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Abstract

Many real-world problems are known as planning and scheduling problems,
where resources must be allocated so as to optimize overall performance objec-
tives. The traditional scheduling models consider performance indicators such as
processing time, cost and quality as optimization objectives. However, most of
them do not take into account energy consumption and robustness. We focus our
attention in a job-shop scheduling problem where machines can work at different
speeds. It represents an extension of the classical job-shop scheduling problem,
where each operation has to be executed by one machine and this machine can
work at different speeds. The main goal of the paper is focused on the analysis
of three important objectives: Energy-efficiency, Robustness and Makespan, and
the relationship among them. We present some analytical formulas to estimate the
ratio/relationship between these parameters. It can be observed that there exist a
clear relationship between robustness and energy-efficiency and a clear trade-off
between robustness/energy-efficiency and makespan. It represents an advance in
the state of the art of production scheduling, so obtaining energy-efficient solutions
also supposes obtaining robust solutions, and viceversa.

1 Introduction

Nowadays, the main objective of many companies and organizations is to improve
profitability and competitiveness. These improvements can be obtained with a good
optimization of resources allocation. But in the last years many companies are not
only facing complex and diverse economic trends of shorter product life cycles, quick
changing science and technology, increasing customer demand diversity, and produc-
tion activities globalization, but also enormous and heavy environmental challenges
of global climate change (e.g. greenhouse effect), rapid exhaustion of various non-
renewable resources (e.g. gas, oil, coal), and decreasing biodiversity.



Scheduling problems are widely discussed in the literature and two main approaches
can be distinguished [2]:

e Classical deterministic methods, which consider that the data are deterministic
and that the machine environment is relatively simple. Some traditional con-
straints are taken into account (precedence constraints, release dates, due dates,
preemption, etc.). The criterion to optimize is often standard (makespan). A
number of methods have been proposed (exact methods, greedy algorithms, ap-
proximate methods, etc.), depending on the difficulty of a particular problem.
These kinds of studies are the most common in the literature devoted to schedul-
ing problems.

e On-line methods. When the algorithm does not have access to all the data from
the outset, the data become available step by step, or “on-line”. Different models
may be considered here. In some studies, the tasks that we have to schedule are
listed, and appear one by one. The aim is to assign them to a resource and to
specify a start time for them. In other studies, the duration of the tasks is not
known in advance.

Flexibility occurs at the boundary between these two approaches: some information
is available concerning the nature of the problem to be solved and concerning the data.
Although this information is imperfect and not wholly reliable, it cannot be totally
ignored. It is well-known that there will be discrepancies, for a number of reasons,
between the initial plan and what is actually realized. Given a set of disruptions that
can occur in unforeseen circumstances, the aim is to propose one or more solutions
that adapt well to disruptions, and then produce reactive decisions in order to ensure a
smooth implementation [2].

The job-shop scheduling problem (JSP) represents a problem where there are some
specific resources or machines which have to be used to carry out some tasks. Many
real life problems can be modeled as a job-shop scheduling problem and can be applied
in some variety of areas, such as production scheduling in the industry, departure and
arrival times of logistic problems, the delivery times of orders in a company, etc.

Most of the solving techniques try to find the optimality of the problem for mini-
mizing the makespan, minimizing tardiness, minimizing flow-time, etc.

Recently some works have focused on minimizing the energy consumption in schedul-
ing problems [19][8], mainly from the Operations Research Community [5], [20]. Fur-
thermore some works have been carried out to obtain robust schedules to absorb inci-
dences in dynamic scheduling [6]. However, no works have related energy-efficiency
with robustness although there exist a clear relationship between them in job-shop
scheduling.

We focus our attention in a job-shop scheduling problem with different speed ma-
chine (JSSM). It represents an extension of the classical job-shop scheduling problem,
where each operation must be executed on a machine at a determined speed (by a clas-
sical deterministic method). If the speed of a machine is high, the energy consumption
increases, but the processing time of the task decreases, meanwhile if the speed is low,
the energy consumption decreases and the processing time increases. Thus, in on-line



scheduling, if disruptions occur, reactive decisions are needed, so machines can accel-
erate the speed to absorb these disruptions and recover the original schedule, obtained
by the classical deterministic method.

To this end, we analyze the relationship between some important parameters in
order to obtain a multi-objective solution. We show that there is a clear tradeoff be-
tween Makespan and Energy consumption; and between Makespan and Robustness.
Therefore there is a close relationship between Energy consumption and Robustness.
However, this close relationship has not being analyzed in the literature and new tech-
niques can be developed to achieve these objectives jointly. Thus, our main goal is to
find a solution that minimizes the energy consumption and the makespan. Furthermore,
we extend this goal to determine the saved time by energy efficiency as a robustness
measure in order to be used if incidences appear. Thus, if a task is delayed, the lost
time can be recovered by increasing the speed of the machine to recover the original
solution.

