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Abstract 

Structural design deals with solving the complex problem of the realisation of a building 

from the initiation to final execution. During this process many complicated sub-processes 

take place which handle with large amounts of design information. Following the Structural 

Design Tools approach (Coenders [2]) computational design attempts to support the 

process of design by providing concepts, guidelines and computational strategies to 

appropriate existing and new technology for (structural) design. Computational technology 

is strong in storing and processing large amounts of data in a fraction of the speed of human 

labour. However, one of the problematic areas of computational design is the fact that 

design often consists of many exceptions. Current state-of-the-art computational design 

systems, such as Bentley’s GenerativeComponents (GC; by Robert Aish [1]) or 

Grasshopper (by McNeel [4]) are very strong in modelling repetition, but not exception. 

Generating design by rules is appropriate for repetition, but by definition exceptions don’t 

follow the rule. Traditional CAD systems are stronger in this field as the entire model is 

basically an exception. However, these systems are less appropriate for design process 

augmented by computation.  

The author would like to discuss a novel computational strategy for parametric and 

associative design systems to address the modelling and handling of exceptions in design 

for design systems of the future. 

 

Keywords: Computational Design, Parametric and Associative Design, repetition and 

exceptions in design. 

1. Introduction 

Structural design deals with solving the complex problem of the realisation of a building 

from the initiation to final execution: First, this solution is virtual, existing in paper, 

sketches, computers, and later physical when the building is being constructed on site. The 

engineer conceives a structural concept which describes how the structure will bear its 

loads and determines how the structure will be build. During this process many complicated 

sub-processes take place which handle with large amounts of design information. These 

processes are complicated, because they deal with obtaining evidence and confidence in the 

feasibility of the structural concept, concerning the structural limit and serviceability states, 

but also other criteria, such as economic feasibility, buildability, etc. In these processes the 
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amount of computational techniques used has increased since the first computers. However, 

computation is often focused on precision and automation, which helps the engineer in 

gaining his or her evidence and confidence, but does not directly help to create this 

confidence. The author has proposed that to obtain a higher degree of automation in the 

design process, possibly even a process where all or at least the majority of information 

exists in computation systems, it is not enough to just develop computational systems from 

the technological side (Coenders [2]). Technology in its own without the essential 

connections to the essence and key characteristics of design, such as the recognition of 

gaining confidence in the design, will fail in the long run. Therefore, the Structural Design 

Tools approach proposes a computational design approach to support the process of design 

by providing concepts, guidelines and computational strategies to appropriate existing and 

new technology for (structural) design and its key characteristics, by studying these 

characteristics and linking these to qualities of software technology. Furthermore, it might 

be appropriate to make minor changes to these technologies to make them more suitable for 

design. 

A simple example would be parametric and associative design (further discussed below) 

which in theory provides mechanisms to model and store design logic and knowledge 

rather than just design information, potentially increasing insight in the workings of the 

system. By providing structural objects in these systems these systems would become more 

appropriate to use in structural design. This paper discusses a more complex example of 

appropriating parametric and associative technology to structural design: by proposing 

some modifications on a more fundamental level: the ability to model and deal with 

exceptions in the model and in the system. 

2. Parametric and associative design 

The systems will be used in this paper can be classified as parametric and associative 

design systems. The author has defined concepts in an earlier paper [3] to identify these 

systems. Examples for these computational design systems are Bentley’s 

GenerativeComponents (GC; by Robert Aish [1]) or Grasshopper (by McNeel [4]). 

As stated before these systems are able to express design knowledge through processable 

design logic which the system is able to replay on every change in the input parameters of 

the system. These systems help in rationalising often complicated designs by explicitly 

defining the underlying logic, rather than just containing the result of a set of geometric 

operations. 

The special feature of these systems is that they do not act as a black-box of pre-

programmed logic, but the user is able to develop his or her own logic in these systems as 

long as the operators or combinations of operations are available, or the system can be 

extended towards new operators by programming add-ins. 

