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Resumen

La presente tesis doctoral se centra en la construcción de esquemas en
diferencias finitas y el análisis numérico de relevantes modelos de va-
loración de opciones que generalizan el modelo de Black-Scholes. Se
proporciona un análisis cuidadoso de las propiedades de las soluciones
numéricas tales como la positividad, la estabilidad y la consistencia.

Con el fin de manejar la frontera libre que surge en los problemas
de valoración de opciones Americanas, se aplican y se estudian di-
versas técnicas de transformación basadas en el método de fijación de
las fronteras (front-fixing). Se presta especial atención a la valoración
de opciones de múltiples activos, como son las opciones ”exchange”
y ”spread”. Se propone una transformación apropiada que permite la
eliminación del término de derivadas cruzadas. Se estudian también
técnicas de transformación de las ecuaciones diferenciales en deriva-
das parciales para eliminar términos de convección y de reacción con
el propósito de simplificar los modelos y evitar posibles problemas de
estabilidad.

Esta tesis se compone de seis capı́tulos. El primer capı́tulo es una intro-
ducción que contiene las definiciones de opción y términos relaciona-
dos y la derivación de la ecuación de Black-Scholes, ası́ como aspectos
generales de la teorı́a de los esquemas en diferencias finitas, incluyen-
do preliminares de análisis numérico.

El capı́tulo 2 está dedicado a resolver el modelo lineal de Black-Scholes
para opciones Americanas put y call. Para fijar las fronteras del proble-
ma de frontera libre se aplican transformaciones como la de Landau y
un nuevo cambio de variable propuesto. Esto lleva a una ecuación dife-
rencial en derivadas parciales no lineal en un dominio fijo. Se proponen
esquemas numéricos explı́citos estables y consistentes que preservan la
positividad y monotonicidad de la solución de acuerdo con el compor-
tamiento de la solución exacta.



La eficiencia del método front-fixing mostrada en el capı́tulo 2 ha mo-
tivado el estudio de su aplicación a algunos modelos no lineales más
complicados. En particular, se propone un cambio de variables que
lleva a una nueva frontera dependiente del tiempo en lugar de una fi-
ja. Este cambio se aplica a modelos no lineales de Black-Scholes pa-
ra opciones Americanas, como son el de Barles y Soner y el modelo
RAPM (Risk Adjusted Pricing Methodology). Se construye un algo-
ritmo numérico eficiente para el caso general de volatilidad no cons-
tante en la sección 3.1. Con el fin de resolver la ecuación, se proponen
varios métodos de diferencias finitas, incluyendo métodos explı́citos,
implı́citos y ADE (Alternating Direction Explicit). Se proponen asi-
mismo nuevas modificaciones del método de Newton para la solución
de los sistemas no lineales derivados. En la sección 3.2 se aplica por
primera vez el método front-fixing a un problema de valoración de op-
ciones con cambio de regı́menes. Dado que en este modelo hay varios
regı́menes, aparecen varias fronteras libres por lo que la transforma-
ción de variables lleva a un sistema de ecuaciones no lineales. Este
sistema se resuelve con un esquema en diferencias finitas explı́cito.
Mediante el enfoque de Von Neumann se prueba la estabilidad del es-
quema.

El capı́tulo 4 ofrece una nueva técnica para la resolución de problemas
de valoración de opciones Americanas basada en la racionalidad de los
inversores. Aparece una función de la intensidad que se puede reducir
en el caso más simple a la técnica de penalización (penalty method).
Este enfoque tiene en cuenta el posible comportamiento irracional de
los inversores. En la sección 4.2 se aplica esta técnica al modelo de
cambio de regı́menes lo que lleva a un nuevo modelo que tiene en
cuenta el posible ejercicio irracional, ası́ como varios estados del mer-
cado. El enfoque del parámetro de racionalidad junto con una transfor-
mación logarı́tmica permiten construir un esquema numérico eficiente
sin aplicar el método front-fixing o la conocida formulación de LCP
(Linear Complementarity Problem). Se propone una familia de esque-
mas ponderados tanto para opciones americanas de tipo vanilla como
para el modelo de cambio de regı́menes. Se estudian las propiedades
cualitativas de la función de intensidad y de las soluciones numéricas.



El capı́tulo 5 se dedica a la valoración de opciones de activos múlti-
ples. Una transformación apropiada permite la eliminación del término
de derivadas cruzadas evitando inconvenientes computacionales y po-
sibles problemas de estabilidad.

Las conclusiones se muestran en el capı́tulo 6. Se pone en relieve va-
rios aspectos de la presente tesis. Todos los modelos considerados y
los métodos numéricos van acompañados de varios ejemplos y simu-
laciones. Se estudia la convergencia numérica que confirma el estudio
teórico de la consistencia. Las condiciones de estabilidad son corrobo-
radas con ejemplos numéricos. Los resultados se comparan con méto-
dos relevantes de la bibliografı́a mostrando la eficiencia de los métodos
propuestos.





Resum

La present tesi doctoral se centra en la construcció d’esquemes en
diferències finites i l’anàlisi numèrica de rellevants models de val-
oració d’opcions que generalitzen el model de Black-Scholes. Es pro-
porciona una anàlisi cuidadosa de les propietats de les solucions numèri-
ques com ara la positivitat, l’estabilitat i la consistència.

A fi de manejar la frontera lliure que sorgix en els problemes de val-
oració d’opcions Americanes, s’apliquen i s’estudien diverses tècniques
de transformació basades en el mètode de fixació de les fronteres (front-
fixing). Es presta especial atenció a la valoració d’opcions de múltiples
actius, com són les opcions ”exchange” i ”spread”. Es proposa una
transformació apropiada que permet l’eliminació del terme de derivades
croades. S’estudien també tècniques de transformació de les equacions
diferencials en derivades parcials per a eliminar termes de convecció i
de reacció amb el propòsit de simplificar els models i evitar possibles
problemes d’estabilitat.

Esta tesi es compon de sis capı́tols. El primer capı́tol és una introducció
que conté les definicions d’opció i termes relacionats i la derivació de
l’equació de Black-Scholes, aixı́ com aspectes generals de la teoria dels
esquemes en diferències finites, incloent aspectes preliminars d’anàlisi
numèrica.

El 2n capı́tol està dedicat a resoldre el model lineal de Black-Scholes
per a opcions Americanes ”put” i ”call”. Per a fixar les fronteres
del problema de frontera lliure s’apliquen transformacions com la de
Landau i s’ha proposat un nou canvi de variable proposat. Açò porta
a una equació diferencial en derivades parcials no lineal en un domini
fix. Es proposen esquemes numèrics explı́cits estables i consistents
que preserven la positivitat i monotonia de la solució d’acord amb el
comportament de la solució exacta.



L’eficiència del mètode front-fixing mostrada en el 2n capı́tol ha mo-
tivat l’estudi de la seua aplicació a alguns models no lineals més com-
plicats. En particular, es proposa un canvi de variables que porta a una
nova frontera dependent del temps en compte d’una fixa. Este canvi
s’aplica a models no lineals de Black-Scholes per a opcions Amer-
icanes, com són el de Barles i Soner i el model RAPM (Risk Adjusted
Pricing Methodology). Es construı̈x un algoritme numèric eficient per
al cas general de volatilitat no constant en la secció 3.1. A fi de resoldre
l’equació, es proposen diversos mètodes de diferències finites, incloent
mètodes explı́cits, implı́cits i ADE (Alternating Direction Explicit).
Es proposen aixı́ mateix noves modificacions del mètode de Newton
per a la solució dels sistemes no lineals derivats. En la secció 3.2
s’aplica per primera vegada el mètode front-fixing a un problema de
valoració d’opcions amb canvi de règims. Atés que en aquest model hi
ha diversos règims, apareixen unes quantes fronteres lliures pel que la
transformació de variables porta a un sistema d’equacions no lineals.
Este sistema es resol amb un esquema en diferències finites explı́cit.
Per mitjà de l’enfocament de Von Neumann es prova l’estabilitat de
l’esquema.

El 4t capı́tol oferix una nova tècnica per a la resolució de problemes
de valoració d’opcions Americanes basada en la racionalitat dels in-
versors. Apareix una funció de la intensitat que es pot reduir en el
cas més simple a la tècnica de penalització (penal method) . Este en-
focament té en compte el possible comportament irracional dels in-
versors. En la secció 4.2 s’aplica esta tècnica al model de canvi de
règims el que porta a un nou model que té en compte el possible exer-
cici irracional, aixı́ com diversos estats del mercat. L’enfocament del
paràmetre de racionalitat junt amb una transformació logarı́tmica per-
meten construir un esquema numèric eficient sense aplicar el mètode
front-fixing o la coneguda formulació de LCP (Linear Complementar-
ity Problem). Es proposa una famı́lia d’esquemes ponderats tant per
a opcions americanes de tipus ”vanilla” com per al model de canvi de
règims. S’estudien les propietats qualitatives de la funció d’intensitat i
de les solucions numèriques.

El 5é capı́tol es dedica a la valoració d’opcions d’actius múltiples. Una
transformació apropiada permet l’eliminació del terme de derivades



mixtes evitant inconvenients computacionals i possibles problemes d’
estabilitat.

Les conclusions es mostren al 6é capı́tol. Es posa en relleu diversos
aspectes de la present tesi. Tots els models considerats i els mètodes
numèrics van acompanyats de diversos exemples i simulacions. S’estu-
dia la convergència numèrica que confirma l’estudi teòric de la con-
sistència. Les condicions d’estabilitat són corroborades amb exemples
numèrics. Els resultats es comparen amb mètodes rellevants de la bib-
liografia mostrant l’eficiència dels mètodes proposats.





Abstract

The present PhD thesis is focused on numerical analysis and com-
puting of finite difference schemes for several relevant option pricing
models that generalize the Black-Scholes model. A careful analysis
of desirable properties for the numerical solutions of option pricing
models as the positivity, stability and consistency, is provided.

In order to handle the free boundary that arises in American option pri-
cing problems, various transformation techniques based on front-fixing
method are applied and studied. Special attention is paid to multi-asset
option pricing, such as exchange or spread option. An appropriate
transformation allows eliminating of the cross derivative term. Trans-
formation techniques of partial differential equations to remove con-
vection and reaction terms are studied in order to simplify the models
and avoid possible troubles of stability.

This thesis consists of six chapters. The first chapter is an introduction
containing definitions of option and related terms and derivation of the
Black-Scholes equation as well as general aspects of theory of finite
difference schemes, including preliminaries on numerical analysis.

Chapter 2 is devoted to solve linear Black-Scholes model for Amer-
ican put and call options. A Landau transformation and a new front-
fixing transformation are applied to the free boundary value problem.
It leads to a non-linear partial differential equation (PDE) in a fixed do-
main. Stable and consistent explicit numerical schemes are proposed
preserving positivity and monotonicity of the solution in accordance
with the behaviour of the exact solution.

Efficiency of the front-fixing method demonstrated in Chapter 2 has
motivated us to apply the method to some more complicated nonlin-
ear models. A new change of variables resulting in a time dependent
boundary instead of fixed one, is applied to nonlinear Black-Scholes



model for American options, such as Barles and Soner and Risk Ad-
justed Pricing models, an effective numerical algorithm is constructed
for a general case of non-constant volatility in Section 3.1. In order to
solve the resulting equation various finite difference methods are con-
structed, including explicit, implicit and alternating direction explicit
methods. Studying well-known Newton’s method for solving nonlin-
ear system allows to propose new modifications of the method. In
Section 3.2 the front-fixing method is tested by American option pri-
cing problem with regime switching model. Since in this model there
are several regimes, i.e. several optimal stopping boundaries, the front-
fixing transformation leads to a system of nonlinear equations that is
solved by using explicit finite difference scheme. The stability of the
proposed explicit FDM is studied basing on Von Neumann’s approach.

Chapter 4 provides a new alternative approach for solving American
option pricing problem based on rationality of investor. There exists an
intensity function that can be reduced in the simplest case to penalty
approach. The model takes into account possible irrational behaviour
of the investor. This approach is applied to regime switching model
resulting new model that takes into account possible irrational exer-
cise as well as several states of market in Section 4.2. The rationality
parameter approach together with a logarithmic transformation allows
to construct effective numerical scheme without applying front-fixing
method or LCP formulation. For both, vanilla American option and
regime switching model, a family of weighted schemes is constructed.
Qualitative properties of the intensity function and numerical solutions
are studied.

Chapter 5 deals with multi-asset option pricing. Appropriate trans-
formation allows eliminating of the cross derivative term avoiding com-
putational drawbacks and possible troubles of stability.

Concluding remarks are given in Chapter 6. All the considered mod-
els and numerical methods are accompanied by several examples and
simulations. The convergence rate is computed confirming the theoret-
ical study of consistency. Stability conditions are tested by numerical
examples. Results are compared with known relevant methods in the
literature showing efficiency of the proposed methods.
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all their help.

My sincere thanks to colleagues at the Institute of Multidisciplinary
Mathematics in Polytechnic University of Valencia. Special thanks to
Toni Vidal for improving my Spanish and for the beautiful Valencia
translation of the abstract.

I would like to thank my parents, sister and brother for their constant
support and encouragement. Most of all I would like to thank my
husband Anton, whose constant patience, love, affection and motiv-
ation were of immense help in the successful completion of this thesis.
Words are not enough to express my sincere appreciation for all my
family.





Contents

List of Figures xv

List of Tables xvii

List of Publications xix

1 Introduction 1
1.1 Black-Scholes model . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 General aspects of finite difference methods . . . . . . . . . . . . 6

1.2.1 Introduction to theory of grids . . . . . . . . . . . . . . . 6

1.2.2 Finite difference approximation of differential operators . 7

1.2.3 Statement of finite difference problem . . . . . . . . . . . 10

1.2.4 Some aspects of numerical analysis . . . . . . . . . . . . 11

2 Linear Black-Scholes model for American options 15
2.1 Front-fixing method for American put option with no dividends . . 17

2.1.1 Qualitative properties of the scheme . . . . . . . . . . . . 20

2.1.2 Numerical examples . . . . . . . . . . . . . . . . . . . . 25

2.2 Front-fixing method for American call option . . . . . . . . . . . 29

2.2.1 Qualitative properties of the scheme . . . . . . . . . . . . 31

2.2.2 Numerical examples . . . . . . . . . . . . . . . . . . . . 38

2.3 New efficient front-fixing method for American option pricing . . 43

2.3.1 Qualitative properties of the scheme . . . . . . . . . . . . 46

2.3.2 Numerical examples . . . . . . . . . . . . . . . . . . . . 51

xiii



CONTENTS

3 Front-fixing method for some advanced models 57
3.1 Nonlinear Black-Scholes models . . . . . . . . . . . . . . . . . . 59

3.1.1 Moving domain transformation . . . . . . . . . . . . . . 59
3.1.2 Preliminary computational algorithms . . . . . . . . . . . 62
3.1.3 Explicit Schemes . . . . . . . . . . . . . . . . . . . . . . 64
3.1.4 Implicit numerical methods . . . . . . . . . . . . . . . . 66
3.1.5 Numerical examples . . . . . . . . . . . . . . . . . . . . 71

3.2 Regime switching model . . . . . . . . . . . . . . . . . . . . . . 78
3.2.1 Multi-variable fixed domain transformation . . . . . . . . 79
3.2.2 Discretization and numerical schemes construction . . . . 81
3.2.3 Von Neumann stability analysis . . . . . . . . . . . . . . 86
3.2.4 Local truncation error and consistency . . . . . . . . . . . 88
3.2.5 Numerical examples . . . . . . . . . . . . . . . . . . . . 89

4 Behavioural modelling of option pricing 97
4.1 Pricing of American option with rationality parameter . . . . . . . 101

4.1.1 Numerical solution with irrational exercise . . . . . . . . 103
4.1.2 Transformation and explicit finite difference method . . . 106
4.1.3 Properties of intensity function and solution . . . . . . . . 107
4.1.4 Stability and consistency . . . . . . . . . . . . . . . . . . 112
4.1.5 Numerical examples . . . . . . . . . . . . . . . . . . . . 113

4.2 Regime switching model with rationality parameter . . . . . . . . 121
4.2.1 Weighted finite difference scheme for PDE problem . . . 122
4.2.2 Qualitative properties of the scheme . . . . . . . . . . . . 124
4.2.3 Numerical examples . . . . . . . . . . . . . . . . . . . . 132

5 Valuation of multi-asset options 137
5.1 Exchange options . . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.2 Spread options . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.2.1 Removing the cross-derivative term . . . . . . . . . . . . 142
5.2.2 Numerical analysis of the method . . . . . . . . . . . . . 146
5.2.3 American spread options . . . . . . . . . . . . . . . . . . 149
5.2.4 Numerical examples . . . . . . . . . . . . . . . . . . . . 150

6 Conclusions 155

References 157

xiv



List of Figures

2.1 Stable (left) and unstable (right) solution by the proposed front-
fixing method depending on mesh ratio µ. . . . . . . . . . . . . . 26

2.2 Analytical (”analytic”) and computed by the proposed method (”method”)
values of optimal stopping boundaries in Example 2.2.2. . . . . . 40

2.3 The difference between computed value and estimation of cn2 for
the problem with the parameters (2.90) and step sizes h = 10−3

and k = 6.25 · 10−6. . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.4 Optimal stopping boundary in Example 2.3.2 by using proposed

transformation and fixed-domain transformation [109]. . . . . . . 53
2.5 Optimal stopping boundary in Example 2.3.3 computed by explicit

and implicit methods. . . . . . . . . . . . . . . . . . . . . . . . . 54
2.6 The function c(x, τ) calculated by the proposed fully implicit method. 55

3.1 Moving grid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.2 A comparison of the free boundary Sf (τ) for RAPM model for

various risk premium measures R = 5, 15, 40, 70, 100 with the
corresponding free boundary for R = 0 (bold line). . . . . . . . . 74

3.3 A comparison of the free boundary Sf (τ) for Barles and Soner’s
model for a = 0, 0.01, 0.07, 0.13. . . . . . . . . . . . . . . . . . 75

3.4 Difference between solutions by explicit method and iterative ex-
plicit method with h0 = 10−2 and various k. . . . . . . . . . . . . 76

3.5 Stable numerical solution with k = 10−4. . . . . . . . . . . . . . 76
3.6 Unstable numerical solution with k = 2.6 · 10−3. . . . . . . . . . 76
3.7 American put option price curves at τ = T and its payoff. . . . . . 90
3.8 Optimal stopping boundary for regime 1 and regime 2 (stability

condition is fulfilled). . . . . . . . . . . . . . . . . . . . . . . . . 91

xv



LIST OF FIGURES

3.9 Optimal stopping boundary for regime 1 and regime 2 (stability
condition is broken). . . . . . . . . . . . . . . . . . . . . . . . . 91

3.10 Delta of option with parameters (3.78) in both regimes. . . . . . . 94
3.11 Gamma of option with parameters (3.78) in both regimes. . . . . . 94
3.12 American put option price curves at τ = T for the four regime

model and its payoff. . . . . . . . . . . . . . . . . . . . . . . . . 95
3.13 Optimal stopping boundary for the four regime American put op-

tion with parameters (3.80). . . . . . . . . . . . . . . . . . . . . . 95

4.1 Numerical solution the intensity function belonging to family (4.4)
with λ = 100 for various values of θ. . . . . . . . . . . . . . . . . 115

4.2 Numerical solution the intensity function belonging to family (4.5)
with λ = 100 for various values of θ. . . . . . . . . . . . . . . . . 115

4.3 Numerical solution for the intensity function belonging to family
(4.5) for various values of λ. . . . . . . . . . . . . . . . . . . . . 116

4.4 Option price with λ = 1. . . . . . . . . . . . . . . . . . . . . . . 117
4.5 Option price with λ = 1000. . . . . . . . . . . . . . . . . . . . . 117
4.6 Oscillations of the solution of the problem with parameters (4.36)

and h = 10−2, k = 10−2. . . . . . . . . . . . . . . . . . . . . . . 120
4.7 Stable numerical solution of the problem with parameters (4.36)

with h = 10−2, k = 10−4. . . . . . . . . . . . . . . . . . . . . . . 120
4.8 Numerical solution of the problem with parameters (4.79) . . . . . 134
4.9 Numerical solution of the problem with parameters (4.79) with

matrix (4.80) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
4.10 Numerical solution of the problem with parameters (4.79) with

various λ (Regime 1). . . . . . . . . . . . . . . . . . . . . . . . . 135
4.11 Numerical solution of the problem with parameters (4.79) with

various λ (Regime 2). . . . . . . . . . . . . . . . . . . . . . . . . 135
4.12 Stable and not stable solutions (Regime 1). . . . . . . . . . . . . . 136
4.13 Stable and not stable solutions (Regime 2). . . . . . . . . . . . . . 136

5.1 Optimal exercise ratio in time: calculated by the proposed in Sec-
tion 2.2 method (left) and presented in [86]. . . . . . . . . . . . . 140

5.2 Numerical domain after removing cross derivative term transform-
ation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.3 European spread option (stable), condition (5.43) is fulfilled. . . . 151
5.4 European spread option price, condition (5.43) is broken. . . . . . 151

xvi



List of Tables

1.1 Finite difference approximation of the first derivative at the point xj . 9
1.2 Finite difference approximation of the second derivative at the point

xj . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 American put option values obtained by the proposed method with
various spatial step. . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2 American put option values obtained by the proposed method with
various mesh ratio µ. . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3 Comparison of various relevant methods. . . . . . . . . . . . . . 28
2.4 American call option values calculated by the proposed front-fixing

method (FF) and other methods. . . . . . . . . . . . . . . . . . . 39
2.5 American call option values with parameters (2.90) calculated by

various methods. . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.6 Computational efficiency of various methods in Example 2.2.3. . . 42
2.7 Computational efficiency of various methods in Example 2.3.1. . . 52
2.8 Comparison of the proposed method with other methods for para-

meters (2.128). . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.9 Comparison of the computational time and accuracy for explicit

and implicit methods. . . . . . . . . . . . . . . . . . . . . . . . . 55

3.1 CPU-time (sec) of linear and binary search algorithms. . . . . . . 63
3.2 RMSE with respect to CPU-time for different h0 and fixed k =

0.0001. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.3 RMSE with respect to CPU-time for different k and fixed h0 = 0.01. 73
3.4 The maximum distance between the solution of the problem (3.12)

by explicit and iterative explicit method. . . . . . . . . . . . . . . 74

xvii



LIST OF TABLES

3.5 Spectral radius of matrix J−1
approxJ , where Japprox is calculated by

various methods. . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.6 Comparison of American put option prices in a two regime model. 90
3.7 Comparison of explicit and implicit methods. Time step of explicit

and implicit methods are denoted correspondingly by kexpl and kimpl. 92
3.8 RMSE and computational time for fixed k = 10−4 and various h. . 92
3.9 RMSE and computational time for fixed h = 10−2 and various k. . 93
3.10 Comparison of the efficiency of the IFV and proposed method (FF). 93
3.11 Option values at S = 10.0 in Regime 1 for various mesh ratios

µ = k
h2

and spatial step h = 10−2. . . . . . . . . . . . . . . . . . 94
3.12 Comparison of American put option prices in a four-regime model 96

4.1 Convergence to the true value with increasing λ for family (4.4) for
fixed h = 10−2, k = 10−4. . . . . . . . . . . . . . . . . . . . . . 114

4.2 Convergence to the true value with increasing λ for family (4.5) for
fixed h = 10−2, k = 10−4. . . . . . . . . . . . . . . . . . . . . . 115

4.3 Comparison of different methods for the American option with ra-
tional exercise (classical problem). . . . . . . . . . . . . . . . . . 118

4.4 Comparison of the approximations with large rationality parameter
(λ = 104) and a rational case reference approximation. . . . . . . 118

4.5 Spatial and temporal convergence rates of explicit, implicit and
Crank-Nicolson schemes for λ = 104 and λ = 1. . . . . . . . . . 119

4.6 CPU-time in seconds of proposed methods for fixed h = 10−2 and
various k. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.7 Convergence of the solution for various intensity functions f1, f2,
f3 to American option price and comparison with front-fixing (FF)
and Tree methods. The tests are done with explicit scheme (θ = 0),
h = 10−2 and time step k = 10−4. . . . . . . . . . . . . . . . . . 133

4.8 Convergence rate in space of the proposed θ-scheme for λ = 103. . 135
4.9 Convergence rate in time of the proposed θ-scheme for λ = 103. . 136

5.1 European spread option price calculated by the proposed method
(FDM) and Analytical approximation (5.44). . . . . . . . . . . . . 152

5.2 American spread option price calculated by various methods for
E = 0, 2, 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

5.3 CPU-Time in sec (first row) and Absolute difference (second row)
for different methods depending on number of time-steps for fixed
number of space steps for parameters (5.45). . . . . . . . . . . . . 153

xviii



List of Publications

Published Papers

1. R. Company, V. N. Egorova, and L. Jódar. Solving American option pri-
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• R. Company, V.N. Egorova, and L. Jódar. An efficient method for solving
spread option pricing problem: numerical analysis and computing. submitted
to Journal of Applied Mathematics and Computation, 2015.

Chapter in Book(s)
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The beginning is the most important
part of the work.

Plato

CHAPTER

1
Introduction

American options are contracts allowing the holder the right to sell (buy) an
asset at a certain price at any time until a pre-specified future date. They are widely
traded in today’s financial markets as its early exercise privilege. Therefore the
pricing of American options plays an important role both in theory and in real de-
rivative markets. The American option pricing problem can be posed either as a
linear complementarity problem (LCP) or a free boundary value problem. These
two different formulations have led to different methods for solving American op-
tions.

The optimal exercise boundary of an American option is not known a-priori and
has to be determined as a part of the solution. Since the boundary of the domain
of an American option is a free boundary, the valuation problem constitutes a free
boundary value problem. In order to eliminate the explicit dependence on the free
boundary the Black-Scholes equation can be reformulated as a linear compliment-
ary problem (LCP), see [11], [35].

In our work we follow the free boundary value approach. The problem of find-
ing optimal exercise boundary can be treated analytically or numerically. With
respect to the analytical approach, Geske and Johnson [52] obtained a valuation
formula for American puts expressed in terms of a series of compound-option func-
tions (see also Barone-Adesi and Whaley [7] and Ju [65]). Analytical approaches
to approximating the exact solution yield formulae which are difficult to use in
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1. INTRODUCTION

practice. It explains the considerable interest of numerical methods among the re-
searchers and the wide range of numerical proposals in the recent literature.

Numerical methods were initiated by Brennan and Schwartz [16] and the con-
vergence of their finite difference method was proved by Jaillet, Lamberton and
Lapeyere [62]. Other relevant works using finite difference methods are Hull and
White [59], Duffy [37], Wilmott et al. [111], Forsyth and Vetzal [48], Tavella and
Randall [104], Tangman et al. [103].

A front-fixing method for free boundary value problem has been proposed by
Crank [33]. Idea of the method is to transform the problem into a new non-linear
partial differential equation where the free boundary appears as a new unknown
function involved in the PDE problem. Wu and Kwok [112] applied the front-
fixing technique to the field of option pricing. The front-fixing method is studied
in other relevant papers (see [90], [109], [115].

We apply various transformations based on front-fixing method to American
option pricing problem. However, the linear Black-Scholes model [10] provides an
easy computable pricing formula of the option in an idealistic market with not real-
istic assumptions [14], [82]. This has motivated the development of new nonlinear
models to take account of various realistic trading environment, such as transaction
costs, illiquid market effects, etc. Therefore, various advanced models, such as
Barles and Soner model[6], risk adjusted pricing methodology (RAPM) proposed
by Kratka [75] and studied by Jandačka Ševčovič in [63], regime switching models
are considered as well as behavioural modelling of option pricing and multiasset
options.

Dealing with prices it is important to obtain not only fast solution, but guar-
anteed positivity. Therefore, apart from computational efficiency, the qualitative
properties of the method are welcome to be studied. We provide numerical ana-
lysis of the proposed methods, including study of stability and consistency.

The numerical solution for every considered model is found. The numerical
results confirms theoretical studies of stability and qualitative properties. Computa-
tional convergence rate is found for every proposed scheme. Results and compared
with known results in the literature to show the potential advantages. The imple-
mentation of the schemes has been done by using MatLAB R2015a on processor
Pentium(R) Dual-Core CPU E5700 3.00 GHz.
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1.1 Black-Scholes model

1.1 Black-Scholes model
Option is a contract between buyer and holder that gives to its holder right to buy
or sell underlying asset by fixed price called strike or exercise price [58], [111].
There are two types of options - call and put. Call option gives the right to buy
the asset, while holder of put option may sell the asset by fixed price at the fixed
moment. The process of buying or selling underlying asset is called exercise of
option. Time of option existence is called maturity. At the moment of signing the
option the holder has to pay to buyer certain amount of money that is called option
value or option price. That is the key problem for many researches.

There are widely traded two main styles of options - European and American.
The main difference between them is that European option has fixed exercise mo-
ment - maturity date, while American option may be exercised at any time up to
the maturity. Therefore, price of American option has to be higher than European
one on the same asset.

From the mathematical point of view option price is considered as a function
on underlying asset and time as variables and several parameters:

• Strike price. Relation between asset price and strike price defines status of
the option (”in the money”, ”out of the money”) and option price.

• Time to maturity. Time works against the holder since the price of the option
”out of the money” is decreasing as time tends to maturity date. It is called
time decay. Bigger time to maturity means higher uncertainty.

• Volatility. Value of the option is proportional expected price instability of
underlying asset.

• Dividend yield. Dividends reduce call option price and enhance value of put
option, since these payments reduce asset price.

Classic Black-Scholes model requires several assumptions [58]:

• Dividends are not paid while option exists. Many companies pay dividends,
so this assumption is not realistic. The easiest way to correct model is to
discount asset price on amount of dividends. In the case of American call
options absence of dividends makes holder to exercise the option at the ma-
turity date. It means that American style proceeds to a European.
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1. INTRODUCTION

• Market is efficient. It is supposed that market moves due to continuous Itó
process. In other words, price fluctuations are expected and predicted by
investors and trending stocks.

• Trading without transaction costs. This assumption is not realistic, because
usually traders and investors pay additional cost that influence on the model.

• Fixed interest rate. In the real market this rate could change during holding
option, through this the model gives wrong estimation.

• In Black-Scholes model, it is assumed that the probability distribution of
the stock price is lognormal and the instantaneous log return is a geomet-
ric Brownian motion. However the market for the options shows that the
geometric Brownian model for the underlying asset leads to underprice or
overprice for these options [18].

The model was presented in 1973 and since that time many researches have
improved the model by elimination described assumptions. In recent researches
more complicated (usually nonlinear) models are considered. It allows to calculate
the option price that fits (or is approximating) to the real market data.

Taking assumptions of the Black-Scholes model, we suppose that put option
prices are impacted negatively by increasing interest rates. that is differentiable by
t and continuously differentiable by S. Using Itô formula, one gets

dV = σS
∂V

∂S
dS +

(
µS

∂V

∂S
+
σ2

2
S2∂

2V

∂S2
+
∂V

∂t

)
dt, (1.1)

where σ is the volatility and µ is the risk-free rate.
Let us consider portfolio of just one option and −∆ number of stocks that is

not defined. Then a portfolio value Π can be found by the following expression

Π = V −∆S.

Since ∆ = const in a short amount of time dt, the change of portfolio value is

dΠ = dV −∆dS.

Thus, from (1.1) one gets

dΠ = σS

(
∂V

∂S
−∆

)
dS +

(
µS

∂V

∂S
+
σ2

2
S2∂

2V

∂S2
+
∂V

∂t
− µ∆S

)
dt.
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Value of ∆ can be chosen as ∆ = ∂V
∂S

, such that

dΠ =

(
∂V

∂t
+
σ2

2
s2∂

2V

∂S2

)
dt. (1.2)

Earnings of portfolio Π is defined by value rΠdt for period dt. If the right
hand side of (1.2) is greater than this amount, then the holder can get risk-free
profit by investing value of Π to the portfolio. In this case there appear an arbitrage
possibility. From the other hand, if the right hand side of (1.2) is smaller than
rΠdt, then the holder can invest the money to bank assets. It also leads to risk-free
profit, in other words, arbitrage possibility. Since Black-Scholes model means no
arbitrage, the only possible situation is the equality [58],

rΠdt =

(
∂V

∂t
+
σ2

2
s2∂

2V

∂S2

)
dt,

that leads to the Black-Scholes equation after some calculations

∂V

∂t
+
σ2

2
S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0.

In order to simplify the notation, function V (S, t) is usually denoted by c(S, t)
for call and p(S, t) for put. Corresponding capital letters are used for American
style options.

Terminal and boundary conditions have to be defined as well. The option price
is known at the maturity (t = T ), thus the terminal condition is defined by the
payoff function, that for European and American options is

p(S, T ) = (E − S)+ , c(S, T ) = (S − E)+ . (1.3)

Boundary conditions can be obtained from the natural behaviour of option.
Thus, for European option one boundary (S → ∞ for call and S = 0 for put)
is discounted strike price, while the rest boundary condition is V = 0. The bound-
ary conditions for American options will be established in the following section.

Option pricing problem leads to partial differential equation (PDE) of the second
order. In the case of American options, one deals with free boundary value prob-
lem. One of the most effective methods for solving such problems is so-called
finite difference method (FDM). It allows to get approximate solution of the PDE
by using a system of algebraic equations. Theoretical background of the method is
presented in the following section.

5



1. INTRODUCTION

1.2 General aspects of finite difference methods
This section is devoted to recall ideas of finite difference methods for partial differ-
ential equations of the second order and theoretical aspects related to the method.

1.2.1 Introduction to theory of grids
In order to use finite difference method for a given problem the following two steps
have to be done:

1. Substitute continuous region for discrete computational domain. If the ori-
ginal region is infinite, it has to be truncated in a such way that boundary
conditions holds true.

2. Substitute the differential operator for a finite difference operator and estab-
lish a discrete analogue of initial and boundary conditions.

As the result of these actions a system of algebraic equation is obtained. The
numerical solution of the system is an approximate solution of the original PDE
problem. It is clear that numerical solution could not be found at every point of the
continuous region, therefore it is logic to choose set of points called grid from the
region and compute solution only at these points called nodes. If distance between
any two neighbour nodes is constant the grid is called uniform, otherwise - non-
uniform. The computational grid of M + 1 space points and N + 1 time levels on
domain [xmin, xmax]× [0, T ] with respective step sizes h and k

h =
xmax − xmin

M
, k =

T

N
,

is the set of points (xj, τ
n), where

xj = xmin + hj, j = 0, ..,M, τn = kn, n = 0, .., N.

Function defined at the nodes is called grid function. Supposing that function
P (x, τ) of continuous arguments is an element of some functional spaceH0 is exact
solution, the approximate solution at the node (xj, τ

n) is denoted by pnj ≈ P (x, τ),
p(x, τ) ∈ Hh,k is a grid function, where Hh,k is a space of grid functions. The main
question of theory of numerical methods is how far the approximate solution from
the exact solution is. How to estimate it if grid function and continuous function
are from the different spaces Hh,k and H0? One way is to supply the grid function
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by interpolation, for example, at the rest points of continuous region. As the result
continuous function p̃(x, τ) ∈ H0 is obtained. Proximity of function is defined by
a norm in space of continuous functions || · ||0. Another way is to translate function
P (x, τ) to the grid. As the result, grid function P̃ (x, τ) ∈ Hh,k is obtained. Then
the difference (P̃ − p) ∈ Hh,k is a grid function. Closeness of p to P̃ is defined by
a norm || · ||h,k. It is logical to require that (see [98])

lim
h→0,k→0

||u||h,k = ||U ||0, ∀U ∈ H0.