2 Problem Description

Formally the job-shop scheduling problem with different speed machine (JSSM) can
be defined as follows. We are given a set of n jobs {J1, ..., Jy, }, a set of m resources or
machines { Ry, ..., R, }. Each job J; consists of a sequence of v; tasks (6;1, . .., 0y, ).
Each task 6;; has a single machine requirement Ry, and a start time sty,, to be deter-
mined. Each machine can work with different speeds, so each task is linked up to an
integer duration py,, and an integer energy eg,, used by the corresponding machine.

A feasible schedule is a complete assignment of starting times to tasks that satisfies
the following constraints: (i) the tasks of each job are sequentially scheduled, (ii) each
machine can process at most one task at any time, (iii) no preemption is allowed. The
objective is finding a feasible schedule that minimizes the completion time of all the
tasks and the energy used. The problem is a standard job-shop problem denoted as
J||Cmaq according to classification scheme proposed in [3]. But the association be-
tween duration and energy have been created so the problem JSSM can be denoted as
J(Speed)//Cmax,Energy. For each task, three different speeds have been defined. Each
speed has a duration and an energy consumption. When the working speed increases
the energy also increases but the duration decreases.

3 Energy Efficiency

Nowadays manufacturing enterprisers are not only facing complex and diverse eco-
nomic trends of shorter product life cycles, quick changing science and technology,
increasing customer demand diversity, and production activities globalization, but also
enormous and heavy environmental challenges of global climate change (e.g. green-
house effect), rapid exhaustion of various non-renewable resources (e.g. gas, oil, coal),
and decreasing biodiversity. Statistical data in 2009 shows the Germany industrial sec-
tor was responsible for approximately 47% of the total national electricity consump-
tion, and the corresponding amount of CO2 emissions generated by this electricity



summed up to 18%-20% [4]. Thus, manufacturing companies are responsible for the
environmental outcome and are forced to have manufacturing systems that demonstrate
major potential to reduce environmental impacts [9].

Recently, there has been growing interest in the development of energy savings due
to a sequence of serious environmental impacts and rising energy costs. Research on
minimizing the energy consumption of manufacturing systems has focused on three
perspectives: the machine level, the product level, and the manufacturing system level.
From the machine-level perspective, developing and designing more energy-efficient
machines and equipment to reduce the power and energy demands of machine com-
ponents is an important strategic target for manufacturing companies [18][21]. Unfor-
tunately, previous studies show that the share of energy demand for removal of metal
material compared to the share of energy needed to support various functions of man-
ufacturing systems is quite small (less than 30% of total energy consumption) [7][12].

From the product-level perspective, modeling embodied product energy framework
based on a product design viewpoint for energy reduction approach is beneficial to sup-
port the improvements of product design and operational decisions [23][26]. It requires
strong commercial simulation software to facilitate the analysis and evaluation of the
embodied product energy. The results cannot be applied easily in most manufacturing
companies, especially in small- and medium-size enterprises due to the enormous fi-
nancial investments required. From the manufacturing system-level perspective, thanks
to decision models that support energy savings, it is feasible to achieve a significant
reduction in energy consumption in manufacturing applications. In the specialized
literature about production scheduling, the key production objectives for production
decision models, such as cost, time and quality have been widely discussed. However,
decreasing energy consumption in manufacturing systems through production schedul-
ing has been rather limited. One of the most well-known research works is the work of
Mouzon et al.[20], who developed several algorithms and a multiple-objective mathe-
matical programming model to investigate the problem of scheduling jobs on a single
CNC machine in order to reduce energy consumption and total completion time. They
pointed out that there was a significant amount of energy savings when non-bottleneck
machines were turned off until needed; the relevant share of savings in total energy
consumption could add up to 80%. They also reported that the inter-arrivals would be
forecasted and therefore more energy-efficient dispatching rules could be adopted for
scheduling.

In further research, Mouzon and Yildirim [19] proposed a greedy randomized adap-
tive search algorithm to solve a multi-objective optimization schedule that minimized
the total energy consumption and the total tardiness on a machine. Fang et al. [10]
provided a new mixed-integer linear programming model for scheduling a classical
flow shop that combined the peak total power consumption and the associated carbon
footprint with the makespan. Bruzzone et al. [5] presented an energy-aware scheduling
algorithm based on a mixed-integer programming formulation to realize energy savings
for a given flexible flow shop that was required to keep fixed original job assignment
and sequencing.

Although the majority of the research on production scheduling has not considered
energy-saving strategies completely, the efforts mentioned above provide a starting
point for exploring an energy-aware schedule optimization from the viewpoint of en-



ergy consumption. However no work has been carried out to consider a multi-objective
optimization schedule to minimize the total energy consumption, the makespan and to
maximize the robustness of the schedule.

