phylogenetic tree is based on The Angiosperm Phylogeny Group (2009). Pistil-part 
and pollen-part determinants are between parentheses. Image taken from Sassa (2016).  
 

The mechanism exhibited by the Brassicaceae is the only sporophytic SI (SSI) 

known in depth. The S-locus comprises two highly polymorphic glycoproteins 

expressed in the papilla cells of the stigma, SLG (S-locus glycoprotein) (Nasrallah et al., 

1987; Takayama et al., 1987) and SRK, a SLG-like protein in its extracellular domain 

(S-domain) that also contains a transmembrane domain and an intracellular 

serine/threonine receptor kinase domain (Stein et al., 1991). SP11/SCR is a cysteine-

rich protein encoded by the S-locus as well but specifically expressed in the anther 

tapetum and pollen grains (Schopfer et al., 1999; Suzuki et al., 1999; Takayama et al., 

2000). Gain-of-function assays highlighted that SRK protein was the female component 
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in the SSI system (Takasaki et al., 2000) while SP11/SCR was analogously 

demonstrated to be the male S-component (Schopfer et al., 1999; Shiba et al., 2001; 

Takayama et al., 2000; Takayama et al., 2001). SLG was proposed to act as enhancer of 

SRK action (Suzuki et al., 1999). In addition, interaction between SRK-SP11/SCR was 

determined by different biochemical approaches (Takayama et al., 2001). Despite S-

factors and their interaction have been fully characterized, the signaling pathway 

triggered by ligand-binding, the receptor activation and the rapid mechanism of self-

pollen rejection are not well understood. Nevertheless, some proteins involved in this 

process have been reported. Thus, after SRK-SP11/SCR interaction, the receptor is 

autophosphorylated and together with the M-Locus Protein Kinase (MLPK), a plasma 

membrane-tethered protein (Kakita et al., 2007; Murase et al., 2004), interact and 

phosphorylate the Arm repeat-Containing protein (ARC1) (Gu et al., 1998). In turn, 

Exo70A1 (component of the exocyst complex) was observed as an ARC1 interacting 

protein. Transgenic lines reducing Exo70A1 expression levels disrupted compatible 

pollen tube growth (Samuel et al., 2009), which has led to propose that Exo70A1 

promotes compatible pollination success and that the ARC1-mediated degradation of 

Exo70A1 leads to self-pollen rejection by inhibiting secretion of ‘compatibility’ factors 

(Figure In5). Additionally, two Thioredoxin-h proteins (THL1 and THL2) were shown 

to bind SRK in yeast two-hybrid screening and suggested to function preventing the 

autophosphorylation of the SRK receptor (Mazzurco et al., 2001). In spite of these 

results, some works have recently questioned a specific role of the MLPK, THL and 

ARC1 proteins in the SSI system (Kitashiba et al., 2011; Yamamoto & Nasrallah, 

2013).     

 
Figure In5. A model for multiple SI signaling pathways in the Brassicaceae. The diagram shows the 
zone of contact between a stigma epidermal cell and a self-pollen grain. SCR molecules (from diploid 



GENERAL INTRODUCTION 

33 

 

tapetal tissues of pollen grain) are shown as red circles. The diagram shows a simplified view of the 
stigma–pollen interaction in which only a single SRK variant and its cognate SCR are shown. SCR-SRK 
interaction causes autophosphorylation of the receptor and triggers several signaling cascades within the 
stigma epidermal cell. MLPK is proposed as a common signaling intermediate. The middle cartoon 
illustrates a cascade that involves ARC1-mediated-ubiquitination of EXO70A1. The two other cartoons 
postulate the existence of ARC1/Exo70A1-independent signaling pathways that use currently unknown 
components. Image taken from Tantikanjana et al. (2010). 
 

Two distinct GSI systems have been deeply studied from a molecular point of 

view: the one present in Papaver relying on Progammed Cell death (PCD) and that 

based on S-RNases present en several plant families (see next section for a detailed 

description of this latter). The GSI system characterized in Papaver rhoeas is, 

undoubtedly, the better understood physiologically. In this case the S-locus encodes for 

the PrsS female S-factor, a small and highly polymorphic protein secreted by stigmatic 

papilla cells acting as a signaling ligand (Foote et al., 1994) and for PrpS, a presumable 

transmembrane protein operating as male determinant (Wheeler et al., 2009). The 

interaction of both factors triggers an intracellular signaling network resulting in a 

highly specific biological events involved in PCD (Thomas & Franklin-Tong, 2004; 

Bosch & Franklin-Tong; Wilkins et al., 2014). S-determinants interaction produces an 

increase of free Ca2+ that initiates a signaling cascade (Franklin-Tong et al., 1997; 

Franklin-Tong et al., 1995; Franklin-Tong et al., 1993). Phosphorylation events in 

poppy after incompatible response are initiated from p56 protein MAPK, where 

different evidences have shown to be related in PCD response (Li et al., 2007; Rudd et 

al., 1996). Furthermore, Pr-p26.1a/b are two pollen expressed pyrophosphatases that 

might provide an additional inhibitory mechanism rejecting pollen tube growth (de 

Graaf et al., 2006). SI in poppy has also demonstrated to alter cytoskeleton throughout 

depolymerization of the F-actin in a Ca2+ signaling dependent-manner (Geitmann et al., 

2000; Snowman et al., 2002). Lastly, DNA fragmentation is one of the late steps in self-

incompatible response, different evidences has shown that a DEVDase/caspase-like 

activity is involved in SI-mediated pollen-tube inhibition and DNA fragmentation 

(Bosch & Franklin-Tong, 2007). Figure In6 shows in detail the complex and integrated 

network taking place in poppy GSI response.  
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Figure In6. Cartoon showing a model of the integrated self-incompatibility (SI) programmed cell death 
(PCD) signalling network in Papaver rhoeas pollen. Image taken from Wilkins et al. (2014).  
 

6. Gametophytic Self-Incompatibility based on S-RNases 

GSI based on S-RNases has been found to operate in Solanaceae, 

Plantaginaceae, Rubiaceae and Rosaceae families being the most extended SI system in 

the plant kingdom (Igic & Kohn, 2001). However, though some basic features of the 

mechanism seem to be shared by all families striking differences have also been 

observed. 

 

6.1. Female (S-RNases) and male (S-locus F-box proteins) S-determinants 

The stylar ‘component’ of the S-locus codes for a T2-type RNase (S-RNase) 

shown to have ribonuclease activity in Nicotiana alata for the first time (Anderson et 

al., 1986; McClure et al., 1989). Solanaceous S-RNases contain 5 conserved domains, 

from C1 to C5; where C2 and C3 have histidine residues involved in RNA degradation, 

and the rest contribute to its hydrophobic core. In turn, two regions showing high 

variability, HVa and HVb (localized between C2 and C3 domains) participate in the 

specific recognition process (Ioerger et al., 1991; Xue et al., 1996). This set of 

evidences led to propose a dual role for the S-RNase. On one hand, it acts as the female 

factor implicated in the specific recognition and, on the other, inhibits the incompatible 

pollen tube growth as a consequence of its cytotoxic activity (McClure et al., 2011).    

By sequencing genomic S-locus regions flanking S-RNases, Lai et al. (2002) 

identified a gene codifying for an F-Box protein (SLF from S-locus F-box) in 

Antirrhinum as the pollen S-determinant. According to the genetics of SI, linkage with 
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S-RNase, pollen-specific expression and high sequence diversity were the requisites to 

be fulfilled by pollen S-determinants. SLF showed the two first but not a high 

polymorphism rate. Meanwhile, pollen-expressed F-box genes linked to Prunus S-

RNases were also cloned from almond and Japanese apricot. Proteins encoded by these 

genes (coined as SFB) showed a high amino acid variability among the different alleles 

(Entani et al., 2003; Ushijima K et al., 2003). Sijacic et al. 2004 demonstrated by 

transgenic experiments that SLF proteins were the pollen S-factor in Solanaceae using a 

distinctive feature of this family, competitive interaction generated by heteroallelic 

pollen (see section 6.3). Many S-locus F-box genes were also identified in Malus and 

Pyrus (Rosaceae) and named as SFBB (from SFB Brothers) by Sassa et al. (2007). As 

main features, all S-locus F-box proteins contain an F-Box domain in its N-terminal 

region and two variable (V1 and V2) and two hypervariable (HVa and HVb) regions at 

the C-terminal end (Ikeda et al., 2004).   

 

6.2. S-locus unlinked genes controlling GSI: the modifier factors 

S-locus unlinked genes are also required for the proper functioning of the SI 

mechanism being termed modifier genes or modifier factors. Modifiers can be classified 

into three different classes on the basis of their function: 1) those affecting the 

expression of S-determinants; 2) factors interacting either genetically or biochemically 

with the S-determinants being required for pollen rejection but with no wider role in 

pollination; 3) factors that function in pollen rejection and in other pollen-pistil 

interactions as well (McClure et al., 2000).  

HT-B (High-Top Band) was the first non-S-factor identified acting in the pistil 

side of Nicotiana (McClure et al., 1999). In HT-B suppressed plants S-pollen rejection 

failed but S-RNases were normally uptaken and sequestered in vacuole compartments. 

Additionally, HT-B degradation was observed in compatible crosses whereas in 

incompatible crosses it was entirely operational. Although its role is still unknown, 

these evidences suggest a probable involvement in the degradation of vacuolar 

membranes after incompatible S-recognition (Goldraij et al., 2006). More recently, 

NaStEP, a Kunitz-type proteinase inhibitor, has been found to be crucial for S-specific 

pollen rejection and HT-B stability. This protein is expressed in stigmas of Nicotiana 

spp. being uptake into pollen tubes independently on the (in)compatibility reaction. 

Interestingly, non-functional transgenic lines of NaStEP showed reduced HT-B levels 

within pollen tubes, behavior that was retained in the wild-type preferentially in 
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compatible pollinations. These evidences support NaStEP as positive regulator of HT-B 

but the mechanism still remains to be elucidated (Busot et al., 2008; Jimenez-Duran et 

al., 2013). Arabinogalactan proteins (AGPs) are abundant in the transmitting tract of 

Nicotiana styles being also needed for pollen tube growth (Cheung et al., 1993). Within 

this diverse group of proteins, some members have shown to interact with S-RNases 

and enter into growing pollen tubes (Cruz-Garcia et al., 2003 and 2005). These AGPs 

are pistil extensin-like protein III (PELPIII), transmitting tract-specific glycoproteins 

(TTS) and 120K (Cheung et al., 1993; de Graaf et al., 2003). PELPIII loss of function 

breaks down interspecific incompatibility of Nicotiana tabacum (Eberle et al., 2013). 

Meanwhile, experiments with RNAi lines suppressing 120K in Nicotiana alata drove to 

the loss of its ability to reject S-specific pollen from Nicotiana plumbaginifolia 

(Hancock et al., 2005). Despite all these evidences, the exact role of these modifiers in 

GSI remains elusive. NaTrxh is another stylar modifier gene found in Nicotiana 

encoding a thioredoxin (TRX) from h group (subgroup II) shown to interact with S-

RNases and AGPs in vitro. NaTrxh function is still unknown, but it has been proposed 

to participate in the transport of some of these proteins into pollen tubes or, 

alternatively, to release them once inside the pollen tube. Additionally, it has been 

argued a hypothetical interaction with NaStEP to regulate pollen rejection (Avila-

Castañeda et al., 2014; Juárez-Díaz et al., 2006).   

Non-S-factors of the pollen side have also been identified. The GSI pollen S-

determinant SLF is proposed to be a component of the SCF E3 ubiquitin ligase complex 

formed by Skp1/Cul1/F-box (SCF) proteins, where additionally Cul1 interacts with 

Rbx1 (Hua & Kao, 2006; Huang et al., 2006; Li et al., 2014). SBP1 is a RING-finger 

protein (E3 ligase) expressed in a variety of tissues that binds SLFs, S-RNases, AGPs 

and some transcription factors in yeast two hybrid assays (Sims & Ordanic 2001). 

NaPCCP is an AGPs interacting protein associated with the pollen membrane and 

internal compartments. It has been suggested to contribute in sorting pistil proteins such 

as AGPs, although no evidence supporting its intervention for proteins involved in SI 

has been demonstrated (Lee et al., 2008 and 2009). MdABCF is the last GSI modifier 

discovered to date and the unique found in a non-Solanaceae species (Malus domestica). 

MdABCF is a transmembrane transporter located in the pollen tube membrane that 

interacts with S-RNases mediating in their transport across pollen tube in a coordinated 

cytoskeleton-manner. The transport of S-RNases in silenced MdABCF lines was 

blocked disrupting the self-incompatible response (Meng et al., 2014). 
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6.3. Biochemical models proposed for the S-RNase-based GSI system 

Since the end of 80’s several models have been proposed to explain how self-

incompatible response is regulated by incorporating newly available evidences. 

Currently, two models seem to describe this mechanism feasibly: degradation model by 

collaborative non-self recognition and compartmentalization model. Both models have 

important aspects in common. For instance, S-RNase/SLF interaction determines 

(in)compatible pollination, while RNA degradation is assumed to cause pollen tube 

rejection in incompatible cross (McClure et al., 2011). This degradation is carried out 

by S-RNases that massively enter into pollen tubes from the transmitting tract style 

independently on their S-genotype (Luu et al., 2000). Nevertheless, there are also strong 

differences in their postulates. Degradation model proposes that S-RNase/SLF 

interaction displays the massive degradation of non-self S-RNases preventing their 

cytotoxic effect. SLF proteins are thought to be components of the SCF E3 ubiquitin 

ligase complex (SCFSLF) that function targeting proteins by ubiquitination for their 

posterior degradation by 26S proteasome proteolytic pathway and S-RNases were 

shown to interact with the SCFSLF complex (Entani et al., 2014; Hua & Kao 2006; 

Huang et al., 2006). In vitro pull down assays between allelic variants of SLF and S-

RNase resulted stronger in non-self interactions than in self-interactions (Hua & Kao 

2006). However, the low allelic diversity exhibited by Petunia SLFs in comparison to 

S-RNases was unexpected according to that observation. This conundrum was solved 

by Kubo et al. (2010), who observed that Petunia S-locus contain more SLF-like genes 

that also interact with non-self S-RNases in a collaborative manner (Figure In7a). In 

Solanaceous species, the loss of pollen S-function could only be detected when 

heteroallelic pollen, containing two different SLF alleles, was present in the so-called 

competitive interaction (Golz et al., 1999 and 2001). The cause of this phenomenon was 

unknown for a long time, but Kubo et al. (2010) revealed that it is produced by the 

collaborative action of multiple SLFs detoxifying subsets of non-self S-RNases. This 

observation was supported by the analysis of a natural self-compatible Japanese pear 

mutant (Okada et al., 2008) (Figure In7b).     
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Figure In7. Degradation model by collaborative non-self recognition in S-RNase-based GSI 
mechanism. a) schematic representation showing Solanaceae S-haplotypes where single S-RNases genes 
and multiple SLFs are represented by boxes and ovals, respectively. Target S-RNase alleles for each SLF 
to detoxify are connected by solid arrows with their target alleles. Image taken from Kubo et al. (2010). 
b) In a compatible cross (CPC), S3 pollen lands on the stigma, germinates and grows into an S1S2 style. 
Both S1- and S2-RNases enter the S3 pollen tube and interact with a hypothetical activity domain of the 
pollen S in the cytosol of the pollen tube. One or more SLF (SLFN) in S3 pollen tube form functional 
SCFS3-SLFN complexes to tag S1-and S2-RNases with a polyubiquitin chain, which are subsequently 
degraded by the 26S proteasome, escaping from S-RNase cytotoxic activity. In self-incompatible cross 
(SPI), self S1 pollen lands on the S1S2 style and both S1- and S2-RNases enter the S1 pollen tube. Similar to 
CPC response, non-self S2-RNases bind to pollen S in the cytosol of the pollen tube. One or more SLF 
(SLFN) in S1 pollen tube form SCFS1-SLFN complexes to tag S2-RNase with a polyubiquitin chain, 
resulting in its degradation by the 26S proteasome. In contrast, the recognition domain of self S1-RNase 
binds to a hypothetical recognition domain of SLF resulting in the formation of a non-functional SCFS1-

SLFN complex, thus self S-RNase escapes degradation and acts as a cytotoxin to inhibit the pollen tube 
growth. Image taken from Liu et al. (2014). 
 

In the compartmentalization model, Goldraij et al. (2006) demonstrated by 

immunolocalization that S-RNases are taken up into pollen tubes sequestered in 

vacuoles. Moreover, self S-RNases are stable in compatible and incompatible crosses, 

but HT-B protein is degraded in compatible crosses, maintaining the S-RNases into the 

vacuolar compartments. Meanwhile, HT-B levels are not affected in incompatible 

crosses and S-RNases are released into the cytoplasm after disruption of the vacuole 

membrane (Figure In8). Hence, these authors suggest that the pollen endomembrane 

system plays a key role in GSI and compartmentalization, instead of S-RNase 

degradation, is proposed to prevent pollen arrest in compatible crosses. Nevertheless, 

SLFs are cytoplasmic proteins and, therefore, some S-RNases should exit the luminal 

compartment in order to interact with the SCFSLF complex, but not for its degradation. 

Whatever is the function of the SCFSLF complex, this interaction should drive to 

a b 
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maintain or not the integrity of HT-B in incompatible or compatible crosses respectively 

(McClure et al., 2011).  

 
Figure In8. Compartmentalization model in S-RNase-based GSI. Pollen tubes are shown in the pistil 
extracellular matrix containing a single S-RNase (SRNx, purple); although, in a typical S-heterozygote 
two S-RNases would be present. Compatible (top, Sy-pollen tube in a pistil expressing Sx-RNase) and 
incompatible (bottom, Sx-pollen tube) pollinations are shown. S-RNase taken up by endocytosis and 
trafficking by default to progressively larger vacuoles in more mature regions of the pollen tube. S-RNase 
must exit the endomembrane system to interact with SLF; a single SLF (red, SLFx; blue SLFy) is shown. 
Degradation of pollen RNA (cross) in incompatible pollen tubes by exit of S-RNases from vacuolar 
compartments, a process that do not occur in compatible pollen tubes (no cross). HT-B is repressed in 
compatible cross but it remains stable in incompatible cross. Image taken from McClure et al. (2011).      
 

7. S-RNase based GSI in Prunus. Is it a different mechanism?  

The GSI mechanism in Rosaceae (including Prunus) is based on S-RNases and 

SLFs as in Solanaceae and Plantaginaceae. Nevertheless, GSI in Prunus spp. exhibit 

striking differences not only with Solanaceae and Plantaginaceae but also with other 

Rosaceae genera such Pyrus and Malus.  

 

7.1. S-pollen and S-pistil determinants in Prunus 

Prunus S-RNases show high allelic diversity ranging from 30% to 90% in the 

amino acid sequence (Ushijima et al., 1998) and maintain the five conserved regions in 

Solanaceae (from C1 to C5). However, instead of C4 domain, Prunus spp have a RC4 

region, which amino acid composition and localization are slightly different. In 

addition, there is only one hypervariable region (RHV), unlike the two present in 

Solanaceae (HVa and HVb) (Ioerger et al., 1991; Xue et al., 1996). Most plant T2-type 

S-RNases contain only one intron present in the HVa codifying region of Solanaceae 

and Rosaceae. However, Prunus S-RNases posses an additional intron in the junction 

sequence between the signal peptide and the open reading frame (Figure In9). No 

functional analyses supporting S-RNases as female S-determinant have been shown in 
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Prunus, but mutations affecting their expression (Watari et al., 2007; Yamane et al., 

2003) and structure (Tao et al., 2007) have been found to lead to SC. 

 

 
Figure In9. S-RNase structure and positions of intron sequences in S-RNase DNA sequence. 

Solanaceous and rosaceous S-RNase structures are schematically illustrated. Intron sequences are 
commonly found in the middle of the coding sequences for HVa and RHV of solanaceous and rosaceous 
S-RNases, respectively. In addition to this intron, there is another intron in Prunus S-RNase, but not in 
Malus and Pyrus S-RNase. SP, signal peptide; C1 to C5, conserved regions 1–5; RC4, rosaceous 
conserved region 4; HVa and HVb, hypervariable regions a and b; RHV, rosaceous hypervariable region. 
Image taken from Tao & Iezzoni (2010). 
 

The S-locus F-Box genes of Solanaceae (SLF) and Prunus (SFB) have shown 

important differences as well. For instance, SFBs contain an intron in the 5’UTR region, 

proved useful for S-genotyping (Vaughan et al., 2006), that has not been found in SLF. 

But undoubtedly, the most striking difference is the distinct behavior of mutants where 

pollen S-function was lost. On the pollen side, SC in Solanaceae and Plantaginaceae is 

always associated with competitive interaction and no mutations affecting SLF function 

have been found to confer SC (Golz et al., 2001 and 1999). On the contrary, mutations 

disrupting SFB function and leading to SC have been widely described in Prunus 

(Hauck et al., 2006; Hegedus et al., 2012; Tao & Iezzoni, 2010; Vilanova et al., 2006) 

(Figure In10). 
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In this context, two different theories have been suggested for the evolution of S-

factors involved in Solanaceae and Rosaceae GSI. One proposes that SI has evolved 

independently on several occasions (De Franceschi et al., 2011), while the second 

suggests a divergence process from a common ancestor among the eudicots before 

asterids and rosids division (Igic & Kohn, 2001; Steinbachs & Holsinger, 2002; Vieira 

et al., 2008). Recent works trying to shed some light on this point have been carried out 

by phylogenetic and expression analyses of Rosaceae S-factors. Segmental duplications 

seem to have occurred in a common Rosaceae ancestor, where three different S-loci 

might be involved throughout Rosaceae evolutionary history (Aguiar et al., 2015; 

Morimoto et al., 2015). Thus, the functional S-locus from Maloideae and Prunoideae 

are not orthologous, but they had evolved from different lineages recruiting different 

paralogous genes to determine each SI mechanism (Aguiar et al., 2015; Ashkani & 

Rees, 2015; Morimoto et al., 2015). It is also noteworthy that F-Box genes having the 

highest similarity to Solanaceous SLF genes, designated as SLFL (SLF-like) genes, are 

located in the vicinity of Prunus S-locus at the end of linkage group 6 (Aguiar et al., 

2015; Morimoto et al., 2015) (Figure In11).     

Figure In10. Schematic illustration 
of intact and mutated SFBs. Number 
of amino acid residues from the N-
terminal is indicated over the intact 
SFB. All but P. avium S3’ encode 
truncated SFBs. P. avium S3’ is 
completely deleted from the genome. 
The truncated portion of SFB is 
indicated by half tone. V1 and V2, 
variable regions 1 and 2; HVa and 
HVb, hypervariable regions a and b.  
Image taken from Tao & Iezzoni 
(2010). 
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Figure In11. Chromosomal localization of the S-RNase, SFB, SFBB, and SLFL lineage genes in P. 
persica (a) and M. domestica (b). S-RNase lineage genes are marked in pink and SFB, SFBB, and SLFL 
lineage genes are marked in blue. Different shapes represent the different S-RNase and Fbox SFB-, SFBB, 
and SLFL- lineage genes. To represent two or more sequential genes, a bracket at the left of the 
chromosome is used. Each Prunus chromosome is marked in a different color: PG1- pink, PG2 light 
green, PG3 light blue, PG4- purple, PG5- yellow, PG6-green, PG7- orange, and PG8-red. These colors 
are then used to assign the synteny regions for the M. domestica chromosomes, according to Fig 1 in Jung 
et al. (2012). Regions with unknown synteny but between regions that show synteny with the same 
chromosome are marked in stripes, and regions with unknown synteny between syntenic regions from 
different chromosomes are marked in grey. Brackets on the right of each chromosome represent the nine 
ancestral synteny regions (1 to 9) according to Fig 4 in Illa et al. (2011). Image taken from Aguiar et al. 
(2015). 
 

7.2. Modifier factors identified in Prunus 

Numerous genetic evidences supporting pollen modifiers have been reported in 

Prunus mainly relying on S-locus unlinked pollen-part mutations conferring SC. These 

type of mutations were firstly reported in sweet cherry (Prunus avium) cv. 

‘Cristobalina’ (Wunsch & Hormaza, 2004) and apricot (Prunus armeniaca) cv. 

‘Canino’  (Vilanova et al., 2006) (see section 8), and more recently in Japanese apricot 

(Prunus mume) cv. ‘Zaohong’ (Wang et al., 2013), Japanese plum (Prunus salicina) cv. 

‘Methley’ (Beppu et al., 2015) and sweet cherry cvs. ‘Son Miró’ and ‘Talegal Ahín’ 

(Cachi & Wünsch, 2014). Nevertheless, none of these putative mutated modifiers have 

a 

b 
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been identified to date. On the other hand, Matsumoto et al. (2012) have successfully 

identified E3 ubiquitin ligase components (PavSSK1 and PavCul1) in Prunus avium 

that, as a necessary part of the SCFSLF complex, can also be considered modifiers. In 

addition, homologs to SCFSLF components have also been found in Malus and Pyrus 

(Minamikawa et al., 2014; Xu et al., 2013; Yuan et al., 2014). More recently, Prunus 

orthologous gene to SBP1 has been identified, but this has not been shown to interact 

with F-box proteins or S-RNases (Matsumoto & Tao, 2016).  

 

7.3.Biochemical model proposed for Prunus GSI 

The main difference between GSI mechanisms proposed for Solanaceae, 

Plantaginaceae and Maloideae on one hand, and Prunus on the other, concerns to the 

expected function for the male S-determinant. Reinforcing this point, competitive 

interaction, commonly detected in Solanaceae, is absent in Prunus. In fact, heteroallelic 

pollen does not drive to GSI breakdown in tetraploid Prunus cerasus self-compatible 

cultivars. This response in uniquely obtained by the accumulation of non-functional S-

alleles like in diploid Prunus spp. (Hauck et al., 2006). This distinct behavior has led to 

propose a self-recognition mechanism in Prunus (equivalent to those in Brassicaceae 

SSI and Papaver GSI) instead of a non-self recognition mechanism as it has been 

established for the rest of species exhibiting S-RNase-based GSI (Matsumoto & Tao, 

2016; Sassa, 2016; Tao & Iezzoni, 2010). In this sense, Tao & Iezzoni (2010) already 

proposed a model where S-RNases are not the substrate for SCF complex but a S-

RNase inhibitor (general inhibitor, GI) that reversibly interacts with and inactivates the 

S-RNase. Matsumoto & Tao (2016) have recently proved that SCF complex binds 

SLFL2 protein, which interacts in vitro with all S-RNases tested. Hence, they 

hypothesize that SLFL2 is a good candidate for being the GI, which polyubiquitinates 

both self- and non-self S-RNases. Meanwhile, SFBs should recognize its cognate self-S-

RNase and protect it from degradation by the GI releasing self-S-RNases to accomplish 

their cytotoxic activity. Nonetheless, this model needs to be tested in planta in order to 

validate SLFL function and identify SFB interacting protein. Furthermore, few 

modifiers have been identified in Prunus when compared with Solanaceae and they are 

crucial for the characterization of the distinct biochemical model operating in Prunus.  
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8. The self-compatible apricot cultivar ‘Canino’. A case of study 

8.1. Genetic and molecular analysis 

The apricot cultivar ‘Canino’ (S2SC) was found to contain two different types of 

mutations conferring SC. On one hand, the SC-haplotype bears an insertion of 358-bp in 

the SFBC gene that produces a truncated protein leading to the loss of pollen S-function. 

On the other, a mutation in a modifier gene gametophytically expressed in the pollen 

side provokes, independently, the loss of pollen S-activity. Segregation analysis of S-

genotypes performed in different controlled crosses using ‘Canino’ as male and female 

parent showed that segregation rates fit with the expected rates for a mutation in 

heterozygosis, outside of the S-locus and expressed in pollen conferring SC (Table In1) 

(Vilanova et al., 2006). Molecular analyses discarded mutations in the specific S-

determinants (SFB and S-RNase), as well as miss-expression of these genes or even 

allele duplications (heteroallelic pollen) as possible causes of the SC phenotype. The 

locus containing this mutation was named M-locus (from modifier) and belongs to the 

group 2 of modifier types (required for pollen rejection but have no wider role in 

pollination) (Vilanova et al., 2006).       

 

Table In1. a) Expected gamete and seedling genotypes formed from the outcross ‘Goldrich’ (S1S2) X 

‘Canino’ (S2SC) and the selfing of ‘Canino’ (S2SC) considering ‘Canino’ heterozygous for a pollen-part 

mutation unlinked to the S-locus (Mm). b) Segregation of the S-RNase alleles in the progenies of 

controlled field crosses and self-pollinations S-genotypes were determined by PCR. Observed S-RNase 

genotypes, expected segregation ratios, and χ
2 values obtained for each population are indicated. Tables 

taken from Vilanova et al. (2006). 

 

 
 

 

a 

b 
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8.2. Mapping of the S-locus unlinked pollen-part mutation conferring SC 

 Zuriaga et al. (2012) fine-mapped the M-locus at the distal end of chr. 3 using 

141 individuals from the ‘Goldrich’ x ‘Canino’ population. To identify the chromosome 

bearing m-mutation, a strategy based on the identification of molecular markers 

exhibiting distorted segregations was carried out. According to this premise, molecular 

markers with the highest distortion were localized in LG3 and LG6 (which contains S-

locus). Taking into account that M- and S-loci are unlinked, LG3 was the most probable 

localization for the M-locus. Afterwards, 120 SSR markers designed from chr. 3 were 

tested in both progenitors and 25 were successfully mapped to construct LG3 in 

‘Canino’. M-locus was flanked by PGS3.71 and PGS3.96 markers in an interval of 1,8 

cM that comprised the PGS3.62 marker co-segregating with the m-mutation. On the 

basis of the high collinearity between apricot and peach maps, and according to the 

peach genomic sequence, a contig was obtained through the identification of BACs 

from the SI apricot cultivar ‘Goldrich’. This contig encompassed approximately 364 Kb 

and 59 ORFs regarding the syntenic peach region (Figure In12). 

 

Figure In12. Contig constructed with ‘Goldrich’ BAC s covering the M-locus region on the distal 
part of apricot chr.3  (not to scale). Aligned BACs showing their BAC-ends Sp6 (S) and T7 (T) are 
represented by grey boxes. Miss-aligned fragments are shown as white boxes. SSRs amplified from BACs 
are indicated by black dots and those anchored into the ‘Goldrich’ genetic map are indicated by white 
dots. Dashed-lines indicate the SSR positions corresponding to the apricot genetic map and the peach 
physical map. Distances in centimorgan (cM) are shown at the top for the ‘Goldrich’ genetic map and 
those in megabases (Mb) are shown down below for the peach physical map. Nº Rec indicates the number 
of recombinants found in ‘GxC-01’ corresponding to ‘Goldrich’. Image taken from Zuriaga et al. (2012). 
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MAIN OBJECTIVES 
 

The general aim of this thesis was to investigate Gametophytic Self-

Incompatibility (GSI) system in Prunus by studying modifier factors involved in the 

underlying mechanism. For this purpose, the following specific objectives were 

addressed: 

 

1. Genetic and molecular characterization of the self-compatible apricot cultivar 

‘Katy’. Fine-mapping of the mutation conferring this phenotype. 

 

2. To screen for new mutations conferring self-compatibility in apricot by 

phenotyping this trait and genotyping the S- and M-locus in a set of 

cultivars/accessions with distinct geographic origins. 

 

3. Identification and cloning of the apricot M-locus modifier gene by using an 

integral strategy based on NGS genomic and transcriptomic data. 

   

4. To perform a comparative study of the S-RNase based GSI system in Rosaceae 

and Solanaceae by analyzing orthology relationships between modifier factors.  
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Abstract 
 

Loss of pollen-S function in Prunus self-compatible cultivars has been mostly 

associated with deletions or insertions in the S-haplotype-specific F-box (SFB) genes. 

However, self-compatible pollen-part mutants defective for non-S-locus factors have 

also been found, for instance, in the apricot (Prunus armeniaca) cv. ‘Canino’. In the 

present study, we report the genetic and molecular analysis of another self-compatible 

apricot cv. termed ‘Katy’. S-genotype of ‘Katy’ was determined as S1S2 and S-RNase 

PCR-typing of selfing and outcrossing populations from ‘Katy’ showed that pollen 

gametes bearing either the S1- or the S2-haplotype were able to overcome self-

incompatibility (SI) barriers. Sequence analyses showed no SNP or indel affecting the 

SFB1 and SFB2 alleles from ‘Katy’ and, moreover, no evidence of pollen-S duplication 

was found. As a whole, the obtained results are compatible with the hypothesis that the 

loss-of-function of a S-locus unlinked factor gametophytically expressed in pollen (M’ -

locus) leads to SI breakdown in ‘Katy’. A mapping strategy based on segregation 

distortion loci mapped the M’ -locus within an interval of 9.4 cM at the distal end of 

chr.3 corresponding to ~1.29 Mb in the peach (Prunus persica) genome. Interestingly, 

pollen-part mutations (PPMs) causing self-compatibility (SC) in the apricot cvs. 

‘Canino’ and ‘Katy’ are located within an overlapping region of ~273 Kb in chr.3. No 

evidence is yet available to discern if they affect the same gene or not, but molecular 

markers seem to indicate that both cultivars are genetically unrelated suggesting that 

every PPM may have arisen independently. Further research will be necessary to reveal 

the precise nature of ‘Katy’ PPM, but fine-mapping already enables SC marker-assisted 

selection and paves the way for future positional cloning of the underlying gene. 

 

Introduction 

 
Gametophytic self-incompatibility (GSI) is a widespread mechanism in the plant 

kingdom that prevents inbreeding (de Nettancourt, 2001). In Solanaceae, Plantaginaceae 

and Rosaceae GSI is controlled by the S-locus that contains at least two genes coding 

for S-RNase and F-box proteins. S-RNases are style-specific expressed and their 

ribonuclease activity is essential for self-pollen rejection (McClure et al., 1989; 

Boskovic et al., 1996; Xue et al., 1996). In turn, the S-locus F-box proteins (SLF or 

SFB) are the pollen S-determinants (Lai et al., 2002; Sijacic et al., 2004; Ushijima et al., 
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2003). Evidence accumulated in Petunia and Antirrhinum supports a model in which 

SLFs are components of a SCF E3 ubiquitin ligase complex that interacts with non-self 

S-RNases leading to their ubiquitination and degradation by the 26S proteasome 

proteolytic pathway (Hua & Kao, 2006; Huang et al., 2006). Alternately, the 

compartmentalization model proposed by Goldraij et al. (2006) in Nicotiana explains 

the resistance to non-self S-RNases by their sequestration in vacuolar compartments of 

pollen compatible tubes. A hypothetical S-RNase endosome sorting model involving 

both S-RNase degradation and compartmentalization has been recently proposed (Chen 

et al., 2010), but many pieces of the puzzle remain elusive. 

Spontaneous and induced self-compatible mutants have been particularly 

important to support S-RNase and S-locus F-box genes as the S-determinants in Prunus 

(Rosaceae) since other functional approaches based on transgenic experiments are 

seriously hindered in this genus. For instance, a Mu-like element insertion upstream of 

the S6m-RNase in sour cherry (Prunus cerasus) (Yamane et al., 2003) and a similar 

mutation in the Japanese plum (Prunus salicina) Se-RNase (Watari et al., 2007) reduce 

the S-RNase expression level leading to a insufficient accumulation of S-RNase in the 

pistil which breaks the rejection mechanism. Modifications affecting the S-RNase 

structure and conferring self-compatibility (SC) have also been found in peach (Prunus 

persica) where the S2m-RNase shows a reduced stability as a consequence of the 

cysteine residue replacement by a tyrosine in the C5 domain (Tao et al., 2007). 

Regarding the pollen-part mutations (PPM), self-compatible mutants with non-

functional SFB genes have been identified in sweet cherry (Prunus avium) (Ushijima et 

al., 2004; Sonnelveld et al., 2005; Marchese et al., 2007), apricot (Prunus armeniaca) 

(Vilanova et al., 2006), sour cherry (Hauck et al., 2006), Japanese apricot (Prunus 

mume) (Ushijima et al., 2004) and peach (Tao et al., 2007), supporting their role as the 

pollen-S determinants in this genus. In most of these cases, the self-compatible 

phenotype was associated with indels in the SFB codifying region causing a frame-shift 

in translation that produces a non-functional truncated protein (Yamane & Tao, 2009). 

This seems to be a specific feature of the S-RNase based GSI system operating in 

Prunus, since in Solanaceae the only pollen-side mutations found to cause SC are due to 

the S-heteroallelic pollen effect (Golz et al., 1999). Therefore, SLF mutations were 

initially suggested to confer SI or lethality, but recent findings provide an alternative 

explanation since in the non-self recognition by multiple factors SI system, shown to 

operate in Solanaceae (Kubo et al., 2010) and Pyrus (Rosaceae) (Kakui et al., 2011), the 
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loss of pollen-S function does not lead to SC. In contrast, all loss-of-function mutations 

found in Prunus SFB cause SC which may support differences in the self-recognition 

mechanism where the SFB target would be an S-RNase ‘inhibitor’ instead of the S-

RNase itself (Tao & Iezzoni, 2010). Nevertheless, even considering the discrepancies, 

major similarities (i.e. S-RNase and SLF/SFB as S-specificity determinants) are still 

more striking and the model as a whole might be preserved across families (McClure et 

al., 2011). 

As reported above, self-compatible accessions found in Rosaceae are mostly 

related to mutations in pistil and pollen S-locus determinants (Yamane & Tao, 2009). 

However, mutations in non S-locus factors have also been associated with SC in sweet 

cherry (Wünsch & Hormaza, 2004), almond (Prunus amygdalus) (Fernández et al., 

2009) and diploid strawberries (Fragaria spp.) (Boskovic et al., 2010). Genetic 

evidence for S-locus unlinked factors required for GSI, also called modifier genes, was 

previoulsy accumulated in Solanaceae. For instance, Ai et al. (1991) showed that the 

self-compatible Petunia hybrida cv. ‘Strawberry Daddy’ (SOSX) accumulates a non-

functional S-allele (SO) and a stylar mutation in an additional factor necessary for SI. 

Later studies in Nicotiana revealed that the so called 4936 stylar factor is also required 

for SI (McClure et al., 2000). Moreover, mutations in modifier loci affecting the pollen-

S function have been suggested to explain SI breakdown in Solanum tuberosum 

(Thompson et al., 1991) and Petunia axillaris (Tsukamoto et al., 2003). More intriguing 

is the behaviour of the PPM found in Solanum chacoense that predicts a S-locus 

inhibitor (Sli) gene acting as a single dominant factor that displays sporophytic 

inhibition of SI (Hosaka & Hanneman, 1998a; 1998b) . More recently, some stylar 

modifier factors have been identified and successfully cloned in Nicotiana, such as the 

small asparagine-rich protein HT-B (McClure et al., 1999), the 120K glycoprotein 

(Hancock et al., 2005) and the  Kunitz-type proteinase inhibitor NaStEP (Busot et al., 

2008) but their role in SI still has not been completely elucidated. Pollen modifier 

factors have also been identified in the Solanaceae, such as the Petunia pollen-

expressed Skp1-like protein PhSSK1 proposed to be acting as adaptor in the SCF 

complex (Zhao et al., 2010). Interestingly, Matsumoto et al. (2012) have identified a 

similar SFB-interacting Skp1-like protein (PavSSK1) in sweet cherry and suggest that it 

could also be a functional component of the SCF complex. Nevertheless, the 

identification of additional GSI modifier factors will be necessary to dissect completely 

the underlying mechanism in Prunus. 
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In apricot, the cv. ‘Canino’ (S2SCMm) was found to contain two different 

mutations conferring SC, an insertion in the SFBC gene that produces an SFBC truncated 

protein and a mutation in a modifier gene (m) unlinked to the S-locus, both 

independently causing the loss of pollen-S function (Vilanova et al., 2006; Zuriaga et 

al., 2012). In this work, we have analyzed the self-compatible apricot cv. ‘Katy’ using 

genetic and molecular approaches, and the compiled evidence suggest that the loss of 

function of an S-locus unlinked factor (M’-locus) is also involved in pollen-S function 

breakdown in this case. According to the current knowledge on GSI in Prunus the 

possible roles for the mutated modifier gene are discussed. In addition, we have paved 

the way for future positional cloning of the ‘Katy’ pollen-part modifier gene by fine-

mapping the M’ -locus to the distal part of apricot chr. 3. Macro- and micro-synteny of 

this region has been studied by comparing with the M-locus in ‘Canino’ and by 

analyzing the ORFs comprised in the peach syntenic region according to the peach 

genome v1.0 (International Peach Genome Initiative - IPGI; 

http://www.rosaceae.org/peach/genome).  

 

Results 

 
‘Katy’ is an apricot self-compatible cultivar with S-genotype S1S2 

‘Katy’ is an apricot variety developed by Zaiger´s Genetics (Modesto, CA, 

USA) and reported as self-fruitful (Rusell, 1998). In this study, SC of this cultivar was 

confirmed by self-pollination in the field (Table 1.1). To determine the S-genotype of 

‘Katy’, fragments containing the first intron of the S-RNases were PCR-amplified using 

the SRc-F/SRc-R primers (Figure 1.1a). These fragments were assigned to S1 and S2-

alleles by comparison with known S-genotypes, following the nomenclature established 

by Burgos et al. (1998). This S-genotype was confirmed by the amplification of the 

second intron using the primers Pru-C2/Pru-C4R (Tao et al., 1999) since fragment sizes 

obtained were coincident with those expected for the S1 and S2-alleles (Figure 1.1b). In 

addition, PCR-amplified fragments spanning the first intron, were sequenced and 

compared with GenBank accessions, being identical to the already identified Prunus 

armeniaca S-RNases 1 and 2. The alignment of their deduced amino acid sequences (44 

aa) showed the presence of the C1 and C2 Prunus S-RNase conserved domains along 

with the hypervariable region HV1 located between them (Romero et al., 2004).  
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Table 1.1. Segregation of the S-RNase alleles in progenies of self-pollinations and outcrosses 

performed with the self-compatible cultivar ‘Katy’. Observed S-RNase genotypes, expected 

segregation ratios and χ2 values obtained for each population are indicated. 

Seed parent 

(S-genotype)a 

Pollen parent 

(S-genotype) 

Population 

name 

Nc  

S1SC 

 

S2SC 

 

S1S2 

 

S2S2 

 

S1S1 

 

S1S4 

 

S2S4 

Exp.  

Ratiod 

χ
 2e 

P-value 

Katy (S1S2) Katy (S1S2) ‘K×K’ b 94 -- -- 45 33 16 -- -- 2:1:1 6.32 (0.04) 

Katy (S1S2) Goldrich (S1S2)  --- 0 -- -- -- -- -- -- -- -- -- 

Goldrich (S1S2) Katy (S1S2) ‘G×K’ 26 -- -- 12 10 4 -- -- 2:1:1 2.92 (0.23) 

Harcot (S1S4) Katy (S1S2) ‘H×K’ 44 -- -- 20 -- 4 7 13 2:1:1:2 3.68 (0.30) 

Katy (S1S2) Canino (S2SC) ‘K×C’ 50 15 19 6 10 -- -- -- 2:2:1:1 1.49 (0.69) 

Canino (S2SC) Katy (S1S2) ‘C×K’ 88 32 15 29 12 -- -- -- 2:1:2:1 0.74 (0.86) 

a S-genotypes for ‘Goldrich’, ‘Harcot’ and ‘Canino’ were prevously reported by Vilanova et al. (2005) 
and the S-genotype for ‘Katy’ was determined in this work 
b ‘K×K’ data correspond to three combined F2 populations obtained by self-pollinating ‘Katy’ in 2005, 
2006 and 2010.  
c Obtained seedlings 
d Expected ratios for a single mutation unlinked to the S-locus 
e
 Observed ratios do not differ significantly from expected at P < 0.05 (barring ‘Katy’ self-pollination 

at P > 0.01) 

 

SC in ‘Katy’ is associated with a PPM unlinked to the S-locus  

To analyze the nature of SC in ‘Katy’, this cultivar was self-pollinated and 

reciprocally crossed with ‘Goldrich’, a self-incompatible cultivar sharing the same S-

genotype. S-RNase genotyping of the progenies derived from the ‘Katy’ (S1S2) self-

pollination (Figure 1.1c) and the ‘Goldrich’ (S1S2) × ‘Katy’ (S1S2) outcross (Figure 1.1d) 

revealed three different S-genotypes (S1S1:S1S2:S2S2) in both cases (Table 1.1). In turn, 

the ‘Katy’ (S1S2) × ‘Goldrich’ (S1S2) cross did not produce any seedling. Thus, ‘Katy’ 

pollen is able to grow through the ‘Goldrich’ pistil meanwhile ‘Goldrich’ pollen is 

rejected in the ‘Katy’ styles. According to these results, SI breakdown in ‘Katy’ may be 

due to a pollen-part mutation since ‘Katy’ is completely functional as a female parent. 

Indirect evidence supporting this hypothesis was also compiled from the S-genotype 

segregation ratio in ‘K×C’, because the number of S2 bearing genotypes is lower than 

that expected for a non-functional pistil-S2 determinant (Table 1.1). Moreover, both 

‘Katy’ S-alleles are able to grow in ‘Goldrich’ and ‘Katy’ styles suggesting that the 

PPM is unlinked to the S-locus. 
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Figure 1.1. Determination of the ‘Katy’ S-genotype and analysis of S-alleles segregation in selfing 
and outcrossing populations derived from ‘Katy’. PCR amplification of apricot genomic DNA with 
consensus primers for the 1st (a) and 2nd (b) S-RNase intron. Samples in (a) and (b) are as follows: (G) 
Goldrich (S1S2) and (K) Katy (SxSy). S-RNase allele fragments PCR-amplified with SRc-F/SRc-R primers 
from the ‘K×K’ (c), ‘G×K’ (d) and ‘H×K’ (e) progenies. Samples are as follows: (K) Katy (S1S2), (G) 
Goldrich (S1S2) and (H) Harcot (S1S4) and 15 seedlings from each cross.  
  

To complement these observations, we performed additional crosses with 

cultivars having different S-genotypes. Figure 1.1e shows the S-RNase genotyping of 

the ‘Harcot’ (S1S4) × ‘Katy’ (S1S2) population where S-genotypes fell into four classes 

(S1S1:S1S2:S1S4:S2S4) (Table 1.1). Two of these S-genotypes were unexpectedly obtained 

(S1S1 and S1S4) since pollen tubes carrying the S1-haplotype from ‘Katy’ were expected 

to be incompatible in ‘Harcot’ styles. On the other hand, reciprocal crosses with the cv. 

‘Canino’ (S2SC Mm) produced four S-genotype classes (S2SC:S2S2:S1SC:S1S2). According 

to the two unlinked PPMs associated wtih SC in ‘Canino’ (SC and m), these four S-

genotypes were expected for the ‘K×C’ progeny (Table 1.1). Nevertheless, since pollen 

tubes having the S2-haplotype should be arrested in S2-styles, the S2SC and S2S2 

genotypes observed in the ‘C×K’ progeny were unexpected. The observed ratios for S-

genotype segregations in ‘H×K’ and ‘C×K’ fit with that expected in a model where 

‘Katy’ carries a heterozygous PPM affecting pollen-S function that is unlinked to the S-

locus (2:2:1:1) with χ2 values of 3.68 and 0.74 (P=0.30 and P=0.86) (Tables 1.1 and 

1.2). On the contrary, if we consider an heterozygous PPM linked in coupling to the 

incompatible S-allele or an homozygous PPM (linked or unlinked to the S-locus) the 

a b c 

d 

e 
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expected ratios (1:1:1:1) do not fit with the observed data with χ2 values of 13.6 and 

13.5, respectively (P<0.004).  

All performed crosses were shown to be compatible, barring ‘Katy × Goldrich’ 

cross, and fruit set ranged approximately from 15% (‘K×K’) to 34% (‘C×K’). 

Differences in germination rate and seedling fitness were striking. Only 59% of the 

‘K×K’ inbred seeds produced healthy plants while this percentage increased to 82-96% 

in the outcrossed seeds.  

 

Table 1.2. Expected gamete and seedling genotypes formed from the outcross ‘Harcot’ (S1S4) x 

‘Katy’ (S1S2) and the selfing of ‘Katy’ (S1S2) considering ‘Katy’ heterozygous for a pollen-part 

mutation unlinked to the S-locus (M’m’ ) 

Female gametes Male gametes ‘Katy’ ( S1S2 M’m’ ) 

‘Harcot’ (S1S4 M’M’ ) S1M’ b S1m’ S2M’  S2m’ 

S1M’  Xa S1S1 M’m’  S1S2 M’M’  S1S2 M’m’  

S4M’  X S1S4 M’m’  S2S4 M’M’  S2S4 M’m’  

‘Katy’ ( S1S2 M’m’ ) S1M’  S1m’ S2M’  S2m’b 

S1M’  X S1S1 M’m’  X S1S2 M’m’  

S1m’ X S1S1 m’m’ X S1S2 m’m’ 

S2M’  X S1S2 M’m’  X S2S2 M’m’  

S2m’ X S1S2 m’m’ X S2S2 m’m’ 

a Pollen incompatibility 
b If m’ was linked in coupling with S2 the S2M’ and S1m’ gametes from ‘Katy’ would not be 
formed, and conversely if m’ was linked  in coupling with S1 the S1M’ and S2m’ gametes would not 
be formed. 
 
Molecular analysis of the self-compatible cv. ‘Katy’ (S1S2) 

To test whether the ‘Katy’ pollen tubes are not rejected in pistils bearing a 

matching S-allele as a consequence of SNPs or indels affecting SFB1 and SFB2, genomic 

DNA fragments containing both alleles were cloned and sequenced. Genomic sequences 

of S1 and S2-haplotype regions from the self-incompatible cv. Goldrich (S1S2) were used 

as references (Romero et al., 2004). No changes were found in the nucleotide sequences 

of the two cloned fragments (approximately 1.3 and 1.9 kb, respectively) containing the 

complete SFB1 and SFB2 open reading frames as well as their 5’ and 3’ adjacent 

flanking regions (~110/390 and ~70/470 bp from the 5’ and 3’ SFB1/SFB2 flanking 

regions, respectively). 

PPMs identified in Solanaceae are mostly associated with S-allele duplications 

caused by polyploidy or induced mutations (Golz et al., 2001). To discard this reason, 
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we first examined the ploidy level in ‘Katy’ by flow cytometry analysis. The peaks of 

nuclei isolated from ‘Katy’ were coincident with those detected in the control diploid 

plant (‘Goldrich’), indicating that ‘Katy’ is a diploid (data not shown). A hypothetical 

duplication of the SFB alleles in ‘Katy’ was also tested by a real-time PCR-based gene 

dosage assay, but the relative DNA amounts detected for SFB1 and SFB2 were not 

significantly different between ‘Katy’ and the self-incompatible cv. ‘Goldrich’ (Figure 

1.2).  

 
Figure 1.2. Relative DNA amount of SFB1 and SFB2 in ‘Goldrich’ (G) and ‘Katy’ (K).  Quantities 
correspond to the average of two independent biological replicates repeated three times and were 
determined using actin as endogenous control. Bars indicate standard deviations. 
 

 Gene expression analysis showed that SFB1 and SFB2 alleles are specifically 

expressed in pollen in ‘Katy’ and ‘Goldrich’ (data not shown). Furthermore, relative 

transcript abundance of SFB1 and SFB2 in ‘Katy’ and ‘Goldrich’ was quantified by real-

time RT-PCR using actin as endogenous control to normalize transcription values. No 

significant differences in the transcript levels were found for any of the two SFB alleles 

between ‘Katy’ and the self-incompatible cv. ‘Goldrich’ (Figure 1.3) discarding 

transcriptional repression of SFBs as the cause of SC. 
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Figure 1.3. Relative transcript abundance of SFB1 and SFB2 in ‘Goldrich’ (G) and ‘Katy’ (K).  

Quantities correspond to the average of three independent biological replicates repeated three times. Bars 
indicate standard deviations. 
 

S-locus unlinked PPM conferring SC in ‘Katy’ is located on linkage group 3 

Overall, genetic and molecular evidence support a model where ‘Katy’ is 

heterozygous for a PPM unlinked to the S-locus that confers SC. The locus containing 

this PPM in ‘Katy’ was referred as M’ -locus to distinguish it from the M-locus 

previously reported in ‘Canino’ (Zuriaga et al., 2012). Thus, according to the S- and M’ -

locus genotypes, ‘Katy’ was designated as S1S2 M’m’  (Table 1.2). Under the proposed 

genetic model, SSR markers linked to the M’ -locus in ‘Katy’ selfing populations should 

be highly distorted, since only seedlings derived from ‘Katy’ pollen gametes carrying 

the m’-allele (S1m’ or S2m’) could be obtained (Table 1.2). Thus, the expected ratio for a 

SSR marker segregating independently of the M’ -locus in the F2 populations is 1:2:1 

while that for an absolutely linked SSR is 1:1. On this assumption, genome-wide 

distributed SSR markers were tested to look for associations with the M’ -locus. 

Thereby, 118 SSR markers distributed across the eight Prunus chromosomes (ranging 

from 9 in LG7 to 34 in LG3) were selected for mapping (Tables S1.1 and S1.2). Fifty-

five of these SSRs (47%) were found to be polymorphic in ‘Katy’ and, subsequently, 

tested in the ‘K×K05’ and ‘K×K06’ progenies (Table 1.3). According to the genetic maps 

constructed for each group, the maximum genetic distance estimated between any pair 

of markers was ~52cM in LG5 (Table 1.3). In terms of the physical distance, 

determined from the peach genome sequence, the major gap was found in LG1 

(~23Mb). Considering the estimated sizes for the peach genome (~290 Mb) and for the 

Prunus general map (519cM) (Zhebentyayeva et al., 2008), the relationship between 
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physical and genetic distances is ~0.56 Mb/cM on average. Accordingly, the LG1 23Mb 

gap should correspond to <45 cM. Consequently, in the most unfavourable scenario, 

distance to M’ -locus should be lower than 25cM and recombination frequency lower 

than 0.25. In this hypothetical case, the expected ratio for a SSR linked to the M’ -locus 

would be 1:4:3, and only markers located on LG3 and LG6 fulfill this prediction and 

show skewed segregations (χ
2> 5.99 with P< 0.05 for 2 d.f.) (Table 1.3).  

