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ABSTRACT 

Optimization of crop nutrition is essential to avoid plant stress and to obtain high 

yields and qualities of horticultural products. In this respect, soilless systems are of 

great interest because they allow the management of the different factors affecting 

plant nutrition, such as nutrient solution composition and concentration or nutrient 

solution temperature. In this thesis, efforts have been done in this direction in order to 

optimize nutrition of rose plants cultivated for cut flower production. This general aim 

has been addressed in three chapters. 

Chapter 3 has the aim of understanding the factors affecting daily water and 

nutrient uptake by rose plants and developing empirical models that could explain it. 

Five models for nutrient uptake (nitrate, phosphate, potassium, calcium and 

magnesium) and one for water uptake were developed with the interest of being 

practical for their application in real conditions. This is due to the fact that the models 

were developed with data of more than a year of cultivation and include the effects of 

some common practices in cut flower production of rose plants such as renewal of old 

bent shoots, the use of shade screen or the synchronization of flower shoot 

development for scheduling purposes. In addition, other independent variables were 

nutrient solution concentration, vapour pressure deficit, radiation integral inside the 

greenhouse, air temperature, nutrient solution temperature, flower shoot production 

or unknown internal factors. Nutrient uptake models also integrated the effect of 

water absorption. 

Chapter 4 has the objective of testing the tolerance of rose plants to low nutrient 

solution temperatures by studying their effect on several physiological parameters. 

Rose plants were tolerant to a nutrient solution temperature of 10 °C during winter by 

means increasing the production of thin roots, nitrate uptake, nitrate reductase acivity, 

photochemical activity and carbohydrates content, and by enhancing the partitioning 

of N and carbohydrates towards the roots. Nevertheless, this response decreased in 

the beginning of spring, maybe because of the interaction between the effect of 

nutrient solution temperature and the improved air climatic conditions. 

Chapter 5 aims at studying the effect of using a lower nutrient solution 

concentration compared to the standard on the subsequent vase life of cut roses. 

Although interesting from an environmental standpoint, a 40% dilution of the nutrient 

solution shortened vase life of rose flowers by one day. This resulted from a higher 

water loss to water uptake ratio during the first day after harvest, which was the main 

factor affecting vase life duration, and from a faster decrease of flower shoot fresh 

weight during postharvest life. The second objective was to apply chlorophyll 

fluorescence imaging to analyze the functioning of the photosynthetic apparatus 
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throughout postharvest life in order to understand the response mechanisms of the 

flower shoot to harvest. One day after harvest, an activation of the photoprotective 

mechanisms in the leaves was observed. These mechanisms began to be less 

operational with the progression of water loss throughout postharvest life and this 

eventually led to a decrease in the fraction of PSII centres that are capable of 

photochemistry. The best chlorophyll fluorescence parameter to describe the changes 

during rose vase life was φNPQ/φNO and the less informative was Fv/Fm. 
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RESUMEN 

La optimización de la nutrición de los cultivos es vital para evitar estreses y obtener 

altos rendimientos y calidades de los productos hortícolas. Los sistemas de cultivo sin 

suelo son interesantes porque permiten el manejo de los diferentes factores que 

afectan a la nutrición vegetal, como la composición y concentración de la solución 

nutritiva o la temperatura de dicha solución. En esta tesis, se ha estudiado el manejo 

de algunos de estos factores con la finalidad de optimizar la nutrición de plantas de 

rosal cultivadas para la producción de flor cortada. Este objetivo general ha sido 

tratado en tres capítulos. 

En el Capítulo 3 se expone el estudio de los factores que afectan a la absorción 

diaria de agua y nutrientes por las plantas de rosal. Cinco modelos de absorción 

mineral (nitratos, fosfatos, potasio, calcio y magnesio) y uno de absorción hídrica 

fueron desarrollados. El interés de estos modelos reside en la posibilidad de su 

aplicación en condiciones reales de producción debido a que fueron desarrollados con 

datos de más de un año de cultivo, y porque incluyen algunas de las prácticas más 

comunes en la producción de rosas para flor cortada como la renovación de tallos 

arqueados, el uso de malla de sombreo o la sincronización del desarrollo de los tallos 

florales para su cosecha en determinadas fechas. Además, otras variables 

independientes incluidas en los modelos fueron la concentración de la solución 

nutritiva, el déficit de presión de vapor, la integral de la radiación dentro del 

invernadero, la temperatura del aire y de la solución, la producción de tallos florales o 

factores internos desconocidos. Los modelos de absorción mineral también integraron 

el efecto de la absorción hídrica.  