1.2.2 Finite difference approximation of differential operators
LetL be a differential operator on function v = v(x). Substitution of derivatives for
finite differences gives a linear combination Lhvh on some set of grid nodes Ω(x),
called stencil. Then finite difference approximation Lhvh of differential operator
Lv takes the following form

(Lhvh(x))i =
∑

xj∈Ω(xi)

Ah(xi, xj)vh(xj),

where Ah(xi, xj) are the coefficients, h is a step size.
Finite difference approximation is usually studied at the fixed point xi. First of

all, the stencil has to be chosen for the approximation. Then the coefficients have
to be defined to approximate the differential operator. These coefficients can be
found from Taylor’s expansion of function v.

For example, the first derivative can be approximated by using current node x
and one neighbour node x± h. We start with Taylor’s expansion at this point:

v(x± h) = v(x)± hv′(x) +
h2

2
v′′(x) +O(h3). (1.4)

Then from (1.4) v′(x) is derived as follows

v′(x) =
v(x+ h)− v(x)

h
− h

2
v′′(x) +O(h2), (1.5)

or

v′(x) =
v(x)− v(x− h)

h
+
h

2
v′′(x) +O(h2). (1.6)

Besides, from (1.4),

v′(x) =
v(x+ h)− v(x− h)

2h
+O(h2). (1.7)
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Therefore, the first derivative can be approximated by the following expres-
sions:

v+
x =

v(x+ h)− v(x)

h
, (1.8)

v−x =
v(x)− v(x− h)

h
, (1.9)

v0
x =

v(x+ h)− v(x− h)

2h
. (1.10)

Expression v+
x is called forward difference, v−x - backward and v0

x - central differ-
ences.

Definition 1.2.1 (Truncation error). Truncation error (Error of approximation) φ
is the error made by truncating an infinite sum and approximating it by a finite
sum (see [3], p. 20). In other words, φ is calculated as a difference between the
approximated value and the exact value.

Often, truncation error also includes discretization error, which is the error that
arises from taking a finite number of steps in a computation to approximate an infin-
ite process. For example, in numerical methods for ordinary differential equations,
the continuously varying function that is the solution of the differential equation
is approximated by a process that progresses step by step, and the error that this
entails is a discretization or truncation error. From (1.5)-(1.7) one gets

φ = v+
x − v′(x) = O(h), φ = v−x − v′(x) = O(h), φ = v0

x − v′(x) = O(h2).

Definition 1.2.2 (Order of approximation). With the previous notation, Lh approx-
imates differential operator L with order m > 0 around the point x, if

φ(x) = Lhv(x)− Lv(x) = O(hm). (1.11)

Thus, forward and backward differences are the first-order approximation, while
the central difference is of the second order.

In regard to the second derivatives, analogous procedure allows to obtain the
second-order approximation:

v′′(x) =
v(x+ h)− 2v(x) + v(x− h)

2h
− h2

12
v(4)(x) +O(h3). (1.12)
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Approximation Truncation error
1
h

(vj+1 − vj) O(h)
1
h

(vj − vj−1) O(h)
1

2h
(vj+1 − vj−1) O(h2)

1
2h

(−3vj + 4vj+1 − vj+2) O(h2)
1

2h
(3vj − 4vj−1 + vj−2) O(h2)

1
12h

(vj−2 − 8vj−1 + 8vj+1 − vj+2) O(h4)

Table 1.1: Finite difference approximation of the first derivative at the point xj .

Approximation Truncation error
1
h2

(vj+2 − 2vj+1 + vj) O(h)
1
h

(vj − 2vj−1 + vj−2) O(h)
1
h2

(vj+1 − 2vj + vj−1) O(h2)
1
h2

(−vj+3 + 4vj+2 − 5vj+1 + 2vj) O(h2)
1
h2

(−vj−3 + 4vj−2 − 5vj−1 + 2vj) O(h2)
1

12h2
(−vj−2 + 16vj−1 − 30vj + 16vj+1 − vj+2) O(h4)

Table 1.2: Finite difference approximation of the second derivative at the point xj .

Following this idea many finite difference approximations can be defined. Cent-
ral differences are mostly used because of the order of approximation. However,
at the boundary of the computational domain one-sided differences could be use-
ful. In Tables 1.1 and 1.2 some common difference approximations of the first and
second derivatives correspondingly are presented.

The finite difference method is used not only for ordinary differential equations
(ODEs), but for partial differential equations (PDEs). In that case each partial
differential operator is approximated by one of the formulas in Tables 1.1, 1.2.

Example 1.2.1. Let us consider a homogeneous heat equation

∂u

∂t
=
∂2u

∂x2
.

Let us denote approximate solution at the node (xj, t
n) by vnj . Uniform grid is

considered with time step k and spatial step h. We choose forward difference in time

9
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and central difference for spatial derivative. Then the finite difference equation
takes the following form

vn+1
j − vnj

k
=
vnj−1 − 2vnj + vnj+1

h2
. (1.13)

In (1.13) four-points stencil is used. Due to Tables 1.1 and 1.2, the approxim-
ation is of the first order in time and of the second order in space. Usually it is
written as O(k) +O(h2).

Note that grid is not necessary uniform. However, analogous procedure of the
approximation based on Taylor’s expansion is used. If the three-point stencil with
nodes xj−1 = x−h−, xj = x and xj+1 = x+h+ is chosen, h− 6= h+. Then central
difference approximation of the first derivative takes the following form

v′(x) =
vj+1 − vj−1

h+ + h−
+O (h− − h+) .

Thus central difference on non-uniform stencil is of the first order [98].
The finite difference approximations of differential operators have been con-

sidered. However, the real problem in fields of physics or finance contains also
initial and boundary conditions that allows to find unique solution. Therefore, let
us consider statement of finite difference problem.

1.2.3 Statement of finite difference problem
Definition 1.2.3 (Finite difference scheme). A set of finite difference equations that
approximate given differential equation and additional boundary and initial con-
ditions is called finite difference scheme.

The procedure of the scheme construction is considered in the following ex-
ample.

Example 1.2.2. The heat equation is considered:

Lu =
∂u

∂t
− ∂2u

∂x2
= f(x, t), 0 < x < 1, 0 < t ≤ T, (1.14)

u(0, t) = µ1(t), u(1, t) = µ2(t), (1.15)

u(x, 0) = u0(x). (1.16)

10



1.2 General aspects of finite difference methods

Here (1.15) are boundary conditions and (1.16) is initial condition.
The uniform grid is chosen:

xj = jh, j = 0, ...,M, tn = nk, k = 0, ..., N.

Denoting vnj = u(xj, t
n) and φnj = f(xj, t

n), the scheme on four-point stencil
takes the following form:

vn+1
j −vnj
k

=
vnj+1−2vnj +vnj−1

h2
+ φnj , 1 ≤ j ≤M − 1, 0 ≤ n < N, (1.17)

vn0 = µ1(tn), vnM = µ2(tn), 0 ≤ n ≤ N, (1.18)

v0
j = u0(xj), 0 ≤ j ≤M. (1.19)

Scheme (1.17)-(1.19) is called explicit: values at the next n + 1-th time level
are found by using values from the previous n-th time level. Implicit scheme uses
the following finite difference equation

vn+1
j − vnj

k
=
vn+1
j+1 − 2vn+1

j + vn+1
j−1

h2
+ φnj , 1 ≤ j ≤M − 1, 0 ≤ n < N.

Thus, the system with three-diagonal matrix has to be solve to obtain values
vn+1
j . For solving such a system Thomas algorithm is usually used [32], [98].

If PDE is nonlinear, then implicit scheme leads to nonlinear system that is usu-
ally solved by iterative algorithm, for example, Newton’s or quasi-Newton’s meth-
ods [78].

Constructing numerical method for a given problem one has to take into account
that the solution is approximate. Therefore, the keynote of theoretical study of
FDM is qualitative properties of the scheme, including stability and consistency.
These properties give the preliminary information about how accurate solution is
and what step sizes can be chosen to improve the properties of the scheme. In the
following section definitions that are used in the present work are given.

1.2.4 Some aspects of numerical analysis
For FDM theory is typical the assumption that solution of the PDE exists and has a
required number of derivatives [101], [102].

Since numerical solution is approximate, the difference between exact solution
and numerical one is called truncation error. It can be calculated by several for-
mulas. In the present work the Root Mean Square Error (RMSE) is used:
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1. INTRODUCTION

RMSEh =

√√√√ 1

n

n∑
j=1

(
v∗j − vj

)2
, (1.20)

where v∗j = u(xj) is exact solution at the point xj and vj is approximated solution
obtained by FDM with step size h.

Further RMSE is used for convergence rate calculation.

Definition 1.2.4 (Convergence). A finite difference scheme F (v) approximating
PDE Lu is a convergent scheme if for any x and t, as (jh, nk) tends to (x, t),
numerical solution v converges to exact solution u as step sizes h and k tend to
zero.

In order to understand how fast the numerical solution converges to the exact
solution, convergence rate γ for each coordinate x or t is calculated as follows

γh =
lnRMSEh − lnRMSEh/2

ln 2
. (1.21)

However, very often exact solution is not known. In that case one can suppose
that numerical solution obtained on refined grid (with very small step sizes) is exact
or another expression of convergence rate is used

γh = log2

||vh/2 − vh||
||vh/4 − vh/2||

, (1.22)

where vh is the numerical solution obtained by using FDM with step size h and
|| · || is one the vector norms, for example, infinity-norm || · ||∞ (the maximum of
the absolute values of the components).

Related to convergence concept is consistency.

Definition 1.2.5 (Consistency). Under consistency of a numerical scheme with re-
spect to a partial differential equation we understand that the exact solution of the
PDE approximates well the exact theoretical solution of the finite difference scheme
as the step size discretization tends to zero.

Mostly, study of consistency leads to calculation of the order of approximation
of the scheme.

Constructing numerical scheme it is important to guarantee that oscillations do
not occur and that some perturbation in initial data does not destroy the scheme. All
these phenomenons lead to understanding of stability. For the sake of clarity and

12



1.2 General aspects of finite difference methods

since there are many criteria for stability in the literature, let us recall the following
definition that we follow in present work (see for instance [76], p. 92).

Definition 1.2.6 (Stability). The numerical scheme is said to be || · ||∞-stable in the
computational domain if for every partition with k and h,

max
n
||vn||∞ ≤ C||v0||∞,

where vn is the approximate solution at the moment tn = nk and C is independent
of h, k constant.

This definition allows that solution grows, but the growth is bounded by some
constant C. If a numerical scheme is stable for any partition h and k without any
restriction, it is called unconditionally stable.

Sometimes study of stability by the definition is hard work and there are an-
other methods that allow to find stability condition (of find that the scheme is un-
conditionally stable). One of the well-known techniques is von Neumann stability
analysis [101], [102]. The idea of the method is to express initial values in terms
of finite Fourier series and then consider growth of the function. This method will
be considered below.
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CHAPTER

2
Linear Black-Scholes model

for American options

The main advantage of American options is the possibility of early exercise.
This fact in the economical sense makes American options more attractive for in-
vestors. From the mathematical point of view this possibility of early exercise leads
to a free boundary problem, where Sf (t) is the switching point that is called op-
timal stopping boundary. The optimal strategy of the investor depends on value of
Sf (t) at current moment: for 0 < S < Sf (t) the put option should be exercised and
the call option should be hold. For S > Sf (t) vice-a-versa: the put option should
be hold and the call option should be exercised. In further work the holding re-
gion is considered, because option price in exercise region is defined by the payoff
function.

The American put option price P (S, τ), where τ = T−t is the time to maturity,
with constant dividend yield q, is the solution of linear partial differential equation
of the second order

∂P

∂τ
=

1

2
σ2S2∂

2P

∂S2
+ (r − q)S∂P

∂S
− rP, S > Sf (τ), 0 < τ ≤ T, (2.1)

supplied with the following initial conditions
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2. LINEAR BLACK-SCHOLES MODEL FOR AMERICAN OPTIONS

P (S, 0) = max(E − S, 0), Sf (0) = Emax

(
r

q
, 1

)
, (2.2)

and the boundary conditions

P (Sf (τ), τ) = E − Sf (τ), lim
S→∞

P (S, τ) = 0. (2.3)

Since an additional unknown function Sf (τ) is included in the free boundary
formulation, one extra condition is necessary. This condition is called smooth past-
ing condition and requires that the slope of the option price curve at the free bound-
ary coincides with the slope of payoff function. Thus, for put option it is presented
as follows

∂P

∂S
(Sf (τ), τ) = −1. (2.4)

As it is explained in previous section, dividend payments influence on option
price and investor’s strategy such that put option becomes more expensive and price
of call option has to be discounted. In other words, if there is no dividend payment
(q = 0), then the optimal strategy for holder of American call is to exercise the
option at the maturity ( see [111], chapter 7.7, [59]). In that case the American call
becomes European one. Because of that the problem for American call option is
considered just for q > 0 [59].

American call option price model is given by [111] as the free boundary PDE

∂C

∂τ
=

1

2
σ2S2∂

2C

∂S2
+ (r − q)S∂C

∂S
− rC, 0 ≤ S < Sf (τ), 0 < τ ≤ T, (2.5)

together with the boundary and initial conditions

C(S, 0) = max(S − E, 0), Sf (τ) = Emax

(
r

q
, 1

)
(2.6)

C(Sf (τ), τ) = Sf (τ)− E, ∂C

∂S
(Sf (τ), τ) = 1 C(0, τ) = 0. (2.7)

Analytical or closed form solution of the free boundary problems (2.1)-(2.4)
and (2.5)-(2.7) does not exist. Therefore numerical methods are employed for solv-
ing. In this chapter various front-fixing transformations with finite difference meth-
ods are used to construct effective and stable numerical solution. Special attention
is paid to study positivity and monotonicity of the numerical solution as well as
stability and consistency of the proposed schemes.
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2.1 Front-fixing method for American put option with no dividends

2.1 Front-fixing method for American put option with
no dividends
First of all, classical Black-Scholes model for American put option (2.1)-(2.4)
without dividend payments (q = 0) is considered. A dimensionless Landau trans-
formation [79] is proposed as follows

x = ln
S

Sf (τ)
, p(x, τ) =

P (S, τ)

E
, sf (τ) =

Sf (τ)

E
. (2.8)

The spatial variable x transfers the free boundary domain S > Sf (τ) to the
fixed, but unbounded domain (0;∞). In new coordinates (x, τ) the problem (2.1) -
(2.4) is rewritten in the following normalized form

∂p

∂τ
=

1

2
σ2 ∂

2p

∂x2
+

(
r − σ2

2

)
∂p

∂x
− rp+

s′f
sf

∂p

∂x
, x > 0, 0 < τ ≤ T, (2.9)

where s′f denotes the derivative of sf with respect to τ . The new transformed
equation (2.9) is a nonlinear PDE on the domain (0,∞) × (0, T ] since sf and
its derivative are involved. Using transformation (2.8) the initial and boundary
conditions for the original problem (2.1)-(2.4) have to be rewritten as follows

p(x, 0) = 0, x ≥ 0, sf (0) = 1, (2.10)

∂p

∂x
(0, τ) = −sf (τ), p(0, τ) = 1− sf (τ), (2.11)

lim
x→∞

p(x, τ) = 0. (2.12)

In order to solve numerically problem (2.9)-(2.12), computational domain has
to be truncated. Let us introduce xmax large enough to translate the boundary con-
dition (2.12), i.e. p(xmax, τ) = 0. Then the problem (2.9)-(2.12) can be studied
on the fixed domain [0, xmax] × (0, T ]. The value xmax is chosen following the
criterion pointed out in [66].

Let us introduce the computational grid of M + 1 spatial nodes and N + 1 time
levels with respective step sizes h and k:

h =
xmax
M

, k =
T

N
, (2.13)

xj = hj, j = 0, . . . ,M, τn = kn, n = 0, . . . , N. (2.14)
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The approximate value of p(x, τ) at the point xj and time τn is denoted by
pnj ≈ p(xj, τ

n). Then a forward two time-level and centred in space scheme is
constructed for internal spacial nodes 1 ≤ j ≤ M − 1, 0 ≤ n ≤ N − 1 as
follows:

pn+1
j − pnj
k

=
σ2

2

pnj−1 − 2pnj + pnj+1

h2

+

(
2r − σ2

2
+
sn+1
f − snf
ksnf

)
pnj+1 − pnj−1

2h
− rpnj .

(2.15)

Parabolic mesh ratio is denoted by µ = k
h2

, then the scheme (2.15) takes the
following form

pn+1
j = ã1p

n
j−1 + a2p

n
j + ã3p

n
j+1, (2.16)

where

ãn1 = a1 −
sn+1
f − snf
2hsnf

, ãn3 = a3 +
sn+1
f − snf
2hsnf

, (2.17)

a1,3 =
µ

2

(
σ2 ∓

(
r − σ2

2

)
h

)
, a2 = 1− σ2µ− rk. (2.18)

The boundary conditions (2.11) and (2.12) are discretised as follows

pn1 − pn−1

2h
= −snf ; pn0 = 1− snf , (2.19)

where x−1 = −h is an auxiliary point out of the domain. By considering the
equation (2.9) at the point x0 = 0, τ > 0, what involves the assumption of the
existence of ∂2p

∂x2
(0, τ) and replacing of the boundary conditions (2.11) into equation

(2.9) at (0, τ) a new boundary condition takes the following form (see [112],[115])

1

2
σ2 ∂

2p

∂x2
(0, τ) +

σ2

2
sf (τ)− r = 0, (2.20)

and its central difference discretization

σ2

2

pn1 − 2pn0 + pn−1

h2
+
σ2

2
snf − r = 0. (2.21)

From (2.19) and (2.21) the value of pn−1 can be eliminated obtaining the rela-
tionship

pn1 = α− βsnf , n ≥ 1, (2.22)

between the free boundary approximation snf and pn1 , where
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2.1 Front-fixing method for American put option with no dividends

α = 1 +
rh2

σ2
, β = 1 + h+

1

2
h2. (2.23)

By using the scheme (2.15) for j = 1 and evaluating (2.22) for n+1 time level,
the free boundary sn+1

f can be expressed as

sn+1
f = dnsnf , 0 ≤ n ≤ N − 1, (2.24)

where

dn =
α−

(
a1p

n
0 + a2p

n
1 + a3p

n
2 −

pn2−pn0
2h

)
pn2−pn0

2h
+ βsnf

. (2.25)

After expression (2.24) the value sn+1
f can be replaced in (2.15), (2.22) and

(2.19) to obtain values pn+1
j , 0 ≤ j ≤M−1. Then the numerical scheme for the

problem (2.9) - (2.12) can be rewritten for any n = 0, . . . , N − 1, in the following
algorithmic form

Algorithm 1: Explicit FDM for American put option pricing with front-fixing
transformation

Data: s0
f = 1, p0

j = 0, 0 ≤ j ≤M ;
Result: Solution at τ = T ;
Set parameters
Compute constant coefficients a1, a2, a3, α, β;
n = 0;
while n < N do

Calculate dn by (2.25);
Find value of free boundary: sn+1

f = dnsnf ;
Compute: pn+1

0 = 1− sn+1
f , pn+1

1 = α− βsn+1
f , pn+1

M = 0;
Calculate new coefficients
for j = 1, ...,M − 1 do

pn+1
j = ãn1p

n
j−1 + a2p

n
j + ãn3p

n
j+1;

end
n = n+ 1;

end
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2.1.1 Qualitative properties of the scheme
In this section the free boundary non-increasing monotonicity as well as the pos-
itivity and non-increasing spacial monotonicity of the numerical option price are
shown.

Lemma 2.1.1. Assuming that the step sizes h and k satisfy the conditions:

C1 : h ≤ σ2∣∣r − σ2

2

∣∣ , r 6= σ2

2
,

C2 : k ≤ h2

σ2 + rh2
,

then the coefficients (2.18) are non-negative. If r = σ2

2
, then under the condition

C2, the coefficients are non-negative.

Proof. From (2.18) for non-negativity of a1 it is necessary that

σ2 −
(
r − σ2

2

)
h ≥ 0. (2.26)

If r ≤ σ2

2
from (2.18) note that a ≥ 0 for any h > 0. Otherwise (2.26) is

satisfied under the condition C1. From (2.18) a2 is non-negative under the condi-
tion C2. If r ≥ σ2

2
non-negativity of a3 is guaranteed by (2.18) for any h > 0.

Otherwise a3 is non-negative under the condition C1.

The following lemma prepares the study of positivity of the numerical solution
as well as the monotonicity of the free boundary sequence snf , that will be estab-
lished in a further result.

Lemma 2.1.2. Let {pnj , snf} be the numerical solution of scheme (2.15)-(2.12) for
the transformed American put option problem (2.9) and let dn be defined by (2.25).
Then under hypothesis of the Lemma 2.1.1, for small enough h, one verifies

1. For each fixed n
0 < dn ≤ 1. (2.27)

2. Values pn+1
j ≥ 0 for j = 0, ...,M ; n = 0, ..N − 1.

3. pn+1
j ≥ pn+1

j+1 for j = 0, ...M − 1; n = 0, ..N − 1.
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Proof. The induction principle is used for proof. From initial conditions p0
j = 0,

0 ≤ j ≤ M , and therefore p0
j ≥ p0

j+1. From (2.23), (2.25) and hypothesis C1 of
Lemma 2.1.1 one gets

0 < d0 =
α

β
≤ 1. (2.28)

Since s0
f = 1, from boundary conditions (2.11) - (2.12) and (2.28) one gets

0 < s1
f = d0 ≤ 1; p1

0 = 1− d0 ≥ 0; p1
1 = 0. (2.29)

Furthermore, from (2.16) p1
j = 0 for j = 2, ..M .

For the sake of clarity let us show firstly that 0 < d1 ≤ 1. From (2.25), (2.23)
and (2.29) it follows that

d1 = 1− a1
β − α

αβ − β−α
2h

= 1− a1

h+ h2
(

1
2
− r

σ2

)
1
2

+ h
(

3
4

+ r
2σ2 +O(h2)

) .
Under condition C1 in Lemma 2.1.1 a1 > 0, for small enough values of h one

gets
0 < d1 ≤ 1.

Let us assume the induction hypothesis that conclusions hold true for index
n− 1, that is

0 < dn−1 ≤ 1, pnj ≥ 0, pnj ≥ pnj+1, (2.30)

and prove that conclusions hold true for index n. By denoting

fn = 1 +
rh2

σ2
−
(
a1p

n
0 + a2p

n
1 + a3p

n
2 −

pn2 − pn0
2h

)
, (2.31)

gn =
pn2 − pn0

2h
+

(
1

2

(
1 + (1 + h)2

))
snf ,

dn takes the following form

dn =
fn

gn
. (2.32)

For n > 2, using Taylor’s expansion, one gets the approximation of the involved
derivatives and boundary conditions

pn2 = 1 +
4rh2

σ2
−
(
1 + 2h+ 2h2

)
snf +O(h3). (2.33)
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From (2.33) and (2.31) numerator fn takes the form

fn = rh

[
k +

rkh+ 2(1− rk)

σ2

]
+

(
h2

2
(1− rk)− khσ

2

2

)
snf +O(h2), (2.34)

and verifies fn > 0 since k < h
rh+σ2 under condition C2 of Lemma 2.1.1 and for

h < 1.
From (2.33) and (2.25) denominator gn is positive for small enough values of

h, since

gn =
pn2 − pn0

2h
+

(
1 + h+

h2

2

)
snf =

2rh

σ2
+
h2

2
snf +O(h2) > 0. (2.35)

From (2.32) and previous comments one gets dn > 0. In order to prove that
dn ≤ 1 let us consider the difference fn − gn. By using (2.34) and (2.35) under
hypothesis of Lemma 2.1.2 one can obtain

fn − gn = kh

(
r
σ2 − 2r + rh

σ2
− rh+ σ2

2
snf

)
+O(h2). (2.36)

Note that if σ2 < 2r then (2.36) is non-positive for small enough values of h.
However, even if σ2 ≥ 2r, the Samuelson asymptotic limit [99] snf ≥ 2r

2r+σ2 (see
[112], p. 87) guarantees the non-positivity of (2.36). Therefore dn ≤ 1.

In order to prove the positivity of the solution {pn+1
j } the non-negativity of

coefficients ãn1 and ãn3 appearing in equation (2.16) is a sufficient condition. From
(2.17) ãn1 is positive since

ãn1 = a1 −
sn+1
f − snf
2hsnf

= a1 −
dn − 1

2h
≥ a1 ≥ 0.

From (2.18) and (2.35) the sign of ãn3 is the same as the sign of (2ha3g
n + fn − gn)

and from (2.18), (2.34), (2.35) and snf ≤ 1, one gets for small enough values of h

2ha3g
n + fn − gn > rk + (σ2µ+ rk)

rh2

σ2
− kh2σ2

4
> 0.

Under hypothesises of induction (2.30) together with positivity of coefficients
ãn and c̃n the positivity of {pn+1

j } is proved. Moreover, {pn+1
j } is non-increasing

with respect to index j from (2.16), since

pn+1
j − pn+1

j+1 = ãn1 (pnj−1 − pnj ) + a2(pnj − pnj+1) + ãn3 (pnj+1 − pnj+2) ≥ 0. (2.37)
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Summarizing the following result has been established:

Theorem 2.1.1. Under assumptions of Lemma 2.1.2 the numerical scheme (2.16)
for solving the American option transformed problem guarantees the following
properties of the numerical solution:

• Non-increasing monotonicity and positivity of values snf , n = 0, ..., N ;

• Positivity of the vectors pn, n = 0, ..., N ;

• Non-increasing monotonicity of the vectors pn = (pn0 , ...p
n
M) with respect to

space indexes for each fixed n = 0, ..., N.

Proof. The monotonicity and positivity of the values snf follow from the condition
(2.27). Since initial conditions are trivial, coefficients of the scheme (2.16) are
positive, the values of pnj are also positive. Monotonicity of the vectors pn is the
third statement of the Lemma 2.1.2 and is proved by (2.37).

Theorem 2.1.2. Under assumptions of Lemma 2.1.2 the numerical scheme (2.16)-
(2.19) for solving transformed problem (2.9)-(2.12) is || · ||∞-stable.

Proof. Since for each fixed n, {pnj } is a non-increasing sequence with respect to j,
then according to the boundary condition (2.19) and positivity of snf since (2.27),
one gets

||P n||∞ = pn0 = 1− snf < 1, 0 ≤ n ≤ N.

Thus, the scheme is || · ||∞-stable.

With the respect to consistency, let us write the numerical scheme (2.16) in the
form

F (pnj , s
n
f ) =

pn+1
j − pnj
k

− 1

2
σ2
pnj−1 − 2pnj + pnj+1

h2

−
(
r − σ2

2

)
pnj+1 − pnj−1

2h
+ rpnj −

sn+1
f − snf
ksnf

pnj+1 − pnj−1

2h
= 0.

(2.38)

Let us denote by p̃nj = p(xj, τ
n) the exact theoretical solution value of the PDE

at the mesh point (xj, τ
n), and let S̃nf = sf (τ

n) be the exact solution of the free
boundary at time τn. The scheme (2.38) is said to be consistent with
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L(p, sf ) =
∂p

∂τ
− 1

2
σ2 ∂

2p

∂x2
−
(
r − σ2

2

)
∂p

∂x
+ rp−

s′f
sf

∂p

∂x
= 0,

if the local truncation error

T nj (p̃, S̃f ) = F (p̃nj , S̃
n
f )− L(p̃nj , S̃

n
f ),

satisfies

T nj (p̃, S̃f )→ 0, as h→ 0, k → 0.

Assuming the existence of the continuous partial derivatives up to order two in
time and up to order four in space, using Taylor’s expansion about (xj, τ

n) one gets

T nj (p̃, S̃f ) = kEn
j (3)− σ2

2
h2En

j (2) +

(
r − σ2

2

)
h2En

j (1)

− kEn
j (4)

∂p

∂x
(xj, τ

n)− h2En
j (1)

1

S̃nf

dSf
dτ

(τn)− kh2En
j (4)En

j (1),

(2.39)

where

En
j (1) =

1

6

∂3p

∂x3
(xj, τ

n), En
j (2) =

1

12

∂4p

∂x4
(xj, τ

n),

En
j (3) =

1

2

∂2p

∂τ 2
(xj, τ

n), En
j (4) =

k

2S̃f

d2sf
dτ 2

(τn).
(2.40)

Equations (2.39) and (2.40) show the local truncation error of the numerical
scheme (2.15) with respect to the PDE (2.9). In order to complete the consistency
one has to rewrite the boundary conditions (2.11), (2.12) in the following form

L1(p, sf ) = p(0, τ)− 1 + sf (τ) = 0, (2.41)

L2(p, sf ) =
∂p

∂x
(0, τ) + sf (τ) = 0, (2.42)

L3(p, sf ) =
σ2

2

∂2p

∂x2
(0, τ) +

σ2

2
sf (τ)− r = 0. (2.43)

Finite difference approximation for the boundary conditions takes the form

F1(p, sf ) = pn0 − 1 + snf = 0,

F2(p, sf ) =
pn1 − pn−1

2h
+ snf = 0,

F3(p, sf ) =
σ2

2

pn−1 − 2pn0 + pn1
h2

+
σ2

2
snf − r = 0.
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Thus, truncation error can be estimated as follows

T1 = F1(pn, snf )− L1(pn, snf ) = 0,

T2 = F2(pn, snf )− L2(pn, snf ) = O(h2),

T3 = F3(pn, snf )− L3(pn, snf ) = O(h2).

Boundary condition (2.41) is approximated exactly, without truncation error.
Boundary conditions (2.42) and (2.43) are approximated with the second order,
because we used central difference scheme for the first and the second derivatives.
Summarized truncation error for the boundary condition

T = T1 + T2 + T3 = O(h2).

The finite difference approximation is consistent with the boundary conditions
with the second order. This result is formulated in the following theorem.

Theorem 2.1.3. The finite difference approximation is consistent with the equation
(2.9) and boundary conditions, and local truncation error satisfies

T nj (p) = O(h2) +O(k).

In the previous result we have assumed that the theoretical solution of the PDE
(2.9) admits continuous partial derivatives up to certain order according to [101].

2.1.2 Numerical examples
In this section the results of the numerical experiments are presented to confirm the
theoretical study. A comparison with other approaches is presented in this section.

Considered scheme is conditionally stable with constraints on space step and
time step.

Example 2.1.1. The American put option pricing problem with the parameters as
in [90]

r = 0.1, σ = 0.2, T = 1, x∞ = 2, (2.44)

is considered.
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Figure 2.1: Stable (left) and unstable (right) solution by the proposed front-fixing
method depending on mesh ratio µ.

Asset price True value h h/2 h/4

90 11.6974 11.4622 11.6870 11.6920
100 6.9320 6.9719 6.9025 6.9229
110 4.1550 4.0725 4.1429 4.1546
120 2.5102 2.5623 2.5026 2.5101

Table 2.1: American put option values obtained by the proposed method with various
spatial step.

The spatial step is h = 0.01 that satisfies condition C1 of Lemma 2.1.1, and

time step is variable. Dependence of stability on positivity of coefficient a2 is

demonstrated in Figure 2.1 (left: µ = 24, a2 = 1.0101, right: µ = 25.1, a2 =

−0.0043). Numerical tests show that the condition C2 is critical for positivity of

coefficient a2 and, as a result, for the stability of the scheme.

It was theoretically proved that the order of approximation of the scheme is

O(h2)+O(k). The results of the numerical experiments are presented in Table 2.1.

For ”True” values we use the ”true values” from [96]. We consider the space steps:

h = 2 · 10−3, h/2 = 10−3 h/4 = 5 · 10−4 for fixed γ = 5 to guarantee the stability.

The error is calculated for each case correspondingly,

ε1 =
∑

(ptrue − ph) = 0.0596, ε2 = 0.015, ε3 = 0.226.
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Asset price True value µ = 5 2µ 4µ

90 11.6974 11.6870 11.6758 11.4563
100 6.9320 6.9025 6.8856 6.9658
110 4.1550 4.1429 4.1368 4.0668
120 2.5102 2.5026 2.4786 2.5573

Table 2.2: American put option values obtained by the proposed method with various
mesh ratio µ.

Thus, the order of approximation in space is

ln ε1
ε2

ln h
h/2

≈
ln ε2

ε3

ln 2
≈

ln ε1
ε3

ln 4
≈ 2,

The order of approximation in time is checked analogously with fixed space
step h = 10−3. The results for different values of mesh ratio µ are presented in
Table 2.2. The errors for corresponding values of µ are

ε4 =
∑

(ptrue − pµ) = 0.0596, ε5 = 0.1178, ε6 = 0.2484,

The order of approximation in time

ln ε4
ε5

ln 2
≈

ln ε5
ε6

ln 2
≈

ln ε4
ε6

ln 4
≈ 1,

coincides with the theoretical result.
In order to compare the proposed method with another known techniques, the

front-fixing method with another transformation proposed in [90] is considered:

x =
S

sf (τ)
, p(x, τ) = P (S, τ) = P (xsf (τ), τ). (2.45)

Example 2.1.2. Let us compare front fixing method with another approach [91],
based on the Mellin’s transform. The parameters of the problem are r = 0.0488,
σ = 0.3, T = 0.5833.

To compare results of the explicit front-fixing method with the Mellin’s trans-
formation [91], we have to multiply our dimensionless value on E = 45. Then for
Mellin’s transform method sf (T ) = 32.77, while the proposed front-fixing method
gives sf (T ) = 32.7655.
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S True MBM HW OCA OS PM FF
90 11.6974 11.6889 11.6974 11.6975 11.6922 11.7207 11.6898

100 6.9320 6.9203 6.9320 6.9321 6.9319 6.9573 6.9243
110 4.1550 4.1427 4.1548 4.1550 4.1548 4.1760 4.1468
120 2.5102 2.4996 2.5101 2.5102 2.5101 2.5259 2.5089

Table 2.3: Comparison of various relevant methods.

Example 2.1.3. Let us consider set of parameters

r = 0.08, σ = 0.2, T = 3, E = 100. (2.46)

In Table 2.3 the proposed explicit front-fixing method (FF) for American put is
compared with another numerical methods shown in [96], such as

• The finite difference moving boundary method of Muthuraman (MBM) [89];

• Han-Wu algorithm (HW) transforms the Black-Scholes equation into a heat
equation on an infinite domain [54];

• The optimal compact algorithm (OCA) for the heat equation [96];

• Ikonen and Toivanen [60] proposed an operator splitting technique (OS) for
solving the linear complementarity problem.

• Penalty method (PM) is considered in [90] and [106].

One can see that the proposed method gives competitive results with guaranteed
positivity and monotonicity of the solution and conditional stability of the scheme.

The results of this section have been published in [26].

