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Resumen

El sistema WFS es un sistema de reproducción de audio que recrea con bastante verosimilitud

el campo producido por una fuente sonora dentro de una área de escucha. Cuando el número

de fuentes a sintetizar y de altavoces en el sistema es amplio, los requisitos computacionales

aumentan significativamente. La elaboración de sistemas distribuidos nos permite poder imple-

mentar un sistema modular y escalable, al tiempo que la carga computacional requerida por la

implementación es repartida entre sus diferentes nodos. Un problema importante a resolver por

estos sistemas distribuidos es la sincronización entre nodos ya que es un factor limitante para

muchas aplicaciones de audio. El presente trabajo analiza el sincronismo que existe entre nodos

para dos tipos de sistemas distribuidos que implementan un sistema WFS.
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Summary

Wave Field Synthesis (WFS) is a spatial audio reproduction system that provides an accurate

spatial sound field in a wide area. When the system involves multiple loudspeakers and multiple

sound sources, the computational requirements increase meaningfully. The configuration of a

distributed system composed of acoustic nodes allows us not only to implement a modular

and scalable system, but also to share the computational load among all nodes. An important

issue to tackle in distributed systems is the synchronization among all nodes, even more when

spatial effect perception depends on the accurate delays in the sound signals. The present work

analyzes the fundamental aspects to take into account when a WFS is implemented and proposes

a communication protocol among the acoustic nodes.
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Chapter 1

Introduction

1.1 Motivation

In the last decade, explicitly parallel systems are being accepted in all segments of the industry

in the form of multicore processors and many-core hardware accelerators, being the field of the

digital signal processing one of the benefited with this acceleration, and more specifically the

synthesis of the spatial audio.

One of the spatial audio technologies available today is Wave Field Synthesis (WFS) in

which a sound field is synthesized in a wide area by means of loudspeaker arrays, which are

referred to as secondary sources. WFS is usually tackled via digital signal processing tech-

niques to reproduce complex auditory scenes consisting of multiple acoustic objects, which are

generally denoted as primary or virtual sources. The WFS concept was introduced at the Delft

University of Technology in the 1980s. Berkhout developed the first investigations in this field

[27, 28], which were followed by several dissertation works [39, 35, 38, 34, 30].

A large-scale WFS system requires costly computational operations in real time since it

involves multiples input and output channels. In recent years, there have been several studies

aimed at implementing a WFS system. An approach that benefited from time-invariant prepro-

cessing in order to reduce the computational load is presented in [33]. In [36, 25, 26], a WFS

implementation on different multi-core platforms, including a GPU-based implementation was

presented.

However, the proposed applications present an expensive cost and low flexibility, since all

of them are centralized. The main contribution of this Master Thesis is to design a distributed

1



2 CHAPTER 1. INTRODUCTION

system composed of acoustic nodes that are able to execute a Wave Field Synthesis application.

These nodes are composed of multi-core ARM processors that consume low power and allows

to be moved/portable easily. The development of this distributed system allows to obtain a

flexible application that can adapt easily to the acoustic requirements, i.e. the number of nodes

can increase or decrease at any time.

This system presents two levels of parallelism: Computational distribution among acoustic

nodes, and parallelism inside the processor (taking maximum profit of the parallel resources

such as multi-core processors or vectorial registers). Next subsection summarizes the objectives

of this Master Thesis.

1.2 Objectives

Considering all the motivation aspects, the main objective of this work is to develop an applica-

tion capable of reproducing spatial sound. This means that a user is able to locate positions of

sound sources while these are being reproduced The main contribution is that the reproduction

is carried out in a distributed manner by acoustic nodes that are composed of ARM proces-

sors. The main advantage of this system is the possibility of adding or removing acoustic nodes

resulting a modular system that can be adapted to the environment and to the availability of

resources. More specific objectives are:

• Evaluate synchronization protocols that allow to execute a Wave Field Synthesis system.

• Analyze operations that are required to implement a Wave Field Synthesis application:

convolution.

• Analyze the different possibilities of implementing the convolution on the ARM proces-

sors.

• Implementation of the required operations on the ARM processors.

• Optimization of the operations attending to the parallel resources of the processors: Multi-

core and Vectorial registers.

• Design a configuration file system so that each node can dispose of a personalized con-

figuration.
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• Obtain computational performances.

1.3 Organization of the Thesis

The organization of this thesis is distributed in the following chapters. Chapter 2 describes the

state of the art dedicating a section to Walve Fild Synthesis and other section to the synchro-

nization issues. Moreover, chapter 2 presents the required tools for carrying out this application.

Implementations details are devoted to chapter 3. In Chapter 4, we evaluate the computational

performance of our WFS system, and we summarize our results in Chapter 5.
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Chapter 2

State-of-the-Art

2.1 Wave Field Synthesis

One of the spatial audio rendering techniques available today is the Wave Field Synthesis

(WFS), where sound field is synthesized by a large number of individually driven loudspeakers.

These wave fronts seem to originate from a virtual starting point, the virtual source or notional

source. Contrary to traditional spatialization techniques such as stereo or surround sound, the

localization of virtual sources in WFS does not depend on or change with the listener’s posi-

tion. WFS is based on the Huygens–Fresnel principle, which states that any wave front can be

regarded as a superposition of elementary spherical waves. Therefore, any wave front can be

synthesized from such elementary waves.

The basic procedure of WFS was developed in 1988 by Professor Berkhout at the Technical

University of Delft. Unlike conventional audio procedures (e.g stereo /surround) the perception

of these wave fields is not dependent on psychoacoustic phantom sound source perception. The

WFS sound field is actually reconstructed physically.

The positioning of sound within the stereo system (that is based on the same principal as

surround) originates from intensity differences or short time differences between both speakers.

In the “real world” when sound is perceived from a natural sound source in the environment

it arrives at one ear slightly earlier that the other (that is, if the source is not situated straight

in front of the listener). Because of this inter-aural time difference we (for frequencies below

1.500 Herz) use this information to determine which physical direction the sound is coming

from.

5



6 CHAPTER 2. STATE-OF-THE-ART

With stereo reproduction technique the sound of the left loudspeaker arrives first at the left

ear and later at the right ear, and sound from the right loudspeaker arrives first at the right ear

and then later to the left ear. The human brain ‘makes sense’ of this intensity difference to

determine the “apparent location” of the sound source.

For the perception of natural sound sources above 1.500 Herz use is made of inter-aural time

differences as well as a coloration of the sound, caused amongst other factors by the physical

interference of the human head and ear lobes. Again the normal stereo system is deficient in

rendering this spatial information and fails to convince, because the sound comes from two loud

speakers. Phantom locations emerge and the sound placement is very difficult to localize with

any precision. In this situation the brain determines the apparent location of the sound based

on the apparent intensity difference. The listener needs to be situated exactly in the middle of

the speakers in order to correctly perceive the positioning of stereo sound, because this is the

only spot where the ratios of the intensity differences are accurate. With the WFS technique

by means of a large number of loud speakers the wave itself is reconstructed. This ensures

that the distance between the sound source and the listener is smaller than the distance between

listener and the loudspeaker, so any desired wave can be reconstructed. This possibility cannot

be achieved with stereo technique, because the loudspeakers are the sources themselves and do

not reconstruct a source.

Figure 2.1: Reconstruction of the wavefront by the laudspeakers array.
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In practice, a computer controls a large array of individual loudspeakers arranged as arrays

around the listener and the computer synthesis activates each solitary loudspeaker membrane,

at the time when the virtual wave front would pass through it.

Sounds are no longer simulated (like stereo and surround systems which use psychoacous-

tic principles to “fool” the perceptual system) and sound reproduction is no longer based on

psychoacoustic principles, but instead on purely physical principles.

2.1.1 Convolution

Convolution is a mathematical way of combining two signals to form a third signal. It is the

single most important technique in Digital Signal Processing. Using the strategy of impulse

decomposition, systems are described by a signal called the impulse response. Convolution is

important because it relates the three signals of interest: the input signal (f), the output signal

(f*g), and the impulse response(g).

Figure 2.2: Convolution process.

The problem is to implement on-going, non-cyclic convolution with the finite-length, cyclic

convolution that the FFT gives. An answer was quickly found in a clever organization of piecing

together blocks of data using what is now called the overlap-add method and the overlap-save

method.
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Overlap-Save

Considering that h and x have a size of lh and lx samples, respectively with lx � lh, we

can convolve both sequences by breaking the long signal into blocks of lo samples with the

peculiarity that each block has an overlap of lh − 1 samples with the previous block. The size

lo is the first power-of-two integer that is lo ≥ lx + lh − 1. First block of x will be zero-padded

at the beginning with with lh − 1 samples. Although we take lo = lx + lh − 1 and an overlap of

lh − 1 samples, most of the authors in literature take a value of lo = 2lh with an overlap of lh

samples, which gives a better efficiency [37]. Figure 2.3 illustrates this block division where xi

represents the block i-th of signal x.

Figure 2.3: Overlap-save: Split the signal x in blocks of size lo.

Sequence h is also zero-padded up its size is lo. Thus, each block xi and h have the same

size. The FFT is applied to each block xi and the sequence h, then each block is element-

wise multiplied by the H (Fourier transformed of h) and gives as a result another block Y i

composed of lo samples. Figure 2.4 illustrates these operations where X i and Y i denote the

Fourier transforms of the blocks xi and yi, respectively.

Finally, the first lh−1 samples of every block yi are discarded. To configure the output

signal y, all the blocks are afterwards concatenated, as is shown in Figure 2.5.
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Figure 2.4: Overlap-save: Each block xi together with h are Fourier transformed and element-

wise multiplied.

Figure 2.5: Overlap-save: To configure output signal y, the first lh − 1 of every block yi are

discarded.
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Overlap-Add

Overlap-add works also in blocks of size lo, but with the peculiarity that the last lx−1 samples of

the block are zero padded. Thus, each block xi is configured by lo− lh+1 samples of the signal

x and lh − 1 zeros. The sequence h is again zero-padded up its size is lo. Fourier transforms

and element-wise multiplications between the blocks xi and the sequence h are carried out in

the same way as in overlap-save, as shown in Figure 2.4.

However, to concatenate all the resulting yi blocks, the last lh − 1 samples of block yi must

be added to the first lh − 1 samples of the block yi+1. Figure 2.6 shows this processing.

Overlap-save and overlap-add only compute lo − lh + 1 elements per processed block of

length lo, but overlap-add has two additional steps: One of zero-padding the input, and one of

summing up with the overlap from the previous iteration. In practice, this will always result in

worse performance for the overlap-add algorithm. Therefore, the overlap-save method should

be preferred in real-time processing if using the FFT.

