
Proceedings of the International Association for Shell and Spatial Structures (IASS) Symposium 2009, Valencia
Evolution and Trends in Design, Analysis and Construction of Shell and Spatial Structures

28 September – 2 October 2009, Universidad Politecnica de Valencia, Spain
Alberto DOMINGO and Carlos LAZARO (eds.)

Exceptions as a rule in computational design

Jeroen L. COENDERS*

*Arup, Delft University of Technology

Naritaweg 118, 1043 CA Amsterdam, Stevinweg 1, 2628 CN Delft

jeroen.coenders@arup.com, j.l.coenders@tudelft.nl

Abstract

Structural design deals with solving the complex problem of the realisation of a building

from the initiation to final execution. During this process many complicated sub-processes

take place which handle with large amounts of design information. Following the Structural

Design Tools approach (Coenders [2]) computational design attempts to support the

process of design by providing concepts, guidelines and computational strategies to

appropriate existing and new technology for (structural) design. Computational technology

is strong in storing and processing large amounts of data in a fraction of the speed of human

labour. However, one of the problematic areas of computational design is the fact that

design often consists of many exceptions. Current state-of-the-art computational design

systems, such as Bentley’s GenerativeComponents (GC; by Robert Aish [1]) or

Grasshopper (by McNeel [4]) are very strong in modelling repetition, but not exception.

Generating design by rules is appropriate for repetition, but by definition exceptions don’t

follow the rule. Traditional CAD systems are stronger in this field as the entire model is

basically an exception. However, these systems are less appropriate for design process

augmented by computation.

The author would like to discuss a novel computational strategy for parametric and

associative design systems to address the modelling and handling of exceptions in design

for design systems of the future.

Keywords: Computational Design, Parametric and Associative Design, repetition and

exceptions in design.

1. Introduction

Structural design deals with solving the complex problem of the realisation of a building

from the initiation to final execution: First, this solution is virtual, existing in paper,

sketches, computers, and later physical when the building is being constructed on site. The

engineer conceives a structural concept which describes how the structure will bear its

loads and determines how the structure will be build. During this process many complicated

sub-processes take place which handle with large amounts of design information. These

processes are complicated, because they deal with obtaining evidence and confidence in the

feasibility of the structural concept, concerning the structural limit and serviceability states,

but also other criteria, such as economic feasibility, buildability, etc. In these processes the

589

Proceedings of the International Association for Shell and Spatial Structures (IASS) Symposium 2009, Valencia
Evolution and Trends in Design, Analysis and Construction of Shell and Spatial Structures

amount of computational techniques used has increased since the first computers. However,

computation is often focused on precision and automation, which helps the engineer in

gaining his or her evidence and confidence, but does not directly help to create this

confidence. The author has proposed that to obtain a higher degree of automation in the

design process, possibly even a process where all or at least the majority of information

exists in computation systems, it is not enough to just develop computational systems from

the technological side (Coenders [2]). Technology in its own without the essential

connections to the essence and key characteristics of design, such as the recognition of

gaining confidence in the design, will fail in the long run. Therefore, the Structural Design

Tools approach proposes a computational design approach to support the process of design

by providing concepts, guidelines and computational strategies to appropriate existing and

new technology for (structural) design and its key characteristics, by studying these

characteristics and linking these to qualities of software technology. Furthermore, it might

be appropriate to make minor changes to these technologies to make them more suitable for

design.

A simple example would be parametric and associative design (further discussed below)

which in theory provides mechanisms to model and store design logic and knowledge

rather than just design information, potentially increasing insight in the workings of the

system. By providing structural objects in these systems these systems would become more

appropriate to use in structural design. This paper discusses a more complex example of

appropriating parametric and associative technology to structural design: by proposing

some modifications on a more fundamental level: the ability to model and deal with

exceptions in the model and in the system.

2. Parametric and associative design

The systems will be used in this paper can be classified as parametric and associative

design systems. The author has defined concepts in an earlier paper [3] to identify these

systems. Examples for these computational design systems are Bentley’s

GenerativeComponents (GC; by Robert Aish [1]) or Grasshopper (by McNeel [4]).

As stated before these systems are able to express design knowledge through processable

design logic which the system is able to replay on every change in the input parameters of

the system. These systems help in rationalising often complicated designs by explicitly

defining the underlying logic, rather than just containing the result of a set of geometric

operations.

The special feature of these systems is that they do not act as a black-box of pre-

programmed logic, but the user is able to develop his or her own logic in these systems as

long as the operators or combinations of operations are available, or the system can be

extended towards new operators by programming add-ins.