28



2.2 Front-fixing method for American call option

2.2 Front-fixing method for American call option
In this chapter an explicit finite-difference scheme is proposed to solve the Amer-
ican call option pricing problem (2.5)-(2.7).

Analogously to previous section 2.1 the dimensionless transformation for prob-
lem (2.5)-(2.7)

x = ln
B(τ)

S
, c(x, τ) =

C(S, τ)

E
, Sf (τ) =

B(τ)

E
, (2.47)

is considered.
Under transformation (2.47) the problem (2.5) - (2.7) is rewritten in normalized

form

∂c

∂τ
=

1

2
σ2 ∂

2c

∂x2
−
(
r − q − σ2

2
+
S ′f
Sf

)
∂c

∂x
− rc, x ≥ 0, 0 < τ ≤ T, (2.48)

with new initial conditions

Sf (0) = max

{
1,
r

q

}
, c(x, 0) =

{
0, r ≤ q,

g(x), r > q,
x ≥ 0, (2.49)

where

g(x) = max

(
r

q
e−x − 1, 0

)
, (2.50)

and new transformed boundary conditions

∂c

∂x
(0, τ) = −Sf (τ), (2.51)

c(0, τ) = Sf (τ)− 1, (2.52)

lim
x→∞

c(x, τ) = 0. (2.53)

Following the ideas of [112] and in order to solve the numerical difficulties
derived from the discretization at the numerical boundary, we assume that (2.48)
holds true at x = 0,

σ2

2

∂2c

∂x2
−
(
q +

σ2

2

)
Sf + r = 0. (2.54)

The equation (2.48) is a nonlinear differential equation on the domain [0,∞)×
(0, T ]. The problem (2.48)-(2.53) can be numerically solved on the fixed domain
[0, xmax] × (0, T ]. The value xmax is chosen following the criterion pointed out in
[66].
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As in the previous section, the uniform computational grid of M + 1 space
points and N + 1 time levels with respective step sizes h and k is used (see (2.13)-
(2.14)).

The approximate value of c(x, τ) at the point xj and time τn is denoted by
cnj ≈ c(xj, τ

n), the approximate value of the free boundary is denoted by Snf ≈
Sf (τn). Then a forward two-time level and centred in a space explicit finite differ-
ence scheme is constructed for internal spacial nodes as follows

cn+1
j − cnj
k

=
1

2
σ2
cnj−1 − 2cnj + cnj+1

h2

−

(
r − q − σ2

2
+
Sn+1
f − Snf
kSnf

)
cnj+1 − cnj−1

2h
− rcnj .

(2.55)

The equation (2.55) takes the following form

cn+1
j = an1c

n
j−1 + a2c

n
j + an3c

n
j+1, 1 ≤ j ≤M − 1, (2.56)

where the coefficients an1 and an3 depend on the optimal exercise boundary Snf and
Sn+1
f and ai, i = 1, 2, 3, are constant:

an1 =
k

2h2

(
σ2 +

(
r − q − σ2

2

)
h

)
+
Sn+1
f − Snf
2hSnf

= a1 +
Sn+1
f − Snf
2hSnf

,

a2 = 1− σ2 k

h2
− rk, (2.57)

an3 =
k

2h2

(
σ2 −

(
r − q − σ2

2

)
h

)
−
Sn+1
f − Snf
2hSnf

= a3 −
Sn+1
f − Snf
2hSnf

.

The central difference approximation of the first and second spatial derivative
gives the following discrete expression of the boundary conditions (2.51), (2.52)
and (2.54)

cn0 = Snf − 1,
cn1 − cn−1

2h
= −Snf , (2.58)

σ2

2

cn−1 − 2cn0 + cn1
h2

−
(
q +

σ2

2

)
Snf + r = 0, (2.59)

where cn−1 means the value of the solution at the fictitious point x = −h, that should
be eliminated later.
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The connection of the free boundary Snf with option value cn1 at the same time
level n is presented as follows

cn1 = α− βSnf , n ≥ 1, (2.60)

where

α = −1− rh2

σ2
, β = −1 + h−

(
q

σ2
+

1

2

)
h2. (2.61)

We use together (2.56) with j = 1 and (2.60) to obtain the nonlinear law of the
free boundary motion

Sn+1
f = dnSnf , (2.62)

where

dn =
a1c

n
0 + a2c

n
1 + a3c

n
2 +

cn2−cn0
2h
− α

cn2−cn0
2h
− βSnf

. (2.63)

In the following section qualitative scheme properties such as the free bound-
ary non-decreasing monotonicity as well as the positivity and non-increasing spa-
cial monotonicity of the numerical option price under transformation are proved
analytically.

2.2.1 Qualitative properties of the scheme
Note, that from definition (2.57) the constant coefficients of the scheme a1, a2 and
a3 are positive for both cases: r ≤ q and r > q under following conditions

h <
σ2∣∣r − q − σ2

2

∣∣ , r 6= q +
σ2

2
, (2.64)

k <
h2

σ2 + rh2
, (2.65)

Note that if r = q + σ2

2
, then under the condition (2.65), coefficients a1, a2 and

a3 are positive.
From (2.62) the numerical free boundary Snf is increasing if dn > 1. The case

n = 0 deserves a special treatment because of the initial conditions (2.49), (2.50):
c0
j ≥ 0 and c0

j ≥ c0
j+1. For the sake of clarity in the proof that d0 > 1 we distinguish

two cases: r ≤ q and r > q.
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In the case r ≤ q, the initial value of the free boundary Sf (0) = 1. From (2.63),
(2.64) and initial conditions (2.49)

d0 =
α

β
=

1 + rh2

σ2

1− h+
(
q
σ2 + 1

2

)
h2

> 1,

if (
q − r
σ2

+
1

2

)
h < 1.

In the case r > q, from the initial conditions (2.49), (2.50) and (2.61) it follows
that

d0 =
φ(h, k)

ψ(h, k)
, (2.66)

where

φ(h, k) = a1

(
r

q
− 1

)
+ a2

(
r

q
e−h − 1

)
+ a3

(
r

q
e−2h − 1

)
+
r
(
e−2h − 1

)
2qh

−α,

ψ(h, k) =
r
(
e−2h − 1

)
2qh

− β r
q
. (2.67)

By using Taylor’s expansion of e−2h, for h > 0 one gets

1− 2h+ 2h2 − 4

3
h3 < e−2h < 1− 2h+ 2h2 − 4

3
h3 +

2

3
h4. (2.68)

Note that from (2.68) and (2.61) ψ(h, k) satisfies

ψ(h, k) <
r

q

(
h2

(
q

σ2
− 1

6

)
+
h3

3

)
, h > 0. (2.69)

For the case 6q < σ2, and for small enough value of h, satisfying

h < 3

(
1

6
− q

σ2

)
, (2.70)

the right hand side of (2.69) as well as denominator ψ(h, k) are negative.
For remaining case 6q ≥ σ2 positivity of ψ(h, k) is necessary. From (2.68) and

(2.49) one gets

ψ(h, k) >
r

q
h2

(
q

σ2
− 1

6

)
≥ 0, h > 0. (2.71)

Proving d0 = φ(h,k)
ψ(h,k)

> 1 is equivalent to
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ψ(h, k) (φ(h, k)− ψ(h, k)) > 0. (2.72)

Let us write the difference

φ(h, k)− ψ(h, k) = a1

(
r

q
− 1

)
+ a2

(
r

q
e−h − 1

)
+ a3

(
r

q
e−2h − 1

)
− α + β

r

q

=
r

q

(
a1 + a2e

−h + a3e
−2h − 1 + h− h2

2
+ qk

)
.

(2.73)

Note that condition (2.72) means that the sign of both factors of the left hand
side of (2.72) must have the same sign. To this purpose it is convenient to consider
the following Taylor’s expansion

e−h = 1− h+
h2

2
− h3

6
+O(h4),

e−2h = 1− 2h+ 2h2 − 4

3
h3 +O(h4). (2.74)

Then from (2.65) and (2.73)-(2.74) one gets

φ(h, k)− ψ(h, k) =
r

q

(
qkh− h3

6

)
+O(h4). (2.75)

In the case 6q < σ2 the denominator ψ(h, k) is negative under condition (2.70).
Thus the difference (2.75) must be negative. Note that this holds true if k < h2

6q
.

This last condition together with (2.65) implies that

k < min

{
h2

6q
,

h2

σ2 + rh2

}
, (2.76)

and as 6q < σ2 condition (2.76) means

k <
h2

σ2 + rh2
.

For the case 6q > σ2 the denominator ψ(h, k) is positive for any h > 0 and the
difference (2.75) must be also positive or equivalently k > h2

6q
. Hence, from (2.65)

one concludes
h2

6q
< k <

h2

σ2 + rh2
. (2.77)
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Note, that left hand side of (2.77) is smaller than right hand side if and only if

h <

√
6q − σ2

r
. (2.78)

Finally, for the case 6q = σ2, from (2.71) we could not guarantee d0 > 1, since
there no exists step size h satisfying (2.78).

Summarizing the following result has been established:

Lemma 2.2.1. Let d0 be defined by (2.66) - (2.67) and let us assume that 6q 6= σ2

and that step sizes h, k are small enough and satisfy (2.64), (2.65). Then d0 > 1

under the following conditions and cases:

1. if 6q < σ2 and h < 3
(

1
6
− q

σ2

)
;

2. if 6q > σ2 and h2

6q
< k, h <

√
6q−σ2

r
.

Note that from the boundary conditions one gets

S1
f = d0S0

f > 1; c1
0 = d0S0

f − 1 > 0; c1
1 =

{
0, r ≤ q,

α− βd0S0
f , r > q.

From (2.58) and (2.61) in both cases c1
1 < c1

0. Furthermore, for r ≤ q every
c1
j = 0 for j = 2, ..M − 1. For r > q, initial function g(x), defined by (2.50), is a

convex one and then it satisfies (see [8])

g(txj−2 + (1− t)xj+1) ≤ tg(xj−2) + (1− t)g(xj+1), 0 ≤ t ≤ 1. (2.79)

Note that c0
j = g(xj), and choosing t = 2

3
and t = 1

3
from (2.79) one gets

c0
j−1 ≤

2

3
c0
j−2 +

1

3
c0
j+1, c0

j ≤
1

3
c0
j−2 +

2

3
c0
j+1.

Summarizing, it follows that

c0
j−1 + c0

j ≤ c0
j−2 + c0

j+1,

that proves

c1
j − c1

j−1 = a
(
c0
j−1 − c0

j−2

)
+ b
(
c0
j − c0

j−1

)
+ f

(
c0
j+1 − c0

j

)
− d0 − 1

2h

(
c0
j+1 − c0

j−1 − c0
j + c0

j−2

)
≤ 0, j = 2, . . . ,M − 1.
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Note that c1
M − c1

M−1 ≤ 0, since from (2.56) c1
M−1 ≥ 0, and from the boundary

conditions c1
M = 0. From the previous comments {c1

j} is a positive and non-
increasing sequence.

Following the induction arguments let us assume that for index n− 1

dn−1 > 1, Snf > S0
f , cnj ≥ 0, cnj ≥ cnj+1, j = 0, ..M − 1. (2.80)

In order to prove that dn > 1 for n > 1, note that the approximation of the
spacial derivatives in (2.55) are O(h2), so one can use boundary conditions (2.58)
and expression (2.60) to perform the Taylor’s expansion of second order for the
function c(x, τ) in the point x2 around zero for the estimation of the value cn2 as

cn2 = −1− 4rh2

σ2
+

(
1− 2h+

4qh2

σ2
+ 2h2

)
Snf . (2.81)

In Example 2.2.2 we will show numerical justification of this assumption.
Denoting denominator of dn in (2.63) as C1(n) and using (2.81) one gets

C1(n) =
2h

σ2

(
qSnf − r

)
+

h2

2σ2
(σ2 + 2q)Snf , (2.82)

that is positive since Snf >
r
q

(for r > q) or Snf > 1 (for r ≤ q).
Since C1(n) > 0 and from (2.63), (2.57) and (2.82)

dn − 1 =
khC2(n)− kh2

(
σ2rSnf + 2r(qSnf − r)

)
2σ2C1(n)

, (2.83)

where

C2(n) =
(
σ4 + 4q2 − 4qr + 4qσ2

)
Snf + 4r

(
r − q − σ2

2

)
= λ1S

n
f + λ2. (2.84)

It can be shown, that (2.84) is positive for r < q + σ2 + σ4

4q
, i.e. λ1 > 0,

since Snf > 1 in that case and λ1 > |λ2|. If λ1 = 0, then λ2 > 0. For the case

r −
(
q + σ2 + σ4

4q

)
= δ > 0 one gets

−δSnf + λ2 > 0, if Snf <
4r

δ

(
r − q − σ2

2

)
,

that is fulfilled since δ is small. It is not difficult to show that the restriction on
Snf is weaker than the Samuelson’s estimation (see [72]) It means that C2(n) > 0.
Consequently, from (2.83) dn > 1 for small enough values of h and k.
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Let us denote

y(z) = 1 +
kh
(

(σ4 + 4q2 − 4qr + 4qσ2) z + 4r
(
r − q − σ2

2

))
2σ2 2h

σ2 (qz − r) + h2

2σ2 (σ2 + 2q)z

− kh2 (σ2rz + 2r(qz − r))
2σ2 2h

σ2 (qz − r) + h2

2σ2 (σ2 + 2q)z
,

with negative derivative

dy

dz
= −2rk ((σ2 + 2q) (2σ2 − h(σ2 + 2q)) + h (σ2rh+ 4qr + 2qrh))

((σ2h+ 4q + 2qh) z − 4r)2 .

for small enough values of h. Since y(Snf ) = dn, and Snf > Sn−1
f , then dn is a

decreasing discrete function of n. That means that {Snf } has a concave behaviour.

In order to show the positivity of the numerical solution {cnj } we prove that
coefficients an1 and an2 in (2.56) are positive. Firstly, since dn ≥ 1,

an1 = a+
dn − 1

2h
> 0.

From (2.82) and (2.83) the difference dn− 1 = O(k) and because 2hf = O( k
h
)

from (2.57), then 2hf > dn − 1 for small enough values of h, that means an2 is
positive.

Under assumption (2.80) together with positivity of coefficients an1 and an2 and
under conditions (2.64), (2.65) the positivity of {cn+1

j } is proved. Moreover, {cn+1
j }

is a non-increasing sequence with respect to index j from (2.56), since

cn+1
j+1 − cn+1

j = an1c
n
j + bcnj+1 + an2c

n
j+2 − an1cnj−1 − bcnj − an2cnj+1 =

= an1 (cnj − cnj−1) + b(cnj+1 − cnj ) + an2 (cnj+2 − cnj+1) ≤ 0.

Now the following result can be established:

Theorem 2.2.1. Let {cnj , Snf } be the numerical solution of scheme (2.56) for the
transformed American call option problem (2.48) and let dn be defined by (2.63).
Then under conditions (2.64), (2.65) and Lemma 2.2.1 the numerical scheme (2.56)
guarantees the following properties of the numerical solution:

1. Increasing monotonicity and positivity of values Snf , n = 0, ..., N with
concave behaviour;
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2. Non-negativity of the vectors {cnj }, n = 0, ..., N ;

3. Non-increasing monotonicity of the vectors {cnj }with respect to spacial index
for each fixed n = 0, ..., N.

Further the study of the stability and the consistency of the scheme will be
studied. Let us denote the numerical solution vector cn = [cn0 c

n
1 ... c

n
M ] ∈ RM+1.

Theorem 2.2.2. Under assumptions of Theorem 2.2.1 the numerical scheme (2.56)
for solving transformed problem (2.48)-(2.53) is stable.

Proof. Since cnj is non-decreasing vectors for each fixed n and from the boundary
conditions (2.58)

||cn||∞ = cn0 = Snf − 1, (2.85)

where Snf is positive non-decreasing vector. Therefore, from (2.62), it is clear that

max
n

Snf = SNf =
N−1∏
n=0

dnS0
f . (2.86)

It was shown in Theorem 2.2.1 that dn > 1 and it is decreasing in time,
moreover, dn = 1 + O(k) for any n ≥ 1. Then there exists η > 0 such that
dn < 1 + ηk, and one gets

N∏
n=1

dn < (d1)N−1 < (d1)N = (1 +
Tη

N
)N < eTη. (2.87)

Thus, from (2.85) - (2.87) it follows that

||cn||∞ = max
n

Snf − 1 < eTηd0S0
f − 1, (2.88)

and the scheme is || · ||∞-stable by the definition.

Now let us study consistency of the numerical scheme. Assume that c(x, τ) is
continuously differentiable four times with respect to x and two times with respect
to τ , and there exists the second derivative of Sf (τ). Using Taylor’s expansion
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about (xj, τ
n) and following an analogous procedure of the previous chapter, one

gets that the local truncation error

T nj (c̃, S̃f ) = O(h2) +O(k). (2.89)

For study of consistency of the numerical solution of the free boundary let us
rewrite boundary conditions in the following form

L1(c, Sf ) = c(0, τ) + 1− Sf (τ) = 0, L2(c, Sf ) =
∂x

∂x
(0, τ)− Sf (τ) = 0,

L3(c, Sf ) =
σ2

2

∂2c

∂x2
(0, τ)−

(
q +

σ2

2

)
Sf (τ) + r = 0.

In accordance with expressions (2.58) and (2.59) finite difference approxima-
tions for the boundary conditions are

F1(cn, Snf ) = cn0 + 1− Snf = 0, F2(cn, Snf ) =
cn1 − cn−1

2h
− Snf = 0,

F3(cn, Snf ) =
σ2

2

cn−1 − 2cn0 + cn1
h2

−
(
q +

σ2

2

)
Snf + r = 0.

Note that F1(c̃n, S̃nf ) = L1(c̃n, S̃nf ), and truncation error satisfies

F2(c̃, S̃nf )− L2(c̃, S̃nf ) = O(h2), F3(c̃, S̃nf )− L3(c̃, S̃nf ) = O(h2).

The truncation error of the approximation of the boundary condition behaves as
h2. Thus, the following theorem is established.

Theorem 2.2.3. Assuming that the solution of the PDE problem (2.48)-(2.53) ad-
mits two times continuous partial derivative with respect to time and up to order
four with respect to space, the numerical solution computed by the scheme is con-
sistent with the equation (2.48) and boundary conditions of order two in space and
order one in time.

2.2.2 Numerical examples
In this section numerical value of the free boundary obtained by the proposed
method is compared with other techniques.
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Asset Price True Value GL LUBA HW OS FF
80 0.2194 0.2185 0.2195 0.2193 0.2193 0.2196
90 1.3864 1.3851 1.3862 1.3858 1.3858 1.3868

100 4.7825 4.7835 4.7821 4.7816 4.7817 4.7827
110 11.0978 11.1120 11.0976 11.0969 11.0971 11.0981
120 20.0004 20.0000 20.0000 20.0005 20.0000 20.0006

RMSE 6.4078-3 2.8636-4 6.3246-4 5.7619-4 2.5391-4

Table 2.4: American call option values calculated by the proposed front-fixing method
(FF) and other methods.

Example 2.2.1. We consider the American call option pricing problem (2.5)-(2.7)
with the parameters

r = 0.03, q = 0.07, σ = 0.2, T = 0.5, E = 100.

The proposed method (FF) with step sizes h = 10−3, k = 2.5 · 10−5 is com-
pared with other approaches presented in [96]: Gauss-Laguerre (GL) method of
Frontczak and Schobel [49]; the lower and upper bound approximation (LUBA)
of Broadie and Detemple [17]; the Han-Wu (HW) method [54]; operator splitting
(OS) of Ikonen and Toiwanen [60]. The root-mean-square error (RMSE) is used
to measure the accuracy of the method. The comparison presented in Table 2.4
shows that proposed scheme produces similar results with the advantages of the
explicitness, positivity and monotonicity.

Free boundary obtained in the example below is compared with analytical ap-
proximation closed to maturity presented in [46].

Example 2.2.2. Let us consider the problem (2.5)-(2.7) with the following para-
meters

r = 0.1, q = 0.05, σ = 0.2, T = 1, E = 10. (2.90)

The position of the free boundary at τ = T is B(T ) = 22.3754 (in [109]) and it
was computed by the proposed method as Sf (T ) = 2.2375, since the transformed
problem is dimensionless, then B(T ) = 22.375. The free boundary motion for
the problem is compared with analytical approximation [46]. Results are presented
on Figure 2.2. One can see that the qualitative properties of the exact solution are
preserved with the proposed scheme: the free boundary value is positive, increas-
ing in time with concave behaviour. In Table 2.5 a comparison of option values
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Figure 2.2: Analytical (”analytic”) and computed by the proposed method (”method”)
values of optimal stopping boundaries in Example 2.2.2.

obtained by the proposed front-fixing method and by other methods such as semi-

explicit formula, presented in [109], trinomial tree, finite difference approximation

and analytical approximation of Barone-Adesi and Whaley [7] is presented.

For the theoretical study the Taylor’s expansion is used for estimating cn2 . The

difference between computed value and estimation (2.81) is shown in Figure 2.3,

justifying reliability of this assumption.

Example 2.2.3. In order to compare computational efficiency, we consider the

Method / The asset value S 15 18 20 21 22.375
Ševčovič’s method 5.15 8.09 10.03 11.01 12.37

Trinomial tree 5.15 8.09 10.03 11.01 12.37
Finite differences 5.49 8.48 10.48 11.48 12.48

Analytical approximation 5.23 8.10 10.04 11.02 12.38
Proposed method 5.21 8.09 10.03 11.01 12.37

Table 2.5: American call option values with parameters (2.90) calculated by various
methods.
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Figure 2.3: The difference between computed value and estimation of cn2 for the prob-
lem with the parameters (2.90) and step sizes h = 10−3 and k = 6.25 · 10−6.

problem with the parameters [54]:

r = 0.03, q = 0.03, σ = 0.4, T = 0.5, E = 100. (2.91)

Table 2.6 shows the comparison of the proposed method with other methods
in [54]. Since exact values are not known, the results of the binomial method
with large steps (15000) are used for ”True Value”. FDP stands for the Crank-
Nicolson finite-difference method with projected SOR iteration to impose the free
boundary condition. FDE stands for the Crank-Nicolson finite difference method
with elimination-back substitution. HW stands for the Han and Wu method (see
[54]). FF stands for the proposed explicit finite difference method combined with
the front-fixing transformation with stepsizes h = 10−3 and k = 6.25 · 10−6.

From the results presented in Table 2.6 we can conclude that the proposed
method is competitive and effective, since it produces the similar error with smaller
computational time.

The results of this section have been presented in ECMI conference 2014.
Since stability of the method based on the front-fixing transformation (2.47)

depends on parameters and require strict conditions on step sizes, an alternative
transformation will be proposed in the following section.
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Asset Price True Value FDP FDE HW FF
40 0.002792 0.0025 0.0025 0.0028 0.0028
50 0.045594 0.0457 0.0457 0.0457 0.0455
60 0.301387 0.3014 0.3015 0.3015 0.3012
70 1.145799 1.1459 1.1461 1.1461 1.1456
80 3.041536 3.0414 3.0415 3.0415 3.0414
90 6.328677 6.3285 6.3287 6.3287 6.3283

100 11.108407 11.1066 11.1068 11.1068 11.1078
110 17.266726 17.2664 17.2665 17.2665 17.2663
120 24.564972 24.5654 24.5655 24.5655 24.5644

RMSE 6.4217-4 5.8822-4 5.8012-4 3.5593-4
CPU-time, sec 37.130 15.760 11.500 6.813

Table 2.6: Computational efficiency of various methods in Example 2.2.3.
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2.3 New efficient front-fixing method for American option pricing

2.3 New efficient front-fixing method for American op-
tion pricing
In this section a new front-fixing transformation for American call option on dividend-
paying assets is proposed. Under this transformation a nonlinear PDE with homo-
geneous boundary conditions independent of the free boundary is obtained. This
fact simplifies the numerical analysis of the finite difference scheme.

Let us consider the dimensionless transformation with two goal: to fix the com-
putational domain as in [112] and to simplify the boundary conditions like [111],
p. 122,

x = ln
B(τ)

S
, c(x, τ) =

C(S, τ)− S + E

E
, Sf (τ) =

B(τ)

E
. (2.92)

Under transformation (2.92) the problem (2.5) - (2.7) can be rewritten in nor-
malized form

∂c

∂τ
=
σ2

2

∂2c

∂x2
−
(
r − q − σ2

2
+
S ′f
Sf

)
∂c

∂x
−rc−qSfe−x+r, x > 0, 0 < τ ≤ T,

(2.93)
with new initial conditions

Sf (0) = max

(
r

q
, 1

)
, c(x, 0) =

{
1− e−x, r ≤ q,

g(x), r > q,
x ≥ 0, (2.94)

g(x) = max

(
1− r

q
e−x, 0

)
.

Boundary conditions are transformed into the following

∂c

∂x
(0, τ) = 0, (2.95)

c(0, τ) = 0, (2.96)

lim
x→∞

c(x, τ) = 1, (2.97)

As in previous section, we assume that (2.93) holds true at x = 0, such that

σ2

2

∂2c

∂x2
(0+, τ)− qSf (τ) + r = 0. (2.98)
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The problem (2.93)-(2.97) can be numerically studied on the fixed domain
[0, xmax] × [0, τ ]. The value xmax is chosen big enough to guarantee the bound-
ary condition. The computational grid of M + 1 spatial points and N + 1 time
levels is chosen as in the previous cases (2.13)-(2.14).

The approximate value of option price at the point xj and time τn is denoted
by cnj ≈ c(xj, τ

n) and the approximate value of the free boundary is denoted by
Snf ≈ Sf (τn). Then a forward two-time level and centred in a space explicit
scheme is constructed for internal spatial nodes as follows

cn+1
j = an1c

n
j−1 + bcnj + an2c

n
j+1 + k

(
r − qSnf e−xj

)
, 1 ≤ j ≤M − 1, (2.99)

where

an1 =
k

2h2

(
σ2 +

(
r − q − σ2

2

)
h

)
+
Sn+1
f − Snf
2hSnf

= a1 +
Sn+1
f − Snf
2hSnf

,

b = 1− σ2 k

h2
− rk, (2.100)

an2 =
k

2h2

(
σ2 −

(
r − q − σ2

2

)
h

)
−
Sn+1
f − Snf
2hSnf

= a2 −
Sn+1
f − Snf
2hSnf

.

From (2.96) and using the second order centred approximation of the boundary
conditions (2.95) and (2.98) one gets

cn0 = 0,
cn1 − cn−1

2h
= 0, (2.101)

σ2

2

cn−1 − 2cn0 + cn1
h2

− qSnf + r = 0, (2.102)

where cn−1 means the value of the solution at the fictitious point x = −h, that
should be eliminated later. From (2.101) and (2.102) the connection between the
free boundary Snf and option value cn1 on the same time level n is presented as

cn1 =
h2

σ2

(
qSnf − r

)
, n ≥ 1. (2.103)

Let us consider the right side approximation of the second order (see Table 1.1)
of the spatial derivative in (2.95)

∂c

∂x
(0, τn) =

4cn1 − cn2 − 3cn0
2h

= 0, n ≥ 1. (2.104)
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From (2.101) and (2.104) one gets relation between cn1 and cn2 for any n ≥ 1

cn2 = 4cn1 . (2.105)

Thus, computation of the numerical solution cn2 at point (x2, τ
n) does not need

the scheme (2.99). It means that the scheme (2.99) is not used for j = 2. For
the right boundary (x = xmax) from (2.97) the Dirichlet’s boundary condition is
cnM = 1 for any n ≥ 0 .

We use together (2.99) for j = 1 and (2.103) at the time level n + 1 to obtain
the nonlinear law of the free boundary motion

Sn+1
f = dnSnf , (2.106)

dn =
bcn1 + fcn2 +

cn2
2h

+ rh2

σ2 + k
(
r − qSnf e−h

)
cn2
2h

+ qh2

σ2 Snf
. (2.107)

Fully implicit finite difference scheme is also employed to solve the problem
(2.93) - (2.97). In that case the computational scheme takes the following form

cn+1
j − cnj
k

=
1

2
σ2
cn+1
j−1 − 2cn+1

j + cn+1
j+1

h2

−

(
r − q − σ2

2
+
Sn+1
f − Snf
kSn+1

f

)
cn+1
j+1 − cn+1

j−1

2h

− rcn+1
j + r − qSn+1

f e−xj , j = 1, ...M − 1,

(2.108)

cn+1
0 = 0, cn+1

M = 1, (2.109)

σ2

h2
cn+1

1 − qSn+1
f + r = 0. (2.110)

Writing the finite-difference equations (2.108) and introducing the boundary
conditions (2.109) and the discretization of the free boundary (2.110), a nonlinear
system of equation is obtained. We denote by Y l = [cn+1

1 ... cn+1
M−1 S

n+1
f ]T vector

of M unknowns on the l-th iteration. This nonlinear system is solved by widely
used Newton method and extensions [69], [78].

Y l+1 = Y l − J−1F l, (2.111)

where F l is matrix, obtained from (2.108) and (2.110) by substituting Y l. J is
Jacobian of the system. The iteration process is done until ‖Y l+1 − Y l‖ < ε for a
given error tolerance ε.
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2.3.1 Qualitative properties of the scheme
In this section we will show qualitative scheme properties such as the free boundary
non-decreasing monotonicity as well as the positivity and non-decreasing spacial
monotonicity of the numerical option price under transformation by using the in-
duction principle. The positivity of the coefficients a1, b and a2 appearing in (2.100)
will play an important role for obtaining this purpose. Note, that using expressions
(2.100) it is easy to obtain that the constants of the scheme a1, b and a2 are positive
for both cases: r ≤ q and r > q under following conditions

h <
σ2∣∣r − q − σ2

2

∣∣ , r 6= q +
σ2

2
, (2.112)

k <
h2

σ2 + rh2
, (2.113)

If r = q + σ2

2
, then under the condition (2.113), coefficients a1, b and a2 are

positive.
In order to show that the numerical free boundary Snf is increasing, from (2.106)

we need to prove that dn > 1. The case n = 0 deserves a special treatment because
of the initial conditions (2.94). We have c0

j ≥ 0 and c0
j ≤ c0

j+1.
In order to provide numerical analysis of the scheme we have to estimate value

cn2 using the values on n-th time level. Suppose, that the solution c(x, τ) is continu-
ously differentiable up to fourth order. Then the Taylor’s expansion in the node x2

has the following form

c(x2, τ
n) = c(0, τn) + 2h

∂c

∂x
(0, τn) + 2h2 ∂

2c

∂x2
(0, τn) +

4h3

3

∂3c

∂x3
(0, τn) +O(h4).

From boundary conditions (2.96), (2.95) approximations (2.101) and (2.102),
one gets

cn2 = 4cn1 +O(h4). (2.114)

For the sake of clarity in order to prove that d0 > 1 and {c1
j} is an increasing

sequence we distinguish two cases: r > q and r ≤ q .
Case r > q.
From the initial conditions (2.94) it follows that

d0 = 1 +
σ2k

h2

(
1− e−h

)
> 1.
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Note that from the boundary conditions (2.96) and expressions (2.103), (2.105)
one gets

c1
1 =

rh2

σ2

(q
r
S1
f − 1

)
> c1

0 = 0, c1
2 = 4c1

1 +O(h4) > c1
1.

From initial conditions (2.94), the values of the solution at interior mesh points
are

c1
j − c1

j−1 = a
(
c0
j−1 − c0

j−2

)
+ b
(
c0
j − c0

j−1

)
+ f

(
c0
j+1 − c0

j

)
−d

0 − 1

2h

(
c0
j+1 − c0

j−1 − c0
j + c0

j−2

)
+ rke−jh

(
eh − 1

)
, j = 3, . . . ,M − 1.

(2.115)

Note that c(x, 0), defined by (2.94), is a concave function for xj−1 ≥ ln r
q

and
consequently verifies ( see [8])

g(txj−2 + (1− t)xj+1) ≥ tg(xj−2) + (1− t)g(xj+1). (2.116)

Since c0
j = g(xj) by choosing t = 2

3
and t = 1

3
for the condition (2.116) one

gets

c0
j−1 ≥

2

3
c0
j−2 +

1

3
c0
j+1, c0

j ≥
1

3
c0
j−2 +

2

3
c0
j+1.

If xj+1 ≤ ln r
q

function c(x, 0) is a constant. If xj ≤ ln r
q
< xj+1 or xj−1 ≤

ln r
q
< xj , then

c0
j−1 + c0

j ≥ c0
j−2 + c0

j+1. (2.117)

Summarizing all possible cases, (2.117) holds true and from (2.115) it follows
that c1

j − c1
j−1 ≥ 0, j = 3, ...,M − 1.

From the scheme (2.99) for j = M − 1, since {c0
j} is increasing, one gets

c1
M−1 ≤ (1− rk)c0

M + k(r− qS0
fe
−xM−1) = 1− kqS0

fe
−xM−1 ≤ c1

M = 1. (2.118)

Case r ≤ q

In that case initial conditions (2.94) are different, then d0 has the form

d0 − 1 =
b
(
1− e−h

)
+ f

(
1− e−2h

)
+ k

(
r − qe−h

)
+ (r−q)h2

σ2

1−e−2h

2h
+ qh2

σ2

≥
h (1 + (q − r)k) + k σ

2

2

1−e−2h

2h
+ qh2

σ2

= O(h),

(2.119)
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since

e−jh < 1− jh, 1− e−2h

2h
> 1.

It means that S1
f > S0

f = 1, then from boundary conditions (2.103), (2.105),
c1

2 = 4c1
1 > c1

1 > c1
0 = 0. For j > 2 one gets c1

j+1 ≥ c1
j since initial function is

concave for any x ∈ [0;xmax].
Assume, that for any n > 1

dn−1 > 1; cnj ≥ 0, j = 0, ..M ; cnj ≤ cnj+1, j = 0, ..M − 1. (2.120)

Let us prove, that dn > 1.

dn =
bcn1 + fcn2 +

cn2
2h

+ rh2

σ2 + k
(
r − qSnf e−h

)
cn2
2h

+ qh2

σ2 Snf
> 1.

From (2.107), denominator of dn is positive. To guarantee dn > 1, it is necessary
that

(b− 1)cn1 + fcn2 + k
(
r − qSnf e−h

)
> 0. (2.121)

Using (2.103), (2.105) and Taylor’s expansion for exponent function, the left-
hand side of (2.121) can be presented for small enough k and h in form

(b− 1)cn1 + a2c
n
2 + k

(
r − qSnf e−h

)
≥
(

(b− 1 + 4a2)
h2

σ2
− k
)(

qSnf − r
)

+ khqSnf +O(kh2)

≥ khqSnf

1−
2
(
r − q − σ2

2

)
σ2

+ rkh
2
(
r − q − σ2

2

)
σ2

+O(kh2).

(2.122)

If r − q − σ2

2
≤ 0, (2.122) is positive. If r − q − σ2

2
> 0, then by dividing last

expression in (2.122) by
2kh

(
r−q−σ

2

2

)
σ2 > 0, one has to prove that

qSnf
σ2 − r + q

r − q − σ2

2

+ r > 0.