 

Table 1.3. Identification of segregation distortion SSR loci distributed throughout the eight 

linkage groups (LG) of ‘Katy’ using the ‘K×K05’ and ‘K×K06’ populations.  
LG Locus Peach Mba Apricot cM b Seg. typec A H B Total χ2 (P-value)d 

1 Gol051 4,69 00,0  (0,26) <abxab> 12 22 12 46 0,09 (0,96) 

1 EPPCU0027 9,51 30,7  (0,00) <abxab> 17 19 9 45 3,93 (0,14) 

1 pchcms4 9,51 30,7  (0,36) <abxab> 18 19 9 46 4,91 (0,09) 

1 CPPCT045 32,02 77,5   <abxab> 7 30 9 46 4,44 (0,11) 

2 ssrPaCITA19 13,01 00,0  (0,17) <abxab> 18 18 10 46 4,96 (0,08) 

2 UDP98-411 20,17 17,2  (0,18) <abxab> 13 24 9 46 0,78 (0,67) 

2 CPSCT021 23,74 36,9  (0,03) <abxab> 10 27 9 46 1,44 (0,49) 

2 CPSCT031 25,15 40,3 <abxab> 10 26 10 46 0,78 (0,68) 

3 ssrPaCITA23 02,70 00,0  (0,17) <abxab> 8 25 13 46 1,44 (0,49) 

3 UDAp468 04,85 18,0  (0,24) <abxab> 20 16 9 45 9,13 (0,01)e 

3 PGS3_03 16,41 44,7  (0,23) <abxab> 5 20 21 46 11,91 (0,003)e 

3 EPPCU7190 19,78 69,0 <abxab> 18 25 2 45 12,29 (0,002)e 

4 UDP96-003 08,76 00,0  (0,12) <abxab> 9 25 12 46 0,74 (0,69) 

4 BPPCT040 06,46 12,0  (0,13) <abxab> 10 27 9 46 1,44 (0,49) 

4 UDAp404 --- 25,4 <abxab> 12 26 8 46 1,48 (0,48) 

5 PGS5_02 00,48 00,0  (0,39) <abxab> 8 24 12 44 1,09 (0,58) 

5 UDAp452 13,76 52,3  (0,35) <abxab> 8 23 15 46 2,13 (0,34) 

5 CPSCT006 11,53 95,1   <abxab> 10 25 11 46 0,39 (0,82) 

6 PGS6_04 04,95 00,0  (0,20) <abxab> 5 23 16 44 5,59 (0,06) 

6 UDAp420 08,14 21,6  (0,10) <abxab> 6 20 20 46 9,30 (0,01)e 

6 UDAp489 16,82 31,9  (0,09) <abxab> 18 21 7 46 5,61 (0,06) 

6 Ma027a 20,90 41,3  (0,23) <abxab> 16 25 4 45 6,96 (0,03)e 

6 ssrPaCITA12 27,84  64,3  (0,03) <abxab> 7 22 17 46 4,44 (0,11) 

6 Locus-S 26,45 67,6 <abxab> 6 23 17 46 5,26 (0,07) 

7 CPSCT026 10,98 00,0  (0,00) <abxab> 13 23 10 46 0,39 (0,82) 

7 CPPCT022 10,23 00,0  (0,26) <abxab> 13 23 10 46 0,39 (0,82) 

7 CPSCT042 17,08  29,2 <abxab> 10 20 16 46 2,35 (0,31) 

8 PGS8_02 03,28 00,0  (0,03) <abxab> 7 24 7 38 2,63 (0,27) 

8 PGS8_05 07,39 03,4  (0,04) <abxab> 8 25 11 44 1,23 (0,54) 

8 UDAp401 10,50 07,2  (0,00) <abxab> 10 23 12 45 0,20 (0,90) 

8 UDAp470 12,61 07,2  (0,05) <abxab> 10 24 12 46 0,26 (0,88) 

8 M6a 15,03 11,8   <abxab> 9 25 11 45 0,73 (0,69) 

a Marker position (Mb) within the corresponding peach genome scaffolds which sizes were estimated by 
IPGI (scaffold_1, 46.88Mb; _2, 26.81Mb; _3, 22.02Mb; _4, 30.53Mb; _5, 18.50Mb; _6, 28.90Mb; _7, 
22.79Mb and _8, 21.83Mb)   
b Map position (cM) and rec. frequencies (in brackets) estimated by JoinMap 3.0  
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c Segregation type as per JoinMap 3.0  
d Chi-square test was performed for the expected ratio 1:2:1 (<abxab>) 
e Observed ratios differ significantly from expected at P < 0.05 for 2 degrees of freedom 
 

In agreement with the segregation of the S-genotypes in the analyzed 

populations, the M’ -locus is proposed to be unlinked to the S-locus (Table 1.1). 

Therefore, LG3 or a region far from the LG6 distal end, where the S-locus is located, 

are likely positions for the M’ -locus. To discern between these two possibilities, a more 

detailed SDL analysis was performed in LG3 (Table 1.4a) and LG6 (Table S1.1) by 

including the ‘K×K10’ population and additional markers. On one side, this analysis 

showed that LG6 distorted markers are partially linked to the S-locus (i.e. Ma027a 

shows a recombination frequency of 0.26 at LOD 3.3 with the S-locus). On the other, 

the magnitude of the segregation distortion detected in LG6 (χ2= 15.28 with P= 5×10-4 

for PGS6_07) lower than that found in LG3 (χ
2= 31.30 with P= 1.6×10-7 for PGS3_23). 

This is due to the lower imbalance between homozygous genotypes found in PGS6_07 

(7B against 32A) when compared with PGS3_23 (0B against 37A) (Table 1.4a and 

Table S1.1). It is inferred from the model that pollen gametes carrying SSR alleles 

linked in repulsion phase with the PPM would not grow into incompatible styles. 

Therefore, homozygous genotypes for these SSR alleles should not be obtained in the 

progeny, as observed for the LG3 SSR distorted markers and particularly for PGS3_23 

(Table 1.4a). Thus, both arguments support LG3 as the most likely location for the M’-

locus allowing us to discard LG6.  

 

High-density mapping of the M’ -locus on chr.3 

To construct a high-density map of the M’ -locus region on chr.3, 102 SSRs 

identified from the peach scaffold_3 sequence by Zuriaga et al. (2012) (Table S1.2) and 

18 additional SSRs available from the GDR website (Jung et al., 2004) were tested in 

‘Katy’. A higher percentage of these SSRs did not amplify or produced multi-band 

patterns in ‘Katy’ (40%) when compared with both ‘Goldrich’ and ‘Canino’ (~30%). 

However, polymorphism of amplified SSRs was similar between ‘Goldrich’ and ‘Katy’ 

(~55%) and significantly higher than that found in ‘Canino’ (23%) (Table S1.2). 

Polymorphic SSRs in ‘Katy’ were tested in 87 trees from the ‘K×K’ F2 population. 

Sixteen of them were mapped, forming a LG3 genetic map of 72cM with an average 

marker density of 0.22 marker/cM (Table 1.4a). This marker density increased up to 

0.62 marker/cM in the region flanked by the most distorted markers PGS3_12 and 
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AMPA119 (Table 1.4a). An additional LG3 map obtained from the outcrossing 

population ‘C×K’ was found to be essentially collinear with the ‘K×K’ map (sharing 

>80% markers), except for a single order change between AMPA119 and PGS3_32 

(data not shown). The SDL associated with the M’ -locus region were confirmed by 

analyzing 60 additional seedlings derived from the outcrosses ‘H×K’, ‘G×K’ and ‘C×K’ 

for all sixteen LG3 markers (Table 1.4b). These seedlings were selected by their S-

genotypes, so that they could only be derived from the fertilization with a ‘Katy’ pollen 

gamete carrying the PPM (m’) and, therefore, directly assigned to the M’ m’  genotype 

(Table 1.2). Skewed segregations in selfing (F2) and outcrossing populations suggested 

that the M’ -locus is roughly located between PGS3_22 and PGS3_28 (Table 1.4).  

 

Table 1.4. Identification of segregation distortion SSR loci distributed throughout the ‘Katy’ 

LG3. a) Data corresponding to the ‘K×K’ F2 population. b) Data corresponding to the subsets 

carrying the PPM from the outcrossing populations ‘H×K’, ‘G×K’ and ‘C×K’.  

a)  

Locus Peach Mba Apricot cM b Seg. typec A H B Total χ
2 (P-value)d 

MA066a 02,40 00,0  (0,03) <abxab> 15 46 25 86 2,74 (0,25) 

ssrPaCITA23 02,70 02,3  (0,10) <abxab> 16 44 27 87 2,79 (0,25) 

UDAp468 04,85 12,1  (0,08) <abxab> 16 38 31 85 6,25 (0,04)e 

BPPCT039 05,80 19,6  (0,30) <abxab> 13 42 30 85 6,81 (0,03)e 

PGS3_03 16,41 39,2  (0,07) <abxab> 4 46 35 85 23,19 (9×10-6)e 

PGS3_12 17,38 46,3  (0,01) <abxab> 4 44 35 83 23,46 (8×10-6)e 

PGS3_15 17,71 46,9  (0,03) <abxab> 4 45 32 81 20,36 (4×10-5)e 

PGS3_22 18,49 49,2  (0,03) <abxab> 3 45 35 83 25,27 (3×10-6)e 

PGS3_23 18,61 51,1  (0,05) <abxab> 0 48 37 85 33,64 (5e-8)e 

PGS3_28 19,14 55,1  (0,02) <abxab> 3 49 31 83 21,60 (2×10-5)e 

PGS3_32 19,60 56,8  (0,00) <abxab> 4 48 31 83 19,60 (6×10-5)e 

PGS3_33 19,66 56,9  (0,03) <abxab> 4 50 30 84 19,14 (7×10-5)e 

AMPA119 20,00 59,0  (0,00) <abxab> 4 47 35 86 23,09 (9×10-6)e 

EPPCU7190 19,78 59,1  (0,10) <abxab> 4 47 33 84 21,21 (2×10-5)e 

CPDCT027 21,67 67,1  (0,12) <abxab> 9 40 32 81 13,07 (0,001)e 

EPPCU0532 22,00 72,0   <abxab> 12 42 21 75 3,24 (0,20) 
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b)  

Locus Peach Mba Population Seg. typec -c -d -e -g -n -p Total χ
2 (P-value)d 

MA066a 02,40 H×K-/G×Kf <efxeg>/<nnxnp>   5 6 11 14 36 0,44 (0,50) 

ssrPaCITA23 02,70 H×K/G×K <efxeg>   16 20   36 0,44 (0,50) 

UDAp468 04,85 H×K/C×K <efxeg>   21 14   35 1,40 (0,24) 

BPPCT039 05,80 H×K/C×K <abxcd>/<efxeg> 3 8 13 9   33 2,46 (0,12) 

PGS3_03 16,41 H×K/C×K <efxeg>   33 2   35 27,46 (1.6e-7)e 

PGS3_12 17,38 All three <efxeg>/<nnxnp>   23 1 34 2 60 48,60 (0,00)e 

PGS3_15 17,71 C×K <efxeg>   24 0   24 24,00 (9.6e-7) 

PGS3_22 18,49 All three <efxeg>/<nnxnp>   36 0 24 0 60 60,00 (0,00)e 

PGS3_23 18,61 All three <efxeg>/<nnxnp>   36 0 24 0 60 60,00 (0,00)e 

PGS3_28 19,14 All three <nnxnp>     60 0 60 60,00 (0,00)e 

PGS3_32 19,60 All three <efxeg>/<nnxnp>   11 0 48 1 60 56,07 (0,00)e 

PGS3_33 19,66 All three <abxcd>/<efxeg> 0 11 48 1   60 56,07 (0,00)e 

AMPA119 20,00 All three <efxeg>   59 1   60 56,07 (0,00)e 

EPPCU7190 19,78 All three <efxeg>   59 1   60 56,07 (0,00)e 

CPDCT027 21,67 All three <abxcd>/<nnxnp> 31 3   19 5 58 30,41 (3e-8)e 

EPPCU0532 22,00 H×K/G×K <efxeg>/<nnxnp>   11 0 21 3 35 24,03 (9.5e-7)e 

a Marker position (Mb) within the peach genome scaffold_3 which size estimated by IPGI was 22.02Mb  
b Map position (cM) and rec. frequencies (in brackets) estimated by JoinMap 3.0  
c Segregation type as per JoinMap 3.0  
d Chi-square test was performed for the expected ratios 1:2:1 (<abxab>) (a) and 1:1 
(<nn×np>/<ef×eg>/<ab×cd>) (b) 
e Observed ratios differ significantly from expected at P < 0.05 for 2 (a) or 1 degrees of freedom (b) 
f S-genotypes of the selected seedlings were: S1S1 and S1S4 in ‘H×K’; S2S2 and SCS2 in ‘C×K’; S1S1, S1S2 
and S2S2 in ‘G×K’  
 

To define the M’ -locus location more consistently, not only considering 

distortions but also on the basis of genotyping data, an additional mapping strategy was 

performed. As described above, all ‘K×K-F2’ trees could only be derived from pollen 

gametes with genotype S1m’ or S2m’, having either the M’m’ or the m’m’ genotype. To 

discriminate between these two genotypes the screening of F3 offsprings was necessary. 

Thereby, twelve ‘K×K-F2’ individuals, with recombination breakpoints mapping to the 

LG3 region between UDAp468 and CPDCT027, were self-pollinated to obtain F3 

populations. Six of them (K05-15, K05-21, K06-18, K06-25, K06-34 and K06-37) were 

finally discarded for the analysis due to the low number of embryos obtained (less than 

7 in four cases) or because they were redundantly represented (other F2 individuals with 

larger F3 populations have identical SSR genotypes in this genomic region). The six F3 

populations obtained from the remaining F2 recombinants (K05-12, K05-24; K06-05, 

K06-06, K06-17 and K06-21) were tested for a subset of 6 SSRs encompassing the M’ -

locus (PGS3_13/PGS3_32 interval) (Table 1.5). Those SSR markers heterozygous in 

the F2 recombinant (H) were expected to segregate 1:1 in the F3 population when the F2 
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recombinant had the M’m’  genotype and 1:2:1 if it had the m’m’ genotype (Table 1.5). 

According to the segregation of these markers (A, H or B as per JoinMap 3.0 notation) 

the M’ -locus was proposed to be flanked by PGS3_22 and EPPCU7190 markers within 

an interval of 9.4 cM. Graphical ordering of genotype data enables the positioning of 

recombination breakpoints to confirm map order (Figure 1.4a). 

 

Table 1.5. M’ -locus genotyping of trees belonging to the ‘K×K05’ and ‘K×K06’ F2 

populations. M’ -genotypes were determined by PCR-based amplification of SSR markers 

(PGS3_13, PGS3_15, PGS3_22, PGS3_23, PGS3_28 and PGS3_32) in the F3 progenies. 

Number of embryos falling into each genotypic class (A, H or B) are indicated and bold lines 

represent recombination breakpoints.  

SSR genotypes of F3 progenies from ‘K×K05’ and ‘K×K 06’ F2 trees 

K05-12 Gena A H B χ
2 (P-value) M’ -locus K06-05 Gen A H B χ2 (P-value) M’ -locus 

PGS3_12 H    

0,03 (0,85) M’m’ 

PGS3_12 H    

2,00 (0,16) M’m’ 

PGS3_13 

   H     0      14      15 

PGS3_13 

 

 

   H 

 

 

 

 

0      12       6 

 

 

PGS3_15 PGS3_15 

PGS3_22 PGS3_22 

PGS3_23 PGS3_23 

PGS3_28 PGS3_28 

PGS3_32 PGS3_32 

EPPCU7190 B    EPPCU7190 H    

K05-24 Gen A H B χ2 (P-value) M’ -locus K06-06 Gen A H B χ2 (P-value) M’ -locus 

PGS3_12 A      PGS3_12 A      

PGS3_13  

A 

 

  63       0        0 

 

  PGS3_13  

A 

 

  24       0        0 

 

  

PGS3_15 0,02 (0,90) M’m’ PGS3_15 1,50 (0,22) M’m’ 

PGS3_22   PGS3_22   

PGS3_23  

H 

 

    0       31       32 

 

  PGS3_23  

H 

 

    0       9       15       

  

PGS3_28   PGS3_28   

PGS3_32   PGS3_32   

EPPCU7190 H      EPPCU7190 H      

K06-17 Gen A H B χ2 (P-value) M’ -locus K06-21 Gen A H B χ2 (P-value) M’ -locus 

PGS3_12 H      PGS3_12 H      

PGS3_13 
H   10       8        3 5,85 (0,05) m’m’ 

PGS3_13 
H 5       15       9 1,14 (0,57) m’m’ 

PGS3_15 PGS3_15 

PGS3_22 

B   0        0       21 

  PGS3_22 

B 0         0     29 

  

PGS3_23   PGS3_23   

PGS3_28   PGS3_28   

PGS3_32   PGS3_32   

EPPCU7190 B      EPPCU7190 B      

a ‘Gen’ indicates the SSR genotype for each F2 recombinant 
b Chi-square χ2 and P values for the expected segregation ratios 1:2:1 (m’m’) and 1:1 (M’m’ ) obtained 
from each independent F3 population. 
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Macro- and microsynteny analysis of the M’ -locus in apricot 

Eleven out of the sixteen SSR markers contained in the ‘Katy’ LG3 map had 

been previously mapped in the ‘Canino’ LG3 (Zuriaga et al., 2012). As a whole, these 

markers were found to be collinear between both maps (8 out of 11) but some order 

changes regarding PGS3_33, AMPA119 and EPPCU0532 were observed at the distal 

chromosome end (data not shown). In turn, marker order in the ‘Katy’ LG3 map was 

completely collinear with the physical position of the markers in the peach genome 

(Table 1.4a and Figure 1.4). Unfortunately, most of the markers surrounding the M-

locus in ‘Canino’ LG3 were found to be monomorphic in ‘Katy’ and therefore could not 

be mapped (Table S1.3). Genetic differences between ‘Katy’ and ‘Canino’ were 

detected across the whole genome, they share only 38,8 % of their SSR alleles and show 

a Nei´s genetic distance of 0,83 (Table S1.4). Indeed, only a few collinear markers, such 

as PGS3_12, PGS3_15 and EEPCU7190, were useful to define a syntenic region 

between both apricot maps containing the M- and M’-loci and corresponding to a 

physical interval between 17.38-19.78 Mb in the peach genome (Figure 1.4a). The 

PGS3_22/EEPCU7190 interval comprising the M’-locus in ‘Katy’ corresponds to ~1.29 

Mb in the peach syntenic genomic region (between 18.490-19.780 Mb positions). 

Meanwhile, in ‘Canino’ the M-locus was predicted to be flanked by PGS3_71 and 

PGS3_96 markers within an interval of 1.8 cM corresponding to ~364 Kb in the peach 

genome (between 18.399-18.763 Mb positions) (Zuriaga et al., 2012). Therefore, there 

is an overlapping interval between these two regions spanning ~273 kb. To have a 

complementary view of the predicted positions for the M- and M’ -loci, the relative 

frequency of individuals lacking SSR alleles in coupling phase with the PPM (expected 

to be zero in those markers absolutely linked) was  represented graphically on the peach 

chr.3 (Figure 1.4b). To do this, only individuals carrying the ‘Canino’ m mutated allele 

from the ‘G×C-01’ population (Zuriaga et al., 2012) or the m’ allele from ‘K×K’ and 

‘Katy’ outcrossing populations were computed. This analysis showed frequency values 

of zero in shorter overlapping intervals: PGS3_23 (18.61 Mb) in ‘K×K’, 

PGS3_22/PGS3_28 (18.49-19.14 Mb, ~650 Kb) in ‘Katy’ outcrosses and 

PGS3_44/PGS3_62 (18.29-18.61 Mb, ~320 Kb) in ‘G×C-01’.  
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Figure 1.4. Mapping of the M’ -locus and macro-synteny within Prunus. (a) Graphical LG3 maps of 
K×K-recombinant hybrids at the M’ -locus. The corresponding map region between markers PGS3_12 
and EPPCU7190 is shown for ‘Katy’ and ‘Canino’. Distances in centimorgan (cM) are shown on the right 
of the apricot maps and their corresponding positions in megabases (Mb) on the peach genome are shown 
on the left. Black vertical bars represent self-incompatible (M’M’ ) chromosomal regions, while grey 
(M’m’ ) and white bars (m’m’) correspond to self-compatible chromosomal regions. Recombinant 
seedlings are numbered at the top. (b) Predicted positions for the M- and M’ -loci on the peach chr.3 
according to the relative frequency of individuals lacking SSR alleles in coupling phase with the PPM (Y-
axis). The black line represents data corresponding to the ‘K×K’, the dashed line to ‘Katy’ outcrossing 
populations (‘H×K’, ‘G×K’ and ‘C×K’) and the grey line to  the ‘G×C-01’ population.  
 

The genomic landscape of the ~1.29 Mb peach region syntenic to the apricot M’ -

locus contains 223 predicted gene transcripts as annotated by IPGI. Forty-two of these 

transcripts (located in the overlapping interval) were shared in common with the 

‘Canino’ M-locus. BLASTP analysis of the ORFs against The Arabidopsis Information 

Resource (TAIR) database, with an exp. value cut-off <1e-6, was used by IPGI to predict 

gene functions based on homology to Arabidopsis. Table S1.5 includes the results of the 

BLASTP analysis for the ORFs comprised in the M’ -locus region (IPGI) and indicates 

those Prunus/Arabidopsis gene pairs that are best-reciprocal BLASTP hits identifying 

putative orthologues. According to the large-scale gene expression analysis performed 

by Wang et al. (2008) in Arabidopsis mature pollen, hydrated pollen and pollen tubes 

a 

b 
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using Affymetrix ATH1 Genome Arrays, up to 53 of these Arabidopsis homologues 

were found to be pollen-expressed (Table S1.5). 

 

Discussion 

 
Loss of function of an S-locus external factor is responsible for SI breakdown in 

‘Katy’( S1S2) 

In this work the North-American apricot cv. ‘Katy’, released by Zaiger´s 

Genetics (Modesto, CA, USA) in 1978 (Russell, 1998), was confirmed as self-fruitful 

and its S-genotype was determined as S1S2 following the nomenclature established by 

Burgos et al. (1998). However, previous reports assigned to ‘Katy’ the S-genotypes S8SC 

(Feng et al., 2006) and S1S8 (Wu et al., 2010). In addition, these two manuscripts 

referred ‘Katy’ as a spontaneous cultivar native to Europe and lately introduced to 

China. Therefore, both the S-genotype and the geographic origin proposed by these 

authors suggest that the cultivars they analyzed might be different from the cv. ‘Katy’ 

we describe here. Wu et al. (2010) also suggest that SC in ‘Katy’ is associated with 

PPMs that, according to the segregation of S-genotypes, seem to exert a polygenic 

control. Again, this is not the case in the Zaiger´s ‘Katy’ where SC is associated with a 

single PPM, however a sort of kinship between the two cultivars can not be discarded. 

To investigate the genetics of SC, ‘Katy’ (S1S2) was self-pollinated and 

reciprocally crossed with the self-incompatible cv. ‘Goldrich’ (S1S2) (Egea & Burgos, 

1996; Alburquerque et al., 2002). ‘Katy’ pollen tubes bearing either the S1- or the S2-

haplotype were able to grow in ‘Katy’ and ‘Goldrich’ pistils and to complete 

fertilization, producing the three S-genotype classes expected for an F2 population 

(S1S1:S1S2:S2S2). However, no progeny was obtained in the reciprocal cross using ‘Katy’ 

as female parent. These results would support a PPM unlinked to the S-locus as the 

cause for SC. Crosses performed with other cvs. such as ‘Harcot’ (S1S4) and ‘Canino’ 

(S2SC) reinforce this conclusion, since seedlings carrying the ‘Katy’ S1- (when crossing 

with ‘Harcot’) and the S2-haplotype (when crossing with ‘Canino’) were also obtained. 

Moreover, segregation ratios in all performed crosses fit with a model where ‘Katy’ is 

heterozygous for the PPM conferring SC (M’m’ ) (see Table 1.2).  

Interestingly, in the ‘K×K’ and ‘G×K’ populations the number of seedlings 

homozygous for the S1-haplotype (20) is significantly lower than that for the S2-
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haplotype (Tao et al., 1999) (see Table 1.1). Similar deviations were observed by 

Wünsch and Hormaza (2004) when the sweet cherry cv. ‘Cristobalina’ was self-

pollinated. Following their reasoning, several causes might explain these deviations 

such as postzygotic selection against homozygous embryos, linkage in coupling 

between the mutated allele of the modifier factor (m) and the S2-allele or differences in 

the pollen competitive capacity to grow through the style (depending on the S-

haplotype). In this particular case, a hypothetical effect of postzygotic selection would 

explain the reduced number of S1S1 but not the high number of S2S2 genotypes. 

Regarding the second reason, neither the segregation ratios observed in different 

populations nor the SDL analysis support a linkage between the M’ -and the S-locus. 

Therefore, a lower growth capacity for pollen gametes bearing the S1-haplotype is 

regarded as the most acceptable hypothesis to explain this discrepancy. 

SC caused by loss of pollen-S function has been usually found to be associated 

with mutations (mainly indels) of the SFB genes in different Prunus species such as 

sweet cherry (Ushijima et al., 2004; Sonnelveld et al., 2005; Marchese et al., 2007), 

apricot (Vilanova et al., 2006), Japanese apricot (Ushijima et al., 2004), peach (Tao et 

al., 2007) and sour cherry (Hauck et al., 2006). However, sequence analysis revealed no 

mutations or indels affecting any of the two ‘Katy’ SFB alleles discarding this as the 

cause of SI breakdown. In Solanaceae, self-compatible PPMs may arise from S-allele 

duplications located in a centric fragment, in a non-S chromosome or linked to the S-

locus leading to the formation of S-heteroallelic pollen (Golz et al., 2001). According to 

the segregations obtained in the performed crosses, S-allele duplications did not seem 

probable in ‘Katy’ (all descendants should have had the S1S2 genotype), even so, we 

discarded that possibility showing that SFB gene dosage is equivalent between ‘Katy’ 

and the self-incompatible cv. ‘Goldrich’. S-allele duplications may also result from 

polyploidy but ‘Katy’ was confirmed as diploid by flow cytometry analysis and by 

marker segregation and mapping in all crosses. These results rule out competitive 

interaction resulting from S-heteroallelic pollen as the cause of SC in ‘Katy’.  

Altogether, it can be hypothesized that the loss-of-function of a S-locus unlinked 

factor gametophytically expressed in pollen causes breakdown of SI in ‘Katy’. 

Moreover, according to the relative abundance of SFB1 and SFB2 transcripts in ‘Katy’, 

when compared with the reference cv. ‘Goldrich’, the hypothetical defective factor in 

‘Katy’ does not seem to affect their expression. These characteristics of the self-

compatible mutant ‘Katy’ resemble those of other self-compatible pollen-part mutants 
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defective for non S-locus factors already found in Prunus. For instance, gene 

duplications and modified transcription levels of the S-locus genes were also discarded 

as the cause of SC in the Prunus avium cv. ‘Cristobalina’ (Wünsch & Hormaza, 2010) 

and the Prunus armeniaca cv. ‘Canino’ (Vilanova et al., 2006). According to the 

classification established by McClure et al. (2000) the modifier factor in ‘Katy’ would 

belong to the group of modifier genes required for pollen rejection but with no wider 

role in pollination. Although no direct evidence is available about its possible function, 

last findings in Prunus may provide some clue in this respect. For instance, the 

PavSSK1 and PavCul1 proteins recently identified by Matsumoto et al. (2012) in 

Prunus avium are proposed to form the SCFSFB
 E3 ubiquitin ligase complex involved in 

S-RNases degradation. Therefore, the loss-of-function of any of them would predictably 

lead to SC. However, none of these two genes is located in LG3 where the M’-locus 

region is found and so they can be discarded as a possible cause of SC in ‘Katy’. On the 

other hand, Tao & Iezzoni (2010) proposed an alternative model for the GSI in Prunus 

where a S-RNase inhibitor would be the target for the SCFSFB ubiquitination complex 

instead of the S-RNases. If the modifier factor found in ‘Katy’ was this hypothetical 

inhibitor, its loss-of-function would lead to SI and not to SC what also rules out this 

possibility. Further research will therefore be necessary to reveal the SI related function 

affected by the PPM in ‘Katy’.  

 

PPMs conferring SC in ‘Katy’ and ‘Canino’ apricots are both located at the chr. 3 

distal end  

To facilitate future identification and cloning, the ‘Katy’ GSI mutated modifier 

gene locus (M’ -locus) was mapped following a two-steps strategy. First, we 

hypothesized that those markers linked with the M’ -locus should be highly distorted in 

the populations obtained from crosses where ‘Katy’ was the pollen parent, since only 

‘Katy’ pollen tubes carrying the m’-allele would be able to grow. In other words, the 

M’ -locus genomic region should correspond to a segregation distortion locus (SDL), a 

chromosomal region that causes distorted segregation ratios (Zhu & Zhang, 2007). To 

identify this kind of regions, ‘K×K05’ and ‘K×K06’ populations, which all trees carry the 

PPM, were tested for genome-wide distributed SSRs to detect SDL by examining 

changes in genotypic frequencies. Attending to segregation of pollen alleles, two SDL 

were found in LG3 and LG6 but a deeper analysis showed that LG6 markers were 

partially linked to the S-locus and only moderately distorted. Consequently, LG3 was 
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predicted as the most likely location for the M’ -locus. Distortion in LG6 seems more 

plausibly related to the different capacity of S1 and S2-pollen gametes for growing 

through the style. Further analyses are in progress to confirm this point. 

In a second step, to refine M’-locus mapping, chr.3 specific SSRs were analyzed 

to estimate their segregation distortion ratios in selfing (F2) and outcrossing populations 

obtained by using ‘Katy’ as pollen parent. Additionally, indirect M’ -locus genotyping 

was performed by analyzing linked SSRs in the F3 offspring of six selected ‘K×K’ F2 

trees. Recombination breakpoints in five of these trees defined a 9.4 cM interval for the 

‘Katy’ M’ -locus that corresponds to ~1.29 Mb in the peach genome (18.49-19.78 Mb) 

and overlaps ~273 Kb with that established for the M-locus in ‘Canino’ (Zuriaga et al., 

2012). A non S-locus PPM conferring SC to the P. avium cv. ‘Cristobalina’ was also 

mapped on the LG3 by Cachi and Wünsch (2010). However, it was tentatively predicted 

to be downstream the EMPaS02 marker (~20,0 Mb) and therefore, if confirmed, the 

position for this locus is not coincident with those for the M- and M’ -loci in apricot. 

Different map locations for PPMs would support different defective genes as 

responsible for SC in sweet cherry and apricot, but this point still requires confirmation. 

Particularly in apricot, SSR markers showing the highest distortion values associated 

with the PPMs in ‘Canino’ (PGS3_62) and ‘Katy’ (PGS3_23) are located in very close 

positions (18.612 and 18.608 Mb, respectively). Thus, in the light of the similarities 

found between the apricot cvs. ‘Katy’ and ‘Canino’ (i.e. genetics of SC, M- and M’ -

locus mapping positions, etc.) it is tempting to speculate that both PPMs causing SC 

might be affecting the same gene, however no conclusive evidence is yet available on 

this point. Only 42 genes are shared in common between M- and M’ -locus (Zuriaga et 

al., 2012) and, if this was the case, the availability of two different PPMs would be very 

helpful to identify the modifier gene. Interestingly, both cultivars have different 

geographic origins (i.e. ‘Katy’ is a North-American apricot selection (Russell, 1998) 

and ‘Canino’ is a local Spanish apricot (Vilanova et al., 2006) and, according to the 

analysis of gemome-wide distributed SSRs, they seem to be genetically unrelated. This 

prompts us to speculate that both PPMs (being or not the same) may have arisen 

independently. 

According to the peach syntenic genome region annotated by IPGI, the apricot 

M’ -locus is predicted to contain about 223 gene transcripts. Based on sequence 

similarity, putative Arabidopsis orthologues were suggested for many of these Prunus 

genes (Zheng et al., 2005) and, according to Movahedi et al. (2011), a consistent tissue-
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specific expression might be expected for the reported gene pairs. Under this general 

rule, a high number of genes scattered throughout the M’ -locus (up to 53) might be 

pollen-expressed fulfilling one of the main requirements for the SI ‘Katy’ modifier 

gene. Nevertheless, those genes whose orthologues are not pollen-expressed should not 

be discarded because inferred orthologues do not always have the same biological 

function (Movahedi et al., 2011). Gene function annotation might also be helpful to 

select candidate genes for the SI ‘Katy’ modifier gene. Unfortunately, the hypothetical 

roles suggested for this factor are still merely speculative hindering this approach. In 

view of the limitations for these strategies and considering the high number of ORFs 

comprised within the M’ -locus, narrowing down the mapping region will be an essential 

step to identify the SI modifier gene in ‘Katy’. In summary, ‘Katy’ does not only 

provide an additional S-locus unlinked source of SC, a desired trait for apricot breeding 

programs, but also becomes a very useful tool to dissect the molecular genetics behind 

pollen-pistil interactions in Prunus. 

 

Materials and Methods 

 

Plant material  

Four apricot cvs. ‘Goldrich’, ‘Canino’, ‘Harcot’ and ‘Katy’, the progenies 

derived from the outcrosses ‘Goldrich × Katy - 2005’ (‘G×K’), ‘Canino × Katy - 2007’ 

(‘C×K’), ‘Katy × Canino - 2007’ (‘K×C’) and ‘Harcot × Katy - 2005’ (‘H×K’), and the 

F2 populations obtained by selfing ‘Katy’ in 2005 (‘K×K05’) (N=16), 2006 (‘K×K06’) 

(N=37) and 2010 (‘K×K10’) (N=41) were used in this study (Table 1). ‘K×K’ population 

was formed by pooling all the individuals from these three latter F2 populations. All 

these trees are maintained at the collection of the Instituto Valenciano de 

Investigaciones Agrarias (IVIA) in Valencia (Spain). Additionally, 12 independent F3 

seed populations (ranging from N=2 to N=77) were obtained after self-pollination of 

‘K×K 05’ and ‘K×K06’ trees. Selfing populations from ‘Katy’ (F2 and F3) were obtained 

by putting insect-proof bags over several branches (containing 200-250 flower buds) 

before anthesis to prevent cross-pollination. Outcrossing populations were obtained by 

pollinating balloon-stage flowers. Fruits were collected about three months later. F3 

seed-derived embryos were dissected from the rest of the seed tissue and stored at –

20ºC. 
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Nucleic acids extraction 

Two leaf discs of each selection were collected and stored at -80ºC before DNA 

isolation. Genomic DNA was extracted following the method of Doyle & Doyle (1987). 

DNA quantification was performed by NanoDrop ND-1000 spectrophotometer (Thermo 

Fisher Scientific, Wilmington, DE) and integrity was checked by comparison with 

lambda DNA (Promega, Madison, WI, USA). Embryo DNA was extracted by 

incubating for 10 min at 95ºC with 20 µl of TPS (100 mM Tris-HCl, pH 9.5; 1 M KCl; 

10 mM EDTA) isolation buffer (Thomson and Henry, 1995). Total RNA was extracted 

from mature anthers (contaning mature pollen grains) of balloon-stage flowers using the 

UltraClean Plant RNA Isolation Kit (MoBio, Carlsbad, CA, USA).  

 

PCR-amplification, cloning and sequencing of S-RNase gene fragments and the 

complete S-locus F-box alleles from ‘Katy’  

Fragments comprising the S-RNase first intron were PCR-amplified with primers 

SRc-F (Romero et al., 2004) and Pru-C2R (Tao et al., 1999) (Table S1.6) using ‘Katy’ 

genomic DNA as template. Cycling conditions were as follows: an initial denaturing 

step of 94ºC for 2 min; 30 cycles of 94ºC for 30 s, 55ºC for 60 s and 72ºC for 1 min 30 

s; and a final extension of 72ºC for 10 min (GeneAmp®PCR System 9700, Perkin-

Elmer, Fremont, CA). PCR products were electrophoresed in 1% (w/v) agarose gel, 

purified using the QIAquick Gel Extraction Kit (Qiagen, Hilden, Germany) and cloned 

into the pGEM T-Easy vector (Promega, Madison, WI). DNA sequences from four 

independent clones were determined with an ABI3730 equipment using the Big Dye 

Terminator v.3.1. cycle sequencing kit (Applied Biosystems, Foster City, CA). 

Sequences were assembled and edited with the Staden package v1.4 (Bonfield, 2004) 

and homology searches were performed with BLASTX (Altschul et al., 1990). S-RNase 

fragments comprising the second intron were amplified with primers Pru-C2/Pru-C4R 

(Tao et al., 1999) (Table S1.6) using PCR-conditions described by Sonneveld et al. 

(2003). Genomic fragments containing the complete coding sequence of SFB1 and SFB2 

(as well as their 3’/5’ flanking regions) were PCR-amplified with the haploytpe-specific 

primer pairs FBf-Hap1/FBr-Hap1 (this work) and FBf-Hap2/FBr-Hap2 (Vilanova et al., 

2006) respectively (Table S1.6), using ‘Katy’ genomic DNA as template. PCR 

conditions and methods for isolating, cloning, and sequencing these fragments were the 

same used for the S-RNase fragments. 
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Genomic PCRs for S-genotyping 

S-genotyping of populations and cultivars was performed by PCR-amplification 

of the S-RNase first intron with the primer pair SRc-F/SRc-R (Romero et al., 2004) 

(Table S1.6) following the protocol described by Vilanova et al. (2006).  

 

Ploidy level determination 

Ploidy level was determined using the Partec CyStain UV precise P reagent kit 

(Partec PAS, Münster, Germany) for nuclei extraction and DNA staining of nuclear 

DNA from plant tissues. Approximately 0.5 cm2 leaf tissue was chopped using a sharp 

razor blade in 400 µl extraction buffer and filtered through a Partec 50 µm CellTrics 

disposable filter. Samples were then incubated for 60 seconds in the staining solution 

and analyzed in the Partec flow cytometer Ploidy Analyzer PA (Partec, Münster, 

Germany) in the blue fluorescence channel. 

 

Real time RT-PCR for SFB1 and SFB2 

cDNA was obtained from total RNA isolated from mature anthers of the cvs. 

‘Goldrich’ and ‘Katy’ using the SuperScript III First-Strand Synthesis System for RT-

PCR (Invitrogen, Carlsbad, CA, USA). Genomic DNA traces were previously removed 

from RNA samples by treatment with DNAse I (Invitrogen, Carlsbad, CA, USA). SFB 

allele-specific PCR-primer pairs were designed in this work to amplify SFB1 and SFB2 

(RT-SFB1-for/RT-SFB1-rev1 and RT-SFB2-for/RT-SFB2-rev2, respectively) (Table 

S1.6). Primer allele-specificity was tested by PCR-amplifying both alleles from 

genomic DNA and comparing fragment sizes with known S-genotypes in agarose gels 

after electrophoresis. The actin gene was used as endogenous control and the specific 

PCR primers Act3 and Act4 designed from the peach genome sequence (Gabino Ríos 

personal comm.) were used for amplification (Table S1.6). Specificity of actin PCR 

reaction was tested through size estimation of the amplified product by gel 

electrophoresis. Real-time PCR reactions were performed using an Applied Biosystems 

StepOnePlus Real-Time PCR System (Applied Biosystems, Foster City, CA, USA) in a 

final volume of 20 µl, containing 10 µl of the SYBR Premix Ex Taq (Takara, Foster 

City, CA, USA), 0.4 µl of ROX reference dye, 0.375 µM of each primer and 2 µl of 

cDNA template diluted 1:15 from a total of 20 µl synthesized from 2 µg of total RNA. 

Cycling conditions were as follows: an initial denaturing step of 95ºC for 30 s; 40 

cycles of 95ºC for 5 s, 60ºC for 30 s and 72ºC for 1 min. Relative expression of SFB1 
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and SFB2 from ‘Katy’ and ‘Goldrich’ RNA of mature anthers was measured by the 

standard curve method. Threshold cycle (CT) values were automatically determined by 

StepOne v. 2.0 software (Applied Biosystems, Foster City, CA, USA). PCR reaction 

specificity was assessed after the amplification by confirming the presence of a single 

peak in the dissociation curve analysis. Results were the average of three independent 

biological replicates repeated three times. 

 

Real-time PCR-based gene dosage assay for SFB1 and SFB2 

SFB allele-specific PCR primers used to determine gene dosage of SFB1 and 

SFB2 from genomic DNA of cvs. ‘Goldrich’ and ‘Katy’ were also RT-SFB1-for/RT-

SFB1-rev1 and RT-SFB2-for/RT-SFB2-rev2. Actin was used as endogenous control and 

the specific primers used to amplify this gene were Act3/Act4 (see previous sections). 

Real-time PCR reactions were performed using the same PCR mixtures (except for 2 µl 

of gDNA as a template), cycling conditions and thermocycler previously reported for 

real-time RT-PCR. Relative DNA quantity corresponding to SFB1 and SFB2 alleles 

from ‘Katy’ and ‘Goldrich’ was measured by the standard curve method. CT values and 

PCR reaction specificity were also determined as for the real-time RT-PCR. Results 

were the average of two independent biological replicates repeated three times. 

  

SSR marker analysis 

A total of 118 SSR markers, spread over the 8 Prunus chromosomes, were tested 

to perform a genome-wide screen for the PPM (Table S1.7). Those SSRs amplifying in 

‘Katy’, ‘Goldrich’ and ‘Canino’ (85) (Table S1.3) were used to estimate Nei´s genetic 

distance between the three cultivars (Nei, 1972) by means of GENETIX v.4.05 software 

(Belkhir et al., 2004). One hundred and two additional SSRs developed by Zuriaga et al.  

(2012) were tested to construct the ‘Katy’ LG3 map (Table S1.2). SSR amplifications 

were performed in a GeneAmp® PCR System 9700 thermal cycler (Perkin–Elmer, 

Freemont, CA, USA) in a final volume of 20 µl, containing 75 mM Tris–HCl, pH 8.8; 

20 mM (NH4)2SO4; 1.5 mM MgCl2; 0.1 mM of each dNTP; 20 ng of genomic DNA and 

1 U of Taq polymerase (Invitrogen, Carlsbad, CA). Each polymerase chain reaction was 

performed by the procedure of Schuelke (2000) using three primers: the specific 

forward primer of each microsatellite with M13(-21) tail at its 5’ end at 0.4 µM, the 

sequence-specific reverse primer at 0.8 µM, and the universal fluorescent-labeled M13(-

21) primer at 0.4 µM. The following temperature profile was used: 94°C for 2 min, then 
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35 cycles of 94°C for 45 s, 50–60°C for 1 min, and 72°C for 1 min and 15 s, finishing 

with 72°C for 5 min. Allele lengths were determined using an ABI Prism 3130 Genetic 

Analyzer with the aid of GeneMapper software, version 4.0 (Applied Biosystems). 

 

M’ -locus fine mapping 

Segregation distortion locus (SDL) associated with the PPM was detected using 

JoinMap 3.0 software (Van Ooijen & Voorrips, 2001) by analyzing χ2 values of 

selected SSRs spread over the Prunus genome in the ‘K×K05’ and ‘K×K06’ F2 

populations. Genetic maps for each linkage group were roughly estimated using these 

two populations. The logarithm of odds (LOD) grouping threshold was established at ≥ 

3.0 for LG2, LG4, LG7 and LG8 but < 3.0 for the rest. Comparative mapping with other 

apricot cvs. was used to support  grouping of markers in these latter cases. 

Linkage maps of ‘Katy’ chr.3 were constructed using SSR markers segregating 

in ‘K×K’ and ‘C×K’ populations. Calculations were performed by JoinMap 3.0 

software (Van Ooijen & Voorrips, 2001) using the Kosambi mapping function 

(Kosambi, 1944) to convert recombination units into genetic distances. In the ‘C×K’ 

population, LG3 was established following the “two-way pseudo test-cross” model of 

analysis Grattapaglia and Sederoff (1994) under a LOD grouping threshold of 5.0 and a 

recombination frequency parameter below 0.4. According to the single LG3 map 

obtained for ‘Katy’ from ‘C×K’, LOD score was relaxed to 2.0 for merging, two 

separated groups (at LOD > 5.0) in the ‘K×K’ population to construct LG3.  

M’ -locus genotyping of K×K-F2 individuals was indirectly performed by 

analyzing segregation ratios of heterozygous SSR markers linked to the PPM (according 

to the SDL analysis) in the F3 progenies. A χ2 test was performed to check whether the 

observed ratios fit a 1:2:1 ratio, corresponding to the m’m’ genotype, or a 1:1 ratio, 

corresponding to the M’m’  genotype. 
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Abstract 

 

Apricot (Prunus armeniaca L.) is basically considered as a self-incompatible species 

where numerous self-compatible exceptions occur, mainly linked to the mutated SC-

haplotype. However, more recently S-locus unlinked pollen-part mutations (PPMs) m 

and m’ have also been reported to confer self-compatibility (SC) in apricot cultivars 

‘Canino’ and ‘Katy’, respectively. This work was aimed to explore whether other 

additional mutations might explain SC in apricot as well. To do this, a set of 67 

cultivars/accessions with different geographic origins and pedigrees were genetically 

analyzed by PCR-screening of S- and M-genotypes, contrasting results with the 

available phenotype data. As first finding, m and m’, initially described as independent 

PPMs, were found to be within the same haplotype. Results also indicate that this 

pollen-part mutated m-haplotype is tightly associated with SC in apricot germplasm. Its 

prevalence was higher than expected but lower than that for SC, either in frequency or 

geographic distribution. In addition, two new putative mutations conferring SC were 

pointed out. Overall, results led to conclude that, despite a number of different 

mutations can be behind SC in apricot, the affected loci are restricted to two as 

occurring in other Prunus species. Reasons that could be underlying this behavior are 

discussed.  

Introduction 

Gametophytic self-incompatibility (GSI) is a widely distributed system in the 

plant kingdom (Igic and Khon 2001) that prevents self-fertilization favoring outcrossing 

(De Nettancourt 2001). GSI specific recognition is under the control of a multi-allelic 

locus, termed S-locus, containing at least two linked genes: a pistil expressed S-RNase 

(McClure et al., 1989) and the pollen expressed S-locus F-box (Lai et al., 2002; Sijacic 

et al., 2004; Ushijima et al., 2003). S-locus F-Box proteins are thought to be 

components of E3 ubiquitin ligase complexes that recognize non-self S-RNases 

promoting their ubiquitination and degradation by the 26S proteasome proteolytic 

pathway (Hua and Kao, 2006; Huang et al. 2006). Recently, the collaborative model 

proposed in Solanaceae (Petunia) suggests that several F-box proteins are necessary to 

recruit S-RNases for degradation (Kubo et al., 2010). This system seems to be extended 

to other plant families exhibiting GSI such as Rosaceae and particularly the Maloideae 
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subfamily (Kakui et al., 2011). However, interestingly, Prunus does not seem to follow 

this model since knock-out of the SFB leads to SC in contrast with the observations in 

Solanaceae. Reasons behind this singular behavior have been speculated for a long time 

but only recently evidences supporting a ‘general inhibitor’ distinct from SFB in Prunus 

have been provided (Matsumoto and Tao 2016). 

In general, SC trait predominates in stone fruits (Prunus genus) in accordance 

with the high level of heterozygosity showed by these species. However, different 

‘degrees’ of SC have been detected in this genus ranging from almost strict SI in sweet 

cherry, with a few exceptions, to complete SC in peach (Tao and Iezzoni 2010). SC 

sources are also variable but mostly related to mutations in the S-locus genes. In fact, 

mutations affecting both genes have been detected in many Prunus species (Tao and 

Iezzoni 2010; Hegedüs et al., 2012). Particularly, in apricot (Prunus armeniaca L.) the 

SC-allele known to confer SC has been well characterized showing that a 358-bp 

insertion in the SFB gene leads to a putative truncated protein lacking the two essential 

3´-hypervariable domains HVa and HVb (Vilanova et al., 2006). Furthermore, the 

origin and dissemination of SC has also been reported, identifying the non-mutated 

ancestor S8-allele and detecting its presence in cultivars from different geographic areas 

(Halazs et al., 2007). In fact, most S-genotyped self-compatible apricot cultivars have 

been shown to carry the SC-allele (Vilanova et al., 2005; Halázs et al., 2007 and 2010; 

Kodad et al., 2013).  

Along with the S-locus specific products, other S-locus unlinked factors are also 

necessary for the GSI system to work. These factors known as ‘modifiers’ were firstly 

identified in Solanaceae (McClure et al., 2000; Chen et al., 2010). Nevertheless, genetic 

evidence supporting modifiers have also been accumulated in other species including 

Prunus spp. (Wünsch and Hormaza 2004; Vilanova et al., 2006.). In apricot, pollen-part 

mutations (PPMs) conferring SC by putatively affecting modifiers have been identified 

in the Spanish local cultivar ‘Canino’ and the North-American one ‘Katy’. Both PPMs 

were mapped at the distal end of chr.3 within the so-called M- and M’-loci, respectively 

(Zuriaga et al., 2012 and 2013). This led us to hypothesize that these two PPMs could 

have arisen independently (according not only to the origin but also to the genetic 

distance between both cultivars) affecting the same locus. In the same line, we thought 

that additional similar S-locus unlinked mutations might be present in apricot 

germplasm.  
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In this work, we have genotyped molecularly the S- and M-haplotypes using the 

5’UTR SFB intron and the 1st/2nd S-RNase introns, on one side, and M-locus linked SSR 

markers, on the other. This approach has allowed us to dissect SC causes and 

distribution in apricot germplasm by using a wide set of cultivars from different 

geographic origins.   

 

Results 

Self-incompatibility vs. self-compatibility in apricot 

In this study a set of 67 apricot cultivars was analyzed. They were selected 

trying to represent a wide range of geographic origins as well as different phenotypes 

regarding two main traits: self-(in)compatibility and blooming time (Table 2.1). 

Information about pedigree was only available for a few of them but it was quite useful 

to reinforce genotyping data. According to the blooming time phenotype reported in the 

literature (footnotes on Table 2.1) apricot cultivars were grossly classified into 5 

classes: early, mid-early, mid, mid-late and late. Self-incompatible vs. self-compatible 

phenotypes were assigned to the different cultivars according to literature reports (Table 

2.1) and our own data when adult trees were available (Table 2.2).  

 

Table 2.1. Apricot cultivars analyzed in this study. Material sources, origin, pedigree as well as 

self-(in)compatibility and blooming time phenotypes are indicated. 

 Cultivar Source Geographic 

area 

Country 

of origin 

Pedigree** SI/SC** Blooming 

time** 

1 Alba CAPA Western-Eur. Italy Unknown1 SC11 Mid13 

2 ASP* FM Western Eur. Spain (V) Unknown (isolated tree)2 ?***  Mid13 

3 Aurora CAPA North-Am. USA RR17-62 × NJA-133 SI12 Mid15 

4 Bebecou MAGRAMA S-Eur/N-Afr Greece Unknown4 SC12 Mid-early4 

5 Bergeron MAGRAMA Western Eur. France Unknown4 SC12 Mid-late4,16 

6 Budapest St. Istvan Eastern-Eur. Hungary ‘Nancy’ × (‘Acme’, ‘Hungarian 

Best’, ‘Kései Rózsa’)5 

SC5 Mid-late17 

7 Búlida MAGRAMA S-Eur/N-Afr Spain (M) Unknown4 SC12 Mid4 

8 Canino IVIA Western-Eur. Spain (V) Unknown4 SC12 Mid4 

9 Canino 9-7 IVIA Western-Eur. Spain (V) Clonal selection from Canino6 ? Mid6 

10 Canino 14-4 IVIA Western-Eur. Spain (V) Clonal selection from Canino6 ? Mid6 

11 Canino 14-6 IVIA Western-Eur. Spain (V) Clonal selection from Canino6 ? Mid6 

12 Castlebrite CEBAS North-Am. USA o.p. (Perfection × Castleton)7 SC12 Mid-late13 

13 Castleton CEBAS North-Am. USA Perfection × Newcastle7 SC7 Mid4 

14 Cegledi Orias St. Istvan Eastern-Eur. Hungary Unknown (local selection)5 SI12 Mid17 

15 Colorao CEBAS S-Eur/N-Afr Spain (M) Unknown4 
↗ sterile12 Mid4 
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16 Corbató   MAGRAMA Western-Eur. Spain (V) Unknown2 ? Mid-late15 

17 Cow-1 CAPA Western-Eur. France INRA ? Mid8 

18 Cow-2 CAPA Western-Eur. France INRA ? ? 

19 Cristalí FM Western-Eur. Spain (V) Unknown2 ? Mid15 

20 Currot IVIA Western-Eur. Spain (V) Unknown2 SC12 Early15 

21 Dulcinea CAPA Western-Eur. Italy Unknown (Toscana variety)1 SC12 Mid8 

22 Effect St. Istvan Eastern-Eur. Ukraine Krupnolodnyi o.p.5 SC5 Late18 

23 Ezzine CAPA S-Eur/N-Afr Tunisia INRAT ? Early13 

24 Fergani St. Istvan Eastern-Eur. Former 

USSR 

Unknown ? ? 

25 Galta Roja* CAPA Western-Eur. Spain (V) Unknown2 SC12 Mid-early4 

26 GVV FM Western-Eur. Spain (V) Unknown (isolated tree)2 ? ? 

27 Gandía FM Western-Eur. Spain (V) Unknown2 ? Mid-early15 

28 Gavatxet FM Western-Eur. Spain (V) Unknown2 ? Mid15 

29 Ginesta IVIA Western-Eur. Spain (V) Unknown2 SC13 Mid-early15 

30 Goldrich IVIA North-Am. USA Sunglo × Perfection7 SI12 Mid4,16 

31 Gonci Magyar St. Istvan Eastern-Eur. Hungary Clone or hybrid of Hungarian 

Best5 

SC5 Mid-late17 

32 Harcot* IVIA North-Am. Canada [(Geneva × Naramata) × 

Morden 604] ×NJA1 (Phelps × 

Perfection)7 

SI12 Mid4 

33 Hargrand St. Istvan North-Am. Canada V51092 [(Reliable × o.p.) × 

o.p.]  × NJA1 (Phelps × 

Perfection )7 

SI12 Late13 

34 Harlayne IVIA North-Am. Canada V51092 [(Reliable × o.p.) × 

o.p.]  × Sunglo7 

SC12 Mid-late4,18 

35 Henderson IVIA North-Am. USA Unknown7 SC14 Mid-late4,18 

36 Katy IVIA North-Am. USA Zaiger´s genetics (USA)8 SC8 Early13 

37 Kech-pshar St. Istvan Eastern-Eur. Uzbekistan Unknown (local selection)5 ? ? 

38 Konservnyi 

Pozdnii 

St. Istvan Eastern-Eur. Ukraine Unknown (chance seedling)5 SC5 Mid-late17 

39 Lambertin-1 CEBAS North-Am. USA [Perfection × (Royal x Blush)] 

o.p. × (Perfection × Royal)8 

SI12 Mid8 

40 Lito IVIA S-Eur/N-Afr Greece SEO × Tyrinthos9 SC9 Mid-late13 

41 Manrí FM Western-Eur. Spain (V) Clonal selection from Rojo de 

Carlet2 

? Mid-early15 

42 Mari de Cenad St. Istvan Eastern-Eur. Romania Unknown5 SC5 ? 

43 Mariem CAPA S-Eur/N-Afr Tunisia 2nd generation (Bergeron × 

Ouardi) × (Carraut × Crossa-

Raynaud)8 

? Mid8 

44 Martinet FM Western-Eur. Spain (V) Unknown2 ? Mid15 

45 Mitger IVIA Western-Eur. Spain (V) Unknown2 SC13 Mid8 

46 Moniquí CEBAS S-Eur/N-Afr Spain (M) Unknown4 SI12 Mid4 

47 Ninfa CAPA Western-Eur. Italy Ouardi × Tyrinthos8 SC12 Mid-early16 

48 Orange Red IVIA North-Am. USA Lasgerdi Mashhad × NJA28 SI12 Mid4,16 

49 Ouardi* IVIA S-Eur/N-Afr Tunisia Canino × Hamidi4 SI12 Mid-early4 

50 Palabras IVIA Western-Eur. Spain (V) Unknown2 SC13 Mid-early15 

51 Palau IVIA Western-Eur. Spain (V) Unknown2 SC13 Mid-early15 

52 Patterson CEBAS North-Am USA F2 seedling Perfection × SC12 Mid-late7 
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unknown7 

53 Perla CAPA Western-Eur. Italy ANFIC (Italy) ? Mid-early8 

54 Portici* FM Western-Eur. Italy Unknown4 SC12 Mid-early4 

55 Rojo de Carlet IVIA Western-Eur. Spain (V) Unknown2 SC13 Mid15 

56 Rozsakajszi St. Istvan Eastern-Eur. Hungary Local selection Nagykórös5 SC5 Mid-late17 

57 Sayeb* CEBAS S-Eur/N-Afr Tunisia Canino × Hamidi4 SC12 Mid-early4 

58 SEO* IVIA North-Am. USA Unknown7 SI12 Mid-late4 

59 Shalah* St. Istvan Eastern-Eur. Armenia Unknown SC/SI?12 Late18 

60 Stella IVIA North-Am. USA Unknown4 SI12 Late4, 18 

61 Szegedi 

Mammut 

St. Istvan Eastern-Eur. Hungary Unknown (local selection)10 SI12 Mid17 

62 Tadeo IVIA Western-Eur. Spain (V) Unknown2 SC12 Mid-late15 

63 Tirynthos IVIA S-Eur/N-Afr Greece Unknown4 SC12 Early4 

64 Trevatt CEBAS North-Am. Australia Unknown8 SC12 Mid-late4 

65 Veecot IVIA North-Am. Canada o.p. from Reliable7 SI12 Mid4 

66 Velázquez MAGRAMA S-Eur/N-Afr Spain (M) Unknown SI12 Late13 

67 Xirivello  CAPA Western-Eur. Spain (V) Unknown2 ? Mid-late15 

* Synonyms and acronyms: ASP ‘Albaricoquero Sin Polen’; Galta Roja ‘Galta Roja de Mitger’ or 

‘Palau’; GVV ‘Galta Vermella Valenciana’; Ouardi ‘Priana’; Portici ‘Portici-6’; Sayeb ‘Beliana’; SEO 

‘Stark Early Orange’ and Shalah ‘Erevani’. 