Figure 2.6: Overlap-add: To configure output signal y, the last lh − 1 samples of block yi must

be added to the first lh − 1 samples of the block yi+1.
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Fast Fourier Transform

Fast Fourier Transform (FFT) is an effective algorithm for computing the Discrete Fourier

Transform. It was developed by Cooley and Tukey in 1965 [26]. This algorithm reduces the

computation time of DFT for lx points from l2x to lxlog2(lx). It is also called the Butterfly algo-

rithm and is based on divide-and-conquer algorithms. It consists of dividing the transform into

two pieces of size lx recursively, and is therefore limited to power-of-two 2 sizes. In case lx is

not a power of two, a zero padding at the end of the data can be carried out in order to employ

more efficiently the algorithm. The inverse Fast Fourier Transform (iFFT) corresponds to the

effective algorithm of the inverse Discrete Fourier Transform.
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2.2 Synchronization

In modern computer networks time synchronization is critical because every aspect of manage-

ment, securing, planning, and debugging a network involves determining when events happen.

Time also provides the only frame of reference among all devices on the network. Without

synchronized time, accurately correlating log files between these devices is difficult, even im-

possible.

For the purpose of the application we study in this work, time synchronization is critical in

order to be able to create a Wave Field Synthesis and to be able to localize the source of the

sound. That is because all the nodes have to start to reproduce in an exact moment of time.

Otherwise the user may not perceive the sound from one source, and instead it would perceive

several sources with the same sound.

There are several ways to synchronize several network nodes, but in this case we focus on

the “Network Time Protocol” (NTP) given it’s wide use around the world and the “Precision

Time Protocol” [3].

2.2.1 Network Time Protocol

Network Time Protocol or NTP is an Internet protocol used to synchronize the clocks of com-

puters to some time reference. NTP is an Internet standard protocol originally developed by

Professor David L. Mills at the University of Delaware [9].

NTP is organized in a hierarchical client-server model. In the top of this hierarchy there are

a small number of machines known as reference clocks. A reference clock is known as stratum1

0 and is typically a cesium clock or a Global Positioning System (GPS) that receives time from

satellites. Attached to these machines there are the so-called stratum 1 servers (that is, stratum

0 clients), which are the top level time servers available to the Internet [9].

Following this hierarchy, the next level in the structure are the stratum 2 servers which in

turn are the clients for stratum 1 servers. The lowest level of the hierarchy is made up by stratum

16 servers. Generally speaking, every server synchronized with a stratum n server is termed as

being at stratum n+1 level. So, there are a few stratum 1 servers which are referenced by stratum

1measure for synchronization distance and it refers to the number of steps that a system lies from a primary

time source
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2 servers, which in turn are referenced by stratum 3 servers, which are referenced by stratum 4

and so on [9, 16].

Figure 2.7: NTP communication, where yellow arrows indicate a direct connection and red

arrows indicate a network connection.

NTP servers operating in the same stratum may be associated with others in a peer to peer

basis, so they may decide who has the higher quality of time and then can synchronize to the

most accurate.

In addition to the client-server model and the peer to peer model, a server may broadcast

time to a broadcast or multicast IP addresses and clients may be configured to synchronize to

these broadcast time signals.
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2.2.2 Precision Time Protocol

Precision Time Protocol or PTP is a protocol used to precisely synchronize the system clock of

distributed nodes in a system using standardized packet based networks like Ethernet. When

used in conjunction with hardware support, PTP is capable of sub-microsecond accuracy, which

is far better than is normally obtainable with NTP.

PTP was originally defined in the IEEE 1588-2002 standard, officially entitled “Standard for

a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems”

and published in 2002. In 2008, IEEE 1588-2008 was released as a revised standard; also known

as PTP Version 2, it improves accuracy, precision and robustness but is not backward compatible

with the original 2002 version [10].

Figure 2.8: PTP grandmaster, boundary, and slave Clocks [10].

The clocks synchronized by PTP are organized in a master-slave hierarchy as in NTP. The

slaves are synchronized to their masters who may be slaves to their own masters. The hierarchy

is created and updated automatically by the best master clock (BMC) algorithm, which runs

on every clock. When a clock has only one port, it can be master or slave, such a clock is

called an ordinary clock (OC). A clock with multiple ports can be master on one port and slave

on another, such a clock is called a boundary clock (BC). The top-level master is called the

grandmaster clock, which can be synchronized by using a Global Positioning System (GPS)

time source. By using a GPS-based time source, different networks can be synchronized with a
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high-degree of accuracy.

Figure 2.9 shows the unicast negotiation procedure performed between a slave and a peer

clock that is selected to be the master clock. The slave clock will request Announce messages

from all peer clocks but only request Sync and Delay-Resp messages from the clock selected to

be the master clock.

Figure 2.9: PTP Messaging Sequence Between the PTP Slave Clock and PTP Master Clock

[23]
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The basic synchronization timing computation between the PTP slave and PTP master is

shown in Figure 2.10. This figure illustrates the offset of the slave clock referenced to the best

master signal during startup.

Figure 2.10: PTP Messaging Sequence Between the PTP Slave Clock and PTP Master Clock

[23].

The Best Master Clock Algorithm (BMCA) is the basis of PTP functionality. The BMCA

specifies how each clock on the network determines the best master clock in its subdomain of

all the clocks it can see, including itself. The BMCA runs on the network continuously and

quickly adjusts for changes in network configuration [10].

In an ideal PTP network, the master and slave clock operate at the same frequency. However,

drift2 can occur on the network. In order to compensate drifts by using the time stamp infor-

mation in the device hardware and follow-up messages (intercepted by the switch) to adjust the

frequency of the local clock to match the frequency of the master clock.

NTP to PTP Time Conversion allows you to use Network Time Protocol (NTP) as a time

source for PTP. Customers who use PTP for very precise synchronization within a site can use

NTP across sites, where precise synchronization is not required.

2drift is the frequency difference between the master and slave clock.
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2.3 Tools

During the development of this application, several tools have been used both hardware and

software. This section summarizes some of the most important tools used.

2.3.1 Hardware

The hardware used for the project belong to two classes. The class part is the processing unit

where we focused on using the ARM Architecture and the second class is hardware related with

the audio like audio cards, expansion cards, etc.

Processing Unit: Jetson TK1

Jetson TK1 is NVIDIA’s embedded Linux development platform featuring a Tegra K1 SOC

(CPU+GPU+ISP in a single chip), which costs 192 US$. Jetson TK1 comes pre-installed with

Linux4Tegra OS (basically Ubuntu 14.04 with pre-configured drivers). There is also some

official support for running other distributions using the mainline kernel [31].

Hardware Features [12]:

• Dimensions: 5” x 5” (127mm x 127mm) board

• Tegra K1 SOC (CPU+GPU+ISP in a single chip, with typical power consumption be-

tween 1 to 5 Watts):

– GPU: NVIDIA Kepler “GK20a” GPU with 192 SM3.2 CUDA cores (upto 326

GFLOPS)

– CPU: NVIDIA “4-Plus-1” 2.32GHz ARM quad-core Cortex-A15 CPU with Cortex-

A15 battery-saving shadow-core

• DRAM: 2GB DDR3L 933MHz EMC x16 using 64-bit data width

• Storage: 16GB fast eMMC 4.51 (routed to SDMMC4)

• mini-PCIe: a half-height single-lane PEX slot (such as for Wifi, SSD RAID, FireWire or

Ethernet addon cards)

• SD/MMC card: a full-size slot (routed to SDMMC3)

• USB 3.0: a full-size Type-A female socket
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• USB 2.0: a micro-AB female socket (for connecting to a PC, but can also be used as a

spare USB 2.0 port using a micro-B male to female Type-A adapter that is sometimes

included)

• HDMI: a full-size port

• RS232: a full-size DB9 serial port (routed to UART4)

• Audio: an ALC5639 Realtek HD Audio codec with Mic in and Line out jacks (routed to

DAP2)

• Ethernet: a RTL8111GS Realtek 10/100/1000Base-T Gigabit LAN port using PEX SATA:

a full-size port that supports 2.5” and 3.5” disks, but is not hot-pluggable. (Turn off the

power before plugging in SATA disk drives)

• JTAG: a 2x10-pin 0.1” port for professional debugging

• Power: a 12V DC barrel power jack and a 4-pin PC IDE power connector, using AS3722

PMIC

• Fan: a fan-heatsink running on 12V (to allow safely running intense workloads continu-

ously, but can usually be replaced by a heat-spreader or heatsink)

Figure 2.11: Jetson TK1 board.



2.3. TOOLS 19

Processing Unit: Raspberry Pi 2 and 3

The Raspberry Pi is a series of credit card-sized single-board computers developed in the United

Kingdom by the Raspberry Pi Foundation with the intent to promote the teaching of basic

computer science in schools and developing countries.

Several generations of Raspberry Pi’s have been released, although in this project we used

the Raspberry Pi 2 model B that was released in February 2015 and Raspberry Pi 3 model B

that was released in February 2016. These boards are priced between 20 and 35 US$.

Raspberry PI 2 Hardware Features:

• Architecture: ARMv7 (32-bit) ARMv8 (64/32-bit)

• CPU: 900 MHz 32-bit quad-core ARM Cortex-A7

• GPU Broadcom VideoCore IV @ 250 MHz (BCM2837: 3D part of GPU @ 300 MHz,

video part of GPU @ 400 MHz)

• Memory (SDRAM): 1 GB (shared with GPU)

• USB 2.0 ports: 4 (via the on-board 5-port USB hub)

• Video outputs: HDMI (rev 1.3), composite video (3.5 mm TRRS jack)

• Audio outputs: Analog via 3.5 mm phone jack; digital via HDMI

• On-board storage: MicroSDHC slot

• On-board network: 10/100 Mbit/s Ethernet

• Low-level peripherals: 17× GPIO plus the same specific functions, and HAT ID bus

• Power ratings: 800 mA (4.0 W)

Raspberry PI 3 Hardware Features:

Raspberry Pi 3 is an update of the Raspberry PI 2. For that reason most of its characteristics

are the same but the main updates are:

• Architecture: ARMv8 (64/32-bit)

• CPU: 1.2 GHz 64-bit quad-core ARM Cortex-A53

• GPU Broadcom VideoCore IV @ 250 MHz (BCM2837: 3D part of GPU @ 300 MHz,

video part of GPU @ 400 MHz)[48][49]

• On-board network: 10/100 Mbit/s Ethernet; 802.11n wireless; Bluetooth 4.1
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Figure 2.12: Raspberry PI 2 and 3.

Other Hardware

In order to improve the sound capability of the processing units commented previously, a search

was made to discover which hardware options are available.

Flexible MiniPCI Express to PCI Bus Adapter

The Flexible MiniPCI Express to PCI Bus Adapter (Adapter) was designed to convert the

MiniPCI Express bus into two 32-bit PCI buses. It allows the connection of up to 2 32-bit

PCI expansion boards to the motherboard MiniPCI Express connector. This adapter cost 200.

