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Abstract 30 

The development of powerful computerized-assisted sperm analysis software (CASA) 31 

has made kinetic studies of spermatozoa possible. This system has been used and 32 

validated for several species, but some technical questions have emerged regarding fish 33 

sample evaluations (i.e., frame rates, sperm dilution, chamber models, time of analysis, 34 

magnification lens, etc). In the present study, we have evaluated the effects of different 35 

procedural and biological settings with the aim to measure sperm quality parameters on 36 

the European eel correctly.  37 

The use of different chambers did not affect the sperm motility parameters. However, 38 

regarding lens magnification, 10x was the most accurate lens, showing the least 39 

variation in the acquired data. Similarly, the frame rate setting resulted in a dramatic 40 

effect in some sperm kinetic parameters, primarily in terms of curvilinear velocity, we 41 

therefore recommend using the camera's high frame rate setting available. Finally, the 42 

reduction in sperm motility over post-activation times suggests that sperm analysis 43 

should be performed within the first 60 s after activation of the European eel sperm. In 44 

conclusion, some protocol variables of sperm analysis by CASA software can affect the 45 

measurement of eel sperm quality parameters, and should be considered before directly 46 

comparing results obtained by different laboratories. Moreover, as marine fish species 47 

show relatively similar features to sperm kinetic parameters, these results could be 48 

considered in the evaluation of the motility of sperm from other fish species. 49 
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1. Introduction 54 

The economic importance and high commercial demand of the European eel, Anguilla 55 

anguilla, primarily from European and Japanese markets, is well known [1-3]. 56 

However, the population of the European eel has declined to such a degree that major 57 

concerns have been raised for its long-term survival [4,5]. Efforts have been made to 58 

understand the life cycle and reproductive biology of this species [6,7] and we already 59 

know that in order to overcome the lack of normal spawning stimuli in captivity, it is 60 

necessary to use hormones to induce both ovulation and spermiation the use of 61 

hormones to induce both ovulation and spermiation is necessary [8,9]. It is particularly 62 

advantageous to stimulate the spermiation of male eels so that sperm is available both in 63 

a short time and in high volume [10]. In this respect, knowledge of how to manipulate 64 

and preserve eel sperm is essential [11-14] and a reliable and standardized methodology 65 

to analyze its quality is needed. 66 

The evaluation of sperm motility and other kinetic parameters like curvilinear, straight 67 

line and average path velocities, as well as morphology, is an essential tool in the 68 

examination of sperm quality in many fish species [15-21], including the European eel 69 

[10,22-23]. Despite the fact that for many years optic microscopes have conventionally 70 

been used to carry out analysis/evaluations, it is considered a subjective method and 71 

great variations have been reported [24]. According to Verstegen et al. [25], when 72 

subjective optical microscopic evaluation is used in humans and animals, variations of 73 

30 to 60% have been reported in the estimation of the motility parameters of the same 74 

ejaculates. The computer assisted sperm analysis, or CASA, has been used by an 75 

increasing number of researchers worldwide and provides an objective, rapid and 76 

multiple-parameter assessment of sperm quality. 77 

In order to make it possible to compare the results obtained by different laboratories, all 78 

studies that use CASA must describe its methodology very clearly, particularly 79 

concerning image acquisition rate, track sampling time, number of cells sampled, type 80 

and depth of the chamber used, software name, microscope optic and magnification, etc.  81 

[26,27]. Unfortunately, in the majority of publications details of these parameters are 82 

not provided, thus reducing the possibility of comparing the results of different 83 

laboratories. Furthermore, as there are many different configurations/ways of using 84 

CASA, it is important to establish standard methods of enhancing the reliability, 85 

comparability and applicability of data produced by different research groups [28-30]. 86 