** References: 1 CRA Consiglio per la Ricerca e la Sperimetazione in Agricoltura; 2 García et al. (1985) 3 

Halász et al. (2005); 4 Della Strada et al., (1989); 5 Halász et al., (2007); 6 Badenes et al. (1993); 7 Brooks 

and Olmo (1997); 8 Russell (1998); 9 Syrgianidis and Mainou (1993); 10 Nyéki et al. (1999); 11 Egea and 

Ruiz (2014); 12 Burgos et al., (2004); 13 IVIA (see footnotes in Table 2.3); 14 www.gb-online.co.uk 15 

Badenes et al. (1997); 16 Massai (2010); 17 Nyujtó et al. (1982); 18 Mehlenbacher et al. (1991). 

*** No reports on the SI/SC or blooming phenotype were found for these cultivars (?). 

 

Self-pollinations were used to determine (9) or to confirm (15) self-

(in)compatibility phenotypes and to check progeny S-genotypes searching for S-locus 

unlinked mutations. A total of 19 cultivars/accessions out of the 21 included in Table 

2.2 were self-pollinated in this work (2008). Data suggest that 6 of them are self-

incompatible (‘Aurora’, ‘Cow-2’, ‘Mariem’, ‘Perla’, ‘Veecot’ and ‘Velázquez’) while 

the remaining 15 show variable fruit-setting ranging from 0.5% (‘Búlida’) to 55% 

(‘Ninfa’) being recorded as self-compatible.  

Table 2.2. Self-pollination assays. Data about dates, bagged flowers, fruit-setting and inferred 

phenotype are included. 

Cultivar Year Flowers Setting % Phenotype Progeny 

Alba 2008 355 37 10.4 SC 1 

Aurora 2008 350 0 0 SI -- 

Bebecou 2009/2013 760 108 14.2 SC 96 
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Búlida 2009 200 1 0.5 SC?* -- 

Canino 2005 412 99 24.0 SC 99 

Castlebrite 2009 300 36 12.0 SC 2 

Corbató   2009/2014 320 52 16.3 SC 44 

Cow-1 2008 200 8 4.0 SC 7 

Cow-2 2008 315 0 0 SI -- 

Cristalí 2009 200 24 12.0 SC 13 

Dulcinea 2008/2013 850 111 13.1 SC 104 

Ezzine 2008 350 160 45.7 SC 21 

Galta Roja 2008/2013 775 106 13.7 SC 106 

Katy 2005 731 80 10.9 SC 80 

Mariem 2013 450 0 0 SI 0 

Ninfa 2008 400 221 55.3 SC 12 

Perla 2008 370 0 0 SI -- 

Portici-6 2008/2013 850 63 7.4 SC 59 

Tadeo 2008 375 14 3.7 SC 5 

Veecot 2013 450 0 0 SI -- 

Velázquez 2009 270 0 0 SI -- 

In general, fruit-setting percentages below 2-3% should not be undoubtedly associated to SC since some 

degree of pollen contamination can not be fully discarded.  

 

S-genotyping: identification of new S-alleles and new S-genotypes 

All the 67 cultivars/accessions were S-genotyped using primer pairs amplifying 

different fragments of the S-haplotype region: the first and second S-RNase introns as 

well as the 5’-UTR S-locus Fbox (SFB) intron (Table 2.3).  

 

Table 2.3. S- and M-haplotypes of the apricot cultivars analyzed in this study  

 Cultivar SI/SC S-genota M-genotb  Cultivar SI/SC S-genot M-genot 

1 Alba SCod S1/SC
 M1-1/M3 35 Henderson SC S29/S31 M2-0/M16 

2 ASP ↗sterileod S5/SC M4-0/M5-1 36 Katy* SC/SCod S1/S2 M3/m0-0 

3 Aurora* SI S1/S29 M3/M11 37 Kech-pshar* ? S15/SZ M?/M? 

4 Bebecou SC S6/SC M4-0/M4-2 38 Konservnyi P.* SC S2/SC M4-1/M8-1 

5 Bergeron* SC S2/SC M4-0/M8-0 39 Lambertin-1* SI S1/S2 M1-0/M17 

6 Budapest* SC S2/SC M1-1/M12 40 Lito SCod S6/SC M6/M10 

7 Búlida SC S5/SC M4-1/M5-1 41 Manrí ? SC/SC m0-0/m0-0 

8 Canino* SC/SCod S2/SC M1-0/m0-0 42 Mari de Cenad* SC SC/S?
c M8-0/M18 

9 Canino 9-7 ? S2/SC M1-0/m0-0 43 Mariem SC/SCod S7/S20 M1-0/M8-2 

10 Canino 14-4 SCod* S2/SC M1-0/m0-0 44 Martinet ? S2/S2 m0-0/m0-1 

11 Canino 14-6 SCod* S2/SC M1-0/m0-0 45 Mitger SCod* SC/SC M5-0/M5-0 

12 Castlebrite SC S2/S2 M3/m0-0 46 Moniquí* SI S2/S6 M4-1/M14-0 

13 Castleton SC S1/S2 M3/m0-0 47 Ninfa SC S7/SC M7-0/M10 
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14 Cegledi Orias* SI S8/S9 M12/M13 48 Orange Red SI S6/S29 M2-0/M2-1 

15 Colorao* ↗sterile S5/SC M4-0/M4-0 49 Ouardi* SI S2/S7 M1-0/M7-0 

16 Corbató   SCod S2/S5 M5-0/m0-0 50 Palabras SC/SCod* SC/SC m0-0/m0-0 

17 Cow-1 SCod S1/S30 M3/m0-0 51 Palau* SC/SCod* SC/SC m0-0/m0-0 

18 Cow-2 SIod S20/S30 M1-0/m0-0 52 Patterson SC S1/SC M1-3/M3 

19 Cristalí SCod S20/SC M5-0/m0-0 53 Perla SIod S2/S20 M1-2/M15-1 

20 Currot* SC/SCod* SC/SC m0-0/m0-0 54 Portici SC/SCod S2/S20 M1-4/m0-0 

21 Dulcinea SC S2/SC M7-3/M14-1 55 Rojo Carlet SCod* SC/SC M4-0/M5-0 

22 Effect* SC S8/SC M8-0/M12 56 Rozsakajszi* SC S2/SC M1-0/M12 

23 Ezzine SCod S24/SC M1-0/M7-1 57 Sayeb* SC S7/SC M1-0/M7-2 

24 Fergani SC SV/SX M?/M? 58 Shalah SC S5/S11 M8-1/M19 

25 GaltaRoja SC/SCod SC/SC M4-0/M5-2 59 SEO SI S6/S29 M2-0/M6 

26 GVV ? S2/SC M4-0/M5-2 60 Stella SI S6/S20 M9/M9 

27 Gandía ? SC/SC m0-0/m0-0 61 Szegedi M. SI S8/S9 M12/M13 

28 Gavatxet ? S20/SC m0-0/m0-0 62 Tadeo SC S20/SC M15-0/m0-0 

29 Ginesta* SC/SCod* SC/SC m0-0/m0-0 63 Tirynthos SC SC/SC M10/M10 

30 Goldrich* SI/SIod S1/S2 M1-0/M2-0 64 Trevatt SC S2/SC M1-0/m0-0 

31 Gonci Magyar* SC S8/SC M8-0/M12 65 Veecot SI/SIod S2/S20 M2-0/M3 

32 Harcot* SI/SIod S1/S4 M1-0/M2-2 66 Velázquez SI S5/S20 M4-0/M4-1 

33 Hargrand* SI S1/S2 M1-0/M2-0 67 Xirivello  ? SC/SC M4-0/M4-1 

34 Harlayne* SC S20/S31 M2-0/M9      

* Cultivars previously S-genotyped 
od Own data on self-(in)compatibility phenotype (see Table 2.2) 
od* Moderate fruit setting was also observed (though not quantified) across several years (since 2000) for a set of 

cultivars grown under insect-proof screen house at IVIA: ‘Rojo de Carlet’, ‘Mitger’, ‘Palabras’, ‘Palau’, ‘Currot’, 

‘Ginesta’, ‘Canino 14-4’ and ‘Canino 14-6’. 
a S-allele nomenclature is proposed according to Vilanova et al. (2005), Halász et al. (2005 and 2010) and Wu et al. 

(2009). S-haplotype associated with self-compatibility (SC) is written in bold. Except for S4 (Vilanova et al. 2005) S11 

and S15 (Halász et al. 2005 and 2010), those S-alleles detected only once were named with letters (SV, SX and SZ). 

Allele fragment sizes corresponding to SV and SX could not be established since both were found in the same cultivar, 

while S15 and SZ could only be clearly distinguished on the basis of the second intron size (see Table S2.2). 
b M-haplotypes were named with two digits. The first one corresponds to the M-haplotype itself and the second to the 

variant type. M-haplotype variants associated with self-compatibility (m0-0 and m0-1) are written in bold. 
c S? is S19 according to the nomenclature reported by Halász et al. (2010) and Kodad et al. (2013).  

 

Fragment analyses of the PCR products obtained with 5 primer pair 

combinations allowed us to detect up to 19 different S-alleles. Fourteen out of them had 

already been identified in apricot (S1, S2, S4, S5, S6, S7, S8, S9, S11, S15, S20, S24, SC and 

SZ). Three more (present in at least two different cultivars) have been shown to be new 

and named as S29, S30 and S31 according to the nomenclature established by Vilanova et 

al. (2005), Halász et al. (2005 &2010) and Wu et al. (2009). Intron sizes and sequence 

analysis (data not shown) strongly supports that none of these three corresponds to any 

previously described S-allele (Figure 2.1). Lastly, three additional S-alleles were 

detected only once and preliminary suggested as SV, SX and SZ (this latter also already 
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identified) (see next section). Variability in size of the 5’-UTR SFB intron containing 

fragments ranged from 189 (S29) to 210 bp (S1) and facilitated the identification of 12 S-

alleles (S1, S2-S11, S6, S7, S15, S29, S30-SZ, S31 and SC-S8) but it was not useful to 

distinguish the remaining 7 (S4, S5, S9, S20, S24, SV and SX). On his side, the amplification 

of first S-RNase intron with a single primer pair (SR1-F/SR1-R) distinguished up to 13 

S-alleles ranging from 260 (S4) to 427 bp (S29) (Table S2.2. and Figure 2.1). Exceptions 

were S1-S7 and SC-S8 pairs having exactly the same fragment sizes and S20 and SX that 

could not be PCR amplified with any of the four different primer combinations tested 

(data not shown). Moreover, an additional primer pair had to be used to amplify S6 and 

S24-alleles (Pru-T2/SR1-R). Sizes for the second S-RNase intron were approximately 

determined ranging from 300 (S24) to 2800 bp (SC) (by agarose gel electrophoresis) and 

allowed to define up to 15 S-alleles with a single primer pair (Pru-C2/Pru-C6R). 

Exceptions were S5-S6, S8-SC and S20-SV pairs sharing the same fragment size, and S31 

that could not be amplified with any of the two primer combinations used. Altogether, 

combined data allowed us to identify unambiguously 17 S-alleles (Table S2.2). Lastly, 

according to the nomenclature reported by Halász et al. (2010) and Kodad et al. (2013) 

S? should be S19, but under the experimental conditions used in this work it was not 

possible to detect other S-allele than SC in ‘Mari de Cenad’. 
  

 
Figure 2.1. Identification of new apricot S-alleles. Genomic structure of the Prunus armeniaca S29, S30 
and S31-RNAse alleles. White boxes and lines represent exons and introns, respectively (not to scale). 
Dashed lines indicate not sequenced introns and numbers estimated base pair sizes (? could not be 
determined).  
 

M-locus genotyping 

The apricot M-locus was previously identified in cultivars ‘Canino’ and ‘Katy’ 

as carrying an S-locus unlinked pollen-part mutation conferring SC (Zuriaga et al., 2012 

and 2013). Up to 35 SSRs were found in the peach syntenic region of the M-locus 

(defined according to the ‘Canino’ genetic map) but just five of them could be finally 

mapped due to several reasons (i.e. multiloci patterns, monomorphism, non- 

amplification, etc.). Three were mapped using the ‘G×Ca’ population (PGS3_71, 

PGS3_62 and PGS3_96) and two with ‘G×K’ (PGS3_22 and PGS3_23). Linkage 

S29
335 ∼ 250

S30
281 ∼ 200

193 ?S31
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phases determined by JoinMap 3.0 were used to identify alleles in coupling 

(haplotypes). Additionally, these 5 markers were PCR-amplified from M-locus 

homozygotes individuals derived from the self-pollination of ‘Canino’ [CC-77 (MM) 

and CC-67 (mm)] and ‘Katy’ [K06-17 (mm)] confirming linkage phases. This procedure 

also allowed us to incorporate two additional SSRs (AGS.20 and AGS.30) into the M-

haplotypes. As a whole, these results lead to define four different M-haplotypes (M1-0, 

M2-0, M3 and m0-0 according to nomenclature as shown in Table 2.3) from ‘Canino’, 

Katy’ and the reference cv. ‘Goldrich’ (Figure 2.2).  
 

 

Figure 2.2. Apricot M-locus haplotypes structure. The peach syntenic region at the distal end of chr. 3 
(black box) comprising the M-locus (grey box) is zoomed twice and shows SSRs (dashed lines) PCR-
amplified in apricot cultivars ‘Goldrich’ (G), ‘Canino’ (Ca) and ‘Katy’ (K). SSR positions in peach 
genome (Kb) and allele sizes (bp) determined in apricot are indicated. White, grey, dark grey and black 
thick lines represent apricot m0-0, M1-0, M2-0 and M3 haplotypes, respectively. SSR anchoring positions are 
shown in centimorgans (cM) (boxed numbers) according to the available mapping populations (‘GxCa’, 
‘KxK’ and ‘GxK’).  
 

These seven SSR markers were subsequently PCR-genotyped in the rest of 

cultivars studied (Table S2.3). Structures of up to 34 additional M-haplotypes were 

statistically inferred (see Mats. and Methods for details) and those of the first four 

already identified fully confirmed (Table S2.4). To facilitate the graphical 

representation of their relative frequencies, haplotypes were grouped together into 

‘classes’ when they differ in no more than three SSR alleles (resulting in a total of 20 
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M-haplotype ‘classes’: M1 to M19 and m) (Figure 2.3). Pedigree, when known, was 

helpful in order to confirm assignments. 

 
Figure 2.3. S- and M-locus haplotypes distribution according to geographic areas. Apricot cultivars 
analyzed in this study were grouped in four arbitrarily defined geographic areas represented by the bottom 
map: Western-Europe (WE), North-America (NA), Southern-Europe and North-Africa (SE/NAf) and 
Eastern-Europe (EE). Accordingly, relative frequencies for S- (pie charts) and M-haplotypes (histograms), 
respectively, are shown for each area (clonal sibs from ‘Canino’ were excluded from estimations). For the 
sake of simplicity M-locus haplotypes are represented in their ‘main’ classes. Number of accessions 
showing self-(in)compatible phenotype are encircled (green color means SC, red SI and blue 
undetermined phenotype).   
 

Mutations conferring self-compatibility in apricot  

Based on literature reports and our own results, 41 out of the 67 

cultivars/accessions analyzed in this work were self-compatible, 16 self-incompatible, 2 

male-sterile and the self-(in)compatibility phenotype could not be determined for 8 

more (Table 2.3). The SC-haplotype, characterized by Vilanova et al.  (2006) as 

conferring SC, was found in 38 cvs. (being homozygous in 7). Thirty out of the 38 were 

self-compatible cultivars (including ‘Búlida’ that produced only one fruit under self-

pollination test conditions, see Table 2.2), 6 have undetermined phenotype and two 

were male-sterile. On the other side, the m-haplotype, also associated with SC by 

Zuriaga et al. (2012), was detected in a total of 19 cvs. (being homozygous in 8): 8 were 

shown previously to be self-compatible, 5 were undetermined and one was classified as 

self-incompatible (‘Cow-2’) since it did not produce any fruit under self-pollination test 
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(Tables 2.2 and 2.3). As a whole, all self-compatible cultivars analyzed have at least one 

of these two haplotypes already known to confer SC except for ‘Harlayne’ and 

‘Henderson’. The number of self-compatible haplotypes (SC and m0) carried by each 

cultivar ranged from 0 to 1, 2, 3 and 4 (with 21, 27, 12, 3 and 4 cultivars, respectively). 

S-genotypes segregation observed in the progeny obtained from self-pollination of two 

self-compatible cultivars carrying a single copy of the m-haplotype (‘Portici’ and 

‘Corbató’) suggested a mutation outside the S-locus as the cause for the phenotype in 

both cases. Progenies from self-compatible cultivars (‘Dulcinea’ and ‘Bebecou’) not 

carrying the m-haplotype were used as controls (Table 2.4). Similar results were 

observed in other cultivars (with a modest progeny) carrying (‘Cow-1’ and ‘Cristalí’) 

and not carrying (‘Ezzine’ and ‘Ninfa’) the m-haplotype (data not shown). Moreover, 

distortion ratios detected in the segregation of SSR markers known to be tightly linked 

to the M-locus (PGS3_62 and PGS3_23) point out that the mutation is located at the M-

locus in accordance with the haplotypes previously assigned by genotyping (Table 2.4). 

Interestingly, S-genotypes segregation found in the ‘Portici’ progeny might also indicate 

the presence of another mutation affecting the S2-haplotype and conferring SC. Analysis 

of genomic DNA fragments containing the complete sequence of S2-RNase and SFB2 

alleles from ‘Portici’ revealed only one mismatch (A/G) with the functional SFB2 allele 

located at position 1.296. This change leads to a non-synonymous substitution (lysine 

by arginine) in the hypervariable region HVb (data not shown).  

 

Table 2.4. Segregation of S-RNase alleles in controlled self-pollinations 

Cultivar 

S-genotype 

Progeny S-genotypes  

A               H               B 

Total Ratio 1:1a Ratio 1:2:1a Ratio 1:1b 

Bebecou (S6/SC) 0 (S6/S6) 33 (S6/SC) 45 (SC/SC) 96 (78) 0.93 (0.34) 30.8 (2.9e-7) n.d.c 

Dulcinea (SC/S2) 36 (SC/SC) 37 (SC/S2) 0 (S2/S2) 104 (73) 0.01 (0.93) 24.1 (6.0e-10) n.d. 

Corbató (S5/S2) 10 (S2/S2) 17 (S5/S2) 9 (S5/S5) 44 (36) --- 0.08 (0.96) 0.08 (0.77) [24] 

Portici (S2/S20) 16 (S2/S2) 24 (S2/S20) 4 (S20/S20) 59 (44) --- 4.28 (0.12) 0.45 (0.50) [40] 

a  χ2 and (P) values for S-genotypes expected ratios considering a single mutation unlinked (1:2:1) or linked to the S-

locus (1:1). Significant P-values are written in bold.  

b  χ2 and (P) values for PGS3_23 and AGS.20 genotypes [n] expected ratios considering a single mutation located at 

the M-locus (1:1). Significant P-values are written in bold. 
c n.d. Not determined. 

 

Regarding ‘Harlayne’ and ‘Henderson’ both are the only two self-compatible 

cultivars sharing the S31-allele what suggest this S-haplotype could be non-functional. 
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Mapping of the ‘Harlayne’ genomic sequence against peach genome allowed us to 

decipher the sequence of the S31-RNase and SFB31 alleles detecting a putative deletion at 

the 3´end of this latter that might be the cause of SC (Figure 2.4). In total, 4 different 

mutations conferring SC have been recorded (two of them just putatively): three 

affecting the S-haplotype (and more concretely SFB) and one affecting the M-haplotype. 

All self-compatible cultivars can be assigned to any of these mutated haplotypes. Lastly, 

characterization of clonal sibs from ‘Canino’ (Canino 14-4; 14-6 and 9-7) did not reveal 

any difference in genotype with the original cultivar.  

 

Figure 2.4. Identification of new apricot S-alleles. Alignment of ‘Harlayne’ S20/S31-RNase (upper) and 
SFB (below) genomic Illumina sequences against peach genome v1.0 reference sequence as reported by 
CLC Genomics Workbench 8.0.1 software. Haplotypes were identified by CLCbio tools using 
represented SNPs. ORFs, coverage and conservation are also indicated according to peach genome v1.0. 
Blue and yellow arrows define gene and transcript annotation. Blue and red boxes zooms in adjacent 
regions at the SFB terminal end containing both S20/S31 and only S31 haplotype reads, respectively. 
 

Geographical distribution of self-(in)compatibility and blooming time traits 

Cultivars/accessions studied in this work can be grouped as belonging to four 

big geographic areas according to the country of origin, pedigree (see Table 2.1) and 

data about dissemination (Mehlenbacher et al., 1991; Faust et al., 1998; Bourguiba et 

al., 2012): North-America (NA), West Europe (WE), East Europe (EE) and South 
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Europe/North Africa (SE/NAf). Self-(in)compatibility phenotype is distributed across 

all four groups but frequencies varied from 2/19 in WE to 9/16 in NA. Similarly, 

blooming time types from early/mid-early to mid-late/late are present in all four groups, 

but frequency ranged from 9/24 in WE to 1/16 in NA (Table 2.1). In general it could be 

said that most early/mid-early classified cultivars are self-compatible (13/15) but this 

phenotype is also generally found in many mid-late/late classified cultivars (12/17). 

Therefore, assuming limitations in sampling and about phenotypic characterization, it 

seems that there is no correlation between SC and early blooming. 

Frequencies of the S-alleles and M-haplotypes also varied between the different 

regions analyzed. For instance, S2 and SC are present in all four groups but, on the 

contrary, S8 and S9 (as well as S15 and SZ) are only present in EE cultivars, S31 in NA and 

S7 in SE/NAf (Figure 2.3). It should be highlighted that meanwhile the SC-allele 

(conferring SC) is widely distributed, its ancestor S8 seems to be restricted to EE 

cultivars. 

 

Figure 2.5. Clustering analysis of apricot M-locus haplotypes based on genetic distances. a) 
Clustering obtained by Neighbor-Joining algorithm using Jaccard´s distance. b)  Clustering obtained by 
Neighbor-Joining algorithm using Bruvo´s distance. Colors represent geographic areas where the distinct 
M-locus haplotypes were detected (see legend). 
 

Similarly, distribution of the 38 M-haplotypes that could be finally inferred is 

assymetrical, with M1 present in all four groups while others such as M12 and M2 were 

exclusive for EE and NA cultivars, respectively (Figure 2.3). Particularly, at odds with 
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the SC allele, the m-haplotype associated with SC is only present in the WE and NA 

groups, while its putative ancestor M1 is widely distributed (Figure 2.5). 

Discussion  

Self-compatibility and genotyping: uncovering new elements behind the phenotype 

Part of the materials analyzed in this work could not be self-pollinated because 

adult trees were not available. However, though phenotype could not be directly 

assessed in these cases, according to the almost perfect association between SC and 

SC/m-alleles it can be inferred that all cultivars carrying whatever of these two alleles 

will also be self-compatible. However, some incongruities between phenotype and 

genotype should be highlighted. For instance, self-pollination of cv. ‘Cow-2’ (S20/S30-

M1-0/m0-0) did not produce any fruit as should be expected. This behavior could be 

related to fruit-set problems, as exemplified by the self-compatible cv. ‘Búlida’ (Burgos 

et al., 2004) which setting was also nearly null. Different were the cases for the self-

compatible cvs. ‘Mariem’ (S7/S20-M1-0/M8-2), ‘Shalah’ (S5/S11-M8-1/M19), ‘Harlayne’ 

(S20/S31-M2-0/M9) and ‘Henderson’ (S29/S31-M2-0/M16). None of these S- and M-

haplotypes has been previously associated with SC. In addition, most of them are also 

present in self-incompatible cultivars and therefore can be considered ‘functional’ (such 

as S7, S20, S11, S5, S29, on one side, and M1-0 and M2-0, on the other). This reason (albeit 

with reservations) might be used to discard them as a putative source for SC. Regarding 

the rest, M8-1 and M8-2 belong to the M8-haplotype subclass always detected in self-

compatible cultivars (a total of 7 in this work and mostly East-European), but no 

progenies are available and therefore it could not be tested if M8 is mutated (non-

functional). Something similar can be said for M16 and M19 but in this case they were 

only detected once in the set of cultivars analyzed. Overall, other S/M-loci unlinked 

mutations can not be discarded for ‘Mariem’ and ‘Shalah’. Evidences are different for 

S31, since this rare allele is shared by two of the few North-American self-compatible 

cultivars. In fact, sequence analysis point out a putative indel within the SFB31 3´-end as 

a plausible cause for SC, similarly to many other cases reported in Prunus (Tao and 

Iezzoni 2010). Lastly, genetic analysis suggests the presence of a SNP mutation within 

SFB2 HVb region in ‘Portici’ that could also be associated with SC. It could be 

speculated that a single non-synonymous change within a SFB hypervariable region 

might alter its specificity, since these domains (strongly hydrophobic and under positive 

selection) were already suggested to have a role in the specific recognition of S-RNases 
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(Ikeda et al., 2004). As a whole and in the light of these results, it is conceivable that 

additional mutations conferring SC may remain ‘hidden’ in the bunch of unanalyzed 

plant material.  

New S-alleles (S29, S30 and S31) were identified and named basically according to 

the nomenclature previously adopted by Vilanova et al. (2005) [S1-S7 and SC], Halázs et 

al. (2005) [S8-S16] and Wu et al. (2009) [S17-S28]. However, some exceptions to this 

nomenclature can be appreciated. For instance, the S20-allele was found to be highly 

similar (99%) to the sequence reported by Zhang et al. (2008). To our knowledge S20- 

and S24-alleles are two of the few S-alleles found in Chinese cultivars also present in 

Mediterranean germplasm (S24 only in ‘Ezzine’). Particularly, S20-allele is surprisingly 

widely distributed across all the geographic areas studied except for Eastern-Europe. 

Lastly, according to the S-genotyping results S5 reported in this work is proposed to be 

the same that S13 reported by Halász et al. (2010) in the Armenian cv. ‘Shalah’. This 

finding is relevant since connects this low frequent allele, mainly found in Armenian, 

Eastern-Turkish and Moroccan cultivars (Halász et al., 2010; Kodad et al., 2013) with 

Southern-Spanish cultivars (Burgos et al., 1998; Vilanova et al., 2005; this work) 

supporting the Southwest-Mediterranean diffusion route for apricot, from the Irano-

Caucasian gene pool, proposed by Bourguiba et al. (2013).  

 

Pollen-part mutated m-haplotype origin and dissemination  

Pollen-part mutated m-haplotype had been previously associated with SC in 

‘Canino’ and ‘Katy’ cultivars (Zuriaga et al., 2012 and 2013). In this work the m-

haplotype has been detected in 17 additional cultivars (excluding ‘Canino’ clonal sibs) 

mainly Spanish (12 in total) but also from USA, Australia, France and Italy. Fifteen of 

them were confirmed as self-compatible (exceptions were ‘Cow-2’ described above as 

well as ‘Gandía’, ‘Gavatxet’, ‘Manrí’ and ‘Martinet’ with undetermined phenotype). 

The m-haplotype was frequently accompanied by the SC-allele (9 cases), suggesting that 

mutations conferring SC might tend to accumulate once the system is broken. However, 

it was also found alone in 6 self-compatible cultivars. The analysis of progenies from 

two of them (‘Portici’ and ‘Corbató’) fully confirmed the association with SC in apricot 

germplasm.  

Beside the m-haplotype, 37 additional M-haplotypes were identified by SSR 

analysis being grouped in 19 ‘main’ classes. According to these results, it was not so 

surprising to find that heterozygosity was higher for the M-locus (0.82) than for the S-
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locus (0.77). High variability at the S-locus is thought to be a requirement for the 

control of GSI specific recognition (Ushijima et al., 2003). Thus, lower variability 

should be expected for the M-locus if, as expected, it is not a specificity factor. This 

discrepancy may be explained by the bigger size of the defined M-locus and the high 

mutation rate associated with SSR markers. 

To reinforce results on microsatellite haplotype distances, two alternative 

methods were used for clustering analysis. The first one relies on the proportion of 

shared alleles assuming independence and ignoring mutational processes which can bias 

distances, particularly when loci are highly polymorphic. This method was based on the 

similarity coefficient for binary data developed by Jaccard (1901). The second takes 

into account the stepwise mutation model considering higher likelihood for small than 

for large changes in microsatellite repeat number and it is based on the Bruvo´s distance 

(Bruvo et al., 2004). Results obtained were equivalent with both methods. Regarding 

the distribution of the m-haplotype it seems to be restricted to North-American and 

Western-European cultivars. However, according to the clustering analyses the closest 

M-haplotype (putative founder) is M1-0 which is widely distributed in all geographic 

areas studied (the second one was M13 only detected in Eastern-European cultivars). 

Meanwhile, the mutated SC-allele is widely distributed in all geographic areas 

(Vilanova et al., 2005; Halász et al., 2007 and 2010, Kodad et al., 2013) but the ancestor 

S8-allele was only detected in Hungarian cultivars. Altogether, these results suggest that 

the mutated m-haplotype arose much later in time, after apricot was established as a 

regular crop in Europe.  

 

Forces selecting for self-compatibility in apricot 

It is possible to conclude that SC is quite common in apricot. However, 

distribution of SI vs. SC is not uniform across geographic areas. SI is the prevalent 

phenotype in three out of the four major eco-geographical groups for apricot (centers of 

origin): Central Asian, Irano-Caucasian and Dzhungar-Zailij and also in the later 

proposed Chinese groups (Mehlenbacher et al., 1991). In fact, most recent works with 

Chinese material do not report self-compatible cultivars (Jie et al., 2005; Zhang et al., 

2008; Wu et al., 2009). On the contrary, SC predominates in the European group but 

some disequilibrium can also be observed. Among the materials analyzed in this work, 

SI is frequent in commercial North-American cultivars (two thirds) but unusual in West 

and East-European countries (one fifth). This might point out a non-European SI 
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ancestral donor for North-American cultivars apricots as previously suggested for PPV 

resistance trait (Zhebentyayeva et al., 2008). Nonetheless, it is generally accepted that 

apricot genetic diversity decreases from east to south-west (Mehlenbacher et al., 1991). 

Supporting this hypothesis, a marked domestication bottleneck from the Irano-

Caucasian gene pool was detected using SSRs by Bourguiba et al. (2013). In this 

context, a question arise regarding self-(in)compatibility: is it one of the causes of this 

bottleneck or is it just a result of selection? The reduction in apricot genetic diversity 

has been pointed out as a consequence of selection for high and reliable yield (Halász et 

al., 2007). Interestingly, the relationship between SC and yield has already been proved 

in stone fruits (Goldway et al., 2007). Moreover, SC by itself does not seem to be an 

essential requirement for growing apricots (and in general Prunus spp.) though it favors 

the removing of interspersed pollinators. In fact, when most of the ‘European 

traditional’ cultivars were selected (mid of the past century) apricots were commonly 

grown in mixed orchards and therefore this should not be a real problem. Regarding 

blooming time, results of this work do not even support a direct association between SC 

and earliness or late blooming. However, SC presence is ubiquitous in apricot cultivars 

despite their geographic origin. Thus, SC in apricot seems more to be the indirect result 

of selection linked to other main traits for breeding such as yield or earliness. 

In this work we have confirmed the presence of at least three different PPMs 

conferring self-compatibility that affect two loci (SC/S31 and m). These PPMs seem to be 

originated independently in different geographical contexts and the (putative) reasons 

why these mutations were selected have been depicted above. According to Hegedüs et 

al. (2012) a total of 27 non-functional S-haplotypes (including natural and induced 

mutations) and two mutated modifiers (Wünsch and Hormaza 2004; Vilanova et al., 

2006) have been identified in Prunus. Their frequencies seem to depend largely on the 

clonal propagation process of stone fruit cultivars, where dissemination of self-

compatible mutations is far from that expected for a panmictic population. On the other 

hand, it is noticeable that all reported Prunus self-compatible mutations to date affect 

the same two loci (S and M) (Tao and Iezzoni 2010; Hegedüs et al., 2012). Does it have 

any biological meaning? This is currently a matter of speculation but some hypothesis 

could be suggested. It can be argued that a more exhaustive screening is necessary to 

discard the presence of additional (and novel) mutations but the number of accessions 

evaluated in all Prunus species is already large enough. Assuming this point, if other 

modifiers are participating in the control of the GSI system in Prunus they should be 
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redundant in the genome, since no new S-locus unlinked mutation has been recovered. 

On the other hand, loss of function of some factors might lead to SI hindering their 

detection such as that recently predicted for SLFL2 (Matsumoto and Tao 2016). Lastly, 

proteins encoded by S and M loci might be operating in the same pathway. In other 

words, the M-modifier could be somehow modulating the S-determinants. Further 

research is necessary to clarify these questions in order to dissect the molecular 

mechanism underlying GSI in Prunus and to better understand GSI implications from 

an evolutionary point of view. 

 

Material and methods 

Plant Material and self-pollination test 

Sixty seven apricot cultivars/accessions from diverse geographic origins were 

used in this study (Table 2.1). Most are currently kept at the collections of the Instituto 

Valenciano de Investigaciones Agrarias (IVIA) in Valencia (Spain). Part of these 

collections was kindly provided by Frutales Mediterráneo S.A. (FM) company, by the 

Consellería de Agricultura, Pesca y Alimentación (CAPA) and by the Ministerio de 

Agricultura, Alimentación y Medio Ambiente of Spain (MAGRAMA). Other materials 

were provided by the Departamento de Mejora y Patología Vegetal del CEBAS-CSIC 

in Murcia (Spain) and by the University of St. Istvan (Budapest, Hungary).  

Trees from different cultivars/accessions (Table 2.2) were tested for self-

compatibility by self-pollination in the field. Before anthesis, insect-proof bags were put 

over several branches, containing approximately 200-250 flower buds in total per 

cultivar ad minimum, to prevent cross pollination. Subsequent fruit set was recorded and 

fruits collected about 3 months later.  

 

DNA extraction 

Two leaf discs were collected from each accession, frozen in liquid N2 and 

stored at -80ºC before DNA isolation. Genomic DNA was extracted following the 

method of Doyle and Doyle (1987) with some modifications. DNA quantification was 

performed by NanoDrop ND-1000 spectrophotometer (Thermo Fisher Scientific, 

Wilmington, DE) and integrity was checked by comparison with lambda DNA 

(Promega, Madison, WI, USA). Embryo DNA was extracted by incubating for 10 min 
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at 95ºC with 20 ml of TPS (100 mM Tris-HCl, pH 9.5; 1 M KCl; 10 mM EDTA) 

isolation buffer (Thomson and Henry 1995).  

S-locus genotyping  

Apricot S-alleles were identified by PCR-amplifying fragments comprising first 

and second introns of the S-RNase as well as the 5´UTR F-box intron, respectively. 

Genomic DNA isolated from cultivars listed in Table 2.1 was used as PCR template. 

PCRs were performed in a final volume of 20 µL containing 20 mM Tris-HCl (pH 8.4), 

50 mM KCl, 2.5 mM MgCl2, 0.2 mM of each dNTP, 0.25 µM of each primer, 20 ng of 

genomic DNA and 1 U of Taq polymerase (Thermo Fisher Scientific, Waltham, MA, 

USA). Previously developed primers designed from conserved regions of Prunus 

armeniaca S-RNase genomic sequences, SRc-F and SRc-R (Romero et al. 2004; 

Vilanova et al., 2005) and from Prunus avium S-RNase-cDNA sequences, Pru-T2 and 

Pru-C2R (Tao et al., 1999), were used to amplify the first intron (Table S2.1) in all four 

possible combinations. The amplification was carried out using a temperature profile 

with an initial denaturing of 95 ºC for 3 min; 35 cycles of 95 ºC for 30 s, 54 ºC for 45 s 

and 72 ºC for 1 min 15 s; and a final extension of 72 ºC for 10 min (UNO96, VWR, 

Radnor, PA, USA). Each polymerase chain reaction was performed by the procedure of 

Schuelke (2000) using three primers: the specific forward primer with M13(-21) tail at 

its 5´ end at 0.4 mM, the  reverse primer at 0.8 mM, and the universal fluorescent-

labeled M13(-21) primer at 0.4 mM. Allele lengths were determined using an ABI 

Prism 3130 Genetic Analyzer with the aid of GeneMapper software, version 4.0 

(Applied Biosystems, Foster City, CA, USA). 

The second intron was amplified using two sets of primers designed from 

Prunus avium S-RNase-cDNA sequences (Tao et al., 1999; Vilanova et al., 2003) Pru-

C2/Pru-C4R and Pru-C2/Pru-C6R (Table S2.1). PCRs were performed using the 

program previously described by Sonneveld et al. (2003) to amplify long PCR products. 

PCR products for the second intron were electrophoresed in 0.8 % (w/v) agarose gels 

using 1 x TBE (89 mM Tris, 89 mM boric acid, and 2 mM EDTA (pH 8.0)) buffer, 

stained with ethidium bromide (0.8 µg/mL) and visualized under UV light. Molecular 

sizes of amplified fragments were estimated using a 100-bp ladder (Life Technologies, 

Rockville, Md.)   

The 5´UTR F-box intron was also amplified using the degenerate primer pair (F-

BOX5´A/F-BOXintronR) developed by Vaughan et al. (2005) from sweet cherry 



                                          Chapter 2: Pollen-part mutated m-haplotype is associated with self-
compatibility and widely distributed in apricot germplasm 

98 

 

sequences (Table S2.1). PCR components, thermo-cycler conditions and detection 

procedure were identical to that described above for the first S-RNase intron. 

Two additional primers (RFBc-F/SFBins-R), designed from the consensus 

sequence of the Prunus SFB alleles (Vilanova et al., 2006), were used to amplify the 

SFBC insertion from genomic DNA of several apricot cultivars in order to distinguish SC 

and S8-alleles (Table S2.1). 

 

M-locus genotyping 

Seven SSR markers comprised within (or flanking) the M-locus were genotyped: 

PGS3_71, PGS3_22, PGS3_62, PGS3_23 and PGS3_96 (Zuriaga et al., 2012 and 2013) 

and AGS.20 and AGS.30 (see Chapter III). SSR amplifications were performed in a 

GeneAmp® PCR System 9700 thermal cycler (Perkin–Elmer, Freemont, CA, USA) in a 

final volume of 20 ml, containing 75 mM Tris–HCl, pH 8.8; 20 mM (NH4)2SO4; 1.5 

mM MgCl2; 0.1 mM of each dNTP; 20 ng of genomic DNA and 1 U of Taq polymerase 

(Invitrogen, Carlsbad, CA). PCRs were performed as described above by the procedure 

of Schuelke (2000). The following temperature profile was used: 94ºC for 2 min, then 

35 cycles of 94ºC for 45 s, 50-60ºC for 1 min, and 72ºC for 1 min and 15 s, finishing 

with 72ºC for 5 min. Allele lengths were determined using an ABI Prism 3130 Genetic 

Analyzer with the aid of GeneMapper software, version 4.0 (Applied Biosystems). 

 

Sequence analysis of PCR products containing S-RNase introns 

PCR products containing the first and second introns of S20 and S24-RNase alleles 

previously obtained from genomic DNA of cv. ‘Ezzine’ (SCS24) on one side and cvs. 

‘Cow-2’ (S20S30), ‘Harlayne’ (S20S31), Cristalí (S20SC), Gavatxet (S20SC), Mariem (S20S7), 

Perla (S20S2), Portici (S20S2), Stella (S20S6), Tadeo (S20SC), Veecot (S20S2) and Velázquez 

(S20S5) on the other (see Table 2.3) were sequenced to check their identities. Similarly, 

PCR products associated to the S29, S30, and S31-RNase alleles previously obtained from 

cvs. ‘Orange Red’ (S29S6), ‘SEO’ (S29S6), ‘Cow-1’ (S1S30), ‘Cow-2’ (S20S30), ‘Harlayne’ 

(S20S31) and ‘Henderson’ (SdS31) were sequenced to confirm they were new alleles. 

Primer combinations SRc-F/SRc-R and Pru-C2/Pru-C4R were used in all cases for the 

first and second introns respectively except for S24 (Pru-T2/SRc-R) and S30 (Pru-C2/Pru-

C6R) (see Table 2.3). PCR products were electrophoresed in 0.8% or 2% (w/v) agarose 

gels (second or first intron, respectively) stained with RedSafe Nucleic acid Staining 

Solution (iNtRON Biotechnology, Korea) and using TBE 1x buffer. Molecular sizes of 
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the amplified fragments were estimated using GeneRuler 100bp DNA ladder (Thermo 

Fisher Scientific). Fragments were extracted and purified from the agarose gels using 

the Zymoclean Gel DNA Recovery kit (Zymo Research, Irvine, CA, USA). Sequences 

were determined automatically using an ABI PRISM 3100 Genetic Analyzer (Applied 

Biosystems) and the Big Dye Terminator Cycle Sequencing Kit v3.1 (Applied 

Biosystems) following the manufacturer’s instructions. Homology searches were 

performed against the NCBI Genbank database using the BLASTN program (Altschul et 

al., 1990).  

 

S2- and SW-loci sequence analysis 

Specific primers designed from the apricot S2-haplotype sequence (Vilanova et 

al., 2006) were used to amplify genomic fragments containing the complete S2-RNase 

(Sf-Hap2/Sr-Hap2) and SFB2 coding sequences (FBf-Hap2/FBr-Hap2) (Table S2.1) 

using ‘Portici’ (S2S20) genomic DNA as template. PCR conditions (LD-PCR Techne) 

and methods for isolating and sequencing (FBF1, SFBc-F, FBF5, FBF6 and FBr-Hap2-

2) these bands (Table S2.1) were the same reported above for fragments containing the 

S-RNase second intron. 

Whole-genome sequencing of the cv. ‘Harlayne’ was conducted on an Illumina 

HiSeq2000 platform, using 100-bp paired-end reads, at genomic facilities of the 

DHMRI (David H. Murdock Research Institution, Kannapolis, NC, USA; 

http://www.dhmri.org) and later on kindly provided by Dr. Chris Dardick (USDA-ARS 

Appalachian Fruit Research Station, USA). ‘Harlayne’ Illumina sequences were 

mapped against the peach v1.0 genome sequence (IPGI, 

http://www.rosaceae.org/species/prunus_persica/genome_v1.0) by using CLC 

Genomics Workbench 8.0.1 software (http://www.clcbio.com) (Aarhus, Denmark). S-

RNAse and S-locus F-box genes corresponding to the S31-haplotype were identified 

using the variant calling tool (CLCbio) and the S20 sequence already published in 

Prunus armeniaca as reference (Zhang et al., 2008). 

 

Clustering analysis 

Reference m0-0, M1-0, M2-0 and M3-haplotypes were established using genetic 

maps from ‘GxCa’, ‘KxK’ and ‘GxK’ populations through the automatic determination 

of linkage phases by JoinMap 3.0 (Van Ooijen and Voorrips 2001). Remaining M-

haplotypes were inferred from SSR genotypes by comparing with the references and 
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confirmed by using the EM algorithm (Excoffier and Slatkin 1995) implemented in 

PowerMarker V3.25 software (Liu and Muse 2005). Similarities between M-haplotypes 

were estimated by using Jaccard´s similarity coefficient (Jaccard 1901) through 

Phyltools 1.32 free-software (Buntjer 1997) and Bruvo´s genetic distance (Bruvo et al., 

2004) through a hand-made script. Clustering to reconstruct phylogenetic trees was 

performed using the Neighbor-Joining algorithm (Saitou and Nei 1987) and HyperTree 

software was used to visualize the obtained trees (Bingham and Sudarsanam 2000). 
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Chapter 3:  
The Prunus armeniaca M-locus Disulfide bond A-like 

Oxidoreductase (PaMDOr) gene is an essential pollen factor 
for self-incompatibility  
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Abstract 

Prunus spp exhibit a Gametophytic Self-incompatibility (GSI) mechanism, where S-

RNases (pistil S-determinant) and S-haplotype-specific F-box (pollen S-determinant) 

genes control specific recognition. However, non-S-factors (modifier factors) are also 

known to be completely necessary for the mechanism to function as pointed out by 

Pollen Part Mutations (PPMs) conferring self-compatibility in apricot cultivars ‘Canino’ 

and ‘Katy’. Both PPMs map in an overlapping region at the distal end of chr. 3 named 

M-locus. This work was aimed to the identification of this S-locus unlinked PPM using 

a strategy based on genomic and transcriptomic NGS data. Firstly, an apricot M-locus 

supercontig was obtained after de novo assembly of BAC clones from the self-

incompatible apricot cv. ‘Goldrich’. Next, new recombinant hybrids and molecular 

markers were used to narrow down the M-locus region leading to a physical map of 

~134 Kb. On the basis of RNAseq data (from mature anthers, styles and leaves) this 

refined M-locus region was shown to contain 15 genes, four of which over-expressed 

differentially in mature anthers. Finally, comparative screening of non-synonymous 

polymorphisms (called by Illumina WGS data) in ‘Canino’ (M1m), ‘Katy’ (M3m) and 

‘Goldrich’ (M1M2) M-locus led to identify a 358-bp insertion segregating in coupling 

with the m-haplotype in self-compatible apricots. This insertion corresponds to a FaSt 

transposable mutator element and, presumably, leads to a premature stop-codon that 

produces a truncated protein lacking the C-terminus. The mutated gene codes for a 

pollen-expressed Disulfide bond A-like Oxidoreductase (named PaMDOr from Prunus 

armeniaca M-locus Disulfide bond A-like Oxidoreductase). Phylogenetic analysis 

suggested that PaMDOr might have occurred from tandem duplication and its function 

became essential for the Prunus S-RNase-based GSI system. Altogether, evidences 

support PaMDOr as the first non-S-factor identified in Prunus essential for the GSI 

mechanism to function.                      

Introduction 

A common feature in angiosperms is the close proximity between male (anther) 

and female (pistil) reproductive organs increasing the probability of selfing (Barret 

2002). This may generate a hazardous situation compromising genetic variability within 

a species as a consequence of the long-term deleterious effect derived from inbreeding. 

To escape this problem and enhance outcrossing plants have adopted several strategies 
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including self-incompatibilty (SI), a molecular mechanism widely spread in plant 

kingdom. SI is controlled by a multiallelic locus (S-locus) encompassing at least two 

linked transcriptional units acting as female and male S-determinants (de Nettancourt, 

2001). Rosaceae, Solanaceae and Plantaginaceae are proposed to share the same 

Gametophytic Self-Incompatibility (GSI) system based on S-RNases as the female S-

factor (McClure et al., 1989), while the male S-determinant codes for an F-Box protein 

(SLF in Solanaceae and Plantaginaceae, SFBB in Pyrus and Malus and SFB in Prunus) 

(Lai et al., 2002; Sijacic et al., 2004; Ushijima et al., 2003). S-RNases are style-specific 

expressed proteins proposed to specifically recognize and reject self-pollen growth by 

its cytotoxic activity, while unrelated pollen would be able to reach the ovary (Boskovic 

et al. 1996; Xue et al. 1996).  

It still remains unclear how the S-RNases and S-locus F-box proteins interact 

with each other. Nevertheless, different proofs support that S-locus F-Box proteins are 

components of a conventional E3 ubiquitin ligase complex aimed to recognize non-self 

S-RNases promoting their ubiquitination and posterior degradation by 26S proteasome 

proteolytic pathway (Hua & Kao, 2006; Huang et al. 2006). More recently, a refinement 

of the inhibitor model (the so-called collaborative model) where several SLFs work 

together to recognize non-self S-RNases has been proposed (Kubo et al., 2010; Entani et 

al., 2014). Alternatively, Goldraij et al. (2006) proposed the compartmentalization 

model in Nicotiana where pollen endomembrane system plays a key role since S-

RNases access into pollen tubes via vacuolar compartments, being released or not 

depending on cross compatibility. Interestingly, Prunus GSI mechanism exhibits several 

differences regarding Solanaceae, Plantaginaceae and even Maloideae, but remarkably 

pollen part mutations (PPMs) truncating SFB genes lead to the loss of SI in contrast 

with the collaborative model (Tao & Iezzoni, 2010; Hegedűs et al., 2012). Matsumoto 

& Tao (2016) have proposed that SLF-like2 factor acts as a ‘general inhibitor’ instead 

of SFB, whose role would be to protect self-S-RNases from degradation. Nevertheless, 

this working model needs to be more carefully tested. 

Apart from S-specific factors, other S-locus unlinked genes are required for 

pollen rejection. These non-S-specific factors are commonly named as modifier factors 

or modifier genes. Some of them have been isolated through biochemical studies. For 

instance, stylar modifier factors identified in Nicotiana include HT-B, a small 

asparagine-rich protein presumably involved in S-RNase discharge by vacuole 

degradation (McClure et al., 1999;Goldraij et al., 2006); NaStEP, a proteinase inhibitor 
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that positively regulates HT-B stability (Busot et al., 2008; Jimenez-Duran et al., 2013); 

120K, an arabinogalactan protein (AGP) that binds S-RNases (Hancock et al., 2005); 

and NaTrxh, which might function reducing S-RNases and/or other proteins from 

extracellular matrix of the transmitting tract, such as AGPs (Avila-Castañeda et al., 

2014; Juárez-Díaz et al., 2006). Pollen non-S-factors have been described as well, these 

include SCF E3 ubiquitin ligase complex components in Petunia mentioned above, such 

as PhSSK1 (Zhao et al., 2010), Rbx1 and Cullin1 (Li et ., 2014). SBP1, another E3 

ubiquitin ligase (RING-finger) protein that interacts with SLFs and S-RNases has been 

identified in Petunia  (Sims & Ordanic, 2001). NaPCCP protein has been suggested to 

be involved in AGPs transport through endomembrane system (Lee et al. 2008) and an 

ABCF transporter has been shown to interact with S-RNases and mediates their 

transport across pollen tube in Malus domestica (Meng et al., 2014). In Prunus spp, 

uniquely orthologues to Skp1 and Cullin1 by protein-protein interaction analysis have 

been proposed (Matsumoto et al. 2012).     

Genetic evidence [mainly based on mutations conferring self-compatibility 

(SC)] has also been compiled for other modifier genes, although they have not been yet 

identified, for instance, in Solanaceae, the Nicotiana 4936 stylar factor (Mc Clure et al., 

2000), two pollen S-function modifiers in Solanum tuberosum (Thompson et al., 1991) 

and Petunia axilaris (Tsukamoto et al., 2003), or the S-locus inhibitor (Sli) factor from 

Solanum chacoense (Hosaka & Hanneman, 1998a,b). Meanwhile, in Rosaceae, 

mutations in non-S-locus factors conferring SC have been characterized in Pyrus spp. 

(Wu et al., 2013), Prunus mume (Wang et al., 2013), Prunus salicina (Beppu et al., 

2015), Prunus avium (Cachi & Wünsch 2011 and 2014) and Prunus armeniaca 

(Vilanova et al., 2006).  

Particularly in apricot (Prunus armeniaca L.), two different self-compatible 

cultivars bearing non-S-locus mutations have been genetically characterized in deep. On 

one side, ‘Canino’ (S2ScM1m) carries two independent mutations conferring SC: an 

insertion in the SFB allele leading to a putative truncated protein (SC-haplotype) and a 

mutation in a modifier gene (named m-allele) (Vilanova et al., 2006). This latter has 

been mapped in a 364 Kb interval (according to the syntenic peach genome region) at 

the distal end of chr.3, referred as M-locus (Zuriaga et al., 2012). A similar genetic 

scenario was observed in ‘Katy’ (S1S2M3m), excepting that a unique mutation in a non-

S-factor was responsible of self-compatible phenotype. Similarly, SC in ‘Katy’ was 

found to be due to a unique mutation in a modifier gene located within a 1,2 Mb region 
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of chr.3 overlapping in 274 Kb with the ‘Canino’ M-locus (Zuriaga et al., 2013). 

Interestingly, ulterior genetic analysis showed that m-haplotype structure defined by 

SSR alleles is shared by these two and 17 additional self-compatible apricot cultivars 

from different geographic origins. Furthermore, segregation analysis of the progenies in 

two of them (‘Portici’ and ‘Corbató’) confirmed the presence of the m-haplotype 

(Chapter II). Overall, these results strongly support that m-haplotype contains a 

mutation in a modifier gene conferring SC present in a number of apricot cultivars.  

This work was aimed to identify the mutated modifier gene comprised within the 

m-haplotype. For this purpose, and partly due to the intrinsic limitations of working 

with woody species, an approach mainly based on Next Generation Sequencing (NGS) 

technologies was performed. Identification of modifier factors required for the GSI 

system to function is a key step in order to dissect the underlying molecular mechanism 

in Prunus, but also to improve our knowledge on the evolution of GSI within the 

Rosaceae.  

 

Results 

 

To identify variants within the m-haplotype associated with the loss of pollen S-

function in apricot, a four stepwise strategy based on NGS data was used as follows 

(Figure 3.1): 1) To get an apricot reference sequence for the M-locus from a self-

incompatible cultivar. 2) To develop a high resolution map narrowing down the 

previous M-locus map. 3) Gene annotation and differential tissue expression analysis by 

RNAseq data. 4) Polymorphism screening using genomic Illumina data by comparing 

variants from self-compatible vs. self-incompatible cultivars. 

 

 
Figure 3.1. Schematic workflow for m-mutation identification using NGS data. 
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Apricot M-locus sequence assembly  

For the first step, twelve ‘Goldrich’ (M1M2) BAC clones, previously reported to 

cover ‘Canino’ M-locus (Zuriaga et al., 2012), were pyrosequenced (Figure 3.2 and 

Table S3.1). Cleaned 454 BAC sequences were assembled, ordered and oriented using 

Prunus persica (peach v1.0 IPGI) and Prunus mume (NCBI BioProject under accession 

PRJNA171605 and http://prunusmumegenome.bjfu.edu.cn) genome sequences as 

references. Contigs were mostly located at the distal end of the P. persica scaffold 3, 

between 18.380.006 and 18.815.966 positions, except for those belonging to the 251L05 

BAC clone 3’ half with a high-repeat content, which match regions of the scaffold 2 

between 21.831.979 and 25.460.858 positions. When P. mume genome was used as 

reference, M-locus contigs obtained per BAC clone were located at the chr. 4 

(corresponding to peach chr. 3) between 19.113.622 and 23.060.140 positions (a much 

larger region than that in peach) whereas contigs with high-repeat content were located 

in chr. 5 (chr. 2 in peach). A total of thirty contigs spanning M-locus region were 

obtained from self-incompatible cv. ‘Goldrich’. Twenty-five were assigned to the M2-

haplotype and the rest to the M1-haplotype (Figure S3.1 and Table S3.2) as confirmed 

by PCR-genotyping of SSRs according to the nomenclature reported for the M-

haplotype in Chapter II (Figure 3.2 and Table S3.4). Contigs from overlapping BAC 

clones from the same M-haplotype (234O11, 148M17, 253J12 and 251L05, on one side, 

and 160J21, 95D02 and 159P08 on the other) were successfully joined by GAP4 

software. Afterwards, overlapping contigs derived from different M-haplotypes were 

joined using synteny criteria (see Materials and Methods for detail) remaining 15 

unsolved GAPs (Figure S3.1). Subsequently, GAP closure was performed to refine the 

reference sequence. GAPs known to be within PGS3 series SSRs (8 out of 15) were 

resolved by editing the sequence and five more by specific PCR-amplification and 

Sanger sequencing (Table S3.3). Only GAP-13 and GAP-15 could not be resolved. 