4 Robustness

Robustness is a common feature in real life problems. Biological life, functional sys-
tems, physical objects, etc, persist if they remain running and maintain their main fea-
tures despite continuous perturbations, changes, incidences or aggressions [24]. Thus,
robustness is a concept related to the persistence of the system, of its structure, of its
functionality, etc., against external interferences: A system is robust, if it persists.

It is really difficult to give a unique definition for robustness, as this concept is dif-
ferently defined in several domains. Furthermore, the definition often remains implicit
in the literature or is determined by the specific target application. Finally, most authors
prefer to use the concept of robust solution (and here, of robust schedule).

The data associated with a scheduling problem are the processing times, occur-
rence dates of some events, some structural features and the costs. None of this data
is free from factors of uncertainty. The duration of tasks depends on the conditions of
their execution, in particular on the necessary human and material resources. They are
thus inherently uncertain, regardless of contingent factors that may impair their exe-
cution. For instance, transportation times for components between separate operations
in a manufacturing system will depend on the characteristics of the transportation re-
sources available. Finally, in a production scheduling, some resources such as versatile
machines require a reconfiguration time between operations. This time depends on the
type of tools needed and the location of these tools in the shop, not to mention the
operator carrying out the reconfiguration [2].

Let us first propose some consensus definition: a schedule is robust if its perfor-
mance is rather insensitive to the data uncertainties. Performance must be understood
here in the broad sense of solution quality for the person in charge; this naturally en-
compasses this solution value relatively to a given criterion, but also the structure itself
of the proposed solution. The robustness of a schedule is a way to characterize its
performance.

In the literature, it is sometimes difficult to separate sensitivity analysis and robust-
ness. In fact the sensitivity analysis tries to answer the what if... questions. It deals with
disturbances more than with general uncertainty: data are fixed but might be disturbed
[2].

In scheduling problems, Robustness can be defined as:

Definition 1: Robustness: is the ability of a solution to maintain its feasibility
when incidences appear during execution in the scheduling problem.

In this paper the robustness of a schedule will be used to answer what if... questions,
mainly related to small disruptions that daily occur in real life scheduling problems. In
this way, the robustness of a schedule can be used to obtain energy-aware schedules that
do not modify the start time of tasks. To this end, the slack between tasks that makes
the schedule robust (to absorb incidences) can be profitable by machines to work at
lower speed and therefore saving energy consumption. However if this slack is needed,



due to a disruption, the involved machine can increase its speed in order to recover
the disrupted time and finalize the task on time. In this way, there exist a relationship
between robustness and energy saving that can be applied to many scheduling contexts.

S5 Modeling and Solving a JSSM

The more natural way to solve the Jop-Shop Scheduling Problem involves all vari-
ables and constraints related to jobs, tasks and machines [11] [13] [22]. However, the
solution obtained is an optimal solution that minimizes the makespan but it does not
guarantee a certain level of robustness. Generally, this solution is not able to absorb
incidences and a delay in a task is propagated along the rest of the schedule.

Several reactive/proactive techniques have been developed in the literature to man-
age incidences in scheduling problems [2]. Thus, computing a new solution from
scratch after each problem change is possible (reactive technique), but it has two im-
portant drawbacks: inefficiency and instability of the successive solutions [25]. Whilst
reactive methods merely deal with the consequences of an unexpected change, taking a
more proactive approach may guarantee a certain level of robustness. We are interested
in this proactive approach so that our goal is searching for a equitable trade-off between
robustness and optimality of a solution.

Robustness (as in section 4) in job-shop scheduling can be obtained through allo-
cating buffer times between tasks in order to absorb small disruptions (task delays, etc.)
that can occur stochastically along the schedule.

In an optimized solution of a JSSM, some natural buffers appear to satisfy the in-
volved constraints (non-overlapping constraints). These buffers give the schedule some
robustness degree. However, if more buffers must be included to make the final solu-
tion more robust, the involved tasks must be moved and the effect must be propagated
to the rest of the schedule.

To add robustness to JSSM solutions, we use the extra speed that machines can
work only in cases where machines are not working at top speed. Several solutions
are obtained with different weights to minimize makespan or energy used. When the
main objective is to minimize the energy used, the solutions are composed of several
tasks that are processed by machines in a low speed. If some incidences appear this
speed can be increased and the solutions remain valid. Following this idea the energy
roominess can be considered as robustness.

5.1 IBMILOG CPLEX CP Optimizer tool

The problem is modeled and solved with IBM ILOG CPLEX CP Optimizer tool (CP
Optimizer). CP Optimizer uses constraint programming technology to solve detailed
scheduling problems and other hard combinatorial optimization problems [15].

CP Optimizer is a commercial solver embedding powerful constraint propagation
techniques and a self-adapting large neighborhood search method dedicated to schedul-
ing [17]. This solver is expected to be very efficient for a variety of scheduling prob-
lems as it is pointed in [14], in particular when the cumulative demand for resources



exceeds their availability as it happens, for example, in the Satellite Control Network
Scheduling Problem confronted in [16].