As CASA are not ready-to-use devices, they depend largely on the technical settings 87 

and standardizing procedures. Thus, the aim of this study was to evaluate different 88 

procedural and biological settings such as chamber models, lens magnification, frame 89 

rate acquisition, ejaculate portion and post activation times in order to define a standard 90 

method to assess the quality of the European eel semen using a CASA system (ISAS® 91 

v1).  92 

 93 

2. Material and Methods 94 

2.1 Fish handling 95 

Sixty adult eel males from the fish farm Valenciana de Acuicultura, S.A. (Puzol, 96 

Valencia; East coast of Spain) were moved to our facilities, in the Aquaculture 97 

Laboratory of the Universitat Politècnica de València, Spain. The fish were distributed 98 

in three 200-L aquaria (approximately 20 males per aquarium) equipped with separate 99 

recirculation systems, thermostats/coolers and covered to maintain constant darkness. 100 

The eels were gradually acclimatized to sea water (salinity 37 ± 0.3 g/l) and once a 101 

week they were anaesthetized with benzocaine (60 ppm) and weighed before receiving 102 

the administration of hormones (hCG; 1.5 IU g
-1

 fish) by intraperitoneal injection. The 103 

fish were fasted throughout the experiment and were handled in accordance with the 104 

European Union regulations regarding the protection of experimental animals (Dir 105 

86/609/EEC). 106 

 107 

2.2 Sperm collection and sampling 108 

Sperm samples were collected 24 h after the administration of the hormone because 109 

previous studies [31] have demonstrated that this is moment when the highest sperm 110 

quality is found. In preparation for sperm collection the fish were anesthetized, and after 111 

cleaning the genital area with fresh water to avoid the contamination of the samples 112 

with faeces, urine and sea water, and thoroughly drying the fish, the sperm were 113 

collected by abdominal pressure. A small aquarium air pump was modified to obtain a 114 

vacuum breathing force and the sperm was collected in a tube. A new tube was used for 115 

every male and distilled water was used to clean the collecting pipette between each 116 

male.  117 

Sperm samples were collected between the 6
th

 and the 13
th

 week and kept in plastic 118 

tubes under refrigeration (4 
o
C) during 1-2 hours prior to the analyses. 119 



 120 

2.3 Sperm motility evaluation, CASA settings and the analyzed parameters 121 

Sperm was activated by mixing 1 µl of sperm with 200 µl of artificial sea water (Aqua 122 

Medic Meersalz, 37 g/l, with 2% BSA (w/v), pH was adjusted to 8.2; [13]). All the 123 

motility analyses were performed by triplicate by the motility module of ISAS
®
v1 124 

(Proiser R+D, S.L.; Paterna, Spain) using an ISAS
®
 782M camera recorder capturing 60 125 

frames per second (fps). At least 400-700 spermatozoa were captured in each field 126 

adjusting the brightness and contrast in the CASA settings in relation to the microscope 127 

light with the aim to reach spermatozoa clearly defined. Range size particle were 128 

defined between 2 and 20 µm in the CASA settings. The counting chamber used in all 129 

experiments was the ISAS D4C20 chamber, with the exception of the “chamber trial”, 130 

in which ISAS and Makler chambers were compared. 131 

The parameters considered in this study were total motility (MOT, %); progressive 132 

motility (PM, %), defined as the percentage of spermatozoa which swim forward in an 133 

essentially straight line; the percentage of fast (FA; VAP > 100 µm/s ), medium (ME; 134 

VAP = 50-100 µm/s) and slow (SL; VAP = 10-50 µm/s) spermatozoa; curvilinear 135 

velocity (VCL, in µm/s), defined as the time/average velocity of a sperm head along its 136 

actual curvilinear trajectory; straight line velocity (VSL, µm/s), defined as the 137 

time/average velocity of a sperm head along the straight line between its first detected 138 

position and its last position; average path velocity (VAP, µm/s), defined as the 139 

time/average of sperm head along its spatial average trajectory; straightness (STR, %), 140 

defined as the linearity of the spatial average path, VSL/VAP;  and  beat cross 141 

frequency (BCF, in beats/s), defined as the average rate at which the curvilinear sperm 142 

trajectory crosses its average path trajectory. Spermatozoa were considered immotile if 143 

their VCL was lower than 10 µm/s. 144 

In order to perform an in-depth analysis, sperm samples were classified into three 145 

classes based on the percentage of motile spermatozoa: Class I (C-I)= 0-25% of motile 146 

cells; Class II (C-II)= 25-50% of motile cells; and Class III (C-III) >50% of motile cells. 147 