Hence, three major contigs (M-locus_contig-1, 2 and 3 with 311.575, 3.193 and 120.995 

bp sizes, respectively) were obtained and then joined by indeterminations (N) resulting 

in a 435.961 bp supercontig, named as apricot M-locus supercontig (aM-supercontig), 

that constituted the reference sequence used for subsequent analysis (Figure 3.2).  

 

Narrowing-down the apricot M-locus   

 Zuriaga et al. (2012) defined the M-locus in cv. ‘Canino’ within an interval 

flanked by PGS3.71 and PGS3.96 SSR markers. Both SSRs are located in positions 
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18.860 and 380.760 bp within the aM-supercontig previously obtained encompassing 

361.900 bp. In ‘Katy’ the M’ -locus was flanked by PGS3.22 (position 115.850 in the 

aM-supercontig) and EPPCU7190 (Zuriaga et al., 2013) distantly located at the 

supercontig 3’-end (over 1 Mb according to peach syntenic region). M- and M’ -loci 

overlap within an interval of 264.940 Kb (between PGS3.22 and PGS3.96) where 

PGS3.62 and PGS3.23 (Figure 3.2), showed to be fully linked to this mutation in 

‘Canino’ and ‘Katy’, respectively. This overlapping region encompasses 42 ORFs 

according to the peach gene annotation. To reduce the number of candidate genes, a 

new fine-mapping was accomplished for both cultivars by using new recombinant 

hybrids and new molecular markers identified using the aM-supercontig and genomic 

Illumina data (Figure 3.2). In the ‘G×C-08’ outcross population only one new 

recombinant was found, M-54 (S1SCM2m), which breakpoint is located between 

PGS3.71 and PGS3.62, like GC-98 recombinant. Two additional ‘Katy’ F1 

recombinants (K06-18 and K06-37) were also added to narrow down the ‘Katy’ M-

locus map (Figure S3.2). New molecular markers were identified in two phases. Firstly, 

up to 40 SSRs (coded in AGS and 160J21 series) were identified in the aM-supercontig 

(Table S3.4), and secondly, SNPs called from ‘Canino’, ‘Goldrich’ and ‘Katy’ genomic 

Illumina data were used to refine SSR mapping results (Table S3.6). In ‘Canino’, 

AGS.20 marker was the unique SSR that could be mapped (the rest were not 

polymorphic, did not amplify, showed multiband patterns or did not fulfill ‘Canino’ 

genetic requirements) and it co-segregated with the mutation (Figure 3.2 and Table 

S3.4). Regarding SNPs, 5.297 and 5.104 variants were found for ‘Canino’ and 

‘Goldrich’ respectively (against the aM-supercontig), but only 30.37% and 76.23% were 

heterozygous (Table S3.5). Five loci (SNPCaMmap1 to 5) from the aM-supercontig 

were tested but only one recombination breakpoint (corresponding to SNPCaMmap1) 

was observed in M-54 15.007 bp downstream of PGS3.71 (Figure 3.2 and Tables S3.5 

and S3.6). Regarding ‘Katy’ fine-mapping, 62.5% of new SSRs markers proved to be 

polymorphic (Table S3.4) leading to find individuals that recombined between AGS.12 

(position 136.201, individuals K05-24 and K06-06) and AGS.30 (position 309.620, 

individual K06-18), improving substantially previous ‘Katy’ map (Figure 3.2). In 

‘Katy’, 6.597 variants were found and the 59.83% showed to be heterozygous SNPs 

(Table S3.5). Eight SNPs, 4 between SSRs AGS.12/AGS.14 and 4 between 

AGS.27/AGS.30 were tested (Figure 3.2, and Tables S3.5 and S3.6). Recombination 

breakpoints were observed in positions 142.155 (SNPKaMmap1) and 276.184 
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(SNPKaMmap7) regarding aM-supercontig. This new physical map delimited by the 

SNPs refines ‘Katy’ map flanked by SSRs from ~173 Kb to ~134 Kb, a region 

comprised within the ‘Canino’ map (Figure 3.2). According to results shown in Chapter 

II, ‘Canino’ and ‘Katy’ share the same m-haplotype and therefore this region delimited 

by SNPKaMmap1/7 in the ‘Katy’ high-resolution map was considered for subsequent 

analysis.     

 

 
Figure 3.2. Graphical representation of aM-supercontig assembly, M-locus high resolution map and 
gene annotation. Upper black and grey rectangles represent BAC clones from the self-incompatible 
apricot cv. ‘Goldrich’ BAC library used for de novo M-locus reference sequence assembly (M-haplotype 
is indicated). Resulting aM-supercontig assembly (formed by contigs M-locus_contig-1,-2 and -3, and the 
interspersed GAP-13 and GAP-15) is shown pointing out both M-haplotypes (grey and black rectangles). 
The scale in Kb for aM-supercontig is shown with red dotted lines. SSRs from PGS3 series used in 
previous works to define ‘Canino’ and ‘Katy’ genetic maps are shown above of aM-supercontig, while 
SSRs from AGS series and SNPs markers developed in this work are shown below. Molecular makers in 
bold delimit ‘Canino’ M-locus physical map; recombinant hybrids of ‘G×C’ populations are shown in 
stripped and black thin rectangles. Whereas molecular markers defining ‘Katy’ M-locus physical map are 
shown in red bold; recombinant hybrids of ‘Katy’ self-pollination are indicated in white and black thin 
rectangles. Vertical red thick lines show definitive positions delimiting the ~134Kb M-locus high 
resolution physical map. A zoom in this ~134Kb M-locus map is shown below where gene annotation 
results are indicated by dark grey arrows. SSRs AGS.20, PGS3.23 and PGS3.62 linked to the mutation 
are shown as well. 
 

Gene annotation and differential expression analysis     

Illumina RNAseq data from mature anthers, mature styles and leaves of apricot 

cvs. ‘Canino’, ‘Katy’ and ‘Goldrich’ were used for gene annotation and tissue 

expression analysis (Table S3.1). Trimmed data from all three ‘Goldrich’ 
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transcriptomes were aligned through ‘Transcript discovery 2.0’ (module included in 

CLC Genomics Workbench 8.0.1). Our own gene annotation for the ~134 Kb region 

within the aM-supercontig was reviewed and manually curated using P. persica (peach 

v1.0 and v2.0 IPGI) and P. mume (NCBI BioProject under accession PRJNA171605) 

annotations as references. A total of 15 ORFs were annotated and named as PaM-1 to 

PaM-15 (from Prunus armeniaca M-locus) (Figure 3.2). An additional gene 

homologous to ppa004594m (peach v1.0 IPGI) was excluded of the subsequent analysis 

because the M-locus recombination breakpoint (SNPKaMmap1) was located in the 

middle of this gene. Up to 4 and 3 genes annotated in P. persica (peach v1.0 and v2.0, 

respectively) and 7 in P. mume were not found in our apricot gene annotation (Table 

3.1). However, the genomic sequence of the 3 P. persica genes (peach v2.0) is highly 

conserved in the aM-supercontig suggesting that they were not expressed in the 

analyzed tissues used for apricot gene annotation. Apricot annotated genes showed a 

high homology rate with P. persica and P. mume predicted CDS and protein sequences, 

ranging from 93 to 100% and 85 to 100%, respectively (except for ppa011450m, which 

lower homology might be due to a wrong annotation in peach v1.0) (Table 3.1).  

 

Table 3.1. Apricot M-locus high resolution map gene content and homology rate sequence with 

corresponding putative orthologues of P. persica (v1.0 and v2.0, IPGI) and P.mume (NCBI 

BioProject, accession PRJNA171605) for CDS and predicted protein sequences. Start and end 

positions for each gene within aM-supercontig are indicated as well as the gene and protein 

sizes. 

P.armeniaca 
gene 

annotation* 

Start 
position 

End 
position 

Size gene (nt)/ 
protein (aa) 

Putative 
orthologue in 

P. persica v1.0 

Homology 
rate: 

CDS/protein 

Putative orthologue 
in P. persica v2.0 

Homology 
rate: 

CDS/protein 

Putative 
orthologue 
in P.mume 

Homology 
rate: 

CDS/protein 

PaM-1 141885 141885 1901/182 ppa012139m 99,27/100 Prupe.3G248300.1 99,27/100 Pm015410 99,27/99,45 

--- --- --- --- --- --- --- --- Pm015409 --- 

PaM-2 141885 141885 25271/4966 ppa000002m 98,53/98,45 Prupe.3G248400.1 98,53/98,45 Pm015408 99,33/98,98 

--- --- --- --- ppa026731m --- --- --- --- --- 

--- --- --- --- --- --- --- --- Pm015407 --- 

--- --- --- --- ppa023507m --- Prupe.3G248500.1 --- Pm015406 --- 

PaM-3 141885 141885 1626/424 ppa005351m 96,81/94,02 Prupe.3G248600.1 96,81/94,02 Pm015405 99,6/98,57 

PaM-4 141885 141885 1594/360 ppa011450m 47,37/32,76 Prupe.3G248700.1 93,7/94,82 Pm015403 98,15/98,61 

PaM-5 141885 141885 6668/786 ppa001620m 95,08/99,24 Prupe.3G248800.1 95,08/99,24 Pm015402 93,3/98,98 

PaM-6 141885 141885 4360/227 ppa011007m 98,68/99,12 Prupe.3G248900.1 98,68/99,12 Pm015401 100/100 

PaM-7 141885 141885 1842/212 ppa017665m 97,34/96,23 Prupe.3G249000.1 97,34/96,23 Pm015400 99,06/98,58 

PaM-8 141885 141885 2688/216 ppa011285m 98,92/99,54 Prupe.3G249100.1 98,92/99,54 Pm015399 99,08/99,54 

PaM-9 141885 141885 4183/477 ppa005069m 99,09/99,16 Prupe.3G249200.1 99,09/99,16 Pm015398 99,37/98,95 
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PaM-10 141885 141885 4663/269 ppa010249m 98,05/95,33 Prupe.3G249300.1 97,04/85,88 Pm015397 98,77/97,03 

--- --- --- --- --- --- --- --- Pm015396 --- 

--- --- --- --- --- --- --- --- Pm015395 --- 

PaM-11 141885 141885 4769/245 ppa010548m 99,05/98,78 Prupe.3G249400.1 99,05/98,78 Pm015394 99,73/99,18 

PaM-12 141885 141885 1320/112 ppa026503m 98,82/99,11 Prupe.3G249500.1 98,82/99,11 Pm015393 99,12/100 

--- --- --- --- ppa016385m --- Prupe.3G249600.1 --- Pm015392 --- 

--- --- --- --- ppa1027219m --- Prupe.3G249700.1 --- Pm015391 --- 

PaM-13 141885 141885 5381/579 ppa003386m 98,79/99,31 Prupe.3G249800.1 98,79/99,31 Pm015390 99,77/99,65 

PaM-14 141885 141885 2433/356 ppa007756m 99,07/99,44 Prupe.3G249900.1 99,07/99,44 Pm015389 99,72/99,16 

PaM-15 141885 141885 2621/464 ppa005994m 99,08/99,07 Prupe.3G250000.1 99,2/99,28 Pm015388 99,64/99,78 

*Gene annotatioin for ~134 Kb region within the aM-supercontig       
 

RNAseq data from all tissues among the three cultivars were compared by using 

Trinity (Haas et al., 2013). Seven out of the fifteen apricot annotated genes were 

differentially over-expressed in mature anthers regarding leaves (PaM-6, -7, -8, -9, -11, 

-14 and -15) in ‘Canino’, ‘Goldrich’ and ‘Katy’, and 5 (PaM-6, -7, -9, -10 and -14) with 

regards to mature styles in ‘Canino’ and ‘Goldrich’ (no mature styles RNAseq data 

were available for ‘Katy’) (Figure 3.3). Additional RT-PCR analysis using mature 

anther RNAs obtained from recombinant hybrids homozygotes for the M- and m-

haplotypes detected gene-expression for all apricot annotated genes (data not shown).      

 

Figure 3.3. Heat map illustrating log fold-change (logFC) values of M-locus genes in the pairwise 
tissue comparison for each apricot cultivar. Colour key indicates logFC (rows) from over-expressed 
(green boxes) to down-expressed (red boxes) genes for each cultivar/tissue pairwise comparison 
(columns). LogFC is calculated between first cultivar/tissue sample against (indicated with Vs) second 
cultivar/tissue sample. Thus, positive logFC value means a higher expression in the first cultivar/tissue 
sample regarding second for corresponding gene (green box), negative logFC value (red box) represents a 
lower expression following the same order of comparison. Cultivar/tissue sample is as follows: (Gan) 
‘Goldrich’ anthers, (Gle) ‘Goldrich’ leaves, (Gst) ‘Goldrich’ styles, (Can) ‘Canino’ anthers, (Cle) 
‘Canino’ leaves, (Cst) ‘Canino’ styles, (Kan) ‘Katy’ anthers and (Kle) ‘Katy’ leaves.  
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Variant calling  

A screening for identifying non-synonymous polymorphisms was carried out for 

the annotated ~134 Kb region within the aM-supercontig (Figure 3.1). Assuming the 

hypothesis suggesting that ‘Canino’ and ‘Katy’ have the same mutation (Chapter II), 

both cultivars should share a variant in heterozygosis. In addition, one of the two alleles 

of this variant should be absent in ‘Goldrich’ leading to a non-synonymous change in 

the predicted protein in ‘Canino’ and ‘Katy’. Under these assumptions, low stringent 

conditions and different types of analysis were used for variant calling (SNPs, Indels 

and Structural Variants) in the three cultivars (Table S3.7). A total of 1.118, 1.136 and 

1.365 variants from genomic Illumina data were called for ‘Goldrich’, ‘Canino’ and 

‘Katy’, respectively, in the ~134 Kb region within the aM-supercontig. Of these, 249 

and 414 were variants uniquely found in ‘Canino’ and ‘Katy’ and not in ‘Goldrich’, 

respectively. However, only 39,4% of the ‘Canino’ variants are heterozygous while the 

percentage in ‘Katy’ reaches out the 92,5%. The number of heterozygous variants 

differing with respect to ‘Goldrich’ within annotated genes (excluding intergenic 

regions) decreased noticeably for both cultivars to 20 and 133 (6 and 33 only in exons) 

for ‘Canino’ and ‘Katy’, respectively. A total of 5 and 27 variants in ‘Canino’ and 

‘Katy’, respectively, lead to non-synonymous changes for predicted proteins (Table 

3.2). Lastly, only one of these variants was found to be shared by ‘Canino’ and ‘Katy’: 

an insertion of undetermined size between positions 214.578-214.587 within PaM-7 

(also detected in the transcriptomic alignments).  

 

Table 3.2. Comparative polymorphism screening between self-compatible apricots (Canino’ 

and ‘Katy’) against self-incompatible apricot cultivar ‘Goldrich’. Data corresponding to distinct 

heterozygous variants regarding ‘Goldrich’ in annotated M-locus genes and exons leading to 

non-synonymous changes.    

Cultivar Total 
variantsa  

Variants differing 
with 'Goldrich' 

Heterozygote variants different from 'Goldrich'  

      Total Annotated genes Annotated exons Non-Synonymous 

Goldrich 1118 --- --- --- --- --- 

Canino 1136 249 98 20 6 5 

Katy 1365 414 383 133 33 27 
a All variants found in the ~134 Kb region within the aM-supercontig 

 

The presence of the insertion in ‘Canino’ and ‘Katy’ and the absence in 

‘Goldrich’ was confirmed by specific PCR-amplification. An extra-band, ~350bp larger 
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in size than the band shared by the three cultivars and putatively containing the 

insertion, was only detected in ‘Canino’ and ‘Katy’ (Figure 3.4).  

 

 
Figure 3.4. FaSt insertion genotyping in recombinant hybrids and apricot cultivars bearing m-
haplotype. PCR amplification of apricot gDNA with primer pair (PaMDsb_F2/PaMDsb_R2) containing 
the insertion. Samples are as follows: (1) ‘Goldrich’ (M1M2), (2) ‘Canino’ (M1m), (3) ‘GC-38’ (M1m), (4) 
‘GC-98’ (M1M2), (5) ‘GC-171’ (M2m), (6) ‘M-54’ (M2m), (7) ‘CC-67’ (mm), (8) ‘CC-77’ (M1M1), (9) 
‘Katy’ ( M3m), (10) ‘K05-06’ (mm), (11) ‘K05-15’ (M3m), (12) ‘K05-24’ (M3m), (13) ‘K06-06’ (M3m), 
(14) ‘K06-17’ (mm), (15) ‘K06-18’ (M3m), (16) ‘Castelbrite’ (M3m), (17) ‘Castleton’ (M3m), (18) 
‘Corbató’ (M5m), (19) ‘Cow-1’ (M3m), (20) ‘Cow-2’ (M1m), (21) ‘Cristalí’ (M5m), (22) ‘Currot’ (mm), 
(23) ‘Gandia’ (mm), (24) ‘Gavatxet’ (mm), (25) ‘Ginesta’ (mm), (26) ‘Manrí’ (mm), (27) ‘Martinet’ (mm), 
(28) ‘Palabras’ (mm), (29) ‘Palau’ (mm), (30) ‘Portici’ (M1m), (31) ‘Tadeo’ (M15m) y (32) ‘Trevatt’ 
(M1m). 
 

A FallingStone (FaSt) mutator element within PaM-7 is in coupling with m-

haplotype and leads to a putative premature stop-codon  

In order to check and characterize whether this insertion might result in a non-

functional protein, specific amplification of whole PaM-7 genomic region was carried 

out. Genomic DNA from ‘CC-77’ (M1M1 ‘Canino’ self-pollinated recombinant hybrid) 

was used for PaM-7 M-allele sequencing, whereas ‘CC-67’ and ‘K06-17’ (mm ‘Canino’ 

and ‘Katy’ self-pollinated recombinant hybrids) were used for PaM-7 m-allele 

sequencing. Both sequences proved to be identical except for a 358-bp insertion 

between positions 332/690 of the PaM-7 m-allele coding region within the third exon 

(Figure 3.5a). The 358-bp insertion leads to a substitution of a TTT codon 

(Phenylalanine) by TGA producing a premature stop-codon of the predicted translated 

protein in the amino acid position 111 (Figure 3.5b). This insertion is identical in size 

and highly similar in sequence (86,3%) to the one found in SFBC by Vilanova et al. 

(2006). SFBC insertion was characterized as a Miniature Inverted-repeat Transposable 

Element (MITE) type named Falling Stone (FaSt) (Halász et al., 2014). FaSt elements 

contain Target Site Duplications (TSDs), short AT-reach segments and Terminal 

Inverted Repeats (TIRs). Both structural elements are also present in the PaM-7 m-allele 

insertion. TIR elements are well conserved between PaM-7 m-allele and SFBC while 

TSDs differ in AT-repeats content. In addition, the two TSDs observed in PaM-7 m-

allele differ in the first nucleotide (Figure 3.5b). 
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Figure 3.5 FaSt insertion within PaM-7 m-allele. a) Schematic representation of PaM-7 gene structure 
in the aM-supercontig. Light grey rectangle represents region of aM-supercontig containing PaM-7 gene 
and dotted red lines show positions in Kb. PaM-6 is indicated with black arrow, white arrows symbolize 
PaM-7 UTR regions and dark grey arrows PaM-7 exons (reverse orientation). PaM-7 m-allele FaSt 
insertion is indicated in the third exon. b) Partial CDS (predicted by NGS) nucleotide alignment of PaM-7 
m- and M-alleles as well as codifying amino acid sequence (homozygous recombinant hybrids sequenced 
are indicated: CC-67, K06-17 and CC-77). FaSt insertion starts after position 331 (blue line) and lead to a 
premature stop-codon (shown by an asterisk). Target site duplications and terminal inverted repeats in 
FaSt transposable elements are indicated by red letters and grey shading, respectively. Dicysteinic redox 
motif typically conserved in DsbA proteins is shown with bold letters and into black frame of the amino 
acid sequence (CPWC domain). 
 

The PaM-7 m-allele insertion was PCR-amplified in all self-compatible apricot 

cultivars (other than ‘Canino’ and ‘Katy’) known to carry the m-haplotype (Chapter II) 

and recombinant hybrids derived from ‘Canino’ and ‘Katy’. Heterozygote (Mm) and 

homozygote (MM and mm) cultivars/accessions were included (Figure 3.4). The 

presence of the PaM-7 m-allele insertion was detected in all self-compatible cultivars 

bearing the m-haplotype, and homozygote recombinants confirmed that the insertion is 

in coupling with the m-haplotype.  

                    

 

213500 214000 214500 215000 215500

m-FaSt insertion (358-bp)
PaM-6

PaMDOr gene
(PaM-7)

M-locus
supercontig

PaMDOr_CC-77(MM)          1   ATGGCTGGAATCAAGAAAAAGCTTGTGGAAATTGATATAATTGCAGACACTGTGTGTCCATGGTGCTTTGTGGGCAAAAGAAACCTTGAC 90 
                          1   M  A  G  I  K  K  K  L  V  E  I  D  I  I  A  D  T  V  C  P  W  C  F  V  G  K  R  N  L  D   30 
PaMDOr_CC-67/K06-17(mm)   1   ATGGCTGGAATCAAGAAAAAGCTTGTGGAAATTGATATAATTGCAGACACTGTGTGTCCATGGTGCTTTGTGGGCAAAAGAAACCTTGAC 90 
                          1   M  A  G  I  K  K  K  L  V  E  I  D  I  I  A  D  T  V  C  P  W  C  F  V  G  K  R  N  L  D   30 
 
PaMDOr_CC-77(MM)         91  AAAGCTCTAGTGGAAGGTAATGATCGATACGAGTTTGAGCTCAGATGGCATCCATTTCAAATTGATCCTGAAGTCCCTAAAGAAGGCATT 180 
                         31  K  A  L  V  E  G  N  D  R  Y  E  F  E  L  R  W  H  P  F  Q  I  D  P  E  V  P  K  E  G  I   60 
PaMDOr_CC-67/K06-17(mm)  91  AAAGCTCTAGTGGAAGGTAATGATCGATACGAGTTTGAGCTCAGATGGCATCCATTTCAAATTGATCCTGAAGTCCCTAAAGAAGGCATT 180 
                         31  K  A  L  V  E  G  N  D  R  Y  E  F  E  L  R  W  H  P  F  Q  I  D  P  E  V  P  K  E  G  I   60 
 
PaMDOr_CC-77(MM)         181 TACAAGAAAGAGTTTTATGATACAAAGATGGGCGCTGATGTAGCTGAAGTGTTTCAGACCCGTATGGCGGATATCTTTTCAAACCATGAC 270 
                          61  Y  K  K  E  F  Y  D  T  K  M  G  A  D  V  A  E  V  F  Q  T  R  M  A  D  I  F  S  N  H  D   90 
PaMDOr_CC-67/K06-17(mm)  181 TACAAGAAAGAGTTTTATGATACAAAGATGGGCGCTGATGTAGCTGAAGTGTTTCAGACCCGTATGGCGGATATCTTTTCAAACCATGAC 270 
                          61  Y  K  K  E  F  Y  D  T  K  M  G  A  D  V  A  E  V  F  Q  T  R  M  A  D  I  F  S  N  H  D   90 
 
PaMDOr_CC-77(MM)         271 ATGACCTATAAGATCGAGGGACTCACGGGAAATACTATTAAGAGTCACAGGCTTATATATT----------------------------- 331 
                          91 M  T  Y  K  I  E  G  L  T  G  N  T  I  K  S  H  R  L  I  Y  F                              111 
PaMDOr_CC-67/K06-17(mm)    271 ATGACCTATAAGATCGAGGGACTCACGGGAAATACTATTAAGAGTCACAGGCTTATATATTGAGATATTTAGTAATATACCCATTCTTAG 360 
                          91 M  T  Y  K  I  E  G  L  T  G  N  T  I  K  S  H  R  L  I  Y  *                              110 
 
PaMDOr_CC-77(MM)         331 ------------------------------------------------------------------------------------------ 331 
                         111                                                                                            111 
PaMDOr_CC-67/K06-17(mm)  361 CACTAAAACTATAAATAAACCCTACATCATTTCATTTTTATAAACATACCCAAAAAAAACCCAAAAAATGACAAATTGTACTATTAAATT 450 
                         110                                                                                            110 
 
PaMDOr_CC-77(MM)         331 ------------------------------------------------------------------------------------------ 331 
                         111                                                                                            111 
PaMDOr_CC-67/K06-17(mm)  451 TAATTTTAATTATTAAATTACTTTGATACCCTATTGAGTGTTTTGGGTTTTTTTATGAAATTTTGGGTTGGGTTTGTTTTAAGAAATCAA 540 
                         110                                                                                            110 
 
PaMDOr_CC-77(MM)         331 ------------------------------------------------------------------------------------------ 331 
                         111                                                                                            111 
PaMDOr_CC-67/K06-17(mm)  541 TGGCAATTTTGTAATTTAAAAGAAGTTAAAAGCTTTTTTGTTATGTTATAAATGGGCTTTGGGTGTATTTATAAATTCCATTTCATATAG 630 
                         110                                                                                            110 
 
PaMDOr_CC-77(MM)         331 -----------------------------------------------------------TTGCTGGGCTACAGGATCATGATAAGCAGCA 362 
                         111                                                              A  G  L  Q  D  H  D  K  Q  Q  121 
PaMDOr_CC-67/K06-17(mm)  631 GGTTTTTTTATAATTTGGGCTCATATATTGGGTATATTAGTGAATCTCCCATATATATTTTGCTGGGCTACAGGATCATGATAAGCAGCA 720 
                         110                                                                                            110 
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PaM-7 codes for a Disulfide bond A-like Oxidoreductase (PaMDOr). Analysis of 

the phylogenetic relationships.  

The predicted translated protein PaM-7 is homologous to oxidoreductases that 

contain a Disulfide bond A-like (DsbA-like) domain (IPR001853; PF01323) and belong 

to the large Thioredoxin (TRX)-like superfamily (proteins containing a Thioredoxin 

fold; IPR012336) (Table 3.3). Accordingly, PaM-7 was renamed as PaMDOr (Prunus 

armeniaca M-locus DsbA-like Oxidoreductase). These proteins have a characteristic 

motif containing two active cysteines, separated by 2 amino acids (CXXC), responsible 

for the redox state in target proteins; the motif sequence in PaMDOr is CPWC (Figure 

3.5b). 

The direct BLASTP analysis performed against NCBI ‘non-redundant protein 

sequences’ database using PaMDOr translated protein as query found homologues from 

different plant species with no more than one-two hits per specie with E-values lower 

than 10-3. Table 3.3 shows direct BLASTP hits belonging to families where SI 

molecular mechanism has been partially elucidated (Rosaceae, Solanaceae and 

Brassicaceae) excluding Papaveraceae for which no hits were found. First two hits were 

Pm015400 and ppa017665m from P. mume and P. persica, respectively (Table 3.3). 

Third hit ppa011285m corresponds to a putative protein contiguous to ppa017665 in P. 

persica highly homologous to the apricot PaM-8 (Figure 3.2 and Table 3.1). 

Nevertheless, there is a significant difference in homology with ppa017665m and 

ppa011285m decreasing from 6,32e-148 to 1,2e-96 E-values, respectively. 

 

Table 3.3. PaMDOr ‘Direct BLASTP’. ‘NCBI accession name’ column shows selected hits of 

PaMDOr BLASTP output using PaMDOr predicted protein as query. ‘Genome database 

accession name’ refers to the annotated ID in the corresponding protein database (see Material 

and Methods). In ‘NCBI description’ column, specie which accession belongs to is indicated in 

square brackets 

NCBI accession 
name 

Genome database 
accession name 

Max 
score 

Query 
coverage 

E-value Identity NCBI description 

XP_008230297.1 Pm15400 429 100% 7,0E-154 98% uncharacterized protein LOC103329582 
[Prunus mume] 

XP_007216055.1 ppa017665m 421 100% 9,0E-151 96% hypothetical protein 
PRUPE_ppa017665mg [Prunus persica] 

XP_007215948.1 ppa011285m 291 100% 1,0E-99 62% hypothetical protein 
PRUPE_ppa011285mg [Prunus persica] 

XP_008379454.1 MDP0000233548 
   

291 100% 3,0E-99 62% uncharacterized protein LOC103442449 
[Malus domestica] 
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XP_008230295.1 Pm15399 291 100% 1,0E-99 62% uncharacterized protein LOC103329581 
[Prunus mume] 

XP_004304201.1 gene04226-v1.0-hybrid 284 99% 2,0E-96 60%  uncharacterized protein LOC101310818 
[Fragaria vesca subsp. vesca] 

XP_008341809.1 MDP0000148485 283 100% 3,0E-96 59%  uncharacterized protein LOC103404656 
[Malus domestica] 

XP_004306054.1 gene04224-v1.0-hybrid 262 98% 5,0E-88 62%  uncharacterized protein LOC101292444 
[Fragaria vesca subsp. vesca] 

XP_009774377.1  256 98% 5,0E-85 53%  uncharacterized protein LOC104224422 
[Nicotiana sylvestris] 

XP_009608607.1  256 97% 5,0E-85 54%  uncharacterized protein LOC104102573 
isoform X2 [Nicotiana tomentosiformis] 

XP_009608606.1  256 97% 6,0E-85 54% 
 uncharacterized protein LOC104102573 
isoform X1 [Nicotiana tomentosiformis] 

XP_004232135.1 Solyc02g089230.2.1 255 97% 6,0E-85 54%  uncharacterized protein LOC101251049 
[Solanum lycopersicum] 

NP_198706.1 AT5G38900.1 251 97% 1,0E-87 55% Thioredoxin superfamily protein      
[Arabidopsis thaliana] 

 

To search for putative PaMDOr orthologues a three step approach was followed: 

1) ‘Reciprocal Best BLASTP Hit’ (RBH) analysis; 2) Syntenic blocks identification 

across species; 3) Inference of phylogenetic relationships on the basis of clustering 

(tree-based) methods. Proteins from Rosaceae subfamilies Maloideae, Potintilleae and 

Prunoideae/Amygdaloideae along with proteins from Solanaceae and Brassicaceae 

families were used as queries for RBH identification using NCBI database (Figure 3.6). 

Within Prunus, RBHs were detected between Pm015400/ppa017665 and 

Pm015399/ppa011285m. RBHs were also detected for the pair Pm015399/ppa011285m 

in all the rest of species but not for Pm015400/ppa017665 (Figure 3.6).  
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Figure 3.6. PaMDOr/PaM-8 RBH results. Reciprocal Best Hit outcome of accessions from Table 3.3 
per pairwise comparison is shown in each box, where green boxes refer to RBHs, while red boxes to non-
RBHs. NCBI (bold) and genome protein database (within brackets) (see Material and Methods) 
accessions are indicated in the left and upper side of RBH square, whereas specie which belongs each 
accession is indicated in the right and lower sides. For values of similarity from BLASTP analysis consult 
Table S3.8. 
 

Syntenic blocks for the P. persica M-locus region between ppa001611m and 

ppa001157m (~18,4-18,8 Mb in peach scaffold_3 v1.0 IPGI) were found in Malus 

domestica chrs. 9 and 17 (~4,3-4,7 Mb and ~4,9-5,3 Mb, respectively), Solanum 

lycopersicum chr. 2 (~45,6-45,8 Mb) and Arabidopsis thaliana chrs. 3 (regions ~0,4-0,5 

Mb; ~5,1-5,2 Mb; ~11,2-12,0 Mb) and 5 (~15,5-15,6 Mb) (Figure 3.7).  
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Figure 3.7. M-locus syntenic blocks among Rosaceae, Solanaceae and Brassicaceae. M-locus syntenic 
blocks in Prunus persica (Pruinodeae; SFB/S-RNase SI mechanism; blue) and Malus domestica 
(Maloideae; SFBB/S-RNase SI mechanism; orange) Rosaceae subfamilies, and Solanum lycopersicum 
(Solanaceae; SLF/S-RNase SI mechanism; red) and Arabidopsis thaliana (Brassicaceae; Sporophytic SI 
mechanism; green) non-Rosaceae families. Black rectangles within circular genome regions represent 
gene annotation in scale, orange lines are anchors between P. persica and M. domestica, red lines are 
anchors between P. persica and S. lycopersicum and green lines are anchors between P. persica and A. 
thaliana. Red triangles indicate a scale change. The putative PaMDOr and PaM-8 orthologues are shown 
for each specie. 
 

Figure 3.8 shows phylogenetic relationships among proteins identified by direct 

BLASTP analysis. Brassicaceae and Solanaceae proteins grouped separately but both 

groups clustered with a third one including Maloideae, Prunus (orthologous to PaM-8) 

and Fragaria (XP_004304201.1/gene04226-v1.0-hybrid) proteins. According to the 

conserved dicysteinic site, this major group was named CPWC1, whereas Prunus 

proteins group with higher similarity to PaMDOr was named CPWC2. F. vesca 

XP_004306054.1/gene04224-v1.0-hybrid protein branched separately from CPWC1 and 

CPWC2 groups but closer to second. This protein contains a SPWC domain losing the 

first Cys residue, which is thought to be the most important of the two for redox activity 

(Grauschopf et al., 1995).  
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Figure 3.8. PaMDor and PaM-8 phylogenetic tree analysis. Maximum Likelihood phylogenetic tree 
for selected accessions from ‘Direct BLASTP’ output as well as PaMDor (orange square) and PaM-8 
(yellow square) proteins. Bootstrap values are shown for every node. Three groups (CPWC1, CPWC2 and 
SPWC) correspond to proteins homologous to PaM-8, PaMDOr and XP_004306054.1//gene04224-v1.0-
hybrid, respectively (grey shading). Dashed lines group Brassicaceae (green), Solanaceae (orange) and 
Rosaceae (blue) accessions. 
  

Discussion 

 

Paving the way for the identification of the mutated M-locus modifier gene 

Previous works identified two heterozygous PPMs in apricot cvs. ‘Canino’ and 

‘Katy’ within M- and M’-loci, respectively. Interestingly, both mutations mapped in an 

overlapping region at the distal end of chr. 3, pointing out that the same gene might be 

affected. However, according to peach genome annotation, defined intervals comprised 

~60 ORFs in ‘Canino’ and more than a hundred in ‘Katy’ (Zuriaga et al., 2012 and 

2013). Therefore, mapping refinement was required before starting a positional cloning 

strategy. Incorporation of new molecular markers was necessary to achieve this goal but 

the peach genome reference sequence had already been exhausted. Thus, ‘Goldrich’ 

BAC clones covering the M-locus were sequenced and assembled to get an apricot 
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reference sequence useful for this purpose. Three major contigs were obtained and 

GAPs were joined by indeterminations defining the aM-supercontig.  

This strategy provided 40 new SSRs and first apricot SNPs for the analyzed 

region. Unfortunately, only one SSR, co-segregant with the mutation, could be mapped 

in ‘Canino’ (AGS.20). Similarly, only one third of the SNP variants found in ‘Canino’ 

were heterozygous. Finally, from the 5 selected variants tested in ‘GxC’ recombinants 

only one was useful to reduce the mapping region ~15 kb downstream PGS3.71 through 

the newly identified recombinant M-54. Fine-mapping results were much more 

successful in ‘Katy’, largely due to the higher number of recombinants and markers that 

could be incorporated. Thus, new recombination breakpoints were detected by SSR 

analysis in AGS.12 and AGS.30 encompassing an interval of ~174 Kb. This map was 

further improved by using SNPs such as SNPKaMmap1 and SNPKaMmap7 reducing 

the interval to ~134 Kb. Interestingly, this region is included within the ‘Canino’ M-

locus fine-map and excludes the fragment containing high-repeat content. 

Moreover, recent findings suggest that ‘Canino’ and ‘Katy’ share the same m-

haplotype supporting the hypothesis that the two share the same PPM as well (Chapter 

II). Altogether, this apricot ~134 Kb M-locus region was decided to be screened for the 

identification of the PPM. 

Candidate genes: discrimination from expression patterns 

Fifteen genes were annotated in the apricot M-locus region (~134 Kb) using 

RNAseq data and all of them were found to be highly conserved in other Prunus spp. 

according to collinearity and homology rates. Three additional ORFs were consistently 

predicted in P. persica and P. mume suggesting that these genes might be not expressed 

in the apricot sequenced tissues. Discrepancies in gene content were also found between 

P. mume and P. persica (v1.0 and v2.0) but this might result from the annotation 

methodology used in each case. In fact, RNAseq data and EST collections have been 

used in P. persica whereas in P. mume an ab initio prediction approach was employed 

(Zhang et al., 2012; Verde et al., 2013).  

The 15 genes showed to be expressed in all tissues, therefore no specific pollen-

expressed genes are contained in this region. However, four of these (PaM-6, -7, -9 and 

-14) showed higher differential over-expression in mature anthers with regards to other 

tissues and therefore may be considered as candidate genes. Furthermore, neither 

RNAseq data nor RT-PCR analysis support miss-expression as the cause of SC since 
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positive expression were detected for all 15 genes in homozygote MM and mm 

recombinants.  

 

A unique variant within the M-locus fulfills genetic requirements 

In parallel to gene-expression analysis, variants of any nature, from SNPs to 

structural variants, were called for the apricot M-locus region in the three reference self-

incompatible/self-compatible cultivars. The number of variants different to those found 

in ‘Goldrich’ identified in ‘Katy’ (414) was almost twice than in ‘Canino’ (249). This 

might be explained because ‘Canino’ (M1m) shares the M1-haplotype with ‘Goldrich’ 

(M1M2) whereas ‘Katy’ (M3 m) does not (Chapter II).  

To fulfill the genetic requirements of S-locus unlinked SC in ‘Canino and ‘Katy’ 

both PPMs should be in heterozygosis, hence homozygote called variants were 

discarded. ‘Canino’ showed a much lower percentage of heterozygote variants 

compared with ‘Katy’, confirming previous results and suggesting that currently 

cultivated ‘Canino’ apricot might have arisen from self-pollination event/s (Zuriaga et 

al., 2012 and 2013). According to genetic and genomic background data in ‘Canino’ it 

might be anticipated a low number of variants within the M-locus fulfilling the exposed 

requirements. In fact, only 27 and 5 variants leading to non-synonymous changes in 

exons were found in ‘Katy’ and ‘Canino’, respectively. More restrictively, only one of 

them was present in both, an insertion detected by using genomic and transcriptomic 

alignments based on NGS data. It was also confirmed by PCR-amplification in these 

two cultivars showing an extra-band ~350 bp larger in size than the band shared with 

‘Goldrich’. This insertion is located within PaM-7, very close to microsatellite markers 

AGS.20, PGS3.23 and PGS3.62 previously shown to be fully linked to the PPM 

(Zuriaga et al., 2012 and 2013; Chapter II). Finally, the 358-bp insertion was found to 

be in coupling with the m-haplotype not only in the recombinant hybrids analyzed but 

also in many other cultivars (Chapter II). Therefore, this variant was the only one 

fulfilling all genetic requirements for being the cause of SC within the m-haplotype. 

PaM-7 was fully sequenced for M/m-alleles and the 358-bp insertion was found to 

putatively lead to a premature stop-codon in the predicted protein lacking 4 out of the 6 

exons. Furthermore, PaM-7 was one of the four genes differentially over-expressed in 

pollen, in agreement with the tissue-specific expression expected for the M-locus 

mutated modifier gene. 
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This insertion has identical size and shows high sequence similarity with the 

SFBC-insertion previously found to confer SC in ‘Canino’ (Vilanova et al., 2006). 

SFBC-insertion was characterized as an active non-autonomous mutator (transposable) 

element [named FallingStone (FaSt)] containing structural features that have been 

proved to be also present in the PaM-7 insertion (Halász et al. 2014). FaSt elements are 

suggested to have a recent specific occurrence in Prunoideae subfamily, being 

accumulated in gene-rich regions of the Prunus genome and authors advanced further 

effects that would be likely identified in the future (Halász et al., 2014). This work 

seems to confirm their hypothesis. However, these are not isolated cases. Most of the 

mutations conferring SC in Prunus have been associated with transposable elements. 

For instance, the insertions of a 615-bp Ds-like element into SFB1  ́(Hauck et al., 2006) 

and that of a 2,6 Kb Mu element upstream of the S6m2-RNase (Yamane et al., 2003) in 

P. cerasus, the insertions of 115-bp and 5-bp direct repeats within the SFB1 HVb region 

and between the SFB2 V1 and V2 regions in P. persica (Tao et al., 2007), or the 

insertion of 6,8 Kb in the SFBf coding region in P. mume (Ushijima et al., 2004). 

 
PaMDOr is an oxidoreductase essential for the Prunus GSI system to function                  

PaM-7 encodes an oxidoreductase that contains a Thioredoxin fold domain 

(IPR012336). Proteins having this domain form a large and diverse protein superfamily 

characterized by a CXXC motif, which confers the thiol-disulfide redox activity 

essential for folding, stability and function in target proteins (Hogg, 2003; Schmidt et 

al., 2006). Proteins containing this domain have been associated with a wide range of 

events during sexual plant reproduction, from gametophyte formation to seed setting 

(either for their redox activity or as signaling factors) specially under the control of 

thioredoxin (TRXs) and glutaredoxin (GRXs) proteins (Traverso et al., 2013). More 

specifically, several TRXs participating in SI systems have already been identified. In 

Phalaris coerulescens, a protein containing a TRX motif in the C-terminal end and 

expressed in mature pollen grains has been shown to be essential for the SI response (Li 

et al., 1996). In Brassica, pistil TRX proteins THL-1 and THL-2 have been related to 

the SSI system being suggested to prevent SRK autophosphorilation (Cabrillac et al., 

2001). Functional analysis showed that antisense transgenic lines led to reduced levels 

of SI supporting their requirement for the system to function (Haffani et al., 2004). 

Lastly, NaTrxh is a TRX protein with a novel Nβ signal peptide (that leads to use the 

endoplasmic reticulum, Golgi apparatus and vesicles for secretion) localized in the 
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extracellular matrix of the Nicotiana stylar transmitting tract that interacts with S-

RNases reducing them (Juárez-Díaz et al., 2006; Avila-Castañeda et al., 2014).  

All these TRXs taking part in SI belong to h-type group of TRX proteins (up to 

8 groups have been classified in plants to date) and normally work reducing target 

proteins (Meyer et al., 2012). However, on the contrary, PaM-7 does not codes for 

neither a TRX type h nor other TRX type but for a protein containing a Disulfide bond 

A-like (DsbA-like) domain (IPR001853; PF01323). DsbA-like proteins were firstly 

identified in Escherichia coli as disulfide bond introducers in the periplasm, a necessary 

process for protein folding (Depuydt et al., 2011). Therefore, DsbA-like proteins are not 

usually reducing enzymes such as TRX proteins but oxidizing. However, proteins of the 

TRX superfamily are intrinsically bidirectional, thus can catalyze either oxidation or 

reduction depending on the redox states in which they are maintained (Ito & Inaba, 

2008). Accordingly, PaM-7 was renamed as Prunus armeniaca M-locus Disulfide bond 

A-like Oxidorreductase (PaMDOr), which dicysteinic motif CPWC is located at the 

protein N-terminal end (Cys19-PW-Cys22). Interestingly, E.coli DsbA defective 

mutants (dsba-) showed partially and fully restored function in heterologous systems 

expressing Arabidopsis thaliana Protein Disulfide Isomerase-like (AtPDIL) factors 

(proteins containing 2 TRX fold domains) (Yuen et al., 2013). Particularly, AtPDIL1-1 

has also been associated with the regulation of Programmed Cell Death (PCD) (Onda, 

2013). Concretely, AtPDIL-1 acts as a redox-sensitive regulator of the activity of 

noncaspase-type proteins by the prevention of their premature activation during 

embryogenesis and to control the timing of the onset of PCD by protease activation 

(Cho et al., 2011). PCD is well known to be involved in pollen rejection in Papaver 

(Bosch & Franklin-Tong, 2008) but evidences also suggest a role for PCD in the Pyrus 

S-RNase based GSI system (Wang & Zhang, 2011). In this context, a possible role of 

PaMDOr regarding PCD may be speculated. On the other hand, it is well known that 

pollen-expressed S-locus F-box proteins are cytoplasmic, thus some S-RNases must exit 

the luminal compartment, possibly after retrograde transport to the endoplasmic 

reticulum, in order to interact (McClure et al., 2011). Interestingly, AtPDIL1-1 is 

orthologous to the Glycine max GmPDIL-1 which showed, along with GmPDIL-2, the 

capability to refold denatured RNaseA by oxidative activity in recombinant versions of 

both genes expressed in E. coli (Kamauchi et al., 2008). Since stylar non-S-factor 

NaTrxh was observed to reduce S-RNase in vitro, it has been suggested that protein 

three-dimensional structure might be altered to favor its trafficking in pollen tubes (may 
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be through the pollen endomembrane system) (McClure et al., 2011) and, consequently, 

affecting its function. This function should be restored by protein refolding to the active 

state in an oxidative-dependent manner. AtPDILs have been detected in endoplasmic 

reticulum (Yuen et al., 2013), therefore, S-RNase refolding (after releasing) might be 

carried out by an oxidizing protein like PaMDOr similarly to GmPDIL-1/AtPDIL1-1 

restore RNase/DsbA activity in the endoplasmic reticulum.   

 

A hypothesis on the evolutionary history of PaMDor in Prunus 

Reciprocal Best Hits for PaMDOr P. persica homologous protein (ppa017665) 

were detected in Prunus spp. but not in non-Prunus species (including Maloideae, 

Potentilleae, Solanaceae and Brassicaceae). Best hit in all these latter cases was 

ppa011285m protein (peach v1.0 IPGI) homologous to apricot PaM-8. However, the 

best direct BLASTP hit of the Fragaria vesca accession XP_004306054.1 was the P. 

mume accession XP_008230297.1 found to be homologous to PaMDOr. Since PaM-8 

seems to have orthologous in all considered species, whereas PaMDOr has not, a 

tandem duplication in Rosaceae is suggested where PaMDOr and PaM-8 might be 

paralogues. Regarding this point, it is relevant to highlight that PaM-8 is differentially 

over-expressed in reproductive tissues (anthers and pistils) but not in leaves whereas 

PaMDOr expression is largely specific to anthers. Interestingly, no Maloideae protein 

was found to be homologous to PaMDOr. This might suggest that Maloideae species 

may have lost the PaMDOr orthologue throughout its recent evolutionary history, but 

sooner than genome duplication event occurred in this subfamily (Velasco et al., 2010). 

In contrast, F. vesca has CPWC1 and SPWC, putatively derived from a CPWC2 

ancestor, suggesting that tandem duplication might have taken place before subfamily 

split in the Rosaceae (~62 MYA). The long period of time elapsed might explain the 

high divergence between Fragaria/Prunus CPWC putative orthologues. In agreement 

with this, it has been shown that Malus and Prunus S-RNases and SFBs evolved from 

different lineages supporting a convergent evolution at the GSI system for these two 

genera (Aguiar et al., 2015; Akagi et al., 2016; Morimoto et al., 2015). This observation 

is also supported by differences in the GSI system, since a single SFB controls self-

recognition in Prunoideae and multiple SFBB determine non-self-recognition in Malus 

(Matsumoto & Tao, 2016; Sassa, 2016; Tao & Iezzoni, 2010). A different scenario 

might imply an alleged duplication occurred uniquely in Prunus after splitting from 
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Malus (~32 MYA) and therefore XP_004306054.1 and PaMDOr would not be 

orthologous.  

Syntenic blocks for M-locus region were clearly observed in M. domestica and 

S. lycopersicum. As expected, according to a recent genome duplication event, two 

different regions were shown to be syntenic in Malus (Velasco et al., 2010). 

Remarkably, syntenic blocks in Arabidopsis were not well defined at odds with Malus 

and Solanum, despite Arabidopsis is phylogenetically closer to Prunus (Igic and Kohn 

2001). It could be speculated that these results from the conservation of regions 

containing factors needed for a common pathway or mechanism, since Solanaceae and 

Rosaceae share the same GSI system but Arabidopsis exhibits SSI (Takayama & Isogai, 

2005).  

Overall orthologue study supports a divergent evolution for M-locus DsbA 

proteins in the Rosaceae family. However, putative paralogues (CPWC2 and CPWC1) 

arose from gene duplication in tandem, being the function of the CPWC2 type proteins 

specifically related to GSI. In this sense, CPWC1/CPWC2 divergence process might 

shed some light of Malus/Prunus GSI evolution as well.  

Material and methods 

Plant material 

Two self-compatible apricot cvs. ‘Canino’ (S2SCM1m) and ‘Katy’ (S1S2M3m), 

and the self-incompatible control ‘Goldrich’ (S1S2M1M2) were selected for genomic and 

transcriptomic Next Generation Sequencing. Recombinant hybrids ‘GC-38’, ‘GC-98’ 

and ‘GC-171’ from the outcross populations ‘Goldrich × Canino-01’ and ‘M-54’ from 

‘Goldrich × Canino-08’ were used for ‘Canino’ M-locus fine-mapping (Zuriaga et al., 

2012). F1 recombinant hybrids ‘K05-24’, ‘K06-06’, ‘K06-18’ and ‘K06-37’ from ‘Katy’ 

self-pollination (Zuriaga et al., 2013) were used for ‘Katy’ M-locus fine-mapping. All 

these trees are maintained at the collection of the Instituto Valenciano de 

Investigaciones Agrarias (IVIA) in Valencia (Spain).  

‘Canino’ self-pollinated hybrids homozygous for the M-locus ‘CC-67’ (S2S2mm) 

and ‘CC-77’ (SCSCM1M1), F1 self-pollinated ‘Katy’ recombinant hybrids ‘K05-06’, 

‘K05-15’, ‘K05-24’, ‘K06-06’, ‘K06-17’, ‘K06-18’ (Zuriaga et al., 2013) and apricot 

cvs. ‘Castelbrite’, ‘Castleton’, ‘Corbató’, ‘Cow-1’, ‘Cow-2’, ‘Cristalí’, ‘Currot’, 

‘Gandia’, ‘Gavatxet’, ‘Ginesta’, ‘Manrí’, ‘Martinet’, ‘Palabras’, ‘Palau’, ‘Portici’, 
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‘Tadeo’ y ‘Trevatt’ bearing m-haplotype (Chapter II) were used for FaSt insertion PCR-

genotyping.  

 

Nucleic acids extraction 

Two leaf discs were collected from each sample and frozen at -80ºC before 

genomic DNA isolation following the method of Doyle & Doyle (1987). Total RNA 

was extracted from leaves, mature anthers (containing mature pollen grains) and mature 

styles of balloon-stage flowers using the RNeasy Plant Mini Kit (Qiagen), including 

column DNase treatment (Qiagen RNase free DNase). DNA and RNA quantification 

was performed by NanoDrop ND-1000 spectrophotometer (Thermo Fisher Scientific, 

Wilmington, DE) and integrity was checked by gel electrophoresis. For BAC clone 

DNA delivery, frozen BAC clones were grown for 20 h at 37ºC in liquid LB medium 

with cloranphenicol. Each BAC clone was inoculated in 1.5 ml solid LB medium and 

sent to sequencing. Macrogen Inc. kept on DNA BAC clone isolation and purification. 

 

Next Generation Sequencing and cleaning 

Apricot BAC clones 215E14, 209M03, 108J24, 224A3, 234O11, 148M17, 

253J12, 251L05, 159P08, 95D02, 160J21 and 161F24 from the self-incompatible cv. 

‘Goldrich’ BAc library (Vilanova et al., 2003) were pyrosequenced by 454 GS-FLX 

Titanium NGS technology (Roche), commercially conducted by Macrogen Inc. (Seoul, 

South Korea). Whole genome sequencing (WGS) of ‘Canino’ and ‘Katy’ apricot 

genomes was conducted on an Illumina HiSeq2000 platform, using 100-bp paired-end 

reads, commercially conducted by Macrogen Inc. ‘Goldrich’ WGS kindly provided by 

Chris Dardick was also generated on an Illumina HiSeq2000 platform using 100-bp 

paired-end reads, at genomic facilities at DHMRI (David H. Murdock Research 

Institution, Kannapolis, NC, USA; http://www.dhmri.org). RNA sequencing (RNAseq) 

data were obtained using RNA isolated from mature anthers, mature styles and leaves 

from cvs. ‘Canino’, ‘Katy’ and ‘Goldrich’ (except for ‘Katy’ styles that were not 

collected). Two biological and two technical replicates per biological replicate were 

generated for each tissue and cultivar with the exception of anthers samples, where three 

biological replicates were obtained (Table S3.1). RNAs were sequenced by Illumina 

paired-end (100 bp). Sequencing was conducted by UCLA Neurosciences genomic 

Core (University of California, CA, USA).      
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454 raw data from BAC clones were filtered by CLC Genomics Workbench 

8.0.1 (http://www.clcbio.com), trimming those sequences with a ‘Quality limit’ of 0.05 

and ‘Ambiguous limit’ of 3, maintaining sequences with a minimum length of 50 bp 

and a maximum of 500. Additionally, trimmed sequences were aligned against 

pBeloBAC11 (cloning vector used to develop ‘Goldrich’ BAC library) in order to 

remove those sequences coming from the cloning vector (‘Mismatch cost = 2’, 

‘Insertion cost’ = 3, ‘Deletion cost’ = 3, ‘Length fraction’ = 0.5, ‘Similarity fraction’ = 

0.8). WGS Illumina raw data was filtered by CLC Genomics Workbench 8.0.1. 

Sequences with a ‘Quality limit’ of 0.05 and ‘Ambiguous limit’ of 2, and sequences 

with a lower length of 20 bp were trimmed. Illumina RNAseq raw data were processed 

using FastQC v.0.10.1 (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) 

software to assess the quality of raw and clean read sets. Reads were quality trimmed 

using FASTX-toolkit (http://hannonlab.cshl.edu/fastx_toolkit) with a minimum quality 

score of 25 and a minimum length of 40. Adaptor sequences were trimmed using the 

'trim_blast_short' script available as part of seq_crumbs 

(http://bioinf.comav.upv.es/seq_crumbs/). 