If r − q − σ2 ≤ 0 is fulfilled. Otherwise it holds true if

Snf <
r
(
r − q − σ2

2

)
q (r − q − σ2)

=
r

q

(
1 +

σ2

2 (r − q − σ2)

)
. (2.123)
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Let us denote the critical asset price for perpetual American calls and puts re-
spectively by S+

f (∞) and S−f (∞), see [72],

S+
f (∞) =

α+

α+ − 1
, S−f (∞) =

α−
α− − 1

, (2.124)

where

α± =
1

2σ2

(
σ2 − 2(r − q)±

√
4(r − q)2 + 4(r + q)2σ2 + σ4

)
.

If we consider polynomial F (x) = (x− α−)(x− α+) and value

α∗ =
S∗f

S∗f − 1
, (2.125)

where S∗f is equal to right-hand side of inequality (2.123), then

F (α∗) = − 2σ2qr(2r − q − σ2)

(2(r − q)2 + σ2(2q − r)2)2 < 0. (2.126)

Since α− < α+ and both are roots of convex polynomial F (x), then from
(2.126), it is clear that α∗ < α+. Using definitions (2.124) and (2.125), it can be
shown that

1

1− 1
S∗
f

<
1

1− 1
S+
f (∞)

⇒ S∗f > S+
f (∞).

Then the condition (2.123) can be presented in the following form

Snf < S+
f (∞) < S∗f ,

that is always fulfilled because critical asset price for perpetual American calls
S+
f (∞) represents an upper bound for the optimal exercise boundary [72].

We have proved that dn > 1. Moreover, from (2.122) and (2.105) follows that
dn = 1 +O(k). From (2.100) one gets that an1 > a1 > 0, and

an2 =
kσ2

2h2
−
(
r − q − σ2

2

)
k

2h
− dn − 1

2h
> 0.

Since all coefficients of the scheme (2.99) are positive, under (2.120)

cn+1
j+1−cn+1

j = an1 (cnj−cnj−1)+b(cnj+1−cnj )+an2 (cnj+2−cnj+1)+kqSn+1
f e−jh(1−e−h) > 0.

The positivity of the values cn+1
j follows from the increasing behaviour in index

j and boundary condition (2.101).
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Let us denote

y(z) = 1 +

(
(b− 1 + 4a2) qh2

σ2 − kqe−h
)
z + rk

(2 + h) qh
σ2 z − 2rh

σ2

,

with negative derivative

dy

dz
= −rqh

σ2

(
(b− 1 + 4a2) h2

σ2 − ke−h
)

+ (2 + h)k(
(2 + h) qh

σ2 z − 2rh
σ2

)2 ,

for small enough values of h. Since y(Snf ) = dn, and Snf > Sn−1
f , then dn is a

decreasing discrete function of n. That means that {Snf } has a concave behaviour.
Now the following results have been established:

Theorem 2.3.1. Let {cnj , Snf } be the numerical solution of scheme (2.99), (2.100),
(2.101) for the transformed American call option problem (2.93) and let dn be
defined by (2.107). Then under conditions (2.112), (2.113), the numerical solution
presents the following properties:

1. Increasing monotone concave behaviour and positivity of values Snf , n =

0, ..., N ;

2. Non-negativity of the vectors cn = (cn0 , ...c
n
M), n = 0, ..., N ;

3. Increasing monotonicity of the vectors cn with respect to space index for each
fixed n = 0, ..., N.

As it has been mentioned in Chapter 1, consistency of a numerical scheme with
respect to a partial differential equation means that the exact theoretical solution of
the PDE approximates well the exact theoretical solution of the difference scheme
as the step size discretization tends to zero [30]. In order to study the consistency
let us take an arbitrary point (x, τ) in the domain (0,∞) × (0, T ] and consider
the mesh points (xj, τ

n) given by (2.14). Let us assume that the function c(x, τ)

admits four times continuous partial derivatives with respect to x and twice con-
tinuous partial derivatives with respect to τ as well as the function Sf (τ) is twice
differentiable. Using Taylor’s expansion about (xj, τ

n), the local truncation error
takes the following form
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T nj (c̃, S̃f ) = O(h2) +O(k).

With respect to the additional boundary condition (2.98), let us denote

Lbc(c, Sf ) =
σ2

2

∂2c

∂x2
(0, τ)− qSf (τ) + r = 0,

Fbc(c
n, Snf ) =

σ2

2

cn−1 − 2cn0 + cn1
h2

− qSnf + r = 0.

Truncation error satisfies Fbc(c̃, S̃f )−Lbc(c̃, S̃f ) = O(h2). The truncation error
for the boundary condition behaves as h2. Analogously, truncation error for the
boundary condition (2.95) satisfies second order in space because of the central
difference approximation (2.101).

Theorem 2.3.2. Assuming that the solution of the PDE problem (2.93)-(2.97) ad-
mits two times continuous partial derivative with respect to time and up to order
four with respect to space, the numerical solution computed by the scheme (2.99),
(2.100) is consistent with the equation (2.93) and boundary conditions (2.95),
(2.98) of order two in space and order one in time.

2.3.2 Numerical examples
Example 2.3.1. In order to compare computational efficiency of the method and to
study the convergence rate, we consider the problem with the parameters [54]:

r = 0.03, q = 0.03, σ = 0.4, T = 0.5, E = 100. (2.127)

Table 2.7 shows the comparison of the proposed method with other methods
in [54]. Since exact values are not known, the results of the binomial method
with large steps (15000) are used for ”True Value”. FDP stands for the Crank-
Nicolson finite-difference method with projected SOR iteration to impose the free
boundary condition. FDE stands for the Crank-Nicolson finite difference method
with elimination-back substitution. HW stands for the Han and Wu method (see
[54]). FF stands for the proposed explicit finite difference method combined with
the front-fixing transformation with stepsizes: FF1 for h = 2·10−3 and k = 2·10−5,
FF2 for h = 2 · 10−3 and k = 6.25 · 10−6, FF3 for h = 10−3 and k = 6.25 · 10−6.
The root-mean-square error (RMSE) is used to measure the accuracy of the scheme.
The last row presents the CPU-time in seconds for each experiment.
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S True Value FDP FDE HW FF1 FF2 FF3
40 0.002792 0.0025 0.0025 0.0028 0.0025 0.0027 0.0028
50 0.045594 0.0457 0.0457 0.0457 0.0451 0.0453 0.0456
60 0.301387 0.3014 0.3015 0.3015 0.3005 0.3011 0.3015
70 1.145799 1.1459 1.1461 1.1461 1.1442 1.1451 1.1456
80 3.041536 3.0414 3.0415 3.0415 3.0401 3.0411 3.0413
90 6.328677 6.3285 6.3287 6.3287 6.3266 6.3274 6.3284

100 11.108407 11.1066 11.1068 11.1068 11.1051 11.1072 11.1080
110 17.266726 17.2664 17.2665 17.2665 17.2632 17.2653 17.2663
120 24.564972 24.5654 24.5655 24.5655 24.5603 24.5641 24.5648

RMSE 6.4217-4 5.8822-4 5.8012-4 2.4771-3 9.3865-4 2.5088-4
CPU-time, sec 37.130 15.760 11.500 7.169 27.805 32.794

Table 2.7: Computational efficiency of various methods in Example 2.3.1.

Results presented in Table 2.7 show the competitiveness of the proposed method.
It was theoretically proved in previous section that the scheme has order of

approximation O(h2) + O(k). To check numerically the order of approximation
we use convergence rate.

From the Table 2.7, one obtains γh(2 · 10−3, 10−3) = 1.9036, that is close to 2.
Analogously it is found that γk(2 · 10−5, 6.25 · 10−6) = 0.8343, that is close to 1,
that proves the second order of approximation in space and the first order in time.

Example 2.3.2. In order to compare the proposed front-fixing method with the fixed
domain transformation presented in [109], a problem with the following paramet-
ers

r = 0.1, q = 0.05, σ = 0.2, T = 1, E = 10. (2.128)

is considered.

The position of the free boundary at τ = T is Sf (T ) = 22.3754 (in [109]) and
the proposed method gives Sf (T ) = 22.375. In Table 2.8 a comparison of res-
ults obtained by the proposed front-fixing method (FF) and by other methods such
as fixed domain transformation presented in [109] (FD), trinomial tree (Tree), fi-
nite difference approximation (FD) and Analytical Approximation (AA) of Barone-
Adesi and Whaley [7] is presented. The optimal stopping boundary motion in time
is presented in Figure 2.4. One can see that the qualitative properties are preserved
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Figure 2.4: Optimal stopping boundary in Example 2.3.2 by using proposed trans-
formation and fixed-domain transformation [109].

with the proposed scheme: the free boundary value is positive, increasing in time
with concave behaviour.

Example 2.3.3. Let us consider the problem with parameters

r = 0.1, q = 0.05, σ = 0.2, T = 1, (2.129)

to compare explicit and implicit schemes of the proposed method.

In Figure 2.5 we compare explicit and implicit methods with h = 0.01 and dif-

S FD Treel FD AA FF
15 5.15 5.15 5.49 5.23 5.16
18 8.09 8.09 8.48 8.10 8.10
20 10.03 10.03 10.48 10.04 10.04
21 11.01 11.01 11.48 11.02 11.02

22.375 12.37 13.37 12.48 12.38 12.38

Table 2.8: Comparison of the proposed method with other methods for parameters
(2.128).

53



2. LINEAR BLACK-SCHOLES MODEL FOR AMERICAN OPTIONS

0 0.2 0.4 0.6 0.8 1
2

2.05

2.1

2.15

2.2

2.25

Time to maturity

F
re

e 
bo

un
da

ry

 

 
Explicit
Implicit

Figure 2.5: Optimal stopping boundary in Example 2.3.3 computed by explicit and
implicit methods.

ferent time steps: k = 10−4 for the explicit method to guarantee condition (2.113)
and k = 0.01 for the implicit method. The result of fully implicit method is presen-
ted in Figure 2.6.

Implicit method is unconditionally stable, that allows to reduce computational
time. But, there are additional calculations of the inverse Jacobian matrix on each
iteration. The computational time for both methods is presented in Table 2.9. It
is shown that for the same step sizes the explicit method is ten times faster than
implicit one. In the case of the smaller space steps for the explicit method we have
to choose time steps much smaller, but the total computational time is almost ten
times less.

The results of this section have been published in [24].
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Figure 2.6: The function c(x, τ) calculated by the proposed fully implicit method.

Method h k CPU-time, sec. Sf (T )

Explicit 10−1 10−2 0.016 2.2283
10−2 10−4 3.693 2.2375
10−3 10−6 28.918 2.2376

Implicit 10−1 10−2 0.179 2.2269
10−2 10−2 16.029 2.2368
10−3 10−2 107.435 2.2375

Table 2.9: Comparison of the computational time and accuracy for explicit and impli-
cit methods.
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CHAPTER

3
Front-fixing method for some

advanced models

Pricing American option is a problem often studied in the field of computa-
tional finance. The well-known Black-Scholes (BS) model [10] provides an easy
computable pricing formula of European option in an idealistic market. However,
assumptions of BS model that have been summarized in Chapter 1 are not real-
istic [14], [82]. BS assumptions do not take into account, for instance, transaction
costs, investor’s preferences, feedback and illiquid markets effects. This has motiv-
ated the development of new nonlinear models to take account of various realistic
trading environment.

Leland [82] proposed a BS formula with an augmented volatility due to trans-
action cost. Authors in [4], [110] presented an adjusted volatility which depends
on the sign of the gamma of the option to control effectively the hedging risk and
transaction cost. These ideas led to a nonlinear BS equation for European options.
Barles and Soner [6] proposed a more complicated nonlinear model by assum-
ing that investor’s preferences are characterized by an exponential utility function.
Later risk adjusted pricing methodology (RAPM) was proposed by Kratka [75]
and revisited by Jandačka and Ševčovič in [63]. Note that all the above mentioned
nonlinear models are consistent with the original BS equation in the case when the
additional parameters are vanishing.
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Valuation of derivatives uses to be based on the assumption of a stochastic
process for the underlying asset and the construction of a dynamic, self-financing
hedging portfolio to minimize the uncertainty (risk). Using the absence of arbitrage
principle, the initial cost of constructing the portfolio, typically given by a partial
differential equation (PDE), is then considered to be the fair value of the derivative,
[57].

When the stochastic process for the asset is too simple, assuming constant para-
meters, like [10] the model does not replicate the market price. This drawback
has been overcome with stochastic volatility, jump diffusion and regime switch-
ing models. Furthermore, regime switching models are computationally inexpens-
ive compared to stochastic volatility jump diffusion models and have versatile ap-
plications in other fields, like electric markets [9], valuation of stock loans [117],
forestry valuation [20], natural gas [21] and insurance [55].

In general there is no closed form solution for nonlinear American or European
option pricing problem. Therefore numerical methods are usually employed to
solve them. For European options numerical methods have been developed by
several authors in recent years [28], [41], [94], etc. For American options the main
difficulty is the existence of the unknown optimal stopping boundary. One way to
overcome this difficulty is to present it as a nonlinear complementarity problem
(NCP) arising from the discretisation of the free boundary problem. In [56] and
[83] the penalty approach is proposed to solve the NCP by approximating it using
an algebraic system of nonlinear equations containing a power penalty term.

A common alternative approach to NCP that is able to remember the free
boundary while solving the problem is the so-called front-fixing method [33], based
on the transformation of the original equation into a new one defined on a fixed
domain. The unknown free boundary is calculated as an additional unknown func-
tion involved in the PDE problem. Although free boundary problems originated in
physics, this technique has been used in computational finance since 1997 [112].
In Chapter 2 some front-fixing transformations and numerical schemes have been
proposed for linear BS American option pricing.

In this chapter new transformations in the framework of a front-fixing method
are proposed for nonlinear Barles and Soner’s model, RAPM and regime switching
model. For nonlinear models the transformation is used to replace the free bound-
ary by the time-dependent known boundary. Multi-variable front-fixing transform-
ation is used for regime switching model since optimal stopping boundaries for
various regimes differ each other.
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3.1 Nonlinear Black-Scholes models
For the case of American options with constant volatility various front-fixing trans-
formations have been studied in [24], [77], [90], [107]. Ševčovič proposed a fixed
domain transformation for nonlinear American option pricing problem [108]. Fur-
ther, this method was studied in some recent papers (see [2]). Since the transformed
equation contains a strong convective term the operator splitting method is used to
overcome numerical difficulties. Moreover, in order to close up the system of equa-
tions that determines the value of a new function an additional equation for the free
boundary position is required.

We propose efficient front-fixing method for nonlinear Black-Scholes equation.
Under the transformation the free boundary is replaced by a time-dependent known
boundary. In the resulting equation there is no reaction term and the convection
term is simplified in a such way that the operator splitting technique is not re-
quired. This ensured a single numerical scheme is suitable for the entire equation.
The connection between the transformed boundary conditions with the transformed
option price and the free boundary does not require additional information.

The proposed formulation of the nonlinear problem allows the use of a versatile
numerical treatment. In this chapter an explicit Euler and alternating direction ex-
plicit (ADE) method [38], [92] together with implicit methods are studied. Dealing
with implicit methods one has to solve nonlinear system. In this section Newton’s
method with suitable modifications to improve its efficiency and in saving compu-
tational cost [78] are examined.

3.1.1 Moving domain transformation
The transformation of the free boundary American option pricing problem into
another nonlinear PDE problem, such that the free boundary is written in terms of
another variable with a known moving boundary, is presented.

With the previous notation, nonlinear American call option pricing models may
be formulated as the free boundary PDE problem

∂C

∂τ
=
σ̃2

2
S2∂

2C

∂S2
+ (r − q)S∂C

∂S
− rC, 0 ≤ S < B(τ), 0 < τ ≤ T, (3.1)

where the adjusted volatility function is given by

σ̃2 = σ̃2 (τ, S, CSS) . (3.2)
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The boundary and initial conditions for an American call option problem are
(see [111])

C(S, 0) = max(S − E, 0), (3.3)
∂C

∂S
(B(τ), τ) = 1, (3.4)

C(B(τ), τ) = B(τ)− E, (3.5)

C(0, τ) = 0, (3.6)

B(0) = max

(
r

q
E,E

)
. (3.7)

It is well known that if there is no dividend payment (q = 0), then the optimal
strategy is to exercise option at the maturity (see [111], [59]). In that case the
American call becomes an European call. Due to this reason q > 0 [59] is used in
the problem defined in (3.1)-(3.7).

In the following study, two nonlinear models with different adjusted volatility
functions (3.2) are considered. First the strong nonlinear RAPM model, where σ̃2

is a cubic root function. Second the widely used Barles and Soner’s model in which
the adjusted volatility function is obtained through the solution of an ordinary dif-
ferential equation.

Under the RAPM model the volatility σ is a function of the asset price (S) and
the second derivative of the option price

(
∂2C
∂S2

)
, i.e.

σ̃2 = σ2
0

(
1 + µ

(
S
∂2C

∂S2

) 1
3

)
,

where σ2
0 is a constant historical volatility of the asset and µ is a non-negative

constant.
Barles and Soner introduced a nonlinear Black-Scholes equation with an ad-

justed volatility [6] which is a function of the second derivative of the price itself,
i.e.

σ̃2 = σ2
0

(
1 + Ψ

(
erτa2S2CSS

))
,

where a = µ
√
γN , γ is the risk aversion factor and N is the number of options

to be sold. The function Ψ is the solution of the nonlinear singular initial value
problem

Ψ′(A) =
Ψ(A) + 1

2
√
AΨ(A)− A

, A 6= 0, Ψ(0) = 0. (3.8)

60



3.1 Nonlinear Black-Scholes models

From the Theorem 1.1 of [31] it is known that Ψ(A) is an increasing function
mapping the real line onto the interval ]− 1,+∞] and is implicitly defined by

A =
(
−arcsinh

√
Ψ√

Ψ+1
+
√

Ψ
)2

, Ψ > 0; (3.9)

A = −
(

arcsin
√
−Ψ√

Ψ+1
+
√
−Ψ
)2

, −1 < Ψ < 0. (3.10)

The case for Barles and Soner’s model is a slightly complicated one in terms of
numerical implementation. By using numerical examples it is able to demonstrate
that the proposed method may be used to handle other models with nonconstant
volatility.

Taking advantages of Landau transformation [79] with modifications in the ex-
ponential factors like those described in [28], it is possible to remove the reaction
term and partially the convection term by using the transformation given below.

x = e(r−q)τ S

B(τ)
, V (x, τ) =

erτ

E
C(S, τ), Sf (τ) =

B(τ)

E
. (3.11)

Using transformation (3.11) the equation (3.1) takes the form

Vτ =
σ2

2
x2Vxx +

S ′f
Sf
xVx, 0 ≤ x < e(r−q)τ , 0 < τ ≤ T, (3.12)

where
σ2 = σ2 (τ, x, Vxx) = σ̃2(τ, S, CSS),

with new initial and boundary conditions

Sf (0) = max

(
r

q
, 1

)
, (3.13)

V (x, 0) = max (xSf (0)− 1, 0) , (3.14)

V (0, τ) = 0, (3.15)

V (e(r−q)τ , τ = erτ (Sf (τ)− 1) , (3.16)

Vx(e
(r−q)τ , τ) = eqτSf (τ). (3.17)

Note that the transformation described in (3.11) transformed the original free
boundary value problem to a known moving boundary problem. In the case r > q

the computational domain increases with respect to time, otherwise it decreases.
In the problem (3.12) - (3.17) there are two sources of nonlinearity. First, the

additional unknown function (free boundary) in the equation (3.12). The method
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to handle this problem relies on the choice of the finite difference method and is
explained further. Second, the volatility σ is nonlinear. With the moving domain
transformation (3.11) argument of the function σ in RAPM model changes and is
given below.

σ2 = σ2
0

(
1 + µ

(
xVxx

e−qτ

Sf (τ)

) 1
3

)
.

For Barles and Soner’s model volatility σ2 is transformed to

σ2 = σ2
0

(
1 + Ψ

(
a2Ex2Vxx

))
. (3.18)

3.1.2 Preliminary computational algorithms
This section begins with an algorithm computing the implicitly adjusted volatility
function Ψ given by Barles and Soner’s model. It follows with a description of
three finite difference methods of solving the transformed problem described in
equation (3.12). These finite difference methods include an explicit Euler method,
an alternating direction explicit method and an implicit method.

Note that the numerical evaluation of the adjusted volatility function for the
RAPM model is straight forward as an explicit function of the volatility is defined.
In the case of Barles and Soner’s model the volatility function is given in terms of
the solution Ψ of the ODE (3.8). It is well known that MATLAB built-in solver
for ODE [2], [108] may be used, or in some other cases simply take Ψ(A) =

A. One way to avoid the additional errors due to the numerical solution of the
ODE is to make use of the implicit solution (3.9)-(3.10), given in [31], through an
interpolation procedure as proposed in the numerical algorithm below.

Algorithm 2: Computing Ψ in Barles and Soner’s framework.
Data: L := Desired range of Ψ; NΨ := Number of discrete points for Ψ;

∆Ψ = L/(NΨ − 1);
Result: Ψ(A)
Discretise Ψ as Ψj , j = 1, 2, ..., NΨ;
Compute aj at Ψj , using formulae (3.9)-(3.10);
Compute the argument A of Ψ at every spatial finite difference node using
(3.18);
For all values of A: Search J such that A ∈ [aJ , aJ+1];
Obtain an approximate value of Ψ(A) using interpolation.
There exists many search algorithms in literature. It is very important to choose

an appropriate one. The simplest and widely used one is the linear search. It is
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Number of calls 103 104

Linear search 5.022 47.600
Binary search 0.062 0.707

Table 3.1: CPU-time (sec) of linear and binary search algorithms.

a method for finding a particular value (key) in an array that checks each element
in sequence until the desired element is found or the list is exhausted [74]. The
cost of the worst case is proportional to the number of elements in the array. Since
function Ψ(A) is increasing, the list of search is also an increasing sequence, i.e.
it is sorted. Therefore binary search can be used. In each step, the algorithm
compares the key value with the middle element of the list. If the values match,
then a matching element has been found. Otherwise, if the search key is less than
the middle element, then the algorithm repeats its action on the sub-array to the left
of the middle element or, if the search key is greater, on the sub-array to the right.
Binary search takes logarithmic time (see [74], p. 414).

For the search of just one element (i.e. calculate one value of σ), both al-
gorithms work with similar speed. The difference becomes noticeable when the
procedure repeats several times. Results of the tests are presented in the Table 3.1.
Number of calls there means the number of repetition of the procedure.

In the finite difference methods described below for the solutions of (3.12)-
(3.17), the temporal axis takes a uniform partition with the time step k = T

N
. Each

time level is denoted as τn = nk, 0 ≤ n ≤ N . Let the right boundary of the
domain be denoted as xnmax = e(r−q)τn . The spatial step size hn and grid point xnj
at time level τn are defined as

hn =
e(r−q)nk

M
, xnj = jhn, 0 ≤ j ≤M, (3.19)

where M is the number of spatial grid points.
Denote the approximate value of the solution V (x, τ) at the point xnj and time

τn as unj ≈ V (xnj , τ
n) and the approximate value of the free boundary as Snf ≈

Sf (τn). As the problem itself has a moving boundary which means that the spatial
finite difference mesh would have to be rearranged at every time level. A typical
spatial mesh with grid points (xnj , τ

n) at time τ = nk does not remain as a grid
point at time τ = (n+ 1)k. Figure 3.1 illustrates the nodal points (xnj , τ

n) as black
dots and those corresponding nodes as white dots and the spatial finite difference
mesh remains unchanged, and the corresponding moveable nodes in black dots
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at the next time level. The pair (xnj , τ
n+1) is known as a non-grid point for this

purpose.

Figure 3.1: Moving grid.

3.1.3 Explicit Schemes
Let the approximation at the non-grid point (xnj , τ

n+1) be denoted as ũn+1
j ≈

V (xnj , τ
n+1). Once the approximations {ũn+1

j } are computed {un+1
j } may be ob-

tained by using a Lagrange interpolation from the resulting data {ũn+1
j }.

For the numerical solution of the problem (3.12)-(3.17) an explicit finite differ-
ence scheme based on a central difference scheme for the spatial derivatives and a
forward difference scheme, for the temporal derivative is constructed as follows

ũn+1
j − unj
k

=
σ2
j,n

2
(xnj )2

unj−1 − 2unj + unj+1

h2
n

+
Sn+1
f − Snf
kSnf

xnj
unj+1 − unj−1

2hn
, (3.20)

where σ2
j,n = σ(xnj , τ

n) is computed by using either the RAPM or the Barles and
Soner’s model. For the RAPM model σ2 is calculated as follows

σ2
j,n = σ2

0

(
1 + µ

(
xnj
e−qnk

Snf

unj−1 − 2unj + unj+1

h2
n

))
.

In the case of Barles and Soner’s model

σ2
j,n = σ2

0

(
1 + Ψ

(
Ea2(xnj )2

unj−1 − 2unj + unj+1

h2
n

))
. (3.21)

From the boundary conditions (3.16), (3.17) one obtains

un0 = 0, unM = erτ
n

(Snf − 1), (3.22)

unM − unM−1

hn
= eqτ

n

Snf ⇒ unM−1 = eqτ
n

Snf
(
e(r−q)τn − hn

)
− erτn . (3.23)
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The initial conditions are discretised as follows

S0
f = max

(
r

q
, 1

)
, u0

j = max
(
S0
fx

0
j − 1, 0

)
, j = 0, . . . ,M.

Using the scheme (3.20) for j = M − 1 and equation (3.23) at the (n + 1)-th
time level, the expression for Sn+1

f takes the form

Sn+1
f = %(un, Snf )

=
unM−1 + σ2(M−1,n)k

2h2n
(xnM−1)2(unM−2 − 2unM−1 + unM)− xnM−1

unM−u
n
M−2

2hn
+ erτ

n

eqτn (e(r−q)τn − hn+1)− xnM−1

unM−u
n
M−2

2hnSnf

.

(3.24)

Assembling all these ideas leads to the following algorithm.

Algorithm 3: Explicit Euler method
Data: Initial values using (3.14);
Result: Solution at τ = T ;
n=0;
while n < N do

Compute σ2
j,n for j = 1, ...,M − 1 using Alg. 2;

Compute Sn+1
f by (3.24);

Compute un+1
0 , un+1

M−1, un+1
M at the boundary points using the boundary

conditions (3.22), (3.23);
for j = 1, ...,M − 2 do

Obtain ũn+1
j ;

end
Construct new uniform grid: for j = 0, . . . ,M do

xn+1
j = jhn+1;

end
Interpolation:

un+1
j = ũn+1

j +
xn+1
j − xnj
hn

(
ũn+1
j+1 − ũn+1

j

)
;

n=n+1;
end

Remark 1. Linear interpolation is used in order to preserve the second order
accuracy of the approximations of the spatial derivatives.
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Remark 2. With the interpolation one needs to guarantee that new grid point
xn+1
j ∈ [xnj , x

n
j+1). In the case r > q if

jhn ≤ jhn+1 < (j + 1)hn,

one has from the definition (3.19),

0 ≤ j
(
e(r−q)k − 1

)
< 1, ∀j.

This inequality is guaranteed if

M
(
e(r−q)k − 1

)
< 1,

which occurs if k satisfies

k <
ln(1 + h0)

r − q
.

In the case r < q domain is decreasing and k < ln(1+h0)
q−r is a sufficient condition

for xnj ∈ [xn+1
j , xn+1

j+1 ). In the case when r = q the moving boundary is fixed with
xnM = 1 for all n and the interpolation is not necessary.

An Alternating Direction Explicit method combines the advantages of simpli-
city of an explicit method and the unconditional stability of implicit scheme for the
linear case (see [84]). The numerical solution is calculated as the average of two
solutions using explicit scheme known as the right direction solution {Rn

j } and the
left direction solution {Lnj }. The algorithm of the ADE method for the moving
domain problem (3.12)-(3.17) is given as follows.

3.1.4 Implicit numerical methods
Both implicit and explicit numerical methods have advantages and disadvantages
(see introduction of [29]). In previous subsections two explicit numerical methods
are discussed and in this subsection implicit schemes are discussed. The discret-
isation of the nonlinear equation described in (3.12) leads to a system of nonlinear
equations. The most popular and widely used method for solving nonlinear systems
is the so-called Newton’s method. This method is iterative and requires to calculate
Jacobian of the nonlinear system every iteration which is time consuming. There
exists various modifications of the method [78].

A fully implicit scheme for the equation (3.12) using the same notation as in
(3.21) takes the form

66



3.1 Nonlinear Black-Scholes models

Algorithm 4: Alternating direction explicit method.
Data: Initial values: L0

j = R0
j = u0

j ;
Result: Solution at τ = T ;
n=0;
while n < N do

Sn+1
f = %(un, Snf );

Set the boundary conditions: R̃n+1
0 = L̃n+1

0 = 0;
Compute right direction solution:
for j = 1, ...,M − 1 do

R̃n+1
j −Rn

j

k
=
σ2
j,n

2
(xnj )2

R̃n+1
j−1 − R̃n+1

j −Rn
j +Rn

j+1

h2
n

+
Sn+1
f − Snf
kSnf

xnj
Rn
j+1 − R̃n+1

j−1

2hn
.

end
Set the boundary conditions: Rn+1

M = Ln+1
M = erτ

n+1 (
Sn+1
f − 1

)
;

R̃n+1
M−1 = L̃n+1

M−1 = Rn+1
M − Sn+1

f eqτ
n+1

(e(r−q)τn+1 − xnM−1);

Compute left direction solution:
for j = M − 1, ..., 1 do

L̃n+1
j − Lnj
k

=
σ2
j,n

2
(xnj )2

Lnj−1 − Lnj − L̃n+1
j + L̃n+1

j+1

h2
n

+
Sn+1
f − Snf
kSnf

xnj
L̃n+1
j+1 − Lnj−1

2hn
.

end
Construct new uniform grid:
for j = 0, . . . ,M do

xn+1
j = jhn+1;

end
Interpolate the data Rn+1

j and Ln+1
j , j = 1, . . . ,M − 1 onto the new grid;

end
for j = 0, . . . ,M do

un+1
j =

Rn+1
j +Ln+1

j

2
;

end
n=n+1;
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ũn+1
j − unj
k

=
σ2
j,n+1

2
(xnj )2

ũn+1
j−1 − 2ũn+1

j + ũn+1
j+1

h2
n

+
Sn+1
f − Snf
kSn+1

f

xnj
ũn+1
j+1 − ũn+1

j−1

2hn
(3.25)

for j = 1, . . . ,M − 2. Since the left boundary is fixed at xn0 = 0, and the right
boundary is given by xnM = e(r−q)τn , the last three points are non-equidistant. Let
h̃n = xn+1

M − xnM−1. Taylor’s series expansion is used to obtain a discretization of
the second derivative on the non-uniform grid:

Vxx(x
n
M−1, τ

n+1) ≈ 2

(
ũn+1
M−2

hn(hn + h̃n)
+

un+1
M

h̃n(hn + h̃n)
−
ũn+1
M−1

hnh̃n

)
. (3.26)

Using (3.26) and a central difference for the first derivative, the implicit scheme
(3.25) for j = M − 1 takes the following form:

ũn+1
M−1 − unM−1

k
= σ2(M − 1, n+ 1)(xnM−1)2

(
ũn+1
M−2

hn(hn + h̃n)
+

un+1
M

h̃n(hn + h̃n)
−
ũn+1
M−1

hnh̃n

)
+
Sn+1
f − Snf
kSn+1

f

xnM−1

un+1
M − ũn+1

M−2

2hn
.

Boundary conditions are discretised as follows

un+1
M = erτ

n+1

(Sn+1
f − 1),

un+1
M − ũn+1

M−1

h̃n
= eqτ

n+1

Sn+1
f .

Define the following coefficients

a−1(j, n+ 1) = − k

h2
n

(xnj )2
σ2
j,n+1

2
+

(
1−

Snf

Sn+1
f

)
xnj
2hn

,

a0(j, n+ 1) = 1 +
k

h2
n

(xnj )2σ2
j,n+1,

a+1(j, n+ 1) = − k

h2
n

(xnj )2
σ2
j,n+1

2
−

(
1−

Snf

Sn+1
f

)
xnj
2hn

,

ã−1(n+ 1) = − k

hn(hn + h̃n)
(xnM−1)2σ2(M − 1, n+ 1)

+

(
1−

Snf

Sn+1
f

)
xnM−1

hn + h̃
,
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ã0(n+ 1) = 1 +
k

hnh̃n
(xnM−1)2σ2(M − 1, n+ 1),

ã−1(n+ 1) = − k

hn(hn + h̃n)
(xnM−1)2σ2(M − 1, n+ 1)

−

(
1−

Snf

Sn+1
f

)
xnM−1

hn + h̃
.

The fully implicit scheme can be expressed in the matrix form

An+1Un+1 = Bn, (3.27)

where

An+1 =



a0(1, n+ 1) a+1(1, n+ 1) 0 0 · · · 0
a−1(2, n+ 1) a0(2, n+ 1) a+1(2, n+ 1) 0 · · · 0

0
. . . . . . . . . . . . ...

0 · · · ã−1(n+ 1) ã0(n+ 1) ã+1(n+ 1) 0

0 · · · 0 −1 1 −eqτn+1
h̃n

0 · · · 0 0 −1 erτ
n+1



Un+1 =



ũn+1
1

ũn+1
1
...

ũn+1
M−1

un+1
M

Sn+1
f


, Bn =



un1
un2
...

unM−1

0

erτ
n+1


.

Newton’s method is applied to solve the nonlinear system (3.27). At each time

level an initial guess is required for the iterative process in the Newton’s method

and may be chosen as the approximate solution at the previous time level. The

stopping criterion is chosen to be the norm of the increment becomes smaller than
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the tolerance ε.
Algorithm 5: Newton’s method.

Data: Initial conditions U0;
Result: UN ;
n=0;
while n < N do

Newton loop: Initial approximation Un+1 := Un; ||e|| := big value;
while ||e|| > ε do

G := An+1Un+1 −Bn;
Compute Jacobian: J(G);
e = {J(G)}−1G;
Un+1 = Un+1 − e;

end
Construct new uniform mesh at the new time level;
Calculate values in the new points using linear (or quadratic)
interpolation;
n=n+1;

end

There are many modifications of Newton’s method mainly to improve the effi-
ciency and robustness of the method. One type of modification aims to avoid the
computations of Jacobian every iteration in order to reduce the total computational
time. These methods are collectively known as Newton-like methods. For instance,
the main idea of Broyden’s method is to calculate an approximate Jacobian iterat-
ively using simple matrix vector multiplications as given below.

Jk = Jk−1 +
∆Gk − Jk−1∆uk
‖∆uk‖2

∆uTk , (3.28)

where k is the number of current Newton’s iteration, ∆Gk = Gk − Gk−1, ∆uk =

uk − uk−1. The initial value J0 has to be calculated by a standard procedure to
avoid instability. Since ∆Gk − Jk−1∆uk ≈ Gk+1, (3.28) can be presented in the
following form

Jk = Jk−1 +
Gk+1

‖∆uk‖2
∆uTk .