Figure 2.13: Flexible MiniPCI Express to PCI Bus Adapter.
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PCI Card Cmedia CMI8738

This card works with the default drivers in Linux and costs less than 30 euros. It gives the

possibility to use up to 6 outputs, but it is necessary to use it with the MiniPCI adapter 2.13.

Figure 2.14: PCI Card Cmedia CMI8738.

PCI Card Asus Xonar DS

This card also works with the default drivers in Linux, but it costs 50 euros. The main difference

reside in the possibility of using up to 8 outputs, and it is also necessary to use the MiniPCI

adapter.

Figure 2.15: PCI Card Asus Xonar DS.
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M-Audio Fast Track Ultra

It is an old model that has been discontinued by the manufacturer. The advantage is that also

works in Linux with the drivers installed by default and can generate up to 6 outputs by using

the USB port.

Figure 2.16: M-Audio Fast Track Ultra.

Audio Card USB CSL 7.1

This audio device uses the C-Media audio chipset which works in Linux with the drivers in-

stalled by default. It can generate up to 8 outputs and it cost 20 euros on Amazon and it is also

connected by USB port.

Figure 2.17: Audio Card USB CSL 7.1.
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2.3.2 Software

This section briefly summarizes some of the software and libraries used for the development of

the project.

Git and GitHub

Git is a version control system that is widely used for software development and other version

control tasks. It is a distributed revision control system with an emphasis on speed, data in-

tegrity, and support for distributed, non-linear workflows. Git was created by Linus Torvalds in

2005 for development of the Linux kernel.

As with most other distributed version control systems, and unlike most client–server sys-

tems, every Git working directory is a full-fledged repository with complete history and full

version-tracking capabilities, independent of network access or a central server. Like the Linux

kernel, Git is free software distributed under the terms of the GNU General Public License

version 2.

Figure 2.18: Github PTPdComparation Repository

GitHub is a Git repository hosting service. While Git is a command line tool, GitHub pro-

vides a Web-based graphical interface. It also provides access control and several collaboration

features, such as a wikis and basic task management tools for every project.
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Clion IDE

Clion is an Integrated Development Environment (IDE) that provides comprehensive facilities

for developing for C/C++. Some of those facilities are a source code editor, build automation,

debugger, intelligent code completion, version control system and more [5].

Figure 2.19: Clion IDE.

Sublime Text 3

Sublime Text is a cross-platform source code editor. It natively supports many programming

languages and markup languages, and its functionality can be extended by users with plugins,

typically community-built and maintained under free-software licenses [22].

Figure 2.20: Sublime Text.
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Matlab

MATLAB is a high-level language and interactive environment for numerical computation, vi-

sualization, and programming. The use of MATLAB was mainly for developing algorithms and

a prototype application [32].

Figure 2.21: Matlab.

C libraries

The development of the application includes the use of several libraries that are listed below:

• Advanced Linux Sound Architecture (ALSA) provides audio functionality to the Linux

operating system, and the libasound2 is the interface to the ALSA drivers [1].

• Libconfig is a simple library for processing structured configuration files. This file format

is more compact and more readable than XML. And unlike XML, it is type-aware, so it

is not necessary to do string parsing in application code [13].

• Sockets is used to communicate with the server[21].

• OpenMP is used to create a Multithread application [18].
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• FFTW is a C subroutine library for computing the discrete Fourier transform (DFT) in

one or more dimensions, of arbitrary input size, and of both real and complex data [8].

Python modules

• ServerSocket is a module for python that simplifies the task of writing network servers.

It is mainly used for the server side [20].

• ConfigParser is a module to read and parse the configuration for a python program just

like Libconfig for C/C++ [7].

PTP Implementation

The Precision Time Protocol implementation that has been used for the synchronization were

two. The first one was the ptpdv2 from 2012 that is available in the Advanced Package Tool on

ubuntu. The second one was the ptpd implementation that is available on github to download

and compile.

NEON

An ARM processor is one of a family of CPUs based on the RISC (reduced instruction set

computer) architecture developed by Advanced RISC Machines (ARM).

ARM makes 32-bit and 64-bit RISC multi-core processors. RISC processors are designed to

perform a smaller number of types of computer instructions so that they can operate at a higher

speed, performing more millions of instructions per second (MIPS). By stripping out unneeded

instructions and optimizing pathways, RISC processors provide outstanding performance at a

fraction of the power demand of CISC (complex instruction set computing) devices.

ARM processors are extensively used in consumer electronic devices such as smartphones,

tablets, multimedia players and other mobile devices, such as wearables. Because of their re-

duced instruction set, they require fewer transistors, which enable a smaller die size for the in-

tegrated circuitry (IC). The ARM processors smaller size reduced complexity and lower power

consumption makes them suitable for increasingly miniaturized devices.

ARMv6 architecture introduced a small set of SIMD instructions, operating on multiple 16-

bit or 8-bit values packed into standard 32-bit general purpose registers. This permits certain
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operations to execute twice or four times as quickly, without implementing additional compu-

tation units. The mnemonics for these instructions are recognized by having 8 or 16 appended

to the base form, indicating the size of data values operated on [2].

ARMv7 architecture introduced the Advanced SIMD extension which extends the SIMD

concept by defining groups of instructions operating on vectors stored in 64-bit D, doubleword,

registers and 128-bit Q, quadword, vector registers.

Figure 2.22 shows how the VADD.I16 Q0, Q1, Q2 instruction performs a parallel addition

of eight lanes of 16-bit elements from vectors in Q1 and Q2, storing the result in Q0.

Figure 2.22: 8-way 16-bit integer add operation[2].

The implementation of the Advanced SIMD extension used in ARM processors is called

NEON, and this is the common terminology used outside architecture specifications. NEON

technology is implemented on all current ARM Cortex-A series processors. NEON instructions

are executed as part of the ARM or Thumb instruction stream. This simplifies software de-

velopment, debugging, and integration compared to using an external accelerator. Traditional

ARM or Thumb instructions manage all program flow and synchronization [24, 15]. The NEON

instructions perform:

• Memory accesses.

• Data copying between NEON and general purpose registers.

• Data type conversion.

• Data processing.
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Chapter 3

Design and Implementation

3.1 Context of the Application

As mentioned before, our main objective is to develop a distributed application capable of re-

producing sound that gives the user a special location of the source’s position. All the actual

implementations of this type of applications are based on a centralized system which is expen-

sive and not flexible to add or remove speakers.

Figure 3.1: Example of the system’s distribution.

29



30 CHAPTER 3. DESIGN AND IMPLEMENTATION

This application distributes the process among several nodes in order to reduce computa-

tional cost and to be totally flexible (a modular system). We connect as many nodes as we

desire and thus, we can modify the initial design without the need to change the whole system,

only the required nodes. In the Figure 3.1 we can observe an example of the system, where

each Nvidia Jetson TK1 board has four speakers connected and each colored dot represents the

source position from where the user should perceive the sound.

In this chapter, we explain the synchronization method used in order to synchronize the

acoustic nodes, how the communication between nodes was achieved, how is the configuration

carried out for each node, and what optimizations were performed in the operations that involve

the Wave Field Synthesis system. This is carried out in order to connect and process as many

speakers and virtual sounds sources as possible. We also explain some details about the internal

structure and implementations.
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3.2 Synchronization

A distributed system consists of several acoustic nodes that exchange information collabora-

tively to achieve a common goal. In this case, the common goal is to develop a Wave Field

Synthesis application, which requires maximum synchronization between nodes. If the nodes

are not synchronized, then the sound would be translated from one node to other we will per-

ceive a pause in the reproduction or an echo.

In order to solve that problem we use the Precision Time Protocol because it can operate

with normal Ethernet network traffic on a Local Area Network (LAN) with switches, while

maintaining synchronization accuracy to the sub–microseconds if it is used with hardware sup-

port [10]. This accuracy is better than the one that is achieved with the Network Time Protocol

(NTP) [17, 4, 6].

Protoco Media Sync Accuracy

NTP Ethernet 50-100 milliseconds

PTP Ethernet 20-100 nanoseconds

Table 3.1: Syncronization accurancy using NTP and PTP [10]

An important step before using the protocol is to check the compatibility of the Ethernet

interface to the protocol by using the command ethtool [10].

If we want to use the PTP protocol via hardware, it is important to check that the ethernet

card has these characteristics:

SOF_TIMESTAMPING_RAW_HARDWARE

SOF_TIMESTAMPING_TX_HARDWARE

SOF_TIMESTAMPING_RX_HARDWARE

While if we want to use the protocol PTP via software, the ethernet should have this char-

acteristics:

SOF_TIMESTAMPING_SOFTWARE

SOF_TIMESTAMPING_TX_SOFTWARE

SOF_TIMESTAMPING_RX_SOFTWARE
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If we run the ethtool command in the Nvidia Jetson TK1 board the result can be observed

below:

#]˜$ ethtool -T eth0

Time stamping parameters for eth0:

Capabilities:

software-transmit (SOF_TIMESTAMPING_TX_SOFTWARE)

software-receive (SOF_TIMESTAMPING_RX_SOFTWARE)

software-system-clock (SOF_TIMESTAMPING_SOFTWARE)

PTP Hardware Clock: none

Hardware Transmit Timestamp Modes: none

Hardware Receive Filter Modes: none

What it indicates is that the Nvidia Jetson TK1 board only is capable of doing a PTP syn-

chronization via software on integrated ethernet card. Therefore, this synchronization could be

worse since all the process is done in the CPU.

An implementation of the protocol is available in the Advanced Packaging Tool for any

system that is based on Debian. But it can also be downloaded and compiled from the official

repository [19].

Once configured the Nvidia Jetson TK1 board in order to use the PTP protocol via software

it is necessary to assess the feasibility of implementing WFS. To do this, it will perform multiple

measurements of time in both boards in order to evaluate its delay. These measurements are

shown in the next two sections.
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3.3 Initial Design

The first design was a system composed of two Nvidia Jetson TK1 boards, where we can ob-

serve the accuracy that is obtained when one of the boards is configured with a role (Figure

3.2). One of the boards has the Master-Server role and its clock will be used as a reference in

the system, while the other board takes the role of Slave-Client.

Figure 3.2: System composed of two Nvidia Jetsons TK1.

In Figure 3.3,it can be seen as a first result that, on average, between the two Nvidia Jetsons

TK1 boards there is a lag of 30 milliseconds. This value makes it unfeasible to an acoustic wave

synthesis system where the maximum deviation that can be tolerate is 5 milliseconds [29]. In the

case the gap is greater than 5 milliseconds, a listener perceive a sound with more echo instead

of a single sound. Therefore, we must find a design that reduces the time synchronization.

Figure 3.3: Time synchronization between the Nvidia Jetson TK1 Master-Server and Slave-

Client.
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3.4 Second and Final Design

The second design is a system composed of one separate machine and two Nvidia Jetson TK1

boards that are connected to the same network. The Figure 3.4 shows the system design where

the clock represents the machine that provides the time reference and will play the role of

Master-Server. In the network there can also be a general purpose computer that will be used

by a user to run the application of WFS as a orchestra conductor. Its only role is to broadcast to

each Nvidia Jetson tk1 board the position of the sound sources in the WFS system.