 

Apricot M-locus supercontig. BAC clones de novo assembly 

Cleaned 454 sequences were used for de novo assembly of each BAC clone by 

CLC Genomics Workbench 8.0.1 using following parameters: k-mer = 45; automatic 

bubble size; minimum contig length = 100; ‘Map reads back to contigs (slow)’; 

mismatch cost = 2; insertion cost = 3; deletion cost = 3; length fraction = 0.75 and 

similarity fraction = 0.9. Additionally, Macrogen Inc. provided a de novo assembly per 

BAC clone performed by GS De Novo Assembler v.2.8 (Roche) using default values 

for set parameters. Consensus contig sequences from both de novo assemblies were 

determined by Staden software package 

(http://www.sanger.ac.uk/Software/production/staden/). Resulting contigs were 

correctly oriented and ordered through ‘microbial genome finishing module’ included in 

CLC Genomics Workbench 8.0.1 and using both P. persica (peach v1.0 International 

Peach Genome Initiative 2010 http://www.rosaceae.org/peach/genome) and P. mume 

(NCBI BioProject under accession PRJNA171605 and 

http://prunusmumegenome.bjfu.edu.cn) genomes as references. Contigs from 

overlapping BAC clones belonging to the same ‘Goldrich’ M-haplotype were joined by 

GAP4 included in Staden software package. Those contigs from overlapping BAC 
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clones that could not be joined by GAP4 were considered to belong to different M-

haplotypes. To confirm this hypothesis SSR genotyping was performed for each BAC 

clone. DNA from BAC clones 215E14, 224A3, 234O11, 148M17, 253J12, 161F24 was 

PCR-amplified for SSRs PGS3_71, PGS3_47, PGS3_23, PGS3_62, PGS3_63 and 

PGS3_96, respectively; AGS_6 was PCR-amplified in BACs 209M03 and 108J24, and 

160J21-2 in BACs 251L05, 159P08, 95D02 and 160J21. ‘Goldrich’ gDNA was used as 

control. PCR conditions were the same described for SSR amplification in section ‘SSR 

identification and analysis’ (see below) and M-haplotype BAC clone was coined 

according to the nomenclature reported in Chapter II. To join overlapping contigs from 

different haplotypes, two stepwise conditions were considered: 1) if a putative gene 

based on P. persica and P. mume annotation might be present in overlapping P. 

armeniaca contigs, that contig with highest homology rate to both genes inferred by 

ClustalW (Thompson et al., 1994) would be chosen. 2) If there were no putative genes 

in overlapping contigs, that contig belonging to the M-haplotype more numerous would 

be chosen. For unjoined contiguous contigs, GAP closure was carried out as follows: 1) 

a BLASTN (Altschul et al., 1990) analysis (cutoff e-value < 10-3) using primer pair 

sequences for SSRs from PGS3 series was performed against contig sequences in order 

to identify those GAPs that matched with PGS3 microsatellites. If each primer of a pair 

confirmed to blast to ending sequence of contiguous contigs, then both contigs were 

joined. 2) For remaining unsolved GAPs, specific primers (Table S3.3) flanking ending 

contiguous contigs  were designed by Primer3 v.0.4.0 (Untergasser et al., 2012) and 

PCR-amplified. PCR conditions were: initial denaturing step of 95ºC for 2 min; 35 

cycles of 95ºC for 30 s, 52ºC for 30 s and 72ºC for 1 min; and a final extension of 72ºC 

for 10 min, using as template corresponding BACs DNA. Four independent replicates 

were amplified and PCR products were checked by gel electrophoresis. The four 

replicates were mixed together and purified by DNA Clean&Concentrator-5 Kit (Zymo 

Research, Irvine, CA). Purified PCR products were sequenced by Sanger, commercially 

conducted by Sistemas Genomicos S.L. (Paterna, Valencia, Spain). Resulting sequences 

were assembled through Staden software package.  

 

WGS Illumina data alignment 

Cleaned WGS Illumina reads from cvs. ‘Canino’, ‘Katy’ and ‘Goldrich’ were 

aligned separately (CLC Genomics Workbench 8.0.1 software) against a ‘hybrid’ 

reference sequence of P. persica genome sequence (peach v1.0 IPGI) where M-locus 
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region (scaffold_3 from 18.380.006 to 18.833.026 positions) was replaced by P. 

armeniaca M-locus supercontig sequence using following set of parameters: ‘Mistmatch 

cost = 2’, ‘Cost of insertions and deletions = Affine gap cost’, ‘Insertion cost = 3’, 

‘Deletion cost = 3’, ‘Insertion open cost = 6’, ‘Insertion extent cost = 1’, Deletion open 

cost = 6’, ‘Deletion extent cost = 1’, ‘Length fraction = 0.6’, ‘Similarity fraction = 0.8’, 

‘Global alignment = No’ and ‘Non-specific match handling = Map randomly’. Apricot 

M-locus supercontig alignments (between positions 18.380.006 and 18.833.026 of 

scaffold_3) were extracted and ‘Local realignment’ module was applied in order to 

improve alignment results (‘Realign unaligned ends = Yes’, ‘Multi-pass realignment = 

3’). 

 

SSR identification and analysis 

New SSR markers were identified in P. armeniaca M-locus supercontig by 

Repeat Masker software (Smit, AFA, Hubley, R. RepeatModeler Open-1.0. 2008-2015 

http://www.repeatmasker.org). Primer pairs flanking microsatellite repeat motifs were 

designed using Primer3 (Table S3.4). SSR amplifications were performed in a 

GeneAmp_PCR System 9700 thermal cycler (Perkin–Elmer, Freemont, CA, USA) in a 

final volume of 20 µl, containing 75 mM Tris– HCl, pH 8.8; 20 mM (NH4)2SO4; 1.5 

mM MgCl2; 0.1 mM of each dNTP; 20 ng of genomic DNA and 1 U of DreamTaq 

polymerase (Thermo Scientific, Waltham, MA). Each polymerase chain reaction was 

performed by the procedure of Schuelke, (2000) using three primers: the specific 

forward primer of each microsatellite with M13(-21) tail at its 50 end at 0.4 µM, the 

sequence-specific reverse primer at 0.8 µM, and the universal fluorescent-labeled M13(-

21) primer at 0.4 µM. The following temperature profile was used: 94 ºC for 2 min, then 

35 cycles of 94 ºC for 45 s, 50-60 ºC for 1 min, and 72 ºC for 1 min and 15 s, finishing 

with 72 ºC for 5 min. Allele lengths were determined using an ABI Prism 3130 Genetic 

Analyzer with the aid of GeneMapper software, version 4.0 (Applied Biosystems). 

 

SNP identification and analysis 

SNPs and small InDels were called with CLC Genomics Workbench 8.0.1 using 

‘Basic Variant Detection’ algorithm through the following parameters: ‘Ploidy level = 

2’, ‘Ignore positions with coverage above = 2000’, ‘Minimum coverage = 4’, 

‘Minimum count = 1’ and ‘Minimum frequency = 25%’ (Table S3.5). Primer pairs 

flanking SNPs were designed using Primer3 for selected variants (Table S3.6). 
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Amplifications were performed in a GeneAmp_PCR System 9700 thermal cycler 

(Perkin–Elmer, Freemont, CA, USA) in a final volume of 20 µl, containing 75 mM 

Tris– HCl, pH 8.8; 20 mM (NH4)2SO4; 1.5 mM MgCl2; 0.1 mM of each dNTP; 20 ng 

of genomic DNA and 1 U of DreamTaq polymerase (Thermo Scientific, Waltham, MA) 

using corresponding gDNA as template. Cycling conditions were as follows: an initial 

denaturing step of 95ºC for 2 min; 35 cycles of 95ºC for 30 s, 52ºC for 30 s and 72ºC for 

1 min; and a final extension of 72ºC for 10 min. Four independent replicates were 

amplified and PCR products were checked by gel electrophoresis. An admixture of four 

replicates was purified by DNA Clean&Concentrator-5 Kit (Zymo Research, Irvine, 

CA). Purified PCR products were sequenced by Sanger, commercially conducted by 

Sistemas Genomicos S.L. (Paterna, Valencia, Spain). Sequence chromatogram 

visualization for SNP confirmation was performed by BioEdit software (Hall, 1999). 

 

Gene and transcript annotation of apricot M-locus physical map  

‘Goldrich’ RNAseq data from mature styles, mature anthers and leaves 

transcriptomes were aligned to the ‘hybrid’ peach genome sequence containing the 

apricot M-locus syntenic region using ‘Large gap mapper’ tool included in ‘Transcript 

discovery Plug-in 2.0’ of CLC Genomics Workbench 8.0.1 with these set of parameters: 

‘Maximum number of hits for a segment = 10’, ‘Maximum distance from seed = 

20000’, ‘Multi match mode = random’, Mismatch cost = 2’, ‘Insertion cost = 3’, 

‘Deletion cost = 3’, ‘Similarity = 0.9’, ‘Length fraction = 0.9’ and ‘Overside default 

distances = Yes’. Then, transcript discovery tool was used to produce mRNA and gene 

annotations (parameters: ‘Strand specific = No’, ‘Extend existing annotations = Yes’, 

‘Splice sites = All’, ‘Exclude uncertain splice sites = Yes’, ‘Ignore duplicate reads = 

Yes’, ‘Ignore non-specific matches = Yes’, ‘Minimum unique observations (un-spliced) 

= 1, ‘Minimum coverage ratio (un-spliced) = 0.03’, ‘Minimum unique observations 

(spliced) = 1, ‘Minimum coverage ratio (spliced) = 0.03’, ‘Exclude internal un-spliced 

events = Yes’, ‘Exclude external un-spliced events = Yes’, ‘Maximum distance between 

events = 1000’, ‘Minimum observations in gene = 3’, ‘Minimum length of gene = 150’, 

‘Genes with spliced transcripts only = No’, ‘Maximum joining distance = 250’, 

‘Minimum length = 100’). Resulting annotations were manually curated by comparing 

with predicted annotations for P. persica (v1.0 and v2.0 of IPGI) and P. mume by gene, 

CDS and predicted protein alignment study through Clustal Omega aligner (McWilliam 

et al., 2013).  
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RNAseq differential expression analysis 

Cleaned reads from mature anthers, styles and leaves of ‘Goldrich’, ‘Canino’ and 

‘Katy’ were aligned against ‘hybrid’ peach genome sequence containing the apricot M-

locus syntenic region through the 'align_and_estimate_abundance.pl' script available 

using the Bowtie aligner as part of Trinity software (Langmead et al., 2009). From these 

alignments, transcript quantification was performed with RSEM (Li and Dewey 2011). 

Estimated fraction of fragments that are derived from a gene were further used for 

differential expression analysis. Raw counts generated from RSEM were imported into 

the edgeR package (Robinson et al., 2010) from Bioconductor v.2.11 (Gentleman et al., 

2004) in order to determinate the significance level of gene-level expression. To filter 

out the likely transcript artifacts and lowly expressed transcripts, only were maintained 

those with a value of counts per million (cpm) > 1 at least in all replicates of one 

condition. A between-sample normalization was made taking into account the total 

number of reads by library. To observe the relations between samples and replicates, 

both technical and biological, a multidimensional scaling (MDS) plot was made. False 

discovery rate (FDR) <= 0.05 was used to determine the threshold of the P-value in 

multiple tests.  Heat-map was performed using a hand-made script by R. 

 

Polymorphism screening 

Variants from positions 142.155 to 276.184 (aM-supercontig) called in ‘SNP 

identification and analysis’ section were used for this analysis (Table S3.5). 

Additionally, ‘InDels and Structural Variants detection’ algorithm through CLC 

Genomics Workbench 8.0.1 software was also used in the aM-supercontig realignment 

of the three cultivars (from ‘WGS Illumina data alignment’ section), parameters 

settings: ‘P-value threshold = 0.0001’, ‘Maximum number of mistmatches = 3’ and 

‘Minimum number of reads = 2’. Overall variants (variants called from ‘Basic variant 

detection’ and ‘InDels and Structural Variants detection’) between positions 142.155-

276.184 from self-compatible cultivars (‘Canino’ and ‘Katy’) were compared against 

self-incompatible cultivar ‘Goldrich’ using ‘Compare sample variants’ (‘Keep variants 

that are different’ option was choice) and ‘Amino acid changes’ tools included in CLC 

Genomics Workbench 8.0.1 in order to identify those polymorphisms present in self-

compatible cultivars and absent in the self-incompatible cultivar that led to non-

synonymous changes in the predicted proteins (Table S3.7).     
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PaMDOr gene amplification and sequencing from gDNA  

Overlapping fragments comprising PaMDOr gene (considering that has a 

reverse orientation in the apricot M-locus supercontig sequence annotation) were PCR 

amplified with specific primer pairs PaMDsb_F1 (5’-

GTTCTCTTGCCGGATATCTAATATGT-3’, -1741 bp from start-codon)/PaMDsb_R1 

(5’-ACGGTTGGGTTGACATTAAAAC-3’, +169 bp from start-codon) and 

PaMDsb_F2 (5’- TTTGGCCTGTTTTGGAACC-3’,  -1179 bp from start-

codon)/PaMDsb_R2 (5’- ATACAAAGATGGGCGCTGA-3’, -199 bp from start-codon) 

using ‘CC-67’ (mm) and ‘K06-17’ (mm) gDNA as template for m-allele sequencing and 

‘CC-77’ (MM) gDNA as template for M-allele sequencing. PCR amplifications were 

performed in a final volume of 20 µl containing 75 mM Tris– HCl, pH 8.8; 20 mM 

(NH4)2SO4; 1.5 mM MgCl2; 0.1 mM of each dNTP; 20 ng of genomic DNA and 1 U of 

DreamTaq polymerase (Thermo Scientific, Waltham, MA). Cycling conditions were as 

follows: an initial denaturing step of 94ºC for 2 min; 30 cycles of 94ºC for 30 s, 55ºC 

for 60 s and 72ºC for 1 min 30 s; and a final extension of 72ºC for 10 min 

(GeneAmp®PCR System 9700, Perkin-Elmer, Fremont, CA). Four independent 

replicates were amplified and PCR products were checked by electrophoresis and 

finally mixed together to purify by DNA Clean&Concentrator-5 Kit (Zymo Research, 

Irvine, CA). Purified PCR products were sequenced by Sanger by the Bioinformatics 

Service at the IBMCP (http://www.ibmcp.upv.es) and resulting sequences were 

assembled through Staden software package. 

 

PaMDOr m-FaSt insertion genotyping 

Specific primer pair PaMDsb_F2/PaMDsb_R2 was used for PaMDsb m-FaSt 

insertion genotyping. PCR conditions were the same used for PaMDOr gene 

amplification from gDNA in previous section (see above). PCR products were 

electrophoresed in 1% (w/v) agarose gel. 

 

BLASTP Reciprocal Best Hit (RBH) analysis 

BLASTP analysis of the PaMDOr predicted protein was performed against ‘non-

redundant protein sequences’ database of NCBI (Altschul et al., 1990). Some accessions 

related to SI from this ‘BLASTP direct’ result were selected for ‘BLASTP reciprocal’ 

analysis against Prunus (taxid: 3754) database of NCBI. These proteins were XP 

008230295.1 and XP 008230297.1 (corresponding to Pm015399 and Pm015400 
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respectively in Prunus mume protein database), XP_007215948.1 and XP 007216055.1 

(corresponding to ppa011285m and ppa017665m respectively in Prunus persica, v1.0 

IPGI, protein database), XP_008341809.1 and XP 008379454.1 (corresponding to 

MDP0000148485 and MDP0000233548 respectively in Malus domestica, v1.0, protein 

database (Velasco et al., 2010)), XP 004304201.1 and XP 004306054.1 (corresponding 

to gene04226-v1.0-hybrid and gene04224-v1.0-hybrid respectively in Fragaria vesca, 

v1.0, protein database (Shulaev et al., 2011)), XP_004232135.1 (corresponding to 

Solyc02g089230.2.1 in Solanum lycopersicum, ITAG 2.3 protein database), 

XP_009774377.1 (Nicotiana Sylvestris accession), XP_009608607.1 (Nicotiana 

tomentosiformis accession) and NP_198706.1 (corresponding to AT5G38900.1 in 

Arabidospsis thaliana, TAIR10, protein database). All BLASTP analysis were carried 

out with an E value cut-off < 1e-3. 

 

Apricot M-locus syntenic block analysis 

Assembled genome sequence and predicted protein collections of Prunus 

persica (Verde et al., 2013), Malus domestica (Velasco et al., 2010), Solanum 

lycopersicum (Consortium et al., 2012) and Arabidopsis thaliana (Arabidopsis genome 

initiative, 2000) were used to localize M-locus syntenic blocks in the four genomes. 

Data were retrieved from the GDR database (www.rosaceae.org; 

Prunus_persica_v1.0_scaffolds.fa, Prunus_persica_v1.0_scaffolds.gff3, 

Prunus_persica_v1.0_peptide.fa, Malus_x_domestica.v1.0.contigs.fa, 

Malus_x_domestica.v1.0.consensus.gff and 

Malus_x_domestica.v1.0.consensus_peptide.fa), the SolGenomics Network 

(www.solgenomics.net; S_lycopersicum_chromosomes.2.30.fa, 

ITAG2.3_gene_models.gff3 and ITAG2.3_proteins.fasta) and from TAIR database 

(TAIR10_chr_all.fas, TAIR10_GFF3_genes.gff and TAIR10_pep_20101214.txt). 

Proteins from ppa001611m (position 18.391.171) to ppa001157m (position 18.769.249) 

of scaffold_3 in Prunus persica, encompassing 62 genes, were used as queries for RBH 

analysis against the other 3 predicted protein databases. Thus, best hit after ‘Direct 

BLASTP’ analysis was used as query against Prunus persica protein database; whether 

best hit from ‘Reciprocal BLASTP’ analysis matched with initial Prunus persica 

protein used as query, this positive RBH was used as anchor in syntenic block 

identification. RBH analysis against Malus domestica, Solanum lycopersicum and 

Arabidopsis thaliana databases was carried out through custom-made python scripts 
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using executable gffutils (www.pythonhosted.org/gffutils) and blastall (Altschul et al., 

1990) packages. RBH results supporting syntenic blocks identification was visualized 

by Circos software (Krzywinski et al., 2009).  

 

Phylogenetic tree-based analysis 

Phylogenetic analysis was conducted by MEGA6 (Tamura et al., 2013). Amino 

acid sequences of accessions selected in section ‘BLASTP Reciprocal Best Hit (RBH) 

analysis’ and the protein accessions XP_09373771.1 and XP_009378259.1 (Pyrus 

accessions), XP_006338333.1 and XP_015064048.1 (corresponding to 

Sotub02g033650.1.1 and Sopen02g034020.1 respectively in Solanum tuberosum 

(protein database) and Solanum pennelli, PGSC DM v3.4 and S.pennelli protein 

databases of ), XP_013674618.1 and XP_013651836.1 (Brassica napus accessions), 

XP_009125096.1 (Brassica rapa accession), XP_013613719.1 (Brassica oleracea 

accession) and XP_002868748.1 (Arabidopsis lyrata accession) were aligned by 

ClustalW (Thompson et al., 1994). Phylogenetic relationship tree was constructed by 

the Maximum Likelihood method (Felsenstein, 1981) and phylogenetic test was done 

based on 1,000 bootstrap replicates. LG+G was employed as the best fits for protein 

alignment. 
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Abstract 

 

Self-Incompatibility (SI) is the reproductive barrier widest spread in plant kingdom, 

which has evolved differently at molecular level to prevent inbreeding and assist genetic 

exchange. SI is genetically controlled by the S-locus, where at least two linked 

multiallelic genes are expressed in the pollen and pistil sides determining the specific 

pollen-pistil recognition. In Rosaceae and Solanaceae, S-RNases (pistil) and S-locus F-

Box (pollen) proteins are these S-determinants. In spite of sharing S-factors, recent 

studies have spotlighted a different origin for Prunus F-Box proteins, scenario that 

matches with a different recognition behavior observed in this genus. Nevertheless, 

factors unlinked to the S-locus named modifiers are also fully required to reject self-

pollen, but they have received less attention than S-determinants. Most of described 

modifiers have only been identified in Solanaceae and remain elusive in Rosaceae. This 

work was particularly aimed to identify in Prunus putative orthologues for Solanaceae 

and Maloideae modifiers in order to deepen into the evolutionary history of the GSI 

system in both families. Six genes 120K, NaTrxh, NaStEP, SBP1, NaPCCP 

(Solanaceae) and MdABCF (Maloideae) have been assessed using an in silico method to 

predict orthology based on reciprocal best hits, genomic synteny and clustering 

analyses. Putative Prunus orthologues were found for NaTrxh, MdABCF and SBP1 

suggesting a divergent evolution from a common ancestor before splitting of Rosaceae 

and Solanaceae. Regarding 120K, tandem duplication and subsequent functional 

specialization in pollen-pistil interaction might have occurred in asterids after eudicots 

division. Meanwhile, putative gene losses, duplications and/or chromosomal 

rearrangements draw a convoluted evolutionary history for NaStEP and NaPCCP. 

 

Introduction 

 

Solanaceae and Rosaceae families apparently share equivalent factors involved 

in the recognition and rejection of pollen genetically related to avoid inbreeding in the 

so-called Self-Incompatibility (SI) mechanism. These factors are enclosed into the S-

locus that comprises two or more linked genes (de Nettancourt, 2001). In the 

gametophytic self-incompatibility (GSI) mechanism, one of these genes encodes a 

ribonuclease specifically expressed in the style (S-RNases) (Anderson et al., 1986; 

McClure et al., 1989), while the other/s codes an F-Box containing-domain protein 
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(termed SLF, SFB and SFBB in Solanaceae, Prunoideae and Maloideae, respectively) 

(Entani et al., 2003; Lai et al., 2002; Ushijima et al., 2004). Both S-genes are 

multiallelic, thus, if the variants for each tissue-specific gene displayed during 

pollination derive from the same haplotype, the pollen tube growth is arrested 

(McCubbin & Kao, 2000). 

Phylogenetic studies with S-RNases have pointed out a single evolutionary 

origin about 120 MYA for eudicots (Igic & Kohn, 2001; Steinbachs & Holsinger, 

2002). Notwithstanding, extended recent studies have led to propose that S-pollen 

factors in Prunus and Malus might have evolved from different paralogues derived from 

a common Rosaceae ancestor (Aguiar et al., 2015; Akagi et al., 2016; Morimoto et al., 

2015). This proposal might explain differences regarding effects of pollen-part 

mutations affecting S-locus F-box proteins in Prunus and Malus (Tao & Iezzoni, 2010).  

S-locus unlinked genes participating in the GSI system based on S-RNases are also 

required for the mechanism to function. Some of these genes, known as modifier genes 

(McClure et al., 2011), have been identified. HT-B, a small asparagine-rich protein 

(McClure et al., 1999); NaStEP, a Kunitz-type proteinase inhibitor (Busot et al., 2008; 

Jimenez-Duran et al., 2013); 120K, an arabinogalactan protein (AGP) abundant in the 

stylar transmitting tract (Cruz-García et al., 2003 and 2005), and NaTrxh, a thioredoxin 

(TRX) protein from hII group (Avila-Castañeda et al., 2014; Juárez-Díaz et al., 2006) 

are stylar modifiers found in Nicotiana species. Pollen side non-S-factors have also been 

identified, mostly related to the SCF-like E3 ubiquitin ligase complex formed by 

Skp1/Cul1/F-box proteins where additionally Cul1 interacts with Rbx1 (Zhang et al., 

2009). All SCF components have been cloned, firstly in Petunia (Hua & Kao, 2006; 

Huang et al., 2006; Li et al., 2014) and later in other species including Malus, Pyrus and 

Prunus (Matsumoto et al., 2012; Minamikawa et al., 2014; Xu et al., 2013; Yuan et al., 

2014). SBP1, a RING-finger E3 ligase (Sims & Ordanic, 2001); NaPCCP from 

Nicotiana alata (Lee et al., 2008; 2009) and MdABCF, a transmembrane transporter 

identified in Malus domestica (Meng et al., 2014) are other pollen modifier factors 

found to be likely involved in the GSI system.  

SCF components from Prunus and Malus/Pyrus have shown to be orthologous 

to Solanaceae components by phylogenetic relationship studies. Therefore, more genes 

descending from a common ancestor for remaining modifiers might be expected to be 

found within Rosaceae. In addition, due to recent advances in high-throughput 

sequencing technologies and bioinformatics, genome sequences of many plant species 
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have been released publicly including Solanum lycopersicum (Consortium, 2012), 

Nicotiana benthamiana (Bombarely et al., 2012), Malus domestica (Velasco et al., 

2010) and Prunus persica (Verde et al., 2013). This constitutes a powerful source of 

information for comparative genomics and gene orthology analysis (Gabaldon & 

Koonin, 2013; Gabaldón, 2008; Sonah et al., 2011). 

In order to shed some light on the evolutionary history of the Rosaceae and 

Solanaceae GSI system, we performed a screening to identify putative orthologues in 

Prunus for modifier factors already reported in Solanaceae and Maloideae.  

 

Results 

 

A three pillar strategy was designed to identify putative orthologues in Prunus 

for 120K, NaTrxh, NaStEP, MdABCF, SBP1 and NaPCCP modifiers through Rosaceae 

and Solanaceae (using Brassicaceae as outgroup) comparison (Figure 4.1). Orthology 

was evaluated at three different levels corresponding to each requirement, thus two 

genes might be considered as orthologues if they fulfilled the three conditions. The 

starting point before orthology study was to perform a BLASTP analysis (‘Direct 

BLASTP’) using the target modifiers as query against Solanaceae (Solanum 

lycopersicum and Nicotiana benthamiana), Rosaceae (Prunus persica and Malus 

domestica) and Brassicaceae (Arabidopsis thaliana) protein databases (Table 4.3, see 

Material and methods). Best scoring matches from direct BLASTP outcome were used 

to manage the three different orthology analyses. First one relies on Reciprocal Best 

BLASTP Hit (RBH) search comparing all-to-all protein databases (Zheng et al., 2005). 

The second is an orthologue mapping approach to identify syntenic blocks (Zheng et al., 

2005) and the third one is aimed to infer phylogenetic relationships on the basis of 

clustering (tree-based) methods using selected accessions (Yang et al., 2012).  
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Figure 4.1. Schematic representation of genome and protein databases used to study orthology 
relationships between modifiers from Rosaceae and Solanaceae families. 
 
NaTrxh 

Direct BLASTP and RBH analyses 

Best hits obtained by direct BLASTP using NaTrxh (AAY42864) as query in 

each protein database resulted RBHs in almost all comparisons. MDP0000752795 blast 

against S.lycopersicum protein database was the unique exception, where 

Solyc05g006830.2.1 was the best hit in spite of having the same e-value than second hit 

(Solyc02g087630.2.1, RBH in the other comparisons). Therefore, ppa011576m, 

MDP0000752795 (MDP0000448333), Solyc02g087630.2.1, NbS00020764g0013.1 and 

AT5G39950.1 were the RBHs of NaTrxh protein among P. persica, M. domestica, S. 

lycopersicum, N. benthamiana and A. thaliana, respectively (Figure 4.2a; Tables 4.1a 

and S4.1). 

 

a b c

d e f 
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Figure 4.2. Schematic representation of RBH results for NaTrxh (a), SBP1 (b), MdABCF (c), 120K 
(d), NaStEP (e) and NaPCCP (f). First hits from direct BLASTP analysis (Table 4.1) are shown in 
horizontal and vertical orientation. Squares show the results of pairwise comparison of first hits, where 
Green squares indicate that both proteins confirm to be RBHs, while red squares do not. Protein 
accessions from red square comparisons confirmed to have a different protein accession as RBH. These 
proteins and corresponding RBH are indicated below by an alphanumeric code. See supplemental data of 
chapter 4 for more detailed information.      
** First and second hits have similar rates of homology (see Tables S4.1 and S4.4). 
a1 RBH of ppa021281m, MDP0000287357, AT2G34700.1 and NbS00008703g0009.1 in S. lycopersicum 
genome is Solyc02g078040.2.1. 
a2 RBH of ppa021281m, MDP0000287357, AT2G34700.1 and Solyc02g078040.2.1 in N. benthamiana 
genome is NbS00008703g0009.1. 
b1 RBH of MDP0000326576 in P. persica genome is ppa011448m. 
b2 RBH of ppa011496m, MDP0000326576, AT1G17860.1 and NbS00009480g00031.1 in S. lycopersicum 
is Solyc03g020010.1.1. 
b3 RBH of ppa011496m, MDP0000326576, AT1G17860.1 and Solyc03g020010.1.1 in N. benthamiana is  
NbS00009480g00031.1. 
c1 RBH of ppa012133m, MDP0000525794, AT3G17980.1 and NbS0009334g0006.1 in S. lycopersicum is 
Solyc03g118720.2.1. 
c2 RBH of ppa012133m, MDP0000525794, AT3G17980.1 and Solyc03g118720.2.1 in N. benthamiana is 
NbS0009334g0006.1. 
c3 RBH of AT3G17980.1 in N. benthamiana genome is NbS00020637g0006.1. 

 

Identification of syntenic blocks 

Genome segments having the RBH identified for P. persica, S. lycopersicum and 

A. thaliana at chrs.3, 2 and 5, respectively, showed distinct degrees of synteny. The 

major number of anchors were obtained between P. persica and S. lycopersicum 

encompassing a total of 23 in regions 19,75-20,09 Mbs and 44,43-44,74 Mbs, 

respectively. Meanwhile, A. thaliana and P. persica shared 17 anchor points (from 

15,93 to 16,1 Mb in Arabidopsis genome), but P. persica syntenic region spans a larger 

distance (19,70-20,29 Mbs) regarding S. lycopersicum syntenic block. In addition, 

bordering ppa011576m region had certain synteny with a region of A. thaliana at chr.3 

(10,66-10,79 Mbs). Between A. thaliana and S. lycopersicum only 4 anchors were 

positively used to connect both regions, mainly due to neighbouring  

Solyc02g087630.2.1 proteins are homologous to A. thaliana proteins of 4,87-4,91 Mbs 

region at chr.5 (Figure 4.3).  

 

 

 



 

Table 4.1. BLASTP direct results for NaTrxh (a), SBP1 (b), MdABCF (c), 120K (d), NaStEP (e) and NaPCCP (f) protein accessions (see Figure 4.1) against 
Prunus persica (blue colors), Malus domestica (orange colors), Solanum  lycopersicum (red colors), Nicotiana benthamiana (yellow colors) and Arabidopsis 
thaliana (green colors) protein databases. Three first hits are indicated (from darker to lighter colors) matching with results shown in Tables S4.1 to S4.6.  

a)                                         

Hit P. persica    M. domestica    S. lycopersicum    N. benthamiana    A. thaliana    
 

Match length % id E-val Match length % id E-val Match length % id E-val Match length % id E-val Match length % id E-val 
1st ppa011576m 135 67 4E-64 MDP0000752795 106 69 7E-43 Solyc02g087630.2.1  104 88 2E-51 NbS00020764g0013.1  116 100 2E-65 AT5G39950.1  109 69 1E-43 
2nd ppa013299m 130 55 6E-52 MDP0000448333 108 68 5E-40 Solyc05g006830.2.1  108 72 2E-44 NbS00027633g0013.1  116 93 2E-59 AT1G19730.1  108 47 4E-28 
3rd ppa013161m 110 49 2E-37 MDP0000391509 110 59 1E-37 Solyc05g006860.2.1  108 67 3E-42 NbS00010261g0005.1  123 60 1E-40 AT1G45145.1  107 50 9E-28 

                     
b)                                         

Hit P. persica 
   

M. domestica 
   

S. lycopersicum 
   

N. benthamiana 
   

A. thaliana 
   

  Match length % id E-val Match length % id E-val Match length % id E-val Match length % id E-val Match length % id E-val 
1st ppa008290m 321 70.09 2E-167 MDP0000522795 319 69.59 3E-159 Solyc04g078760.2.1 316 91.14 0.0 NbS00055742g0004.1 331 90.63 0.0 AT1G45976.1 327 63.30 2E-141 
2nd ppa008184m 251 39.44 2E-51 MDP0000717791 323 64.71 8E-138 Solyc05g005210.2.1 234 38.03 6E-46 NbS00016021g0006.1 331 88.22 0.0 AT1G60610.3 243 38.68 2E-45 
3rd ppa007884m 237 30.80 2E-25 MDP0000650075 316 64.56 3E-133 Solyc03g112860.2.1 214 35.51 4E-29 NbS00020248g0004.1 234 40.17 3E-48 AT1G60610.2 243 38.68 2E-45 

                     
c)                                         

Hit P. persica    M. domestica    S. lycopersicum    N. benthamiana    A. thaliana    
  Match length % id E-val Match length % id E-val Match length % id E-val Match length % id E-val Match length % id E-val 
1st ppa002137m 711 93,95 0 MDP0000170302 711 99,16 0 Solyc08g082850.2.1 713 80,65 0 NbS00014920g0008.1 535 77,38 0 AT1G64550.1 713 81,77 0 
2nd ppa002097m 576 45,14 2E-154 MDP0000899854 711 97,47 0 Solyc07g008610.1.1 562 45,73 4E-156 NbS00001134g0008.1 311 77,17 3E-167 AT5G60790.1 571 42,91 2E-158 
3rd ppa003175m 545 42,94 4E-153 MDP0000477774 545 43,3 2E-153 Solyc11g069090.1.1 545 43,85 4E-156 NbS00011489g0001.1 565 45,49 5E-155 AT3G54540.1 567 45,15 3E-153 

                     

d)                                         

Hit P. persica    M. domestica    S. lycopersicum    N. benthamiana    A. thaliana    
  Match length % id E-val Match length % id E-val Match length % id E-val Match length % id E-val Match length % id E-val 
1st ppa021281m 129 42.64 4E-19 MDP0000287357 131 44.27 5E-21 Solyc02g078050.2.1 281 56.23 4E-68 NbS00009580g0020.1 197 71.07 5E-36 AT2G33790.1 197 35.53 2E-19 
2nd   

   
MDP0000165381 129 44.96 1E-19 Solyc02g078060.1.1 112 65.18 2E-40 NbS00025834g0007.1 134 55.22 5E-33 AT2G34700.1 140 40.00 2E-19 

3rd         MDP0000423907 129 31.01 3E-08 Solyc02g078100.2.1 145 53.10 2E-35 NbS00007980g0003.1 167 46.71 3E-32 AT3G09925.1 149 26.17 4E-09 

                     

e)                                         

Hit P. persica    M. domestica    S. lycopersicum    N. benthamiana    A. thaliana    
  Match length % id E-val Match length % id E-val Match length % id E-val Match length % id E-val Match length % id E-val 
1st ppa011496m 190 42.11 8E-33 MDP0000326576 203 35.96 2E-22 Solyc03g098710.1.1 203 47.29 8E-45 NbS00018395g0002.1 246 68.29 1E-92 AT1G17860.1 237 33.33 2E-25 
2nd ppa011653m 159 40.25 2E-23 MDP0000619608 203 35.96 4E-22 Solyc06g072230.1.1 225 39.11 1E-34 NbC24872723g0001.1 220 60.45 2E-77 AT1G73260.1 192 35.94 2E-22 
3rd ppa011448m 207 35.75 3E-23 MDP0000635659 193 35.75 9E-22 Solyc03g019690.1.1 226 40.71 2E-34 NbS00018395g0011.1 243 58.44 3E-69 AT1G73325.1 229 32.31 3E-15 

                     
f)                                         

Hit P. persica       M. domestica       S. lycopersicum       N. benthamiana       A. thaliana       
  Match length % id E-val Match length % id E-val Match length % id E-val Match length % id E-val Match length % id E-val 
1st ppa012133m 187 75.94 4E-99 MDP0000525794 187 75.94 2E-100 Solyc12g040800.1.1 165 93.33 1E-111 NbS00020637g0006.1 188 93.09 3E-119 AT3G17980.1 172 76.74 1E-92 
2nd ppa012128m 187 75.94 4E-99 MDP0000776395 184 75.54 6E-98 Solyc06g068940.2.1 166 83.73 9E-98 NbS00009698g0010.1 183 83.61 2E-102 AT1G48590.1 164 77.44 2E-88 
3rd ppa012140m 187 75.94 4E-99 MDP0000259616 164 70.73 1E-82 Solyc03g118720.2.1 166 80.12 4E-97 NbS00020564g0001.1 166 84.94 1E-101 AT1G48590.2 164 77.44 2E-88 
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Figure 4.3. Syntenic comparative analysis of regions containing NaTrxh RBHs (anchors) with A. 
thaliana (green), S. lycopersicum (red) and P. persica (blue) genomes. Black rectangles within circular 
genome regions represent gene annotation in scale, red lines are anchors between P. persica and S. 
lycopersicum, blue lines are anchors between A. thaliana and P. persica, and green lines are anchors 
between P. persica and A. thaliana. RBHs accessions are shown for each species in the corresponding 
genome regions and are connected by black lines. Red triangles represent a change of scale.  
 

Phylogenetic analysis based on clustering methods 

TRX proteins are currently classified into 8 different groups (Meyer et al., 

2012). NaTrxh belongs to the h group and the II subgroup (there are 3 subgroups in 

class h) (Juárez-Díaz et al., 2006). For the phylogenetic analysis of NaTrxh, accessions 

from TRX groups f, m, x and o as well as proteins from subgroups I, II and III of group 

h (previously used by Juárez-Díaz et al. (2006) for NaTrxh classification) were 

accordingly employed along with the first three hits obtained in direct BLASTP analysis 

for each species. LG+G was the model that best fit with NaTrxh data alignment. All 

TRX groups were successfully clustered including h subgroups, except for AAL54858.1 

that grouped with Trxh subgroup III, when in fact belongs to subgroup I. All RBHs 

grouped with NaTrxh accession independently on the species they came from. 

Additionally, MDP0000448333 and NbS00027633g0013.1 (second hits) were also 

included in this group, occurrence expected for apple but not for N. benthamiana. The 
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rest of second and third best hits from BLASTP analysis also clustered in hII group (but 

in a separate branch) or in hI group (Figure 4.4). 

 

Figure 4.4. NaTrxh phylogenetic tree analysis. Maximum Likelihood phylogenetic tree for accessions 
from ‘Direct BLASTP’ output, RBH results and protein accessions from TRX hI (P29448.1 A. thaliana, 
Q07090.1 N. tabacum, CAA41415.1 N. tabacum, Q42403.1 A. thaliana), TRX hII (AAG52561.1 A. 
thaliana, CAH59452.1 Plantago major, AAY42864.1 NaTrxh), TRX hIII (AAL54858.1 N. tabacum, 
AAG51342.1 A. thaliana, AAN63619.1 N. tabacum), TRX f (Q9XFH8 A. thaliana, AAN63619.1 N. 
tabacum), TRX o (AAK83918.1 A. thaliana), TRX m (AAF15949.1 A. thaliana, AAF15950.1 A. 
thaliana, Q9SEU6.2 A. thaliana and O48737.1 A. thaliana) and TRX x (AFF15952.1 A. thaliana) groups 
taken by Juárez-Díaz et al. (2006). These groups are shown in shading grey. Bootstrap values are shown 
for every node. Accessions highlighted by colors refer to ‘Direct BLASTP’ results (see Table 4.1a). 
 

SBP1 

Direct BLASTP and RBH analyses 

AAF28357 accession from Petunia hybrida was used as query in direct 

BLASTP analysis. The similarity rate between best hits and the rest of matches found 

was very high in all protein databases studied except for M. domestica (which e-value 

difference with second hit was not as high as observed for other species) and N. 

benthamiana (where first and second hits had similar e-values and percentage of 

similarity, but significantly separated of the third hit) (Table 4.1b). The most remarkable 

outcome was that first hits from direct BLASTP analyses resulted to be RBHs all-to-all 

(Figure 4.2b and Table S4.2). 
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Identification of syntenic blocks 

Regions containing AT1G45976.1, ppa008290m and Solyc04g078760.2.1 RBHs 

proteins were analysed to anchor syntenic blocks. P. persica and S. lycopersicum 

showed to have a high synteny, 32 anchor sites led to define syntenic regions between 

chr1: 35,95-36,25 of P. persica and chr.4: 60,83-61,22 of S. lycopersicum. On the 

contrary, AT1G45976.1 region (chr.1: 17,08-17,24) presented less positive anchors with 

P. persica (13) and S. lycopersicum (15) encompassing larger regions (3 and 2,7 Mbs, 

respectively) than those found for both P. persica and S. lycopersicum (Figure 4.5).    

 

Figure 4.5. Syntenic comparative analysis of regions containing SBP1 RBHs (anchors) with A. 
thaliana (green), S. lycopersicum (red) and P. persica (blue) genomes. Black rectangles within circular 
genome regions represent gene annotation in scale, red lines are anchors between P. persica and S. 
lycopersicum, blue lines are anchors between A. thaliana and P. persica, and green lines are anchors 
between P. persica and A. thaliana. RBHs accessions are shown for each species in the corresponding 
genome regions and are connected by black lines. Red triangles represent a change of scale.  
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Phylogenetic analysis based on clustering methods 

PhSBP1 is an E3 ubiquitin ligase having a RING domain where two types have 

been described, H2 (C3H2C3) and HC (C3HC4). PhSBP1 contains this last motif that 

has been, in turn, divided in 2 subtypes in A. thaliana, HCa (SBP1) and HCb, according 

to Stone et al. (2005). Furthermore, they also established a wide number of groups in 

order to classify RING proteins. A. thaliana best hit, AT1G45976.1, belongs to group 6. 

Keeping in mind this information, phylogeny analysis for SBP1 was performed 

including proteins with H2, HCa and HCb RING domains either from group 6 as well 

as from other different groups (excluding type HCb/group 6). The substitution model 

that best fit with SBP1 data alignment was JTT+G, which phylogenetic tree is shown in 

Figure 4.6. Three well differentiated clusters were obtained. RING-type E3 proteins 

having HCa motif of group 6 (HCa/6) were clustered together but into two separated 

subgroups, whereby those accessions annotated as SBP1 proteins and the RBHs 

identified in this work did it in the same subgroup. Notwithstanding, proteins of subtype 

H2 and group-6 (H2/6) did not cluster with HCa/6 group; they were clustered with H2 

proteins of group-1 (although in two subgroups properly separated). Meanwhile, 

proteins of subtypes HCa and HCb from groups 24 and 11.1 respectively were also 

clustered in two separated subgroups but sharing a common ancestor-branch. 
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Figure 4.6. SBP1 phylogenetic tree analysis. Maximum Likelihood phylogenetic tree for accessions 
from ‘Direct BLASTP’ output, RBH results and protein accessions AT4G03000.1 (A. thaliana), 
XP_008360887.1 (M. domestica), XP_004290694.1 (F. vesca), XP_009798672.1 (N. sylvestris), 
AT1G75400.1 (A. thaliana), XP_004307188.1 (F. vesca), XP_009344343.1 (P. bretschneideri), 
XP_007017626.1 (T. cacao), AAF28357.2 (P. hybrida), ACD40009.1 (N. alata), AAS76633.1 
(S.chacoense), ABB77434.1 (Petunia inflata), AT4G14220.1 (A. thaliana), XP_007034654.1 (T. cacao), 
XP_009338470.1 (P. bretschneideri), XP_007224756.1 (P. persica), XP_009766366.1 (N. sylvestris), 
AT1G65430.1 (A. thaliana), XP_002888408.1 (Arabidopsis lyrata), XP_007208709.1 (P. persica), 
XP_008388828.1 (M. domestica), XP_015058402.1 (S. pennellii), CDX73080.1 (B. napus), 
XP_015064547.1 (S. pennellii), XP_009360564.1 (P. hybrida), XP_004304259.1 (F. vesca), 
XP_008230837.1 (P. mume) and AAM61038.1 (A. thaliana). RING domain/groups (according to Stone et 
al., 2005 classification) are included in grey shading. Bootstrap values are shown for every node. 
Accessions highlighted by colors refer to ‘Direct BLASTP’ results (see Table 4.1b). 
 

MdABCF 

Direct BLASTP and RBH analyses 

MdABCF transporter was identified in M. domestica (protein accession 

MDP0000170302). Direct BLASTP analysis against P. persica and A. thaliana showed 

a marked difference in the e-value threshold for highest scoring hits regarding 2nd and 

3rd hits. Either way, best hits found in all protein databases (ppa002137m, 

Solyc08g082850.2.1, NbS00014920g0008.1 and AT1G64550.1) demonstrated to be 

RBHs all-to-all. Solely when apple protein database was used as subject, 

MDP0000899854 protein was the best match in all cases (excluding M. domestica). But 

this did it exhibiting the same e-value than MDP0000170302 (even MDP0000170302 

presented higher percentages of similarity). This result may be due to the recent genome 

duplication occurred in apple (Figure 4.2c and Tables 4.1c and S4.3). 

Identification of syntenic blocks 

Contiguous locations for P. persica, S. lycopersicum and A. thaliana RBHs were 

studied for the identification of reciprocal syntenic blocks. Twenty anchors between 

AT1G64550.1 region (chr.1 at 23,85-24,06 Mb) and ppa002317m (chr.5 at 11,79-12,80) 

were found. P. persica region also showed synteny with two different regions of A. 

thaliana at chr.4 (6,61-6,68 and 12,45-12,52). Less anchors (12) were found between 

AT1G64550.1 and Solyc08g082850.2.1 (chr.8 at 62,15-63 Mb). S. lycopersicum region 

also had synteny with chr.4 (6,62-6,69 and 12,45-12,53 Mb) and 5 (16,78-16,82) of A. 

thaliana. On the other hand, more anchors between P. persica and S. lycopersicum were 

observed (23) encompassing shorter regions for both (approximately 350 Kb for P. 
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persica and 333 Kb for S. lycopersicum) in comparison to the corresponding 

orthologous segments observed for A. thaliana (Figure 4.7).  

 

Figure 4.7. Syntenic comparative analysis of regions containing MdABCF RBHs (anchors) with A. 
thaliana (green), S. lycopersicum (red) and P. persica (blue) genomes. Black rectangles within circular 
genome regions represent gene annotation in scale, red lines are anchors between P. persica and S. 
lycopersicum, blue lines are anchors between A. thaliana and P. persica, and green lines are anchors 
between P. persica and A. thaliana. RBHs accessions are shown for each species in the corresponding 
genome regions and are connected by black lines. Red triangles represent a change of scale.  
 

Phylogenetic analysis based on clustering methods 

ABC transporter-types in plants have been recently reviewed and classified into 

7 groups from A to G (Verrier et al., 2011). Particularly, pollen-expressed M. domestica 

S-RNase transporter belongs to group F (Meng et al., 2014). Proteins from Solanaceae, 

Rosaceae and Brassicaceae families of each ABC group, in addition to the RBHs, were 

used for phylogenetic analysis. LG+G+I model substitution was the best for resulting 

alignment. Figure 4.8 shows that all proteins were clustered in corresponding ABC 

group and RBHs identified in this work for the four families were grouped with 

MdABCF. Interestingly, three subgroups were obtained within group F. All RBHs and 
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MdABCF accession were included in one of them, while the other two subgroups were 

composed by second and third hits obtained from BLASTP analysis (some hits with an 

e-value threshold lower than 1e-5 not shown in Table 4.1c were also analysed and found 

in both subgroups). According to these results, ABCF subgroups were classified from 

ABCF-1 to ABCF-3, where ABCF-1 includes MdABCF and their RBHs.   

 
Figure 4.8. MdABCF phylogenetic tree analysis. Maximum Likelihood phylogenetic tree for accessions 
from ‘Direct BLASTP’ output, RBH results and protein accessions from ABCA (XP_013630173.1 B. 
oleracea, XP_009759241.1 N. sylvestris and XP_004294675.1 F. vesca), ABCB (XP_013631705.1 B. 
oleracea and XP_009593037.1 Nicotiana tomentosiformis), ABCC (AT1G04120.1 A. thaliana, 
XP_008235582.1 P. mume, XP_009335236.1 Pyrus x bretschneideri and XP_009119329.1 B. rapa), 
ABCD (XP_009766250.1 N.sylvestris, XP_004237396.1 S. lycopersicum and XP_013656561.1 B.napus), 
ABCE (XP_009602236.1 N. tomentosiformis and XP_013598714.1 B. oleracea) and ABCG 
(AFC36404.1 P. hybrida, XP_008245603.1 P. mume, XP_015070384.1 Solanum pennellii and 
XP_006306902.1 Capsella rubella) groups. These groups and ABCF group, divided in three subgroups 
from I to III, are included in grey shading. Bootstrap values are shown for every node. Accessions 
highlighted by colors refer to ‘Direct BLASTP’ results (see Table 4.1c). 
 

120K 

Direct BLASTP and RBH analyses 

120K (AAC15893 accession from Nicotiana alata) was used as query for 

BLASTP analysis. Against P. persica protein database a unique significant hit was 
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obtained, ppa021281m (e-value = 4e-19). Similarly, in M. domestica only two hits 

(MDP0000287357 and MDP0000165381) scored e-values<1e-5, (5e-21 and 1e-19 e-

values respectively). On the other hand, in S. lycopersicum and N. benthamiana there 

were more hits with low e-values. Solyc02g078050.2.1 protein had lowest e-value (4e-

68) followed by Solyc02g078060.1.1, Solyc02g078100.2.1 and Solyc02g078040.2.1 

(having 2e-40, 2e-35 and 2e-32 values respectively). Whereas in N. benthamiana a total of 

9 proteins had e-value threshold less than 1e-5; among them, the first three matches 

NbS00009580g0020.1, NbS00025834g0007.1 and NbS00007980g0003.1 presented 

similar e-values (5e-36, 5e-33 and 5e-32). Meanwhile, AT2G33790.1 and AT2G34700.1 A. 

thaliana proteins had the same (lowest) e-values (2e-19) (Table 4.1d).  

The first direct BLASTP hit of each species was used as query to search RBHs 

in the five protein databases, except for A. thaliana where AT2G34700.1 was used. 

RBHs between P. persica and M. domestica were confirmed and coincided with 

highest-scoring hits found in BLASTP. AT2G34700.1 protein was also RBH of the 

Rosaceae 120K RBHs identified. However, RBHs of ppa021281m, MDP0000287357 

and AT2G34700.1 in S. lycopersicum and N. benthamiana were Solyc02g078040.2.1 

and NbS00006956g0008.1 respectively, and not the best BLASTP matches found for 

both species (Solyc02g078050.2.1 and NbS00025834g0007.1). This result shows that 

non-Solanaceae 120K RBHs are the first BLASTP hit either for Solyc02g078040.2.1 

and NbS00006956g0008.1 as well as for Solyc02g078050.2.1 and 

NbS00025834g0007.1. Analogously, S. lycopersicum and N. benthamiana showed to 

have distinct RBHs between them in regards to BLASTP results (Solyc02g078100.2.1 

and NbS00008703g0009.1) (Figure 4.2d and Table S4.4). 

Identification of syntenic blocks 

A. thaliana region containing AT2G33790.1 and AT2G34700.1 genes was used 

because both accessions are located in close proximity at chr.2 (positions 14,29 and 

14,63 Mbs respectively). Meanwhile, the four S. lycopersicum proteins found in 

BLASTP analysis are positioned in tandem between 37,43 and 37,46 Mb positions at 

chr.2. On the other hand, a region that contains ppa21281m (2,33 Mbs) at chr.4 was 

included in 120K syntenic study as well. Thirty-one anchors between ppa21281m and 

Solyc02g078050.2.1 regions were determined, which led to define conserved syntenic 

blocks between P. persica and S. lycopersicum encompassing approximately 270 and 

380 Kbs respectively. In turn, 40 and 22 anchors covering more extended regions for 
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ppa21281m (chr.4: 2,15-6,65 Mbs) and Solyc02g078050.2.1 (chr.2: 34,5-37,65 Mbs) 

have also shown to maintain conserved blocks of synteny with A. thaliana, even though 

these are dispersed in 2 different chromosomes (chr.1: 9,8-10; chr.2: 14,2-14,8) (Figure 

4.9). 

 

Figure 4.9. Syntenic comparative analysis of regions containing 120K RBHs (anchor) with A. 
thaliana (green), S. lycopersicum (red) and P. persica (blue) genomes. Black rectangles within circular 
genome regions represent gene annotation in scale, red lines are anchors between P. persica and S. 
lycopersicum, blue lines are anchors between A. thaliana and P. persica, and green lines are anchors 
between P. persica and A. thaliana. RBHs accessions are shown for each species in the corresponding 
genome regions and are connected by black lines. Red triangles represent a change of scale.  
 

Phylogenetic analysis based on clustering methods 

120K is an AGP from the N.alata stylar transmitting tract that binds to S-RNases 

(Cruz-García et al., 2005); however other AGPs, such as pistil extensin-like protein III 

(PELPIII) and Transmitting Tract-Specific glycoproteins (TTS) have been described to 

share conserved domains with 120K and interact with S-RNases as well (Cheung et al., 
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1993;Cruz-García et al., 2005). These AGPs, Solanaceae proteins from direct BLASTP 

analysis and the non-Solanaceae RBHs previously identified were used for 120K tree 

clustering reconstruction. WAG + G substitution model was the best fit on 120K data 

alignment. Maximum Likelihood tree showed two differentiated groups, in one of them 

3 subgroups corresponding to 120K, PELPIIIs and TTS Nicotiana proteins were found, 

with 120K and PELPs subgroups branched together. S. lycopersicum proteins 

Solyc02g078050.2.1, Solyc02g078060.1.1 and Solyc02g078100.2.1 were included in 

120K, PELP and TTS subgroups respectively. The other big group was formed in one 

hand by the rest of proteins considered in this analysis belonging to P. persica, M. 

domestica and A. thaliana genomes, which clustered in one branch. Whereas in the 

other branch Solyc02g078040.2.1, a PELP protein from Solanum nigrum 

(ADW66159.1) and remaining Nicotiana proteins (NbS00008703g0009.1, 

NbS00003320g0020.1 and NbS00006956g0008.1) were clustered together (Figure 

4.10).    

 
Figure 4.10. 120K phylogenetic tree analysis. Maximum Likelihood phylogenetic tree for accessions 
from ‘Direct BLASTP’ output, RBH results and protein accessions AAC15893.1 (N. alata 120K), 
AAX82548.1 (Nicotiana tabacum 120K), AAX82549.1 (Nicotiana plumbaginifolia 120K), AAA87047.1 
(N. alata PELPIII), ADW66159.1 (Solanum nigrum PELP), CAA78397.1 (N. tabacum PELP), 
ACN60130.1 (Petunia x hybrida), AAS92246.1 (Capsicum annum), TTS-1 (translated protein from 
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transcript accession Z16403) and TTS-2 (translated protein from transcript accession Z16404). Bootstrap 
values are shown for every node. Three groups that correspond to proteins that branch with 120K, 
PELPIII and TTS accessions are included in grey shading. Accessions highlighted by colors refer to 
‘Direct BLASTP’ results (see Table 4.1d).  
 

NaStEP 

Direct BLASTP and RBH analyses 

NaStEP direct BLASTP analysis gave a noteworthy outcome. In non-Solanaceae 

species 3 or 4 hits having e-values < 1e-5 were found, whereas in S. lycopersicum and N. 

benthamiana 16 and 10 proteins were obtained, respectively (data not shown). Ten out 

of sixteen tomato proteins are contiguously located (from Solyc03g098670.1.1 to 

Solyc03g098790.1.1 including Solyc03g098710.1.1, which was the best hit in this 

analysis). Solyc06g072210.1.1, Solyc06g072220.1.1 and Solyc06g072230.1.1 (second 

hit) are also located together, and Solyc03g019690.1.1 and Solyc03g020010.1.1 (third 

and four hits respectively) are in close positions. Additionally, first hit in every specie 

showed significant lower e-values regarding second hits, with the exception of M. 

domestica where the three first hits presented similar e-values (2e-22, 4e-22 and 9e-22) 

(Table 4.1e). 

In RBH outcome is also important to notice that P. persica and M. domestica 

best hits from direct BLASTP were not RBHs. Best match for ppa011496m, 

ppa011653m and ppa011448m P. persica proteins (best three hits in this order) in M. 

domestica protein database was MDP0000326576, and best match for this protein in 

peach protein database was ppa011448m. Hence, MDP0000326576 and ppa011448m 

were RBHs. Meanwhile, AT1G17860.1 from A. thaliana was RBH of ppa011496m and 

MDP0000326576. In turn, Solyc03g098710.1.1 and NbS00018395g0002.1 (first hit in 

N. benthamiana after BLASTP analysis) were not RBHs in non-Solanaceae species, 

which RBHs were Solyc03g020010.1.1 and NbS00009480g0031.1 

(Solyc03g020010.1.1 was also the N. benthamiana RBH) (Figure 4.2e and Table S4.5). 