El Capítulo 4 tiene como objetivo evaluar la tolerancia o sensibilidad de las plantas 

de rosal a la baja temperatura de la solución nutritiva mediante el estudio de su efecto 

sobre parámetros fisiológicos. Las plantas de rosal fueron tolerantes a 10 °C de 

temperatura de la solución durante el invierno mediante el incremento en la 

producción de raíz fina, absorción de nitrato, actividad nitrato reductasa, actividad 

fotoquímica y contenido en carbohidratos, así como por el aumento de la movilización 

de N y carbohidratos hacia las raíces. Sin embargo, esta respuesta se vio disminuida a 

principios de primavera probablemente por la interacción del efecto de la temperatura 

de la solución con una mejoría en las condiciones climáticas ambientales. 

El Capítulo 5 tiene como objetivo estudiar el efecto de la utilización de una menor 

concentración de la solución nutritiva en comparación con la estándar en la posterior 

vida en vaso de la flor cortada. A pesar del interés desde un punto de vista 

medioambiental, una dilución del 40% de la solución nutritiva acortó la vida en vaso de 

las rosas en un día. Esto fue el resultado de un mayor ratio agua transpirada/agua 
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absorbida durante el primer día después de la cosecha, que fue el factor principal de la 

duración de la vida en vaso, y de un descenso más rápido de peso de los tallos florales 

durante la etapa poscosecha. El segundo objetivo fue aplicar la técnica de la 

fluorescencia de imagen para analizar el funcionamiento del aparato fotosintético a lo 

largo de la vida en vaso, con el objeto de entender los mecanismos de respuesta del 

tallo floral a su corte. Un día después del corte se observó una activación de los 

mecanismos de fotoprotección de las hojas. Estos mecanismos empezaron a ser menos 

operativos a medida que la pérdida de agua de los tallos florales aumentaba durante la 

etapa poscosecha, lo que finalmente resultó en un descenso en la fracción de centros 

del PSII capaces de realizar fotoquímica. El mejor parámetro para describir la evolución 

durante la vida en vaso de los tallos florales fue φNPQ/φNO y el menos informativo fue 

Fv/Fm. 
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RESUM 

L'optimització de la nutrició dels cultius és vital per a evitar l'estrés i obtenir alts 

rendiments i qualitats dels productes hortícoles. Referent a això, els sistemes de cultiu 

sense sòl són interessants perquè permeten el maneig dels diferents factors que 

afecten a la nutrició vegetal, com la composició i concentració de la solució nutritiva o 

la temperatura d'aquesta solució. En aquesta tesi, s'ha estudiat el maneig d'alguns 

d'aquests factors amb la finalitat d'optimitzar la nutrició de plantes de roser cultivades 

per a la producció de flor tallada. Aquest objectiu general ha estat tractat en tres 

capítols.  

En el Capítol 3 s'exposa l'estudi dels factors que afecten a l'absorció diària d'aigua i 

nutrients per les plantes de roser. Cinc models d'absorció mineral (nitrats, fosfats, 

potassi, calci i magnesi) i un d'absorció hídrica van ser desenvolupats. L'interés 

d'aquests models resideix en la possibilitat de la seua aplicació en condicions reals de 

cultiu degut al fet que aquests models van ser desenvolupats amb dades de més d'un 

any de cultiu, i perque inclouen algunes de les pràctiques més comuns en la producció 

de roser per a flor tallada, com la renovació de tiges arquejades, l'ús de malla 

d'ombratge o la sincronització del desenvolupament de les tiges florals per a la seua 

collita en determinades dades. A més, altres variables independents incloses en els 

models van ser la concentració de la solució nutritiva, el dèficit de pressió de vapor, la 

integral de la radiació dintre de l'hivernacle, la temperatura de l'aire, la temperatura 

de la solució, la producció de tiges florals o factors interns desconeguts. Els models 

d'absorció mineral també van integrar l'efecte de l'absorció hídrica.  