Unfortunately, if the Jacobian has a given sparsity structure, as it occurs in the
present study, Broyden’s approximation breaks the structure and introduces non-
zero values to those zero components. Schubert’s method [88] is widely used for
sparse matrices because it preserves the sparsity of the Jacobian. Although it has
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good properties, it is sensitive to the problem under consideration and size of the
matrix. Indeed, our problem is not well conditioned for the Schubert’s methods as it
is shown in Table 3.5. Therefore, a modification of the method is proposed in order
to overcome these computational difficulties. Instead of taking the squared norm
in denominator power one was used in all the tests. This modification is denoted
as ”Schubert-1” method. Numerical tests show that it ensures the convergence of
Schubert’s algorithm.

In order to overcome the drawback of Broyden’s method all of the matrix
elements outside the tridiagonal band were ”frozen” at zeros in the numerical
tests. This modification preserves the structure of the matrix in the same way as
Schubert’s method does. The proposed modification is known as ”frozen-Broyden”:

Jk(i, j) =

{
Jk(i, j), j − 1 ≤ i ≤ j + 1,

0, otherwise.

Spectral analysis confirms quality of the proposed methods by the numerical ex-
amples provided in the next Section.

3.1.5 Numerical examples
This section is devoted to several numerical tests and a comparison of the explicit
and implicit methods as described above. Convergence rate and computational
costs for the numerical solution of Barles and Soner’s model for American options
are presented.

Example 3.1.1. An American call option pricing problem in the transformed form
(3.12)-(3.17) with the parameters:

r = 0.1, q = 0.05, T = 1, σ0 = 0.2, E = 10, (3.29)

is tested.

Barles and Soner’s model with a = 0.05 was chosen in the test. In this example
the numerical convergence rate in terms of root mean square error (RMSE) (see
[85], p. 385) of the proposed methods are presented. The RMSE is computed by
formula 1.20, with u∗(xi, T ) is a ”true value” of function V (xi, T ) and uh(xi, T )

is calculated value in the point (xi, τ
N). Here the ”true value” is understood as the

numerical solution on a refined grid with step sizes h = 5 · 10−3 and k = 10−5.
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h0 0.08 0.04 0.02 0.01
Explicit method

RMSE 0.04984 0.02629 0.01232 0.00464
CPU-time, s 15.810 27.566 51.476 99.434

ADE method
RMSE 0.16816 0.08172 0.02099 0.00620
CPU-time, s 15.129 27.776 53.865 104.247

Implicit method
RMSE 0.04984 0.02355 0.00958 0.00445
CPU-time, s 34.099 60.030 112.728 257.880

Newton-like method
RMSE 0.11376 0.06026 0.01389 0.00471
CPU-time, s 33.869 58.141 107.561 315.505

Table 3.2: RMSE with respect to CPU-time for different h0 and fixed k = 0.0001.

Then the spatial convergence rate of the approximate solutions are calculated
for different step sizes h at a fixed time step k by using formula 1.21.

In Table 3.2 the results and comparison are presented. The time step is fixed at
k = 0.0001 to guarantee stability of all numerical solutions. For implicit method
the tolerance was chosen as ε = 10−4.

From Table 3.2, taking the mean value of all combinations of h1 and h2, one
obtains

γexpl = 1.512, γimpl = 1.191, γADE = 1.734, γNL = 1.713.

An analogous formula to 1.21 can be used for convergence rate in time. RMSE
and computational time for a fixed spatial step are presented in Table 3.3.

Using data from Table 3.3, the convergence rate in time can be calculated as
follows

γexpl = 0.627 γimpl = 0.733, γADE = 1.789, γNL = 0.691. (3.30)

Note that the main part of the computational time is pertained for the calculation
of Ψ(A). For the implicit methods it has to be calculated on each iteration of
Newton’s method. Thus, their computational costs may be noticeably reduced by
choosing another model.
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k 0.001 0.0005 0.0002 0.0001
Explicit method

RMSE 0.01713 0.01373 0.00675 0.00464
CPU-time, s 11.470 21.361 50.598 99.434

ADE method
RMSE 0.38763 0.08152 0.01839 0.00620
CPU-time, s 10.829 21.199 52.684 104.247

Implicit method
RMSE 0.02122 0.01528 0.00639 0.00445
CPU-time, s 39.318 52.327 129.045 257.880

Newton-like method
RMSE 0.02127 0.01524 0.00815 0.00471
CPU-time, s 38.650 52.277 128.371 255.347

Table 3.3: RMSE with respect to CPU-time for different k and fixed h0 = 0.01.

Next example presents a study of the free boundary for both RAPM and Barles
and Soner’s models with various values of the respective transaction cost paramet-
ers R and a.

Example 3.1.2. Let the problem (3.1)-(3.7) under RAPM model with the paramet-
ers (3.29), fixed transaction cost Ctr = 0.01 and various risk premium measure

R = 5, 15, 40, 70, 100 to be considered. The coefficient µ = 3
(
C2
trR

2π

)1/3

,
according to [63].

Figure 3.2 shows the variation of the normalised free boundary Sf (τ) depend-
ing on the parameter R.

In Figure 3.3 there are numerical results for Barles and Soner’s model for vari-
ous a. The difference between values for a = 0 and a = 0.01 is inappreciable.

In next example the validity of the proposed explicit scheme (3.20) is discussed.
Explicit scheme uses information from the previous time level to compute a solu-
tion at the current moment. For nonlinear equations with coefficients depending
on the solution one has two alternatives: if we take values from the current time
level to compute the coefficients the scheme would not be explicit and we have
to use any iterative solver for this problem. It increases computational time. An-
other alternative is to take values from the previous time level as we used, and the
coefficients may be inaccurate.
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Figure 3.2: A comparison of the free boundary Sf (τ) for RAPM model for various
risk premium measures R = 5, 15, 40, 70, 100 with the corresponding free bound-
ary for R = 0 (bold line).

Example 3.1.3. The transformed American call option pricing problem under Barles
and Soner’s model (3.12)-(3.17) with parameters (3.29) and a = 0.05 is con-
sidered.

Figure 3.4 demonstrates the difference between the solutions obtained by both
alternatives for fixed h0 and various k. One can see that the difference presents
orders no bigger thanO(k) that is the order of approximation of the explicit forward
in time scheme (3.20).

Moreover, the series of tests was provided to insure this statement. For fixed
k the maximum value of the difference between the solutions is calculated. The
results are collected in Table 3.4.

h0 0.01 0.02 0.04
k = 10−3 1.3548 · 10−4 7.5463 · 10−4 9.5728 · 10−5

k = 10−4 9.9036 · 10−6 1.2605 · 10−5 1.0068 · 10−5

k = 10−5 1.0936 · 10−6 1.2995 · 10−6 1.6136 · 10−6

Table 3.4: The maximum distance between the solution of the problem (3.12) by
explicit and iterative explicit method.
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Figure 3.3: A comparison of the free boundary Sf (τ) for Barles and Soner’s model
for a = 0, 0.01, 0.07, 0.13.

In order to study stability of the proposed explicit method we compare solutions
for the problem with the parameters (3.29) for fixed h = 10−2 and various k = 10−4

and k = 2.6 · 10−3 (Figures 3.5 and 3.6 correspondingly). As one can see, the
numerical solution as shown in Figure 3.6 is unstable.

Next example is used to examine the validity of the proposed modifications in
the class of Newton-like methods.

Example 3.1.4. Well known Newton-like methods developed by Broyden and Schubert
as well as proposed modifications are used to approximate the Jacobian of the prob-
lem of Example 1 with h = 0.01, k = 0.001 and k = 0.0001.

In order to demonstrate the viability of the modifications to well known Broy-
den’s and Schubert’s methods described in Section 3.3, the spectral radius is used.
Let a approximation of Jacobian by any method be denoted as Japprox. Since
matrices supposed to be approximation of the original Jacobian J , then matrix
J−1
approxJ should be close to identity matrix. Spectral radius of matrix is used to

check this fact.
In Table 3.5 maximum, minimum and mean value of spectral radius of matrices

J−1
approxJ are presented. Further tests, performed but not presented in fails for smal-

ler step sizes and solution is unstable.
The results of this section have been published in [42].
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Figure 3.4: Difference between solutions by explicit method and iterative explicit
method with h0 = 10−2 and various k.
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Figure 3.5: Stable numerical solution
with k = 10−4.
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Figure 3.6: Unstable numerical solu-
tion with k = 2.6 · 10−3.
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Min Max Mean
h = 0.01, k = 0.001

frozen-Broyden 1.00239414 1.01232560 1.00648229
Schubert-1 1.00000712 1.12629296 1.00054588
Broyden 1.00015443 1.00103625 1.00066090
Schubert fail

h = 0.01, k = 0.0001

frozen-Broyden 1.00044224 1.00372329 1.00095909
Schubert-1 1.00020364 1.00333878 1.00059102
Broyden 1.00024579 1.00377139 1.00075563
Schubert fail

Table 3.5: Spectral radius of matrix J−1
approxJ , where Japprox is calculated by various

methods.
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3.2 Regime switching model
In this section a continuous time Markov chain αt is considered taking values
among I different regimes, where I is the total number of regimes considered in
the market. Each regime is labelled by an integer i with 1 ≤ i ≤ I . Hence, the
regime space of αt is M = {1, 2, ..., I}. Let Q = (qi,j)I×I be the given generator
matrix of αt. From [113] the entries qi,j satisfy:

qi,j ≤ 0, if i 6= j; qi,i = −
∑
j 6=i

qi,j, 1 ≤ i ≤ I.

Under the risk-neutral measure, see Elliott et al. [45] for details, the stochastic
process for the underlying asset St is

dSt
St

= rαtdt+ σαtdB̃t, t ≤ 0,

where σαt is the volatility of the asset St and rαt is the risk-free interest rate.
Here the American put option on the asset St = S with strike price E and

maturity T < ∞ is considered. Let Vi(S, τ) denote the option price functions,
where τ = T − t denotes the time to maturity, the asset price S and the regime
αt = i. Then, Vi(S.τ), 1 ≤ i ≤ I , satisfy the following free boundary problem:

∂Vi
∂τ

=
σ2
i

2
S2∂

2Vi
∂S2

+ riS
∂Vi
∂S
− riVi +

∑
l 6=i

qil(Vl − Vi), S > S∗i (τ), 0 < τ ≤ T,

(3.31)
where S∗i (τ) denote optimal stopping boundaries of the option. Initial conditions
are

Vi(S, 0) = max(E − S, 0), S∗i (0) = E, i = 1, ..., I. (3.32)

Boundary conditions for i = 1, . . . , I are as follows

lim
S→∞

Vi(S, τ) = 0, (3.33)

Vi(S
∗
i (τ), τ) = E − S∗i (τ), (3.34)

∂Vi
∂S

(S∗i (τ), τ) = −1. (3.35)

Several different numerical methods for solving the system of partial differen-
tial equations (3.31) have been proposed. Lattice methods [87, 114] are popular for
practitioners because they are easy to implement, but they have the drawback of the
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absence of numerical analysis and subsequent unreliability, because the lack of nu-
merical analysis may waste the best model. The penalty method [57, 70, 71, 116]
uses a coupling of the penalty term and the regime coupling terms. Both, the lat-
tice and penalty methods do not calculate the optimal stopping boundary that has
interest from the practitioners point of view.

The challenging task of the free boundary as another unknown into the PDE
problem is not new in the literature. In fact, since Landau’s ideas [79] the so-called
front-fixing method has been used in many fields [33] and by [2, 24, 26, 77, 108]
for American option problems without switching.

In this section we address the numerical solution of the coupled PDE system
(3.31). Firstly, by extending the ideas developed in [26], the PDE system (3.31) is
transformed into a new PDE system on a fixed domain where the free boundaries
S∗i (τ), 1 ≤ i ≤ I , are incorporated as new unknowns of the system. This allows
the computation not only of the prices, but also of all the optimal exercise prices.

In spite of the apparent complexity of the transformed problem due to the ap-
pearance of new spatial variables, one for each equation, the explicit numerical
scheme constructed becomes easy to implement, computationally cheap and accur-
ate when one compares with the more relevant existing methods. Implicit weighted
schemes have been developed in this section for the sake of performance compar-
ison.

3.2.1 Multi-variable fixed domain transformation
Fixed domain transformation techniques inspired in Landau ideas [79] have been
used by several authors ([112], [108], [90], [26]) for partial differential equations
modelling American option pricing problems. To our knowledge this transform-
ation technique has not been applied before for a partial differential system with
several unknown free boundaries, one for each equation.

Based on the transformation used by the authors in [112], [26] for the case of
just one equation, let us consider the multi-variable transformation

xi = ln
S

S∗i (τ)
, 1 ≤ i ≤ I. (3.36)

Note that the new variables xi lie in the fixed positive real line. The price Vi
of i-th regime involved in i-th equation of the system and i-th free boundary are
related by the dimensionless transformation
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Pi(x
i, τ) =

Vi(S, τ)

E
, Xi(τ) =

S∗i (τ)

E
, 1 ≤ i ≤ I. (3.37)

Then the value of option l-th regime appearing in i-th coupled equation, l 6= i,
becomes

Pl,i(x
i, τ) =

Vl(S, τ)

E
.

Since from (3.37), Vl(S,τ)
E

= Pl(x
l, τ) and taking into account transformation

(3.36) for indexes i and l one gets that

Pl,i(x
i, τ) = Pl(x

l, τ), (3.38)

and it occurs when the variables are related by the equation

xl = xi + ln
Xi(τ)

Xl(τ)
, 1 ≤ i, l ≤ I. (3.39)

From (3.36) - (3.38) the problem (3.31) - (3.35) for 1 ≤ i ≤ I takes a new form

∂Pi
∂τ

(xi, τ) =
σ2
i

2

∂2Pi
∂(xi)2

(xi, τ) +

(
ri −

σ2
i

2
+
X ′i(τ)

Xi(τ)

)
∂Pi
∂xi

(xi, τ)− riPi(xi, τ)

+
∑
l 6=i

qil(Pl,i(x
i, τ)− Pi(xi, τ)) = 0, xi > 0, 0 < τ ≤ T,

(3.40)

with initial and boundary conditions

Pi(x
i, 0) = max(1− exi , 0) = 0, (3.41)

Xi(0) = 1, (3.42)

Pi(0, τ) = 1−Xi(τ), (3.43)
∂Pi
∂xi

(0, τ) = −Xi(τ), (3.44)

lim
xi→∞

Pi(x
i, τ) = 0. (3.45)

Note that from equation (3.39) xl could be negative if Xl(τ) > Xi(τ) and this
means that due to the equation (3.36) S < S∗l (τ), and in this case the value of the
option at l-th regime agrees with the payoff, i.e.

Pl,i(x
i, τ) = Pl(x

l, τ) = 1−Xl(τ)ex
l

, xl ≤ 0.
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3.2.2 Discretization and numerical schemes construction
Dealing with numerical solutions of the transformed problem (3.40) - (3.45) a
bounded numerical domain must be defined.

A numerical solution has to be found on infinite domain [0;∞) × [0;T ] for
all regimes. In accordance with [66], [106] the domain in original variable S can
be truncated about three or four times the exercise price. It is sufficient to take the
numerical domain for the transformed problem (3.40)-(3.45) as [0;xmax], xmax = 3.
The computational domain is covered by an uniform grid with common step sizes
h = xmax

M
and k = T

N
. Nodes of the grid are denoted as follows

xj = jh, 0 ≤ j ≤M ; τn = nk, 0 ≤ n ≤ N.

Let us denote uni,j ≈ Pi(xj, τ
n) the approximation of Pi in i-th equation at

mesh point (xi = xj, τ = τn) and ũnli,j ≈ Pl,i(xj, τ
n) be the approximation of Pl

in i-th equation evaluated at the point (xi = xj, τ = τn). The discretization of
the transformed optimal stopping boundary is denoted by Xn

i ≈ Xi(τ
n). Then an

explicit finite difference scheme can be written in the form

un+1
i,j − uni,j

k
=
σ2
i

2

uni,j+1 − 2uni,j + uni,j−1

h2

+

(
ri −

σ2
i

2
+
Xn+1
i −Xn

i

kXn
i

)
uni,j+1 − uni,j−1

2h

− riuni,j +
∑
l 6=i

qil(ũ
n
li,j
− uni,j),

(3.46)

where

ũnli,j ≈ Pl,i(xj, τ
n) = Pl

(
xj + ln

Xn
i

Xn
l

, τn
)
,

are obtained by linear interpolation of values unl,j at the point xj + ln
Xn
i

Xn
l

known
from the previous time level n,

ũnli,j =


1−Xn

i e
xj , xj < − ln

Xn
i

Xn
l

;

αnl,ju
n
l,j0

+ βnl,ju
n
l,j0+1, − ln

Xn
i

Xn
l
≤ xj ≤ xmax − ln

Xn
i

Xn
l

;

0, xj > xmax − ln
Xn
i

Xn
l
.

(3.47)

Note that in the first situation of (3.47), xj < ln
Xn
i

Xn
l

, means that in the original
variables S < S∗l (τ

n) where the option price is payoff value. In the second case
we use the linear interpolation where the positive coefficients are given by
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αnl,j =
h(j0 + 1)− hj − ln

Xn
i

Xn
l

h
, βnl,j =

hj + ln
Xn
i

Xn
l
− hj0

h
. (3.48)

where j0 = j0(i, l, j), is the biggest integer number such that

hj0 ≤ hj + ln
Xn
i

Xn
l

< h(j0 + 1),

Finally, in the last case we assign to ũnli,j = 0 due to condition (3.45).
From the properties of the model for any regime i one gets∑

l 6=i

qil = −qii, qii < 0, (3.49)

and denoting constants

ai =
σ2
i

2

k

h2
−
(
ri −

σ2
i

2

)
k

2h
, (3.50)

bi = 1− σ2
i

k

h2
− (ri − qii)k, (3.51)

ci =
σ2
i

2

k

h2
+

(
ri −

σ2
i

2

)
k

2h
, (3.52)

the scheme (3.46) can be presented for j = 1, . . . ,M − 1, i = 1, . . . , I , n =

0, . . . , N − 1 as follows

un+1
i,j = aiu

n
i,j−1 + biu

n
i,j + ciu

n
i,j+1 +

Xn+1
i −Xn

i

2hXn
i

(
uni,j+1 − uni,j−1

)
+ k

∑
l 6=i

qilũ
n
li,j
.

(3.53)
From the boundary conditions (3.43), (3.45) one gets

un+1
i,0 = 1−Xn+1

i , un+1
M = 0. (3.54)

Boundary condition (3.44) can be discretized by using the second order one-
side-difference approximation :

−3un+1
i,0 + 4un+1

i,1 − un+1
i,2

2h
+Xn+1

i = 0. (3.55)

Since number of unknowns M + 2 is equal to the number of the equations of
the system of (3.53), (3.54) and (3.55), it is closed and can be solved.
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3.2 Regime switching model

Thus, the unknown optimal stopping boundary can be derived from (3.53),
(3.54) and (3.55):

Xn+1
i =

ξni
ηni
, (3.56)

where

ξni = 3− 4aiu
n
i,0 − (4bi − ai)uni,1 − (4ci − bi)uni,2 + ciu

n
i,3

+
4(uni,2 − uni,0)− (uni,3 − uni,1)

2h
− k (4Σ1 − Σ2) , (3.57)

ηni = 3 + 2h+
4(uni,2 − uni,0)− (uni,3 − uni,1)

2hXn
i

, (3.58)

and Σj =
∑

l 6=i qilũ
n
li,j

.
In order to compare the performance of the proposed explicit difference scheme

(3.46) and for the sake of comparison we also introduce a modification of the well
known θ-family of implicit finite difference schemes, so-called weighted average
approximation [101], but making explicit in the coupled regimes term to save com-
putational cost. Thus, for each fixed regime i = 1, . . . , I equation (3.40) is discret-
ised with previous notation as follows:

un+1
i,j − uni,j

k
=
σ2
i

2

[
θ
un+1
i,j+1 − 2un+1

i,j + un+1
i,j−1

h2
+ (1− θ)

uni,j+1 − 2uni,j + uni,j−1

h2

]

+

(
ri −

σ2
i

2
+
Xn+1
i −Xn

i

kXn
i

)[
θ
un+1
i,j+1 − un+1

i,j−1

2h
+ (1− θ)

uni,j+1 − uni,j−1

2h

]
−(ri − qi,i)

[
θun+1

i,j + (1− θ)uni,j
]

+
∑
l 6=i

qilũ
n
li,j
, j = 1, . . . ,M − 1, n = 0, . . . , N − 1,

(3.59)

where θ ∈ [0, 1] is the weight parameter.
The boundary conditions are taken in the form (3.54)-(3.55). As implicit method

is employed for the numerical solution, the optimal stopping boundary is fully in-
volved in the system, but has not an isolated expression like (3.56)-(3.58). The
closed system of M + 2 equations (3.54)-(3.55) and (3.59) is solved by using the
well know iterative Newton’s method for every regime i = 1, . . . , I .

Since the system is solved for a fixed regime, let us skip out the index of regime
i and introduce the unknown vector Un
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Un =
(
Xn, un0 , un1 , . . . , unM−1

)T
.

For the sake of simplicity the value unM = 0, n = 0, . . . , N is excluded of the
system. Thus, the system takes the following vector form

An+1Un+1 = Bn,

where the matrix of coefficients An+1 and vector Bn are given by

An+1 =



1 1 0 0 0 0 . . . 0 0
−2h 3 −4 1 0 0 . . . 0 0

0 an+1
1 an+1

2 an+1
3 0 0 . . . 0 0

0 0 an+1
1 an+1

2 an+1
3 0 . . . 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 0 0 0 . . . an+1

1 an+1
2


,

Bn =


1
0

bn+1
1 un0 + bn+1

2 un1 + b3u
n
2 + k

∑
l 6=i qilũ

n
li,1

...
bn+1

1 unM−2 + bn+1
2 unM−1 + k

∑
l 6=i qilũ

n
li,M−1

 .

Coefficients an+1
j and bn+1

j , j = 1, 2, 3 are derived from the scheme (3.59) as
follows

an+1
1 = −σ

2

2
θ
k

h2
+

(
r − σ2

2
+
Xn+1 −Xn

kXn

)
θ
k

2h
,

an+1
2 = 1 + (r − qi,i)θk + σ2θ

k

h2
,

an+1
3 = −σ

2

2
θ
k

h2
−
(
r − σ2

2
+
Xn+1 −Xn

kXn

)
θ
k

2h
,

bn+1
1 =

σ2

2
(1− θ) k

h2
−
(
r − σ2

2
+
Xn+1 −Xn

kXn

)
(1− θ) k

2h
,

bn+1
2 = 1− (r − qi,i)(1− θ)k + σ2(1− θ) k

h2
,

bn+1
3 =

σ2

2
(1− θ) k

h2
+

(
r − σ2

2
+
Xn+1 −Xn

kXn

)
(1− θ) k

2h
.
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Let us write the j-th step of the Newton iteration process as

Gj = An+1
j Un+1

j −Bn
j = 0. (3.60)

The solution Un is taken as initial guess Un+1
0 and the next iteration Un+1

j+1 for
known Un+1

j is calculated by

Un+1
j+1 = Un+1

j − (J(Gj))
−1Gj.

Because of the dependence of the entries of matrix An+1
j on the stopping boundary

Xn+1
j , Jacobian of the system (3.60) J(Gj) can be expressed by

J(Gj) = An+1
j + Y Jn+1

X .

Here Y is the sparse matrix

Y =


0 0 . . . 0
0 0 . . . 0
1 0 . . . 0
...

... . . .
...

1 0 . . . 0

 ,

Jn+1
X =

1

2hXn




0 −1 0 . . . 0 0
1 0 −1 . . . 0 0
. . . . . . . . . . . . 0 −1
0 0 0 . . . 1 0

[θŨn+1
j + (1− θ)Ũn

]

+
1

2hXn

[
θũn+1

0 + (1− θ)un0
]


1
0
...
0

 ,

where the vector of the solution at interior points, i.e. with spatial indexes
1, . . . ,M − 1 is denoted by Ũn+1

j , Ũn = [un1 , ..., u
n
M−1] and the j-th iteration of the

solution at the point (0, τn+1) by ũn+1
0 .

As usual, the stopping criteria is that norm of vector ∆Un+1 = Un+1
j+1 −Un+1

j is
smaller than chosen tolerance ε.
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3.2.3 Von Neumann stability analysis
In this section we study the stability of the proposed explicit scheme following
von Neumann analysis approach originally applied to schemes with constant coef-
ficients. However, such approach can be used also for the variable coefficients case
by freezing at each level (see [102], p. 59, [39], [53]).

In order to avoid notational misunderstanding among the imaginary unit with
the regime index i used in previous section, here we denote the regime index by R.

An initial error vector for every regime g0
R,R = 1, . . . , I , is expressed as a finite

complex Fourier series, so that at xj the solution uni,j can be rewritten as follows

unR,j = gnRe
ijθ, j = 1, . . . ,M − 1, R = 1, . . . , I, (3.61)

where i = (−1)1/2 is the imaginary unit and θ is phase angle. Then the scheme is
stable if for every regime R = 1, . . . , I the amplification factor GR =

gn+1
R

gnR
satisfies

the relation
|GR| ≤ 1 +Kk = 1 +O(k), (3.62)

where the positive number K is independent of h, k and θ, see [101], p. 68, [102],
p. 50.

For the sake of simplicity of the notation the index of the regimeR is skipped in
the unknowns, the coefficients and the parameters, supposing that the calculations
are done for every regime. Using boundary conditions (3.55) and (3.61), one gets

Xn =
gn+1

(
3− 4eiθ + e2iθ

)
2h

,

and consequently
Xn+1 −Xn

Xn
= G− 1. (3.63)

Then the numerical scheme (3.53) takes the following form

gn+1eijθ = agnei(j−1)θ + bgneijθ + cgnei(j+1)θ

+

(
gn+1

gn
− 1

)
gn

2h

(
ei(j+1)θ − ei(j−1)θ

)
+ k

∑
l 6=R

qR,lg
n
l

(
αnl,je

ij0θ + βnl,je
i(j0+1)θ

)
.

(3.64)

Let us denote

z =
∑
l 6=R

qR,l
gnl
gn
(
αnl,je

i(j0−j)θ + βnl,je
i(j0+1−j)θ) , (3.65)
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3.2 Regime switching model

then dividing both parts of (3.64) by gneijθ, and taking into account (3.63), one gets

G = ae−iθ + b+ ceiθ +
i sin θ

h
(G− 1) + kz. (3.66)

According to properties of the linear interpolation, αnl,j + βnl,j = 1 (see (3.48)),
and (3.65) can be bounded by

|z| ≤
∑
l 6=R

qR,l

∣∣∣∣gnlgn
∣∣∣∣ ≤ max

l 6=R

∣∣∣∣gnlgn
∣∣∣∣ |qR,R| = ∣∣∣∣gnl0(n)

gn

∣∣∣∣ |qR,R| = C(n), (3.67)

where C(n) is independent of θ, h and k and depends only on the frozen index n.
From (3.66), (3.67) and (3.50)-(3.52) it follows that

|G|
∣∣∣∣1− i sin θ

h

∣∣∣∣ ≤ |A(k, h, θ)|+ C(n)k,

where

|A(k, h, θ)|2 =

(
1− 2

σ2k sin2 θ
2

h2
− (r − q)k

)2

+
sin2 θ

h2

((
r − σ2

2

)2

k2 − 2k

(
r − σ2

2

)
+ 1

)
.

Thus, in agreement with (3.62) the scheme is stable, if

|A(k, h, θ)|2 ≤ 1 +
sin2 θ

h2
. (3.68)

It is easy to check that (3.68) holds true, if
σ2k

(
(r − q)− σ2

h2

)
− σ2 ≤ 0,((

r − σ2

2

)2

+ (r − q)σ2

)
k − 2r ≤ 0.

(3.69)

Conditions (3.69) hold true when

k ≤ min

(
h2

σ2 + (r − q)h2
,

2r(
r − σ2

2

)2
+ (r − q)σ2

)
.

Summarizing the following result can be established:
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Theorem 3.2.1. With previous notation the scheme (3.53) is conditionally stable
under the constraint

k ≤ min
1≤R≤I

 h2

σ2
R + (rR − qR,R)h2

,
2rR(

rR −
σ2
R

2

)2

+ (rR − qR,R)σ2
R

 . (3.70)

3.2.4 Local truncation error and consistency
Theorem 3.2.2. Assuming that the solution of the PDE problem (3.40)-(3.45) ad-
mits two times continuous partial derivative with respect to time and up to order
four with respect to space, the numerical solution computed by the scheme (3.46)
with (3.55) is consistent with the equation (3.40) and boundary condition (3.44) of
the second order in space and the first order in time.

Proof. Under hypothesis of the theorem using Taylor’s expansion about (xj, τ
n)

the local truncation error takes form

F n
i,j(X

∗, P )− Li(X∗, P ) = kEn
i,j(3)− σ2

2
h2En

i,j(2) +

(
ri −

σ2
i

2

)
h2En

i,j(1)

− kEn
j (4)

∂Pi
∂x

(xj, τ
n)− h2

X̂n
i

En
i,j(1)

dXi

dτ
(τn)

− kh2En
i,j(4)En

j (1)−
∑
l 6=i

qilE
n
l,j(5),

(3.71)

where

En
i,j(1) = 1

6
∂3Pi
∂x3

(ξ1, τ
n), xj−1 < ξ1 < xj+1, (3.72)

En
i,j(2) = 1

12
∂4Pi
∂x4

(ξ2, τ
n), xj−1 < ξ2 < xj+1, (3.73)

En
i,j(3) = 1

2
∂2Pi
∂τ2

(xj, η3), τn < η3 < τn+1, (3.74)

En
i,j(4) = 1

2X̂i

d2Xi
dτ2

(η4), τn < η4 < τn+1, (3.75)

En
l,j(5) = ũnl,j − Pl,i(xj, τn), l 6= i. (3.76)

Taking into account that the error of linear interpolation is O(h2) (see [32], p.
53) and (3.71)-(3.76), the local truncation error is O(k) +O(h2).
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3.2 Regime switching model

Since for discretization of boundary condition (3.44) the one-side difference of
the second order (3.55) is used, it is easy to check using Taylor’s expansion that
the local truncation error of boundary conditions is the second order in space. This
fact completes the proof.

3.2.5 Numerical examples
In this section numerical results are presented to show the properties of the pro-
posed method as well as comparison with other known approaches. In example
1 the stability condition (3.70) cannot be removed and numerical solution is com-
pared with results of well recognized penalty and lattice methods presented in [70].

Example 3.2.1. Let us consider an American Put option in 2-regime switching
model with the parameters (see Example 1 in [70]):

r =

(
r1

r2

)
=

(
0.1

0.05

)
, σ =

(
σ1

σ2

)
=

(
0.8

0.3

)
, Q =

(
−6 6

9 −9

)
, T = 1, E = 9.

(3.77)

Taking h = 10−2 and k = 10−4 stability constraints (3.70) are fulfilled and
the option prices for both regimes and payoff function are presented on the Fig.
3.7 while the optimal stopping boundary is shown in Fig. 3.8. However, when
h = 10−2, k = 1.6·10−4 stability condition is broken and Fig. 3.9 reveals undesired
unstable solution.

In order to compare the solution with penalty and lattice methods described in
[70], Table 3.6 contains option prices for different values of asset price S computed
by: our proposed front-fixing explicit method (FF-expl), the exponential time dif-
ferencing Crank-Nicolson scheme (ETD-CN) and the binomial tree approach de-
veloped by Liu in [87] (Tree). This binomial tree model has the good property
that tree only grows linearly as the number of time steps increases allowing the
use of large number of time steps to compute accurately prices of options. This
binomial tree model has been used as an option pricing reference value by other
relevant authors, and in particular by Khaliq et al. for the regime switching model
in [70]. Table 3.6 shows that our results are close to both methods especially to the
binomial model of [87].

Efficiency of explicit scheme in comparison with implicit theta methods is
demonstrated in Table 3.7. The option price at the point S = E for the data (3.77)
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Figure 3.7: American put option price curves at τ = T and its payoff.

.

Regime 1 Regime 2
S FF-expl ETD-CN Tree FF-expl ETD-CN Tree

9.0 1.9713 1.9756 1.9722 1.8817 1.8859 1.8819
9.5 1.8049 1.8089 1.8058 1.7141 1.7181 1.7143

10.5 1.5177 1.5213 1.5186 1.4265 1.4301 1.4267
12.0 1.1796 1.1825 1.1803 1.0915 1.0945 1.0916

Table 3.6: Comparison of American put option prices in a two regime model.

and CPU time of the methods are presented. The Newton’s algorithm runs I times
at every time step. Therefore computational cost of implicit method is higher even
if the time step k is greater. Note that the results of Crank-Nicolson method are
close to the results of penalty ETD-CN method from the Table 3.6.

Next example deals with numerical convergence rate of the scheme and the
computational cost. Efficiency comparison with well reputed methods such as a
fitted finite volume method based on penalty approach developed in [116] and an
iterated optimal stopping as well as a local policy iteration methods in [5].

Example 3.2.2. Convergence rate is studied numerically in terms of root mean
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Figure 3.8: Optimal stopping boundary
for regime 1 and regime 2 (stability con-
dition is fulfilled).

Figure 3.9: Optimal stopping boundary
for regime 1 and regime 2 (stability con-
dition is broken).

square error (RMSE) for the problem of two regime switching model with paramet-
ers (3.77).

In accordance with [70] the reference value u∗(xj, T ) is chosen to be the solu-
tion by the binomial tree method of Liu with 1000 steps.

In order to compute convergence rate in space approximate solutions are calcu-
lated for different step sizes h using a fixed time step k. In Table 3.8 the results are
presented. Time step k is chosen to guarantee stability for all tested space steps h.
The convergence rate in space γh is calculated as the mean value of all combina-
tions of h1 and h2:

γh = 1.86.

Analogous procedure is done for fixed h = 10−2 and various space steps k. The
results are collected in the Table 3.9. Computational time is linearly increasing with
growth of the number of time levels. The average RMSE is proportional to the time
step. Using the formula (1.21) in terms of time steps and taking the mean value of
all combinations, one gets the following convergence rate in time:

γk = 1.15.

Numerical results and CPU time for two-regime model with the parameters
(3.77) computed by a fully implicit fitted finite volume (IFV) method based on
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Method Regime 1 Regime 2 CPU time, sec.
h = 10−1, k = 10−2

Explicit 1.9543 1.8636 0.1248
Crank-Nicolson 1.9756 1.8863 0.1248
Fully implicit 1.9956 1.9073 0.1092

h = 10−2, kexpl = 10−4, kimpl = 10−2

Explicit 1.9713 1.8818 4.9140
Crank-Nicolson 1.9720 1.8824 49.2004
Fully implicit 1.9712 1.8817 34.8817

Table 3.7: Comparison of explicit and implicit methods. Time step of explicit and
implicit methods are denoted correspondingly by kexpl and kimpl.

h 0.08 0.04 0.02 0.01
Regime 1 2.664e-2 5.601e-3 1.489e-3 8.669e-4
Regime 2 3.216e-2 8.729e-3 1.955e-3 1.742e-4
Average 2.939e-2 7.165e-3 1722e-3 5.206e-4

CPU time, sec. 1.2948 1.4976 1.7472 2.5584

Table 3.8: RMSE and computational time for fixed k = 10−4 and various h.

penalty approach are available in [116]. Table 3.10 shows the error of both front-
fixing (FF) and IFV methods for both regimes on different meshes with respect to
the binomial tree method in Table 1 of [71] as well as computational time. This
fact proves the efficiency of the proposed method.