The two mentioned systems contain another powerful concept: replication. This concept is 

able to apply logic defined for a single object over a series of objects and carry these 

replicated objects through the design. In GenerativeComponents the Series() statement is 

being used to initiate the replication. Replication can also be a result of for instance an 
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intersection operation. This mechanism allows for single-definition and multiple-

application which is very powerful to model complicated logic with ease. 

Another mechanism proposed by the author where replicated objects can occur is 

collection. Collection is a mechanism where certain objects are placed in a container or 

collection object and obtain a single point-of-reference. 

3. The practice of structural design modeling 

Computational technology is strong in storing and processing large amounts of data in a 

fraction of the speed of human labour. Furthermore, parametric and associative design 

enables designers to express repetitive or replicated logic with relative ease.  

However, as stated before, to assess the applicability of computational design systems the 

suitability for design needs to be assessed. One of the problematic areas which immediately 

arises is the fact that only in a small amount of cases such extensive repetition is present in 

design that replication becomes useful. It can almost be said that design doesn’t follow the 

rule, but is a collection of exceptions. Designs are rarely completely rationalized to a 

repetitive form without exceptions.  

Currently 2D CAD systems are often seen as old-fashioned and outdated, because they do 

not contain object logic, but only geometric representations of the objects which need to be 

interpreted by the user. However, one important benefit of these systems is often overseen, 

which is that they are very suitable for modelling exceptions, exactly because they do not 

prefer objects, but just model the geometric representation. On the other hand, there are also 

many disadvantages to these systems which have been extensively discussed in the 

Building Information Modelling (BIM) world. Also for the future, these systems are less 

appropriate for design process augmented by computation.  

An additional problem is the fact that as buildings become larger and information becomes 

more detailed, complexity arises in the information and interrelationship of the information. 

4. Dealing with exceptions 

Following the issues described above and the fact that the increased complexity in building 

design makes more application of computational design desirable in the future, 

computational design would benefit from a method to deal with exceptions which while 

maintaining all advantages of parametric and associative modelling. 

It needs to be mentioned that the concepts and techniques below will not cover every type 

of exception, but will aid in dealing with exception objects which contain some kind of 

common feature, either their type, how they are created or how the system will deal with 

them. Complete random objects of random object types which each have their own special 

behavior, naturally will not benefit from design logic on a broader level. For this class of 

objects the logic defined can only be applied on the object itself and therefore there is no 

benefit in any of the methods below. 

It also needs to be mentioned that below mechanisms and operators will be described as a 

language to express exception logic. It needs to be noted that this language might not be 

comprehensive for all classes of problems, all required or available capabilities in other 
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languages which deal with similar problems in computation, or all available classes of 

exceptions in design, etc. etc. Also, the language is not optimised for ease-of-use, 

understandability, etc. The language purely is intended to demonstrate the power of 

providing exception logic in design systems of the future and its conceptual ease of 

definition of logic. 

4.1. Types 

In design systems various types of objects are present. This paper will focus on two base 

types: (1) primitives, such as numbers, letters, characters, etc. which have a common 

sequences (2 follows after 1, b follows after a, etc.) and (2) object sequences or collections. 

The second case, object sequences or collections, contain objects and since everything can 

be defined as an object, this could be basically anything: objects, names of days, dates, 

results from an intersection operation, an imported Excel range, a database query, etc. etc. 

The sequence logic for these collections are defined by two factors: (1) the position in the 

array (Table 1 operator 9 and 10) and (2) a given index number, which is usually equal to 

the position in the array, but can differ on results from (partly) failed operations. 

Objects are assumed to have a system base type (Object, Point, Line, etc) and a Global 

Unique Identifier (GUID). 

4.2. Conceptual directions 

Exceptions occur in various situations in modelling design in parametric and associative 

design systems. Two scenarios will be address in this paper: (1) during object creation and 

(2) after object collection. 