El Capítol 4 té com objectiu avaluar la tolerància o sensibilitat de les plantes de 

roser a la baixa temperatura de la solució nutritiva mitjançant l'estudi del seu efecte 

sobre paràmetres fisiològics. Les plantes de roser van ser tolerants a 10 °C de 

temperatura de la solució durant l'hivern, mitjançant l'increment en la producció 

d'arrel fina, absorció de nitrat, activitat nitrat reductasa, activitat fotoquímica i 

contingut en carbohidrats, així com per l'augment de la mobilització de N i 

carbohidrats cap a les arrels. No obstant això, aquesta resposta es va veure disminuïda 

a principis de primavera probablement per la interacció de l’efecte de la temperatura 

de la solució amb una millora de les condicions climàtiques ambientals. 

El Capítol 5 té l'objectiu d'estudiar l'efecte de la utilització d'una menor 

concentració de la solució nutritiva en comparació de l'estàndard en la posterior vida 

en got de la flor tallada. Malgrat l'interés des d'un punt de vista mediambiental, una 

dilució del 40% de la solució nutritiva va acurtar la vida en got de les roses en un dia. 

Això va ser el resultat d'una major ràtio aigua transpirada/aigua absorbida durant el 

primer dia després de la collita, que va ser el factor principal de la durada de la vida en 
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got, i d'un descens més ràpid de pes de les tiges florals durant l'etapa postcollita. El 

segon objectiu va ser aplicar la tècnica de la fluorescència d'imatge per a analitzar el 

funcionament de l'aparell fotosintètic al llarg de la vida en got, per a entendre els 

mecanismes de resposta de la tija floral al seu tall. Un dia després del tall es va 

observar l'activació dels mecanismes de fotoprotecció de les fulles. Aquests 

mecanismes van començar a ser menys operatius a mesura que la pèrdua d'aigua de 

les tiges florals augmentava durant l'etapa postcollita, el que finalment va resultar en 

un descens en la fracció de centres del PSII capaços de realitzar fotoquímica. El millor 

paràmetre per a descriure l'evolució durant la vida en got de les tiges florals va ser 

φNPQ/φNO i el menys informatiu va ser Fv/Fm. 
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ABBREVIATION LIST 

(SOD) Superoxide dismutase 

(POX) Peroxidase 

(APX) Ascorbate peroxidase 

(GR) Glutathione reductase  

(MDAR) Monodehydroascorbate reductase  

(CAT) Catalase  

(WU) Water uptake 

(NU) Nitrate uptake 

(PU) Phosphate uptake  

(KU) Potassium uptake 

(CaU) Calcium uptake 

(MgU) Magnesium uptake 

(NUC) Nitrate uptake concentration 

(PUC) Phosphate uptake concentration 

(KUC) Potassium uptake concentration 

(CaUC) Calcium uptake concentration 

(MgUC) Magnesium uptake concentration 

(NUE) Nitrate use efficiency 

(PUE) Phosphate use efficiency 

(KUE) Potassium use efficiency 

(CaUE) Calcium use efficiency 

(MgUE) Magnesium use efficiency 

(Cp) Phosphate concentration in the nutrient solution  

(CCa) Calcium concentration in the nutrient solution  

(CMg) Magnesium concentration in the nutrient solution  

(PCa) Indicator variable that equals 1 in the period of time between 20/04/05 - 05/08/05 
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(PK) Indicator variable that equals 1 in the period of time between 19/05/05 - 08/07/05 

(PMg) Indicator variable that equals 1 in the period of time between 15/04/05 - 02/06/05 

(PP1) Indicator variable that equals 1 in the period of time between 30/03/05 - 13/05/05 

(PP2) Indicator variable that equals 1 in the period of time between 28/03/06 - 12/04/06 