All trials were carried out using each one of these motility classes (except the ejaculate 148 

portion trial, in which only C-III class was used). 149 

 150 

2.4 Effect of chambers and magnification lens.  151 

Different tools can be used for sperm motility evaluation by CASA systems. In this trial 152 

two chamber models commercially available: the ISAS D4C20 disposable chamber (20 153 



μm deep; Proiser R+D, S.L.; Paterna, Spain) versus the Makler reusable chamber (10 154 

μm deep; Sefi Medical Instruments, Haifa, Israel) and two magnification lenses (10x 155 

versus 20x in a Nikon E400 microscope, negative phase contrast) were tested. 156 

 157 

2.5 Effect of frame rate 158 

To assess the effect of frame rate upon the system’s ability to describe sperm motion, 159 

sperm quality parameters at 20, 30 and 60 frames per second (Hz) were compared. With 160 

the aim of avoiding variations between replicates within the same sample, the original 161 

file, captured at 60 fps, was manually modified using video-analysis software removing 162 

1 or 2 frames from every 3 original ones within each video file, as such obtaining files 163 

of 30 or 20 fps, respectively. 164 

 165 

2.6 Effect of ejaculate portion and post activation time.  166 

Sperm samples were collected in two portions: the first collectable millilitre (1
st
 mL) 167 

was retrieved in a test tube,
 
while the rest of the sperm (Rest) was collected in another 168 

test tube. At the same time, sperm quality parameters of C-III class samples were also 169 

measured at different post-activation times (30, 60 and 90 s) with the aim of assessing 170 

the effects of the differences in time from the sperm activation event. 171 

 172 

2.7 Statistical analysis 173 

The mean and standard error (SE) were calculated for all the sperm quality parameters. 174 

Shapiro-Wilk and Levene tests were used to check the normality of data distribution and 175 

variance homogeneity, respectively. The one-way analysis of variance (ANOVA) and 176 

Student's t-test were used to analyze data with normal distribution. Significant 177 

differences between post-activation times were detected using the Tukey multiple range 178 

test (P<0.05). For non-normally distributed populations, Kruskal-Wallis one-way 179 

ANOVA on ranks and Mann-Whitney U-test were used. All statistical analyses were 180 

performed using the statistical package SPSS version 19.0 for Windows software (SPSS 181 

Inc., Chicago, IL, USA). 182 

 183 

3. Results 184 

The sperm cell detection parameters used in this study were suitable for fish sperm 185 

evaluation. Quality control analysis performed using the playback facility showed that 186 



all spermatozoa observable in the field were detected and recorded. 187 

 188 

3.1 Effect of chambers and magnification lens. 189 

The different chambers used in this trial did not significantly affect the sperm quality 190 

parameters in any motility class (Table 1). However, samples analyzed by the ISAS
®
 191 

disposable chamber showed slightly higher values in almost all the sperm motility 192 

parameters (although no significance differences were found). The coefficients of 193 

variation (CV) of samples within the same motility class obtained with both chambers 194 

were quite similar (Figure 1), with much higher CV’s in C-I than in C-II and C-III 195 

classes. 196 

On the contrary, the different magnification lenses used in this study significantly 197 

affected some of the sperm quality parameters in the different sperm classes (Table 2). 198 

Samples analyzed using the 20x lens showed lower values than those analyzed using the 199 

10x lens, with more significant differences in C-II and C-III. In addition, the 200 

coefficients of variation within the same motility class (Figure 1) with the 20x lens were 201 

much higher than with the 10x lens, with much higher CV’s in C-I than in C-II and C-202 