Example 3.2.3. Recently authors in [5] compare iterated optimal stopping (IOS)
and local policy iteration (LPI) methods for regime-switching model with the para-
meters:

r =

(
0.05

0.05

)
, σ =

(
0.3

0.4

)
, Q =

(
−3 3

2 −2

)
, T = 1, E = 10. (3.78)

Numerical solutions provided by both IOS and LPI methods for data (3.78) are
presented in [5] showing that prices grow as the step sizes are refined. For the
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k 10−4 5 · 10−5 2.5 · 10−5 1.25 · 10−5

Regime 1 8.669e-4 4.163e-4 2.168e-4 1.234e-4
Regime 2 1.742e-4 1.009e-4 2.885e-5 7.973e-6
Average 5.206e-4 2.586e-4 1.228e-4 6.569e-5

CPU time, sec. 2.5584 4.5708 8.9389 17.9870

Table 3.9: RMSE and computational time for fixed h = 10−2 and various k.

IFV, 1601× 1281 FF, 300× 4 · 104

Error (regime 1) 2.00e-4 2.94e-4
Error (regime 2) 6.00e-4 4.89e-5
CPU-time, sec. 34.96 8.94

Table 3.10: Comparison of the efficiency of the IFV and proposed method (FF).

highest refinement the values are as follows

IOS: 1.174888119,

LPI: 1.174888084.
(3.79)

Table 3.11 reveals the oncoming of our results to the values (3.79) as time step

decreases and space step is fixed including CPU-time.

As the study of the Greeks is an important issue in option pricing because they

show relevant properties of the price (see in [58], chapter 14), in Fig. 3.10 and 3.11

we focus in particular on two of the most used ones. The Delta and Gamma of the

option are presented at holding region for both regimes of option with parameters

(3.78) showing similar behaviour of Greeks as in [116].

In the last example we apply the proposed method to the four-regime case.

Numerical option values and optimal stopping boundaries are presented as well as

comparison with efficient recent results given in [70].

Example 3.2.4. The four-regime option is considered. The model parameters are
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3. FRONT-FIXING METHOD FOR SOME ADVANCED MODELS

µ Value CPU-time, sec.
1.56 1.1743801593 2.23
0.6 1.1748081977 3.88
0.5 1.1748742268 4.69

0.46 1.1748890632 4.94

Table 3.11: Option values at S = 10.0 in Regime 1 for various mesh ratios µ = k
h2

and spatial step h = 10−2.
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Figure 3.11: Gamma of option with
parameters (3.78) in both regimes.

chosen as

r =


0.02

0.10

0.06

0.15

 , σ =


0.9

0.5

0.7

0.2

 , Q =


−1 1

3
1
3

1
3

1
3
−1 1

3
1
3

1
3

1
3
−1 1

3
1
3

1
3

1
3
−1

 , T = 1, E = 9.

(3.80)

The numerical domain is truncated at the point xmax = 3, step sizes are as in
Example 1, h = 10−2, k = 10−4. The option price for every regime and optimal
stopping boundaries are presented on the Figures 3.12 and 3.13.

Comparison with penalty method [70] and tree method is presented in Table
3.12 by computing the numerical solution at several values of asset price S. It is
shown how close the results are.

The results of this section have been published in [43].
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3.2 Regime switching model

Figure 3.12: American put option price curves at τ = T for the four regime model
and its payoff.
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Figure 3.13: Optimal stopping boundary for the four regime American put option with
parameters (3.80).
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Regime Method S = 7.5 S = 9.0 S = 10.5 S = 12.0

1 FF-expl 3.1421 2.5563 2.1047 1.7524
ETD-CN 3.1513 2.5641 2.1113 1.7578

Tree 3.1433 2.5576 2.1064 1.7545
2 FF-expl 2.2313 1.5827 1.1406 0.8368

ETD-CN 2.2384 1.5884 1.1451 0.8404
Tree 2.2319 1.5834 1.1417 0.8377

3 FF-expl 2.6739 2.0559 1.6004 1.2614
ETD-CN 2.6813 2.0623 1.6057 1.2658

Tree 2.6746 2.0568 1.6014 1.2625
4 FF-expl 1.6573 0.9850 0.6546 0.4700

ETD-CN 1.6664 0.9903 0.6580 0.4725
Tree 1.6574 0.9855 0.6553 0.4708

Table 3.12: Comparison of American put option prices in a four-regime model
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CHAPTER

4
Behavioural modelling of

option pricing

American option gives the right to the owner to exercise it and receive the cor-
responding payoff. Irrational behaviour is frequent in market trading due to many
reasons such as emotional reactions or unperfect information ([36], [95] and [50]).
Empirical studies illustrate a lot of situations when irrational exercise takes place.
For example, in [36] the irrational exercise of S & P 100 call and put options is il-
lustrated, while [95] shows that the clients of discount brokers irrationally exercise
their calls too early, mainly in the case of less sophisticated investors. Sometimes,
the irrational exercise is related rely on specific circumstances around the global
investment position, for example when the American option is part of an hedging
strategy in which the optimal exercise rule results to be not optimal.

Recently, in [50] a new nonlinear Black-Scholes model that takes into account
irrational exercise behaviour is proposed. More precisely, the authors character-
ize the rationality of exercise of an American put option in terms of a rationality
parameter by means of an intensity based model for the valuation of the American
puts, so that the exercise decision occurs as the the first jump time of a process
with stochastic intensity. Thus, the exercise intensity depends on how profitable
is to exercise, i.e. the larger the difference between the payoff and the value of
the American put if not exercised the greater the exercise intensity. Thus, the ra-
tionality parameter accounts for the dependence of the exercise intensity in terms
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4. BEHAVIOURAL MODELLING OF OPTION PRICING

of the profitability. In [50], the authors provide a probabilistic proof of the ex-
istence of solution as well as of the convergence of the model to the solution of
the American put option in the rational case when the rational parameter tends
to infinity. Moreover, by using Feynmann-Kac theorem, the associated nonlinear
Black-Scholes model is posed.

In the present chapter we confirm numerically that the solution of the irrational
problem proposed in [50] for large values of rationality parameter tends to the solu-
tion of the rational American option problem. This technique has been successfully
applied to a regime switching model described in previous chapter.

We address the numerical approach of the solution of the nonlinear model for a
vanilla American put proposed in [50] as well as for a regime switching model. In
both cases we introduce a new boundary condition when the price of the underlying
asset tends to zero. Note that the classical boundary condition for zero underlying
price of the rational American option does not apply in the irrational case. Appro-
priate boundary conditions are specially required for the localization procedure to
confine the problem in a bounded domain as previous step to the use of numerical
techniques. Apart from the intensity functions proposed in [50], we introduce two
additional smooth intensity functions.

A proposed numerical solution is based on a θ-method for PDE discretization.
A transformation technique is used in order to take benefit of some numerical ad-
vantages. In fact, the PDE problem is transformed into a problem with constant
coefficients in diffusion, convection and reaction parts of the equation together with
a nonlinear term involving the intensity function. Positivity, stability and consist-
ency of the proposed methods are studied.

After addressing the stability analysis, some numerical examples illustrate the
expected order of convergence for the classical explicit, fully implicit and Crank-
Nicolson particular cases of the θ-method.

As departure point we assume the standard conditions of Black-Scholes model
and consider a risky asset, the price of which follows a geometric brownian motion
under risk neutral probability, so that the price at time t, St, satisfies the following
stochastic differential equation

dSt = r St dt + σ dWt, S0 given, (4.1)

where r denotes the constant risk-free interest rate, σ is the constant instantaneous
volatility of the asset andWt represents a standard Brownian motion. If we consider
an American put option with strike price E and maturity T on the previous asset,
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the exercise value at time t < T is given by (E − St)+, so that the arbitrage-free
value of the American put, PA

t = PA(t, St), can be characterized as the solution of
an optimal stopping time problem

PA
t = PA(t, St) = sup

t≤τ≤T
Et
[
exp(−r(τ − t))(E − Sτ )+

]
, (4.2)

where Et denotes the conditional expectation to time t in the risk-neutral prob-
ability measure. Thus, there exists an optimal stopping time, τ ∗, for which the
supremum is attained.

In [50], in order to model irrational exercise, the authors introduce the irrational
exercise rule, τ ∗, as the minimum of the terminal time, T , and the first jump time of
a point process with stochastic intensity (µt)0≤t≤T (see [15], for example). Next, in
terms of this family of intensity functions, a strictly positive rationality parameter,
λ, measuring the rationality of the behaviour of the American option owner, is
introduced. Moreover, if λ is the parameter of the family of intensity functions, fλ,
and we denote by τ ∗(λ) the associated exercise strategies, when λ tends to infinity
we recover the arbitrage free price of the American put (i.e. the one associated
to a fully rational exercise). If the exercise policy depends on how profitable is
to exercise, then the relation between profitability and stochastic exercise intensity
can be written in the form:

µt = f((E − St)− P (t, St; τ
∗)), (4.3)

where f : [−K,K]→ [0,+∞) denotes the intensity function and τ ∗ is the exercise
strategy. In Theorem 2 in [50], sufficient conditions for an index of a family of
intensity functions to be a rationality parameter are stated. Hereafter we recall the
theorem.

Theorem 4.0.3. Let (fλ)λ>0 be a family of positive deterministic intensity func-
tions. For each λ > 0, let the stochastic intensity process be given by

µλt = fλ((E − St)+ − P λ(t, St))),

where P λ(t, St) = P λ(t, St; τ
∗(λ) and τ ∗(λ) is the exercise strategy of the Amer-

ican put given as the first jump time of a point process with intensity µλ. Let
νλ(x) = 1(x<0) supy≤x f

λ(y) + 1(x≥0) supy≥x f
λ(y) and assume that

• νλ(0+)→∞ as λ→∞.
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4. BEHAVIOURAL MODELLING OF OPTION PRICING

• There exists a function ε : (0,∞) → (0,∞) such that νλ(−ε(λ))) → 0 and
ε(λ)νλ(0−)→ 0 as λ→∞.

Then λ is a rationality parameter in the sense that for every t ∈ [0, T ] we have
that P λ(t, St) tends to PA(t, St) when λ → ∞. Moreover, if fλ is increasing then
fλ = νλ.

Note that in the previous framework, the family of intensity functions fλ has
to be chosen so that λ satisfies the condition of rationality parameter. We first
consider the two cases proposed in [50] and we additionally propose two alternative
expressions.

The first choice is given by

fλ1 (x) =

{
λ, for x ≥ 0,

0, for x < 0;
(4.4)

while the second is
fλ2 (x) = λeλ

2x. (4.5)

Remark. In the first case, the family of intensity functions is related to the
application of the penalty method to the classical American put option problem.
Using this family it is certain that the buyer does not exercise when it is not prof-
itable. The second specification (4.5) allows that the buyer is not just affected by
whether it is profitable or not to exercise, but also by the amount of profit [50].

The proposed intensity functions are the smooth analogue of stepwise function
(4.4):

fλ3 (x) =
2λ

1 + e−λ2x
, (4.6)

fλ4 (x) = λ

(
1 +

2

π
arctanλ2x

)
. (4.7)

From the mathematical point of view, note that in the first case the functions are
discontinuous at zero, while in the second as well as in the case of new proposed
functions all derivatives are available at any point.
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4.1 Pricing of American option with rationality para-
meter
After stating some sufficient conditions to define a rationality parameter, several
steps are required to establish the nonlinear PDE model. If we consider the irra-
tional exercise rule, τ ∗, as the first jump time of a point precess with stochastic
intensity µt = α(St, t), α being a positive deterministic measurable function, then
the American put value is given by expression

P (St, t) = exp(−r(T − t))E
[
(E − St)+1(τ∗≥T )

]
+ Et

[
exp(−r(τ ∗ − t))(E − Sτ∗)+1(τ∗<T )

]
.

Next, by using Proposition 3.1 in [80], previous expression can be written in
the equivalent form

P (St, t) = exp(−r(T − t))Et
[
exp

(
−
∫ T

t

α(u, Su) du

)
(E − ST )+

]
+

∫ T

t

exp(−r(u− t))Et
[
α(u, Su) exp

(∫ u

t

α(v, Sv) dv

)
(E − Su)+

]
du.

For f : [−K,K] → [0,∞), we can define α(t, s) = f((E − s)+ − P (t, s)),
apply Feynman-Kac [68] and (in certain abuse of notation) consider τ = T − t as
time to maturity to obtain the following nonlinear Black-Scholes equation in the
unbounded domain Ω = (0,+∞)× (0, T ):

∂P

∂τ
=
σ2

2
S2∂

2P

∂S2
+ (r − q)S∂P

∂S
− rP + f

(
(E − S)+ − P

) (
(E − S)+ − P

)
,

(4.8)
jointly with the initial condition (provided by the put option payoff at maturity):

P (S, 0) = (E − S)+. (4.9)

Having in view a localization procedure to approximate the previous problem
by a problem posed in a bounded domain, next we consider the behaviour of the
American put option in the irrational exercise setting when S → 0 or S → ∞.
When S →∞, clearly the usual condition as in the rational case is maintained, so
that

lim
S→∞

P (S, τ) = 0. (4.10)
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4. BEHAVIOURAL MODELLING OF OPTION PRICING

However, when S → 0, the standard condition for American options, P (0, τ) =

E, is no longer valid in the irrational case, as prices bellow exercise price may occur
due to irrational exercise, which is more evident when the rationality parameter
tends to zero. The typical boundary condition for European options P (0, τ) =

Ee−rτ is not consistent with the equation for λ→ −∞, as the solution converges to
the one of the rational case of American options. Since equation (4.8) is nonlinear
and describes option pricing with rationality parameter, a new boundary condition
has to be established. Therefore, we propose to pass to the limit in equation (4.8)
when S → 0:

∂P

∂τ
(0, τ) = −rP (0, τ) + f (E − P (0, τ)) (E − P (0, τ)) .

The previous equation allows to adapt the option price when S = 0 according
to rationality of the holder.

For simplicity, let us consider the equivalent dimensionless formulation of the
problem:

∂u

∂τ
=
σ2

2
x2∂

2u

∂x2
+ (r − q)x∂u

∂x
− ru+ f

(
(1− x)+ − u

) (
(1− x)+ − u

)
(4.11)

with the initial condition
u(0, x) = (1− x)+, (4.12)

with boundary conditions
lim
x→∞

u(x, τ) = 0, (4.13)

∂u

∂τ
(0, τ) = −ru(0, τ) + f (1− u(0, τ)) (1− u(0, τ)) . (4.14)

Initial values are found from the following formula

P (S, τ) = Eu(x, τ), S = Ex.

It is well known that a closed form solution for the classical American option
pricing problem with rational exercise cannot be obtained, so that a wide variety of
numerical methods to approximate the option price have been proposed in the liter-
ature. In the irrational exercise case, the nonlinear Black-Scholes problem defined
by equations (4.11)-(4.14) is posed, so that the analytical expression of the solution
for a general intensity function f is not available and we also require the use of
numerical methods.
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4.1.1 Numerical solution with irrational exercise
In the present section, we propose finite differences techniques for the discretiza-
tion of the problem defined by equations (4.11) - (4.14). As the problem is initially
posed in an unbounded domain, a first step is to approximate it by a bounded do-
main with appropriate boundary conditions, so that this localization does not affect
the numerical solution in the region of financial interest. Following the ideas in
[66] for European vanilla options, we truncate the domain in the original finan-
cial variables by using the finite upper value Smax = 3E in the asset direction.
Thus, the computational domain in the new variables for the problem (4.11)-(4.12)
is [0, T ] × [0, 3] equipped with a uniform grid with constant step sizes ∆s = 3

M

and ∆τ = T
N

in the ”space” and time directions respectively. Nodes of the grid are
denoted as follows

sj = j∆s, 0 ≤ j ≤M ; τn = n∆τ, 0 ≤ n ≤ N.

Let us denote unj ≈ u(sj, τ
n), then in terms of the parameter θ ∈ [0, 1], the so

called θ-method can be written in the form

un+1
j − unj

∆τ
=
σ2

2
s2
j

[
θ
unj+1 − 2unj + unj−1

∆s2
+ (1− θ)

un+1
j+1 − 2un+1

j + un+1
j−1

∆s2

]
+

(r − q)sj

[
θ
unj+1 − unj−1

2∆s
+ (1− θ)

un+1
j+1 − un+1

j−1

2∆s

]
−

r
[
θunj + (1− θ)un+1

j

]
+
[
θfnj + (1− θ)fn+1

j

]
,

1 ≤ j ≤M − 1, 0 ≤ n ≤ N − 1,

(4.15)

where fnj = f
(
αnj
)
αnj , with

αnj = (1− sj)+ − unj .

Note that for θ = 1 the scheme (4.15) corresponds to the explicit one, for
θ = 0.5 it is known as Crank-Nicolson scheme and for θ = 0 the scheme becomes
the fully implicit one.

The boundary condition (4.14) is approximated by a forward in time difference.
Therefore, the values at the boundary points at each time step are computed as
follows

un+1
M = 0, (4.16)

un+1
0 = (1− r∆τ)un0 −∆τfn0 . (4.17)
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The system of equations (4.15) for j = 1, . . . ,M − 1 jointly with boundary
values (4.16)-(4.17) is a closed nonlinear system. We propose the use of Newton’s
method to solve it numerically. For simplicity, we present the scheme (4.15) by
using a vector form. Thus, let us introduce the following vectors of the coefficients,
j = 1, . . . ,M − 1:

aj =(1− θ)
[
(r − q)sj

∆τ

2∆s
− σ2

2
s2
j

∆τ

∆s2

]
,

bj =1 + (1− θ)
[
σ2s2

j

∆τ

∆s2
+ r∆τ

]
,

cj =− (1− θ)
[
(r − q)sj

∆τ

2∆s
+
σ2

2
s2
j

∆τ

∆s2

]
;

ãj =− θ
[
(r − q)sj

∆τ

2∆s
− σ2

2
s2
j

∆τ

∆s2

]
,

b̃j =1− θ
[
σ2s2

j

∆τ

∆s2
+ r∆τ

]
,

c̃j =θ

[
(r − q)sj

∆τ

2∆s
+
σ2

2
s2
j

∆τ

∆s2

]
.

Then, the scheme (4.15) can be presented in the following vector form:

AUn+1−∆τ(1−θ)F (Un+1) = BUn+∆τθF (Un)+
(
ã1u

n
0 − a1u

n+1
0

)
I1, (4.18)

where A and B are the tridiagonal matrices with coefficients:

A =


b1 c1 0 0 . . . 0 0
a2 b2 c2 0 . . . 0 0
. . . . . . . . . . . . . . . . . . . . .
0 0 0 0 . . . aM−1 bM−1

 ,

B =


b̃1 c̃1 0 0 . . . 0 0

ã2 b̃2 c̃2 0 . . . 0 0
. . . . . . . . . . . . . . . . . . . . .
0 0 0 0 . . . ãM−1 b̃M−1


and we use the column vectors Un = {unj }, F (Un) = {fnj }, I1 = [1, 0, . . . , 0].

Vector equation (4.18) can be rewritten in the form G = 0, where the vector G
is the difference between left and right hand sides of (4.18).
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Newton’s method for the nonlinear fully discretized problem
At each time step of the finite differences algorithm we have to compute Un+1,

as the solution of nonlinear system:

G(Un+1) = AUn+1−∆τ(1−θ)F (Un+1)−BUn−∆τθF (Un)−
(
ã1u

n
0 − a1u

n+1
0

)
I1 = 0.

We approximate the solution by using Newton’s iterative method. As initial guess,
we take the numerical solution computed at the previous time level, i.e. Un+1

0 =

Un. Then, at step i of Newton algorithm, for a previously computed value of Un+1
i ,

the values of G(Un+1
i ) and its Jacobian, JG(Un+1

i ), have to be computed.
Note that from (4.18) the Jacobian is given by

JG(Un+1
i ) = A−∆τ(1− θ)JF (Un+1

i )).

Since A is the matrix of constant components, the main difficulty is computa-
tion of Jacobian JF (Un+1

i ). Note that when function f belongs to the family given
by (4.4), it is not differentiable at the point α = 0. We suppose that the function
has finite derivative at this point, therefore the diagonal components of Jacobian
JF (Un+1

i ) take form for every component j = 1, . . . ,M − 1

JF (Un+1
i )j,j =

∂Fj
∂uj

= −f ′(αn+1
j )αn+1

j − f(αn+1
j ) = −f(αn+1

j ),

since at the point α = 0 the derivative is finite, but multiplied by α, and the
derivative f ′(α) = 0 for all α 6= 0.

Note that here αj = (1− sj)+ − un+1
j , where un+1

j is j-th component of vector
Un+1
i .

If the function f belongs to the family (4.5), then the Jacobian is a diagonal
matrix of elements:

JF (Un+1
i )j,j = −f(αn+1

j )
[
λ2αn+1

j + 1
]
.

If the function f belongs to the family (4.6), then

JF (Un+1
i )j,j = −f(αn+1

j )

[
1 + λ2αn+1

j

e−λ
2αn+1
j

1 + e−λ
2αn+1
j

]
.

Finally, if function f is described by expression (4.7), then the Jacobian takes
the following form

JF (Un+1
i )j,j = −f(αn+1

j )−
2λ3αn+1

j

π
(
1 + (λ2αn+1

j )2
) .
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In order to obtain the next iteration the following linear system has to be solved:

JG(Un+1
i )

(
Un+1
i+1 − Un+1

i

)
= −G(Un+1

i ).

Since JG(Un+1
i ) is tridiagonal matrix, Thomas algorithm is used without storing

the full matrix JG(Un+1
i ) but only its nonzero components in three vectors. The

algorithm stops when norm of increment ∆Un+1
i+1 = Un+1

i+1 −Un+1
i is below a certain

prescribed tolerance.
The qualitative properties of the scheme can be improved by transforming the

original equation. In the following section we propose logarithmic transformation
that allows to construct numerical scheme with constant coefficients.

4.1.2 Transformation and explicit finite difference method
We introduce new variable

x = ln
S

E
.

Then the original problem is transformed to the following for x ∈ R:

∂u

∂τ
=
σ2

2

∂2u

∂x2
+

(
r − q − σ2

2

)
∂u

∂x
−ru+f

(
E(1− ex)+ − Eu

) (
(1− ex)+ − u

)
(4.19)

with the initial condition
u(0, x) = (1− ex)+. (4.20)

with boundary conditions
lim
x→∞

u(x, t) = 0, (4.21)

lim
x→−∞

∂u

∂τ
(τ, x) = lim

x→−∞
(−ru(τ, x) + f (E(1− u(τ, x))) (1− u(τ, x))) .

(4.22)
Initial values are found from the following formula

P (τ, S) = Eu(τ, x), S = Eex.

Numerical solution has to be found on unbounded domain (−∞,∞) × [0, T ].
Computational domain is truncated as [xmin, xmax] × [0, T ]. Let us introduce uni-
form grid {xj, τn} with steps h = xmax−xmin

Nx
and k = T

Nτ
for chosen Nx and Nτ

correspondingly such that

xj = xmin + jh, j = 0, . . . , Nx,

τn = nk, n = 1, ..., Nτ .
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Let us denote unj ≈ u(xj, τ
n), then explicit finite difference scheme can be

written in the form

un+1
j − unj
k

=
σ2

2

unj+1 − 2unj + unj−1

h2
+

(
r − q − σ2

2

)
unj+1 − unj−1

2h
−

runj + fnj α
n
j , 1 ≤ j ≤ Nx − 1, 0 ≤ n ≤ Nτ − 1,

(4.23)

where fnj = f
(
Eαnj

)
αnj and αnj = (1− exj)+ − unj .

The boundary condition (4.22) is approximated by a forward in time difference.
Therefore, the values at the boundary points at each time step are computed as
follows

un+1
Nx

= 0, (4.24)

un+1
0 = (1− rk)un0 + kfn0 . (4.25)

Formula (4.23) for j = 1, . . . , Nx − 1 jointly with boundary values (4.24)-
(4.25) define the proposed explicit scheme. Next, let us introduce the following
coefficients

b1 =
σ2

2

k

h2
−
(
r − q − σ2

2

)
k

2h
,

b2 =1−
(
σ2 k

h2
+ rk

)
,

b3 =
σ2

2

k

h2
+

(
r − q − σ2

2

)
k

2h
.

(4.26)

Then, formula (4.23) can be presented in the following form:

un+1
j = b1u

n
j−1 + b2u

n
j + b3u

n
j+1 + kfnj , j = 1, . . . , Nx − 1. (4.27)

In the following sections some qualitative properties of the proposed numerical
scheme defined by (4.27) are studied.

4.1.3 Properties of intensity function and solution
Lemma 4.1.1. The intensity functions defined by (4.4)-(4.7) are non-decreasing
and satisfy

max
α

f(α) = f(αmax),

where α is difference between payoff and current option price.
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4. BEHAVIOURAL MODELLING OF OPTION PRICING

Proof. The intensity function f1 is piecewise constant non decreasing function.
Exponential functions f2 and f3 are increasing for positive parameter λ. The first
derivative of f4 is as follows

f ′4(α) =
2λ3

π (1 + (λ2α)2)
> 0,

and function f4 is increasing.

For x ≥ 0, the payoff is zero and α < 0. For x < 0, we can obtain positive
values of α.

Now we prove that values at the left boundary do not exceed 1 for any time
level and every intensity function. Let us introduce boundary function

b(u) = (1− rk)u+ kf(E(1− u))(1− u), 0 < u < 1.

Firstly, let us consider function f1. For u ∈ (0, 1) argument of function f is
positive and f(E(1− u)) = λ. Thus,

b′(u) = 1− (r + λ)k = 0, if k =
1

r + λ
.

Therefore, function b is monotone on (0, 1) for rest k and its values are bounded

0 ≤ b(u) ≤ max{kλ, 1− rk}.

In order to guarantee that b(u) ≤ 1 the following condition is found

k ≤ k1 =
1

r + λ
. (4.28)

For function f2 the analogous procedure gives the condition k ≤ k2, where k2

satisfies the equation
k2

(
r + λeλ

2rk2
)

= 1. (4.29)

By the same procedure for f3 one can find that b(u) is increasing function for

k ≤ k3 =
1

r + 2λ
, (4.30)

For f4 this conditions takes the following form

k ≤ k4 =
1

r + λ+ 2
πEλ

. (4.31)
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4.1 Pricing of American option with rationality parameter

Thus, maximum of b(u) is reached at the point u = 1:

b(1) = 1− rk ≤ 1.

Summarizing previous comments the following result has been established.

Lemma 4.1.2. With the previous notation, for each intensity function fi, i =

1, 2, 3, 4 defined by (4.4)-(4.7) correspondingly, there exists constant ki > 0 given
by (4.28)-(4.31) correspondingly, such that at boundary point x = 0 the approxim-
ation provided by formula (4.17) does not exceed one for k < ki, that is:

un0 ≤ 1, ∀n ≤ N.

The following lemma establishes a bound of the difference between the solution
at any time level and the transformed payoff function for a fixed mesh point xj , 0 ≤
j ≤ M , that will be useful for the study of qualitative properties of the proposed
method.

Lemma 4.1.3. With the previous notation, the following estimation holds:

max
j,n

(
u0
j − unj

)
≤ r

r + λ

(
1− e−(r+λ)T

)
. (4.32)

Proof. We consider the region x < 0, because only in this region the positive
argument of intensity function appears.

One can see that un0 − unj ≤ 1− u0
j for any fixed n and for any j. Therefore for

any fixed n the following equality takes place

max
j

(
u0
j − unj

)
= u0

0 − un0 .

Thus, the boundary condition (4.17) is used. Firstly, f1 is considered. The
boundary condition (4.14) can be solved as ODE and its solution has the following
form:

u(τ) =
λ+ r exp (−(r + λ)τ)

r + λ
,

therefore for any fixed n

u0
0 − un0 =

r

r + λ

(
1− e−(r+λ)nk

)
≤ r

r + λ

(
1− e−(r+λ)T

)
.
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4. BEHAVIOURAL MODELLING OF OPTION PRICING

Now let us check this estimation for other intensity functions. From the defini-
tion of f2 and boundary condition (4.17) one gets

un+1
0 = (1− rk)un0 + kλeλ

2E(1−un0 )(1− un0 ) ≤ (1− rk)un0 + kλ(1− un0 ),

if un0 ≤ 1, that is logical condition that the option price could not exceed strike
price. Thus, if we denote the corresponding approximation associated to f1 by ũn0 ,
then one gets

u0
0 − un0 ≤ u0

0 − ũn0 ≤
r

r + λ

(
1− e−(r+λ)T

)
.

Analogous technique is used for f3 and f4, since both of them take values
greater than λ for positive arguments. Therefore, for any considered intensity func-
tion the estimation (4.32) holds true.

Then, from the previous lemma we have

max
α

f(α) ≤ f

(
r

r + λ
(1− e−(r+λ)T )

)
.

Since we are interested in the value of intensity function for large values of the
parameter λ, the following lemma states an asymptotic equivalence between λ and
the intensity function fi when λ tends to infinity.

Lemma 4.1.4. From the specification of intensity functions, for any positive argu-
ment α and for λ→∞

fi(α) ∼ λ, i = 1, 3, 4.

More precisely,

lim
λ→∞

f1(α)

λ
= 1, lim

λ→∞

f3(α)

λ
= lim

λ→∞

f4(α)

λ
= 2.

Proof. For positive argument α > 0

lim
λ→∞

f1(α)

λ
= lim

λ→∞

λ

λ
= 1.

For the third function:

lim
λ→∞

f3(α)

λ
= lim

λ→∞

2

1 + e−λ2x
= 2.
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4.1 Pricing of American option with rationality parameter

For the fourth function:

lim
λ→∞

f4(α)

λ
= lim

λ→∞

(
1 +

2

π
arctanλ2x

)
= 2

(
1 +

2

π

π

2

)
= 2.

Remark. Note that for the second intensity function:

lim
λ→∞

f2(α)

λ
= lim

λ→∞
eλ

2x =∞.

After all these properties of the intensity functions, the following theorem can
be established.

Theorem 4.1.1. There exists positive constant C such that the rationality term of
intensity functions f1, f3 and f4 in equation (4.19) is bounded by rC:

f(α)α ≤ rC.

Proof. If argument α < 0, the intensity function tend to zero and product f(α)α

is negative. The product is zero for α = 0. For α > 0, from Lemma 4.1.1 the
following estimation holds:

f(α)α ≤ f(αmax)αmax,

where, from Lemma 4.1.3, we have

αmax = max
j,n

(
u0
j − unj

)
=

r

r + λ

(
1− e−(r+λ)T

)
.

Note that
lim
λ→∞

(
1− e−(r+λ)T

)
= 1.

Thus, using result of Lemma 4.1.4, we obtain

lim
λ→∞

f(αmax)αmax = lim
λ→∞

c
λr

r + λ
= rc,

where c = 1 for f1, and c = 2 for f3 and f4.
Therefore, there exists a constant C ≥ c, such that

f(α)α ≤ rC.

111



4. BEHAVIOURAL MODELLING OF OPTION PRICING

Note that under conditions

h <
σ2∣∣r − q − σ2

2

∣∣ , k <
h2

σ2 + rh2
, (4.33)

the coefficients b1, b2 and b3 defined in (4.26) are positive.
Furthermore, the term kfnj in (4.27) is non-negative from its definition. There-

fore, since the initial condition is non-negative, the values calculated by (4.27) are
also non-negative.

In order to prove the monotonicity of the numerical solution, the mathematical
induction principle can be used. At the initial time level, from (4.12) the decreasing
behaviour of the solution is clear. Now, let us assume that at the n-th time level the
monotonicity holds, i.e.

unj ≥ unj+1, 0 ≤ j < Nx.

Next, let us prove that it holds true for n+ 1 under the explicit scheme:

un+1
j − un+1

j+1 = b1(unj−1 − unj ) + b2(unj − unj+1) + b3(unj+1 − unj+2) + k(fnj − fnj+1).

(4.34)
Since the coefficients b1, b2 and b3 are non-negative under conditions (4.33), by

using hypothesis of induction we prove that the first three terms of the right hand
side in (4.34) are non-negative.

4.1.4 Stability and consistency
Let us study stability of the scheme (4.27). For this purpose, we first choose the
minimum index m, such that un+1

m = ||un+1||. Note that if m = 0 or m = Nx, then
the scheme is stable by the definition.

Since the boundary condition µ1 is also obtained from a discretization of a PDE,
let us study it. From the economical considerations, the value un0 could not exceed
1 (the option price could no be higher than payoff).

Suppose that index 1 ≤ m ≤ Nx − 1, then

|un+1
m | = |b1u

n
m−1 + b2u

n
m + b3u

n
m+1 + kfnm|.

Since all coefficients are positive, then

|b1u
n
m−1 + b2u

n
m + b3u

n
m+1| ≤ (1− rk)||un||.
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4.1 Pricing of American option with rationality parameter

The connection between (n+ 1)-th and n-th level is obtained:

||un+1|| = |un+1
m | ≤ ||un||+ k||fn||. (4.35)

Let us present the solution u = y + v, where y is a solution of the problem
without rationality term (f ≡ 0), v is a solution of the problem with homogeneous
boundary conditions (µ1 ≡ 0). Then, using estimation (4.35) one gets

||yn+1|| ≤ max

{
max

0≤i≤N
|µi1|, ||yn||

}
≤ ... ≤ max

{
max

0≤i≤N
|µi1|, ||y0||

}
.

On the other hand, we have

||vn+1|| ≤ ||vn||+ k||fn|| ≤ ... ≤ T max
0≤i≤N

||f i||.

Thus, we obtain

||un|| ≤ ||yn||+ ||vn|| ≤ max

{
max

0≤i≤N
|µi1|, ||u0||

}
+ T max

0≤i≤N
||f i||,

Therefore, under conditions (4.33), the scheme (4.27) is stable.

Assuming that u(x, τ) is continuously differentiable four times with respect to
x and twice with respect to τ and following the procedure of consistency study, one
finds that the truncation error behaves

T nj (ũ) = O(h2) +O(k).

4.1.5 Numerical examples
In the first example we consider a case with q = 0, so that the underlying asset does
not pay a dividend yield. The rest of the parameters are taken from an example in
[103] where the classical American put with rational exercise is numerically solved.
This choice allows as certain comparisons of the limit problem when the rationality
parameter tends to infinity with some results in the literature.

Example 4.1.1. We consider American option pricing problem with the following
parameters

r = 0.05, σ = 0.2, T = 3, E = 100.
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λ 90 100 110 120
0 10.2394 6.9940 4.70856 3.1369
1 12.1122 7.9539 5.2086 3.4015

10 13.1528 8.6018 5.6071 3.6447
100 13.2905 8.6981 5.6734 3.6898

1000 13.3047 8.7082 5.6806 3.6948
10000 13.3064 8.7097 5.6819 3.6961

Rational case 13.3075 8.7106 5.6825 3.6964

Table 4.1: Convergence to the true value with increasing λ for family (4.4) for fixed
h = 10−2, k = 10−4.