Figure 3.4: System design composed of two Nvidia Jetsons TK1, a machine used as a time

reference (master-server) and a general purpose computer.

After mounting the new design, we execute the PTP protocol in the Master-Server to share

its time. Then, we execute this same protocol in the Nvidia Jetsons TK1 boards, which will act

as Slave-Client. After a few seconds after running the protocol in the boards, they will start to

synchronize their time with the Master-Server.

The fact that in this distribution both Nvidia Jetson TK1 boards take the same role as Slave-

Client, makes both to be out of phase with respect to the Master-Server, but they are syn-

chronized between them. Figure 3.5 shows the offset in milliseconds between each board and

Server.
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Figure 3.5: Time difference between the Nvidia Jetsons Tk1 boards in client mode Slave respect

to Master-Server.
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Moreover, Figure 3.6 shows the time difference between the two Nvidia Jetsons TK1 boards

is most of the time under 5 milliseconds.

Figure 3.6: Synchronization time difference between the two Nvidia Jetsons TK1 boards.

In order to check the synchronism between the Jetsons boards, we have taken 2,000 samples

clock each and calculated the difference. As shown in Table 13.2, more than 80% of the time

are fully synchronized and more than 15% of the time are synchronized with one millisecond

of difference. This data shows the high synchronization between the two Jetsons. Despite these

good results, a small percentage (0.15%) of time remains when the Jetsons are not synchronized.

Milliseconds difference 16 12 5 4 3 2 1 0

Repetitions 1 2 2 2 14 34 303 1642

Percentage % 0,05 0,1 0,1 0,1 0,7 1,7 15,15 82,1

Table 3.2: Synchronization Time between Nvidia Jetson TK1 boards
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The results were achieved using the network layer in order to check the time of each Nvidia

Jetson TK1, which adds some uncontrollable delay because of the communication. In order to

have absolute control of the environment, the application was afterwards implemented using the

GPIO connection.

Firstly, it was necessary to know the time that it takes the GPIO to send and receive an

impulse. We measured the time it has taken to send and receive an impulse from one pin to

another, which was approximately 1 millisecond.

After knowing the time it takes to send and receive an impulse using the GPIO, we imple-

mented an application that consists of two parts.

The first one is the Server. This can be executed in any machine, but not on the Jetson TK1

boards. Its role is to send a time to start comparing the time they have with the board. The

actual time to start is hardwired to 5 seconds. Also the number of boards that can be connected

is hardwired to 2, but it can be incremented to as many as it is needed.

The second part is the Client. The IP and PORT of the server the clients has to connect is

hardwired and at the moment is 192.168.1.12:150. In order for the application to work there

has to be at least 2 clients. The reason is because the system will use the GPIO to send a signal

on the GPIO pin 160 when it reaches X time to wake up. In this case X = 500 milliseconds. At

the same time, the system will receive a signal at the GPIO pin 161, from the other board when

has reached the same time, and will compare the difference between them [11].

Figure 3.7: Setup of the application to compare the time difference between two jetson TK1

boards while it is synchronizing using the PTPd.
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In the Figure 3.8 we can observe the result obtained by using the same number of samples,

2000. The offset between the Nvidia Jetson TK1 boards is approximately 2 milliseconds of

which we should note as mentioned before that 1 milliseconds corresponds to write and read to

the GPIO. Thus, the average delay between the boards is approximately 1 millisecond.

Figure 3.8: Synchronization time difference between the two Nvidia Jetsons TK1 boards with

the GPIO application with 2000 samples.

If we increase the number of samples to analyze to almost 10000, as shown in Figure 3.9, we

can observe that there are four points in which offset between the boards increases drastically.

The 4 points offset vary from 200 milliseconds to 800 milliseconds, but it is rectified in by the

PTP protocol.

Figure 3.9: Synchronization time difference between the two Nvidia Jetsons TK1 boards with

the GPIO application.
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3.5 Implementation Details

The application is divided in two parts where one is the server and the other one is the client.

The server as mentioned in the previous section is compared to the orchestra conductor. Its only

role is to broadcast the position of the sounds. On the other hand the clients can be compared

to the instruments of an orchestra. They will have to start or stop playing when the orchestra

conductor tells them to.

3.5.1 Message Passing

In order to communicate the server with the clients we have used the socket TCP connection

due to its reliability. That is also a problem because it’s more heavyweight. If a message is

received in the wrong order a resend requests will to be sent. If there is a connection lost, the

server will request the lost part, so there is no corruption while transferring a message. The

decision of using the TCP connection was also made with the idea of developing a streaming

reproduction in the near future.

After the connection was made by the client using the IP and PORT number of the server,

the server will send an “action” that is “identification” to identify each client with a number:

[SERVER]:"Action:identification,ID:1"

When the server decides to start play, it will send a message where the action is “start”, the

time when it will start to play, the position of a song where to start, or a value of “-1” if it will

start all the songs to that same position.

[SERVER]:"Action:start,StartTime:123456789123,Song:-1,

SongPosX:11,SongPosY:0"

If the server changes the position of one song it will have to send the action “song”, with

the song number that will have to be moved and the position. In this case the “-1” value is also

available to move all the sounds to the same position.

[SERVER]:"Action:song,StartTime:0,Song:1,SongPosX:5,SongPosY:0"

When the server wants to stop the reproduction process, it will send the action “exit”.

[SERVER]:"Action:exit"
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3.5.2 Configuration File

In order to facilitate a personalized configuration of each node the “Libconfig” library was used.

It is a simple library for processing structured configuration files. It is compact, type-aware, so

it is not necessary to do any string parsing in application code and easy to modify [14].

An example of a configuration file for the application would be:

client ={

card = {

pcm_name = "plughw:1,0";

frame_Rate = 44100;

pcm_buffer_size = 2048;

pcm_period_size = 256;

}

sound = {

word_length = 50;

sound_folder = "../../bin/sound/";

sounds_number = 4;

sounds_list = ( { file_name = "001_piano.wav";},

{ file_name = "voz4408.wav";},

{ file_name = "001_bajo.wav";},

{ file_name = "001_bateriabuena.wav";}

);

}

speakers = {

speakers_number = 2;

chanels_number = 2;

speakers_position = ( { posX = 2.0; posY = 0.0; angle = 0.0; },

{ posX = 4.0; posY = 0.0; angle = 180.0;}

);

}

}
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As shown in the previous configuration file example there are three parts “card”, “sound”

and “speakers”. Each part corresponds to a specific configuration in the application.

The first part is the audio card. In order to reproduce sound we have used the Advanced

Linux Sound Architecture (ALSA), which needs some configuration parameters. The first pa-

rameter is the audio card that will be used. In order to do that we use “plughw:1,0”, where the

first digit represents the card to use and the second digit the device type. To see the cards and

devices available we use the “aplay -l” command with superuser privileges. The output of this

command in the Nvidia Jetson TK1 is the follow:

˜$ sudo aplay -l

**** List of PLAYBACK Hardware Devices ****

card 0: Tegra [HDA NVIDIA Tegra], device 3: HDMI 0 [HDMI 0]

Subdevices: 1/1

Subdevice #0: subdevice #0

card 1: tegrart5639 [tegra-rt5639], device 0: rt5639 PCM rt5639-aif1-0 []

Subdevices: 1/1

Subdevice #0: subdevice #0

card 1: tegrart5639 [tegra-rt5639], device 1: SPDIF PCM dit-hifi-1 []

Subdevices: 1/1

Subdevice #0: subdevice #0

card 1: tegrart5639 [tegra-rt5639], device 2: BT SCO PCM dit-hifi-2 []

Subdevices: 1/1

Subdevice #0: subdevice #0

card 1: tegrart5639 [tegra-rt5639], device 3: VOICE CALL PCM rt5639-aif1-3 []

Subdevices: 1/1

Subdevice #0: subdevice #0

card 1: tegrart5639 [tegra-rt5639], device 4: BT VOICE CALL PCM dit-hifi-4 []

Subdevices: 1/1

Subdevice #0: subdevice #0

The second parameter is the frame rate in which we want to reproduce, in this case 44.100.
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The third parameter is the size in bytes that we want to use. In this case 2048, this equals to an

array of 512 integers. The last parameter is the period size which indicates ALSA the frequency

to update the status of its buffer. In this case there would be 8 interruptions to check the status

of the buffer and update it if necessary.

The second part corresponds to the sound that the application will use. It is necessary to

indicate the length of the files name, the location of all the sounds, the number of sounds and

the name of audio files in a list format.

The third and last part correspond to the configuration of the speakers. In this case, the

number of speakers that are connected, the number of channels we want to use an the position

of the speakers. For the position of the speakers we use a the coordinated X,Y position and the

angle where the speaker are oriented.

In Figure 3.10 we can observe that all the angles of the speakers that are faced upside down

have negative values (-10, -30, -45, -90, -125, -180 ). All the rest of the speakers have positive

values, but 180o and -180o or 0o and -0o would be the same. This is used later in the application

when the Wave Field Synthesis is running and determines which speaker is active.

Figure 3.10: Angle orientation of the speakers.
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3.5.3 Apply Wave Field Synthesis

In order to make the application and synthesize a wave field from a virtual position of a sound

it is necessary to know the position of the systems speakers, the virtual position of where we

want to perceive the sound and the orientation of the speakers. The system will only work if the

virtual position of the sound is located behind the speakers between 90o and -90o as shown in

the Figure 3.11.

Figure 3.11: Wave Field Shyntesis Example.

Every blue dot of the Figure 3.11 is sound position that will be reproduced, but the red dot

will not, because it is out of speakers range. For each blue dot, the system will calculate its

distance to the speaker in order to achieve the delay it has to introduce before reproducing an

amplitude at which it will reproduce.

Once it is calculated it will start to prepare a buffer for each sound. After all the sounds are

calculated, it will sum the buffers in only one for each channel. Then the final buffer must be

sent to ALSA drive. But before it is sent to ALSA we apply a filter by using the convolution

process which has to be done for each channel.
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3.5.4 Operation sequence of the application

The operation sequence of the application, Figure 3.12, starts by reading the configuration file

of the system. Once the configuration file has been read successfully, the client will connect to

the server, and receives an identification number.

Afterwards the client will load the songs that have been described in the configuration file

and waits for the start reproducing message. Once the message has been received it will create

a new process which will be in charge of reproducing. This process will also receive the virtual

position of the sounds and the exact moment it will have to start to reproduce.