(PPRUN) Indicator variable accounting for the effect of the pruning practice of old bent shoots. Its 
value equals 1 in the period between 30/08/05 - 29/09/05 

(PP-VB) Indicator variable accounting for effect of the physiological stage of the flower shoot 
between pruning and visible bud stage. Its value equals 1 in the periods 25/11/05 - 
18/01/06 and 10/02/06 - 14/03/06 

(PVB) Indicator variable accounting for effect of the physiological stage of visible bud of the 
flower shoot. Its value equals 1 in the period between 29/12/05 - 26/01/06 and 
28/02/06 - 24/03/06 

(PROD) Flower shoot production calculated as the sum of flower shoots harvested on a specific 
day and the following 6 days 

(Ri) Incident radiation integral inside the greenhouse  

(Ro) Incident radiation integral outside the greenhouse  

(Ta) Air temperature inside the greenhouse  

(Ts) Nutrient solution temperature 

(VPD) Vapour pressure deficit  

(TR/SR) Ratio between thin-white roots and suberized-brown roots  

(Ndf) Nitrogen derived from the fertilizer 

(NR) Nitrate reductase  

(ST) Starch 

(SU) Soluble sugars 

(FSW) Flower shoot fresh weight  

 (CF) Chlorophyll a fluorescence  

(PSII) Photosystem II  

(F0) Minimum fluorescence yield in the dark  

(F0’) Minimum fluorescence yield of the illuminated sample  

(Fm) Maximal fluorescence yield after receiving the saturating pulse of light  
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(Fm’) Maximum fluorescence yield during the actinic illumination  

(Fs) Chlorophyll fluorescence yield during the actinic illumination before the saturating pulse  

(Fv/Fm) Maximum quantum yield of PSII photochemistry 

(φPSII) Actual quantum efficiency of PSII photochemistry 

(qL) Coefficient of photochemical quenching based on the lake model 

(φNPQ) Quantum yield of regulated energy dissipation in PSII 

(φNO) Quantum yield of non-regulated energy dissipation in PSII 
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INTRODUCTION 

General Problem Description 

The achievement of high yields and product qualities is a priority in horticulture. 

However, when any factor affecting plant functions is at non-optimal conditions, plant 

heath may be affected and both yield and qualities may diminish. Optimizing the 

management of greenhouse climate and crop nutrition is, therefore, crucial for 

horticultural production to avoid possible stresses. Regarding crop nutrition, soilless 

systems are interesting because they allow the management of the factors affecting 

plant nutrition. For example, nutrient solution composition and concentration or root 

temperature may be controlled in soilless systems to optimize crop production. 

However, accurate guidelines about optimum and non-optimum levels of these factors 

are still poor and management is often based on grower’s experience. 

Roses are one of the most widely grown and valued of all ornamentals in the 

world. For that reason, it is important to learn how to optimize its nutrition so that 

high yields and qualities may be achieved by rose growers. In this thesis, efforts have 

been made in this direction. In particular, the obtention of the optimum nutrient 

solution composition for rose plants has been aimed through the development of 

empirical models that predict plant demand for nutrients. Moreover, the tolerance to 

low nutrient solution temperatures has been tested, and the effect of the 

concentration of the nutrient solution on vase life (a quality parameter) has been 

evaluated. The objectives of this work are explained below.  

Objectives of the Thesis  

The ultimate goal of this thesis is to optimize nutrition of a soilless rose crop and the 

focus is placed on the study of plant nutrient demand to formulate optimum nutrient 

solutions and on the management of concentration and temperature of the nutrient 

solution. This general aim is divided in the following specific objectives: 

• To understand the factors affecting daily water and nutrient uptake by rose 

plants under commercial conditions 

• To develop empirical models for water and nutrient uptake by rose plants with 

high applicability so that they could be implemented in decision support systems 

• To test the tolerance of rose plants to low nutrient solution temperatures by 

studying their effect on several physiological parameters: 
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o linked to N metabolism (nitrate uptake, partitioning and re-translocation of N 

derived from the fertilizer in the plant, nitrate reductase activity and NH4
+ 

concentration in leaves) 

o associated with C metabolism (photochemical and non-photochemical 

activity, non-structural carbohydrates concentration and partitioning in 

plant tissues) 