 

Identification of syntenic blocks 

Three regions were considered for S. lycopersicum, those containing 

Solyc03g098710.1.1 (chr.3 at position 54,5 Mb), Solyc06g072230.1.1 (chr.6 at position 

40,89 Mb) and Solyc03g020010.1.1 (chr.3 at position 6,8 Mb) accessions. While P. 

persica proteins obtained in direct BLASTP analysis are located in close positions at 
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chr.4. Lastly, AT1G17860.1 bordering region at chr.1 (6,15 Mb) was studied. 

Solyc03g098710.1.1 and Solyc06g072230.1.1 regions showed to be syntenyc with two 

different regions of the same chromosome in both P. persica and A. thaliana genomes 

(13,62-13,98 and 17,91-18,46 Mbs at chr.5 of P. persica and 6,03-6,64 and 17,96-18,03 

Mbs at chr.3 of A. thaliana). Solyc03g020010.1.1 region also had anchor sites with 

18,33-18,43 Mbs region at chr.5 of P. persica such as Solyc03g098710.1.1 and 

Solyc06g072230.1.1 regions, but additionally showed certain degree of synteny with 

positions 8,41-8,87 Mbs of this chromosome and with chr.2 (25,22-25,27 Mb). 

Furthermore, chr.1 of A. thaliana in both regions 6,14-7,23 and 27,57-27,60 Mbs were 

syntenyc with this S. lycopersicum region. Against these results, ppa011496m-

ppa011448m region was clearly syntenic with chr.8 (59,66-59,77 Mbs) of S. 

lycopersicum and with several regions from chr.1 and 4 of A. thaliana. Meanwhile, 

AT1G17860.1 has certain degree of synteny with chr.3 (2,52-2,91) and 5 of P. persica 

between positions 17,46-18,45 (segments also syntenic with S. lycopersicum blocks 

containing Solyc03g098710.1.1 and Solyc06g072230.1.1). AT1G17860.1 showed 

anchors with chrs.3 and 6 of S. lycopersicum in locations separated by several Mbs of 

Solyc03g098710.1.1 and Solyc06g072230.1.1 (Figure 4.11).  
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Figure 4.11. Syntenic comparative analysis of regions containing NaStEP RBHs (anchors) with A. 
thaliana (green), S. lycopersicum (red) and P. persica (blue) genomes. Black rectangles within circular 
genome regions represent gene annotation in scale, red lines are anchors between P. persica and S. 
lycopersicum, blue lines are anchors between A. thaliana and P. persica, and green lines are anchors 
between P. persica and A. thaliana. RBHs accessions are shown for each species in the corresponding 
genome regions and are connected by black lines. Red triangles represent a change of scale.  
 

Phylogenetic analysis based on clustering methods 

Busot et al. (2008) analysed different Kunitz-type (serine, aspartic and cysteine) 

proteinase inhibitors from I3 family (including NaStEP) and established a total of 6 

clades where NaStEP was grouped in clade V. Thus, in the phylogenetic analysis for 

NaStEP some of proteinase inhibitor proteins used by Busot et al. (2008), including 

NaSoEP (a protein similar to NaStEP but showing a distinct expression pattern) were 

incorporated in this analysis. The best substitution model that fit with the alignment was 

WAG+G. All proteins extracted from Busot et al. (2008) work grouped in the same 

clades, only AAG38519.1 (clade IV) branched with clades II and IV, but was not 

included in any of both despite being closer to clade IV. P. persica and A. thaliana 
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RBHs clustered in clade I, plus NbS00009480g0031.1, Solyc03g020010.1.1, 

Solyc06g072220.1.1, Solyc06g072230.1.1, ppa011653m and AT1G73260.1, supporting 

RBH results. While Solyc03g098710.1.1 clustered with NaStEP protein and separately 

of NaSoEP, which grouped with NbS00018395g0002.1, NbS00018395g0011.1 and 

NbC24872723g0001.1 N. benthamiana proteins. In this clade V, Solyc03g019690.1.1 

protein (close to Solyc03g020010.1.1 in S. lycopersicum genome) was also included but 

in a different branch of NaStEP and NaSoEP subclades. Furthermore, M. domestica best 

hits and ppa011448m protein grouped together in a separate clade of the six classified 

by Busot et al. (2008) This clade, classified as VII, was phylogenetically closer to 

NaStEP clade than clade I containing the rest of P. persica proteins used in this analysis 

(Figure 4.12). 

 
 
Figure 4.12. NaStEP phylogenetic tree analysis. Maximum Likelihood phylogenetic tree for accessions 
from ‘Direct BLASTP’ output, RBH results and protein accessions ABX76297.1 (N. alata NaStEP), 
ABX76298.1 (N. alata NaSoEP), AAF15901.1 (Nicotiana glutinosa), CAA40197.1 (Solanum 
tuberosum), AAA18564.1 (S. tuberosum), AAM10742.1 (S. tuberosum), BAB72020.1 (Raphanus 
sativus), AAM60956.1 (A. thaliana), ABA39633.1 (Brassica oleracea), AAC49969.1 (N. tabacum), 
AAT45389.1 (Medicago trucatula), CAA39860.1 (Theobroma cacao), AAL55800.1 (Ipomoea batatas), 
AAA33390.1 (I.batatas), CAB76907.3 (Cicer arietinum), CAB76906.1 (C. arietinum), CAA56343.1 
(Glycine max), AAG38519.1 (Citrus paradisi), CAH59183.1 (Populus tremula), AAA68962.1 (Salix 
viminalis) taken from Busot et al. (2008). Six clades (from I to VI) according to Busot et al. (2008) 
classification and clade VII (defined in this work) are shown in grey shading. Bootstrap values are shown 
for every node. Accessions highlighted by colors refer to ‘Direct BLASTP’ results (see Table 4.1e). 
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NaPCCP 

Direct BLASTP and RBH analyses 

NaPCCP direct BLASTP analysis produced several hits under 1e-5 e-value 

threshold against each protein database. The first three P. persica hits (which are 

alternative transcripts of ppa012133m) had an equal e-value of 4e-99, fourth 

(ppa025944) and fifth (ppa012484m) hits presented 1e-85 and 9e-81 e-values, 

respectively. In M. domestica, from first (MDP0000525794) to fifth (MDP0000206691) 

hits e-values ranged from 2e-100 to 5e-80. Similarly to M. domestica, from S. 

lycopersicum first (Solyc12g040800.1.1) to fourth (Solyc02g091520.2.1) hit, e-values 

were under 6e-80. The five first hits in N. benthamiana presented the lowest e-values of 

all protein databases analysed (from NbS00020637g0006.1 (3e-119) to 

NbS00051736g0004.1 (6e-98)), while A. thaliana the highest (from first hit 

AT3G17980.1 to fifth hit AT5G37740.1 e-values ranged from 1e-92 to 2e-75, where 

second and third hits are alternative transcripts) (Table 4.1f and data not shown). 

All non-Solanaceae best-scoring matches obtained in previous analysis were 

confirmed to be RBHs to each other; meanwhile Solanaceae first hits after BLASTP 

analysis were also corroborated as RBHs between S. lycopersicum and N. benthamiana 

species. Nevertheless P. persica, M. domestica and A. thaliana RBHs in this two 

species (Solyc03g118720.2.1 and NbS00009334g0006.1) were different to S. 

lycopersicum and N. benthamiana RBH pairs (excluding N. benthamiana RBH of A. 

thaliana that was NbS00020564g0001.1). It must be held that best hits in RBH analysis 

for non-Solanaceae species against S. lycopersicum and N. benthamiana protein 

databases had e-values that ranged in close thresholds (Figure 4.2f and Table S4.6). 

 

Identification of syntenic blocks 

 

Dissimilarities between Solanaceae and the rest of families observed in RBH 

study were once again apparent in macrosynteny analysis. A small number of anchors 

were found for Solyc12g040800.1.1 (Solanaceae RBH) region with both P. persica and 

A. thaliana genomes, and these are scattered in distanced regions. On the other hand, 

Solyc03g118720.2.1 (P. persica, M. domestica and A. thaliana RBH) region at chr.3 

(61,46-61,91 Mb) showed to conserve an orthologous genomic segment with 

ppa012133m region at chr.5 (17,40-17,86 Mb) of P. persica, supported by a total of 37 
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anchor sites. Whereas distinct regions containing AT3G17980.1 and AT1G48590.2 

(second BLASTP hit) proteins at chrs. 3 (6,06-6,25 Mb) and 1 (6,20-6,31/17,94-

17,99/27,65-27,75 Mb) were also syntenic between S. lycopersicum and A. thaliana (29 

anchors). These A. thaliana regions were syntenic with ppa012133m P. persica region 

held up by 41 anchors (Figure 4.13). 

 
Figure 4.13. Syntenic comparative analysis of regions containing NaPCCP RBHs (anchors) with A. 
thaliana (green), S. lycopersicum (red) and P. persica (blue) genomes. Black rectangles within circular 
genome regions represent gene annotation in scale, red lines are anchors between P. persica and S. 
lycopersicum, blue lines are anchors between A. thaliana and P. persica, and green lines are anchors 
between P. persica and A. thaliana. RBHs accessions are shown for each species in the corresponding 
genome regions and are connected by black lines. Red triangles represent a change of scale.  
 

Phylogenetic analysis based on clustering methods 

Lastly, phylogenetic NaPCCP reconstruction was carried out with proposed 

RBHs, some proteins from BLASTP analysis with low e-values and protein accessions 

from BLASTP search into NCBI database. In this alignment, LG+G was the substitution 

model that best fit. Maximum Likelihood tree-clustering showed that 

NbS00020637g0006.1 (N. benthamiana RBH between Solanaceae species), 
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NbS00009698g0010.1 (2nd hit in BLASTP analysis) and Solyc12g040800.1.1 (S. 

lycopersicum RBH between Solanaceae species) grouped with NaPCCP protein. A 

subgroup encompassing Solyc06g068940.2.1 and NbS00020564g0001.1 (2nd and 3rd 

best hits in BLASTP analysis) was the nearest subgroup to NaPCCP. A. thaliana 

accessions AT3G17980.1 and AT1G48590.1 (AT1G48590.2) proteins along with the 

Brassica accessions were next subgroup in proximity, followed by another subgroup 

formed by Solanaceae accessions that contains Solyc03g118720.2.1 protein (RBH of P. 

persica, M. domestica and A. thaliana species). A different subgroup formed by 

ppa012133m, MDP0000525794 (MDP0000776395) and accessions from Fragaria 

vesca and Prunus mume was the subgroup integrated by Rosaceae accessions closest to 

NaPCCP subgroup. All these subgroups defined one of the two larger groups found in 

this analysis. The other group containing a smaller number of proteins, compared to the 

previous one, encompassed Solyc02g091520.2.1, AT5G37740.1 and the rest of 

Rosaceae proteins obtained in BLASTP analysis (Figure 4.14).    

  
Figure 4.14. NaPCCP phylogenetic tree analysis. Maximum Likelihood phylogenetic tree for 
accessions from ‘Direct BLASTP’ output, RBH results and protein accessions ACD40010.1 (N. alata), 
XP_009761742.1 (N. sylvestris), BAO02515.1 (N. alata), ACD40015.1 (Nicotiana bonariensis), 
XP_006346641.1 (S. tubersosum), XP_015059832.1 (S. pennellii), XP_008240150.1 (P. mume), 
XP_009356038.1 (P. bretschneideri), XP_004299529.1 (F. vesca), XP_009145950.1 (B. rapa) and 
XP_013637790.1 (B. oleracea). Bootstrap values are shown for every node. Accessions highlighted by 
colors refer to ‘Direct BLASTP’ results (see Table 4.1f). 
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Discussion 

Gametophytic Self-Incompatibility in Rosaceae and Solanaceae families is based 

on an allele-specific recognition mechanism between the same S-determinant types. In 

addition, some non-S-factors involved in this mechanism have been demonstrated to 

have equivalent functions among species of both families such as for instance the 

components of SCFSLF complexes (Huang & Kao 2006; Matsumoto & Tao 2012). 

Therefore, it would not be surprising that other modifiers descending from common 

ancestors may have been preserved throughout the evolution in both families.  

Several methods have been developed to identify orthologous genes on the basis 

of sequence similarity. Reciprocal Best Hit (RBH) approach is a tool typically 

employed for this purpose (Zheng et al., 2005), however this methodology may be 

misleading because duplication events and the consequent emergence of paralogues or 

co-orthologues might produce erroneous assessments or fail to capture complex 

relationships (Wolf & Kooning 2012).  On the other hand, phylogenetic tree-clustering 

is comparable to RBH since both are based on pairwise similarity. Notwithstanding, 

phylogenetics leads to estimate the history of divergence and may also offer valuable 

information regarding protein structure and conserved domains. This information, 

hardly ascertainable by RBH strategy, is very useful for orthologue discrimination. The 

disadvantage of both approaches is how to face complex duplication events, such as 

segmental or tandem duplications and transposition events (Kong et al., 2007), as well 

as the loss of genes across evolution (Gabaldon & Kooning 2013). This handicap can be 

solved, or partially solved, by the identification of genomic syntenic blocks which 

might shed some light on the divergent evolutionary pathways occurred among species 

(Zheng et al., 2005). 

In this work, a complementary study based on the 3 distinct approaches 

described above was carried out allowing us to identify putative orthologues for some of 

the GSI modifiers previously reported in the literature and to propose alternative 

scenarios when they could not be detected.  

Putative orthologues for NaTrxh, MdABCF and SBP1 were found in Prunus  

First hits obtained in direct BLASTP analysis for NaTrxh, MdABCF and SBP1 

demonstrated to be RBHs to each other in almost all performed comparisons. Thus, on 

the basis of the RBH analyses, ppa011576m, ppa002137m and ppa008290m accessions 
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were proposed as putative orthologues for NaTrxh, MdABCF and SBP1 modifiers in 

Prunus, respectively.  

Additionally, comparative structural genomics highlighted the existence of 

orthologous segments among regions containing P. persica, S. lycopersicum and A. 

thaliana RBHs for NaTrxh, MdABCF and SBP1. It is noteworthy that P. persica and S. 

lycopersicum (sharing S-RNase-based GSI system) have a higher degree of synteny 

(based on the number of anchor points) in comparison with A. thaliana (SSI outgroup 

system) despite Rosaceae and Brassicaceae are phylogenetically closer than Rosaceae 

and Solanaceae (Igic and Kohn 2001). It could also be mentioned that ppa011576m 

(NaTrxh Prunus orthologue) and ppa017665m (PaMDOr; Chapter III) are separated by 

1,3 Mb at the P. persica chr.3. While the corresponding syntenic regions in S. 

lycopersicum for both genes are located in similar distances at chr.2, pointing out the 

conservation of extended orthologous segments in both families.  

Lastly, these modifiers belong to distinct and large protein families which have 

been widely studied and classified. This information was used accordingly for 

phylogenetic tree clustering. TRX proteins are classified in 8 groups (where h group is, 

in turn, divided in 3 subgroups from I to III) (Meyer et al., 2012). In ABC transporters 7 

groups have been established (Verrier et al., 2011) and RING-HC proteins have also 

been categorized in a large number of groups in A. thaliana (Stone et al., 2005). 

Phylogenetic history reconstruction confirmed a close relationship between candidates 

and modifiers in each case. Interestingly, in MdABCF phylogeny study, ABCF group 

was branched in three well defined subgroups, where orthologous candidate genes and 

this modifier were included in the same subgroup (ABCF-1). Similarly, TRX hII 

subgroup (to which NaTrxh belongs) was also divided into three subgroups, putative 

orthologues and NaTrxh were included in the same subgroup. Meanwhile, in SBP1 two 

HCa/6 subgroups were found, and SBP1 accessions were properly classified with 

candidates within the same HCa/6 subgroup.  

A similar function might be expected for these orthologues in both families. In 

this sense, SBP1 role in GSI has not been fully elucidated, but N. alata SBP1 (NaSBP1) 

has been shown to interact with both S-determinants and AGP proteins. In a recent 

work, the putative SBP1 orthologue in Prunus avium (PavSBP1) has been cloned 

(Matsumoto & Tao, 2016) (which is in turn orthologous to ppa008290m accession 

described in this work). The protein-protein interaction analyses carried out in PavSBP1 

did not detect any of the interacting-NaSBP1 factors. This evidence does not support 
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PavSBP1 as a modifier factor in Prunus GSI system in spite of its evolutionary history 

suggests a common origin with Solanaceae SBP1 accessions. Regarding NaTrxh and 

MdABCF both have shown to interact with S-RNases in Nicotiana alata and Malus 

domestica, respectively, but no evidence is currently available about their functions in 

the counterpart family.    

 

Orthology relationships could not be inferred for 120K, NaStEP and NaPCCP  

No Prunus persica predicted peptide was found to fulfill the requirements 

established in this work for being considered orthologous to 120K, NaStEP and 

NaPCCP modifiers. Notwithstanding, some considerations can be extracted that might 

help to glimpse the orthology relationships. 

Most likely, the orthology study performed in 120K reflects the most 

understandable evolutionary framework of these three modifiers. RBH and phylogenetic 

analyses highlight a presumably distinct origin for those Rosaceae and Solanaceae 

proteins similar to 120K. Rosaceae and Solanaceae RBHs do not match and phylogeny 

results not only exclude Rosaceae RBHs from the 120K subgroup, but also from the S-

RNase-binding AGPs subgroups (PELPIII and TTS). However, S. lycopersicum region 

that contains 120K orthologue protein (Solyc02g078050.2.1) also contains proteins 

homologous to PELPIII and TTS (on the basis of phylogeny outcome) and the RBH for 

the P. persica ppa021281m (Solyc02g078040.2.1). Moreover, this S. lycopersicum 

region and the one in P. persica containing ppa021281m are syntenic. Therefore, 

comparative genomics might suggest a common origin for this region that suffered 

tandem duplications in Solanaceae after Asteridae and Rosidae splitting. This scenario 

is supported by recent findings in Nicotiana spp. where stylar AGPs have been 

proposed to have a common origin, with initial intron insertion followed by two gene 

duplication events. It is well known that 120K is taken up into the cytoplasm of pollen 

tubes and required for proper S-recognition in N. alata (Cruz-García et al., 2003 and 

2005), but PELPIII is also necessary for N. tabacum interspecific incompatibility (Smith 

et al., 2013) and TTS promotes pollen tube growth in this specie as well (Cheung et al., 

1995). Thus, different stylar AGPs may operate in the incompatibility reaction during 

pollen-pistil interaction. In this general context, it cannot be fully discarded that 

ppa021821m diverged from the stylar AGP ancestor.  

NaStEP orthology screening draws a complex evolutionary pattern. In this case, 

no RBHs for the first direct BLASTP hits were found, including between S. 
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lycopersicum and N. benthamiana. On the other hand, syntenic block identification 

between P. persica and S. lycopersicum was difficult to interpret since several 

segmental duplications have been detected. In addition, the first three P. persica hits 

obtained in BLASTP analysis seem to have emerged from tandem duplications. Lastly, 

a transposition event in Rosaceae or gene loss in Solanaceae might have occurred since 

syntenic S. lycopersicum region to the P. persica segment has not genes with high 

sequence similarity to NaStEP. Furthermore, phylogenetic tree clustering does not 

either support that best P. persica hit (in BLASTP analysis) is close related to NaStEP, 

because this has been clustered in clade I and not into clade V where NaStEP is 

included (Busot et al., 2008). Notwithstanding, clade coined as VII (containing the 

Malus and Prunus RBH proteins including ppa011448m) was the closest clade to clade 

V under phylogenetic reconstruction. Overall, according to these results it is difficult to 

infer orthology relationships regarding NaStEP.  

NaPCCP first hits found in direct BLASTP analysis for Solanaceae species 

(Solyc12g040800.1.1 and NbS00020637g0006.1) showed to be RBH to each other. 

However, both accessions were not RBHs of the non-Solanaceae first hits obtained in 

direct BLASTP analysis. These non-Solanaceae accessions had different RBHs in S. 

lycopersicum and N. benthamiana (Solyc03g118720.2.1 and NbS0009334g0006.1). 

Accordingly, the region encompassing the S. lycopersicum RBH for non-Solanaceae 

species (Solyc03g118720.2.1) was highly conserved in P. persica (ppa012133m) and A. 

thaliana (AT3G17980.1) regions. But the region containing S. lycopersicum first hit 

from direct BLASTP analysis (Solyc12g040800.1.1) did not show synteny with any of 

both P. persica and A. thaliana genomes. Moreover, phylogenetic analysis showed two 

large groups, and the Rosaceae subgroup was the farthest related to NaPCCP subgroup. 

Summarizing, orthology results do not support a Prunus orthologue candidate for the 

NaPCCP modifier. 

              

A complex evolutionary pattern is predicted for the GSI modifiers as a whole 

In short, the orthologue screening performed for 120K, NaTrxh, NaStEP, 

MdABCF, SBP1 and NaPCCP modifier factors resulted in different degrees of 

fulfillment. P. persica ppa011576m, ppa002137m and ppa008290m accessions are 

putative orthologues for NaTrxh, MdABCF and SBP1. Furthermore, ppa021281m and 

ppa011448m cannot be discarded as 120K and NaStEP orthologues, while a no clear 
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orthologue has been found for NaPCCP. Orthology analysis outcome is shortly shown 

in Table 4.2.  

 

Table 4.2. Summary results from the orthology relationships analysis 

 

Pistil modifiers Pollen modifiers 

 120K NaTrxh NaStEP MdABCF SBP1 NaPCCP 

Reciprocal Best 
Hit (RBH)  

Failed Fulfilled Failed Fulfilled Fulfilled Failed 

Orthology 
mapping Fulfilled Fulfilled Failed Fulfilled Fulfilled Failed 

Phylogenetic 
analysis Failed Fulfilled Partially 

fulfilled Fulfilled Fulfilled Failed 

 

ppa021281m ppa011576m ppa011448m ppa002137m ppa008290m ppa012133m 

       

Two main scenarios could explain these observations: a divergent process from 

an ancestral mechanism leading to different mechanisms where gene duplications and 

losses might have occurred, or a convergent process where proteins from different 

lineages (or even families) have been recruited to control the SI mechanism in a similar 

manner though intermediate scenarios can not be discarded. Nevertheless, compiled 

evidences from this work are not robust enough to support a particular model. In any 

case, this work was primarily aimed to lay the foundation for the identification in 

Prunus of those genes accomplishing the function of the Solanaceae GSI modifiers. 

Orthology is a helpful tool for this purpose but it does not necessarily imply that 

functions are preserved (Gabaldón & Kooning, 2013). Thus, further molecular and 

sequence analyses will be needed to achieve this goal.  

 

Material and Methods 

 

Data 

Assembled and annotated genomes from tomato (Solanum lycopersicum) 

(Consortium 2012), Nicotiana benthamiana (Bombarely et al., 2012), peach (Prunus 

persica) (Verde et al., 2013), apple (Malus x domestica) (Velasco et al., 2010) and 

Arabidopsis thaliana (Arabidopsis Genome Initiative, 2000), as well as their 

corresponding protein databases, were used. Thus, four databases available from the 

GDR database (www.rosaceae.org) (Prunus_persica_v1.0_scaffolds.fa, 

Prunus_persica_v1.0_scaffolds.gff3, Prunus_persica_v1.0_peptide.fa and 
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Malus_x_domestica.v1.0.consensus_peptide.fa), four more from the SolGenomics 

Network (www.solgenomics.net) (S_lycopersicum_chromosomes.2.30.fa, 

ITAG2.3_gene_models.gff3, ITAG2.3_proteins.fasta and  

Niben.genome.v0.4.4.proteins.fasta) and three from TAIR database 

(TAIR10_chr_all.fas, TAIR10_GFF3_genes.gff and TAIR10_pep_20101214.txt) were 

used for the different screenings of orthology.  

 

Direct BLASTP analysis and Reciprocal Best Hit (RBH) methodology  

Putative modifier factors of the S-RNase-based GSI system not identified in 

Prunus species were included in the analysis (Table 4.3). Nucleotide and amino acid 

sequences were retrieved from NCBI database. Protein sequences were blasted 

(Altschul et al., 1990) as queries against the five protein databases mentioned above 

using available stand-alone BLAST version 2.2.28+ software 

(http://www.ncbi.nlm.nih.gov) with an expected value cut-off <1e-5. Resulting hits from 

previous ‘direct BLASTP analysis’ were used in turn as queries for RBH identification 

by BLASTP and handmade scripts through simultaneous comparisons of all-against-all 

references (using the same set parameters than “BLASTP analysis”) (Figure 4.1).  

 

Table 4.3. Summary data of modifier genes (already reported) used for orthology screening 
  Modifier 

factor 
Specie Localization Interacting/binding 

protein 
Accession Protein ID Reference 

Pistil 
modifiers 

120K Nicotiana alata ECM of STT S-RNase/SBP1/ 
NaPCCP 

U88587 AAC15893 Lind et al., 1996 

 NaTrxh  Nicotiana alata ECM of STT S-RNase DQ021448 AAY42864 Juarez-Díaz et al. 2006 

  NaStEP Nicotiana alata Stigma HT-B EU253563  ABX76297 Busot et al., 2008 

Pollen 
modifiers 

MdABCF  Malus domestica pollen tube 
membrane 

S-Rnase MDP0000170302 MDP0000170302 Meng et al., 2014 

 SBP1 Petunia hybrida Pollen S-RNase/SLF/ 
Cul1/120K 

AF223395 AAF28357 Sims and Ordanic 2001 

  NaPCCP Nicotiana alata Mature 
pollen 

NaTTS/Na120K EU591515 ACD40010 Lee et al., 2008 

 

Orthology mapping 

Genome sequence data, gene annotation (.gff) files and predicted protein 

databases of Prunus persica, Solanum lycopersicum and Arabidopsis thaliana were 

used to localize mutual syntenic blocks among three genomes. The translated amino 

acid sequence of twenty-five genes upstream and downstream of the RBHs found in 

previous section (51 in total) either for S. lycopersicum, P. persica and A. thaliana were 

used as queries to identify the RBHs pairs (performed with the same set parameters than 
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in “Direct BLASTP analysis and RBH methodology” section) comparing all-against-all. 

A RBH was considered as anchor site; the presence of several anchors led to define 

blocks of synteny. The number of neighboring genes was employed (and not genomic 

distances) because the intergenic sizes for every species are highly variable to each 

other. All these analyses were carried out by custom-made python scripts using 

executable gffutils (www.pythonhosted.org/gffutils) and blastall (Altschul et al., 1990) 

packages. Anchors supporting syntenic blocks were visualized by Circos software 

(Krzywinski et al., 2009).  

 

Phylogenetic tree-based analysis 

Phylogenetic analyses were conducted by MEGA6 (Tamura et al., 2013). Amino 

acid sequences were aligned by ClustalW (Thompson et al., 1994) and model 

substitution that best fit with corresponding alignment was determined. Phylogenetic 

relationship tree was constructed by the Maximum Likelihood method (Felsenstein, 

1981) and phylogenetic test was done based on 1,000 bootstrap replicates.
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GENERAL DISCUSSION 
 

An S-locus independent pollen factor confers self-compatibility in Katy apricot 

In this work the North-American apricot cv. ‘Katy’, released by Zaiger´s 

Genetics (Modesto, CA, USA) in 1978 (Russell, 1998), was confirmed as self-fruitful 

and its S-genotype was determined as S1S2 following the nomenclature established by 

Burgos et al. (1998). To investigate the genetics of self-compatibility (SC), ‘Katy’ 

(S1S2) was self-pollinated and reciprocally crossed with the self-incompatible cv. 

‘Goldrich’ (S1S2) (Egea & Burgos, 1996; Alburquerque et al., 2002). ‘Katy’ pollen tubes 

bearing either the S1- or the S2-haplotype were able to grow in ‘Katy’ and ‘Goldrich’ 

pistils and to complete fertilization, producing the three S-genotype classes expected for 

an F2 population (S1S1: S1S2: S2S2). However, no progeny was obtained in the reciprocal 

cross using ‘Katy’ as female parent. These results would support a PPM unlinked to the 

S-locus as the cause for SC.  

SC caused by loss of pollen-S function has been usually found to be associated 

with mutations (mainly indels) of the SFB genes in different Prunus species such as 

sweet cherry (Ushijima et al., 2004; Sonnelveld et al., 2005; Marchese et al., 2007), 

apricot (Vilanova et al., 2006), Japanese apricot (Ushijima et al., 2004), peach (Tao et 

al., 2007) and sour cherry (Hauck et al., 2006). However, sequence analysis revealed no 

mutations or indels affecting any of the two ‘Katy’ SFB alleles discarding this as the 

cause of SI breakdown.  

In Solanaceae, self-compatible PPMs may arise from S-allele duplications 

located in a centric fragment, in a non-S chromosome or linked to the S-locus leading to 

the formation of S-heteroallelic pollen (Golz et al., 2001). According to the segregations 

obtained in the performed crosses, S-allele duplications did not seem probable in ‘Katy’ 

(all descendants should have had the S1S2 genotype), even so, we discarded that 

possibility showing that SFB gene dosage is equivalent between ‘Katy’ and the self-

incompatible cv. ‘Goldrich’. S-allele duplications may also result from polyploidy but 

‘Katy’ was confirmed as diploid by flow cytometry analysis and by marker segregation 

and mapping in all crosses. These results rule out competitive interaction resulting from 

S-heteroallelic pollen as the cause of SC in ‘Katy’.  

Altogether, it can be hypothesized that the loss-of-function of a S-locus unlinked 

factor gametophytically expressed in pollen causes breakdown of SI in ‘Katy’. 
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Moreover, according to the relative abundance of SFB1 and SFB2 transcripts in ‘Katy’, 

when compared with the reference cv. ‘Goldrich’, the hypothetical defective factor in 

‘Katy’ does not seem to affect their expression.  

The M’ -locus genomic region should correspond to a segregation distortion 

locus (SDL), a chromosomal region that causes distorted segregation ratios (Zhu & 

Zhang, 2007). To identify this kind of regions, ‘K×K05’ and ‘K×K06’ populations, which 

all trees carry the PPM, were tested for genome-wide distributed SSRs to detect SDL by 

examining changes in genotypic frequencies. Attending to segregation of pollen alleles, 

two SDL were found in LG3 and LG6 but a deeper analysis showed that LG6 markers 

were partially linked to the S-locus and only moderately distorted. Consequently, LG3 

was predicted as the most likely location for the M’ -locus.  

In a second step, to refine M’-locus mapping, chr.3 specific SSRs were analyzed 

to estimate their segregation distortion ratios in selfing (F2) and outcrossing populations 

obtained by using ‘Katy’ as pollen parent. Additionally, indirect M’ -locus genotyping 

was performed by analyzing linked SSRs in the F3 offspring of six selected ‘K×K’ F2 

trees. Recombination breakpoints in five of these trees defined a 9.4 cM interval for the 

‘Katy’ M’ -locus that corresponds to ~1.29 Mb in the peach genome (18.49-19.78 Mb) 

and overlaps ~273 Kb with that established for the M-locus in ‘Canino’ (Zuriaga et al., 

2012). Interestingly, both cultivars have different geographic origins [(i.e. ‘Katy’ is a 

North-American apricot selection (Russell, 1998) and ‘Canino’ is a local Spanish 

apricot (Vilanova et al., 2006)] and, according to the analysis of gemome-wide 

distributed SSRs, they seem to be genetically unrelated. This prompts us to speculate 

that both PPMs (being or not the same) may have arisen independently. 

Pollen-part mutated m-haplotype is associated with self-compatibility and widely 

distributed in apricot germplasm 

Though phenotype could not be directly assessed in some cases, according to the 

almost perfect association between SC and SC/m-alleles it can be inferred that all 

cultivars carrying whatever of these two alleles will also be self-compatible. Two new 

mutations putatively conferring SC have been found. S31 is shared by two of the few 

North-American self-compatible cultivars and sequence analysis point out a putative 

indel within the SFB31 3´-end as a plausible cause for SC, similarly to many other cases 

reported in Prunus (Tao and Iezzoni 2010). Lastly, genetic analysis suggests the 

presence of a SNP mutation within SFB2 HVb region in ‘Portici’ that could also be 
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associated with SC. It could be speculated that a single non-synonymous change within 

a SFB hypervariable region might alter its specificity, since these domains (strongly 

hydrophobic and under positive selection) were already suggested to have a role in the 

specific recognition of S-RNases (Ikeda et al., 2004).  

In addition to S31, two new S-alleles (S29 and S30) were identified and named 

basically according to the nomenclature previously adopted by Vilanova et al. (2005) 

[S1-S7 and SC], Halázs et al. (2005) [S8-S16] and Wu et al. (2009) [S17-S28]. According to 

the S-genotyping results S5 reported in this work is proposed to be the same that S13 

reported by Halász et al. (2010) in the Armenian cv. ‘Shalah’. This finding is relevant 

since connects this low frequent allele, mainly found in Armenian, Eastern-Turkish and 

Moroccan cultivars (Halász et al., 2010; Kodad et al., 2013) with Southern-Spanish 

cultivars (Burgos et al., 1998; Vilanova et al., 2005; this work) supporting the 

Southwest-Mediterranean diffusion route for apricot, from the Irano-Caucasian gene 

pool, proposed by Bourguiba et al. (2013).  

Pollen-part mutated m-haplotype had been previously associated with SC in 

‘Canino’ and ‘Katy’ cultivars (Zuriaga et al., 2012 and 2013). In this work the m-

haplotype has been detected in 17 additional cultivars (excluding ‘Canino’ clonal sibs) 

mainly Spanish (12 in total) but also from USA, Australia, France and Italy. Fifteen of 

them were confirmed as self-compatible. The analysis of progenies from two of them 

(‘Portici’ and ‘Corbató’) fully confirmed the association with SC in apricot germplasm. 

Beside the m-haplotype, 37 additional M-haplotypes were identified by SSR analysis 

being grouped in 19 ‘main’ classes. Regarding the distribution of the m-haplotype it 

seems to be restricted to North-American and Western-European cultivars. However, 

according to the clustering analyses the closest M-haplotype (putative founder) is M1-0, 

which is widely distributed in all geographic areas studied (the second one was M13 only 

detected in Eastern-European cultivars). Meanwhile, the mutated SC-allele is widely 

distributed in all geographic areas (Vilanova et al., 2005; Halász et al., 2007 and 2010, 

Kodad et al., 2013) but the ancestor S8-allele was only detected in Hungarian cultivars. 

Altogether, these results suggest that the mutated m-haplotype arose much later in time, 

after apricot was established as a regular crop in Europe.  
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The Prunus armeniaca M-locus Disulfide bond A-like Oxidoreductase (PaMDOr) 

gene is an essential pollen factor for self-incompatibility  

‘Goldrich’ BAC clones covering the M-locus were sequenced and assembled to 

get an apricot reference sequence useful for this purpose. Three major contigs were 

obtained and GAPs were joined by indeterminations defining the aM-supercontig. This 

strategy provided 40 new SSRs and first apricot SNPs for the analyzed region. In 

addition, new recombinants were used to refine the available maps. Altogether, an 

apricot ~134 Kb M-locus region was decided to be screened for the identification of the 

PPM. Fifteen genes were annotated in the apricot M-locus region (~134 Kb) using 

RNAseq data and all of them were found to be highly conserved in other Prunus spp. 

according to collinearity and homology rates. The 15 genes showed to be expressed in 

all tissues, therefore no specific pollen-expressed genes are contained in this region. 

However, four of these (PaM-6, -7, -9 and -14) showed higher differential over-

expression in mature anthers with regards to other tissues and therefore may be 

considered as candidate genes. In parallel to gene-expression analysis, variants of any 

nature, from SNPs to structural variants, were called for the apricot M-locus region in 

the three reference self-incompatible/self-compatible cultivars. Only one variant (indel) 

fulfilled all genetic requirements for being the cause of SC within the m-haplotype. This 

insertion is located within PaM-7, very close to microsatellite markers AGS.20, 

PGS3.23 and PGS3.62 previously shown to be fully linked to the PPM (Zuriaga et al., 

2012 and 2013). PaM-7 was fully sequenced for M/m-alleles and the 358-bp insertion 

was found to putatively lead to a premature stop-codon in the predicted protein lacking 

4 out of the 6 exons. Furthermore, PaM-7 was one of the four genes differentially over-

expressed in anthers in agreement with the tissue-specific expression expected for the 

M-locus mutated modifier gene. This insertion was characterized as an active non-

autonomous mutator (transposable) element [named FallingStone (FaSt)] containing 

structural features that have been proved to be also present in the PaM-7 insertion 

(Halász et al. 2014).  

PaM-7 codes for an oxidoreductase that contains a Thioredoxin fold domain 

(IPR012336). Proteins having this domain form a large and diverse protein superfamily 

characterized by a CXXC motif (two cysteines separated by 2 amino acids), which 

confers the thiol-disulfide redox activity essential for folding, stability and function in 

target proteins (Hogg, 2003; Schmidt et al., 2006). Proteins containing this domain have 

been associated with a wide range of events during sexual plant reproduction, from 
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gametophyte formation to seed setting (either for their redox activity or as signaling 

factors) specially under the control of thioredoxin (TRXs) and glutaredoxin (GRXs) 

proteins (Traverso et al., 2013). However, PaM-7 does not code neither for a TRX type 

h nor for other TRX type but for a protein containing a Disulfide bond A-like (DsbA-

like) domain (IPR001853; PF01323). DsbA-like proteins were firstly identified in 

Escherichia coli as disulfide bond introducers in the periplasm, a necessary process for 

protein folding (Depuydt et al., 2011). Therefore, DsbA-like proteins are not usually 

reducing enzymes such as TRX proteins but oxidizing. However, proteins of  the TRX 

superfamily are intrinsically bidirectional, thus can catalyze either oxidation or 

reduction depending on the redox states in which they are maintained (Ito & Inaba, 

2008). Accordingly, PaM-7 was renamed as Prunus armeniaca M-locus Disulfide bond 

A-like Oxidoreductase (PaMDOr), which dycisteinic motif CPWC is located at the 

protein N-terminal end (Cys19-PW-Cys22). Overall orthologue study supports a 

divergent evolution for M-locus DsbA proteins in the Rosaceae family. However, 

putative paralogous (CPWC2 and CPWC1) arose from gene duplication in tandem, 

being the function of the CPWC2 type proteins specifically related to GSI. In this sense, 

CPWC1/CPWC2 divergence process might shed some light of Malus/Prunus GSI 

evolution as well. 

 

Comparative study of the GSI system in Rosaceae and Solanaceae by analyzing 

orthology relationships for modifier factors 

Gametophytic Self-Incompatibility in Rosaceae and Solanaceae families 

involves an allele-specific recognition mechanism between the same S-factor types, 

which are essential to the (in)compatibility response. Similarly, non-S-factors required 

for this mechanism have demonstrated to be functionally equivalents among species of 

both families (for instance, components of SCFSLF complex) and descend from a 

common ancestor (Huang & Kao 2006; Matsumoto & Tao 2012). Therefore, it would 

not be surprising that other modifiers descending from common ancestors may have 

persisted throughout the evolution, including the speciation process, in both families.  

First hits obtained in direct BLASTP analysis for NaTrxh, MdABCF and SBP1 

demonstrated to be RBHs to each other in almost all performed comparisons. Thus, on 

the basis of the RBH analyses, ppa011576m, ppa002137m and ppa008290m accessions 

were proposed as putative orthologues for NaTrxh, MdABCF and SBP1 modifiers in 

Prunus, respectively. Comparative structural genomics highlighted the existence of 
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orthologous segments among Prunus, Solanum and Arabidopsis for the three potential 

orthologues. It is noteworthy that P. persica and S. lycopersicum (sharing S-RNase-

based GSI system) have a higher degree of synteny (based on the number of anchor 

points) in comparison with A. thaliana (SSI outgroup system) despite Rosaceae and 

Brassicaceae are phylogenetically closer than Rosaceae and Solanaceae (Igic and Kohn 

2001). Lastly, these modifiers belong to distinct and large protein families which have 

been widely studied and classified. This information was used accordingly for 

phylogenetic tree clustering, where results also supported these P. persica accessions as 

orthologues for NaTrxh, MdABCF and SBP1. 

On the contrary, no P. persica predicted peptide was found to fulfill the 

requirements established in this work for being considered orthologous to 120K, 

NaStEP and NaPCCP modifiers, likely due to a complex evolutionary pattern. 

Notwithstanding, relationships between ppa021281m and ppa011448m with 120K and 

NaStEP, respectively, cannot be discarded. 

As a whole, a divergent process from an ancestral mechanism leading to 

different mechanisms where gene duplications and losses might have occurred, or a 

convergent process where proteins from different lineages (or even families) have been 

recruited to control the SI mechanism in a similar manner, might be plausible. 

Nevertheless, compiled evidences from this work are not robust enough to support a 

particular model. In any case, this work was primarily aimed to lay the foundation for 

the identification in Prunus of those genes accomplishing the function of the Solanaceae 

GSI modifiers. Further molecular and sequence analyses will be needed to achieve this 

goal.  
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CONCLUSIONS 
 

• The self-compatible apricot cv. ‘Katy’ was molecular and genetically 
characterized. An S-locus unlinked pollen-part mutation (PPM) was found to be 
responsible of this phenotype. Fine-mapping located this mutation at the distal 
end of chr.3 within a region overlapping with that corresponding to the M-locus 
genetic map previously constructed for the self-compatible apricot cv. ‘Canino’. 

 

• S-genotyping of a set with 67 apricot cultivar/accessions allowed us to identify 
three new S-alleles and two putatively new mutations conferring self-
compatibility (SC). Both mutations (associated with a SNP and an Indel) affect 
the male S-determinant SFB as reported for most of the non-functional S-
haplotypes in Prunus.   
 

• M-genotyping showed that the same mutated m-haplotype was shared by 
‘Canino’ and ‘Katy’ but also by 17 additional cultivars. Genetic analysis of two 
of these self-compatible cultivars, ‘Portici’ and ‘Corbató’, confirmed our results. 
The m-haplotype was only found in North-American and Western-European 
cultivars. Haplotype distance analysis points out the widely distributed M1-0 as 
the putative ancestor suggesting that m-haplotype arose much later in time than 
SC-allele. 

 

• A strategy based on genomic and transcriptomic NGS data allowed us to narrow 
down the apricot M-locus region leading to a physical map of ~134 Kb. 
Comparative screening of non-synonymous polymorphisms in this region led to 
identify a 358-bp FaSt insertion type, segregating in coupling with the m-
haplotype in self-compatible apricots, as the unique polymorphism fulfilling 
genetic requirements for the PPM conferring SC.   

 
• According to gene annotation, the m-haplotype FaSt insertion is located in the 

third exon of the PaM-7 gene that putatively encodes a Disulfide bond A-like 
Oxidoreductase (named as PaMDOr). FaSt insertion is predicted to lead to a 
premature stop-codon producing a truncated protein lacking the 3´end. PaMDOr 
is differentially over-expressed in mature anthers with regards to leaves and 
styles. Altogether, evidences suggest PaMDOr as the pollen-part mutated 
modifier conferring SC in apricot. 

 

• Phylogenetic analysis suggest PaMDOr as a putative paralogue (of PaM-8) 
emerged after the split of the Rosaceae and Solanaceae (shared by Prunus and 
Fragaria but later lost in Malus) which function became essential for the proper 
functioning of the GSI system in Prunus. 
 

• The analysis of orthology relationships between GSI modifier factors in 
Solanaceae and Rosaceae allowed the identification of putative orthologues for 
NaTrxh, SBP1 and MdABCF in Prunus. On the contrary, a more complex 
evolutionary pattern was found for 120K, NaStEP and NaPCCP. Overall, results 
allow thinking that at least part of the GSI regulating factors might be shared by 
both families.  
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Table S1.1 Identification of segregation distortion SSR loci distributed throughout the 

‘Katy’ LG6 using the F2 population ‘K×K’. χ2 and P values estimated for each SSR, 

considering the expected segregation ratio 1:2:1 are indicated. 

LG Locus Peach Mba Seg. Typeb A H B      Total χ
2 (P-value)c 

6 PGS6_01 00,12 <abxab> 28 45 12 85 6,32 (0,04)d 

6 PGS6_04 04,95 <abxab> 29 45 11 85 7,92 (0,02)d 

6 UDAp420 08,14 <abxab> 34 41 12 87 11,41 (0,03)d 

6 PGS6_07 09,33 <abxab> 32 47 7 86 15,28 (0,0004)d 

6 UDAp489 16,82 <abxab> 34 41 11 86 12,49 (0,002)d 

6 Ma027a 20,90 <abxab> 33 43 9 85 13,57 (0,001)d 

6 BBPCT025 21,13 <abxab> 35 42 10 87 14,47 (0,0007)d 

6 UDP98-412 24,75 <abxab> 28 43 12 83 6,28 (0,04)d 

6 Locus-S 26,45 <abxab> 31 40 16 87 5,74 (0,06) 

6 ssrPaCITA12 27,84 <abxab> 31 38 16 85 6,24 (0,04)d 

a Marker position (Mb) within the peach genome scaffold_6 which size estimated by IPGI was 28.90 Mb  
b Segregation type as per JoinMap 3.0  
c Chi-square test was performed for the expected ratio 1:2:1 (<abxab>) 
d Observed ratios differ significantly from expected at P < 0.05 for 2 degrees of freedom 
 

Table S1.2 SSR primers developed from the peach genomic sequence corresponding to 

the scaffold _3. Primer position on the scaffold (Mb) and SSR allele sizes amplified in 

apricot cvs. ‘Goldrich’, ‘Canino’ and ‘Katy’ are indicated. 

Name Start on 

scaffold_3 

Goldrich  

alleles 

Canino 

alleles 

Katy 

alleles 

Name Start on 

scaffold_3 

Goldrich  

alleles 

Canino 

alleles 

Katy 

alleles 

PGS3.01 16,21 176 168/176 N.A. PGS3.52 17,96 194/208 194 194/204 

PGS3.02 16,30 163/174 166/174 163/174 PGS3.53 18,07 199/203 199 197/199 

PGS3.03 16,41 162/178 156/162 162/178 PGS3.54 18,12 280/282 282 262/282 

PGS3.04 16,52 N.A.a N.A. N.A. PGS3.55 18,19 449 449 N.A. 

PGS3.05 16,64 171 171 N.A. PGS3.56 18,22 251/258 258 251/267 

PGS3.06 16,70 152/160 152 ML PGS3.57 18,23 N.A. N.A. N.A. 

PGS3.07 16,84 141 141 141 PGS3.58 18,24 95/99 95 N.A. 

PGS3.08 16,91 157 157 157 PGS3.59 18,50 211/215 215 215/217 

PGS3.09 17,01 204 204 204 PGS3.60 18,51 293/317 317 N.A. 

PGS3.10 17,16 130 129/130 129 PGS3.61 18,58 173 173 173 

PGS3.11 17,22 N.A. 156 N.A. PGS3.62 18,61 336/350 348/350 N.A. 

PGS3.12 17,38 148 148/162 148/156 PGS3.63 18,65 218/220 220 212/220 

PGS3.13 17,54 230 202/230 215/230 PGS3.64 18,70 ML ML ML 

PGS3.14 17,63 N.A. N.A. N.A. PGS3.65 18,31 ML ML ML 

PGS3.15 17,71 266/267 267/274 266/267 PGS3.66 18,34 322/328 328 322/328 

PGS3.16 17,80 N.A. N.A. N.A. PGS3.67 18,35 210/216 210 201/210 

PGS3.17 17,98 N.A. N.A. N.A. PGS3.68 18,37 311/338 338 338 
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PGS3.18 18,06 147 147 147 PGS3.69 18,38 202/227 202 N.A. 

PGS3.19 18,12 147 199 N.A. PGS3.70 18,40 200/201 200 198/200 

PGS3.20 18,25 148 N.A. 150 PGS3.71 18,40 255/259 259/261 245/259 

PGS3.21 18,40 229/244 244 217 PGS3.72 18,41 ML ML ML 

PGS3.22 18,49 306/310 306 306/312 PGS3.73 18,43 368 368 368 

PGS3.23 18,61 179/188 188 188/190 PGS3.74 18,46 262/265 265 265 

PGS3.24 18,77 MLb ML ML PGS3.75 18,48 N.A. N.A. 351/352 

PGS3.25 18,87 180/192 186/192 186 PGS3.76 18,49 192 192 192/198 

PGS3.26 18,94 155/166 160/166 ML PGS3.77 18,50 273/276 273 273/276 

PGS3.27 19,03 N.A. N.A. N.A. PGS3.78 18,54 161/164 164 164/166 

PGS3.28 19,14 141 141 141/143 PGS3.79 18,57 460 460 N.A. 

PGS3.29 19,25 159 159 159 PGS3.80 18,59 474 474 N.A. 

PGS3.30 19,34 247 242 242 PGS3.81 18,61 227 227 227 

PGS3.31 19,45 ML ML ML PGS3.82 18,61 148 148 148 

PGS3.32 19,60 256 256 256/270 PGS3.83 18,61 ML ML N.A. 

PGS3.33 19,66 133/139 133/139 129/133 PGS3.84 18,61 N.A. N.A. N.A. 

PGS3.34 17,75 185/191 185/193 N.A. PGS3.85 18,62 ML ML 197/199 

PGS3.35 17,85 N.A. N.A. N.A. PGS3.86 18,63 170/179 170 170/179 

PGS3.36 17,95 148/162 325/327 N.A. PGS3.87 18,63 335/340 340 N.A. 

PGS3.37 18,00 189/202 189 189/202 PGS3.88 18,65 278 N.A. 284 

PGS3.38 18,05 246/264 264 264 PGS3.89 18,66 404/405 405 405 

PGS3.39 18,07 165 165 165 PGS3.90 18,69 ML ML 185 

PGS3.40 18,14 128 177 177 PGS3.91 18,70 285/null N.A. N.A. 

PGS3.41 18,18 N.A. N.A. N.A. PGS3.92 18,70 ML ML ML 

PGS3.42 18,22 206/224 206 206/209 PGS3.93 18,73 206/207 206 206 

PGS3.43 18,24 N.A. N.A. N.A. PGS3.94 18,74 N.A. N.A. N.A. 

PGS3.44 18,29 295/307 307/309 264/309 PGS3.95 18,75 344 344 344 

PGS3.45 18,33 237 N.A. 237 PGS3.96 18,76 434/441 441/442 N.A. 

PGS3.46 18,47 163/173 163 163/181 PGS3.97 18,80 N.A. N.A. 180/237 

PGS3.47 18,52 242/246 242 N.A. PGS3.98 18,81 N.A. N.A. N.A. 

PGS3.48 18,60 256/264 264 256/264 PGS3.99 18,81 N.A. N.A. N.A. 

PGS3.49 18,63 N.A. N.A. N.A. PGS3.100 18,84 239 239 239 

PGS3.50 18,83 N.A. N.A. N.A. PGS3.101 18,84 N.A. N.A. 222 

PGS3.51 17,83 ML ML 149/192 PGS3.102 18,85 251 251 251 

a N.A. Not amplified 
b ML. Multi-loci pattern 
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Table S1.3 SSR allele composition for apricot cvs. ‘Goldrich’, ‘Canino’ and ‘Katy’. 

Start position on the corresponding scaffold (Number_Mb) and SSR allele sizes (bp) are 

indicated. 
Name Start on 

scaffold 

Goldrich 

alleles 

Canino 

alleles 

Katy 

alleles 

Name Start on 

scaffold 

Goldrich 

alleles 

Canino 

alleles 

Katy 

alleles 

Gol051 1_04,69 177/181 181/183 181/183 PGS4.05 4_12,03 171/171 171/171 171/171 

EPPUC0027 1_09,51 174/176 170/176 170/174 PGS4.07 4_18,14 179/179 176/176 179/179 

pchcms4 1_09,51 246/248 242/248 242/246 UDAp404 4_-- 165/165 188/188 165/177 

UDAp414 1_26,52 179/183 167/187 179/179 PGS5.02 5_00,48 178/183 183/183 178/181 

EPPCU1589 1_31,81 160/176 176/182 182/182 PGS5.03 5_05,06 138/138 136/138 138/138 

CPPCT045 1_32.02 125/134 125/128 128/134 SsrPaCITA21 5_10,78 241/241 239/241 241/241 

SsrPaCITA7 1_32,02 221/227 209/227 227/227 CPSCT006 5_11,53 136/138 136/138 136/140 

Gol004 1_45,40 221/231 208/221 231/231 BPPCT037 5_12,31 132/137 153/163 132/132 

SsrPaCITA16 2_03,76 130/130 130/152 130/130 pchgms4 5_12,67 168/168 168/195 168/168 

PGS2.03 2_04,36 177/177 177/177 177/177 UDAp452 5_13,76 190/197 190/197 189/201 

SsrPaCITA19 2_13,01 156/167 132/167 156/167 PGS5.08 5_15,30 219/219 219/219 219/219 

CPSCT038 2_14,47 207/207 216/226 207/207 PGS6.01 6_00,12 284/289 289/289 284/289 

BPPCT001 2_16,13 115/116 115/116 115/115 PGS6.02 6_01,14 265/269 263/263 255/263 

CPSCT044 2_17,22 209/211 199/211 209/209 PGS6.03 6_01,23 221/225 227/227 227/233 

UDP98-411 2_20,17 177/184 181/192 181/184 PGS6.04 6_04,95 149/158 149/155 149/158 

CPSCT021 2_23,74 148/156 148/152 152/156 UDAp420 6_08,14 187/196 187/196 185/187 

CPSCT031 2_25,15 203/205 205/205 203/205 PGS6.07 6_09,33 183/185 185/201 186/196 

CPSCT023 2_25,34 210/235 216/216 210/216 PGS6.08 6_09,35 236/238 238/238 228/238 

CPSCT034 2_26,35 216/231 212/231 216/216 BPPCT008 6_10,28 86/107 86/105 86/113 

MA066a 3_02,40 131/131 125/125 131/133 UDAp489 6_16,82 164/181 181/181 148/181 

SsrPaCITA23 3_02,70 157/161 155/165 157/165 Ma027a 6_20,90 148/180 152/170 154/180 

BPPCT007 3_02,74 185/185 165/171 165/165 BPPCT025 6_21,13 150/160 148/160 150/160 

UDAp446 3_04.50 166/179 166/168 166/179 UDP98-412 6_24,75 104/110 82/110 82/104 

UDAp468 3_04,85 170/182 158/170 170/182 Locus-S 6_26,45 S1/S2 S2/SC S1/S2 

BPPCT039 3_05,80 182/187 165/187 182/187 SsrPaCITA12 6_27,84  162/168 165/168 162/168 

EPPCU2256 3_06,14 162/254 162/172 162/254 CPSCT004 7_6,68 143/143 143/145 143/143 

EPDCU3083 3_06,46 149/149 149/151 149/149 CPPCT022 7_10,23 257/289 269/289 252/257 

UDA002 3_10,85 175/186 147/147 175/175 UDP98-405 7_10,94 120/120 120/124 120/120 

SsrPaCITA10 3_14,16 191/193 191/191 193/193 CPSCT026 7_10,98 218/218 206/209 211/218 

UDAp499 3_14,71 120/239 120/266 120/239 PGS7.05 7_13,08 217/221 205/215 217/217 

SsrPaCITA4 3_14,81 152/158 166/166 152/152 CPPCT033 7_16,70 142/142 142/142 138/142 

EPPCU9343 3_16,70 194/202 194/194 194/202 CPSCT042 7_17,08  187/192 181/187 181/192 

EPPCU7190 3_19,78 212/214 212/214 214/226 CPSCT018 8_00,12 160/160 165/166 160/160 

AMPA119 3_20,00 114/118 114/118 118/128 UDAp423 8_00,18 151/184 151/151 151/184 

UCDCH19 3_20,03 143/143 135/143 133/135 PGS8.02 8_03,92 326/343 330/330 326/343 

CPDCT027 3_21,67 169/null 166/null 166/167 PGS8.05 8_07,39 251/251 243/251 245/253 

EPPCU0532 3_22,00 182/182 182/186 182/184 UDAp401 8_10,50 220/222 222/222 218/222 

PGS4.01 4_03,46 348/348 356/356 348/356 UDAp470 8_12,61 110/120 120/120 114/120 
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PGS4.02 4_03,49 169/175 169/169 169/175 CPPCT006 8_13,66 200/200 200/200 200/204 

CPDCT045 4_06,21 125/134 125/128 128/134 M6a 8_15,03 222/222 196/222 204/222 

BPPCT040 4_06,46 151/158 151/160 158/160 UDP98-409 8_17,78 148/152 152/168 148/148 

UDP96-003 4_08,76 112/126 112/112 112/126 Ma035a 8_21,83 170/180 180/182 180/180 

PGS4.04 4_11,99 278/278 265/265 288/288      

 

Table S1.4 Genetic distances among apricot cvs. ‘Katy’, ‘Canino’ and ‘Goldrich’ 

estimated according to Nei (1972) (below diagonal) and % of shared SSR alleles (above 

diagonal).   