The second process will initialize the audio card with the configuration file. It will also

create the buffers and apply the Wave Field Synthesis using the virtual position received from

the server. After applying the Wave Field Synthesis, it sums the separate buffers songs in one

buffer per channel and afterwards it will send it to ALSA. But before sending the resulting buffer

to ALSA, it will apply a filter using the convolution process. Once the process of applying the

WFS has ended, it will send the buffer to ALSA. This process will repeat until the largest song

has finished or the first process has sent an exit message from the server.

Meanwhile the second process is producing; the first process will wait indefinitely for any

more messages from the server. If it receives a new message it will process the message and

while this message is different than an exit action, it means there is a new virtual position of the

song. Thus, the information will go to the second process.
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Figure 3.12: Operating Sequence Diagram.
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3.5.5 Code Organization

The application code is divided in several files, so that each file only contains the functions

needed for a certain purpose. The dependency of these files is shown in the Figure 3.13 and

summarized below:

• Function.h: It contains general functions that are used in most of the application.

• SpatialLib.h: It contains all the functions necessary to open audio files.

• ConfigurationLib.h: It contains all the functions related with opening and reading the

configuration file. It contains the structure in which it is stored.

• ProcessSoundLib.h: It contains the necessary functions to apply and use the Wave Field

Synthesis. Is also stores a structure with the necessary variable in order to be able to

communicate between the process.

• Convolution.h: It contains all the functions to perform the convolution.

• SuperWAVLib.h: It is the part that performs the reproduction. It initializes the ALSA li-

brary using the configuration file, applies the WFS, performs the convolution and delivers

the resulting sound to ALSA to reproduce it.

• SocketUtils.h: It contains all the functions related to the server/client communication.

• Parsher.h: It transforms the received message into a certain action. One example would

be when the client receives a new the sound position.

• Client.h: It connects to the server, receives the messages and uses the parser to create an

action. It also initializes the reproduction process and transfers the new actions.
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Figure 3.13: File Dependency.
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3.6 Optimizations

The operation that requires most time needs to be completed is the convolution process. This

operation has to be done as fast as possible in order to be able to process as many channels and

sound as possible in real time.

There are two possible ways of doing it, in the time domain or in the frequency domain. In

the next part we present the several forms and the optimizations done in order to achieve that

purpose.

3.6.1 Time Domain

Using the formula directly that is to multiply each coefficient of the signal with all the filters

coefficients requires O(n2) arithmetic operations as shown in Figure 3.14.

1 vo id c o n v o l u t i o n ( f l o a t ∗ x , s i z e t s i z e , f l o a t ∗h , s i z e t lh , f l o a t ∗y ) {

2 i n t i , j ;

3 f o r ( i =0 ; i<s i z e ; i ++){

4 f o r ( j =0 ; j<l h ; j ++)

5 y [ i + j ]= y [ i + j ]+ x [ i ]∗ h [ j ] ;

6 }

7 }

Figure 3.14: Simple Time Domain Convolution.

In order to improve its performance, a technique called loop unrolling was used. Loop

unrolling will reduce (or eliminate) instructions that control the loop, such as pointer arithmetic

and “end of loop” tests on each iteration as well as “hiding latencies, in particular, the delay

in reading data from memory”. To eliminate this overhead, loops are re-written as a repeated

sequence of similar independent statements Figure 3.15.

Apart of using the “Loop Unroll” technique, since the operations that are performed are

commutative, we change the order of the multiplication in an attempt to take advantage of the

cache memory. Unfortunately there were no improvements.
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1 vo id c o n v o l u t i o n L o o p U n r o l i n g 8 ( f l o a t ∗ x , s i z e t s i z e , f l o a t ∗h , s i z e t lh

, f l o a t ∗ y ) {

2 i n t i , j ;

3

4 f l o a t temp [ 8 ] ;

5 f o r ( i =0 ; i<s i z e ; i ++){

6 f o r ( j =0 ; j<l h ; j +=8){

7

8 temp [ 0 ] = x [ i ]∗ h [ j + 0 ] ;

9 temp [ 1 ] = x [ i ]∗ h [ j + 1 ] ;

10 temp [ 2 ] = x [ i ]∗ h [ j + 2 ] ;

11 temp [ 3 ] = x [ i ]∗ h [ j + 3 ] ;

12

13 temp [ 4 ] = x [ i ]∗ h [ j + 4 ] ;

14 temp [ 5 ] = x [ i ]∗ h [ j + 5 ] ;

15 temp [ 6 ] = x [ i ]∗ h [ j + 6 ] ;

16 temp [ 7 ] = x [ i ]∗ h [ j + 7 ] ;

17

18 y [ i + j +0] += temp [ 0 ] ;

19 y [ i + j +1] += temp [ 1 ] ;

20 y [ i + j +2] += temp [ 2 ] ;

21 y [ i + j +3] += temp [ 3 ] ;

22

23 y [ i + j +4] += temp [ 4 ] ;

24 y [ i + j +5] += temp [ 5 ] ;

25 y [ i + j +6] += temp [ 6 ] ;

26 y [ i + j +7] += temp [ 7 ] ;

27 }

28 }

29 }

Figure 3.15: Simple Time Domain Convolution Using Loop Unroll.
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The next step in optimizing the convolution was to use the single instruction, multiple data

(SIMD) that the ARM processor disposes by using the NEON technology [15]. In order to do

that, it is necessary to use some special instructions and some special variables type. The first

step is to load the data into a special vector type, then apply the desired operations using the

NEON instructions, and at the end retrieve the data. The result is shown in the Figure 3.16.

1 vo id convolut ion NEON ( f l o a t ∗ x , s i z e t s i z e , f l o a t ∗h , s i z e t lh , f l o a t ∗y )

{

2 i n t i , j ;

3 f l o a t 3 2 t x i ;

4 f l o a t 3 2 x 4 t t ;

5 f l o a t 3 2 x 4 t h i ;

6 f l o a t 3 2 x 4 t acum ;

7

8 f o r ( i =0 ; i<s i z e ; i ++){

9 x i = x [ i ] ;

10 f o r ( j =0 ; j<l h ; j +=4){

11

12 h i = v l d 1 q f 3 2 ( h+ j ) ;

13 t = vmulq n f32 ( hi , x i ) ;

14

15 acum = v l d 1 q f 3 2 (&y [ i + j ] ) ;

16 acum = v a d d q f 3 2 ( acum , t ) ;

17 v s t 1 q f 3 2 (&y [ i + j ] , acum ) ;

18 }

19 }

20 }

Figure 3.16: Simple Time Domain Convolution NEON.

This last implementation resulted to be the optimal of all for the moment. More details of

the results are explained in the Chapter 4.

In our application we cannot use this implementation of the convolution, because it needs

the entire signal. For example, if the user moves the position of the source, the signal’s values

will change. Since we can not anticipate when the user will move the source, the entire signal

cannot be known in advance.
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The overlap add method was implements to solve this problem, so we could take advantage

of the convolution implemented. The method gets a block size of the signal and process the

convolution. The result is the convolution of that block size, and the remainder of the convolu-

tion is stored in a temporal buffer so it can be summed to the next iteration. The resulting code

is shown in the Figure 3.17, which also has the loop unroll optimization technique.

1 vo id c o n v o l u t i o n O v e r l a p A d d ( f l o a t ∗ par tX , s i z e t lx , f l o a t ∗ l o c a l B u f f e r ,

s i z e t lb , f l o a t ∗ h , s i z e t lh , f l o a t ∗y ) {

2 i n t i , j ;

3 convolut ion NEON ( par tX , lx , h , lh , l o c a l B u f f e r ) ;

4 f o r ( j = 0 ; j < l x ; j +=4) {

5 y [ j +0]= l o c a l B u f f e r [ j + 0 ] ;

6 y [ j +1]= l o c a l B u f f e r [ j + 1 ] ;

7 y [ j +2]= l o c a l B u f f e r [ j + 2 ] ;

8 y [ j +3]= l o c a l B u f f e r [ j + 3 ] ;

9 l o c a l B u f f e r [ j + 0 ] , l o c a l B u f f e r [ j +1] = 0 ;

10 l o c a l B u f f e r [ j + 2 ] , l o c a l B u f f e r [ j +3] = 0 ;

11

12 }

13 f o r ( i = 0 ; i < l x ; i +=4) {

14 l o c a l B u f f e r [ i +0] = l o c a l B u f f e r [ j + 0 ] ;

15 l o c a l B u f f e r [ i +1] = l o c a l B u f f e r [ j + 1 ] ;

16 l o c a l B u f f e r [ i +2] = l o c a l B u f f e r [ j + 2 ] ;

17 l o c a l B u f f e r [ i +3] = l o c a l B u f f e r [ j + 3 ] ;

18 l o c a l B u f f e r [ j + 0 ] , l o c a l B u f f e r [ j +1] = 0 ;

19 l o c a l B u f f e r [ j + 2 ] , l o c a l B u f f e r [ j +3] = 0 ;

20 j +=4;

21 }

22 }

Figure 3.17: Simple Time Domain Convolution Overla ADD.

This implementation can use any implementation of the convolutions explained above, but

its performance is slower than the normal method. In order to achieve the best performance, we

used the ARM version.
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3.6.2 Frequency Domain

The second form of implementing the convolution is to do it in the frequency domain by using

the Fast Fourier Transform. This method costs O(n log n) operations.

In order to create the convolution using the FFT the have been two approaches. The first one

was to implement the FFT of Gentleman-Sande. The second approach was to use the FFTW

library.

FFT Gentleman-Sande

The implementation of the FFT algorithm is based on 1.9.2, page 67 of the book “Computational

Frameworks for the Fast Fourier Transform”. The peculiarity of this implementation is that it

can only handle vector sizes that are power of 2.

Figure 3.18: Pseudo code FFT Gentleman-Sande.

Besides implementing the FFT algorithm Figure 3.20, a method was implemented in order

to reorganize the data after applying the algorithm. For that purpose was used Algorithm 1.5.2

“ Bit reversal ” and 1.5.1 Algorithm “ Bit Reversing and Index ”.

The implementation of the Convolution is shown in the Figure 3.23, which also used the

“loop unroll” technique in order to improve its performance. Also wrappers ware used in order

to simplify the use of the FFT function Figure 3.21 and Figure 3.22.

The main problem of this method is the same as in the convolution carried out in the time
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domain. The problem is the same as before: it can only be used if it disposes of the entire signal.

For that purpose, the Overlap Save Method is implemented (Figure 3.24) in this case in order

to be able to do the convolution in block sizes.

Figure 3.19: Pseudo code Bit Reversal.

In the implementation of the FFT Gentleman-Sande (Figure 3.20) there has not been applied

any type of optimizations. For that reason, we later decided to use an optimized library in order

to take advantage of the ARM architecture and improve its performance.