The problem has been modeled as a typical job-shop scheduling problem. The
extension with different machine speeds has been implemented considering that each
task is executed by a machine and this machine has different optional modes where
each mode represents the duration of the task and an associated consumption energy.

The objective is to find a solution that minimize the multi-objective makespan and
energy consumption. The weight of each objective can be changed by A parameter.
Following the expression (1).

A x Makespan + (1 — A) * EnergyConsumption (1)

Since the values of energy consumption and makespan are not proportional, it is
necessary to normalize both measures (NormEnergy)(NormMakespan). NormEnergy
value is calculated by summing the energy used in the execution of all the tasks, divided
the maximum energy (maxEnergy). maxEnergy is the sum of the energy needed to
execute all task at top speed. The NormMakespan is the makespan divided the sum of
the task durations when the machines are working at the lowest speed (maxMakespan).
The objective function is the expression (2).

A *x NormMakespan + (1 — X\) x NormEnergy 2

Algorithm 1: Model in CP-Optimizer

Data: tasks: Set of tasks; modes: Set of 3 modes for each task;
Result: A solution minimizing the objective function depending of A

Interval itvs := Define interval, one for each task;
Interval modes := Define mode, three for each task;
Sequence mchs := Each itvs with the same machine is linked up;

Minimize((1 — A) * NormEnergy + A x NormM akespan)
Subject to

e noOverlap (mchs)

o endBeforeStart (itvs[j][o], itvs[j][o + 1])

e alternative (itvs[j][o], all(md in modes: if(md.id == itvs.id)))

Algorithm 1 shows a pseudo-code of the model to solve the problem.

Figure 1 shows two different schedules obtained by CP Optimizer for a given in-
stance of the JSSM proposed in [1]. This instance represents a scheduling problem
with 3 machines, 3 jobs, each with 5 tasks and each task has a processing time between
1 and 10 time units when the machine works at full speed. Each task is represented by
a grey rectangle which can be divided in two regions: a solid black grey color repre-
sents the processing time when the machine is working at full speed (mandatory), and
a light grey color with horizontal lines represents the extra processing time if the ma-
chine doesn’t work at full speed (optional). This region represents the used time to save
energy. However this time can also be used to absorb incidences if a disruption occurs



(EEBuffer). Each task is labeled with the number of task, the machine used and the
speed used by the corresponding machine (green:low speed, yellow: medium speed,
red:full speed). Finally the black rectangles represent natural buffer times generated by
the solution. They can also be used to absorb incidences.

Two solutions (schedules) have been obtained for the same instance with different
lambda values (\) between 0.1 and 0.9.

For A = 0.1, the solution X; give more importance (0.9) to energy efficiency and
less importance (0.1) to minimize makespan. It can be observed that the makespan was
54, no tasks was carried out by machines at full speed (red), 2 tasks at medium speed
(yellow) and 13 tasks at low speed (green). It generated an energy consumption of 79
units and it can be observed that all tasks maintain slack to absorb incidences so the
robustness of the schedule is considered high.

For A = 0.9, the solution X, gives more importance (0.9) to minimize makespan
and less importance (0.1) to energy efficiency. It can be observed that the makespan
was 34, and 7 tasks were carried out by machines at full speed (red), 4 tasks at medium
speed (yellow) and 4 tasks at low speed (green). It generated an energy consumption of
112 units and it can be observed that only 8 tasks maintain slack to absorb incidences
so the robustness of the schedule is considered low.

By modifying the value of ), an approximate Pareto front for the bicriteria opti-
mization schedule is generated. It must be taken into account that no single solution
between the X; and X can be said, a priori, to be the best one. Indeed, they are non-
comparable, so choosing a solution from an approximate Pareto front can only be done
by the user, depending on the requirements. This is why we advocate producing, for a
given problem instance, the Pareto front rather than a single solution.

Makepan: 34, Enerey Used: 112

Figure 1: Schedules with different A values



6 Definition of the Benchmark Set

To analyze the relationship among makespan, Energy consumption and robustness,
we have evaluated the behavior on the benchmarks proposed in [1]. According on the
benchmark results (small and large instances) several analytical formulas have been de-
veloped to estimate these parameters. All analyzed instances are characterized by the
number of machines (m), the maximum number of tasks by job (v,,4,) and the range
of processing times (p). The number of jobs (7) is set to 3. A set of instances was gen-
erated by combining values of each parameter: m = 3,5, 7; Ve = 5,7, 10, 20, 25, 30
and p = [1,10], [1, 50], [1, 100], [1, 200]. In these benchmarks, the number of operators
was not considered so that we fixed it to the number of machines. We have modeled
the instances to be solved by the Optimizer.