Using the notation τ for the time to maturity, for the explicit, implicit and
Crank-Nicolson methods the numerical solutions at τ = T with step sizes h = 10−2

and k = 10−4 are compared with explicit methods after transformation (TrExpl)
presented in Figures 4.1 and 4.2, for the intensity functions (4.4) and (4.5), re-
spectively. In both cases the rationality parameter is λ = 100. Note that with this
value of the parameter the qualitative behaviour seems very close to the classical
American put with rational exercise.

By using the explicit scheme for the transformed equation, the dependence of
the solution with respect to the rational parameter λ with family (4.4) and (4.5)
for different asset prices is illustrated in Table 4.1 and 4.2 respectively. Results of
families (4.6) and (4.7) are close to results in Table 4.1. It can be explained by
fact that these two families od intensity functions are smooth analogue of functions
described by (4.4). One can see that choosing family (4.5) brings near to rational
case for smaller rationality parameter. On other hand, in this case condition (4.29)
does not allow to take λ > 100 for fixed h = 10−2 and k = 10−4. Additionally,
the convergence of the proposed treatment of irrational exercise case to the clas-
sical American put value confirms that λ fulfils the requirement of the definition of
rational parameter.

Additionally, in Figure 4.3 for family (4.5) and different values λ the American
put option price is shown. Note that the case λ = 0 corresponds to the European
option, while λ = 1 corresponds to a near zero rationality parameter which can be
understood as a case with large irrational exercise and the value of the American
put option is below the exercise value for small values of the asset. This situation
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4.1 Pricing of American option with rationality parameter

λ 90 100 110 120
0 10.2394 6.9940 4.70856 3.1369
1 12.5589 8.0809 5.1107 3.1409
10 13.2911 8.6972 5.6711 3.6861

100 13.3063 8.7093 5.6813 3.6953
Rational case 13.3075 8.7106 5.6825 3.6964

Table 4.2: Convergence to the true value with increasing λ for family (4.5) for fixed
h = 10−2, k = 10−4.

maybe caused by additional circumstances that prevent the owner to exercise, al-

though the option price is bellow exercise prices. For λ = 100 the large value of

the rational parameter makes the solution to be like in the rational exercise case.
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Figure 4.1: Numerical solution the
intensity function belonging to family
(4.4) with λ = 100 for various values
of θ.
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Figure 4.2: Numerical solution the
intensity function belonging to family
(4.5) with λ = 100 for various values
of θ.

As indicated in [50], the family of intensity functions (4.5) allows that the owner

of the American option may exercise too early or too late. Moreover, in the proof

of the main theorem they develop a probabilistic analysis of the irrational exercise

strategies. For this purpose, they classify how profitable an exercise strategy results
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Figure 4.3: Numerical solution for the intensity function belonging to family (4.5) for
various values of λ.

upon exercise. Thus, for a given tolerance ε, they introduce the following sets:

{τ good} = {(1− xτ )+ − u(xτ , τ) > 0},
{τ ok} = {(1− xτ )+ − u(xτ , τ) ∈ (−ε, 0]},
{τ bad} = {(1− xτ )+ − u(xτ , τ) ≤ −ε}.

Note that if the exercise time was good, the holder of the American option looses
some value due to irrational exercise. If the exercise time was ok, the owner would
win at most the value ε. Finally, if the exercise time was bad, then the holder gains
more than ε. Moreover, for a given threshold ε the intensity of exercising at bad
times can be make arbitrarily uniformly small by decreasing the rationality para-
meter and the gain from regretting the exercises when τ is bad can be made arbit-
rarily small. In relation with this issue, in Figures 4.4 and 4.5 the option price with
rationality parameters λ = 1 and λ = 1000, respectively, are presented. Further-
more, a colour code has been introduced to identify the good (green), ok (yellow)
and bad (red) exercise strategies for a given tolerance ε = 10−3.

At this point it seems noteworthy to illustrate an additional use of the solution of
American pricing problems with irrational exercise. For this purpose, we first recall
that the definition of rational parameter requires that when λ tends to infinity, the
irrational case tend to the rational one, which corresponds to the classical American
option pricing problem. Therefore, for large values of λ the numerical solutions
of the problems with the previously proposed intensity functions can be used as
alternatives to approximate the solution of the classical American option problem.
In fact, for the case of intensity function f1 we obtain the classical penalization
technique to approximate the free boundary problem with unilateral constraint.
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Figure 4.4: Option price with λ = 1.

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

80

90

100

Asset price S

O
pt

io
n 

pr
ic

e 
P

(S
,T

)

 

 
Payoff
good
ok
bad

Figure 4.5: Option price with λ =

1000.

In the literature there exist many numerical methods for the American option
pricing problem. In Table 4.3 a comparison of some different techniques in the
literature is presented. In accordance with [103], the method of Leisen and Reimer
[81] with 15001 steps is used as a ”True value”. We denote by B & S the Brennan
and Schwartz algorithm [16]; Penalty is the penalty method described by Forsyth
and Vetzal in [48]; operator splitting method is denoted by OS; the front-fixing
explicit method proposed by Company et. al. in [24] is denoted by FF; Han Wu
is the method that uses accurate artificial boundary conditions described in [54];
OCA is an abbreviation for optimal compact algorithm proposed by Tangman et.
al. in [103]. The number of time steps for all methods is chosen to N = 600 and
M = 600 is the number of spatial steps.

The analogous approximated results using the intensity functions approxima-
tions are shown in Table 4.4 with rationality parameter λ = 104. In all cases an
explicit finite difference method with transformation has been used with the same
number of space steps M and N is chosen to guarantee the stability of the method
and M × N = 3.6 · 105. Note that these approximations are in good agreement
with the limit problem corresponding to the rational case (”True” column in both
tables) and also they result competitive with the ones provided by the alternative
techniques for American options illustrated in Table 4.3.

Example 4.1.2. In the present example we illustrate the different convergence rates
of the proposed methods. Let us consider the problem (4.11) with parameters:

r = 0.05, σ = 0.2, q = 0.02, T = 1, E = 100.
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S True B&S Penalty OS FF Han Wu OCA
80 20.2797 20.2793 20.2793 20.2795 20.2793 20.2803 20.2798
90 13.3075 13.3072 13.3071 13.3074 13.3074 13.3075 13.3076

100 8.7106 8.7102 8.7100 8.7104 8.7104 8.7103 8.7106
110 5.6825 5.6822 5.6820 5.6824 5.6823 5.6823 5.6825
120 3.6964 3.6961 3.6960 3.6963 3.6963 3.6965 3.6964

RMSE 3.435-4 4.669-4 1.4832-4 2.297-4 3.162-4 6.325-5
CPU-time, sec. 10.05 25.67 11.91 4.62 4.72 2.20

Table 4.3: Comparison of different methods for the American option with rational
exercise (classical problem).

S True f1(α) f2(α) f3(α) f4(α)

80 20.2797 20.2799 20.2799 20.2802 20.2801
90 13.3075 13.3073 13.3072 13.3074 13.3073

100 8.7106 8.7102 8.7101 8.7103 8.7102
110 5.6825 5.6822 5.6821 5.6823 5.6821
120 3.6964 3.6963 3.6962 3.6964 3.6962

RMSE 2.683-4 3.406-4 2.793-4 3.347-4
CPU-time, sec. 0.86 0.86 1.15 1.01

Table 4.4: Comparison of the approximations with large rationality parameter (λ =

104) and a rational case reference approximation.
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4.1 Pricing of American option with rationality parameter

λ = 104 λ = 1

γh γk γh γk

Explicit 1.9944 1.0004 1.9567 1.0001
Implicit 1.9949 0.9997 1.9537 0.9992

Crank-Nicolson 1.9947 1.8465 1.9548 1.6307
Transform+Explicit 2.0235 1.0008 2.0044 1.0001

Table 4.5: Spatial and temporal convergence rates of explicit, implicit and Crank-
Nicolson schemes for λ = 104 and λ = 1.

Since the exact solution of the problem is not analytically available, formula
(1.22) is used for the estimation of the convergence rate in space, γh. We have
provided a series of numerical results with fixed k = 2 · 10−5 and h = 2 · 10−2,
h/2 = 10−2 and h/4 = 5 · 10−3. The convergence rate γh has been calculated by
formula 1.22 for explicit, implicit and Crank-Nicolson schemes. The results are
collected in Table 4.5, thus showing the expected orders for the approximation of
the rational case (λ = 104) and the irrational exercise case (λ = 1).

Analogous to (1.22) formula is used in order to estimate the convergence rate
in time, γk, for a fixed space step h. The space step is h = 5 · 10−3, time steps are
k = 2 · 10−5, k/2 = 10−5, k/4 = 5 · 10−6. The convergence rates γk of explicit,
implicit and Crank-Nicolson methods are presented in Table 4.5.

As expected, the explicit and implicit methods are of order O(h2, k) while
Crank-Nicolson method is of order O(h2, k2).

Another important characteristic of the algorithms concerns to the required
computational time. We compare the explicit method for the transformed equa-
tion with the different θ-methods for the problem in the original variables. The
space step is fixed to h = 10−2 and the time step is variable. The results are presen-
ted in Table 4.6, which shows as expected that explicit methods are conditionally
stable and for k = h = 10−2 result to be unstable. Note that although for k = 10−3

the explicit method for the problem in original variables is still unstable, after the
transformation the stability condition for explicit scheme becomes weaker and the
so called ”Transform+Explicit” method exhibits an stable behaviour and involves
almost the same computational time as the implicit methods for k = 10−2. Thus,
the proposed transformation allows to construct a faster algorithm with a weaker
stability condition.
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k 10−2 10−3 10−4 10−5

Explicit - - 1.8720 19.4221
Crank-Nicolson 0.0624 0.3120 2.8080 27.7058

Implicit 0.0312 0.2496 2.6364 26.8009
Transform+Explicit - 0.0780 0.7176 6.4584

Table 4.6: CPU-time in seconds of proposed methods for fixed h = 10−2 and various
k.

Example 4.1.3. A problem with a dominant convection term is considered. For this
purpose, the parameters are chosen as follows

r = 0.10, σ = 0.1, q = 0, T = 1, E = 100. (4.36)

In this case, coefficient b1 is negative. Moreover, for the intensity function (4.4)
the rationality parameter λ = 100 is chosen. In Figures 4.6 and 4.7 the numerical
solution for h = k = 10−2 is shown on the left, while for k = h2 = 10−4 is
presented on the right.
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Figure 4.6: Oscillations of the solution
of the problem with parameters (4.36)
and h = 10−2, k = 10−2.
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Figure 4.7: Stable numerical solution
of the problem with parameters (4.36)
with h = 10−2, k = 10−4.

The results of this section have been published in [25].
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4.2 Regime switching model with rationality parameter
For an intensity function f : [−E,E] → [0,∞) in the regime switching setting
we assume that the relation between the profitability and the stochastic exercise
intensity is f((E−S)+−Vi(S, τ)) for each regime. After incorporating this term to
the system of PDEs satisfied by the option price in describing the regime switching
model (3.31)-(3.35) one gets for i = 1, . . . , I one obtains

∂Vi
∂τ

=
σ2
i

2
S2∂

2Vi
∂S2

+ riS
∂Vi
∂S
− riVi + f

(
(E − S)+ − Vi

) (
(E − S)+ − Vi

)
+
∑
l 6=i

qi,l(Vl − Vi), S > 0, 0 < τ ≤ T,

(4.37)

for i = 1, . . . , I , jointly with the initial and boundary conditions:

Vi(S, 0) = max(E − S, 0), (4.38)

lim
S→∞

Vi(S, τ) = 0, (4.39)

∂Vi
∂τ

(0, τ) = −riVi(0, τ) + f (E − Vi(0, τ)) (E − Vi(0, τ))

+
∑
l 6=i

qi,l(Vl(0, τ)− Vi(0, τ)), i = 1, . . . , I. (4.40)

Note that since the spatial domain is S > 0 in rationality parameter model,
an additional boundary condition at the point S = 0 has to be included to treat
the problem numerically. We assume that the PDE (4.37) holds at S = 0, so that
equation (4.40) is established.

Since a closed form solution is not available for the nonlinear system of equa-
tions (4.37)-(4.40), the solution has to be computed numerically. This section be-
gins with a suitable substitution transforming the original PDE problem into a new
one with constant coefficients in the differential part. After this a wide family of
finite difference methods, known as weighted schemes [101], are developed. Rel-
evant numerical analysis issues as positivity, stability and consistency are studied.

For the sake of clarity, let us recall some results in matrix analysis.
A matrix B = (bij) ∈ Rm×n is a non-negative matrix, if bij ≥ 0 for 1 ≤ i ≤ m,

1 ≤ j ≤ n.

121



4. BEHAVIOURAL MODELLING OF OPTION PRICING

For any square matrix B ∈ Rn×n the maximum of the moduli of its eigenvalues
is called spectral radius ρ(B). The n× n identity matrix is denoted by I .

A n × n matrix B is called an M-matrix if it can be expressed in the form
B = sI − B̃, where B̃ = (b̃ij) with b̃ij ≥ 0, and s ≥ ρ(B̃). A matrix B is a non-
singular M-matrix if and only if it is inverse-positive, that isB−1 ≥ 0 (see statement
F15 in [93]). Matrix B having all positive diagonal elements is a M-matrix if there
exists a positive diagonal matrix D, such that BD is strictly diagonally dominant
(see statement N39 in [93]).

4.2.1 Weighted finite difference scheme for PDE problem
In order to construct an effective finite difference scheme with constant coefficients
in the differential part, let us introduce the following normalized transformation

x = ln
S

E
, ui =

Vi(S, τ)

E
, i = 1, . . . , I.

Then, problem (4.37)-(4.40) takes the following equivalent form:

∂ui
∂τ

=
σ2
i

2

∂2u

∂x2
+

(
ri −

σ2
i

2

)
∂ui
∂x
− riui +

∑
l 6=i

qi,l(ul − ui)

+ f
(
E(1− ex)+ − Eui

) (
(1− ex)+ − ui

)
, i = 1, . . . , I,

(4.41)

with the new initial and boundary conditions

ui(x, 0) = (1− ex)+, (4.42)

lim
x→∞

ui(x, τ) = 0, (4.43)

lim
x→−∞

∂ui
∂τ

(x, τ) = lim
x→−∞

−riui(x, τ)

+ f (E(1− ui(x, τ))) (1− ui(0, τ)) (4.44)

+
∑
l 6=i

qi,l(ul(x, τ)− ui(x, τ)).

The bounded computational domain is chosen as [xmin, xmax] × [0, T ], where
xmin = −3, xmax = 3, that is sufficiently large to translate limit conditions (4.43)
and (4.44) into boundary conditions at x = xmin and x = xmax, respectively. A
uniform grid of M + 1 spatial nodes and N + 1 temporal nodes is introduced with
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4.2 Regime switching model with rationality parameter

step sizes h = xmax−xmin
M

and k = T
N

, respectively. The nodes are denoted as
follows

xj = xmin + jh, j = 0, . . . ,M, τn = nk, n = 0, . . . , N.

For each regime i = 1, . . . , I , the finite differences approximation of the solu-
tion at the node (xj, τ

n) is denoted by uni,j . Then, the weighted finite difference
scheme with parameter θ ∈ [0, 1], by using central differences in space and for-
ward difference in time takes the following form

−θaiun+1
i,j−1 + biu

n+1
i,j − θciun+1

i,j+1 = (1− θ)aiuni,j−1 + b̃iu
n
i,j + (1− θ)ciuni,j+1

+kfni,j
(
u0
i,j − uni,j

)
+ k

∑
l 6=i

qi,l(u
n
l,j − uni,j), j = 1, . . . ,M − 1, n = 0, ..., N − 1,

(4.45)

where the involved coefficients are

ai =
σ2
i

2

k

h2
−
(
ri −

σ2
i

2

)
k

2h
,

bi = 1 + θ

(
σ2
i

k

h2
+ rik

)
,

b̃i = 1− (1− θ)
(
σ2
i

k

h2
+ rik

)
, (4.46)

ci =
σ2
i

2

k

h2
+

(
ri −

σ2
i

2

)
k

2h
,

and the rationality function term is denoted by fni,j = f
(
E(u0

i,j − uni,j)
)
. Note

that the θ-method is used for the differential part while the rest terms are treated
explicitly for the computational convenience [71]. Note that case θ = 0, θ = 1/2

and θ = 1 corresponds to the so called fully explicit scheme, Crank-Nicolson and
fully implicit schemes, respectively.

Initial condition is discretized as follows

u0
i,j = (1− exj)+, j = 0, ...,M, i = 1, . . . , I.

For each regime i = 1, . . . , I and each time level n = 0, ..., N − 1, the discrete
form of the boundary condition at the point x0 = xmin for each regime i = 1, . . . , I
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4. BEHAVIOURAL MODELLING OF OPTION PRICING

and any time level n = 0, ..., N − 1 is obtained by using a forward in time explicit
finite difference scheme, thus leading to

un+1
i,0 = (1− rik)uni,0 + kfni,0

(
1− uni,0

)
+ k

∑
l 6=i

qi,l(u
n
l,0 − uni,0). (4.47)

Also for each regime i = 1, . . . , I and each time level n = 0, ..., N − 1, at the
boundary point xM = xmax the zero boundary condition un+1

i,M = 0 is imposed.
Since the nonlinear terms in (4.45) are taken from the previous time level, the

system of equations (4.45) is linear with tridiagonal matrix, so that it can be solved
by Thomas algorithm.

4.2.2 Qualitative properties of the scheme
In this section, some qualitative properties of the proposed numerical method (pos-
itivity, stability and consistency) are studied. First, we start with the approximation
at x = xmin = x0. Since the value at this left boundary is described by a differ-
ential equation, one has to guarantee that solution is stable and oscillations do not
occur at that point. The following Lemma provides conditions for boundedness of
the numerical solution at the point xmin.

Lemma 4.2.1. With the previous notation, if

k < min
1≤i≤I

1

ri + Cλ− qi,i
, (4.48)

then we have

0 ≤ uni,0 ≤ 1, i = 1, . . . , I, n = 0, . . . , N, (4.49)

where the constant C appearing in 4.48 is defined as

C = lim
λ→∞

fλ(x)

λ
,

so that C = 1 for f1, and C = 2 for f2 and f3.

Proof. Let us consider boundary condition (4.47). Note that u0
i,0 ∈ [0, 1]. Next,

assume that uni,0 ∈ [0, 1] for each regime i = 1, . . . , I and fixed n. Then
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4.2 Regime switching model with rationality parameter

un+1
i,0 ≤ (1− kri)uni,0 + kfni,0(1− uni,0)− kqi,i(1− uni,0)

≤
(
1− kri − kfni,0 + kqi,i

)
uni,0 + k

(
fni,0 − qi,i

)
≤ 1, (4.50)

provided that
1− k

(
ri + fni,0 − qi,i

)
≥ 0. (4.51)

In that case, since uni,0 ≤ 1, (4.50) holds true if

1− kri − kfni,0 + kqi,i ≤ 1− k
(
fni,0 − qi,i

)
,

that is obvious for any k, such that (4.51)holds. Therefore, for (4.49) it is necessary
to choose k satisfying

k ≤ 1

ri + fni,0 − qi,i
. (4.52)

Since (4.52) has to be fulfilled for any fixed n, fni,0 can be bounded by the limit
values: λ for f1 and 2λ for f2 and f3. Therefore, condition (4.48) is proved. Note,
that the non-negativity of uni,0 follows from (4.47). Once rewritten in the following
form

un+1
i,0 = (1− k(ri − qi,i))uni,0 + kfni,0

(
1− uni,0

)
+ k

∑
l 6=i

qi,lu
n
l,0, (4.53)

since each term in (4.53) is non-negative.

All the forthcoming results are valid under condition (4.48). Next result guar-
antees the positivity of the numerical solution {uni,j} under certain conditions on
the step sizes.

Theorem 4.2.1. With the previous notation, the finite difference scheme (4.45) pre-
serves the non-negativity of the numerical solution under the following conditions

h < min
i=1,...,I

σ2
i∣∣∣ri − σ2

i

2

∣∣∣ , k < min
i=1,...,I

h2

σ2
i + (ri − qi,i + 2λ)h2

. (4.54)

In the case that ri =
σ2
i

2
, only the second inequality of (4.54) is needed for all

h > 0.
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4. BEHAVIOURAL MODELLING OF OPTION PRICING

Proof. First, let us consider θ = 0. In this case, the scheme (4.45) can be rewritten
in following form

un+1
i,j = aiu

n
i,j−1 + (b̃i + qi,ik − fni,jk)uni,j + ciu

n
i,j+1 + kfni,ju

0
i,j + k

∑
l 6=i

qi,lu
n
l,j,

(4.55)

where ai, b̃i and ci are defined by (4.46). Under conditions (4.54) the coefficients
ai, (b̃i + qi,ik − fni,jk) and ci in (4.55) are positive. Moreover, note that the value
of the intensity function fni,j is non-negative by the definition and the last term is
a linear combination of non-negative elements from the previous time level. Thus,
providing positive solution

{
uni,j
}

at the time level n, non-negativity of
{
un+1
i,j

}
is

established.
For the remaining values of θ, let us consider the vector form of scheme (4.45)

Aiu
n+1
i = βni , (4.56)

where un+1
i =

[
un+1
i,1 un+1

i,2 ... un+1
i,M−1

]T , Ai is the tridiagonal constant matrix

Ai =


bi −θci 0 0 . . . 0

−θai bi −θci 0 . . . 0
. . . . . . . . . . . . . . . . . .

0 0 . . . −θai bi −θci
0 0 . . . 0 −θai bi

 , (4.57)

and βni is a vector of M − 1 components βni,j , such that

βni,j = (1−θ)aiuni,j−1+b̃iu
n
i,j+(1−θ)ciuni,j+1+kfni,j

(
u0
i,j − uni,j

)
+k
∑
l 6=i

qi,l(u
n
l,j−uni,j)

(4.58)
for j = 2, . . . ,M − 1, and

βni,1 = (1−θ)aiuni,0+b̃iu
n
i,1+(1−θ)ciuni,2+kfni,1

(
u0
i,1 − uni,1

)
+k
∑
l 6=i

qi,l(u
n
l,1−uni,1)+θaiu

n+1
i,0 .

(4.59)
Note that from (4.46), if conditions (4.54) hold, then the coefficients ai and ci

are non-negative and also we have
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4.2 Regime switching model with rationality parameter

0 ≤ θ(ai + ci) < bi.

Consequently Ai is a strictly diagonally dominant, and then a non-singular M-
matrix. Therefore, the inverse matrix A−1

i does not contain negative elements [93].
As it has been shown for θ = 0, if conditions (4.54) are then βni is a non-negative
vector. Therefore, the solution

un+1
i = A−1

i βni .

is non-negative for all θ ∈ [0, 1].

Further we prove that under condition (4.48), constraints (4.54) are sufficient
for the stability of the explicit scheme, while the stability of scheme (4.45) for
θ ≥ 1

2
does not require extra conditions.

Stability analysis is provided following the von Neumann approach. It is usu-
ally applied to schemes for linear equations. However, such method has been used
also for the variable coefficients case by freezing at each level (see [39], [53], [102],
p. 59).

Theorem 4.2.2. With the previous notation, explicit finite difference scheme (4.45)
with θ = 0 is conditionally stable with stability conditions (4.54).

Proof. As in previous section, let us denote the regime index by R. An initial error
vector for every regime g0

R, R = 1, . . . , I , is expressed as a finite complex Fourier
series, so that at xj the solution uni,j can be rewritten as follows

unR,j = gnRe
ijφ, j = 1, . . . ,M − 1, R = 1, . . . , I, (4.60)

where i = (−1)1/2 is the imaginary unit and φ is a phase angle. Then, the scheme is
stable if for every regime R = 1, . . . , I the amplification factor GR =

gn+1
R

gnR
satisfies

the relation

|GR| ≤ 1 +Kk = 1 +O(k), (4.61)

where the positive number K is independent on h, k and φ (see [101], p. 68, [102],
p. 50).
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4. BEHAVIOURAL MODELLING OF OPTION PRICING

For the sake of simplicity of the notation, the index of the regime R is skipped
in the unknowns, the coefficients and the parameters, understanding that the calcu-
lations are done for each regime. The numerical scheme (4.55) is rewritten in the
following way:

gn+1eijφ = agnei(j−1)φ + (b̃i + qi,ik)gneijφ + cgnei(j+1)φ

+kf
(
E(g0 − gn)eijφ

) (
(g0 − gn)eijφ

)
+ k

∑
l 6=R

qR,lg
n
l e

ijφ.

Next, dividing both parts by gneijφ and denoting

A1 = ae−iφ + b̃i + qi,ik + ceiφ, (4.62)

A2 = f
(
E(g0 − gn)eijφ

)(g0

gn
− 1

)
, (4.63)

A3 =
∑
l 6=R

qR,l
gnl
gn
, (4.64)

then expression (4.62) takes the following form:

G = A1 + k(A2 + A3). (4.65)

Next, if |A1| ≤ 1, |A2 + A3| ≤ K then expression (4.65) satisfies (4.61). Thus,

|A1|2 =

(
1− 2

σ2k sin2 φ
2

h2
− (r − q)k

)2

+
k2

h2

(
r − σ2

2

)2

sin2 φ.

Moreover, when positivity conditions (4.54) are fulfilled thenk
(
σ2

h2
+ (r − q)

)
≤ 1,

k
(
r − σ2

2
+ σ2(r − q)

)
≤ σ2,

(4.66)

so that |A1| ≤ 1 .
Now, the coupling term A3 can be bounded as follows

|A3| =
∑
l 6=R

qR,l

∣∣∣∣gnlgn
∣∣∣∣ ≤ max

l 6=R

∣∣∣∣gnlgn
∣∣∣∣ |qR,R| = ∣∣∣∣gnl0(n)

gn

∣∣∣∣ |qR,R| = C(n), (4.67)

where C(n) is independent on φ, h and k and depends only on the frozen index n.
Since intensity functions (4.4)-(4.7) are bounded, one can conclude that A2 is

also bounded by some constant independent on h, k and φ.
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4.2 Regime switching model with rationality parameter

Analogous approach is used to study stability of the scheme (4.45) with θ > 0.

Theorem 4.2.3. With the previous notation the scheme (4.45) is stable for θ ≥ 1
2
.

Proof. The procedure of von Neumann method is retaken (see [101], p. 68, [102],
p.50) and the solution is presented in the form (4.60). Then, after dividing both
sides of the identity by gneijφ, the numerical scheme (4.45) takes the following
form:

gn+1

gn

[
1 + kθ

(
σ2

h2
+ r − σ2

2h2

(
e−iφ + eiφ

)
+
r − σ2

2

2h

(
e−iφ − eiφ

))]

= 1 + k(1− θ)

[
−σ

2

h2
− r +

σ2

2h2

(
e−iφ + eiφ

)
−
r − σ2

2

2h

(
e−iφ − eiφ

)]

+ k

[
fni,j

(
g0

gn
− 1

)
+
∑
l 6=R

qR,l

(
gnl
gn
− 1

)]
.

(4.68)

Let us denote

A1 = 1 + kθ

(
σ2

h2
+ r − σ2

2h2

(
e−iφ + eiφ

)
+
r − σ2

2

2h

(
e−iφ − eiφ

))
, (4.69)

A2 = 1− k(1− θ)

[
σ2

h2
+ r − σ2

2h2

(
e−iφ + eiφ

)
+
r − σ2

2

2h

(
e−iφ − eiφ

)]
.(4.70)

Note that

|A1|2 =1 + θ2

(
2σ2 k

h2
sin2 φ

2
+ rk

)2

+ 2θ

(
2σ2 k

h2
sin2 φ

2
+ rk

)
+

(
θ
k

h

(
r − σ2

2

)
sinφ

)2

> 1.

(4.71)

Next, taking into account that the rationality term is bounded and (4.67), ex-
pression (4.68) is bounded as follows

|A1||G| ≤ |A2|+ C(n)k.
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Since last term in (4.68) is orderO(k) and |A1| > 1, due to the condition (4.61),
for stability it is sufficient to guarantee that

|A2|
|A1|

≤ 1. (4.72)

Next, note that inequality (4.72) is equivalent to

(1− 2θ)

[
4σ2k

2

h2
sin2 φ

2

(
σ2

h2
sin2 φ

2
+ r

)
+ r2k2 +

(
r − σ2

2

)2
k2

h2
sin2 φ

]
−4σ2 k

h2
sin2 φ

2
− 2rk < 0,

that holds true for any θ ≥ 1
2
. Therefore, for θ ≥ 1

2
the scheme is stable in ac-

cordance with the known property of the weighted scheme for linear equations (see
[101], p. 29).

Remark. For 0 ≤ θ < 1
2

conditions (4.54) are sufficient for stability.
Now let us study consistency of the finite difference scheme (4.45) with PDE

(4.41). Following the definition given in [101], consistency of a numerical scheme
with respect to a partial differential equation means that the exact solution of the
PDE approximates well the exact theoretical solution of the finite difference scheme
as the temporal and spatial discretization steps size tend to zero.

Let us rewrite the finite difference scheme (4.45) with parameter θ ∈ [0, 1], for
every fixed regime i = 1, . . . , I , 1 ≤ j ≤M − 1, 0 ≤ n ≤ N − 1, as follows

F (un+θ
i,j ) =

un+1
i,j − uni,j

k
− θ σ

2
i

2h2

(
un+1
i,j−1 − 2un+1

i,j + un+1
i,j+1

)
− (1− θ) σ

2
i

2h2

(
uni,j−1 − 2uni,j + uni,j+1

)
−
(
ri −

σ2
i

2

)
θ

2h

(
un+1
i,j+1 − un+1

i,j−1

)
−
(
ri −

σ2
i

2

)
1− θ

2h

(
un+1
i,j+1 − un+1

i,j−1

)
+ riθu

n+1
i,j + ri(1− θ)uni,j

− fni,j
(
u0
i,j − uni,j

)
−
∑
l 6=i

qi,l(u
n
l,j − unl,j) = 0.

(4.73)

Furthermore, let us rewrite the PDE system 4.41 for every fixed i = 1, . . . , I as
follows
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4.2 Regime switching model with rationality parameter

L(ui) =
∂ui
∂τ
− σ2

i

2

∂2ui
∂x2
−
(
ri −

σ2
i

2

)
∂ui
∂x

+ (ri − qi,i)ui

− f
(
(1− ex)+ − ui

)
−
∑
l 6=i

qi,lul = 0, i = 1, . . . , I.
(4.74)

Next, by denoting the value of the exact solution of the PDE at the mesh point
(xj, τ

n) by ũni,j = ui(xj, τ
n), the local truncation error T ni,j is

T ni,j(ũi) = F (ũni,j)− L(ũni,j). (4.75)

Note that if T ni,j tends to zero as h → 0 and k → 0, then the consistency of
the scheme is guaranteed. Assuming that ui(x, τ), i = 1, . . . , I , is continuously
differentiable four times with respect to ]x and three times with respect to τ [101]
and using the Taylor’s expansion around the point (xj, τ

n+θ), one gets

ui(xj, τ
n) = ui(xj, τ

n+θ)− kθ∂ui
∂τ

(xj, τ
n+θ)

+
k2θ2

2

∂2ui
∂τ 2

(xj, τ
n+θ) +O(k3),

ui(xj, τ
n+1) = ui(xj, τ

n+θ) + k(1− θ)∂ui
∂τ

(xj, τ
n+θ)

+
k2(1− θ)2

2

∂2ui
∂τ 2

(xj, τ
n+θ) +O(k3).

Thus, we have

∂ui
∂τ

(xj, τ
n+θ) =

ũn+1
i,j − ũni,j

k
+ (1− 2θ)k

∂2ui
∂τ 2

(xj, τ
n+θ) +O(k2). (4.76)

Note that the choice θ = 1
2

removes the term O(k), so that only in this case we
get a second order in time approximation.

Analogously, one obtains that

∂ui
∂x

(xj, τ
n+θ) = θ

ũn+1
j+1 − ũn+1

j−1

2h
+ (1− θ)

ũnj+1 − ũnj−1

2h
+O(h2), (4.77)

∂2ui
∂x2

(xj, τ
n+θ) = θ

ũn+1
j+1 − 2ũn+1

j + ũn+1
j−1

h2

+(1− θ)
ũnj+1 − 2ũn+1

j + ũnj−1

h2
+O(h2). (4.78)
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Next, by replacing (4.76), (4.77) and (4.78) into (4.74), the consistency of the
scheme (4.73) for the PDE system (4.74) is established and the truncation error
(4.75) takes the following form

T nj (ũi) = (1− 2θ)k
∂2ui
∂τ 2

(xj, τ
n+θ) +O(k2) +O(h2) ∀i = 1, . . . , I.

From the previous equation it follows the order of convergence in k and h of
the methods for θ = 0, 1/2, 1. These orders of convergence will be illustrated in
the forthcoming section of numerical results.

4.2.3 Numerical examples
In the next example we show that for sufficiently large values of rationality para-
meter the solution of the problem (4.37) tends to American option under regime
switching and rational exercise, as it was shown in [50] for American put option
without regime switching.

Example 4.2.1. Let us consider a two regime model with the following parameters
(see Example 1 in [70]):

r =

(
r1

r2

)
=

(
0.1

0.05

)
, σ =

(
σ1

σ2

)
=

(
0.8

0.3

)
, Q =

(
−6 6

9 −9

)
, T = 1, E = 9.

(4.79)

In Table 4.7 the results of numerical solution by the proposed explicit scheme
at the point S = E with various intensity functions are collected for rationality
parameter λ from 1 to 1000. The results show that the solution tends to American
option price as λ→∞. We compare the results with other known techniques, such
as front-fixing method, proposed for regime switching model in [43] and the tree
method proposed in [87]. The obtained results for the fully implicit scheme (θ = 1)
and Crank-Nicolson method (θ = 1

2
) have not been shown in Table 4.7, because

they are very close to the those obtained with the explicit scheme. As one can see in
this Table, the difference between the results of applying various intensity functions
vanishes for the large enough rationality parameter. The intensity function family
f1 that corresponds to the penalty method, as well as its smooth analogue f3 are
convenient for the American option pricing problem due to their stability properties
shown in [25].

132



4.2 Regime switching model with rationality parameter

f1 f2 f3

λ Regime 1 Regime 2 Regime 1 Regime 2 Regime 1 Regime 2

1 1.9060 1.8229 1.6472 1.5407 1.6592 1.5532

10 1.9545 1.8656 1.9596 1.8705 1.9150 1.8240

100 1.9700 1.8805 1.9710 1.8815 1.9661 1.8765

1000 1.9718 1.8819 1.9719 1.8819 1.9714 1.8819

10000 1.9720 1.8820 1.9721 1.8820 1.9720 1.8820

FF 1.9713 1.8817 1.9713 1.8817 1.9713 1.8817

Tree 1.9722 1.8819 1.9722 1.8819 1.9722 1.8819

Table 4.7: Convergence of the solution for various intensity functions f1, f2, f3 to
American option price and comparison with front-fixing (FF) and Tree methods. The
tests are done with explicit scheme (θ = 0), h = 10−2 and time step k = 10−4.
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4. BEHAVIOURAL MODELLING OF OPTION PRICING

In Figure 4.8 the option price at τ = T is presented for the a two regimes model
when using the proposed explicit (θ = 0) method. The intensity function is taken
in the form (4.6) with rationality parameter λ = 103. In this example, the step sizes
h = 10−2, k = 10−4 have been chosen. In Figure 4.9 we present the solution of the
problem with the set of parameters (4.79) and the matrix Q given by

Q =

(
−1 1

1 −1

)
. (4.80)
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Figure 4.8: Numerical solution of the
problem with parameters (4.79)
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Figure 4.9: Numerical solution of the
problem with parameters (4.79) with
matrix (4.80)

In Figures 4.10 and 4.11 the numerical solution with two different values of
rationality parameter λ = 1 and λ = 103 is presented.