Our goal is to reduce the processing time of the convolution for small block sizes. Unfortu-

nately this implementation performs better for large signal sizes.
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1 void fftGS_General(double complex * x, int ncol, enum SIGN sig){

2 int t = ceil(log(ncol)/log(2));

3 for (int q = t; 1 <= q; --q){

4 int L = pow(2, q);

5 int r = ncol/L;

6 int L_ = L/2;

7

8 for (int j = 0; j < L_; ++j){

9 double complex w = cos(2*M_PI*j/L)+( sig * sin(2*M_PI*j/L)*I);

10 for (int k = 0; k < r; ++k){

11 int index = (k*L)+L_+j;

12 double complex tau = x[k*L+L_+j];

13 x[k*L+j+L_]=w*(x[k*L+j]-tau);

14 x[k*L+j]=x[k*L+j]+tau;

15 }

16 }

17 }

18 // Bit Reversal: Algoritm 1.5.1

19 for (int k = 0; k < ncol; ++k){

20 // Algoritm 1.5.2

21 int j = 0; int m = k;

22 for (int q = 0; q < t; ++q){

23 int s = floor(m/2);

24 j=2*j+(m-2*s);

25 m=s;

26 }// End Algoritm 1.5.2

27 double complex temportal_swap;

28 if (j>k){

29 temportal_swap = x[k];

30 x[k]=x[j];

31 x[j]=temportal_swap;

32 }}}

Figure 3.20: Implementation General FFT using Gentleman-Sande.
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1 enum SIGN{

2 FORWARD = 1 ,

3 REVERSE = −1

4 } ;

5

6 do ub l e complex ∗ f f t G S ( do ub l e ∗ v e c t o r , i n t n c o l ) {

7 do ub l e complex ∗ x =( d ou b l e complex ∗ ) ma l lo c ( n c o l ∗ s i z e o f ( d ou b l e complex ) )

;

8 f o r ( i n t i = 0 ; i < n c o l ; ++ i ) {

9 x [ i ] = v e c t o r [ i ] ;

10 }

11 f f t G S G e n e r a l ( x , nco l ,FORWARD) ;

12 r e t u r n x ;

13 }

Figure 3.21: Implementation rwapper FFT using Gentleman-Sande.

1 do ub l e ∗ i f f t G S ( d ou b l e complex ∗ x , i n t n c o l ) {

2 do ub l e ∗ X = ( d ou b l e ∗ ) ma l l oc ( n c o l ∗ s i z e o f ( d ou b l e ) ) ;

3 f f t G S G e n e r a l ( x , nco l , REVERSE) ;

4 f o r ( i n t i = 0 ; i < n c o l ; ++ i ) {

5 X[ i ]= c r e a l ( x [ i ] ) / n c o l ;

6 }

7 r e t u r n X;

8 }

Figure 3.22: Implementation rwapper iFFT using Gentleman-Sande.
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1 vo id c o n v o l u t i o n F F T ( f l o a t ∗ x , s i z e t lx , f l o a t ∗h , s i z e t lh , f l o a t ∗ y ) {

2 s i z e t i , j ;

3 f l o a t Complex ∗ H FFT =( f l o a t Complex ∗ ) ma l l oc ( l h ∗ s i z e o f ( f l o a t

Complex ) ) ;

4 f f t G S ( h , lh , H FFT ) ;

5 f l o a t Complex ∗ A FFT =( f l o a t Complex ∗ ) ma l l oc ( l x ∗ s i z e o f ( f l o a t

Complex ) ) ;

6 f f t G S ( x , lh , A FFT ) ;

7 f o r ( i = 0 ; i < l x ; i = i +8) {

8 A FFT [ i +0] = A FFT [ i +0]∗H FFT [ i + 0 ] ;

9 A FFT [ i +1] = A FFT [ i +1]∗H FFT [ i + 1 ] ;

10 A FFT [ i +2] = A FFT [ i +2]∗H FFT [ i + 2 ] ;

11 A FFT [ i +3] = A FFT [ i +3]∗H FFT [ i + 3 ] ;

12 A FFT [ i +4] = A FFT [ i +4]∗H FFT [ i + 4 ] ;

13 A FFT [ i +5] = A FFT [ i +5]∗H FFT [ i + 5 ] ;

14 A FFT [ i +6] = A FFT [ i +6]∗H FFT [ i + 6 ] ;

15 A FFT [ i +7] = A FFT [ i +7]∗H FFT [ i + 7 ] ;

16 }

17 i f f t G S ( A FFT , lx , y ) ;

18 f r e e ( H FFT ) ;

19 f r e e ( A FFT ) ;

20 }

Figure 3.23: Implementation Convolution that uses FFT Gentleman-Sande.
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1 vo id c o n v o l u t i o n O v e r l a p S a v e ( f l o a t ∗ x , s i z e t lx , f l o a t ∗ l o c a l B u f f e r , s i z e t

lb , f l o a t ∗ h , f l o a t ∗ y ) {

2 s i z e t i , j = 0 ;

3 f o r ( j = l x ; j < l b ; j = j +8) {

4 l o c a l B u f f e r [ j +0] = x [ j +0− l x ] ; l o c a l B u f f e r [ j +1] = x [ j +1− l x ] ;

5 l o c a l B u f f e r [ j +2] = x [ j +2− l x ] ; l o c a l B u f f e r [ j +3] = x [ j +3− l x ] ;

6 l o c a l B u f f e r [ j +4] = x [ j +4− l x ] ; l o c a l B u f f e r [ j +5] = x [ j +5− l x ] ;

7 l o c a l B u f f e r [ j +6] = x [ j +6− l x ] ; l o c a l B u f f e r [ j +7] = x [ j +7− l x ] ;

8 }

9 c o n v o l u t i o n F F T ( l o c a l B u f f e r , lb , h , lb , l o c a l B u f f e r ) ;

10 f o r ( j = 0 ; j < l x ; j = j +8) {

11 l o c a l B u f f e r [ j +0]= x [ j + 0 ] ; l o c a l B u f f e r [ j +1]= x [ j + 1 ] ;

12 l o c a l B u f f e r [ j +2]= x [ j + 2 ] ; l o c a l B u f f e r [ j +3]= x [ j + 3 ] ;

13 l o c a l B u f f e r [ j +4]= x [ j + 4 ] ; l o c a l B u f f e r [ j +5]= x [ j + 5 ] ;

14 l o c a l B u f f e r [ j +6]= x [ j + 6 ] ; l o c a l B u f f e r [ j +7]= x [ j + 7 ] ;

15

16 y [ j +0]= l o c a l B u f f e r [ j + l x + 0 ] ; y [ j +1]= l o c a l B u f f e r [ j + l x + 1 ] ;

17 y [ j +2]= l o c a l B u f f e r [ j + l x + 2 ] ; y [ j +3]= l o c a l B u f f e r [ j + l x + 3 ] ;

18 y [ j +4]= l o c a l B u f f e r [ j + l x + 4 ] ; y [ j +5]= l o c a l B u f f e r [ j + l x + 5 ] ;

19 y [ j +6]= l o c a l B u f f e r [ j + l x + 6 ] ; y [ j +7]= l o c a l B u f f e r [ j + l x + 7 ] ;

20

21 l o c a l B u f f e r [ j +0+ l x ] = 0 ; l o c a l B u f f e r [ j +1+ l x ] = 0 ;

22 l o c a l B u f f e r [ j +2+ l x ] = 0 ; l o c a l B u f f e r [ j +3+ l x ] = 0 ;

23 l o c a l B u f f e r [ j +4+ l x ] = 0 ; l o c a l B u f f e r [ j +5+ l x ] = 0 ;

24 l o c a l B u f f e r [ j +6+ l x ] = 0 ; l o c a l B u f f e r [ j +7+ l x ] = 0 ;

25 }

26 }

Figure 3.24: Implementation Convolution Overlap Save that uses FFT Gentleman-Sande.
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FFTW

FFTW is a C subroutine library for computing the discrete Fourier transform (DFT) in one or

more dimensions, of arbitrary input size, and of both real and complex data. The version used

is the 3.3.4 which supports the ARM NEON extensions.

The creators of the software claims that the benchmarks they performed on a variety of plat-

forms, show that FFTW’s performance is typically superior to that of other publicly available

FFT software.

For the installation at least in the ARM boards it is important to do a series of steps in order

to install the software. The first one is to change the file “simd-support/neon.c ” and replace

function “really have neon()” with:

1 s t a t i c i n t r e a l l y h a v e n e o n ( vo id )

2 {

3 r e t u r n 1 ;

4 }

That way we force the application to use the NEON instructions. Afterwards, it is nece-

sary to configurate the installation with the flags: “–enable-float”,”–enable-neon” and “–enable-

openmp” to enable multithread using OpenMP.

1 . / c o n f i g u r e −−enab l e− f l o a t −−enab l e−neon −−enab l e−openmp

The application used the same method of Overlap Save shown in the Figure 3.24 but instead

of executing the implementation of the FFT Gentleman-Sande, it executes the implementation

shown in the Figure 3.25.

This implementation of the convolution using the FFTW library is two or three times faster

than the implementation of Gentleman-Sande. But it was not as fast as the Overlap Add method

that uses NEON instructions for small block sizes.
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1 vo id convolut ionFFTW ( f l o a t ∗x , s i z e t lx , f l o a t ∗h , s i z e t lh , f l o a t ∗y ) {

2 i n t i = 0 ; i n t s i z e l x l h = nextpw2 ( l x +1) ;

3 f f t w c o m p l e x ∗X,∗H;

4 /∗ d e f i n e f f t w p l a n which c o n t a i n s a l l t h e d a t a needed t o compute ∗ /

5 f f t w p l a n f f tX , f f tH , i f f t R ;

6 /∗ a l l o c a t e memory ∗ /

7 X = ( f f t w c o m p l e x ∗ ) f f t w m a l l o c ( s i z e o f ( f f t w c o m p l e x ) ∗ s i z e l x l h ) ;

8 H = ( f f t w c o m p l e x ∗ ) f f t w m a l l o c ( s i z e o f ( f f t w c o m p l e x ) ∗ s i z e l x l h ) ;

9 f f t X = f f t w p l a n d f t 1 d ( s i z e l x l h , X, X,FFTW FORWARD, FFTW ESTIMATE) ;

10 f f t H = f f t w p l a n d f t 1 d ( s i z e l x l h , H, H,FFTW FORWARD, FFTW ESTIMATE) ;

11 i f f t R = f f t w p l a n d f t 1 d ( s i z e l x l h , X, X,FFTW BACKWARD, FFTW ESTIMATE) ;