The two mentioned systems contain another powerful concept: replication. This concept is

able to apply logic defined for a single object over a series of objects and carry these

replicated objects through the design. In GenerativeComponents the Series() statement is

being used to initiate the replication. Replication can also be a result of for instance an

590

Proceedings of the International Association for Shell and Spatial Structures (IASS) Symposium 2009, Valencia
Evolution and Trends in Design, Analysis and Construction of Shell and Spatial Structures

intersection operation. This mechanism allows for single-definition and multiple-

application which is very powerful to model complicated logic with ease.

Another mechanism proposed by the author where replicated objects can occur is

collection. Collection is a mechanism where certain objects are placed in a container or

collection object and obtain a single point-of-reference.

3. The practice of structural design modeling

Computational technology is strong in storing and processing large amounts of data in a

fraction of the speed of human labour. Furthermore, parametric and associative design

enables designers to express repetitive or replicated logic with relative ease.

However, as stated before, to assess the applicability of computational design systems the

suitability for design needs to be assessed. One of the problematic areas which immediately

arises is the fact that only in a small amount of cases such extensive repetition is present in

design that replication becomes useful. It can almost be said that design doesn’t follow the

rule, but is a collection of exceptions. Designs are rarely completely rationalized to a

repetitive form without exceptions.

Currently 2D CAD systems are often seen as old-fashioned and outdated, because they do

not contain object logic, but only geometric representations of the objects which need to be

interpreted by the user. However, one important benefit of these systems is often overseen,

which is that they are very suitable for modelling exceptions, exactly because they do not

prefer objects, but just model the geometric representation. On the other hand, there are also

many disadvantages to these systems which have been extensively discussed in the

Building Information Modelling (BIM) world. Also for the future, these systems are less

appropriate for design process augmented by computation.

An additional problem is the fact that as buildings become larger and information becomes

more detailed, complexity arises in the information and interrelationship of the information.

4. Dealing with exceptions

Following the issues described above and the fact that the increased complexity in building

design makes more application of computational design desirable in the future,

computational design would benefit from a method to deal with exceptions which while

maintaining all advantages of parametric and associative modelling.

It needs to be mentioned that the concepts and techniques below will not cover every type

of exception, but will aid in dealing with exception objects which contain some kind of

common feature, either their type, how they are created or how the system will deal with

them. Complete random objects of random object types which each have their own special

behavior, naturally will not benefit from design logic on a broader level. For this class of

objects the logic defined can only be applied on the object itself and therefore there is no

benefit in any of the methods below.

It also needs to be mentioned that below mechanisms and operators will be described as a

language to express exception logic. It needs to be noted that this language might not be

comprehensive for all classes of problems, all required or available capabilities in other

591

Proceedings of the International Association for Shell and Spatial Structures (IASS) Symposium 2009, Valencia
Evolution and Trends in Design, Analysis and Construction of Shell and Spatial Structures

languages which deal with similar problems in computation, or all available classes of

exceptions in design, etc. etc. Also, the language is not optimised for ease-of-use,

understandability, etc. The language purely is intended to demonstrate the power of

providing exception logic in design systems of the future and its conceptual ease of

definition of logic.

4.1. Types

In design systems various types of objects are present. This paper will focus on two base

types: (1) primitives, such as numbers, letters, characters, etc. which have a common

sequences (2 follows after 1, b follows after a, etc.) and (2) object sequences or collections.

The second case, object sequences or collections, contain objects and since everything can

be defined as an object, this could be basically anything: objects, names of days, dates,

results from an intersection operation, an imported Excel range, a database query, etc. etc.

The sequence logic for these collections are defined by two factors: (1) the position in the

array (Table 1 operator 9 and 10) and (2) a given index number, which is usually equal to

the position in the array, but can differ on results from (partly) failed operations.

Objects are assumed to have a system base type (Object, Point, Line, etc) and a Global

Unique Identifier (GUID).

4.2. Conceptual directions

Exceptions occur in various situations in modelling design in parametric and associative

design systems. Two scenarios will be address in this paper: (1) during object creation and

(2) after object collection.