III.  203 

 204 

3.2 Effect of frame rate setting 205 

The frame rate setting (FR) had no effect neither on the total and progressive motile 206 

cells nor on the proportion of fast, medium and slow spermatozoa (data not shown). 207 

However, other kinetic values were deeply affected by FR (Figure 2). VCL and BFC 208 

showed a progressive increase with significant differences as the FR increased while 209 

STR showed a reverse trend, decreasing as the FR increased. VSL did not show 210 

significant differences in any motility class whereas VAP only showed statistical 211 

differences in C-II motility class. 212 

 213 

3.3 Effect of ejaculate portion and post activation time. 214 

Sperm quality parameters obtained by the first collectable millilitre (1
st
 mL) and the rest 215 

of the sperm (Rest) were similar and no significant differences were evident (Table 3). 216 

Regarding changes in sperm parameters after sperm activation, significant differences 217 

were found on MOT, FA, and SL (Figure 3). The most affected parameter was MOT, 218 

showing a progressive decrease in motile cells after the activation time with significant 219 

differences in the different classes, in which motility value recorded at 90 s was lower 220 



than motility obtained at 30 s. The percentage of fast spermatozoa showed a similar 221 

trend, but without significant differences in C-II. The percentage of slow spermatozoa 222 

only showed significant differences in the highest motility class (C-III). 223 

 224 

4. Discussion 225 

The subjective sperm quality evaluation, widely used in many laboratories working with 226 

male gametes, depends on the skill, perception and training of the researcher who 227 

evaluates the sperm samples [15,17,32]. In the last few years, several CASA software 228 

have been developed with the aim of achieving an objective evaluation of sperm quality 229 

parameters [33]. However, although these systems provide the most accurate and 230 

repeatable technique currently available, they need to be standardized before their use. 231 

Despite the beneficial effects of this standardization process in human andrology [34], 232 

there is little data about domestic animals [35,36] and to this day there are no studies 233 

about the standardization of procedures in fish species. In this study, we have assessed 234 

different technical and biological settings in order to standardize the sperm quality 235 

evaluation of European eel to be used as a sperm model of for teleost fish. 236 

Several different chambers can be used for the analysis of spermatozoa using CASA 237 

systems. The choice of chamber depends on several factors and in this trial two chamber 238 

models have been evaluated. The Makler chamber is a round reusable sperm counting 239 

chamber (10 µm depth) loaded by drop displacement, while the ISAS DC420 chamber 240 

is a rectangular disposable sperm counting chamber (20 µm depth) loaded by capillarity. 241 

All these factors (shape, loading method, depth, etc.) can affect the sperm parameters, as 242 

occurs in other species like humans [27,37] or bull [29,38]. However, in our study, the 243 

different chambers used did not affect fish sperm quality parameters in any motility 244 

class. This result suggests that in the case of eel sperm and, in fish sperm with similar 245 

sperm features in general, it is possible to evaluate the sperm quality parameters with 246 

different kind of chambers without compromising the final result. 247 

On the other hand, the different magnification lenses used in this study significantly 248 

affected many of the sperm quality parameters. In this case, the result could be related 249 

to the sample size, which can affect the results of sperm analysis. If an insufficient 250 

number of spermatozoa are analyzed during the video capture a non-accurate 251 

measurement of sperm parameters will be obtained due to a higher data 252 

variation/dispersion [21]. In this case, the number of spermatozoa captured by the 20x 253 



magnification lens was much less than those assessed with the 10x lens, therefore the 254 

coefficients of variation obtained by the 20x lens were much higher than those obtained 255 

with the 10x lens within the same motility class. Thus, the results obtained by the 10x 256 

lens should be a priori more accurate and precise than the results obtained by the 20 x 257 

lens. 258 

The number of frames acquired per second (fps) can influence the quality of the 259 

acquisition and the sperm quality parameters [26]. It has been demonstrated in literature 260 