12

13 f o r ( i =0 ; i<l x ; i = i +8) { /∗Copy d a t a X∗ /

14 X[ i +0] = x [ i +0 ]+0 .0 f ∗ Complex I ; X[ i +1] = x [ i +1 ]+0 .0 f ∗ Complex I ;

15 X[ i +2] = x [ i +2 ]+0 .0 f ∗ Complex I ; X[ i +3] = x [ i +3 ]+0 .0 f ∗ Complex I ;

16 X[ i +4] = x [ i +4 ]+0 .0 f ∗ Complex I ; X[ i +5] = x [ i +5 ]+0 .0 f ∗ Complex I ;

17 X[ i +6] = x [ i +6 ]+0 .0 f ∗ Complex I ; X[ i +7] = x [ i +7 ]+0 .0 f ∗ Complex I ;

18 } f o r ( i =0 ; i<l h ; i = i +8) { /∗Copy d a t a H∗ /

19 H[ i +0] = h [ i +0 ]+0 .0 f ∗ Complex I ; H[ i +1] = h [ i +1 ]+0 .0 f ∗ Complex I ;

20 H[ i +2] = h [ i +2 ]+0 .0 f ∗ Complex I ; H[ i +3] = h [ i +3 ]+0 .0 f ∗ Complex I ;

21 H[ i +4] = h [ i +4 ]+0 .0 f ∗ Complex I ; H[ i +5] = h [ i +5 ]+0 .0 f ∗ Complex I ;

22 H[ i +6] = h [ i +6 ]+0 .0 f ∗ Complex I ; H[ i +7] = h [ i +7 ]+0 .0 f ∗ Complex I ;

23 }

24 f f t w e x e c u t e ( f f t X ) ; f f t w e x e c u t e ( f f t H ) ; /∗ Execu te FFT f o r X and H∗ /

25 f o r ( i = 0 ; i < s i z e l x l h ; i = i +8) {

26 X[ i +0] = X[ i +0]∗H[ i + 0 ] ; X[ i +1] = X[ i +1]∗H[ i + 1 ] ;

27 X[ i +2] = X[ i +2]∗H[ i + 2 ] ; X[ i +3] = X[ i +3]∗H[ i + 3 ] ;

28 X[ i +4] = X[ i +4]∗H[ i + 4 ] ; X[ i +5] = X[ i +5]∗H[ i + 5 ] ;

29 X[ i +6] = X[ i +6]∗H[ i + 6 ] ; X[ i +7] = X[ i +7]∗H[ i + 7 ] ;

30 }

31 f f t w e x e c u t e ( i f f t R ) ; /∗ Execu te iFFT f o r r e s u l t ∗ /

32 f o r ( i = 0 ; i < l x + lh −1; ++ i )

33 y [ i ] = c r e a l (X[ i ] ) / ( do ub l e ) s i z e l x l h ;

34 f f t w d e s t r o y p l a n ( f f t X ) ; f f t w d e s t r o y p l a n ( f f t H ) ;

35 f f t w d e s t r o y p l a n ( i f f t R ) ;

36 f f t w f r e e (X) ; f f t w f r e e (H) ;

37 }

Figure 3.25: Implementation Convolution using FFTW.



60 CHAPTER 3. DESIGN AND IMPLEMENTATION



Chapter 4

Test and Results

4.1 Optimization Results

As shown in the previous chapter, Section 3.6, we focused on optimizing the convolution pro-

cess in order to be able to process as many channels and possible sounds in real time. In order

to process sound in real time, it is necessary to know the buffer that is going to be used for

playback. The bigger the buffer is, the more time it will reproduce, and the more time we also

have to prepare the next buffer for playback.

The problem is that if the user changes the position of a sound source, it will not take effect

until the next buffer is loaded. For that reason, if the buffer is large it will take more time to

make the change visible for the user.

This chapter is divided in three sections. In the first section, we explain the results we have

obtain performing the convolution in time domain where the entire signal is available. Results of

the convolution are carried out using signal blocks. We take advantage of all the cores by using

openMP. The second section shows the final results of the application, and the third section is

devoted to the analysis of the complexity.

4.1.1 Convolution

As explained in the previous chapter, there are several ways of implementing the convolution.

In this section, we are going to analyze the optimization results of the implementation of the

convolution in the time domain where we dispose of the signal.
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The time results are shown in the Table 4.1, but before we continue, there are few notes

about Table 4.1 that needs to be clarified. The first one is that “lx” corresponds to the size of the

signal and “lh” corresponds to the size of the filter.

The names of the columns are explained below:

• “Normal” is the implementation of the convolution without any optimization.

• “Normal v1 4” and “Normal v1 8” is the implementation of the convolution and uses a

loop unroll of 4 and 8.

• “Normal v2 4” and “Normal v2 8” is the implementation of the convolution where the

operations order is changed. It also uses a loop unroll of 4 and 8.

• “Neon v1 4” and “Neon v1 8” is the implementation of the convolution where it uses the

NEON instructions similar to loop unroll of 4 and 8.

• “Neon v2 4” and “Neon v2 8” is the implementation of the convolution where it uses the

NEON instructions similar to loop unroll of 4 and 8 with the operations order changed.

The conclusion we can obtain by analyzing Table 4.1 is that the best time was achieved

without using the NEON instructions is the “Normal v1 8”, which uses the loop unroll technique

of 8 operations. The “Normal v2 8” is very similar, but it is not the most efficient. Although in

the Table 4.1 does not appear, the use of the loop unroll of more than 8 operations decreases the

efficiency of the application.

lx-lh Normal Normal v1 4 Normal v1 8 Normal v2 4 Normal v2 8 Neon v1 4 Neon v1 8 Neon v1 16 Neon v2 4 Neon v2 8

64-64 0,008 0,007 0,005 0,007 0,006 0,005 0,003 0,003 0,004 0,004

128-64 0,016 0,012 0,009 0,011 0,01 0,008 0,005 0,006 0,007 0,007

128-128 0,031 0,022 0,019 0,022 0,02 0,013 0,011 0,011 0,013 0,013

256-64 0,031 0,024 0,019 0,022 0,02 0,016 0,01 0,011 0,012 0,012

256-128 0,058 0,044 0,041 0,043 0,038 0,026 0,022 0,02 0,024 0,023

256-256 0,112 0,084 0,069 0,1 0,076 0,049 0,041 0,04 0,048 0,047

512-64 0,063 0,046 0,036 0,043 0,038 0,031 0,02 0,021 0,023 0,044

512-128 0,114 0,086 0,073 0,083 0,075 0,07 0,043 0,039 0,045 0,044

512-256 0,221 0,17 0,138 0,168 0,152 0,098 0,079 0,079 0,102 0,088

512-512 0,426 0,331 0,289 0,331 0,303 0,194 0,156 0,154 0,182 0,174

Table 4.1: Time Processing Convolution in milliseconds.

The convolution results obtained without using the NEON instructions are satisfying, be-

cause it takes for a signal length of 512 and filter length of 64 only 0.036 milliseconds. But

by using the NEON instructions for the same sizes it takes 0.02 milliseconds if we use the
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“Neon v1 8” or 0.021 milliseconds if we use the “Neon v1 16”. The difference between them

is negligible.

4.1.2 Overlap Add and Overlap Save

Given the purpose of the application, we need to do the convolution in blocks. For that reason,

we will analyze the results of the Table 4.2. This table contains the result of the convolution in

the frequency domain and the convolution in block by using the Overlap add and Overlap Save

methods.

In this case the “lx” and “lh” are the sizes of the signal and filter as in the previous table, but

the names of the columns are explained below:

• “Conv” is the implementation of the convolution without any optimization.

• “Conv LU8” is the implementation of the convolution that uses the loop unroll of 8 oper-

ations.

• “Conv ARM 8” implements the convolution where it uses the NEON instructions similar

to loop unroll of 8 operations.

• “Conv FFT” is the implementation of the convolution of Gentleman-Sande.

• “Conv FFTW” is the implementation of the convolution using the FFT library.

• “Conv OA” is the implementation of the Overlap ADD method using the “Conv”.

• “Conv OA 8” is the implementation of the Overlap ADD method using the “Conv LU8”.

• “Conv ARM OA” is the implementation of the Overlap ADD method using the “Conv

ARM 8”.

• “Conv OS” is the implementation of the Overlap Save method using the “Conv FFT”.

• “Conv OS FFTW” is the implementation of the Overlap Save method using the “Conv

FFTW”.

As shown in the Table 4.2 the best method to use is the “Conv ARM 8” most of the time

for filter sizes that are less than 512. This convolution is implemented in the time domain and

uses the NEON instructions. But if the filter size is superior to 512, it is better to use the “Conv

OS FFTW”, which is a convolution implemented in the frequency domain, and uses the FFTW

library.
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bs-lh Conv Conv LU8 Conv ARM 8 Conv FFT Conv FFTW Conv OA Conv OA 8 Conv ARM OA Conv OS Conv OS FFTW

64 64 0,007887 0,004108 0,002419 0,234495 0,185689 0,024126 0,013563 0,007794 0,0742 0,0741

128 64 0,015504 0,008205 0,004829 0,476359 0,121291 0,047785 0,02705 0,015563 0,1561 0,15

256 64 0,03096 0,016397 0,00964 0,947345 0,179036 0,097499 0,053763 0,030912 0,2884 0,2875

512 64 0,061879 0,032783 0,019276 1,921678 0,257586 0,194447 0,107408 0,061622 0,5746 0,5763

1024 64 0,123843 0,065559 0,038546 3,987108 0,520396 0,388998 0,23942 0,123127 1,909 1,169

2048 64 0,247889 0,131195 0,101713 7,979112 1,98337 0,805069 0,432292 0,25012 2,4748 2,4581

512 512 0,426543 0,259894 0,156147 1,920184 0,265013 1,310526 0,830211 0,470546 0,5733 0,5731

1024 512 0,873896 0,521542 0,332754 3,907836 0,51035 2,601406 1,677226 0,966494 1,1677 1,1849

2048 512 1,724677 1,06074 0,63068 7,972815 1,967552 5,225386 3,373001 1,912579 2,5014 2,3956

2046 2048 6,808647 4,18615 2,483896 7,999225 1,973582 20,453229 13,266856 12,426696 2,4722 2,2795

Table 4.2: Time Processing Convolution in milliseconds using the FFT and Overlap methods.

The same thing happens if instead of performing the convolution of the entire signal, it

performed the convolution in blocks using the “Overlap” method. While the filter size is less

than 512 it is better to use the “Conv ARM OA”, but if the filter size is greater than 512 it is

better to use the “Conv OS FFTW”.

In order to determine which method is better in each case a test was carried out in where the

size of signal and filter is the same. The results are shown in the Figure 4.1, and we can conclude

that while we should use the NEON implementation to sized up to 512, but for superior sizes

we should use the FFTW implementation.

In this case, the application uses a filter of 64 coefficients and we are interested in small

sizes. For that reason, the best method we can use is the convolution implemented using the

Overlap Add method with the NEON instructions Figure 4.2.
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Figure 4.1: Difference between convolution in time domain and frequency domain. .
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Figure 4.2: Performance of the each type of convolution for the purpose of the application.
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4.1.3 OpenMP

Nowadays most of the ARM boards have more than one core, like for example both the Rasp-

berry Pi and the Nvidia Jetson TK1 boards have 4 cores. Thus, in order to take advantage

of all the computational capability available, we use OpenMP to process each output channel

independently.