 Katy Canino Goldrich 

Katy --- 38,8 61,2 

Canino 0,83 --- 44,7 

Goldrich 0,39 0,73 --- 

 

Table S1.5 Gene content of the M’ -locus peach syntenic region. Position and length of 

the ORFs as well as the first BLASTP match on the TAIR database annotated by IPGI 

are shown. Overlap length (amino acids), percent id and E-value are indicated for each 

Prunus/Arabidopsis gene pair. Arabidopsis homologues with detectable expression in 

mature pollen, hydrated pollen and pollen tubes (+/-) and those with altered 

transcription during pollen germination (PG) or pollen tube growth (PTG) are also 

indicated according to the results reported by Wang et al. (2008) using Affymetrix 

ATH1 Genome Arrays. 

Peach Gene 
ID 

Transcript   Start           Stop            
Length 

TAIR Description Overlap 
length 

% id E-
value 

Pollen 
expr. 

Altered 
transc. 

ppa022538m 18491554 18493033 1480 AT5G15720.1 GLIP7; carboxylesterase/ lipase 340 44,71 1E-76 - - 
ppa006182m 18495042 18498361 3320 AT5G15730.2b serine/threonine protein kinase, 

putative 
428 66,36 3E-155 - - 

ppa002721m 18498827 18500772 1946 AT2G03890.1 phosphatidylinositol 3- and 4-
kinase family protein 

660 63,79 0 - - 

ppa002370m 18503945 18508593 4649 AT3G30300.1b unknown protein 690 68,41 0 - - 
ppa008856m 18510031 18513228 3198 AT1G69010.1 BIM2 (BES1-interacting Myc-

like protein 2); DNA binding / 
transcription factor 

273 44,32 5E-43 - - 

ppa004594m 18515587 18518005 2419 AT5G15740.1 unknown protein 508 69,09 0 - - 
ppa012139m 18522087 18523783 1697 AT5G15750.1b RNA-binding S4 domain-

containing protein 
167 80,84 1E-80 - - 

ppa000002m 18524173 18545067 20895 AT3G02260.1b BIG (BIG); binding / ubiquitin-
protein ligase/ zinc ion binding 

5008 68,11 0 + / 

ppa026731m 18545106 18546555 1450 AT3G25270.1 nucleic acid binding 149 28,86 1E-10 - - 
ppa023507m 18559505 18560630 1126 AT4G37180.1 myb family transcription factor 52 67,31 2E-14 + downPTG 
ppa005351m 18563326 18565121 1796 AT5G15780.1 pollen Ole e 1 allergen and 

extensin family protein 
168 58,93 9E-41 - - 

ppa011450m 18574543 18575507 965 N/A N/A N/A N/A N/A N/A N/A 
ppa001620m 18581982 18588641 6660 AT5G38880.1b unknown protein 794 74,31 0 - - 
ppa011007m 18590528 18594247 3720 AT5G15790.2b zinc finger (C3HC4-type RING 

finger) family protein 
231 60,61 3E-74 - - 

ppa017665m 18594777 18596276 1500 AT5G38900.1 DSBA oxidoreductase family 
protein 

207 55,07 2E-67 + / 
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ppa011285m 18597087 18599509 2423 AT5G38900.1 DSBA oxidoreductase family 
protein 

214 63,08 6E-77 + / 

ppa011289m 18597087 18599313 2227 AT5G38900.1 DSBA oxidoreductase family 
protein 

214 63,08 6E-77 + / 

ppa011302m 18597087 18599360 2274 AT5G38900.1b DSBA oxidoreductase family 
protein 

214 63,08 6E-77 + / 

ppa012296m 18597087 18599509 2423 AT5G38900.1 DSBA oxidoreductase family 
protein 

213 55,4 6E-63 + / 

ppa005069m 18600204 18604076 3873 AT3G02300.1b regulator of chromosome 
condensation (RCC1) family 
protein 

463 77,97 0 + / 

ppa010249m 18604427 18608655 4229 AT1G69120.1 AP1 (APETALA1); DNA 
binding / protein binding / 
protein heterodimerization/ 
transcription activator/ 
transcription factor 

152 72,37 1E-52 - - 

ppa010548m 18619188 18623759 4572 AT3G02310.1 SEP2 (SEPALLATA 2); DNA 
binding / protein binding / 
transcription factor 

251 74,9 1E-95 - - 

ppa010577m 18619188 18623759 4572 AT3G02310.1b SEP2 (SEPALLATA 2); DNA 
binding / protein binding / 
transcription factor 

250 75,2 5E-97 - - 

ppa026503m 18629652 18630269 618 AT5G15802.1b unknown protein 110 56,36 9E-30 - - 
ppa016385m 18630946 18633249 2304 AT3G30210.1b MYB121 (MYB DOMAIN 

PROTEIN 121); DNA binding / 
transcription factor 

217 51,15 2E-52 - - 

ppa013380m 18636187 18636866 680 N/A N/A N/A N/A N/A N/A N/A 
ppa003386m 18638891 18643879 4989 AT3G02320.1b RNA binding / tRNA (guanine-

N2-)-methyltransferase 
558 78,85 0 - - 

ppa007756m 18645262 18647647 2386 AT3G02230.1b RGP1 (REVERSIBLY 
GLYCOSYLATED 
POLYPEPTIDE 1); cellulose 
synthase (UDP-forming) 

337 91,1 0 + / 

ppa005994m 18649075 18651638 2564 AT3G30180.1b BR6OX2 
(BRASSINOSTEROID-6-
OXIDASE 2); monooxygenase/ 
oxygen binding 

464 67,24 0 + Up PTG 

ppa007503m 18660657 18662638 1982 AT1G13680.1b phospholipase C/ phosphoric 
diester hydrolase 

348 62,64 1E-129 - - 

ppa014104m 18664030 18664766 737 AT3G29970.1b germination protein-related 86 69,77 5E-34 + / 
ppa024465m 18666252 18668102 1851 AT5G15630.1 IRX6 397 80,1 0 - - 
ppa005522m 18668649 18671935 3287 AT5G60920.1 COB (COBRA) 435 74,25 0 - - 
ppb023073m 18676574 18678411 1838 AT3G02210.1 COBL1 (COBRA-LIKE 

PROTEIN 1 PRECURSOR) 
180 42,22 1E-33 - - 

ppb020721m 18704742 18706234 1493 AT1G56440.1 serine/threonine protein 
phosphatase-related 

56 62,5 7E-16 - - 

ppa022025m 18716879 18718491 1613 AT2G21660.2 CCR2 (COLD, CIRCADIAN 
RHYTHM, AND RNA 
BINDING 2); RNA binding / 
double-stranded DNA binding / 
single-stranded DNA binding 

55 65,45 5E-15 - - 

ppa007463m 18748304 18751578 3275 AT5G15640.1b mitochondrial substrate carrier 
family protein 

319 79,31 4E-147 + Up PTG 

ppa010178m 18748304 18749962 1659 AT5G15640.1 mitochondrial substrate carrier 
family protein 

210 80,95 2E-98 + Up PTG 

ppa015454m 18752057 18753454 1398 AT4G01240.1 unknown protein 329 58,66 3E-111 - - 
ppa011807m 18754276 18755073 798 AT3G02220.1b unknown protein 167 69,46 7E-63 - - 
ppa013367m 18755340 18756208 869 AT1G24140.1a Matrixin family protein 92 32 7E-6 + Up PTG 
ppa019352m 18760652 18763276 2625 AT3G51550.1 FER (FERONIA); kinase/ 

protein kinase 
908 45,15 0 - - 

ppa001157m 18766568 18769249 2682 AT5G38990.1 protein kinase family protein 837 46,95 1E-175 - - 
ppa001190m 18774840 18777497 2658 AT3G51550.1 FER (FERONIA); kinase/ 

protein kinase 
825 49,58 0 - - 

ppa018922m 18793680 18794048 369 N/A N/A N/A N/A N/A N/A N/A 
ppa020589m 18806038 18808848 2811 AT3G51550.1 FER (FERONIA); kinase/ 

protein kinase 
812 51,6 0 - - 

ppa013018m 18809760 18810532 773 AT2G33775.1a RALFL19 ralf-like19 231 32 0.007 - - 
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ppa003761m 18812093 18814176 2084 AT3G51550.1 FER (FERONIA); kinase/ 
protein kinase 

414 44,69 1E-84 - - 

ppa001413m 18815789 18818489 2701 AT3G51550.1 FER (FERONIA); kinase/ 
protein kinase 

394 53,3 4E-108 - - 

ppa016279m 18829367 18831840 2474 AT3G51550.1 FER (FERONIA); kinase/ 
protein kinase 

815 47,48 0 - - 

ppa006461m 18834674 18838207 3534 AT5G15610.2b proteasome family protein 413 68,52 3E-177 - - 
ppa017965m 18839676 18840153 478 AT1G69230.2 SP1L2 (SPIRAL1-LIKE2) 97 48,45 1E-14 - - 
ppa007173m 18841314 18844509 3196 AT3G29770.1b MES11 (METHYL ESTERASE 

11); hydrolase 
310 77,42 1E-125 - - 

ppa007590m 18849392 18852062 2671 AT3G29760.1 NLI interacting factor (NIF) 
family protein 

146 58,22 1E-49 - - 

ppa000735m 18858946 18862792 3847 AT1G74160.1 unknown protein 1090 35,6 1E-116 - - 
ppa007206m 18863483 18864819 1337 AT5G15570.1b unknown protein  

DOMAIN/s: Bromodomain 
transcription factor  
BEST Arabidopsis thaliana 
protein match is: DNA binding 

391 38,87 1E-64 - - 

ppa007243m 18867715 18869807 2093 AT3G02150.2b PTF1 (PLASTID 
TRANSCRIPTION FACTOR 
1); transcription factor 

75 88 3E-36 - - 

ppa021495m 18874448 18875851 1404 AT3G29635.1 transferase family protein 443 40,41 4E-74 - - 
ppa020932m 18881667 18882581 915 AT1G21280.1a DOMAIN/s: Retrotransposon 

gag protein 
294 27 4E-06 - - 

ppa005255m 18885375 18887152 1778 AT5G39090.1 transferase family protein 470 37,45 2E-78 - - 
ppa026050m 18893531 18896984 3454 AT5G39080.1 transferase family protein 436 38,99 4E-78 - - 
ppa024873m 18897669 18899334 1666 AT3G29635.1 transferase family protein 429 28,9 2E-39 - - 
ppa021452m 18899747 18901162 1416 AT5G39090.1 transferase family protein 448 41,07 9E-85 - - 
ppa022904m 18911571 18913109 1539 AT5G39080.1 transferase family protein 431 27,61 1E-33 - - 
ppa026936m 18914045 18915457 1413 AT5G39090.1 transferase family protein 472 39,41 5E-88 - - 
ppa005502m 18936429 18937883 1455 AT5G39090.1 transferase family protein 471 39,92 3E-85 - - 
ppa020665m 18940430 18941821 1392 AT5G39080.1b transferase family protein 465 40,43 9E-88 - - 
ppa016949m 18957619 18959010 1392 AT5G39080.1 transferase family protein 465 40,22 9E-86 - - 
ppa025189m 18961426 18962349 924 AT5G39090.1 transferase family protein 214 40,19 5E-39 - - 
ppa018052m 18963290 18963619 330 AT5G39080.1 transferase family protein 64 45,31 8E-10 - - 
ppa016023m 18968998 18970547 1550 AT5G39090.1 transferase family protein 294 32,99 1E-31 - - 
ppa005488m 18972684 18974060 1377 AT5G39080.1 transferase family protein 468 39,53 5E-89 - - 
ppa020216m 18979935 18982632 2698 AT5G39080.1 transferase family protein 228 43,86 4E-46 - - 
ppa019904m 18992254 18993632 1379 AT3G29635.1 transferase family protein 429 38,46 1E-72 - - 
ppa016299m 18995785 18997447 1663 AT5G39090.1 transferase family protein 477 39,41 1E-80 - - 
ppa019320m 18998050 18999448 1399 AT5G39080.1 transferase family protein 222 37,84 8E-33 - - 
ppa005348m 19000743 19005122 4380 AT5G60980.2 nuclear transport factor 2 (NTF2) 

family protein / RNA recognition 
motif (RRM)-containing protein 

386 48,7 8E-83 - - 

ppa007375m 19007660 19009944 2285 AT3G29575.4b AFP3 (ABI FIVE BINDING 
PROTEIN 3) 

84 82,14 5E-38 + / 

ppa000986m 19011230 19014865 3636 AT3G02130.1b RPK2 (RECEPTOR-LIKE 
PROTEIN KINASE 2); ATP 
binding / kinase/ protein 
serine/threonine kinase 

953 67,89 0 - - 

ppa009937m 19018505 19020134 1630 AT3G02125.1b unknown protein 191 33,51 1E-12 + Up PTG 
ppa012522m 19020442 19021206 765 AT5G39210.1b CRR7 

(CHLORORESPIRATORY 
REDUCTION 7) 

162 46,91 3E-37 - - 

ppa016098m 19021821 19022271 451 AT3G02120.1b hydroxyproline-rich glycoprotein 
family protein 

61 67,21 6E-16 - - 

ppa014248m 19022519 19023590 1072 N/A N/A N/A N/A N/A N/A N/A 
ppa017321m 19028160 19032318 4159 AT3G02110.1b scpl25 (serine carboxypeptidase-

like 25); serine-type 
carboxypeptidase 

473 74,63 0 - - 

ppa005110m 19034922 19036600 1679 AT3G29400.1 ATEXO70E1 (exocyst subunit 
EXO70 family protein E1); 
protein binding 

279 50,9 3E-71 - - 

ppa004810m 19038382 19044888 6507 AT3G29390.1b RIK (RS2-Interacting KH 
protein); RNA binding 

490 54,08 1E-119 + / 

ppa007817m 19047717 19051663 3947 AT1G13820.1 hydrolase, alpha/beta fold family 
protein 

301 66,78 3E-117 - - 
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ppa005967m 19052928 19057394 4467 AT5G15550.1b transducin family protein / WD-
40 repeat family protein 

434 72,81 0 - - 

ppa000951m 19058877 19065497 6621 AT1G69830.1 AMY3 (ALPHA-AMYLASE-
LIKE 3); alpha-amylase 

403 59,8 3E-149 - - 

ppa000160m 19075922 19083048 7127 AT5G07980.1 dentin sialophosphoprotein-
related 

412 39,81 4E-71 - - 

ppa020830m 19084297 19085579 1283 AT3G10330.1 transcription initiation factor 
IIB-2 / general transcription 
factor TFIIB-2 (TFIIB2) 

314 50 5E-82 + / 

ppa021805m 19089131 19090244 1114 AT3G10330.1 transcription initiation factor 
IIB-2 / general transcription 
factor TFIIB-2 (TFIIB2) 

313 45,05 2E-68 + / 

ppa024744m 19091119 19092216 1098 AT3G02100.1 UDP-glucoronosyl/UDP-
glucosyl transferase family 
protein 

264 42,05 1E-47 - - 

ppa020867m 19098001 19099672 1672 AT3G02100.1 UDP-glucoronosyl/UDP-
glucosyl transferase family 
protein 

465 46,24 5E-122 - - 

ppa019116m 19105243 19106720 1478 AT3G02100.1b UDP-glucoronosyl/UDP-
glucosyl transferase family 
protein 

465 47,1 3E-123 - - 

ppa020470m 19107803 19109506 1704 AT3G02100.1 UDP-glucoronosyl/UDP-
glucosyl transferase family 
protein 

464 45,47 2E-119 - - 

ppa006338m 19110526 19112487 1962 AT3G02100.1 UDP-glucoronosyl/UDP-
glucosyl transferase family 
protein 

464 43,97 8E-110 - - 

ppa025965m 19114187 19114441 255 AT5G39240.1b unknown protein 90 41,11 5E-11 - - 
ppa010438m 19119067 19120153 1087 AT5G39250.1b F-box family protein 252 67,06 2E-93 + / 
ppa024239m 19120527 19121460 934 AT5G39300.1 ATEXPA25 (ARABIDOPSIS 

THALIANA EXPANSIN A25) 
224 65,18 2E-89 - - 

ppa000125m 19123369 19135325 11957 AT5G15540.1b EMB2773 (EMBRYO 
DEFECTIVE 2773); binding / 
protein binding / zinc ion 
binding 

1563 67,5 0 - - 

ppa009593m 19136301 19138411 2111 AT5G15530.1b BCCP2 (BIOTIN CARBOXYL 
CARRIER PROTEIN 2); biotin 
binding 

289 47,06 2E-55 - - 

ppa004059m 19138952 19142613 3662 AT3G02090.1b mitochondrial processing 
peptidase beta subunit, putative 

480 78,75 0 + / 

ppa011540m 19142598 19144436 1839 AT5G61170.1 40S ribosomal protein S19 
(RPS19C) 

139 90,65 1E-72 - - 

ppa012105m 19142598 19144436 1839 AT5G61170.1 40S ribosomal protein S19 
(RPS19C) 

120 90 5E-62 - - 

ppa020426m 19145946 19149339 3394 AT3G01015.1b unknown protein 
DOMAIN/s: Targeting for Xklp2  

496 52,82 6E-101 + / 

ppb012981m 19154167 19156382 2216 AT3G26922.1 unknown protein 
DOMAIN/s: Cyclin-like F-box, 
Leucine-rich repeat 2  
BEST Arabidopsis thaliana 
protein match is: F-box family 
protein 

286 27,27 4E-13 - - 

ppa004981m 19158038 19160714 2677 AT5G15490.1 UDP-glucose 6-dehydrogenase, 
putative 

482 87,55 0 + / 

ppa004991m 19158038 19160714 2677 AT5G15490.1 UDP-glucose 6-dehydrogenase, 
putative 

482 87,55 0 + / 

ppa005006m 19158038 19160714 2677 AT5G15490.1 UDP-glucose 6-dehydrogenase, 
putative 

482 87,55 0 + / 

ppa005897m 19162719 19164403 1685 AT1G26580.1 unknown protein 
BEST Arabidopsis thaliana 
protein match is: myb family 
transcription factor / ELM2 
domain-containing protein  

475 32,21 1E-43 + / 

ppa016813m 19167289 19168905 1617 AT1G26610.1 zinc finger (C2H2 type) family 
protein 

322 28,26 5E-16 + / 

ppa000827m 19171126 19177833 6708 AT3G29320.1 glucan phosphorylase, putative 516 74,42 0 - - 
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ppa010903m 19180586 19181564 979 AT3G29310.1a Calmodulin-binding protein 
related 

378 29 0.023 - - 

ppa023614m 19182400 19185223 2824 AT4G38180.1 FRS5 (FAR1-related sequence 
5); zinc ion binding 

624 45,03 9E-163 - - 

ppa013993m 19185732 19187433 1702 AT5G61220.1b complex 1 family protein / LVR 
family protein 

83 55,42 1E-22 - - 

ppa014984m 19187929 19189674 1746 AT5G39350.1b pentatricopeptide (PPR) repeat-
containing protein 

583 58,15 0 - - 

ppa004045m 19193460 19197883 4424 AT5G15470.1b GAUT14 
(Galacturonosyltransferase 14); 
polygalacturonate 4-alpha-
galacturonosyltransferase/ 
transferase, transferring glycosyl 
groups / transferase, transferring 
hexosyl groups 

532 87,59 0 + Down 
PTG 

ppa013551m 19199756 19202490 2735 AT3G01050.1b MUB1 (MEMBRANE-
ANCHORED UBIQUITIN-
FOLD PROTEIN 1 
PRECURSOR) 

117 64,1 1E-42 - - 

ppa014205m 19203844 19204267 424 N/A N/A N/A N/A N/A N/A N/A 
ppa007471m 19205856 19207724 1869 N/A N/A N/A N/A N/A N/A N/A 
ppa000855m 19208678 19213930 5253 AT5G15450.1b CLPB3 (CASEIN LYTIC 

PROTEINASE B3); ATP 
binding / ATPase/ nucleoside-
triphosphatase/ nucleotide 
binding / protein binding 

953 85,41 0 + / 

ppa017256m 19214613 19216111 1499 AT3G29280.1b unknown protein 150 75,33 9E-59 - - 
ppa010470m 19216695 19219176 2482 AT5G39360.1b EDL2 (EID1-like 2) 248 83,87 7E-126 - - 
ppa007111m 19220088 19221740 1653 AT5G39380.1b calmodulin-binding protein-

related 
275 46,55 1E-42 + / 

ppa005586m 19228019 19230695 2677 AT3G01060.1b unknown protein 455 79,78 0 - - 
ppa010047m 19231344 19232618 1275 AT3G29270.2b ubiquitin-protein ligase 266 64,29 2E-85 - - 
ppa002126m 19241079 19244334 3256 AT5G15410.1b DND1 (DEFENSE NO DEATH 

1); calcium channel/ calmodulin 
binding / cation channel/ cyclic 
nucleotide binding / intracellular 
cAMP activated cation channel/ 
intracellular cyclic nucleotide 
activated cation channel/ inward 
rectifier potassium channel 

728 74,86 0 - - 

ppa006437m 19246165 19248673 2509 AT5G39400.1b PTEN1; phosphatase 401 67,58 2E-159 + Down 
PTG 

ppa018982m 19249067 19251699 2633 AT3G59170.1a F-box/RNI like superfamily 
protein 

108 62 9E-07 + / 

ppa000705m 19253035 19259243 6209 AT5G15400.1b U-box domain-containing 
protein 

1042 77,26 0 - - 

ppa020057m 19270904 19272288 1385 AT1G61500.1 S-locus protein kinase, putative 230 54,35 1E-61 - - 
ppb011385m 19274222 19275245 1024 AT3G47570.1a Leucine-rich repeat protein 

kinase family 
174 42 8E-07 - - 

ppa015373m 19281903 19282828 926 AT2G44970.2 lipase-related 168 63,69 1E-55 + / 
ppa022595m 19284362 19285014 653 AT1G61480.1 S-locus protein kinase, putative 113 56,64 5E-27 - - 
ppa015584m 19293768 19295622 1855 AT5G44940.1a F-box/RNI like superfamily 

protein 
492 26 1E-05 - - 

ppa008118m 19296139 19298487 2349 AT5G15390.1b tRNA/rRNA methyltransferase 
(SpoU) family protein 

273 72,53 2E-114 - - 

ppa027121m 19299176 19300573 1398 AT4G15280.1 UGT71B5 (UDP-GLUCOSYL 
TRANSFERASE 71B5); UDP-
glycosyltransferase/ quercetin 3-
O-glucosyltransferase/ 
transferase, transferring glycosyl 
groups 

491 31,16 6E-49 - - 

ppa015845m 19304869 19306169 1301 AT4G15280.1 UGT71B5 (UDP-GLUCOSYL 
TRANSFERASE 71B5); UDP-
glycosyltransferase/ quercetin 3-
O-glucosyltransferase/ 
transferase, transferring glycosyl 
groups 

443 32,96 8E-45 - - 
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ppa005427m 19307491 19308892 1402 AT4G01070.1 GT72B1; UDP-
glucosyltransferase/ UDP-
glycosyltransferase/ transferase, 
transferring glycosyl groups 

477 31,24 2E-45 + Down PG 

ppa005544m 19309086 19311255 2170 AT5G39410.1b binding / catalytic 444 71,4 1E-170 - - 
ppa001868m 19311528 19313894 2367 AT4G21300.1 pentatricopeptide (PPR) repeat-

containing protein 
664 34,49 2E-114 - - 

ppa020905m 19318081 19318432 352 AT3G07490.1 AGD11 (ARF-GAP domain 11); 
calcium ion binding 

54 62,96 2E-14 + Up 
PG/PTG 

ppa013269m 19328280 19329440 1161 N/A N/A N/A N/A N/A N/A N/A 
ppa025951m 19355024 19356771 1748 N/A N/A N/A N/A N/A N/A N/A 
ppa022986m 19372463 19374770 2308 N/A N/A N/A N/A N/A N/A N/A 
ppa018209m 19378653 19379885 1233 AT1G13940.1 unknown protein 275 30,18 2E-10 - - 
ppa026630m 19387745 19390960 3216 AT1G26620.1 unknown protein 934 26,45 4E-43 - - 
ppa010430m 19396610 19397388 779 AT3G29240.2b unknown protein 237 71,31 5E-89 - - 
ppa017633m 19398358 19400169 1812 AT3G29230.1b pentatricopeptide (PPR) repeat-

containing protein 
570 64,56 0 - - 

ppa008650m 19401227 19404376 3150 AT3G29200.1b CM1 (CHORISMATE 
MUTASE 1); L-ascorbate 
peroxidase/ chorismate mutase 

340 62,06 3E-107 - - 

ppa012248m 19405752 19407075 1324 AT5G15350.1b plastocyanin-like domain-
containing protein 

151 57,62 3E-41 - - 

ppa022822m 19407697 19409782 2086 AT5G15870.1 glycosyl hydrolase family 81 
protein 

670 60,9 0 + Up PTG 

ppa020122m 19410871 19411919 1049 AT2G27035.1 plastocyanin-like domain-
containing protein 

112 45,54 3E-28 - - 

ppa017224m 19412641 19413914 1274 AT1G69390.1 ATMINE1 (Arabidopsis 
homologue of bacterial MinE 1); 
protein binding 

215 54,88 9E-55 - - 

ppa006467m 19414851 19417373 2523 AT3G29185.1b unknown protein 382 68,85 9E-152 - - 
ppa003809m 19419766 19423127 3362 AT1G13960.1 WRKY4; DNA binding / 

transcription factor 
478 52,72 4E-107 + Up PTG 

ppa002153m 19425256 19428803 3548 AT5G39420.1b cdc2cAt (Arabidopsis thaliana 
cdc2c); ATP binding / kinase/ 
protein kinase/ protein 
serine/threonine kinase 

602 53,99 0 - - 

ppa003330m 19430187 19433082 2896 AT3G29180.1b unknown protein 489 62,99 2E-176 + / 
ppa005577m 19444944 19447021 2078 AT3G29180.1 unknown protein 358 49,16 1E-84 + / 
ppa019328m 19452185 19454055 1871 AT1G61420.1 S-locus lectin protein kinase 

family protein 
180 51,11 2E-37 - - 

ppa024828m 19455075 19455374 300 AT1G48940.1 plastocyanin-like domain-
containing protein 

57 68,42 7E-19 - - 

ppa013579m 19460383 19462427 2045 AT3G29170.1b unknown protein 121 68,6 5E-30 + Up PTG 
ppa004347m 19463421 19468043 4623 AT3G01090.2b AKIN10 (Arabidopsis SNF1 

kinase homolog 10); protein 
binding / protein kinase 

498 86,35 0 + / 

ppa025010m 19468943 19470217 1275 AT5G19790.1 RAP2.11 (related to AP2 11); 
DNA binding / transcription 
factor 

77 76,62 1E-19 - - 

ppa002110m 19474159 19480251 6093 AT3G01100.1b HYP1 (HYPOTHETICAL 
PROTEIN 1) 

701 62,91 0 + / 

ppa019884m 19483949 19489940 5992 AT3G01100.1 HYP1 (HYPOTHETICAL 
PROTEIN 1) 

747 60,91 0 + / 

ppa011182m 19491797 19494720 2924 AT5G39510.1b SGR4 (SHOOT 
GRAVITROPSIM 4); receptor 

219 73,52 3E-87 + / 

ppa020933m 19494965 19496866 1902 AT5G15340.1b pentatricopeptide (PPR) repeat-
containing protein 

628 58,92 0 - - 

ppa010375m 19497382 19498954 1573 AT5G39530.1b unknown protein 257 40,08 5E-47 - - 
ppa008873m 19499720 19502738 3019 AT3G29090.1b pectinesterase family protein 312 80,77 5E-151 - - 
ppb013941m 19503679 19505433 1755 AT3G29075.1 glycine-rich protein 98 51,02 1E-17 + / 
ppa005604m 19505477 19508028 2552 AT3G29075.1b glycine-rich protein 141 51,06 4E-23 + / 
ppa004696m 19508444 19510885 2442 AT1G74630.1 pentatricopeptide (PPR) repeat-

containing protein 
507 37,28 4E-98 - - 

ppb009532m 19510291 19512202 1912 AT1G14010.1 emp24/gp25L/p24 family protein 204 63,73 3E-61 - - 
ppa001662m 19513691 19518100 4410 AT3G29060.1b unknown protein 

DOMAIN/s: EXS, C-terminal, 
SPX, N-terminal  

824 58,01 0 + Down 
PTG 
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ppa008419m 19518793 19520882 2090 AT5G15330.1b SPX4 (SPX DOMAIN GENE 4) 305 65,57 3E-96 - - 
ppa004232m 19522035 19525797 3763 AT3G01120.1b MTO1 (METHIONINE 

OVERACCUMULATION 1); 
cystathionine gamma-synthase 

394 87,82 0 + Up PTG 

ppa006769m 19536562 19538472 1911 AT5G15310.1b ATMYB16 (MYB DOMAIN 
PROTEIN 16); DNA binding / 
transcription factor 

396 53,54 5E-91 - - 

ppa007883m 19548346 19549836 1491 AT5G61430.1 ANAC100 (ARABIDOPSIS 
NAC DOMAIN CONTAINING 
PROTEIN 100); transcription 
factor 

363 57,3 2E-103 - - 

ppa003946m 19554779 19556419 1641 AT5G15300.1b pentatricopeptide (PPR) repeat-
containing protein 

543 60,22 0 - - 

ppa013251m 19560340 19561689 1350 N/A N/A N/A N/A N/A N/A N/A 
ppa014933m 19562764 19563770 1007 AT5G15300.1 pentatricopeptide (PPR) repeat-

containing protein 
257 42,02 2E-47 - - 

ppa018277m 19564757 19566145 1389 AT5G49610.1a F-box family 744 23 1E-04 + / 
ppa021574m 19567105 19570089 2985 AT5G15280.1b pentatricopeptide (PPR) repeat-

containing protein 
978 46,63 0 - - 

ppa014463m 19575091 19575831 741 N/A N/A N/A N/A N/A N/A N/A 
ppa003758m 19576121 19579601 3481 AT5G15270.1b KH domain-containing protein 480 67,08 2E-160 - - 
ppa004961m 19583491 19587280 3790 AT3G01150.1b PTB1 (POLYPYRIMIDINE 

TRACT-BINDING PROTEIN 
1); RNA binding / nucleic acid 
binding / nucleotide binding 

349 85,96 0 - - 

ppa010654m 19591405 19592794 1390 AT2G03090.1 ATEXPA15 (ARABIDOPSIS 
THALIANA EXPANSIN A15) 

227 80,62 9E-77 - - 

ppa015390m 19595392 19597506 2115 AT5G39680.1b EMB2744 (EMBRYO 
DEFECTIVE 2744) 

688 54,22 0 - - 

ppa011701m 19598419 19599223 805 AT5G39670.1b calcium-binding EF hand family 
protein 

203 48,77 4E-38 - - 

ppa014215m 19600973 19601914 942 N/A N/A N/A N/A N/A N/A N/A 
ppa004451m 19604860 19608044 3185 AT5G39660.2b CDF2 (CYCLING DOF 

FACTOR 2); DNA binding / 
protein binding / transcription 
factor 

527 43,64 2E-81 + / 

ppa010896m 19611500 19612889 1390 AT3G01170.1b structural constituent of 
ribosome 

224 59,82 4E-64 - - 

ppa002164m 19614676 19616973 2298 AT5G50390.1b pentatricopeptide (PPR) repeat-
containing protein 

714 61,9 0 - - 

ppb020889m 19617307 19617753 447 AT1G26800.1 zinc finger (C3HC4-type RING 
finger) family protein 

47 55,32 0,0000
001 

- - 

ppa008635m 19623160 19626937 3778 AT3G28970.1b AAR3 (antiauxin-resistant 3) 304 54,28 9E-80 + Down 
PTG 

ppa001734m 19627228 19632018 4791 AT3G01180.1b AtSS2 (starch synthase 2); 
transferase, transferring glycosyl 
groups 

742 68,19 0 - - 

ppa020648m 19633174 19633872 699 AT1G09157.1b unknown protein 187 71,12 2E-70 - - 
ppa002364m 19634693 19637215 2523 AT5G15250.1b FTSH6 (FTSH PROTEASE 6); 

ATP-dependent peptidase/ 
ATPase/ metallopeptidase/ 
peptidase/ zinc ion binding 

651 78,8 0 + / 

ppa004522m 19637658 19639175 1518 AT2G36730.1b pentatricopeptide (PPR) repeat-
containing protein 

489 62,58 0 - - 

ppa006034m 19639635 19641354 1720 AT3G28960.1b amino acid transporter family 
protein 

405 62,96 2E-144 - - 

ppa016771m 19647980 19650114 2135 AT5G37820.1 NIP4;2 (NOD26-LIKE 
INTRINSIC PROTEIN 4;2); 
water channel 

241 48,96 1E-58 - - 

ppa000362m 19650301 19659117 8817 AT5G48600.1b ATSMC3 (ARABIDOPSIS 
THALIANA STRUCTURAL 
MAINTENANCE OF 
CHROMOSOME 3); ATP 
binding / transporter 

1238 74,88 0 - - 

ppa016732m 19661696 19662608 913 AT2G02960.5 zinc finger (C3HC4-type RING 
finger) family protein 

80 55 3E-22 + / 
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ppa013692m 19664452 19665301 850 AT5G15230.1b GASA4 (GAST1 PROTEIN 
HOMOLOG 4) 

92 68,48 3E-21 - - 

ppa014185m 19665910 19666850 941 N/A N/A N/A N/A N/A N/A N/A 
ppa008908m 19674589 19675917 1329 AT3G28920.1b AtHB34 (ARABIDOPSIS 

THALIANA HOMEOBOX 
PROTEIN 34); DNA binding / 
transcription factor 

256 52,73 6E-48 - - 

ppa013998m 19683618 19684281 664 AT3G28917.1b MIF2 (MINI ZINC FINGER 2); 
DNA binding 

99 69,7 7E-22 - - 

ppa008366m 19691186 19693083 1898 AT3G28910.1b MYB30 (MYB DOMAIN 
PROTEIN 30); DNA binding / 
transcription factor 

361 51,8 4E-87 - - 

ppa014261m 19703691 19703931 241 N/A N/A N/A N/A N/A N/A N/A 
ppb011184m 19705415 19707177 1763 AT1G26880.1b 60S ribosomal protein L34 

(RPL34A) 
95 95,79 1E-48 + / 

ppa005314m 19707885 19711622 3738 AT5G39830.1b DEG8; peptidase/ serine-type 
peptidase 

447 74,72 0 - - 

ppa016710m 19715699 19717197 1499 AT1G26870.1 FEZ (FEZ); transcription factor 216 71,76 5E-82 - - 
ppa001533m 19717958 19720378 2421 AT5G39840.1b ATP-dependent RNA helicase, 

mitochondrial, putative 
808 64,73 0 - - 

ppa017567m 19721911 19727462 5552 AT3G28880.1b protein binding 410 46,1 9E-66 - - 
ppa010320m 19731857 19735527 3671 AT1G18800.1 NRP2 (NAP1-RELATED 

PROTEIN 2); DNA binding / 
chromatin binding / histone 
binding 

226 61,5 1E-74 - - 

ppa000039m 19735991 19744143 8153 AT3G55160.1b unknown protein 
DOMAIN/s: HEAT  

2217 58,86 0 - - 

ppa001982m 19750021 19753347 3327 AT1G69670.1 CUL3B (CULLIN 3B); protein 
binding / ubiquitin-protein ligase 

733 81,99 0 + / 

ppa011733m 19756541 19758934 2394 AT5G39850.1b 40S ribosomal protein S9 
(RPS9C) 

179 92,74 5E-96 - - 

ppa027069m 19759943 19760335 393 AT5G15190.2b unknown protein 98 41,84 0,0000
0001 

- - 

ppa005626m 19761253 19763026 1774 AT1G50010.1 TUA2; structural constituent of 
cytoskeleton 

435 98,39 0 + / 

ppa000359m 19767597 19774531 6935 AT3G28860.1b ABCB19; ATPase, coupled to 
transmembrane movement of 
substances / auxin efflux 
transmembrane transporter 

1247 90,3 0 - - 

 
a BLASTP TAIR matches with an E-value >1e-6 not included by IPGI (E-value <0.05) 
b Gene pairs that are ‘best-reciprocal BLASTP hits’ between Prunus and Arabidopsis  
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Table S1.6 Primers used in this study to amplify by PCR different fragments 

corresponding to S-RNase, SFB and actin genes. 

Primer Sequence 6.1 Reference 

SRc-F 5’-CTC GCT TTC CTT GTT CTT GC-3’ Romero et al. (2004) 

SRc-R 5’-GGC CAT TGT TGC ACA AAT TG-3’ Romero et al. (2004) 

PruC2 5’-CTT TGG CCA AGT AAT TAT TCA AAC C-3’  Tao et al. (1999) 

PruC2R 5’-GGT TTG AAT AAT TAC TTG GCC ATA G-3’  Tao et al. (1999) 

PruC4R 5’-GGA TGT GGT ACG ATT GAA GCG-3’ Tao et al. (1999) 

FBf-Hap1 5’-TGG AAG CAC CAA TTT ATT TCC T-3` This work 

FBr-Hap1 5’-TGA TTG AAG GAT CGA TCA TCT TGG-3’  This work 

FBf-Hap2 5´-GCC CAA TTA CTT GGT CAC TG-3´ Vilanova et al. (2006) 

FBr-Hap2 5´-CAC CCA CTT GAC TTG TCA GC-3´ Vilanova et al. (2006) 

RT-SFB1-for 5´-GGC AGC TCG AGT TTT GTT AGC ATA C-3´ This work 

RT-SFB1-rev1 5´-GGA ACC CGA ATT GGA GAG AAA CGA G-3 ́ This work 

RT-SFB2-for 5´-TTG GCA GCT CAA GTT TTG TTA GTG C-3´ This work 

RT-SFB2-rev2 5´-GCA GAA CCC ATA AGT CAG CTT TTC G-3´ This work 

Act3 5´-CTT CTT ACT GAG GCA CCC CTG AAT-3´ Gabino Ríos personal comm. 

Act4 5´-AGC ATA GAG GGA GAG AAC TGC TTG-3´ Gabino Ríos personal comm. 

 

Table S1.7 SSR markers tested for the PPM screening on the whole ‘Katy’ genome.  

Acronyme Species Number of SSR 6.2 Reference 

BPPCT P. persica 7 (4)a Dirlewanger et al. (2002) 

Gol P. armeniaca 2 (1) Vera-Ruiz et al. (2010) 

CPDCT P. dulcis 2 (2) Mnejja et al. (2005) 

CPPCT P. persica 5 (4) Aranzana et al. (2002) 

CPSCT P. salicina 14 (6) Mnejja et al. (2004) 

EPPCU/EPDCU P. persica/P. dulcis 10 (5) Howad et al. (2005), http://www.rosaceae.org/ 

M/MA P. persica 7 (3) Yamamoto et al. (2002) 

pchcms/pchgms P. persica 2 (1) Sosinski et al. (2000) 

SsrPaCITA P. armeniaca 8 (3) Lopes et al. (2002) 

UDAp P. armeniaca 20 (10) Messina et al. (2004), http://www.rosaceae.org/ 

UDP P. persica 6 (3) Cipriani et al. (1999) and Testolin et al. (2000) 

UDA P. dulcis 4 (0) Testolin et al. (2004) 

AMPA P. armeniaca 1 (1) Hagen et al. (2004) 

UCD-CH P. avium 1 (1) Struss et al. (2003) 

PGS P. persica 29 (11) Zuriaga et al. (2012) 

TOTAL  118 (55)  

a Number of polymorphic SSRs in ‘Katy’ is indicated between brackets. 
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Table S2.1. Primers used in this study 

Name Sequence Reference 
SRc-F 5´-CTC GCT TTC CTT GTT CTT GC -3´ Romero et al. (2004) 

SRc-R 5´-GGC CAT TGT TGC ACA AAT TG -3´ Vilanova et al. (2005) 

Pru-T2 5´-GTT CTT GCT TTT GCT TTC TTC-3´ Tao et al. (1999) 

Pru-C2 5´-CTT TGG CCA AGT AAT TAT TCA AAC C-3´ Tao et al. (1999) 

Pru-C2R 5´-GGT TTG AAT AAT TAC TTG GCC ATA G-3´ Tao et al. (1999) 

Pru-C4R 5´-GGA TGT GGT ACG ATT GAA GCG-3 Tao et al. (1999) 

Pru-C6R 5´-CAT TGC CAC TTT CCA CGT C-3´ Vilanova et al. (2003) 

F-BOX5´A 5´-TTK SCH ATT RYC AAC CKC AAA AG -3´ Vaughan et al. (2005) 

F-BOXintronR 5´-CWG GTA GTC TTD SYA GGA TG- 3´  Vaughan et al. (2005) 

RFBc-F 5´-GAG GAG TGC TAC AAA CTA AGC-3´ Vilanova et al. (2006) 

SFBins-R 5´-TCA AGA ACT TGG TTG GAT TCG-3´ Vilanova et al. (2006) 

Sf-Hap2  5´-CGC TAG AAA TCA AAG CCA CAG-3´ Vilanova et al. (2006) 

Sr-Hap2 5´-GGC GTA AGC AAG TGG AAA AG-3´ Vilanova et al. (2006) 

FBf-Hap2 5´-GCC CAA TTA CTT GGT CAC TG-3´ Vilanova et al. (2006) 

FBr-Hap2 5´-CAC CCA CTT GAC TTG TCA GC-3´ Vilanova et al. (2006) 

FBF1 5´-GCC CAA TTA CTT GGT CAC TG-3´ unpublished 

SFBc-F 5´-TCG ACA TCC TAG TAA GAC TAC CTG C-3´ Romero et al. (2004) 

FBF5 5´-TAG GAC CCC TCA AAT GAG C-3´ unpublished 

FBF6 5´-TGG GTT CTG CAA GAA AAA CG-3´ unpublished 

FBr-Hap2-2 5´-AAA AGC AAC AGC CAC CAA AG-3´ unpublished 
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Table S2.2. Fragment sizes determined for S-RNase and SFB alleles  

S-allele SR1-F/SR1-R PruT2/SR1-R PruC2/PruC4Rd PruC2/PruC6Rd F-Box Refs.e 

S1 419 407 ~2100 ~2000 210 [1] 

S2 345 n.a. ~950 ~800 205 [1] 

S4 260 244 ~400 ~350 n.a. [1] 

S5 396 384 ~1300 ~1200 n.a. [1] 

S6 n.a.c 429 ~1300 ~1200 197 [1] 

S7 419 407 ~900 ~700 199 [1] 

S8 371 359 ~3000 ~2800 204 [2] 

S9 218 206 ~600 ~400 n.a. [2] 

S11 320 308 n.a. ~1500 208 [2] 

S20 n.a. n.a. ~1900 ~1800 n.a. [3] 

S24 n.a. 266 ~450 ~300 n.a. [4] 

S29 427 417 ~750 ~550 189 [5] 

S30 373 n.a. n.a. ~500 206 [5] 

S31 285 n.a. n.a. n.a. 207 [5] 

SC 371 359 ~3000 ~2800 204 [1] 

SV/SX
a 260/n.a. 248/n.a. ~2000/550 ~1800/350 n.a./n.a. [5] 

S15/SZ
b 346/338 334/326 ~750 (S15)/400 

(SZ) 
~550 

(S15)/200(SZ) 
198/206 [2] 

a Allele fragment sizes corresponding to SV and SX could not be established since both were found only 
once and in the same cultivar (‘Fergani’) (see Table 3.3).  
b Only allele fragment sizes corresponding to the second intron could be unambiguously assigned to S15 
and SZ according to Halász et al. (2005). 
c  n.a. Not amplified. 
d Fragment sizes for the second S-RNase intron were approximately estimated (~) from agarose gels.   
e References reporting S-allele molecular sizes for the first time: [1] Vilanova et al. (2005); [2] Halász et 
al. (2005); [3] Zhang et al. (2008); [4] Gu et al. (2013); [5] This work. 
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Table S2.3. Characteristics of SSR primers developed from peach (PGS) and apricot 

genome sequences (AGS) located at the M-locus.  

Name F/R Primer sequence  Repeat 
motif  

Start on 
scaffold_3 
(Mb) 3 

ORF 
(Prupe) 

Size range 
(bp) 

No. of 
alleles 

H4 

PGS3.221 F TCTGATTGCAGGTAAGGACAG (CT)25 18,49 3G247600 304-328 8 0,61 

 R TATCTTGATATCGGCCTGGA   Put. Prot.    

PGS3.231 F TGACTTTCTGCATCTTGACCT (AG)24 18,61 3G249300 164-190 8 0,68 

 R CTTTGCTTCCGTTAATCCAA   MADS-box    

PGS3.621 F AGCTTCCTCTATTCTTGGTGGT (CT)22 18,61 ---- 321-356 10 0,71 

 R GCTTTTCCCCGAGCTAATTC       

PGS3.711 F ACCACCCCCTATCCCTATTG (CT)13 18,4 ---- 233-269 10 0,65 

 R ACTTGCAAACCCCCTTGATT       

PGS3.961 F TGGCCACAATTAATGGGAGA (CT)14 18,76 ---- 431-474 15 0,82 

 R TCGGAGAACTTCTTGTGCAT       

AGS3.202 F CGAACGAGAGGGAAAAATGA (TA)10 18,61 3G249300 178-202 8 0,62 

 R AACTGATTCCGAACCACAGG   MADS-box    

AGS3.302 F CCGCACGGCTATACTGTCTAA (AT)13 18,71 ---- 193-207 7 0,38 

  R ACAGGCTGGATGCTTTGTCT             

1 Zuriaga et al. (2013) 
2 This work 
3 Positions according to the peach v1.0 genome sequence (IPGI) 
4 Heterozygosity was estimated according to Nei (1973): H = 1-Σpi

2, where pi is the frequency of the i th 
allele. Clonal sibs from ‘Canino’ were excluded from estimations. 
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Table S2.4. Allele sizes for SSR markers comprised in the M-haplotypes 

 PGS3_71 PGS3_22 PGS3_62 PGS3_23 AGS_20 AGS_30 PGS3_96 

m0-0 261 306 348 188 190 203 442 

m0-1 261 306 348 188 190 203 444 

M1-0 259 306 350 188 188 203 441 

M1-1 257 306 348 188 188 203 441 

M1-2 259 306 348 188 188 203 441 

M1-3 259 306 348 178 188 203 441 

M1-4 257 306 348 184 188 203 441 

M2-0 255 310 336 178 188 203 434 

M2-1 255 310 336 178 188 201 434 

M2-2 255 310 336 178 188 203 436 

M3 247 312 329 190 192 195 458 

M4-0 259 306 336 178 188 195 456 

M4-1 259 306 336 178 188 195 458 

M4-2 259 306 336 178 188 195 460 

M5-0 233 310 354 184 190 203 466 

M5-1 233 310 356 184 192 n.a. 466 

M5-2 233 310 354 184 190 n.a. 464 

M6 269 304 321 164 202 203 443 

M7-0 251 316 332 186 198 193 464 

M7-1 233 316 332 186 198 193 464 

M7-2 233 316 332 186 196 193 464 

M7-3 251 316 332 186 194 195 466 

M8-0 259 328 354 186 198 195 431 

M8-1 259 328 354 186 196 195 431 

M8-2 259 328 356 186 196 195 431 

M9 261 312 356 184 196 n.a. 466 

M10 247 312 354 178 188 203 474 

M11 233 314 332 190 188 199 474 

M12 259 312 356 184 194 203 468 

M13 255 310 348 188 188 203 441 

M14-0 255 306 348 188 188 195 466 

M14-1 255 306 348 188 188 195 450 

M15-0 259 306 356 186 192 203 466 

M15-1 257 306 354 186 192 203 466 

M16 243 310 337 180 188 195 442 

M17 256 308 348 168 178 203 434 

M18 257 310 354 190 188 207 468 

M19 255 306 334 188 190 n.a. n.a. 
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Figure S3.1. BAC clone de novo assembly, joining of overlapping BAC contigs and GAP 

closure. Boxed codes represent BAC clones belonging to M-locus from a BAC library of the SI 

apricot cv. ‘Goldrich’ (Zuriaga et al., 2012) used for de novo M-locus sequence assembly. Grey 

and black colors correspond to M1 and M2-haplotypes, respectively. Contigs obtained per BAC 

clone (BAC contigs) were numbered correlatively from 1 to 30 (open white boxes; see Table 

S3.2). GAPs (previous to GAP closure; see Table S3.3) between contiguous contigs are shown 

below aM-supercontig with orange numbers. Contigs conforming aM-supercontig after GAP 

closure (M-locus_contig_1,2 and 3; open white boxes) are shown below GAPs. The scale in Kb 

of aM-supercontig is indicated with red dotted lines. 
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Figure S3.2. Graphical M-locus map representation of parents and recombinant hybrids 

used for ‘Canino’ (‘GxC’) and ‘Katy’ (‘KxK’) fine-m apping. Brown vertical bar represents 

M-locus region in apricot chr. 3. Molecular markers delimiting ‘Canino’ and ‘Katy’ M-loci are 

written in black and grey in the apricot chr.3, respectively. Black, grey and white vertical bars 

represent M1/M2, M3 and m-haplotypes, respectively. Black and white stripped lines inside 

vertical bars symbolize heterozygote M1m or M2m M-locus genotype in the corresponding 

region, while grey and white stripped lines symbolize heterozygote M3m genotype. M-locus 

genotype for the parents ‘Goldrich’ (G), ‘Canino’ (C) and ‘Katy’ (K), as well as ‘GxC’ and 

‘KxK’ recombinant hybrids are indicated below each vertical bar. Recombinant breakpoints for 

‘GxC’ and ‘KxK’ recombinants hybrids delimiting ‘Canino’ and ‘Katy’ M-locus maps are 

shown by horizontal black and grey dotted lines, respectively. New recombinant hybrids 

incorporated in this work are underlined. 
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Table S3.1. Summary of Next Generation Sequencing (NGS) data. NGS platform, DNA 

source, Sample and Tissue (for RNAseq data) as well as the Number of sequences and Average 

size of raw data and cleaned data after trimming are indicated. 

NGS platform DNA source Sample Tissue Raw data  Cleaned data 

        No. sequences Average size (bp)   No. sequences Average size (bp) 

454 BAC clone 215E14 - 29334 399,79 
 

21909 377,86 

454 BAC clone 209M03 - 39135 408,92 
 

28137 387,91 

454 BAC clone 108J24 - 27174 393,91 
 

20890 370,36 

454 BAC clone 224A3 - 46679 402,86 
 

34777 385,5 

454 BAC clone 234O11 - 16768 384,81 
 

13094 363,84 

454 BAC clone 148M17 - 24553 299,37 
 

23738 296,9 

454 BAC clone 253J12 - 9262 287,63 
 

8969 284,8 

454 BAC clone 251L05 - 16348 292,08 
 

15718 288,9 

454 BAC clone 160J21 - 19125 306,26 
 

18481 301,7 

454 BAC clone 95D02 - 9374 299,29 
 

9065 299,2 

454 BAC clone 159P08 - 9937 295,54 
 

9676 291,6 

454 BAC clone 161F24 - 10233 293,92    9931 291,6  

illumina gDNA Goldrich' - 137954275 101 
 

136391075 92,7 

illumina gDNA Canino' - 373801518 101 
 

371672380 
(129438652)a 

99,3 (99,6) 

illumina gDNA Katy' -  69669448 101   69042494 98,8  

illumina RNA Goldrich' mature anthers* 122397834 107 
 

122338874 106,46 

illumina RNA Goldrich' mature styles** 122313850 107 
 

122268676 106,52 

illumina RNA Goldrich' leaves** 135741242 107 
 

135688624 106,59 

illumina RNA Canino' mature anthers* 159854696 107 
 

159774857 106,47 

illumina RNA Canino' mature styles** 123966784 107 
 

124313835 106,33 

illumina RNA Canino' leaves** 110887662 107 
 

110843339 106,56 

illumina RNA Katy' mature anthers* 130685722 107 
 

130624896 106,51 

illumina RNA Katy' leaves** 103966200 107   103922997 106,57 

aDue to the high coverage, 1/3 of cleaned sequences were randomly selected     
* 3 biological replicates / 2 technical replicates per biological replicate 

    
** 2 biological replicates / 2 technical replicates per biological replicate 
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Table S3.2. De novo assembly results per BAC clone (previous to join overlapping contigs 

and GAP closure).  

BAC clone Contig name Code* size (bp) BAC clone Contig name Code* size (bp) 

215E14 Contig_215E14-1 1 19926 148M17/253J12/251L05 Consensus_3 16 6640 

 
Contig_215E14-2 2 5830   Consensus_4 17 31108 

  Contig_215E14-3 3 37296 251L05 Contig_251L05-1 18 1196 

209M03 Contig_209M03 4 45069   Contig_251L05-2 19 2480 

108J24 Contig_108J24-1 5 8134   Contig_251L05-3 20 13053 

 
Contig_108J24-2 6 39955   Contig_251L05-4 21 1077 

 
Contig_108J24-3 7 13930   Contig_251L05-5 22 314 

  Contig_108J24-4 8 10284   Contig_251L05-6 23 2304 

224A3 Contig_224A3-1 9 13179   Contig_251L05-7 24 2707 

  Contig_224A3-2 10 32027   Contig_251L05-8 25 1833 

234O11/148M17 Consensus_1 11 66623   Contig_251L05-9 26 19476 

148M17 Contig_148M17-1 12 1783 160J21/95D02/159P08 Consensus_5 27 57003 

 
Contig_148M17-2 13 2034   Contig_159P08-1 28 7160 

  Contig_148M17-3 14 15728 161F24 Contig_161F24-1 29 12056 

148M17/253J12 Consensus_2 15 19959   Contig_161F24-2 30 58817 

*Code for contigs obtained per BAC clone (BAC contigs) 
represented in Figure S3.1 

    
 

Table S3.3. GAP closure. All GAPs between contiguous contigs and their position in M-locus 

supercontig sequence are indicated. GAPs matching with SSR markers from PGS3 series are 

also indicated. For remaining GAPs, markers primer pair sequences used for amplification are 

shown.  