We have also extended the original instances of Agnetis [1] to add different energy
consumptions (e1, €, €3) to each task according to three processing times (pt1, pte, pts3),
where pt; is equal to the original value of processing time in the Agnetis instances. pt,
and pts were calculated following the expressions (3) and (4), respectively. These
instances can be found in our webpage'.

pta=Maz(mazdur«0.1+pty,Rand(1.25%ptq,2.25%pt1 )) 3)

pts=Maz(mazdurx0.1+pta, Rand(1.25%pt,2.25%pt2)) (@]

The value maxdur represents the maximum duration of a task for the correspond-
ing instance and the expression rand represents a random value between both expres-
sions. Similar expressions were developed to calculate the energy consumption (5, 6,
7).

e1=Rand(pty,3xpt1)) ©)
ea=Max(1,Min(e; —maxdur%0.14,Rand(0.25xe1,0.75%e1)) ©)
es=Maz(1,Min(ez—mazdurx0.14+,Rand(0.25%e2,0.75%e2)) )

Following these expressions the processing times of ptq, pte, pt3 increase as the
energy consumption of eq, ea, e decrease. For example, given an instance with 5 tasks
per job, three triplets are represented for each task: the id of the task, the energy used
and the processing time (< id, e, pt >):

< id,es,pty >, < id,eq,pto >, < id, ey, pt] >

<1,14,14 >, < 1,16,10 >,< 1,19,7 >,

<15,3,6 >,<15,5,4>,<15,6,3 >,

7 Makespan versus Energy Consumption

In this section we analyze the tradeoff between makespan and Energy consumption
in job-shop scheduling problems with different machine speeds. Figure 2 shows an

Thttp://gps.webs.upv.es/jobshop/



approximate Pareto Front for a set of 10 instances with 5 machines, 10 tasks per job
and a maximum processing time of 50 time units. For A = 1, it can be observed that
the average energy consumption was 1311 and the average makespan was minimized
(317). However for A = 0, the average energy consumption was minimized (745) and
the average makespan was maximized (564.4). As we pointed out above, depending
on the user requirements, a value of A must be selected to obtain the desired level of
makespan/energy consumption. Table 1 shows the makespan and energy consumption
for each value of A in different instances. It must be taken into account the relation-
ship/ratio between makespan and energy consumption is similar in all instances, so
that this tradeoff is not dependent on the number of machines, number of tasks per job,
neither the range of processing times.

Instance 5_10_50 (M=5 Vmax=10 Pi [1,50])
1400

1300
1200
1100

1000

Energy Consuption

900
800
700

310 360 410 460 510 560

Makespan

Figure 2: Approximate Pareto Front for the bicriteria Makespan-Energy Consumption.

Table 1: Makespan and Energy Consumption in instances < m, Upaz, D >

5.10_50 7-10_.100 3.20_50 325100 3.30_200
A Mk  Energ. Mk  Energ. Mk  Energ. Mk  Energ. Mk Energ.
0 565.4 745 1088.4 15714 1296 1507.4 3160  3827.1 7289.6 9162.7
0,1 | 5244 745 1004.3 1571.6 1168.7 15074 | 27684  3827.5 | 6600.8 9163.5
0,2 | 5158 747.1 992.1 1574.5 1145.7 1513.7 | 27342  3835.7 | 6513.2 9184
0,3 | 502.6 752.3 970.2 1584.2 1112.6 1527.3 | 2667.1 3866.7 | 6364.8 9258.8
04 | 483.6 764.2 918.3 1616.3 1079 1559.9 2553 3946.1 6158 9386.5

0,5 | 4543 792.1 884.5 1650.3 1011.7 1628.6 | 2421.8 4077 5825 9771.5
0,6 | 410.1 854.1 843.7 1709.8 946.8 1722.5 | 2280.6  4300.6 5452 10239.4
0,7 | 384.7 917.4 768.2 1879.5 854.6 1933.7 | 2056.1 47429 | 49533 11370

0,8 | 343.1 1053 690.1 2147.3 777.8 2216.3 1854.4  5466.1 4530.8 12935.4
0,9 | 3228 1179.1 635.7 2466.4 728.3 2498 1738.4 61649 | 41829 14696.1
1 317 1311.5 625.9 2664.1 707.8 2764.3 1686.1 6667.1 4048.9 16235.5

According to the analyzed instances, the ratio between energy consumption and
makespan can be estimated by using the formula (8):
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Energy(\) 0.2541.2x  Sin(Am) n cos(A)
—— Iy e)heothir
Makespan(\) 2 8

Thus, given a schedule instance with a given makespan and a \ value, we can esti-
mate the energy consumption required to execute this schedule. In the same way, given
a schedule instance with a given energy consumption threshold and a A value, we can
estimate the makespan needed o execute this schedule. This formula can be redefined
by the operator according on the distribution of energy consumption of machines at
different speeds. This formula and further formulas have been empirically obtained by
approximation of all analyzed benchmarks. Firstly, they were approximated by poly-
nomial interpolation and then, they were empirically approximated to a more complex
formula to adjust the behavior in all desired points. Thus, they show that there is a clear
relationship between the involved parameters.