4.3. During object creation 

In the case of the “during object creation” scenario exceptions are created while the user 

defines a repetitive logic, but would like to make certain exceptions to the repetition rule. In 

most parametric and associative design systems this scenario could be created by defining a 

sequence of objects (for instance by using the Series() function in GenerativeComponents) 

and giving each of this objects a rule which determines what the behaviour should be. This 

is useful, but there are a number of caveats: (1) This would create objects where in some 

situations the user might not want an object, leaving a “turned-off” dummy object which 

takes memory and processing power from the system. (2) This would not work for 

behaviour where global knowledge is required rather than local information known to the 

object itself. (3) This would not work if depending on the rules, various types of objects 

need to be created rather than just one type. 

4.4. After object collection 

In the case of the “after object collection” scenario exceptions need to be dealt with which 

exist in the collection. These collections can either be a result of the “during object 

creation” scenario where a collection has been created which contains exceptions, a 

collection operation by the user in the design system or the result of an operation in the 

design system. Usually these collections contain broken sequences, only a part of the 
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information has to be dealt with based on a criterion, certain objects need to be inserted at 

certain positions in the collection or the collection needs to be sorted or renumbered. 

4.5. Operators 

Operators are statements in the language which define a logic which refers to an object or 

object type or works on these objects or object types. Operators can work on various object 

types: 

- Primitives, such as numbers (integers) or letters (characters); 

- Objects or collections of objects; 

Table 1 lists a number of operators or expressions in the language which can be used to 

express exception logic.  

 

Nr Operator Description 

1 primitiveA-primitiveB Range from primitiveA to primitiveB 

2 primitiveA-primitiveB;stepsize Range from primitiveA to primitiveB with step 

stepsize 

3 objectA,objectB objectA and objectB 

4 collectionA,collectionB collectionA and collectionB 

5 collectionA|collectionB collectionA except collectionB 

6 (..) Compound, priority 

7 collection[..] Collection statement 

8 collectionA[..]<collectionB Inserts collectionB in collectionA 

9 [..] Array indices statement 

10 anumber Reference to array index or position number 

11 inumber Reference to given index number 

12 n(objectName) Reference to object name 

13 g(GUID) Reference to object’s Global Unique Identifier 

(GUID) 

14 t(type) Reference to object’s system type 

15 Invert(collection) Inverts the collection 

16 Renumber(collection) Renumbers the given indices of the collection 

17 RegexpN(collection,regexp) Returns the part of the collection that matches the 

regular expression regexp in its name. 

18 RegexpT(collection,regexp) Returns the part of the collection that matches the 

regular expression regexp in its type name. 

19 Sort(collection,sort Sorts the collection based on a sort criterium either 
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criterium,ascending) ascending or descending. 

20 Select(collection,ruletree) Selects the objects from a collection based on the 

given rule tree [3]. 

Table 1: Operators 

Italic print in the table indicates a name of a primitive or an object to be replaced by the 

name of the primitive or object itself. Furtermore, Wikipedia [5] contains a comprehensive 

explanation of regular expressions used in operator 19. 

In Table 2 various examples of operators have been shown applied to integer sequences. 

 

Nr Example Result 

1 1-10 1,2,3,4,5,6,7,8,9,10 

2 1-3,6-8 1,2,3,6,7,8 

3 1-10|5 1,2,3,4,6,7,8,9,10 

4 1-10;2 1,3,5,7,9 

5 (1-10)|(2-3) 1,4,5,6,7,8,9,10 

Table  2: Examples of integer sequences 

In Table 3 various examples of operators have been shown applied to letter sequences. 

 

Nr Example Result 

1 b-d b,c,d 

2 a,c-e,g a,c,d,e,g 

Table 3: Example of letter or character sequences 

Table 4 demonstrates various examples for application of operators on object sequences. 