• To study the effect of the concentration of nutrient solution used during 

cultivation of a soilless rose crop, on the subsequent vase life of cut roses 

• To find out whether the environment-friendly approach of diluting the nutrient 

solution affects yield and subsequent vase life of roses 

• To apply chlorophyll a fluorescence imaging to analyze how the photosynthetic 

apparatus functions throughout vase life as a basis to better understand the 

response mechanisms of the flower shoot to the stress caused by harvest 

Outline of the Thesis 

The aforesaid objectives are addressed through the following chapters: 

Chapter 2 presents a literature review about the different factors that need to be 

controlled to optimize crop nutrition in soilless culture. It analyzes the optimum levels 

that have been reported for each of these factors and it includes a section about 

formulating optimum nutrient solutions. Moreover, this review focuses in the 

physiological methods that can be used to diagnose plant stress when a given factor is 

at non-optimal conditions. 

Chapter 3 shows the development, by multiple regression, of empirical models for 

nutrient (nitrate, phosphate, potassium, calcium and magnesium) and water uptake of 

greenhouse rose plants. Independent variables used for building the models vary from 

several climatic variables to the concentration of the nutrient solution, flower 

production, some common practices in rose cultivation or unknown internal factors. 

Data obtained along 14 months was used for modeling. A discussion about the 

strengths and weaknesses of the models is included. 

Chapter 4 studies how a low nutrient solution temperature (10 °C) affects rose 

plants in comparison to a level considered as optimum (22 °C). To achieve this aim, 

several physiological functions of the plant are analyzed and, due to the number of 

techniques measured, this chapter has been divided in two. Section 4.1 includes the 

effect on biomass production, nitrate and water uptake, total nitrogen concentration 
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in roots and leaves, nitrate reductase activity, NH4
+ concentration in leaves and 

chlorophyll a fluorescence. Section 4.2 contains the effect on the content, partitioning 

and re-translocation of N derived from the fertilizer in the plant, and on carbohydrates 

content, use and distribution within rose plants. This experiment was carried out along 

two flowering cycles, in winter and beginning of spring. 

Chapter 5 focuses on the effect of the concentration of nutrient solution used for 

the cultivation of rose plants on the subsequent vase life of rose flowers. For this aim, 

two nutrient solution concentrations were used: one is the solution commonly used by 

local growers and the other is a 40% dilution of the former. To find out the 

mechanisms underlying the effect of nutrient solution concentration on flower shoot 

vase life, water balance and chlorophyll a fluorescence were measured during a period 

of 11 days after harvest. This experiment was carried out once in every season. 

Finally, Chapter 6 highlights the conclusions derived from this work and presents 

some suggestions for future research. 
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OPTIMIZATION OF NUTRITION IN SOILLESS SYSTEMS: A REVIEW 

Abstract 

High yields and product qualities of crops grown in soilless systems are only possible if nutrition 
is optimized. This implies the accurate management of all factors involved in crop nutrition: 
nutrient solution composition, water supply, nutrient solution temperature, dissolved oxygen 
concentration, electrical conductivity and pH of the nutrient solution. If any of these factors is 
under non-optimal conditions, plants may suffer from stress leading to a decline of yields and 
product qualities. In order to specify the range of optimal conditions of a particular crop, a 
precise diagnosis of plant stress caused by an incorrect management of any of abovementioned 
factors is needed. This review analyzes, for every factor, the optimum ranges that have been 
reported and the physiological methods that can be used to diagnose plant stress at non-optimal 
conditions. 

Introduction 

Continuous cultivation of crops in soil throughout many decades has resulted in poor 

soil fertility, increase of salinity or infestations by pathogenic organisms. This situation 

has led to poor yields and qualities of crop products. Furthermore, some soils in the 

world are not suitable for plant growth for being poorly textured or shallow, degraded 

due to erosion or too close to metropolitan areas. Whenever soil conditions are 

unfavourable, soilless culture can be a solution.  