that low frame rates can underestimate the real value of kinetic traits [28,29]. The higher 261 

the quantity of track information available during the sperm capture (increasing fps), the 262 

more accurate the reconstruction of the sperm trajectories obtained, more closely 263 

resembling the real trajectory. Thus, the reduction in the fps could generate significant 264 

variations in several kinetic parameters. In our trial, the frame rate setting had no effect, 265 

neither on total motility nor on progressive motility. However, other sperm quality 266 

parameters like VCL, STR or BFC were deeply affected by frame rate. Our results 267 

corroborate previous studies [26,29], in which it has been suggested that increases in 268 

frame rate drastically increase the measured VCL without substantial impact on VAP, 269 

resulting in a decrease in STR. In this respect, it seems reasonable to think that the 270 

higher number of fps we use will generate the more “real” the spermatozoa trajectory. 271 

However, what is the limit of fps?. This limit depends on several factors, from the 272 

kinetic features of the sperm with which we are working (it is quite different to work 273 

with low and linear than with fast and non-linear spermatozoa movements) to the 274 

laboratory´s ability to invest in the best camera available in the market. In this respect, 275 

most of the papers about mammal sperm carried out with CASA software use an 276 

acquisition rate of 50-60 Hz [39-42]. However, this rate seems to be chosen due to 277 

hardware/software facilities and not due to theoretical considerations. Regarding fish 278 

sperm, the problem is bigger because fish spermatozoa are considered one of the fastest 279 

describing non-linear trajectories. Toth et al. [43] suggested that frame rates >60 fps 280 

should be used when analysing fish sperm. In this sense, Wilson et al. [28] reported that 281 

97 fps is the lower limit to obtain acceptable trajectories in zebra fish, and Castellini et 282 

al. [26] reported that fish sperm require a frequency of 290 fps to fully trace the 283 

movement path. Thus and to sum up, it is important to take into account that the 284 

comparison of results between different laboratories/research groups which use a 285 

different number of frames acquired per second (fps) may not be valid. 286 



On the other hand, it is well known that marine fish spermatozoa are quiescent in the 287 

seminal plasma, and the hyperosmolality of the sea water is the trigger that initiates the 288 

motility [44]. However, the ability of spermatozoa to swim is eventually dependent on 289 

their previous maturation in the sperm ducts, where some essential processes in 290 

acquiring movement capability take place, such as changes in pH and ionic composition 291 

of seminal plasma, as well as the action of the progestin DHP [45,46]. While in some 292 

mammals [47] it has been demonstrated that the portion of ejaculate evaluated can 293 

affect the sperm quality parameters, scarce studies have been developed in fish. For 294 

example, in rainbow trout, the spermatozoa collected from the distal portions of the 295 

sperm duct display better motility than the spermatozoa collected from the proximal 296 

portions [48]. Peñaranda et al. [49] suggested that the high concentration of lipoproteins 297 

(HDL-proteins) present in the seminal fluid can interact with the spermatozoa plasma 298 

membrane to maintain its lipid composition during storage in the sperm duct. In our 299 

trial, significant differences in sperm quality parameters between the first collectable 300 

millilitre and the rest of the sperm were not evident. In the case of European eel, an 301 

endangered marine species able to produce a high volume of sperm (1–4 mL 100 g
−1

 302 

fish; [8,10,31]), this result confirms the possibility of using sperm produced by males 303 

under hormonal treatment in artificial fertilizations. This result increases the economical 304 

profitability of the relatively expensive hormonal treatment necessary to obtain the 305 

sperm [10] and enhances the need for good cryopreservation techniques to reduce the 306 

male broodstocks and the hormones required to produce enough amounts of sperm. 307 