In the next example the numerical convergence rates of the proposed method
for various families of intensity functions and rationality parameters are presented.
Thus, numerical results for the fully implicit (θ = 1), Crank-Nicolson (θ = 1/2)
and explicit (θ = 0) schemes in the differential part of the PDE are shown.

Example 4.2.2. Let us consider the problem (4.41) with parameters (4.79). The
experiments have been implemented for the fully implicit (θ = 1), Crank-Nicolson
(θ = 1/2) and explicit (θ = 0) schemes in the differential part of the PDE.

For this purpose, we have obtained a series of numerical results with fixed time
step k = 2 ·10−5 and the spatial steps h = 2 ·10−2, h/2 = 10−2 and h/4 = 5 ·10−3.
The convergence rate γh has been calculated by formula (1.22) for the proposed
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Figure 4.10: Numerical solution of the
problem with parameters (4.79) with
various λ (Regime 1).
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Figure 4.11: Numerical solution of the
problem with parameters (4.79) with
various λ (Regime 2).

Regime 1 Regime 2
θ 0 0.5 1 0 0.5 1
f1 2.0084 2.0003 2.0007 2.0143 2.0004 2.0015
f2 2.0083 2.0003 2.0005 2.0142 2.0007 2.0013
f3 2.0079 2.0002 2.0001 2.0156 2.0005 2.0004

Table 4.8: Convergence rate in space of the proposed θ-scheme for λ = 103.

scheme with θ = 0, 0.5, 1. The results are collected in Table 4.8 showing the
expected orders for the approximation with λ = 103 and various intensity function
families.

Analogous formula can be used in order to estimate the convergence rate in
time, γk, for a fixed space step h:

γk = log2

‖Uk/2 − Uk‖
‖Uk/4 − Uk/2‖

. (4.81)

In this case, the spatial step has been fixed to h = 5 · 10−3, while the chosen
time steps are k = 2 · 10−5, k/2 = 10−5, k/4 = 5 · 10−6. The convergence rates
γk of the proposed method for various intensity function families (4.4)-(4.6) are
presented in Table 4.9. The numerical convergence rate are in agreement with the
theoretical study of consistency developed in Section 4.2.2.
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Regime 1 Regime 2
θ 0 0.5 1 0 0.5 1
f1 1.0013 1.7795 1.0007 1.0013 1.8889 1.0010
f2 1.0009 1.7802 1.0007 1.0009 1.9017 1.0007
f3 1.0010 1.8543 1.0001 1.0010 1.8943 1.0000

Table 4.9: Convergence rate in time of the proposed θ-scheme for λ = 103.

In the previous section the stability conditions for the proposed weighted scheme
have been found. The forthcoming numerical example shows that the stability con-
dition is crucial.

Example 4.2.3. Let us consider the explicit finite difference scheme (4.45) for the
problem with parameters (4.79) in order to check the stability condition (4.54).

Figures 4.12 - 4.13 show the numerical solution for regime 1 and 2 respectively.
More precisely, by taking a fixed value of h = 10−2 dashed lines show that the
numerical solution is stable for k = 10−4, when the conditions (4.54) are fulfilled,
while when k = 1.56 · 10−4, the spurious oscillations occur as the scheme is not
stable, thus leading to inaccurate numerical approximations that are shown in the
solid line.

Asset Price
0 5 10 15 20 25 30 35 40 45

A
m

er
ic

an
 P

ut
 O

pt
io

n 
pr

ic
e

0

2

4

6

8

10

12

k=10-4

k=1.56 · 10-4

Figure 4.12: Stable and not stable
solutions (Regime 1).
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Figure 4.13: Stable and not stable
solutions (Regime 2).

The results of this section have been published in [27].
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CHAPTER

5
Valuation of multi-asset

options

Multiasset option pricing has two main challenges arising from their high di-
mensions and the correlations between assets. Probably the most popular methods
are those around Monte Carlo method and its modifications [12], [64]. However,
their simulation used to be time consuming and slow convergent [67].

Analytical-numerical methods like it occurs in one asset case are also existing
in literature. So, Kirk and Aron [73] provide an approximation method to price
a bivariate spread option problem, but it is inaccurate when the strike prices are
high [1], [19]. Alexander improves Kirk’s approach based on the hypothesis that
the spread option price is the sum of the prices of two compound exchange options
that avoids any strike convention.

Fourier Transform Approach and numerical integration techniques are used by
J. Ziveyi and C. Chiarella in [23], [118] for numerical evaluation of American
Options written on two underlying assets.

Among the numerical methods we mention the so-called lattice methods [13]
and recently [67] that improves the previous ones and gives fast and accurate results
although requires some minor correlation restrictions.

Dealing with pure finite difference methods the existence of the cross-derivative
term in the PDE problem due to asset correlation, introduces additional challenges
in the numerical solution due to the existence of negative coefficient terms in the
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5. VALUATION OF MULTI-ASSET OPTIONS

numerical scheme as well as involving expensive stencil schemes. Both facts may
produce numerical drawbacks coming from the dominance of the connection versus
the diffusion as well as more expensive computational cost, [26], [97], [105].

In order to overcome these difficulties dealing with finite difference approach,
authors use recently several strategies. High order compact schemes are proposed
in [40] using central difference approximations for stochastic volatility Heston
model. The authors in [61] use ADI methods and clever discretizations to obtain
stable numerical schemes under minor coefficients restrictions in the PDE. The
authors of [22] and [105] use special finite difference approximations of the cross-
derivative term based on a seven points stencil instead of the nine points stencil
scheme resulting from the central finite difference approach.

Finally, in our work we continue the removing cross-derivative approach based
on the transformation of the PDE problem initiated in [26] for the case of one asset
stochastic volatility Heston model and applied to the Bates stochastic volatility
jump diffusion model in [47]. Apart from avoiding negative coefficients in the
proposed scheme, it has the additional computational advantage that uses only a
five point stencil.

In this chapter we consider multi-asset option pricing problems for both European
and American cases. In further sections exchange, spread and basket options are
studied. The general Black-Scholes equation for all these types of option takes the
following form

∂U

∂τ
=

1

2
σ2

1S
2
1

∂2U

∂S2
1

+
1

2
σ2

2S
2
2

∂2U

∂S2
2

+ ρσ1σ2S1S2
∂2U

∂S1∂S2

+ (r − q1)S1
∂U

∂S1

+ (r − q2)S2
∂U

∂S2

− rU.
(5.1)

The type of option is defined by the initial condition (payoff function) and ap-
propriate boundary conditions. Some types of two asset American Option prob-
lems, such as Currency translated option (see [104]), American Better-of option,
Exchange option (see [86]) and others, can be transformed into a one-spatial di-
mensional equation by a suitable change of variables. It is important to realize
that a reduction in the number of dimensions can contribute greatly to efficiency of
the finite difference implementation. After appropriate transformation we obtain
the Black-Scholes equation for one-asset option. The study of multi-asset options
starts with this case.
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5.1 Exchange options

5.1 Exchange options
An American Exchange Option (AEO) is an option which gives the holder the right
to exchange one asset to another at any time prior the expiration date T . Let S1 and
S2 be a price of asset 1 and asset 2 (see [86]). The payoff function is defined as
follows

F (S1, S2) = max (S1 − S2, 0) .

At time τ = T − t American option price P (S1, S2, τ) for P > max (S1 − S2, 0)

satisfies the two-dimensional equation (5.1).
We introduce the notation Xf (τ) to represent the moving boundary such as for

any S1, S2 : S1

S2
< Xf (τ) at time τ = T − t American exchange option price

U(S1, S2, τ) satisfies the multi-dimensional equation (5.1).
To have a smooth transition we also require that the gradient of the option value

(with respect to the underlying asset prices) is continuous at the boundary. This so-
called smooth pasting condition is given by

U(S1, S2, τ)|Xf (τ) = S1 − S2,

∂U

∂S1

|Xf (τ) = 1,
∂U

∂S2

|Xf (τ) = −1.

On the other boundaries the following conditions are established

U(0, S2, τ) = 0, U(S1, 0, τ) = S1.

We consider only hold region H(τ) = {(S1, S2) : S1

S2
< Xf (τ)}. There is an

opportunity to reduce the dimension of the problem by the transformation

ξ =
S1

S2

, p(x, τ) =
U(S1, S2, τ)

S2

.

Then the AEO pricing problem reduces to one dimensional American call op-
tion price problem

∂p

∂τ
=
σ2

2
ξ2∂

2p

∂ξ2
+ (r − q)ξ ∂p

∂ξ
− rp, ξ < Xf (τ), 0 < τ < T, (5.2)

where
σ2 = σ2

1 − 2ρσ1σ2 + σ2
2, r = q2, q = q1, (5.3)
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Figure 5.1: Optimal exercise ratio in time: calculated by the proposed in Section 2.2
method (left) and presented in [86].

with the initial and boundary conditions

p(ξ, 0) = max(ξ − 1, 0), p(0, τ) = 0. (5.4)

p(Xf (τ), τ) = Xf (τ)− 1,
∂p

∂ξ
|ξ=Xf (τ) = 1, (5.5)

Then one can apply the front-fixing transformation presented in Section 2.2 to
(5.2)-(5.5) .

As a numerical example, we consider the American exchange option for correl-
ated assets with ρ = 0.5, and σ1 = σ2 = 0.5, then σ2 = 0.25 by (5.3). The results
are presented on Figure 5.1.

Further we consider such types of multi-asset options that the dimension re-
duction is not applicable. As it was mentioned above, we use cross-derivative
elimination technique in order to improve qualitative properties of the numerical
scheme.
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5.2 Spread options
In this section we consider spread option pricing problems for both European and
American cases. Firstly, we deal with European spread call option priceU(S1, S2, τ)

that is the solution of the PDE (5.1) with the initial condition

U(S1, S2, 0) = g(S1, S2) = (S1 − S2 − E)+. (5.6)

Spread options are frequently traded in the energy market [19]. Two examples
are:

Crack spreads: Options on the spread between refined petroleum products and
crude oil. The spread represents the refinement margin made by the oil refinery by
”cracking” the crude oil into a refined petroleum product.

Spark spreads: Options on the spread between electricity and some type of fuel.
The spread represents the margin of the power plant, which takes fuel to run its
generator to produce electricity. The case E = 0 corresponds to exchange options
that can be reduce to 1D problem as described above.

Since the numerical solution of European multi-asset options requires the selec-
tion of a bounded numerical domain and the translation of the boundary conditions
to the boundary of the domain, it is important to pay attention to such conditions.
For the initial problem (5.1) coupled with (5.6) suitable boundary conditions are:

1. For S1 = 0 the payoff (S1 − S2 − E)+ suggests the Dirichlet’s condition

U(0, S2, τ) = 0, 0 < S2 <∞, 0 < τ ≤ T, (5.7)

as one dimensional call option.

2. Taking the ideas developed by some authors, for instance D. Duffy for the
case of basket option (see [37], p. 270), for S2 = 0 we take the value of the
closed form solution of the basic Black-Scholes equation of a call for S1 with
given strike E,

U(S1, 0, τ) = e−rτ (FN(φ1)− EN(φ2)) , (5.8)

where

F = S1e
(r−q1)τ , φ1 =

1

σ1

√
τ

[
log

F

E
+

1

2
σ2

1τ

]
, φ2 = φ1 − σ1

√
τ ,

(5.9)
where N(x) is the standard normal cumulative distribution function.
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3. As S1 is large versus S2 + E, then the behaviour of the solution looks like
the asymptotic value of a one dimensional vanilla call option with the strike
(S2 + E) for S1 � S2 + E (see [100], p. 157),

U(S1, S2, τ) ≈ e−q1τS1 − e−rτ (S2 + E), S1 � S2 + E. (5.10)

4. For large values of S2 we assume that the values are almost constants when
S2 changes, therefore we can use Neuman’s boundary condition:

∂U

∂S2

= 0. (5.11)

These boundary conditions will be validated with the numerical examples.

5.2.1 Removing the cross-derivative term
We begin the study by transforming the PDE problem (5.1) in order to remove the
cross-derivative term. Firstly we eliminate the reaction term rU by means of the
substitution

V = erτU, (5.12)

obtaining

∂V

∂t
=

1

2
σ2

1S
2
1

∂2V

∂S2
1

+
1

2
σ2

2S
2
2

∂2V

∂S2
2

+ ρσ1σ2S1S2
∂2V

∂S1∂S2

+ (r − q1)S1
∂V

∂S1

+ (r − q2)S2
∂V

∂S2

.

(5.13)

In order to remove the cross derivative term, note that the right-hand side of (5.13)
is a linear differential operator of two variables and classical techniques to obtain
the canonical form of second order linear PDEs can be applied, see for instance
chapter 3 of [51]. Under the assumption of correlated variables with −1 < ρ < 1

the sign of the discriminant is

a2
12 − 4a11a22 = σ2

1σ
2
2S

2
1S

2
2

(
ρ2 − 1

)
< 0,

where

a11 =
1

2
σ2

1S
2
1 ; a12 = ρσ1σ2S1S2 ; a22 =

1

2
σ2

2S
2
2 .
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Therefore the right-hand side of equation (5.13) becomes of elliptic type and a
convenient substitution to obtain the canonical form is given by solving the ordin-
ary differential equation

dS2

dS1

+
σ2S2

σ1S1

(−ρ± iρ̃) = 0, ρ̃ =
√

1− ρ2, (5.14)

and σ2S2

σ1S1
(−ρ ± iρ̃) are the conjugate roots of a11x

2 + a12x + a22 = 0. Solving
(5.14) one gets

1

σ2

logS2 +
−ρ± iρ̃
σ1

logS1 = C0, (5.15)

where one can relate the integration constant C0 to the new variables by

x = Im(C0), y = −Re(C0). (5.16)

From (5.15) and (5.16) it follows the expression of the new variables

x =
ρ̃

σ1

logS1 ; y =
ρ

σ1

logS1 −
1

σ2

logS2. (5.17)

Note that
y −mx = − 1

σ2

logS2, m =
ρ

ρ̃
. (5.18)

By denoting
W (x, y, τ) = V (S1, S2, τ), (5.19)

equation (5.13) takes the following form without cross derivative term for (x, y) ∈
R2, 0 < τ ≤ T ,

∂W

∂τ
=
ρ̃2

2

(
∂2W

∂x2
+
∂2W

∂y2

)
+

ρ̃

σ1

(
r − q1 −

σ2
1

2

)
∂W

∂x

+

(
ρ

σ1

(
r − q1 −

σ2
1

2

)
− 1

σ2

(
r − q2 −

σ2
2

2

))
∂W

∂y
.

(5.20)

In accordance with [44], [66] and equation (5.10) we choose the rectangular
domain (S1, S2) ∈ [a1, b1]× [a2, b2] = Ω, where ai > 0, i = 1, 2 are small positive
values; b2 about 3E and b1 about 3(b2 + E). For the transformed problem (5.20)
due to (5.17), the rectangular domain Ω becomes rhomboid with vertices ABCD
(see Figure 5.2). From (5.17) let us denote

c1 =
ρ̃

σ1

log a1, c2 =
log a2

σ2

, d1 =
ρ̃

σ1

log b1, d2 =
log b2

σ2

.
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By (5.18) rhomboid domain has the sides:

AD = {(x, y) : x = c1, mc1 − d2 ≤ y ≤ mc1 − c2} ,
AB = {(x, y) : c1 ≤ x ≤ d1, y = mx− d2} ,
BC = {(x, y) : x = d1, md1 − d2 ≤ y ≤ md1 − c2} ,
CD = {(x, y) : c1 ≤ x ≤ d1, y = mx− c2} .

Figure 5.2: Numerical domain after removing cross derivative term transformation.

The mesh points in the rhomboid domain are (xi, yj) such that

xi ∈ [c1, d1], xi = c1 + ih, 0 ≤ i ≤ Nx, ∆x = h =
d1 − c1

Nx

,

∆y = |m|h, Ny =
d2 − c2

|m|h
, yj = mxi − d2 + (j − i) |m|h, i ≤ j ≤ Ny + i.

The approximations of the derivatives appearing in (5.20) at the point (xi, yj, τ
n)

are the following

∂W

∂x
∼
wni+1,j − wni−1,j

2h
,

∂W

∂y
∼
wni,j+1 − wni,j−1

2 |m|h
,

∂2W

∂x2
∼
wni+1,j − 2wni,j + wni−1,j

h2
,

∂2W

∂y2
∼
wni,j+1 − 2wni,j + wni,j−1

m2h2
,
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∂W

∂τ
∼
wn+1
i,j − wni,j

k
,

where wni,j ∼ W (xi, yj, τ
n), τn = nk.

Substituting these finite difference approximations of the derivatives the equa-
tion (5.17) is approximated by the explicit difference scheme with five points stencil

wn+1
i,j = α1w

n
i−1,j + α2w

n
i+1,j + α3w

n
i,j + α4w

n
i,j−1 + α5w

n
i,j+1, (5.21)

where

α1,2 =
ρ̃2

2

k

h2
∓ ρ̃

σ1

(
r − q1 −

σ2
1

2

)
k

2h
, (5.22)

α3 = 1− ρ̃2 k

h2

(
1 +

1

m2

)
, (5.23)

α4,5 =
ρ̃2

2

k

m2h2
∓[

ρ̃

σ1

(
r − q1 −

σ2
1

2

)
− 1̃

σ2

(
r − q2 −

σ2
2

2

)]
k

2 |m|h
. (5.24)

The discretization of the spacial boundary is given by

P (AD) = {(x0, yj) : 0 ≤ j ≤ Ny} ,
P (AB) = {(xi, yi) : 0 ≤ i ≤ Nx} ,
P (BC) = {(xNx , yj) : Nx ≤ j ≤ Nx +Ny} ,
P (CD) =

{
(xi, yNy+i) : 0 ≤ i ≤ Nx

}
.

Both initial and boundary conditions (5.6), (5.7), (5.8), (5.10) and (5.11) are
transformed throughout equations (5.12), (5.17), (5.19). For the initial condition
we have

w0
i,j =

(
e
σ1xi
ρ̃ − e−σ2(yj−mxi) − E

)+

, 0 ≤ i ≤ Nx, i ≤ j ≤ i+Nx. (5.25)

Boundary condition for side AD:

wn0,j = 0, 0 ≤ j ≤ Ny, 1 ≤ n ≤ Nτ . (5.26)

For CD with small value of S2, we have transformed Black-Scholes solution,
so that

wni,Ny+i = F n
i N(φn1,i)− EN(φn2,i), 0 < i < Nx, 1 ≤ n ≤ Nτ , (5.27)
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where

F n
i = exp

(
σ1

ρ̃
xi + (r − q1)τn

)
,

φn1,i =
1

σ1

√
τn

[
log

Fi
E

+
1

2
σ2

1τ
n

]
, φn2,i = φn1,i − σ1

√
τn.

Side BC corresponds to large values of S1, so behaviour of the value of option
for Nx + 1 ≤ j ≤ Nx +Ny, 1 ≤ n ≤ Nτ there leads to

wnNx,j = exp

(
σ1

ρ̃
xNx + (r − q1)τn

)
− (exp (σ2(mxNx − yj)) + E) . (5.28)

Boundary AB corresponds with the boundary for large values of S2. Condition
(5.11) means that component S1 is constant and the null first derivative is approx-
imated by the forward difference

wni,i+1−wni,i
|m|h = 0,

wni,i = wni,i+1, 1 ≤ i ≤ Nx, 1 ≤ n ≤ Nτ . (5.29)

5.2.2 Numerical analysis of the method
In this section we show that the introduced numerical scheme (5.21) - (5.24) presents
suitable qualitative and computational properties, such as consistency and condi-
tional positivity and stability.

In order to guarantee positivity of the numerical solution let us check the posit-
ivity of the coefficients αi. Values in interior points of the numerical domain wn+1

i,j ,
1 ≤ i ≤ Nx−1; i+1 ≤ j ≤ Ny + i−1, calculated by the scheme (5.21), preserve
non-negativity from the previous time level n at all interior and boundary points
wni,j ≥ 0, 0 ≤ i ≤ Nx; i ≤ j ≤ Ny + i under conditions

h < min

 ρ̃σ1∣∣∣r − q1 − σ2
1

2

∣∣∣ ; ρ̃2∣∣∣m [ ρ̃σ1 (r − q1 − σ2
1

2

)
− 1

σ2

(
r − q2 − σ2

2

2

)]∣∣∣
 .

(5.30)

k <
m2h2

ρ̃2(m2 + 1)
. (5.31)

Let us pay attention now to the positivity of the numerical solution at the bound-
ary of the numerical domain. On the boundary AD from (5.26) we have zero
values. On the boundary CD the formula (5.27) is used preserving the positiv-
ity since it is the transformed Black-Scholes formula throughout the expression

146



5.2 Spread options

(5.17). Along the line AB we use Neumann boundary condition (5.29). There-
fore, the positivity at the neighbour interior point guarantees the positivity at the
boundary. Finally, on the line BC boundary conditions are determined by the for-
mula (5.28). This is transformed expression for the asymptotic behaviour of the
call option (5.10) that is positive under the condition

S1max > (S2max + E) exp ((q1 − r)τn) , 1 ≤ n ≤ Nτ .

Following the ideas of Kangro [66], the computational domain has to be large
enough to translate the boundary conditions, therefore

S1max ≥ max {(S2max + E) exp ((q1 − r)T ) , 3(S2max + E)} . (5.32)

Therefore, choosing S1max according to (5.32) for the transformed problem
wnNx,j ≥ 0 for any Nx + 1 ≤ j ≤ Nx +Ny, 1 ≤ n ≤ Nτ .

Summarizing, the non-negativity of the numerical solution follows from the
non-negativity of the initial values and positivity preservation under the scheme
and boundary conditions. In order to study stability of the scheme let us find the
maximum value of the wni,j with respect to i, j for each fixed n. For n = 0 the
values wni,j are defined by the initial condition (5.25). Let us consider the following
function

f(x, y) = exp

(
σ1

ρ̃
x

)
− exp (−σ2(y −mx))− E, (5.33)

and find the maximum value on the domain [c1, d1]× [c2, d2]. The first derivatives
are

∂f

∂x
=
σ1

ρ̃
exp

(
σ1

ρ̃
x

)
+ σ2m exp (−σ2(y −mx)) > 0, (5.34)

∂f

∂y
= σ2 exp (−σ2(y −mx)) > 0. (5.35)

Analysing (5.34) and (5.35) one concludes that the function f(x, y) is increas-
ing with respect to x and y. Therefore, the maximum value is reached at the point
(d1, d2):

max
(x,y)∈[c1,d1]×[c2,d2]

f(x, y) = f(d1, d2) = exp

(
σ1

ρ̃
d1

)
− exp (−σ2(d2 −md1))− E

= C = const.

(5.36)
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For the next time levels n ≥ 1 let us consider the numerical scheme (5.21).
Under conditions (5.30) and (5.31) the coefficients αi > 0, i = 1, . . . , 5. Moreover,
it is easy to check that

5∑
i=1

αi = 1.

Therefore the values in interior points at the (n + 1)-th level, n ≥ 0, can be
bounded by the following

wn+1
i,j ≤ max

{
wni−1,j, w

n
i+1,j, w

n
i,j, w

n
i,j−1, w

n
i,j+1

}
≤ max

i,j
wni,j. (5.37)

This maximum can be reached on the boundary. Therefore, let us study the
boundary conditions. From (5.26) one gets that

max
AD

wn+1
i,j = 0.

The values on the boundary AB are equal to the interior points, therefore the
inequality (5.37) can be applied.

The values on the boundary BC are increasing with respect to the index j and
reach the maximum at the point (Nx, Nx + Ny − 1). From the other side, this
value can be bounded by the value at the point (Nx, Nx +Ny) that is calculated by
the formula (5.27). From the theory of option pricing, the price of European call
is increasing with respect to the asset price S and, moreover, it is always greater
than its asymptotic function (see [58], p. 268, formula (13.1)). The proposed
transformation preserves monotonicity, therefore,

wn+1
Nx,Nx+Ny

= F n+1
Nx

N(αn+1
1,Nx

)− EN(αn+1
2,Nx

)

≥ e(
σ1
ρ̃
xNx+(r−q1)τn+1) −

(
e(σ2(mxNx−yNx+Ny−1)) + E

)
= wn+1

Nx,Nx+Ny−1.

Summarizing we can conclude that

max
i,j

wn+1
i,j = wn+1

Nx,Nx+Ny
.

This value is transformed call option price for the asset price S1max , i.e. the
solution of the 1D Black-Scholes equation at the fixed point. European call option
gives a right to the option holder to purchase one share stock for a certain price.
The option itself cannot be worth more than the stock. In the other words,

U(S1, 0, τ) = e−q1τS1N(d1)− e−rτEN(d2) ≤ e−qτS1N(d1) ≤ e−qτS1,

148



5.2 Spread options

wn+1
Nx,Nx+Ny

≤ erτ
n+1

e−q1τ
n+1

S1max ≤ e|r−q1|TS1max , 0 ≤ n ≤ Nτ − 1.

Then the following result can be stated.

Theorem 5.2.1. With previous notations, under the conditions (5.30) and (5.31)
the numerical scheme (5.21), (5.25)-(5.29) is conditionally uniformly || · ||∞-stable
with upper bound A = e|r−q1|TS1max .

The study of consistency gives the following result:

Theorem 5.2.2. Assuming that the solution of the PDE (5.20) admits two times
continuous partial derivative with respect to time and up to order four with re-
spect to each of space directions solution, the numerical solution computed by the
scheme (5.21) is consistent with the equation (5.20) with the second order in spatial
variables and with the first order in time.

5.2.3 American spread options
In the case of American type option the holder has the right to exercise option at
any moment before expire. It leads to a free boundary problem [48]. In order to
simplify the computational procedure this problem can be considered as a linear
complementarity problem (LCP):(

∂U

∂τ
− LU

)
(U − g) = 0, (5.38)

∂U

∂τ
− LU ≥ 0, U − g(S1, S2) ≥ 0, (5.39)

where L represents the spatial differential operator of the equation (5.1).
If we rewrite equation (5.20) in the form

∂W

∂τ
− LW = 0,

then under the transformation (5.17) LCP (5.38)-(5.39) has the following form(
∂W

∂τ
− LW

)
(W − f(x, y)) = 0, (5.40)
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∂W

∂τ
− LW ≥ 0; W − f(x, y) ≥ 0, (5.41)

being L the right hand side of the equation (5.20) and f(x, y) is given by (5.33).
Numerical solution for the problem (5.40)-(5.41) can be easily obtained by a

small modification of the calculating procedure described above in Sections 2 and
4. On each time level

w̃ni,j = max
{
wni,j, f(xi, yj)

}
≥ 0, (5.42)

where wni,j is defined by the finite difference equation (5.21).

5.2.4 Numerical examples
In this section we illustrate numerical result for both European and American
spread options.

In Example 5.2.1 we show that the stability conditions (5.30) and (5.31) for the
European spread option can not be disregarded.

Example 5.2.1. We tested the algorithm for the European spread call option pri-
cing problem with the parameters:

T = 1; E = 100; σ1 = 0.2; σ2 = 0.1; r = 0.1; q1 = 0.01; q2 = 0.05; ρ = 0.1;

with chosen large enough S2max = 400, S1max = 3(S2max + E) = 1500.

The stability conditions (5.30), (5.31) on space and time steps are as follows

h < min {2.8428; 23.7358} = 2.8428, k < 0.0112. (5.43)

These conditions are crucial for the qualitative properties such as positivity and
stability of the scheme. In Figure 5.3 the numerical solution with h and k satisfying
(5.43) is presented. On the other hand, in Figure 5.4 there is a numerical simulation
with time step k = 0.012 > 0.0112. The solution is unstable and it has negative
values.

The next Example 5.2.2 illustrates the computational time as well as the com-
parison with analytical approximation, provided by [1].

Example 5.2.2. Consider the European spread option with the data of Example
5.2.1 and choosing step sizes satisfying the stability condition.
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Figure 5.3: European spread option
(stable), condition (5.43) is fulfilled.

Figure 5.4: European spread option
price, condition (5.43) is broken.

The price of European spread option can be expressed as the price of a com-
pound exchange option (see [1]). The known derived analytical approximation for
the spread option reads

U(S1, S2, T ) = S1e
−q1TN(d1)−

(
Ee−rT + S2

)
e−(r−r̃−q̃2)TN(d2), (5.44)

where

d1 =
1

σ
√
T

(
ln

S1

S2 + Ee−rT
+

(
r − r̃ + q̃2 − q1 +

σ2

2

)
T

)
, d2 = d1 − σ

√
T ,

σ =

√
σ2

1 − 2ρσ1σ2
S2

S2 + Ee−rT
+

(
S2

S2 + Ee−rT

)2

σ2
2,

r̃ =
S2

S2 + Ee−rT
r, q̃2 =

S2

S2 + Ee−rT
q2.

The comparison of our proposed numerical method and the analytical approx-
imation (5.44) is presented in Table 5.1. Analytical approximation is calculated for
the same arrays of S1 and S2 using MATLAB-function cdf for calculating cumu-
lative distribution function, that requires a lot of computational resources, for each
point. In the proposed method cdf is used only for the boundary conditions. Last
row in the Table 1 presents the CPU-time for each method for the same sizes of
array. For approximation method cdf -time is 925.018 sec. It is the main part of
computational time. In the case of FDM cdf takes less than half of computational
time - 48.867 sec.
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S2 S1 FDM Approximation
100 400 210.5978 209.7261

200 24.2895 23.4543
100 0.1150 0.0123
50 3.1179e− 05 −4.7741e− 10

90 400 220.0678 220.1714
200 29.8745 29.8724
100 0.1691 0.0372
50 5.2150e− 05 −1.9574e− 09

CPU-time (sec) 106.188 929.467

Table 5.1: European spread option price calculated by the proposed method (FDM)
and Analytical approximation (5.44).

Furthermore, unsuitable negative values appear in analytical approximation for
small S1 and S2 while the proposed method preserves non-negativity of the solu-
tion.

Finally, in Example 5.2.3 we compare the numerical solution obtained with our
scheme (5.42) using LCP approach with other tested efficient methods presented in
[34].

Example 5.2.3. Let us consider the American spread call option problem with
parameters:

T = 1; σ1 = 0.1; σ2 = 0.2; r = 0.1; q1 = 0.05; q2 = 0.05; ρ = 0.5.

Table 5.2 shows the option price at fixed asset prices S1 = 96 and S2 = 100 for
different values of strike price E evaluated by one dimensional integration analytic
method (Analytic), Fast Fourier Transform (FFT), Monte Carlo method (MC) and
our proposed method. The accuracy is competitive with other methods, such as
Fourier Transform with high number of discretization (4096) and Monte Carlo with
big number of time steps (2000).

Another set of parameters can be considered in order to compare it with data in
[118]:

T = 0.5; E = 100; σ1 = 0.25; σ2 = 0.3;

r = 0.03; q1 = 0.06; q2 = 0.02; ρ = 0.5.
(5.45)
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E Analytic FFT MC Proposed Method
0 8.513201 8.513079 8.516613 8.508198
2 7.542296 7.542242 7.545496 7.534064
4 6.653060 6.652976 6.656364 6.648792

Table 5.2: American spread option price calculated by various methods for E =

0, 2, 4.

Nτ NIM MOL Monte Carlo Proposed method
50 296.598 59.20 47 970 26.547

0.003 0.001 0.1735 0.0036
32 127.069 55.12 1 811 17.911

0.0035 0.006 0.1148 0.0122
16 33.493 51.718 5 149 9.432

0.0012 0.0236 0.132 0.0371
8 10.360 49.01 1 350 4.787

0.0105 0.074 0.1316 0.0907
4 4.117 45.47 355.75 2.815

0.0364 0.2512 0.1351 0.2254

Table 5.3: CPU-Time in sec (first row) and Absolute difference (second row) for
different methods depending on number of time-steps for fixed number of space steps
for parameters (5.45).

Table 5.3 presents a comparison of the efficiency of the proposed method with
method of lines (MOL), numerical integration method (NIM) and Monte-Carlo. In
[118] author fixes S1 = 200, S2 = 100 to calculate the absolute difference. From
the Table 5.2 we can state that the proposed method has the same order of accuracy,
but it requires less computational time.

The results of this section have been submitted to Journal of Applied Mathem-
atics and Computation.
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CHAPTER

6
Conclusions

The front-fixing method is a very useful technique dealing with free boundary
value problems, such as American option pricing. Various transformations have
been applied to linear Black-Scholes equation. The resulting nonlinear PDEs have
been solved by explicit FDM. Stability and consistency of the proposed schemes
have been studied as well as positivity and monotonicity of the numerical solution.

The front-fixing method has been extended to nonlinear equations and regime
switching models of American option pricing. The system of coupled nonlinear
equations has been solved by explicit method that avoids amount of iterations. Von
Neumann stability analysis has been used to find stability conditions of the scheme.

In the case of nonlinear Black-Scholes models, such as Barles and Soner or
RAPM, instead of front-fixing technique a new moving-boundary transformation
has been applied. The resulting equation is established in a domain with time-
dependent boundary. Various FMDs are used for numerical solutions, including
fully implicit and ADE methods. Improvements of Broyden´s method have been
proposed as well.

Theoretical study of behavioural modelling of option pricing has been com-
pleted by numerical solution and analysis of the proposed method. This new ap-
proach has been successfully applied to regime switching model. In this case we
take into account possible states of markets as well as irrational exercise possibility.
Numerical solution of nonlinear coupled system has been found by using θ-method.
Qualitative properties of the proposed scheme have been studied.
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6. CONCLUSIONS

The suitable change of variables in multi-asset case allows to remove the cross
derivative term. Effective FDM has been constructed for the resulting equation
in the canonic form. The elimination of mixed derivative simplifies the stencil of
FDM and numerical analysis of the scheme.

All the theoretical results have been approved by numerical experiments. Nu-
merical examples are provided in order to show the efficiency of the methods and
to prove its competitiveness by comparing with other recognized approaches in the
literature. These numerical schemes provide positive, consistent and conditionally
stable solutions.
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cing models by the front-fixing method: Numerical analysis and computing.
Abstract and Applied Analysis, Article ID 146745, 9 pages, 2014. 28, 79,
138

[27] R. Company, V. N. Egorova, L. Jódar, and C. Vázquez. Computing Amer-
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[108] D. Ševčovič. An iterative algorithm for evaluating approximations to the op-
timal exercise boundary for a nonlinear Black-Scholes equation. Canadian
Applied Mathematics Quarterly, 15(1):77–97, 2007. 59, 62, 79

166



REFERENCES
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