Soilless culture is a method of growing plants in any medium different than soil. 

Many crops are grown in soilless systems: fruiting and leaf vegetables (e.g. tomato, 

sweet pepper, lettuce), cut flowers (e.g. rose, chrysanthemum), flowering bulbs (e.g. 

tulips, lily), flowering and foliage potted plants (e.g. cyclamen, ficus), among others 

(Van Os et al., 2008). Over the last decades, the progress of this technique has been 

rapid in many developed countries (e.g. the Netherlands, Japan, USA) linked to 

greenhouse building, automation and computerization development. However, the 

application of soilless culture for crop production is still limited in many countries such 

as the Mediterranean due to their lower technological development in agriculture 

(Olympios, 1999). A crucial factor in the progress of soilless culture is the level of 

technical knowledge of growers.  

The classification of soilless systems proposed by the FAO Report (1990) is still 

widely accepted today. Plants can be grown in soilless culture with or without the use 

of artificial media to provide mechanical support. When no media is used, roots can 

develop in liquid culture (true hydroponics) or in a mist environment (aeroponics). 

These systems are generally closed, where drain is recycled in a closed circuit with 

continuous or intermittent irrigation. When artificial substrate is used, this can be inert 

(e.g. rockwool, vermiculite, perlite) or organic (e.g. peat, cocopeat, bark). Basic 
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requirements for the chosen substrate are: high water and air holding capacity, low 

salinity, high buffer capacity, free from pathogens and undesirable elements, among 

others (Abad et al., 2004). Cultivation in substrate can be done in open and closed 

systems. In open systems, drains are discarded, which may pollute the environment 

and should be avoided. Efforts have been done in several countries to promote the use 

of closed systems. However, closed systems have limited expansion in many countries 

(Olympios, 1999) due to their higher risk for propagation of pathogens, the cost of 

disinfection systems for the nutrient solution, and the difficulty of controlling nutrient 

solution composition because of the different absorption rates of different nutrients 

by plants. 

When comparing soilless versus soil cultures, several benefits appear. Besides the 

advantage mentioned above on the fact that soilless systems can be used in places 

where soil cultivation is unfeasible, there is another benefit of the use of soilless 

systems: the possibility of an exhaustive control of nutrient solution (water and 

nutrient supply, pH, root temperature...) which allows the optimization of crop 

nutrition and the improvement of water and nutrient use efficiency. However, these 

advantages can turn into problems if a good management of the system is not carried 

out. This is due to the lower buffering capacity of soilless systems compared to soil 

systems, which involves that quick decisions should be taken when sudden deviations 

from optimum conditions appear. Therefore, personal in charge of soilless systems 

should be trained in the control of the technique and have some knowledge of plant 

physiology, elementary chemistry and plant nutrition. In addition to that, these 

systems imply a higher initial capital investment to the grower. Hence, when 

cultivating in soilless systems, it is very important to learn how to optimize crop 

nutrition so that advantages greatly exceed disadvantages. A description of the 

advantages and disadvantages in the use of soilless systems is shown by Olympios 

(1999). 

In this review, a study of the most important factors that need to be controlled in 

soilless systems for an optimum management of nutrition is performed. These factors 

are nutrient solution composition and concentration, water supply, nutrient solution 

temperature, dissolved oxygen concentration, electrical conductivity (EC) and pH of 

the nutrient solution. An incorrect management of any of these factors can lead to 

stress in plants. Therefore, a precise detection of stress is essential in research to 

identify inadequate management strategies and to develop recommendations to 

growers about the abovementioned factors with the aim of obtaining the maximum 

yields and qualities of horticultural products. Hence, in this review, a list of the most 

important methods that can be used to diagnose plant stress due to an incorrect 

management of each studied factor is shown, and emphasis is given at why each 

method may be used to detect stress symptoms. Understanding the physiological 
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processes that underlie stress injury is of immense importance for agriculture (Taiz and 

Zeiger, 2002).  