Moreover, regarding change in movement parameters after sperm activation, total 308 

motility was the most affected factor, displaying a progressive decrease in the 309 

percentage of motile cells after the activation time. Usually in marine and freshwater 310 

species, most of the sperm traits used to characterize motility decline within tens of 311 

seconds to a few minutes, depending on the species, and this general decrease leads to 312 

an eventual full arrest of spermatozoa by ATP consume [50]. In the case of European 313 

eel, in addition to the reduction in motility, a decrease in the percentage of fast 314 

spermatozoa was also evident over time. As such our results suggest that sperm analysis 315 

in European eel sperm should be performed within the first 60 s after activation. 316 

To summarize, CASA systems are useful tools for carrying out studies about 317 

spermatozoa kinetic parameters in fish species. However, some questions have emerged 318 

regarding sperm sample evaluations, and as such several procedural and technical 319 

settings should be standardized and validated before comparing results obtained by 320 



different laboratories.  In this study, we have assessed different technical and biological 321 

settings in order to standardize the evaluation of sperm quality in the European eel and 322 

use it as a sperm model for teleost fish.  We have discovered that some protocol 323 

variables in sperm analysis by CASA software (ISAS
®
 v1) can affect the measurement 324 

of eel (fish) sperm quality parameters. Notably, neither the type of chamber nor the 325 

ejaculate portion affected the sperm quality parameters, suggesting that either type can 326 

be used for sperm evaluation in European eels. Finally, in order to carry out a suitable 327 

analysis on sperm quality parameters in European eel, we would suggest a few 328 

recommendations regarding its application: i) use the lowest available magnification 329 

lens, with the aim of avoiding a big spread in data; ii) use the highest available frame 330 

rate, with the aim of obtaining the most “real trajectory” of the spermatozoa and iii) 331 

perform the analysis within the first 60 s after activation. 332 
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Table legends 481 

 482 

Table 1. Mean ± SE of sperm quality parameters for different chamber models on 483 

different sperm classes (C-I, C-II and C-III) at 30 s post-activation time.  484 

No significant differences were found between chamber models. 485 

 486 

Table 2. Mean ± SE of sperm quality parameters for different microscopy 487 

magnifications on different sperm classes (C-I, C-II and C-III) at 30 s post-activation 488 

time. Asterisks indicate significant differences between microscopy magnifications. 489 

 490 

Table 3. Mean ± SE of sperm quality parameters in the first collectable millilitre (1
st
 491 

mL) and the rest of the sperm (Rest) in high quality sperm samples (C-III) at 30 s post-492 

activation time. No significant differences were found between different ejaculate 493 

portions. 494 

 495 

Figure legends 496 

 497 

Figure 1. Coefficients of variation (CV´s) for each chamber model (Makler and ISAS) 498 

and each microscopy magnification (10x and 20x) on different sperm classes (C-I, C-II 499 

and C-III). 500 

 501 

Figure 2. Kinetic parameters at different frame rates (20, 30 and 60 fps) on different 502 

sperm classes (C-I, C-II and C-III). Data are expressed as mean ± SE and different 503 

letters indicate significant differences between frame rates. 504 

 505 

Figure 3. Sperm quality motility parameters at different post-activation times (30, 60 506 

and 90 s) on different sperm classes (C-I, C-II and C-III). Data are expressed as mean ± 507 

SE and different letters indicate significant differences between times.508 



Table 1. 509 

 510 

 
 