GAP Position SSR 
coincidence 

oligo sequence-forward / reverse 

GAP-1 20031 PGS3_21 - 

GAP-2 25831 - GGAATTGTGGAAATGGGAGA / AGGTTGCGTGAGCTCTCTTT 

GAP-3 76026 - TTCGGCTTCCAATCATAAGG / AATGCGGGACTATGAAGACG 

GAP-4 115850 PGS3_22 - 

GAP-5 130249 PGS3_77 - 

GAP-6 148469 PGS3_47 - 

GAP-7 231180 PGS3_62 - 

GAP-8 232832 - CCCAACACTCATCGAACCTT / TTGAGGAGGTCAATCCCATC 

GAP-9 234847 PGS3_84 - 

GAP-10 251854 PGS3_49 - 

GAP-11 273812 PGS3_88 - 

GAP-12 280476 - ACTGCCATGTTACGCAATGA / AATTGGTGTGGAGCATGTGA 

GAP-13 311576 - CGACCGGCTATACACTGTCTTT / GCTTGTAGAACCTCTAGGAACTATCG 

GAP-14 313614 - CCTACGTACCCTACTAAGGGATCAA / CTAATCGTATGTGGCGCAAA 

GAP-15 314867 - AGGTGGAAGTTTTGGGGAAT / GGTTCCACTCCTGTCAATCG 
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Table S3.4. SSR primers developed from the apricot M-locus supercontig sequence. Primer 

position, sequence, repeat motif and SSR allele sizes amplified in apricot cvs. ‘Goldrich’, 

‘Canino’ and ‘Katy’ are indicated. 

Name F/R Primer sequence Repeat motif Start on 'Goldrich' 
alleles 

'Canino' 
alleles 

'Katy' 
alleles 

AGS.3 F AAAATGTTGGGCTCCCTTTC (TTC)7 37610 164 164 164 

 

R TGAACGACTTGGGGGAATAG 
     AGS.4 F TTGGCATCTCTGGTGCAAT (AT)7 32804 438/470 470 441/470 

 

R ACAATGAGGTTGCCTTCGTC 
     AGS.6 F GAGTGGCCGATACCTGTTCT (AATT)4 70573 238/241 241 238/241 

 

R AATGATGGGTTTTGGGTGTG 
     AGS.7 F TTCGGCTTCCAATCATAAGG (TC)14 76026 N.A. N.A. N.A. 

 

R AGAAATGGAGGTGTCGTTGG 
     AGS.8 F TTCGTAGCATTCTGGGGTTT (GA)10 102236 215/230 250 238/250 

 

R GGGGGCTTGAATGATAGGAT 
     AGS.9 F AGGCATGTGTGTTTGACACC (AAT)5 103440 225/226 225 225 

 

R AATGTGGACATGAAGCACCA 
     AGS.10 F CTCCCATGGAAAACCTCAAA (CT)30 115967 198/203 198 198/203 

 

R GGGGCATTTCTGATGGTAAA 
     AGS.11 F TTTGCCTTCATACACCTAGCC (AT)10 116715 261/269 261 261 

 

R CACAAGCATGAGACCATCCA 
     AGS.12 F ACGATGAATTTGAAGACGATGA (CT)9+(TTG)6 136201 193/210 193/210 193/210 

 

R ACCTTCACTGCCAAATTCCCTATC 
     AGS.14 F AGAAGGCCCTGCACCTAAAT (CCT)6 152359 219/236 219/236 219/236 

 

R CATAAACTCAGGGGCTTGGA 
     AGS.17 F AAAAACACCTCTCCCGACAA (TA)6 177634 190/199 199 190/199 

 

R AGCGGCGATACTCGTTTTAC 
     AGS.18 F CAATGGACGAGTAGGGGTGT (AT)12 175974 387/389 389 387/389 

 

R TTGGGTTTGGAGAGGTTTTG 
     AGS.19 F TATCATGCGTCGCTCTCAAG (AT)10 208676 235/251 251 235/251 

 

R CACAATTGGATGTCGAAACG 
     AGS.20 F CGAACGAGAGGGAAAAATGA (AT)10 224961 189 189/191 191/193 

 

R AACTGATTCCGAACCACAGG 
  

   
AGS.21 F TGTGTCCCTCGATCCTTACC (TA)10 236517 514/518 518 503/505 

 

R CTATCCGATTTCCAATCCGACA 
     AGS.22 F AGTTCAAGCGGCTTTCAGAT (TA)4+5 244325 171 171 171 

 

R AATGCCAGTCCTTCGATGAG 
     AGS.23 F TACAATCAATGGCGGATTCA (TA)8 250156 N.A. N.A. N.A. 

 

R TTTCTTCGTCTGAGCCTTTGA 
     AGS.24 F TCCAAAAGAAGCAACGTCAA (GA)23 250524 N.A. N.A. N.A. 

 

R CCATGCTTGGGTTAAAGTGG 
     AGS.26 F AATATTGGTCCCCCTCCAAG (GTT)4+5 252416 240/258 240/258 240/258 

 

R GCAAGAGAAACGAAAAGCTCA 
     AGS.27 F GTTGCACGGAAATTCCAGAT (AG)14 275668 175/182 175 175/182 

 

R GTGTGCGTCTGTGTGGGTAG 
     AGS.28 F GGGTCCTCAACAGACCAAAG (GA)9 276953 179/182 179/182 N.A. 

 

R AGGTGCACGTGGATAGACCT 
     AGS.29 F ACGTCGTTTTGGCAATGTTT (ATA)4 295820 N.A. N.A. N.A. 

 

R ACATGTGCCCTTTGTTTGTG 
     AGS.30 F CCGCACGGCTATACTGTCTAA (AT)13 309620 203 203 195/203 

 

R ACAGGCTGGATGCTTTGTCT 
     AGS.31 F AATTGCCCCCGTCTATCAC (CT)5+5 313614 194/196 196 194/196 

 

R GAGAATGGGTGGGGTAGGAC 
     AGS.32 F CCCAGCTGAAATGGGAATAC (AT)11 315102 282/297 282/297 282/297 

 

R GCATGCATCATGTTTTCCTG 
     AGS.33 F CACCCCCTCCCTCTCTTTTA (CT)10 319478 ML ML ML 
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R CATGTTGGTCGATTTGTAGCC 
     AGS.34 F TCACCAGCTGACGTGGTAGT (CT)16 320217 N.A. N.A. N.A. 

 

R CAATTCCTCATCTGGGCAGT 
     160J21-7 F ACTTGAGATTGATGCTCCCATT (AT)11 332558 164 164 164 

 

R ACCAACAGCTCCAAATTAAACC 
     AGS.35 F CAGGCCTCAAAGGCAAAAC (CTAGGCGGCT)21 335737 N.A. N.A. N.A. 

 

R CACCCCCTCCCTCTCTTTTA 
     160J21-6 F CCTTCACCAACTTCAAACCCTA (GA)6 336648 189 189/191 191/193 

 

R TTGTTCCTATTTTCGATACCCG 
     160J21-5 F CTACTGCTGAACGACCAAAACA (AT)11+(CA)6 337460 223/238 223/238 223/238 

 

R AACGGATTTTCATGGTAGATGC 
     160J21-4 F CCTCTCTCACTCAACCTGCTCT (TC)18 338507 N.A. N.A. N.A. 

 

R AAGCGTTTAGCCAAGGAACTAA 
     AGS.36 F ACCCAGAGGTACCCTTCGAG (CTAGGCGGCT)14 343974 ML ML ML 

 

R ACTTCCATCACCCTTCGTCA 
     160J21-3 F TGTGAAGGTCATGGGTTTACAA (GT)9 347903 N.A. 397/403 397/403 

 

R ACGGTTTTCCAAGTACAACGTC 
     160J21-2 F GGTTGGACTGCTTTTCATTCTT (TAA)16 349292 350/352 350/354 352/354 

 

R ATTTCTTTGGAGTTGAGGTGGA 
  

   
AGS.37 F TCAAATCTCTTGGGCCAATC (GGT)6 350097 256/264 264 264/270 

 

R ATTCACTACCCCCACAACCA 
     AGS.38 F CATCATGTACGGAAGCACCA (AT)12 353246 ML 219/221 219/221 

 

R CCGTTGGACATTCCTTTTTC 
     AGS.39 F CTCGCGAAACCCTAACATTT (TC)9+9 338506 N.A. N.A. N.A. 

 

R ACCGGGAGAAAACGACAGT 
     AGS.40 F CATCATGTACGGAAGCACCA (AT)12 353246 N.A. 222 220/222 

 

R CCGTTGGACATTCCTTTTTC 
     AGS.41 F ATGGAAGATGATTGCCCAAC (AT)15 366351 ML 342 342/344 

  R TTGTCATGTTGATGCCCTGT           
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Table S3.5. Example of variant calling results from aM-supercontig using the alignment of 

genomic Illumina  data from apricot cvs. ‘Goldrich’ (a), ‘Canino’ (b) and ‘Katy’ (c). First 

and last five variants are shown from the total variant calling. Variant position, type 

(‘SNV’=Single-Nucleotide Variant; ‘MNV’=Multi-Nucleotide Variant; ‘Insertion’; ‘Deletion’; 

‘Replacement’), reference allele in the aM-supercontig sequence (‘Reference’ column), variant 

allele identified (‘Allele’ column), zigosity, the number of sequences supporting variant allele 

(‘Count’ column), total of sequences aligned in variant position (‘Coverage’ column), 

proportion of forward/reverse sequences supporting variant allele (‘Forward/reverse’ column) 

and Phred score average value for variant position (‘Average quality’ column) are shown for 

each variant.    

 

a                        

SNP 
number 

Reference 
Position 

Type Length Reference Allele Zygosity Count Coverage Frequency Forward/
reverse  

Average 
quality 

1 354 SNV 1 A C Heterozygous 5 11 45,45 0,00 32,00 

2 356 SNV 1 A C Heterozygous 6 12 50,00 0,00 32,00 

3 542 SNV 1 A T Heterozygous 12 23 52,17 0,33 37,67 

4 631 SNV 1 T A Heterozygous 10 20 50,00 0,40 38,10 

5 969 SNV 1 T C Heterozygous 13 24 54,17 0,46 36,23 

 :  :  :  :  :  :  :  :  :  :  :  : 
 :  :  :  :  :  :  :  :  :  :  :  : 
 :  :  :  :  :  :  :  :  :  :  :  : 

5100 435483 SNV 1 G A Heterozygous 24 67 35,82 0,00 36,17 

5101 435489 SNV 1 G T Heterozygous 22 63 34,92 0,00 34,95 

5102 435495 SNV 1 A G Heterozygous 20 63 31,75 0,00 37,95 

5103 435522 MNV 2 CT AC Heterozygous 14 52 26,92 0,00 38,18 

5104 435771 SNV 1 A T Heterozygous 3 11 27,27 0,00 6,33 

b                        

SNP 
number 

Reference 
Position 

Type Length Reference Allele Zygosity Count Coverage Frequency Forward/
reverse  

Average 
quality 

1 1320 Deletion 1 T - Homozygous 48 48 100,00 0,40 36,42 

2 1339 Deletion 1 G - Homozygous 48 48 100,00 0,42 35,27 

3 1349 Deletion 1 C - Homozygous 44 45 97,78 0,43 33,39 

4 9749 Insertion 1 - T Homozygous 30 30 100,00 0,48 36,53 

5 13757 Insertion 1 - T Homozygous 34 34 100,00 0,32 36,41 

 :  :  :  :  :  :  :  :  :  :  :  : 
 :  :  :  :  :  :  :  :  :  :  :  : 
 :  :  :  :  :  :  :  :  :  :  :  : 

5293 435564 SNV 1 C T Heterozygous 23 65 35,38 0,04 39,65 

5294 435565 Deletion 1 A - Heterozygous 36 65 55,38 0,28 36,75 

5295 435571 SNV 1 C A Heterozygous 20 62 32,26 0,00 39,50 

5296 435576 MNV 2 CC TT Heterozygous 17 57 29,82 0,00 39,32 

5297 435592 SNV 1 T C Heterozygous 14 53 26,42 0,00 39,14 
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c                        

SNP 
number 

Reference 
Position 

Type Length Reference Allele Zygosity Count Coverage Frequency Forward/
reverse  

Average 
quality 

1 354 SNV 1 A C Heterozygous 5 9 55,56 0,20 34,60 

2 356 SNV 1 A C Heterozygous 5 9 55,56 0,20 36,60 

3 542 SNV 1 A T Heterozygous 9 20 45,00 0,40 38,11 

4 631 SNV 1 T A Heterozygous 9 20 45,00 0,22 39,00 

5 891 SNV 1 A C Heterozygous 13 30 43,33 0,46 38,00 

 :  :  :  :  :  :  :  :  :  :  :  : 
 :  :  :  :  :  :  :  :  :  :  :  : 
 :  :  :  :  :  :  :  :  :  :  :  : 

6593 435522 MNV 2 CT AC Heterozygous 14 35 40,00 0,07 35,89 

6594 435559 SNV 1 C T Heterozygous 13 29 44,83 0,00 38,92 

6595 435565 Deletion 1 A - Heterozygous 10 26 38,46 0,30 37,10 

6596 435576 SNV 1 C T Heterozygous 8 24 33,33 0,00 39,50 

6597 435592 SNV 1 T C Heterozygous 5 20 25,00 0,00 38,80 

                        

Table S3.6. Selected SNPs for ‘Canino’ and ‘Katy’ fine-mapping. Primer position, sequence 

and allele composition observed by Sanger sequencing in apricot cvs. ‘Goldrich’, ‘Canino’ and 

‘Katy’ are indicated. 

Name F/R Primer sequence Position 'Goldrich' alleles 'Canino' alleles 'Katy' 
alleles 

SNPCaMmap1 F TAATGTGAGTCTTGGACGTG 33687 33687 (T/G), 33688 (C/T) 33687 (G), 33688 (C/T) - 

R CTGTCCTTTTTGGATTCCTGA 
 

  
 SNPCaMmap2 F AGAAACGCCACACCACACTA 112413 No heterozygote No heterozygote - 

R ATTGGGACTGGTGTCTGAGC 
   

 SNPCaMmap3 F TTGGGGATAAGTGGAGTTGG 184272 G/T T - 

 R TCAGCTGGGTTCTTCACCTT 
   

 SNPCaMmap4 F CGAAAGGCCTCTCTATGCTG 260267 Indel Indel - 

 R TCGTGCACCAAGTGCATTAT 
   

 SNPCaMmap5 F TGGCTCTGTGTACCATCCAA 326175 326175 (A/G), 326182 (G/T) 326175 (G/G), 326182 (G/T) - 

 R TTTGTGGGCAGTTAACACCA 
 

   SNPKaMmap1 F CAAGCAAGGGGCAATTAACA 142155 - - A/G 

R CGCTAACACCAGAGGAAACTG 
    SNPKaMmap2 F GGTGTTCATCAGAAGCAGCA 146316 - - C/T 

R CATGTTCATTCAACGGCATA 
    SNPKaMmap3 F ACGTCTCATTTCATCCCTGGT 153066 - - T/C 

R GGCTGCAGAAAGAACATGAAG 
    SNPKaMmap4 F GCAAGAGGTCAACACCAAAAG 164682 - - A/C 

R CTCAAAAGGCTGTTGCTCTGT 
    SNPKaMmap5 F TGCCGACTATCAACAGTAAACC 171071 - - G/A 

R GACATGCATCTTCCTTGAGA 
    SNPKaMmap6 F AGCCACCATGCACCCTATAC 273675 - - A/G 

R TCACATGGTAACCAAGCTCCT 
    SNPKaMmap7 F CACGAGGGCCTCTATTTTGT 276184 - - T/C 

 

R CTCCTTTTGGTGCATGTGTG 
    SNPKaMmap8 F AATGTGTTTGGACAAGTCACG 277881 - - C/T 

 

R CACACTTCACTCCAACCGAAT 
    SNPKaMmap9 F GGCTAATGTGCAAGAGGTTTG 285823 - - C/T 

 

R GGGAGAGAAGTATGCAGAGCA 
    SNPKaMmap10 F CCCGTTTTGGAGAATAGAAGAC 295239 - - A/G 

  R CCTATGGAGATAGGTTCCTTGA         
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Table S3.7. Example of the comparison among ‘Canino’, ‘Katy’ and ‘Goldrich’ variants, 

and the predicted amino acid changes, in the ~134 Kb M-locus region within the aM-

supercontig. Extracted variants of those found between positions 142.155 and 276.184 (~134 

Kb M-locus region) within the aM-supercontig for cvs. (a) ‘Goldrich’, (b) ‘Canino’ and (c) 

‘Katy’. Variant position, type (‘SNV’=Single-Nucleotide Variant; ‘MNV’=Multi-Nucleotide 

Variant; ‘Insertion’; ‘Deletion’; ‘Replacement’), algorithm used (‘Analysis’ column; 

‘Basic’=Basic variant detection algorithm and ‘InDel’/‘SV’=Structural Variant detection 

algorithm), reference allele in aM-supercontig sequence (‘Reference’ column), variant allele 

identified (‘Allele’ column) and zygosity are indicated. In variants containing ‘SV’ in 

‘Analysis’ column, zygosity can not be determined, therefore, these variants were considered as 

heterozygous. Furthermore, ‘Canino’ and ‘Katy’ variants distinct to ‘Goldrich’ (‘d’ and ‘e’, 

respectively) are shown. These both tables contain the same columns mentioned previously for 

(a), (b) and (c), and additionally two columns indicating whether each variant is located in a 

gene (‘Coding region change’ column) and also if this leads to a non-synonymous change 

(‘Non-synonymous’ column). A variant included in a gene but no amino acid change is 

described means that this variant is located in an intronic or UTR region. In all tables, the three 

first and last variants as well as the FaSt insertion (grey shadow) and some of their bordering 

variants are shown.        

a 
 
Reference 
Position 

Type Analysis Length Reference Allele Zygosity 

142155 SNV Basic 1 A G Heterozygous 
142169 SNV Basic 1 G A Heterozygous 
142173 SNV Basic 1 A G Heterozygous 
 :  :  :  :  :  :  : 

 :  :  :  :  :  :  : 

215454 Insertion Basic 3 - TTT Heterozygous 
215454 SNV Basic 1 T A Heterozygous 
215470 SNV Basic 1 G C Heterozygous 
215615 Replacement Basic 2 G TT Heterozygous 
215616 Insertion Basic 1 - T Heterozygous 
215628 SNV Basic 1 C T Heterozygous 
 :  :  :  :  :  :  : 

 :  :  :  :  :  :  : 

276044 Insertion Basic 2 - TA Heterozygous 
276238 SNV Basic 1 A C Heterozygous 
276415 SNV Basic 1 A T Heterozygous 
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b 
         

Reference 
Position 

Type Analysis Length Reference Allele Zygosity 

147311 SNV Basic 1 G A Heterozygous 
147357 Deletion Basic 1 A - Heterozygous 
147406 SNV Basic 1 T C Heterozygous 
 :  :  :  :  :  :  : 

 :  :  :  :  :  :  : 

214011 SNV Basic 1 C T Homozygous 
214079 SNV Basic 1 T G Homozygous 
214578^214587 Insertion SV 0     --- 
214600 SNV Basic 1 C T Homozygous 
214955 SNV Basic 1 T G Homozygous 
214988 SNV Basic 1 G A Homozygous 
 :  :  :  :  :  :  : 

 :  :  :  :  :  :  : 

275668 Deletion Basic 6 AGAGAG - Homozygous 
275707 Replacement Basic 2 GG T Homozygous 
276044 Insertion Basic 2 - TA Homozygous 

c 
         

Reference 
Position 

Type Analysis Length Reference Allele Zygosity 

142155 SNV Basic 1 A G Heterozygous 
142169 SNV Basic 1 G A Heterozygous 
142173 SNV Basic 1 A G Heterozygous 
 :  :  :  :  :  :  : 

 :  :  :  :  :  :  : 

214011 SNV Basic 1 C T Heterozygous 
214079 SNV Basic 1 T G Heterozygous 
214578^214587 Insertion SV 0     --- 
214600 SNV Basic 1 C T Heterozygous 
214895 Insertion Basic 1 - C Heterozygous 
214955 SNV Basic 1 T G Heterozygous 
 :  :  :  :  :  :  : 

 :  :  :  :  :  :  : 

276027 SNV Basic 1 T C Heterozygous 
276044 Insertion Basic 2 - TA Heterozygous 
276184 SNV Basic 1 T C Heterozygous 

d 
         

Region Type Analysis Reference Allele Length Zygosity Coding region 
change 

Non-
synonymous 

159426 SNV Basic A C 1 Heterozygous PaM-2 Yes 
169270^169271 Insertion InDel - TGTGG… 128 Heterozygous PaM-2 - 
169383 SNV Basic A G 1 Heterozygous PaM-2 Yes 
 :  :  :  :  :  :  :  :  : 

 :  :  :  :  :  :  :  :  : 

208675^208676 Insertion Basic - ATATAT 6 Heterozygous   - 
210974^210975 Insertion InDel - TTT 3 Homozygous PaM-6 - 
214578^214587 Insertion SV     0 - PaM-7 Yes 
215954^215955 Insertion Basic - (AT)11 22 Homozygous   - 
215982 SNV Basic C A 1 Homozygous   - 
218991 SNV Basic C T 1 Heterozygous   - 



Supporting information chapter 3 

228 

 

 :  :  :  :  :  :  :  :  : 

 :  :  :  :  :  :  :  :  : 

273812..273825 Deletion Basic (GA)7 - 14 Heterozygous   - 
273812..273829 Deletion InDel (GA)9 - 18 Heterozygous   - 
273851..273868 Deletion InDel (GA)9 - 18 Heterozygous   - 

         

e 
 
Region Type Analysis Reference Allele Length Zygosity Coding region 

change 
Non-
synonymous 

142598 SNV Basic G C 1 Heterozygous   - 
142909 SNV Basic T C 1 Heterozygous   - 
143345 SNV Basic G C 1 Heterozygous   - 
 :  :  :  :  :  :  :  :  : 

 :  :  :  :  :  :  :  :  : 

208675^208676 Insertion Basic - ATATAT 6 Heterozygous   - 
208676..208677 Deletion Basic AT - 2 Heterozygous   - 
214578^214587 Insertion SV     0 --- PaM-7 Yes 
214894^214895 Insertion Basic - C 1 Heterozygous PaM-7 - 
218222 SNV Basic C A 1 Heterozygous PaM-8 Yes 
218268 SNV Basic T A 1 Heterozygous   - 
 :  :  :  :  :  :  :  :  : 

 :  :  :  :  :  :  :  :  : 

275250..275251 MNV Basic AA TT 2 Heterozygous   - 
276027 SNV Basic T C 1 Heterozygous   - 
276184 SNV Basic T C 1 Heterozygous   - 
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Table S3.8. RBH results for selected proteins from the PaMDOr BLASTP output. Hits 

with e-values lower than 10-3 from BLASTP analysis of the proteins shown in Table 4.3 against 

P. persica, M. domestica and F.vesca (a), and S. lycopersicum, Nicotiana and A. thaliana (b) 

taxids from NCBI protein database are shown in columns ‘Hit’ for each specie (e-value and 

identity are indicated). Bold NCBI accession ID is shown in column ‘Query’; the ID for each 

accession in corresponding genome protein database (see materials and methods) is shown 

below NCBI accession ID inside brackets.  

 

a 

Specie  Prunus persica   Malus domestica   Fragaria vesca   
  Query Hit E-value Ident Hit E-value Ident Hit E-value Ident 

Prunus persica XP_007216055.1 XP_007216055.1 1,E-156 100% XP_008379454.1 4,E-98 62% XP_004304201.1 9,E-98 61% 

(ppa017665m) XP_007215948.1 3,E-99 62% XP_008341809.1 3,E-95 59% XP_004306054.1 3,E-87 63% 

 (PaMDOr) 
         

 XP_007215948.1 XP_007215948.1 9,E-161 100% XP_008341809.1 8,E-141 87% XP_004304201.1 9,E-131 80% 

 (ppa011285m) XP_007216055.1 3,E-99 62% XP_008379454.1 7,E-139 86% XP_004306054.1 4,E-85 60% 

                      

Malus 
domestica 

XP_008379454.1 XP_007215948.1 3,E-139 86% XP_008379454.1 1,E-159 100% XP_004304201.1 4,E-128 80% 

(MDP0000233548) XP_007216055.1 2,E-98 62% XP_008341809.1 4,E-146 91% XP_004306054.1 4,E-83 58% 

 
          

 XP_008341809.1 XP_007215948.1 4,E-141 87% XP_008341809.1 4,E-161 100% XP_004304201.1 2,E-124 75% 

 (MDP0000148485) XP_007216055.1 2,E-95 59% XP_008379454.1 4,E-146 91% XP_004306054.1 1,E-83 58% 

                      

Fragaria vesca XP_004304201.1 XP_007215948.1 8,E-131 80% XP_008379454.1 7,E-128 80% XP_004304201.1 3,E-166 100% 

(gene04226-v1.0-hybrid) XP_007216055.1 8,E-98 61% XP_008341809.1 4,E-124 75% XP_004306054.1 2,E-82 58% 

 
          

 XP_004306054.1 XP_007216055.1 3,E-87 63% XP_008341809.1 2,E-83 58% XP_004306054.1 9,E-165 100% 

 (gene04224-v1.0-hybrid) XP_007215948.1 4,E-85 60% XP_008379454.1 8,E-83 58% XP_004304201.1 2,E-82 58% 

                      

Solanum 
lycopersicum 

XP_004232135.1 XP_007215948.1 8,E-109 68% XP_008341809.1 5,E-110 67% XP_004304201.1 5,E-101 63% 

(Solyc02g089230.2.1) XP_007216055.1 5,E-85 54% XP_008379454.1 1,E-108 69% XP_004306054.1 6,E-72 51% 

                      

Nicotiana  XP_009774377.1 XP_007215948.1 3,E-108 70% XP_008341809.1 6,E-109 70% XP_004304201.1 2,E-101 65% 

 
 

XP_007216055.1 2,E-85 54% XP_008379454.1 1,E-107 69% XP_004306054.1 9,E-73 51% 

 
          

 XP_009608607.1 XP_007215948.1 8,E-110 70% XP_008341809.1 1,E-108 68% XP_004304201.1 2,E-101 64% 

 
 

XP_007216055.1 4,E-86 54% XP_008379454.1 6,E-108 69% XP_004306054.1 4,E-74 51% 

 
          

 XP_009608606.1 XP_007215948.1 1,E-109 70% XP_008341809.1 3,E-108 68% XP_004304201.1 3,E-101 63% 

 
 

XP_007216055.1 6,E-86 54% XP_008379454.1 1,E-107 69% XP_004306054.1 1,E-73 51% 

                      

Arabidopsis 
thaliana 

NP_198706.1 XP_007215948.1 2,E-103 65% XP_008341809.1 5,E-100 63% XP_004304201.1 7,E-101 63% 

(AT5G38900.1) XP_007216055.1 9,E-84 55% XP_008379454.1 2,E-97 63% XP_004306054.1 1,E-68 49% 
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b 

Specie  Solanum lycopersicum  Nicotiana   Arabidopsis thaliana  
  Query Hit E-value Ident Hit E-value Ident Hit E-value Ident 

Prunus persica XP_007216055.1 XP_004232135.1 6,E-85 54% XP_009608607.1 1,E-85 54% NP_198706.1 2,E-83 55% 

(ppa017665m) 
   

XP_009608606.1 2,E-85 54% 
   

 (PaMDOr) 
   

XP_009774377.1 6,E-85 54% 
   

 XP_007215948.1 XP_004232135.1 1,E-108 68% XP_009608607.1 2,E-109 70% NP_198706.1 5,E-103 65% 

 (ppa011285m) 
   

XP_009608606.1 4,E-109 70% 
   

          XP_009774377.1 8,E-108 70%       

Malus 
domestica 

XP_008379454.1 XP_004232135.1 7,E-109 69% XP_009608607.1 1,E-107 69% NP_198706.1 3,E-97 63% 

(MDP0000233548) 
   

XP_009608606.1 2,E-107 69% 
   

 
    

XP_009774377.1 2,E-107 69% 
   

 XP_008341809.1 XP_004232135.1 3,E-110 67% XP_009774377.1 9,E-109 70% NP_198706.1 6,E-100 63% 

 (MDP0000148485) 
   

XP_009608607.1 2,E-108 68% 
   

          XP_009608606.1 4,E-108 68%       

Fragaria vesca XP_004304201.1 XP_004232135.1 5,E-101 63% XP_009608607.1 5,E-101 64% NP_198706.1 1,E-100 63% 

(gene04226-v1.0-hybrid) 
   

XP_009774377.1 7,E-101 65% 
   

 
    

XP_009608606.1 8,E-101 63% 
   

 XP_004306054.1 XP_004232135.1 7,E-72 51% XP_009608607.1 1,E-73 51% NP_198706.1 3,E-68 49% 

 (gene04224-v1.0-hybrid) 
   

XP_009608606.1 3,E-73 51% 
   

          XP_009774377.1 3,E-72 51%       

Solanum 
lycopersicum 

XP_004232135.1 XP_004232135.1 4,E-177 100% XP_009608606.1 3,E-157 89% NP_198706.1 1,E-104 63% 

(Solyc02g089230.2.1) 
   

XP_009608607.1 5,E-150 91% 
   

          XP_009774377.1 6,E-150 92%       

Nicotiana  XP_009774377.1 XP_004232135.1 2,E-150 92% XP_009774377.1 7,E-162 100% NP_198706.1 9,E-103 65% 

 
    

XP_009608606.1 1,E-153 95% 
   

 
    

XP_009608607.1 1,E-153 95% 
   

 XP_009608607.1 XP_004232135.1 2,E-150 91% XP_009608607.1 5,E-162 100% NP_198706.1 7,E-104 65% 

 
    

XP_009608606.1 7,E-162 100% 
   

 
    

XP_009774377.1 1,E-153 95% 
   

 XP_009608606.1 XP_004232135.1 1,E-157 89% XP_009608606.1 2,E-177 100% NP_198706.1 4,E-104 63% 

 
    

XP_009608607.1 8,E-162 100% 
   

          XP_009774377.1 1,E-153 95%       

Arabidopsis 
thaliana 

NP_198706.1 XP_004232135.1 8,E-105 63% XP_009608606.1 6,E-104 63% NP_198706.1 2,E-161 100% 

(AT5G38900.1) 
   

XP_009608607.1 9,E-104 65% 
   

          XP_009774377.1 1,E-102 65%       
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Table S4.1. RBH results for NaTrxh. Proteins obtained from ‘direct BLASTP’ analysis (see Table 4.1) are the queries (column ‘protein’) for 

RBH. The result of all-vs-all BLASTP analysis with their corresponding e-values and percentages of identity (three first hits) are shown. Color 

assignments for hits are the same than indicated in table 4.1.  

Specie   P. persica   M. domestica   S. lycopersicum   N. benthamiana   A. thaliana   
  Protein Hit Match % id  e-val Match % id e-val Match % id e-val Match % id e-val Match % id e-val 

P. persica ppa011576m 1st ppa011576m 100 0 MDP0000752795 82 6E-54 Solyc02g087630.2.1  63 7E-41 NbS00020764g0013.1  68 1E-46 AT5G39950.1  65 8E-45 

 
205aa 2nd ppa011861m 100 

 
MDP0000448333 76 6E-48 Solyc05g006830.2.1  59 9E-40 NbS00027633g0013.1  63 5E-39 AT1G45145.1  49 5E-28 

  
3rd ppa013299m 55 6E-37 MDP0000391509 55 1E-37 Solyc05g006860.2.1  58 1E-38 NbS00010261g0005.1  55 3E-35 AT1G19730.1  44 9E-27 

                                    

M. domestica MDP0000752795 1st ppa011576m 75 4E-54 MDP0000752795 100 3E-61 Solyc05g006830.2.1  58 4E-39 NbS00020764g0013.1  59 7E-44 AT5G39950.1  71 7E-43 

 
133aa 2nd ppa013299m 57 3E-35 MDP0000448333 84 4E-53 Solyc02g087630.2.1  66 5E-39 NbS00027633g0013.1  54 4E-38 AT1G45145.1  52 8E-29 

  
3rd ppa011861m 69 2E-31 MDP0000391509 51 5E-35 Solyc05g006860.2.1  56 5E-38 NbS00010261g0005.1  59 3E-37 AT1G69880.1  46 1E-27 

                                    

S. lycopersicum Solyc02g087630.2.1  1st ppa011576m 63 2E-36 MDP0000752795 60 6E-35 Solyc02g087630.2.1  
 

2E-77 NbS00020764g0013.1  86 3E-53 AT5G39950.1  64 9E-37 

 
169aa 2nd ppa013299m 56 4E-30 MDP0000448333 50 2E-33 Solyc05g006860.2.1  

 
5E-35 NbS00027633g0013.1  80 1E-40 AT1G19730.1  47 2E-20 

  
3rd ppa011861m 60 5E-28 MDP0000391509 50 5E-28 Solyc05g006830.2.1  

 
7E-35 NbS00018815g0006.1  57 4E-33 AT5G42980.1   49 2E-19 

                                    

N. benthamiana NbS00020764g0013.1  1st ppa011576m 70 3E-43 MDP0000752795 69 2E-41 Solyc02g087630.2.1  88 2E-51 NbS00020764g0013.1  100 2E-65 AT5G39950.1  69 1E-43 

 
142aa 2nd ppa013299m 62 8E-40 MDP0000448333 68 4E-40 Solyc05g006830.2.1  72 2E-44 NbS00027633g0013.1  93 2E-59 AT1G19730.1  47 4E-28 

  
3rd ppa013161m 47 1E-29 MDP0000391509 59 8E-38 Solyc05g006860.2.1  67 3E-42 NbS00010261g0005.1  64 6E-40 AT1G45145.1  50 8E-28 

                                    

A. thaliana AT5G39950.1  1st ppa011576m 63 1E-45 MDP0000752795 63 1E-43 Solyc02g087630.2.1  62 2E-45 NbS00020764g0013.1  63 2E-48 AT5G39950.1  100 8E-74 

 
133aa 2nd ppa013299m 53 4E-39 MDP0000448333 64 1E-42 Solyc05g006830.2.1  48 2E-37 NbS00027633g0013.1  64 3E-39 AT1G59730.1   41 6E-27 

    3rd ppa011861m 62 1E-27 MDP0000391509 52 3E-37 Solyc05g006860.2.1  46 9E-36 NbS00010261g0005.1  53 6E-35 AT1G69880.1   44 2E-26 

                  

 
 
 



 

 
Table S4.2. RBH results for SBP1. Proteins obtained from ‘direct BLASTP’ analysis (see Table 4.1) are the queries (column ‘protein’) for 

RBH. The result of all-vs-all BLASTP analysis with their corresponding e-values and percentages of identity (three first hits) are shown. Color 

assignments for hits are the same than indicated in table 4.1.  

Specie 
  

P. persica 
  

M. domestica 
  

S. lycopersicum 
  

N. benthamiana 
  

A. thaliana 
  

  Protein Hit  Match % id e-val Match % id e-val Match % id e-val Match % id % id Match % id e-val 

P. persica ppa008290m 1st ppa008290m 100.00 0.0 MDP0000522795 88.27 0.0 Solyc04g078760.2.1 67.35 4E-165 NbS00055742g0004.1 68.71 1E-169 AT1G45976.1 63.69 8E-149 

 
338aa 2nd ppa008184m 39.04 1E-47 MDP0000717791 82.40 0.0 Solyc05g005210.2.1 40.00 5E-47 NbS00016021g0006.1 66.37 7E-161 AT1G60610.3 36.21 3E-40 

  
3rd ppa007884m 30.43 2E-28 MDP0000650075 77.88 1E-170 Solyc03g112860.2.1 37.43 1E-26 NbS00020248g0004.1 38.89 4E-46 AT1G60610.2 36.21 3E-40 

                                    

M. domestica MDP0000522795 1st ppa008290m 87.10 0.0 MDP0000522795 100.00 0.0 Solyc04g078760.2.1 66.18 2E-154 NbS00055742g0004.1 68.80 2E-160 AT1G45976.1 63.16 2E-141 

 
447aa 2nd ppa008184m 40.93 1E-44 MDP0000717791 85.09 0.0 Solyc05g005210.2.1 40.36 6E-45 NbS00016021g0006.1 65.89 5E-152 AT1G60610.3 38.30 1E-39 

  
3rd ppa007884m 31.53 9E-29 MDP0000650075 81.58 3E-180 Solyc03g112860.2.1 35.08 6E-25 NbS00020248g0004.1 40.09 2E-43 AT1G60610.2 38.30 1E-39 

                                    

S. lycopersicum Solyc04g078760.2.1  1st ppa008290m 68.22 2E-165 MDP0000522795 65.60 7E-154 Solyc04g078760.2.1 100.00 0.0 NbS00055742g0004.1 87.57 0.0 AT1G45976.1 61.45 3E-137 

 
338aa 2nd ppa008184m 36.84 7E-51 MDP0000717791 61.16 6E-132 Solyc05g005210.2.1 34.73 4E-49 NbS00016021g0006.1 84.91 0.0 AT1G60610.3 37.86 7E-45 

  
3rd ppa007884m 30.43 1E-25 MDP0000650075 60.06 3E-127 Solyc03g112860.2.1 36.62 1E-29 NbS00020248g0004.1 40.17 1E-48 AT1G60610.2 37.86 7E-45 

                                    

N. benthamiana NbS00055742g0004.1 1st ppa008290m 68.42 2E-168 MDP0000522795 68.51 1E-158 Solyc04g078760.2.1 87.57 0.0 NbS00055742g0004.1 100.00 0.0 AT1G45976.1 62.08 8E-138 

 
337aa 2nd ppa008184m 37.89 3E-51 MDP0000717791 63.95 1E-137 Solyc05g005210.2.1 34.41 2E-46 NbS00016021g0006.1 94.96 0.0 AT1G60610.3 38.06 2E-45 

  
3rd ppa007884m 31.49 7E-27 MDP0000650075 63.80 5E-134 Solyc03g112860.2.1 35.05 2E-28 NbS00020248g0004.1 40.08 9E-48 AT1G60610.2 38.06 2E-45 

                                    

A. thaliana AT1G45976.1 1st ppa008290m 63.78 2E-148 MDP0000522795 63.24 1E-140 Solyc04g078760.2.1 61.96 5E-136 NbS00055742g0004.1 60.40 3E-137 AT1G45976.1 100.00 0.0 

 
325aa 2nd ppa008184m 38.84 9E-44 MDP0000717791 59.69 9E-120 Solyc05g005210.2.1 38.30 4E-45 NbS00016021g0006.1 59.69 7E-129 AT1G60610.3 36.86 2E-43 

    3rd ppa007884m 29.57 2E-26 MDP0000650075 56.04 5E-107 Solyc08g007120.2.1 33.72 1E-30 NbS00020248g0004.1 38.89 6E-48 AT1G60610.2 36.86 2E-43 

                  
                  

 
 

 
 



 

 
Table S4.3. RBH results for MdABCF. Proteins obtained from ‘direct BLASTP’ analysis (see Table 4.1) are the queries (column ‘protein’) for 

RBH. The result of all-vs-all BLASTP analysis with their corresponding e-values and percentages of identity (three first hits) are shown. Color 

assignments for hits are the same than indicated in table 4.1.  

Specie 
  

P. persica 
  

M. domestica 
  

S. lycopersicum 
  

N. benthamiana 
  

A. thaliana 
  

  Protein Hit Match % id e-val Match % id e-val Match  % id e-val Match % id e-val Match % id e-val 

P. persica ppa002137m 1st ppa002137m 100 0 MDP0000899854 93,67 0 Solyc08g082850.2.1 82,05 0 NbS00014920g0008.1 78,69 0 AT1G64550.1 82,7 0 

 
711aa 2nd ppa002097m 45,14 2E-154 MDP0000170302 94,8 0 Solyc11g069090.1.1 44,59 3E-157 NbS00014920g0008.1 77,81 5E-169 AT5G60790.1 43,43 1E-159 

  
3rd ppa003175m 43,49 2E-153 MDP0000477774 43,85 5E-155 Solyc07g008610.1.1 45,5 5E-157 NbS00014920g0008.1 29,73 2E-10 AT3G54540.1 42,56 8E-156 

                                    

M. domestica MDP0000170302 1st ppa002137m 94,8 0 MDP0000170302 100 0 Solyc08g082850.2.1 80,93 0 NbS00014920g0008.1 77,38 0 AT1G64550.1 82,19 0 

 
711aa 2nd ppa002097m 45,31 9E-155 MDP0000899854 97,47 0 Solyc07g008610.1.1 45,84 2E-156 NbS00014920g0008.1 77,81 4E-169 AT5G60790.1 43,08 2E-159 

  
3rd ppa003175m 42,94 2E-152 MDP0000477774 43,49 4E-154 Solyc11g069090.1.1 43,85 5E-155 NbS00014920g0008.1 30,63 2E-10 AT3G54540.1 45,33 7E-154 

                                    

S. lycopersicum Solyc08g082850.2.1 1st ppa002137m 82,05 0 MDP0000899854 79,94 0 Solyc08g082850.2.1 100 0 NbS00014920g0008.1 92,96 0 AT1G64550.1 79,33 0 

 
716aa 2nd ppa003175m 42,15 1E-148 MDP0000170302 80,93 0 Solyc06g074940.2.1 43,53 6E-153 NbS00014920g0008.1 87,5 0 AT5G60790.1 44,08 6E-154 

  
3rd ppa002097m 42,71 4E-148 MDP0000477774 42,7 8E-151 Solyc11g069090.1.1 43,43 1E-152 NbS00014920g0008.1 31,73 5E-10 AT3G54540.1 42,77 3E-152 

                                    

N. benthamiana NbS00014920g0008.1 1st ppa002137m 78,69 0 MDP0000899854 76,26 0 Solyc08g082850.2.1 92,96 0 NbS00014920g0008.1 100 0 AT1G64550.1 76,11 0 

 
815aa 2nd ppa003175m 41,4 2E-84 MDP0000170302 77,38 0 Solyc06g074940.2.1 43,55 1E-87 NbS00027404g0011.1 42,74 8E-87 AT5G60790.1 43,55 7E-86 

  
3rd ppa002097m 38 4E-81 MDP0000477774 42,2 3E-86 Solyc07g008610.1.1 39,23 2E-87 NbS00050078g0006.1 42,74 1E-86 AT3G54540.1 39,64 3E-85 

                                    

A. thaliana AT1G64550.1 1st ppa002137m 82,7 0 MDP0000899854 81,49 0 Solyc08g082850.2.1 79,33 0 NbS00014920g0008.1 76,11 0 AT1G64550.1 100 0 

 
715aa 2nd ppa003175m 43,2 3E-152 MDP0000170302 82,19 0 Solyc11g069090.1.1 44,3 7E-155 NbS00014920g0008.1 77,32 4E-169 AT5G60790.1 44,04 2E-154 

    3rd ppa002097m 43,03 1E-148 MDP0000477774 43,93 4E-155 Solyc07g008610.1.1 41,31 2E-154 NbS00014920g0008.1 32,43 7E-11 AT3G54540.1 42,02 1E-151 

                  
 
 
 
 
 



 

 
Table S4.4. RBH results for 120K. Proteins obtained from ‘direct BLASTP’ analysis (see Table 4.1) are the queries (column ‘protein’) for 

RBH. The result of all-vs-all BLASTP analysis with their corresponding e-values and percentages of identity (three first hits) are shown. Color 

assignments for hits are the same than indicated in table 4.1.  

Specie 
  

P. persica 
  

M. domestica 
  

S. lycopersicum 
  

N. benthamiana 
  

A. thaliana 
  

  Protein Hit Match % id e-val Match % id e-val Match  % id e-val Match % id e-val Match % id e-val 

P. persica ppa021281m 1st ppa021281m 100.00 3E-115 MDP0000287357 86.06 3E-85 Solyc02g078040.2.1 62.99 8E-44 NbS00006956g0008.1 55.84 6E-46 AT2G34700.1 51.35 3E-46 

 
166aa 2nd ppa024679m 29.59 1E-11 MDP0000165381 66.84 4E-71 Solyc02g078100.2.1 41.40 2E-30 NbS00008703g0009.1 58.52 1E-42 AT1G28290.2 52.99 4E-39 

  
3rd ppb017797m 32.80 7E-09 MDP0000617024 34.46 3E-17 Solyc02g078050.2.1 42.86 7E-20 NbS00025834g0007.1 54.62 2E-33 AT1G28290.1 52.99 8E-39 

                                    

M. domestica MDP0000165381                                                          1st ppa021281m 86.06 4E-82 MDP0000287357 100.00 0.0 Solyc02g078040.2.1 58.11 4E-40 NbS00006956g0008.1 52.83 6E-43 AT2G33790.1 42.54 1E-40 

 
223aa 2nd ppa024679m 28.65 5E-08 MDP0000165381 76.26 4E-84 Solyc02g078100.2.1 39.15 5E-31 NbS00008703g0009.1 54.09 4E-39 AT2G34700.1 51.75 3E-40 

  
3rd ppa022106m 29.23 1E-07 MDP0000423907 34.90 9E-15 Solyc02g078050.2.1 42.86 3E-18 NbS00003320g0020.1 51.90 2E-34 AT1G28290.1 54.41 6E-39 

                                    

S. lycopersicum Solyc02g078050.2.1  1st ppa021281m 43.55 6E-19 MDP0000287357 42.86 4E-19 Solyc02g078050.2.1 100.00 0.0 NbS00008703g0009.1 46.85 2E-26 AT2G34700.1 40.77 2E-19 

 
363aa 2nd ppa022106m 32.11 6E-08 MDP0000263610 34.55 1E-09 Solyc02g078060.1.1 57.66 6E-33 NbS00006956g0008.1 46.31 5E-26 AT2G33790.1 37.69 5E-18 

   
  

  
MDP0000423907 31.82 6E-09 Solyc02g078100.2.1 48.03 7E-31 NbS00007980g0003.1 42.77 2E-24 AT3G09925.1 30.71 1E-09 

                                    

N. benthamiana NbS00025834g0007.1    1st ppa021281m 48.55 5E-34 MDP0000287357 45.22 2E-38 Solyc02g078100.2.1 60.36 1E-85 NbS00025834g0007.1 100.00 0.0 AT2G33790.1 41.54 2E-32 

 
311aa 2nd ppa024679m 28.39 7E-07 MDP0000165381 52.55 7E-33 Solyc02g078040.2.1 58.21 6E-43 NbS00007980g0003.1 75.09 2E-122 AT2G34700.1 40.25 2E-30 

  
3rd ppb017797m 31.82 3E-05 MDP0000617024 29.61 2E-08 Solyc02g078050.2.1 48.99 6E-28 NbS00006956g0008.1 55.28 6E-45 AT1G28290.1 43.28 1E-22 

                                    

A. thaliana AT2G34700.1 |  1st ppa021281m 53.44 5E-44 MDP0000287357 52.67 5E-39 Solyc02g078040.2.1 51.52 4E-37 NbS00006956g0008.1 47.80 1E-34 AT2G34700.1 100.00 5E-126 

 
175aa 2nd ppa024679m 29.29 4E-09 MDP0000165381 49.62 7E-39 Solyc02g078100.2.1 42.36 1E-30 NbS00008703g0009.1 50.35 3E-34 AT1G28290.2 49.64 3E-35 

    3rd ppa019712m 39.29 5E-08 MDP0000547052 29.63 2E-11 Solyc02g078050.2.1 38.89 2E-19 NbS00003320g0020.1 48.23 7E-31 AT1G28290.1 49.64 5E-35 

                  

 
 
 
 
 



 

 
Table S4.5. RBH results for NaStEP. Proteins obtained from ‘direct BLASTP’ analysis (see Table 4.1) are the queries (column ‘protein’) for 

RBH. The result of all-vs-all BLASTP analysis with their corresponding e-values and percentages of identity (three first hits) are shown. Color 

assignments for hits are the same than indicated in table 4.1.  

Specie 
  

P. persica 
  

M. domestica 
  

S. lycopersicum 
  

N. benthamiana 
  

A. thaliana 
  

  Protein Hit Match % id e-val Match % id e-val Match  % id e-val Match % id e-val Match % id e-val 

P. persica ppa011496m           1st ppa011496m 100.00 8E-151 MDP0000326576 38.39 7E-35 Solyc03g020010.1.1 65.00 1E-88 NbS00009480g0031.1 66.04 8E-93 AT1G17860.1 60.30 2E-80 

 
208aa 2nd ppa011653m 89.38 2E-99 MDP0000619608 39.15 9E-35 Solyc06g072230.1.1 53.06 8E-72 NbS00017403g0024.1 63.06 5E-90 AT1G73260.1 47.98 1E-48 

  
3rd ppa011448m 40.09 2E-37 MDP0000318079 39.22 7E-32 Solyc06g072220.1.1 57.39 5E-70 NbS00049946g0001.1 60.44 2E-81 AT1G73325.1 39.15 1E-27 

                                    

M. domestica MDP0000326576 1st ppa011448m 81.34 8,00E-123 MDP0000326576 100.00 3E-146 Solyc03g020010.1.1 36.50 7E-32 NbS00009480g0031.1 34.45 5E-30 AT1G17860.1 36.00 5E-25 

 
209aa 2nd ppa011496m 38.39 7,00E-35 MDP0000619608 99.04 2E-145 Solyc06g072230.1.1 34.16 4E-24 NbS00021566g0007.1 37.36 2E-27 AT1G73260.1 31.16 1E-17 

  
3rd ppa011653m 42.57 1,00E-25 MDP0000635659 67.65 3E-90 Solyc06g072220.1.1 32.40 5E-23 NbS00017403g0024.1 33.18 3E-27 AT1G73325.1 30.36 4E-09 

                                    

S. lycopersicum Solyc03g098710.1.1  1st ppa011496m 32.37 3E-23 MDP0000635659 30.85 1E-14 Solyc03g098710.1.1 100.00 3E-166 NbS00018395g0002.1 39.82 2E-31 AT1G17860.1 30.88 1E-15 

 
224aa 2nd ppa011653m 31.14 1E-13 MDP0000318079 30.00 1E-13 Solyc06g072230.1.1 33.86 1E-24 NbC24872723g0001.1 38.22 2E-26   

  

  
3rd ppa011448m 29.17 2E-13 MDP0000326576 26.94 5E-13 Solyc03g019690.1.1 38.39 2E-24 NbS00018395g0011.1 37.44 1E-25   

  
                                    

N. benthamiana NbS00018395g0002.1  1st ppa011496m 40.86 3E-32 MDP0000635659 32.61 1E-14 Solyc03g020010.1.1 39.67 2E-35 NbS00018395g0002.1 100.00 9E-175 AT1G17860.1 34.78 2E-24 

 
209aa 2nd ppa011653m 39.58 5E-21 MDP0000326576 30.85 3E-14 Solyc03g019690.1.1 42.15 2E-35 NbC24872723g0001.1 86.79 1E-131 AT1G73260.1 34.74 3E-24 

  
3rd ppa011448m 30.43 7E-15 MDP0000619608 30.85 6E-14 Solyc06g072230.1.1 37.10 4E-32 NbS00018395g0011.1 82.43 7E-124 AT1G73325.1 32.17 4E-15 

                                    

A. thaliana AT1G17860.1  1st ppa011496m 60.30 2E-80 MDP0000326576 36.00 4E-25 Solyc03g020010.1.1 56.10 7E-74 NbS00009480g0031.1 51.14 2E-69 AT1G17860.1 100.00 9E-144 

 
196aa 2nd ppa011653m 59.09 8E-57 MDP0000619608 35.50 6E-24 Solyc06g072220.1.1 55.62 3E-59 NbS00017403g0024.1 50.45 3E-69 AT1G73260.1 37.56 2E-36 

    3rd ppa011448m 35.32 9E-29 MDP0000635659 34.24 1E-22 Solyc06g072230.1.1 50.51 1E-58 NbS00049946g0001.1 53.04 2E-62 AT1G73325.1 30.52 6E-16 

                  
 
 
 
 
 



 

 
Table S4.6. RBH results for NaPCCP. Proteins obtained from ‘direct BLASTP’ analysis (see Table 4.1) are the queries (column ‘protein’) for 

RBH. The result of all-vs-all BLASTP analysis with their corresponding e-values and percentages of identity (three first hits) are shown. Color 

assignments for hits are the same than indicated in table 4.1.  

Specie 
  

P. persica 
  

M. domestica 
  

S. lycopersicum 
  

N. benthamiana 
  

A. thaliana 
  

  Protein Hit Match % id e-val Match % id e-val Match  % id e-val Match % id e-val Match % id e-val 

P. persica ppa012133m                                                          1st ppa012133m 100.00 6E-131 MDP0000525794 95.58 3E-123 Solyc03g118720.2.1 78.79 2E-97 NbS00009334g0006.1 81.21 4E-98 AT3G17980.1 74.86 1E-92 

 
182aa 2nd ppa012128m 100.00 6E-131 MDP0000776395 92.78 2E-121 Solyc03g118710.2.1 81.21 2E-96 NbS00051736g0004.1 80.61 1E-97 AT1G48590.2 74.85 2E-88 

  
3rd ppa012140m 100.00 6E-131 MDP0000259615 73.94 2E-88 Solyc12g040800.1.1 76.83 2E-91 NbS00020564g0001.1 76.69 2E-93 AT1G48590.1 74.85 3E-88 

                                    

M. domestica MDP0000525794 1st ppa012133m 95.58 3E-123 MDP0000525794 100.00 3E-131 Solyc03g118720.2.1 80.61 7E-100 NbS00009334g0006.1 83.03 1E-100 AT3G17980.1 78.16 3E-95 

 
182aa 2nd ppa012128m 95.58 3E-123 MDP0000776395 91.76 2E-121 Solyc03g118710.2.1 83.03 5E-99 NbS00051736g0004.1 82.42 3E-100 AT1G48590.2 76.65 7E-91 

  
3rd ppa012140m 95.58 3E-123 MDP0000259615 75.15 9E-91 Solyc12g040800.1.1 78.66 4E-95 NbS00020564g0001.1 77.30 5E-95 AT1G48590.1 76.65 8E-91 

                                    

S. lycopersicum Solyc12g040800.1.1  1st ppa012133m 76.83 2E-91 MDP0000525794 78.66 3E-95 Solyc12g040800.1.1 100.00 2E-118 NbS00020637g0006.1 87.88 2E-100 AT1G48590.2 78.40 3E-88 

 
166aa 2nd ppa012128m 76.83 2E-91 MDP0000776395 77.44 5E-92 Solyc03g118720.2.1 76.83 5E-94 NbS00020564g0001.1 81.82 2E-97 AT1G48590.1 78.40 3E-88 

  
3rd ppa012140m 76.83 2E-91 MDP0000259616 70.12 9E-83 Solyc06g068940.2.1 80.49 1E-92 NbS00009334g0006.1 81.71 3E-96 AT3G17980.1 75.61 3E-87 

                                    

N. benthamiana NbS00020637g0006.1  1st ppa012133m 69.15 1E-87 MDP0000525794 70.21 3E-89 Solyc12g040800.1.1 87.88 2E-100 NbS00020637g0006.1 100.00 5E-133 AT3G17980.1 71.18 3E-81 

 
196aa 2nd ppa012128m 69.15 1E-87 MDP0000776395 70.81 1E-87 Solyc06g068940.2.1 78.92 1E-87 NbS00009698g0010.1 81.87 5E-98 AT1G48590.1 71.95 1E-78 

  
3rd ppa012140m 69.15 1E-87 MDP0000259616 66.46 5E-73 Solyc03g118720.2.1 75.30 1E-86 NbS00020564g0001.1 78.92 3E-91 AT1G48590.2 71.95 1E-78 

                                    

A. thaliana AT3G17980.1   1st ppa012133m 74.86 1E-92 MDP0000525794 78.16 3E-95 Solyc03g118720.2.1 74.55 3E-92 NbS00020564g0001.1 79.14 5E-93 AT3G17980.1 100.00 4E-127 

 
177aa 2nd ppa012128m 74.86 1E-92 MDP0000776395 71.43 1E-93 Solyc03g118710.2.1 74.55 3E-89 NbS00051736g0004.1 77.58 1E-92 AT1G48590.2 85.03 2E-98 

    3rd ppa012140m 74.86 1E-92 MDP0000259616 70.12 1E-80 Solyc06g068940.2.1 74.55 9E-88 NbS00009334g0006.1 77.58 1E-92 AT1G48590.1 85.03 3E-98 

                  
 

 

 