The original collections used in the examples are: 

A={Monday,Tuesday,Wednesday,Thursday,Friday,Saturday,Sunday} 

B={1:PointA,2:PointB,4:PointC,5:PointD,6:PointE} 

C={1:PointA,2:LineA,3:LineB,4:PointB} 

 

With notation: 

collection = {index:objectA,...,index_n:object_n} 

 

Collection A would be a typical example of a predefined sequence of objects defined to be 

used throughout the model. Collection B is a typical example of what an intersection of 
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multiple lines (6 original lines) with a surface could return. Note that one line missed the 

surface (number 3) and therefore no point was created at this index number. 

 

Nr Example Result 

1 A[1-3] Monday,Tuesday,Wednesday  

2 B[1-3] PointA,PointB,PointC 

3 B[1-5;2] PointA,PointC,PointE 

4 B[i1-i3] PointA,PointB 

5 B[i1-i5;2] PointA,PointD 

6 B[a1-a3] PointA,PointB,PointC 

7 Invert(A) {Sunday,Saturday,Friday,Thursday,Wednesday, 

Tuesday,Monday} 

8 Renumber(A) {1:PointA,2:PointB,4:PointC,4:PointD,5:PointE} 

9 B[i3]<PointX {1:PointA,2:PointB,3:PointX,4:PointC,5:PointD, 

6:PointE} 

10 B[n(PointA)] PointA 

11 C[t(Point)] {1:PointA,4:PointB} 

12 Renumber(C[t(Point)]) {1:PointA,2:PointB} 

Table 4: Examples of object sequences and collections 

Example 9 in Table 4 is a powerful example of what exception logic could provide to 

design systems. Collection B is a point collection resulting from an intersection operation 

and somehow in this example it is logical that one point is missing. At this point a user-

defined exception point can be inserted in the collection which can be used in concurrency 

with the repetitively defined points in subsequent logic by one reference: collection B. 

4.6. Dealing with more complicated rules and rule structures 

It can be imagined that the user would like to express even more complex statements or 

interrelations between statements. For this purpose the concept of rule-processing in 

parametric and associative design proposed in an earlier paper by the author [3] can be 

employed. This system is able to build complex rule objects which can interact and respond 

to any programmed behaviour that follows a rule-based logic. An example of this would be 

selection procedures from the collection where an algorithm needs be employed to 

determine if the object satisfies the criterion or not, for instance a point-in-polygon rule or 

search, selecting or filtering functions. Typically, the rule logic will be initiated by operator 

20 in Table 1. 
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4. Discussion 

This paper has demonstrated various types of exceptions and mechanisms to deal with these 

exception types.  

However, as stated earlier, other exception types might occur in practical design problems. 

This would require further research in this specific topic which lies outside the scope of this 

proposal paper. 

Furthermore, more advanced functionality might need to be addressed in the object types 

(for instance Booleans, Strings and Doubles as primitives), the operators or the types of 

collections the logic deals with, for instance nested and recursive collections or multi-

dimensional collections. 

It needs to be noted that the various demonstrations might be possible to model in current 

design systems without a language for expressing exception logic and would certainly be 

able to develop making use of programmed feature types. However, that would create less 

efficient design models (for instance with a lot of memory use on work-around dummy 

objects) which is a problem in the case of large and complex models or would require 

significantly more effort and knowledge of the end-user to apply. A language for 

expressing exception logic would make the logic more accessible and easy to use, creating 

more powerful and efficient models. 

5. Conclusions 

In this paper the author has discussed an important obstacle which exist in supporting the 

structural design process by computational design, the paradox between the ease of 

repetition by computation and the widespread existence of exceptions to this repetition in 

real building design. Furthermore, the author has proposed various strategies to deal with 

and overcome various types of exception in computational design systems of the future. 

These systems and concepts will be further researched, prototyped and developed at Delft 

University of Technology, the Structural Design Lab, and Arup. 
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