Contents

Abstract ... i
Resumen .. iii
Resum ... v
List of figures ... xi
List of tables .. xv
Nomenclature ... xvii

1. Introduction .. 1
 1.1 Motivation .. 1
 1.2 Overview of magnetic refrigeration at room temperature ... 2
 1.2.1 Working principle .. 2
 1.2.2 Magnetocaloric materials ... 5
 1.2.3 Magnetic refrigerator prototypes .. 8
 1.2.4 Practical applications .. 12
 1.3 Mobile air-conditioning systems .. 12
 1.4 Objectives and structure of the work .. 15

2. The active magnetic regenerator model ... 17
 2.1 Literature review of AMR models ... 17
 2.2 Governing equations .. 21
 2.2.1 Fluid equation ... 23
 2.2.2 Regenerator equation .. 26
 2.2.3 Numerical solution algorithm ... 27
 2.2.4 Calculation of performance indicators .. 27
 2.3 Validation and comparison with the implicit scheme .. 28
 2.3.1 Transport equation ... 28
 2.3.2 Single-blow ideal passive regenerator ... 30
 2.3.3 Oscillating ideal passive regenerator ... 32
 2.3.4 Oscillating passive regenerator ... 33
 2.4 Magnetocaloric material properties .. 35
2.5 Demagnetizing effect: calculation of the internal magnetic field 40
2.6 Conjugate heat transfer ... 41
 2.6.1 Effect of fluid flow maldistribution ... 44
 2.6.2 Effect of transversal conduction in the plates .. 45
2.7 Pressure drop ... 45

3. Experimental validation of the passive regenerator model 47
 3.1 Single-blow experimental setup ... 47
 3.2 Single-blow experimental results ... 50
 3.3 Single-blow modelling .. 51
 3.4 Single-blow simulation results and model validation 52
 3.4.1 Initial simulation results of the complete stack 52
 3.4.2 Influence of 2D heat conduction in the plates 54
 3.4.3 Influence of thermal inertia ... 54
 3.4.4 Validation of the Nu correlation ... 58
 3.5 Single-channel model approach ... 61

4. Experimental validation of the AMR model 63
 4.1 AMRR experimental setup ... 63
 4.1.1 Description of the experimental apparatus ... 63
 4.1.2 Description of the AMR experiments .. 65
 4.2 AMRR simulations setup ... 68
 4.2.1 Calculation of the inlet temperatures to the AMR model 68
 4.2.2 Estimation of the thermal losses to the ambient 70
 4.2.3 Time and space grids ... 71
 4.3 Validation results and discussion ... 71
 4.3.1 Uncertainties in the magnetocaloric properties 74
 4.3.2 Computation of the demagnetization ... 74
 4.3.3 Conjugate heat transfer correlations and fluid flow maldistribution 78
 4.3.4 Variation of the inlet temperatures due to the losses to the ambient 80
 4.3.5 Uncertainty in the lag time ... 82

5. The mobile air-conditioning system model 83
 5.1 Description of the modelled system .. 83
 5.2 The global MAC system model .. 84
5.3 The cabin model ... 86
 5.3.1 Literature review .. 86
 5.3.2 Governing equations ... 87
 5.3.3 Validation .. 92
5.4 The thermal power distribution loop model 98
 5.4.1 The piping model ... 99
 5.4.2 The electrical auxiliaries model 100
5.5 The heat exchanger model ... 101
 5.5.1 Literature review .. 101
 5.5.2 Governing equations ... 102
 5.5.3 Validation .. 106
5.6 The reversible refrigerator model interface 111

6. Design of an AMRR for a mobile air-conditioning system 113
 6.1 Literature review on AMRR parametric studies 113
 6.2 Mobile air-conditioning requirements 115
 6.2.1 Thermal load .. 115
 6.2.2 Working temperatures .. 117
 6.2.3 Mass .. 118
 6.2.4 Efficiency ... 118
 6.3 AMRR definition ... 119
 6.3.1 Calculation of the AMRR performance 120
 6.3.2 Calculation of the AMRR mass 121
 6.4 AMRR simulation setup ... 122
 6.4.1 Methodology ... 122
 6.4.2 Parameter space .. 123
 6.5 Cooling performance .. 124
 6.5.1 Selection of MCMs .. 124
 6.5.2 Case S1: 3027 W at 29.4 K span 127
 6.5.3 Case S2: 2803 W at 34.8 K span 132
 6.5.4 Comparison of summer design points 134
 6.6 Heating performance ... 135

7. Conclusions ... 139
Modelling and analysis of an air-conditioning system for vehicles based on magnetocaloric refrigeration

7.1 On the AMR model ... 139
7.2 On the MAC system model .. 141
7.3 On the application of AMRRs in MAC systems 142
7.4 Future work .. 143

References .. 145

Publications .. 157

Appendix A. Discretization of the AMR fluid equation................. 159
Appendix B. MATLAB code of the AMRR model 169