4.3. During object creation

In the case of the “during object creation” scenario exceptions are created while the user

defines a repetitive logic, but would like to make certain exceptions to the repetition rule. In

most parametric and associative design systems this scenario could be created by defining a

sequence of objects (for instance by using the Series() function in GenerativeComponents)

and giving each of this objects a rule which determines what the behaviour should be. This

is useful, but there are a number of caveats: (1) This would create objects where in some

situations the user might not want an object, leaving a “turned-off” dummy object which

takes memory and processing power from the system. (2) This would not work for

behaviour where global knowledge is required rather than local information known to the

object itself. (3) This would not work if depending on the rules, various types of objects

need to be created rather than just one type.

4.4. After object collection

In the case of the “after object collection” scenario exceptions need to be dealt with which

exist in the collection. These collections can either be a result of the “during object

creation” scenario where a collection has been created which contains exceptions, a

collection operation by the user in the design system or the result of an operation in the

design system. Usually these collections contain broken sequences, only a part of the

592

Proceedings of the International Association for Shell and Spatial Structures (IASS) Symposium 2009, Valencia
Evolution and Trends in Design, Analysis and Construction of Shell and Spatial Structures

information has to be dealt with based on a criterion, certain objects need to be inserted at

certain positions in the collection or the collection needs to be sorted or renumbered.

4.5. Operators

Operators are statements in the language which define a logic which refers to an object or

object type or works on these objects or object types. Operators can work on various object

types:

- Primitives, such as numbers (integers) or letters (characters);

- Objects or collections of objects;

Table 1 lists a number of operators or expressions in the language which can be used to

express exception logic.

Nr Operator Description

1 primitiveA-primitiveB Range from primitiveA to primitiveB

2 primitiveA-primitiveB;stepsize Range from primitiveA to primitiveB with step

stepsize

3 objectA,objectB objectA and objectB

4 collectionA,collectionB collectionA and collectionB

5 collectionA|collectionB collectionA except collectionB

6 (..) Compound, priority

7 collection[..] Collection statement

8 collectionA[..]<collectionB Inserts collectionB in collectionA

9 [..] Array indices statement

10 anumber Reference to array index or position number

11 inumber Reference to given index number

12 n(objectName) Reference to object name

13 g(GUID) Reference to object’s Global Unique Identifier

(GUID)

14 t(type) Reference to object’s system type

15 Invert(collection) Inverts the collection

16 Renumber(collection) Renumbers the given indices of the collection

17 RegexpN(collection,regexp) Returns the part of the collection that matches the

regular expression regexp in its name.

18 RegexpT(collection,regexp) Returns the part of the collection that matches the

regular expression regexp in its type name.

19 Sort(collection,sort Sorts the collection based on a sort criterium either

593

Proceedings of the International Association for Shell and Spatial Structures (IASS) Symposium 2009, Valencia
Evolution and Trends in Design, Analysis and Construction of Shell and Spatial Structures

criterium,ascending) ascending or descending.

20 Select(collection,ruletree) Selects the objects from a collection based on the

given rule tree [3].

Table 1: Operators

Italic print in the table indicates a name of a primitive or an object to be replaced by the

name of the primitive or object itself. Furtermore, Wikipedia [5] contains a comprehensive

explanation of regular expressions used in operator 19.

In Table 2 various examples of operators have been shown applied to integer sequences.

Nr Example Result

1 1-10 1,2,3,4,5,6,7,8,9,10

2 1-3,6-8 1,2,3,6,7,8

3 1-10|5 1,2,3,4,6,7,8,9,10

4 1-10;2 1,3,5,7,9

5 (1-10)|(2-3) 1,4,5,6,7,8,9,10

Table 2: Examples of integer sequences

In Table 3 various examples of operators have been shown applied to letter sequences.

Nr Example Result

1 b-d b,c,d

2 a,c-e,g a,c,d,e,g

Table 3: Example of letter or character sequences

Table 4 demonstrates various examples for application of operators on object sequences.

The original collections used in the examples are:

A={Monday,Tuesday,Wednesday,Thursday,Friday,Saturday,Sunday}

B={1:PointA,2:PointB,4:PointC,5:PointD,6:PointE}

C={1:PointA,2:LineA,3:LineB,4:PointB}

With notation:

collection = {index:objectA,...,index_n:object_n}

Collection A would be a typical example of a predefined sequence of objects defined to be

used throughout the model. Collection B is a typical example of what an intersection of

594

Proceedings of the International Association for Shell and Spatial Structures (IASS) Symposium 2009, Valencia
Evolution and Trends in Design, Analysis and Construction of Shell and Spatial Structures

multiple lines (6 original lines) with a surface could return. Note that one line missed the

surface (number 3) and therefore no point was created at this index number.