®)

8 Robustness versus Energy Consumption

The main goal of this paper is to show the tradeoff between robustness and energy
consumption. In this way, the advantage could be twofold. By developing new tech-
niques for searching energy efficient schedules also mean searching for robust sched-
ules. Thus, these techniques will generate energy-aware and robust solutions in pro-
duction scheduling, so small disruptions can be repaired by accelerating the needed
machines to recover the original schedule. In this way, no rescheduling is needed and
the user can adjust the parameters to obtained the optimal solution based on the prob-
lem preference.

To carry out this study, we have simulated 100 incidences to each instance in order
to analyze the amount of incidences that can be absorbed by the resultant schedule. An
incidence is a delay to a random task of the schedule. The duration of the incidence
(%incid) was bounded by a 20% of total duration of the involved task. Figure 3 shows
an approximate Pareto Front for a set of 10 instances with 7 machines, 10 tasks per
job and a maximum processing time of 100 time units. It can be observed that as
the robustness increased the energy consumption decreased. This is due to the fact
that more robust solutions allow machines to work at minimum speed, so the energy
consumption decreased, i.e. if all machines work at minimum speed, all tasks have
a slack (time between solving the task at minimum speed minus solving the task at
minimum speed). Thus, if a disruption occurs in a machine m, at speed (s;1) during
the task ¢;, this machine can accelerate its speed to ;2 in this task ¢; in order to finish on
time (before the next task ¢, starts). In this case, we consider the schedule is robust.
If the delay of task ¢; affects to the following task ¢;; 1, the machine m; that works
in this task accelerates its speed in order to finish on-time. Finally, the disruption is
absorbed in some steps. In this case, we consider the schedule is stable due to the fact
that the disruption has been propagated to some other tasks before the original solution
is recovered.

Table 2 shows the energy consumption and robustness in different instances. It
must be taken into account that the robustness maintained the same behaviour in all
instances, so that the robustness is not directly dependent on the number of machines,

11



Instance 7_10_100 (M=7 Vmax=10 Pi [1,100])

2700

2500

2300

2100

1900

Energy Consumption

1700

1500
29,20%  37,90%  49,00%  67,50%  82,60%  89,10%  89,80%  94,80%  9430%  97,10%  96,20%

Robustness

Figure 3: Approximate Pareto Front for the bicriteria Energy Consumption-
Robustness.

Table 2: Energy Consumption and Robustness in instances < m, Vyqz, P >

5.10_50 7-10-100 322050 325100 3.30_200
A Ener. Robust. Ener. Robust. Ener. Robust. Ener. Robust. Ener. Robust.
1 1311.5 26.7% 2664.1 29.2% 2764.3 26.8% 6667.1 27.0% 16235.5 25.6%
0,9 1179.1 37.2% 2466.4 37.9% 2498 36.3% 6164.9 36.8% 14696.1 39.7%
0,8 1053 48.2% 2147.3 49.0% 2216.3 50.6% 5466.1 49.5% 12935.4 48.9%
0,7 917.4 68.1% 1879.5 67.5% 1933.7 66.0% | 47429 67.9% 11370 65.2%
0,6 854.1 79.8% 1709.8 82.6% 1722.5 79.6% | 4300.6 78.9% 10239.4 80.9%
0,5 792.1 86.6% 1650.3 89.1% 1628.6 88.0% 4077 86.3% 9771.5 88.0%
0,4 764.2 91.8% 1616.3 89.8% 1559.9 93.4% 3946.1 94.1% 9386.5 92.7%
0,3 752.3 94.2% 1584.2 94.8% 1527.3 95.3% 3866.7 94.9% 9258.8 95.9%
0,2 747.1 97.0% 1574.5 94.3% 1513.7 96.6% 3835.7 96.0% 9184 96.8%
0,1 745 93.7% 1571.6 97.1% 1507.4 97.3% 3827.5 97.6% 9163.5 96.3%
0 745 97.2% 1571.4 96.2% 1507.4 99.0% 3827.1 98.9% 9162.7 99.2%

number of tasks per job, neither the range of processing times. However in most in-
stances, for A = 0,1 and A = 0 the energy needed is similar, but the robustness is
different (see last two rows in instances 3 — 5 — 10, 3 — 7 — 10 and 5 — 10 — 50).
Thus, given an energy consumption threshold, we can obtain different solutions with
different robustness and makespan level.

The relationship between energy consumption and robustness can be estimated by
using the formula (9):

Energy(\) N ttasks - p/2
Robustness(A, %incid) (6,3 — 62incid) . (8 x Cos(A2) — Sin(Aw) + 11)(9)
This formula is more accurate for A values close to 0 (from 0,6 to 0), due to the fact
that the energy consumption is more considered for these values in the objective func-
tion. Thus given a percentage of robustness for a given incidence duration (%incid)
and a A value of a schedule, we can estimate the energy needed to carry out this sched-
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ule. In the same way, a schedule with a given energy consumption, a A value and a
threshold of the duration of the incidences (%incid), we can estimate the robustness of
this schedule. This formula can be refined by the operator according on the distribution
of energy consumption of machines at different speeds.