C-I   C-II   C-III 

 Makler ISAS    Makler ISAS  Makler ISAS 

                                           
MOT % 16.0 ± 1.6 20.8 ± 2.4  38.6 ± 3.2 42.7 ± 3.7  57.6 ± 2.3 62.8 ± 3.6 

PM % 4.3 ± 0.8 5.5 ± 1.0  19.6 ± 2.4 21.1 ± 2.5  22.1 ± 2.2 26.1 ± 2.2 

FA % 7.3 ± 1.2 9.0 ± 1.3  27.0 ± 2.8 30.0 ± 3.4  38.6 ± 2.9 45.3 ± 3.5 

ME % 4.4 ± 0.5 5.9 ± 0.9  6.1 ± 0.8 6.8 ± 0.7  12.7 ± 0.9 11.2 ± 0.9 

SL % 4.4 ± 0.5 5.8 ± 0.9  5.5 ± 0.8 5.9 ± 0.8  6.3 ± 0.6 6.3 ± 0.5 

VCL µm/s 96.1 ± 5.4 94.3 ± 6.3  140.4 ± 7.5 143.0 ± 7.8  136.1 ± 6.3 145.6 ± 6.0 

VSL µm/s 37.0 ± 2.9 38.5 ± 3.7  69.8 ± 5.4 69.6 ± 4.8  62.5 ± 4.2 69.0 ± 4.1 

VAP µm/s 54.3 ± 3.2 55.6 ± 4.2  87.8 ± 5.3 88.7 ± 5.2  85.0 ± 4.6 92.3 ± 4.6 

STR % 66.7 ± 1.5 67.0 ± 1.9  77.4 ± 2.4 77.4 ± 1.5  72.3 ± 1.6 73.8 ± 1.3 

BFC beats/s 21.6 ± 2.2 24.3 ± 2.0  31.9 ± 1.6 34.9 ± 1.3  30.8 ± 1.2 31.1 ± 1.2 
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Table 2. 512 

 513 

 
 

C-I   C-II   C-III 

 10x 20x  10x 20x  10x 20x 

                                           
MOT % 18.5 ± 1.8 18.3 ± 2.3  42.2 ± 3.1 39.1 ± 3.8  63.8 ± 2.1 56.6 ± 3.6 

PM % 4.8 ± 0.9 5.0 ± 0.9  22.1 ± 2.3 18.6 ± 2.6  27.8 ± 2.0* 20.4 ± 2.3 

FA % 8.4 ± 1.2 7.9 ± 1.3  32.0 ± 2.8 25.1 ± 3.2  47.8 ± 2.5* 36.1 ± 3.6 

ME % 5.7 ± 0.7 4.6 ± 0.6  5.6 ± 0.6 7.3 ± 0.9  10.5 ± 0.8* 13.3 ± 1.0 

SL % 4.4 ± 0.5 5.9 ± 0.9  4.6 ± 0.5 6.8 ± 1.0  5.5 ± 0.4* 7.1 ± 0.7 

VCL µm/s 101.2 ± 4.6 89.2 ± 6.7  153.6 ± 5.1* 129.8 ± 8.6  152.3 ± 5.0* 129.4 ± 6.5 

VSL µm/s 39.3 ± 2.8 36.2 ± 3.8  74.9 ± 4.1 64.6 ± 5.7  72.2 ± 3.8* 59.2 ± 4.2 

VAP µm/s 58.3 ± 2.9 51.6 ± 4.3  94.6 ± 3.9 82.0 ± 5.9  95.4 ± 4.0* 81.9 ± 4.8 

STR % 66.4 ± 1.6 67.4 ± 1.8  78.4 ± 1.4 76.4 ± 2.4  74.8 ± 1.1 71.3 ± 1.7 

BFC beats/s 26.2 ± 1.2* 19.7 ± 2.6  35.7 ± 1.1* 31.1 ± 1.6  33.0 ± 1.1* 28.9 ± 1.2 
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Table 3. 515 

 516 

  1
st
 mL Rest 

               
MOT % 74.75 ± 3.19 73.29 ± 3.78 

PM % 39.36 ± 3.36 36.65 ± 5.49 

FA % 61.16 ± 5.09 58.80 ± 5.26 

ME % 10.39 ± 2.56 10.60 ± 1.93 

SL % 3.20 ± 0.33 3.89 ± 0.60 

VCL µm/s 162.88 ± 7.28 156.95 ± 6.34 

VSL µm/s 87.03 ± 5.77 81.76 ± 6.37 

VAP µm/s 110.58 ± 6.33 104.16 ± 6.03 

STR % 78.41 ± 1.12 77.83 ± 1.87 

BFC beats/s 30.70 ± 1.12 30.44 ± 0.75 
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Figure 2. 519 
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