Nr Example Result

1 A[1-3] Monday,Tuesday,Wednesday

2 B[1-3] PointA,PointB,PointC

3 B[1-5;2] PointA,PointC,PointE

4 B[i1-i3] PointA,PointB

5 B[i1-i5;2] PointA,PointD

6 B[a1-a3] PointA,PointB,PointC

7 Invert(A) {Sunday,Saturday,Friday,Thursday,Wednesday,

Tuesday,Monday}

8 Renumber(A) {1:PointA,2:PointB,4:PointC,4:PointD,5:PointE}

9 B[i3]<PointX {1:PointA,2:PointB,3:PointX,4:PointC,5:PointD,

6:PointE}

10 B[n(PointA)] PointA

11 C[t(Point)] {1:PointA,4:PointB}

12 Renumber(C[t(Point)]) {1:PointA,2:PointB}

Table 4: Examples of object sequences and collections

Example 9 in Table 4 is a powerful example of what exception logic could provide to

design systems. Collection B is a point collection resulting from an intersection operation

and somehow in this example it is logical that one point is missing. At this point a user-

defined exception point can be inserted in the collection which can be used in concurrency

with the repetitively defined points in subsequent logic by one reference: collection B.

4.6. Dealing with more complicated rules and rule structures

It can be imagined that the user would like to express even more complex statements or

interrelations between statements. For this purpose the concept of rule-processing in

parametric and associative design proposed in an earlier paper by the author [3] can be

employed. This system is able to build complex rule objects which can interact and respond

to any programmed behaviour that follows a rule-based logic. An example of this would be

selection procedures from the collection where an algorithm needs be employed to

determine if the object satisfies the criterion or not, for instance a point-in-polygon rule or

search, selecting or filtering functions. Typically, the rule logic will be initiated by operator

20 in Table 1.

595

Proceedings of the International Association for Shell and Spatial Structures (IASS) Symposium 2009, Valencia
Evolution and Trends in Design, Analysis and Construction of Shell and Spatial Structures

4. Discussion

This paper has demonstrated various types of exceptions and mechanisms to deal with these

exception types.

However, as stated earlier, other exception types might occur in practical design problems.

This would require further research in this specific topic which lies outside the scope of this

proposal paper.

Furthermore, more advanced functionality might need to be addressed in the object types

(for instance Booleans, Strings and Doubles as primitives), the operators or the types of

collections the logic deals with, for instance nested and recursive collections or multi-

dimensional collections.

It needs to be noted that the various demonstrations might be possible to model in current

design systems without a language for expressing exception logic and would certainly be

able to develop making use of programmed feature types. However, that would create less

efficient design models (for instance with a lot of memory use on work-around dummy

objects) which is a problem in the case of large and complex models or would require

significantly more effort and knowledge of the end-user to apply. A language for

expressing exception logic would make the logic more accessible and easy to use, creating

more powerful and efficient models.

5. Conclusions

In this paper the author has discussed an important obstacle which exist in supporting the

structural design process by computational design, the paradox between the ease of

repetition by computation and the widespread existence of exceptions to this repetition in

real building design. Furthermore, the author has proposed various strategies to deal with

and overcome various types of exception in computational design systems of the future.

These systems and concepts will be further researched, prototyped and developed at Delft

University of Technology, the Structural Design Lab, and Arup.

References

[1] Aish R., Introduction to GenerativeComponents, a parametric and associative design

system for architecture, building engineering and digital fabrication, white paper,

http://www.bentley.com, 2005.

[2] Coenders J.L. and Wagemans L.A.G., The next step in modeling for structural design:

structural design tools. Proceedings of the international symposium on shell and

spatial structures; theory, technique, valuation, maintenance, Madrid, Spain, IASS,

2005: 85-92.

[3] Coenders J.L., Rule-processing as a cross-cutting concern in parametric associative

design systems, in IASS-SLTE 2008 simposium Acapulco Mexico, New materials

and technologies, new design and innovations – a sustainable approach to

architectural and structural design, Oliva Salinas J.G., Acapulco, Mexico, 2008, 87-

88.

596

Proceedings of the International Association for Shell and Spatial Structures (IASS) Symposium 2009, Valencia
Evolution and Trends in Design, Analysis and Construction of Shell and Spatial Structures

[4] McNeel, Grasshopper, website, http://grasshopper.rhino3d.com, 2008.

[5] Wikipedia contributors, Regular expression, Wikipedia, The Free Encyclopedia,

http://en.wikipedia.org/w/index.php?title=Regular_expression&oldid=289365504,

2009.

597