9 Makespan versus Robustness

There is a direct relationship between Makespan and Robustness because as makespan
increases, the robustness is bigger due to the fact that the tasks are more sparse in time
and they are able to absorb more incidences. However it is not realistic to generate
too sparse schedules, so generally a makespan bound is set and we try to find the more
robust schedule for a given makespan threshold.

To carry out this study, the simulation carried out in the previous section gave us
the amount of incidences that can be absorb by modifying the energy consumption
threshold. Figure 4 shows an approximate Pareto Front for a set of 10 instances with 7
machines, 10 tasks per job and a maximum processing time of 100 time units. It can be
observed that as the makespan increased the robustness also increased with a trigono-
metrical shape. Table 3 shows the makespan and robustness in different instances. It
must be taken into account that the robustness is quite similar in all instances, so it is
not directly dependent on the number of machines, number of tasks per job, neither
the range of processing times. When the makespan threshold was set to the minimum
possible (to achieve the optimal solution), these solutions were able to absorb an aver-
age of 29% of the incidences (first row of Table 3. This is due to the fact that natural
buffers(Black rectangles in Figure 1) were able to absorb this percentage of incidences.
Finally, when the makespan threshold set to an upper bound (obtained by minimizing
energy consumption), the percentage of absorbed incidences was close to 100%. That
means that the buffers are well distributed among all tasks and almost all disruptions
were able to be absorbed.

Instance 7_10_100 (M=7 Vmax=10 Pi [1,100])

100,00% 5 —

90,00%

80,00%

70,00%

60,00%

Robustness

50,00%
40,00%
30,00%
20,00%

626 636 690 768 844 885 918 970 992 1.004 1.088
Makespan

Figure 4: Approximate Pareto Front for the bicriteria Makespan-Robustness.
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Table 3: Makespan and Robustness in instances < m, Upqq, P >

5.10.50 7.10_100 3.20.50 325100 3.30_200
A Mk Robust. Mk Robust. Mk Robust. Mk Robust. Mk Robust.
1 317 26.7% 625.9 29.2% 707.8 26.8% 1686.1 27.0% | 4048.9 25.6%
0,9 322.8 37.2% 635.7 37.9% 728.3 36.3% 1738.4 36.8% | 41829 39.7%
0,8 343.1 48.2% 690.1 49.0% 777.8 50.6% 1854.4 49.5% | 4530.8 48.9%
0,7 384.7 68.1% 768.2 67.5% 854.6 66.0% 2056.1 67.9% | 4953.3 65.2%
0,6 | 410.1 79.8% 843.7 82.6% 946.8 79.6% 2280.6 78.9% 5452 80.9%
0,5 | 4543 86.6% 884.5 89.1% 1011.7 88.0% 2421.8 86.3% 5825 88.0%
04 | 483.6 91.8% 918.3 89.8% 1079 93.4% 2553 94.1% 6158 92.7%
0,3 502.6 94.2% 970.2 94.8% 1112.6 95.3% 2667.1 94.9% 6364.8 95.9%
0,2 | 5158 97.0% 992.1 94.3% 1145.7 96.6% 2734.2 96.0% 6513.2 96.8%
0,1 524.4 93.7% 1004.3 97.1% 1168.7 97.3% 2768.4 97.6% 6600.8 96.3%
0 565.4 97.2% 1088.4 96.2% 1296 99.0% 3160 98.9% 7289.6 99.2%

The relationship between makespan and robustness can be obtained from the above
formulas (8) and (9) to obtain formula (10):

Makespan(X) N
Robustness(\, %oincid)
N ttasks - p/2
(6,3 — 6%incid) . (8 4 Cos(A2m) — Sin(Ar) + 11) - (e(0:25+1.23) _ Sinlw) y Cos)

(10)

Thus, given a makespan of a schedule with a given A value, and the duration of the

incidence (%incid), we can estimate the robustness of this schedule. In the same way,

given a robustness threshold, the duration of the incidence (%incid) and a A value, we

can estimate the makespan of this schedule. This formula can be refined by the operator
according on the distribution of energy consumption of machines at different speeds.

10 General Analysis

In this section, a general analysis for all instance types was carried out. The main
objective is to analyze the relationship among all relevant parameters around robustness
and energy efficiency for all analyzed instances and different A value (horizontal axe).
Figure 5 shows the results for disruptions of 40% of the maximum processing time
(%incid=40). The main vertical axe represents the robustness. Thus, the blue curve (%
of Absorbed (40%)) represents the percentage of absorbed incidences for each A value.
The yellow curve (%Natural Buff) represents the percentage of incidences absorbed by
a natural buffer. The green curve (%EffEn Buff) represents the percentage incidences
absorbed by accelerating a machine. In this way the robustness is % of Absorbed
(40%)=%Natural Buff+%EffEn Buff.