Figure 4.3: Time employed in processing a sound with and without OpenMP.

The results are shown in the Figure 4.3, and represent the time involved in processing a

sound for different number of channels. If there are more than one sound involved than the time

it is necessary to process increases. Also, if the number of channels increases, the time required

for processing also increases.

OpenMP is capable of improving the processing time while there is more than 2 output

channels. Otherwise, the computation time of the whole system increases because of the time

needed to create the threads.

The graphic only has up to 8 output channels because most of the audio cards are 5.1 and

7.1. That means that it has only 6 and 8 audio outputs, although there are also audio cards that

can achieve up to 52 audio outputs like for example the “RME HDSP 9652”. But they are very

expensive and it is not the purpose of this system.
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4.2 Validation

In order to demonstrate that the application works and the nodes are perfectly synchronized,

we compared the speaker outputs with the original sound using the correlation. The correlation

will compare the similarity between two observers and if there is any information that is similar

will be represented by a delta. The delta represents a high value in the graphic as for example

in the Figure 4.4, where the correlation has been made with the same signal.

Figure 4.4: Example of the correlation made with the same sound.

The results that are shown in the Figure 4.5 and Figure 4.6 are not 100% reliable due to

the fact that between the output of the speakers and the input of the microphone there has been

applied a filter due to the environment. These graphs are merely indicative for the reader.

The Figure 4.5 shows the result of comparing the output of the application when the nodes

are not synchronized with the original sound. By analyzing it, we can deduce that the output of

the application does not have much information in common with the original sound due to the

lack of a delta.

Instead of we analyze the Figure 4.6 we the nodes are synchronized; we can observe a

delta value that is higher than the rest of the graph values. This indicates that there is common

information between the output of the application and the original sound.
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Figure 4.5: Unsynchronized output of the application.

Figure 4.6: Synchronized output of the application.
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4.3 Analysis of Complexity

The main focus of the application is to process the sound in real time, so when a user changes

the position of a sound it will be processed and applied immediately.

In order to achieve that purpose it is necessary to use small buffers sizes. For example, if we

use a buffer size of 512 integers and the frame rate is 44100, it will reproduce 0,01160997732

seconds, or approximately 11,6 milliseconds. After the first buffer has started reproducing, we

have 11,6 milliseconds to prepare the next buffer, artifacts will be perceived.

Figure 4.7: Time spent in processing a buffer size of 512.

The Figure 4.7 shows the time necessary to process one sound depending on the number of

output channels. From that figure, we can deduce that it is not possible to process more than 8

channels with only one core. The time to process 8 output channels is 11,25 milliseconds which

is less than 11,6 milliseconds available. Thus, it is better not to overcome the 7 output channels.



Chapter 5

Conclusion

The overall aim of this research was to study the possibility of implementing a distributed

Wave Field Synthesis system application using low power ARM processors and evaluate its

potential. The motivation of this research comes from the necessity of reducing the cost of

usual centralized system, and adds flexibility in modifying the design.

This chapter summarizes the findings of this research work. In the Section 5.1, we have

reviewed the research objectives given in the introductory chapter. In the Section 5.2, we have

explained how the knowledge achieved in the Master’s Degree is applied. Additionally, Rec-

ommendations for future research and personal evaluations are discussed in Section 5.3.

5.1 Achievement of Objectives

The first and one of the most important parts of this research was to evaluate the efficiency

of the Precision Time Protocol in order to achieve a synchronization between the nodes be-

low 5 milliseconds. By synchronizing the clients with a separated server, the average time of

synchronization was approximately 2 milliseconds in the worst case.

The second step was the analysis of the operations required to implement the Wave Field

Synthesis, from which the convolution operation would be the most important. For the purpose

of the application, which is to perceive the movement of the virtual sound as soon as the user

changed it, its necessary to implement the convolution operation.

The third step was to analyze the different possibilities of implementing the convolution

with a block size using the ARM processors. The time domain using the Overlap Add method
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was one solution and the frequency domain using the Overlap Save method was the second

solution.

In order to be able to run on a real time level, the time available to prepare each block size to

reproduce depends on the buffer size. For example by using a 512 integer buffer the time avail-

able to process is of approximately 11,6 milliseconds. In that time, the number of sound that can

be processed is limited, and it depends on the number of speakers that are connected. For that

reason in the fourth step the use the loop unroll technique, OpenMP, NEON instructions and the

FFTW library were necessary in order to reduce the process time. As a result, it is possible to

reproduce approximately 10 sounds for 7 speakers with a cost of below 10 milliseconds.

In fifth and last step, a configuration file was created using the LibConfig library, where it

is necessary to explain all the configuration of the node regarding the number of sounds and

speakers available and which device to use.

The important conclusion to point out is that it is possible to implement a distributed Wave

Field Synthesis application by using the ARM processors in order to reduce cost and complexity

of a classical centralized system.

5.2 Application of the Knowledge Achieve in the Master’s

Degree

The knowledge achieved in several subjects during the Master’s degree was useful for the im-

plementation the application like for example:

• Parallel Computing: Concepts And Methods: the multicore architectures, parallel

computational models, parallel programming environments.

• High Performance Computing Tools: the basics of high performance computing, tech-

niques for storing arrays and code optimization like the use of vector instructions.

• Parallel Programming Technologies: this showed me in more detail how to implement

applications for the share memory multi-thread paradigm and message passing paradigm.

It also given me an introduction parallel development tools software, especially for de-

bugging and performance analysis.

• Parallel Algorithms for Signal Processing: the basic computational concepts in signal
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processing. It also given me the basic information of sequential and parallel algorithms

for signal processing.

• Throughput And Scalability: concepts of scalability, decentralization and data distri-

bution for the client nodes.

• Life Cycle of Services: how to organize the code in order to facilitate actualizations.

5.3 Future Work

There are still a large number of improvements that can be added to the application. Some

examples of improvements are listed below:

• Improve the translation of the sound from one position to another in order to eliminate

sensation of sudden change.

• Implement a searching protocol, so it is not necessary to specify the IP of the server.

• Implement an interface for an web application, so it can be accessible from all the plat-

forms. The actual application only uses the command line as interface.

• Implement the steaming protocol or a before starting to reproduce, send all the sound

needed. The actual application needs to have the sound it will reproduce stored locally. If

we want to add a sound, we have to add the file to each client node and to the configuration

file. By implementing the upload file from the server side it would add simplification to

the final application.

• Implement a way to modify the configuration of each node from the server side remotely.

In order to modify the file configuration, we need to connect to the node and modify the

config.conf file.

• Extract all the functions and create separate libraries. For example, one library would be

the basic functions to play a song, or the communication library. That way if a change is

required, we could modify all the files of the library and only have to link the new library.

• Study the use of the GPU that the Nvidia Jetson Tk1 has at its architecture, in order to

obtain more performance from the board.

• Study the implementation of a system capable of detecting the position of sound using an

microphone array instead of a speakers array.
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project where there are very few people researching and many aspects to contribute.
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User Manual

A.1 PTPd

First it is necessary to install the ptpd daemon. It can be installed from the Advanced Package

Tool by having available the universe package.

1 sudo add−ap t−r e p o s i t o r y u n i v e r s e

Then it is necessary to update the package list:

1 sudo ap t−g e t u p d a t e

The command for installing the ptpd daemon :

1 sudo ap t−g e t i n s t a l l p tpd

Once installed in order to be able to run the daemon is necessary to stop the NTP daemon if

it is started.

1 / e t c / i n i t . d / n t p s t o p

To run the daemon as master:

1 sudo p tpd −W −b e t h 0 −C

To run the demon as slave:

1 sudo p tpd −g −b e t h 0 −h −C

The alternative is to install gcc and the essential library using the command:

1 sudo ap t−g e t b u i l d−e s s e n t i a l automake , a u t o c o n f l i b t o o l

Install git to download the last version of the ptpd daemon from the official repository:
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1 sudo ap t−g e t g i t g i t

And download using git and compile its contents:

1 g i t c l o n e h t t p s : / / g i t h u b . com / p tpd / p tpd . g i t

2 cd p tpd

3 a u t o r e c o n f −v i

4 . / c o n f i g u r e

If we only want to install the slave version only:

1 . / c o n f i g u r e −enab l e−s l a v e−on ly

2 make

Update test/client-e2e-socket.conf so that its “ptpengine:interface = ” setting points to a

network interface on the test machine that can see PTP packets from a grandmaster.

To test it in place:

1 . / s r c / p tpd2 −c t e s t / c l i e n t −e2e−s o c k e t . con f

If everything is correct we can install the daemon:

1 make i n s t a l l

The the log output of the daemon is located in /var/run/ptpd2.event.log, the statistics out-

put of the daemon in /var/run/ptpd2.stats.log and the status file in /var/run/ptpd2.status.log

A.2 Server

In order to install the server it is only necessary to download the source code from my personal

repository. Change the configuration file and run the main program indicating the port to use.

1 g i t c l o n e h t t p s : / / g i t h u b . com / MihaiLupoiu / SuperwavServe r

2 cd SuperwavServe r

3 vim . / c o n f i g / d e f a u l t . c f g

4 cd . / s r c /

5 py thon main . py 4444

If we press the “f” key while the application is running it will ask which audio we would

like to move and to specify the X and Y position. If we press the “e” key it will close the

application.
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A.3 Client

In order to install the client application it is also available to download from my personal repos-

itory:

1 g i t c l o n e h t t p s : / / g i t h u b . com / MihaiLupoiu / Comunicacion . g i t

2 cd Comunicacion

In order to be able to reproduce using the ALSA driver it is necessary to install:

1 sudo ap t−g e t i n s t a l l l i b a s o u n d 2−dev

The installation of libconfig is done in the “install.sh” file, but it can also be manually

installed:

1 cd . / b i n / c o n f i g l i b / l i b c o n f i g −1 .5 . t a r . gz −C / tmp

2 t a r −xvf . / . . / . . / b i n / c o n f i g l i b / l i b c o n f i g −1 .5 . t a r . gz −C / tmp

3 cd / tmp / l i b c o n f i g −1 .5 /

4 sudo . / c o n f i g u r e

5 sudo make

6 sudo make check

7 sudo make i n s t a l l

8 sudo l d c o n f i g −v

To install the application for any platform use:

1 cd . / Comunicacion / c l i e n t / s r c /

2 make

To install the application for the ARM platform use:

1 cd . / Comunicacion / c l i e n t / s r c /

2 make ARM

To run the application first it is necessary to have the server running, and then use:

1 . / SuperWAVAppClient . o 1 9 2 . 1 6 8 . 1 . 1 2 4444 −c o n f i g . . / c o n f i g / d e f a u l t . c f g

The flag “-config” is used to indicate which configuration file does the application has to read.

If there flag is not passed it will use de default.cfg.
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