In the secondary vertical axe, the garnet columns (NbuffEff) represent the aver-
age number of buffers generated by increasing the speed of machines and light blue
columns (NbuffNat) represents the average number of natural buffers.

It can be observed that NbuffNat is mainly constant because they are independent of
the objective (minimize makespan or energy consumption). However the total amount
of time involved in these natural buffers decreased as the value of A increased. This
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Figure 5: General Analysis for disruptions of 40% of maximum processing time (%in-
cid=40).

is due to the fact that as A increased the objective function give more importance to
minimize makespan, so the free slack is also minimized. Thus, the percentage of times
that the incidence is absorbed by a natural buffer (%Natural Buff) also decreased. The
same tendency is carried out by NbuffEff where the number of buffers generated de-
creased as A increased. This is due to the fact that, as \ increases, the objective is
to minimize makespan and more machines are assigned at maximum speed, so few
buffer times can be generated by speeding up the machines. The percentage absorbed
incidences (%EffEn Buff) also decreased as the A increased. However, it can be ob-
served the difference between the percentage of absorbed incidences by the speeding
up the machines (%EffEn Buff) against the percentage of absorbed incidences by natu-
ral buffers (%Natural Buff). Indeed the main objective is represented by the blue curve
(% of Absorbed (40%)) that represents the percentage of absorbed incidences for each
A value. It can be observed that for A = 0 (minimizing energy consumption) almost all
incidences can be absorbed. Thus, energy-aware schedules are also considered robust
solutions that can absorb medium-size incidences.

In Figure 6 we have simulated disruptions of different length, from 10% to 40%
of the maximum processing time (from %indic=10 to %indic=40). The red curve (%
of absorbed (10%)) represents the percentage of absorbed incidences for each \ value.
The green curve (% of absorbed (20%)) represents the percentage of absorbed inci-
dences for each A value. The garnet curve (% of absorbed (30%)) represents the per-
centage of absorbed incidences for each A value. Finally, the grey curve (% of absorbed
(40%)) represents the percentage of absorbed incidences for each A value. It can be ob-
served that all curves maintained the same behavior in all A values and the values are
proportional to the length of the disruptions. This is due to the fact that it is easier to
absorb small incidences that higher, but the difference is not too high. Thus, longer
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Figure 6: Disruptions from 10% to 40% of maximum processing time.

incidences than 40% will maintain the same tendency (proportional to the presented in
Figure 6).

In the secondary vertical axe, the extra energy needed to absorb incidences is rep-
resented for the different length of disruptions (from 10% to 40%). It can be observed
that although % of Absorbed (20%) was able to absorb less disruptions than % of Ab-
sorbed (10%), it needed more extra energy than the other in many cases. It must taken
into account that as the number of absorbed disruptions increased, the extra energy
needed to absorb these disruptions also increased and the magnitude of needed energy
is proportional to the size of the disruption. For instance, for A = 0 (minimizing en-
ergy), the percentage of absorbed disruption of size 40% was around 77%, meanwhile
the percentage of absorbed disruption of size 30% was around 87%. However, the extra
energy needed to absorb these incidences was almost the same in both cases, due to the
fact that larger disruptions generated larger needed of extra energy.

11 Conclusions

Many real life problems can be modeled as a job-shop scheduling problem where ma-
chines can work at different speeds. It represents an extension of the classical job-shop
scheduling problem, where each operation has to be executed by one machine and this
machine has the possibility to work at different speeds. In this paper, we analyze the
relationship among three important objectives that must be taken into consideration:
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Energy-efficiency, Robustness and Makespan. Analytical formulas are presented to
estimated the relationship between these objectives in the analyzed instances. The re-
sults show the tradeoff between makespan and robustness, and the direct relationship
between robustness and energy-efficiency.

To reduce the makespan, the energy consumption has to be increased to process the
tasks faster. When the energy consumption is low, it is due to the fact that the machines
are not working at highest speed so if an incidence occurs, the speed of these machines
can been increased in order to recover the time lost generated by the incidence. So
robustness is directly related with energy consumption. Robustness is also directly
related with makespan because when makespan increases, there are more gaps in the
solution, so sometimes incidences can be absorbed by these natural buffers.

Thus, new techniques can be developed to find robust solutions and at the same
time they are guaranteed to be energy-aware solutions. Thus, in online scheduling,
the obtained robust solution is carried out and only in case of disruptions, the involved
machines are accelerated to absorb the disruptions and the rest of the tasks are executed
in an energy-aware scheduling.

In further works, we will develop new metaheuristic techniques for finding robust
and energy-aware solutions. These problems have multiple objectives so efficient tech-
niques must be developed to obtain optimized solutions in an efficient way.
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