Nutrient solution composition 

Optimization of nutrient solution composition 

It is essential to have a good knowledge of plant mineral requirements in order to 

formulate optimum nutrient solutions. The ideal solution would provide the plant with 

the precise elements for producing the highest yield and/or quality and reduce the 

susceptibility to biotic and abiotic stresses. The way to formulate optimum nutrient 

solutions is discussed below. However, fertilization is often empirically based. 

Commercial greenhouse growers generally use high nutrient concentrations in an 

attempt to maximize crop yield (Rouphael and Colla, 2009), but this relationship is not 

necessarily straightforward. In general, crop yield responds positively to increasing 

concentrations until a level after which further increases often lead to no further 

increases in yield (luxury consumption). When concentrations are too high, yields may 

be even decreased (toxicity) (Salisbury and Ross, 1991).  

Several studies have documented the advantage of using lower concentrations 

than the standard. Locascio et al. (1992) showed that the quality of chipping potatoes 

decreased with excessive potassium. Zheng et al. (2005) and Rouphael et al. (2008) 

proved that nutrient solution concentration used by growers can be reduced by 50% 

without any adverse effect on biomass and quality parameters in geranium and 

gerbera, respectively. Dufour and Guérin (2005) demonstrated that more than 60% of 

the nutrients supplied in the cultivation of Anthurium andreanun were lost in the 

leachate. This results in contamination of groundwater and is no longer permissible. 

Efforts should be made, from an environmental standpoint, in order to find out and 

use the less concentrated but optimum nutrient solution possible.  

High concentrations, though, may be advisable for some crops to achieve high 

quality of the produce. For example, a high proportion of K+ in the nutrient solution 

(14.2 meq L-1 vs 3.4 meq L-1) increased fruit dry matter, total soluble solids content and 

lycopene concentration of tomato (Fanasca et al., 2006). In this thesis (Chapter 5) a 

dilution of the nutrient solution concentration of 40% with respect to the standard 

shortened vase life of rose flowers.  

In addition to optimizing ion concentration, it is crucial to formulate nutrient 

solutions with a balanced relationship among the different ions (Cañamero et al., 

2008). Some ions in excess can cause nutrient deficiencies in plants by interfering with 

the uptake of other ions, which is called ion antagonism. Studies of antagonisms that 



2. Optimization of nutrition in soilless systems: a review 

24 

may occur in soilless culture of horticultural crops have been reviewed by Mengel and 

Kirkby (2001), Pendias (2001) and Hall (2008). The importance of nutrient balance 

highlights the limitation of the current way of nutrient management by monitoring EC 

level, which is unable of distinguishing among different nutrients.  

In order to formulate the optimum nutrient solution for a particular crop it is 

necessary to understand the factors that regulate nutrient absorption by the plant, and 

the first step is measuring plant absorption under different conditions. 

Measurement of plant nutrient uptake 

Plant nutrient uptake can be determined by measuring nutrient depletion in the root 

environment (1) and by quantifying nutrient content in plant tissues (2).  

1) The first method consists of determining the difference in the amount of a certain 

ion in the root environment throughout a given period of time. This difference is 

associated with plant nutrient uptake, which is calculated using equation 1 (Cabrera et 

al., 1995):  

( ) ( )2211 CVCVrateuptakeNutrient ⋅−⋅=   (1) 

In this equation V1 and V2 are the volume (L) of the nutrient solution on time 1 and 2, 

and C1 and C2 are the nutrient concentrations (mmol L-1) on time 1 and 2.  

This method allows a good accuracy of nutrient uptake over time (Kläring, 2001) 

and the results are comparable to those obtained by destructive long-term 15N 

measurements (Barak et al., 1996). However, a correct methodology should be applied 

to avoid errors in the measurements. Obtaining samples from the root environment is 

difficult, and samples of the drainage might not represent the composition of the 

nutrient solution surrounding the roots. In that case, a soilless system with a low 

inertia should be used (e.g. NFT system, aeroponic system). Moreover, the system 

should avoid evaporation so that all volume losses can be attributed to water and 

nutrient uptake. Finally, this method is less accurate when the nutrient solution 

concentration is elevated (Le Bot et al., 1998a; Chapter 3 of this thesis) so diluted 

solutions are, thus, recommended. 

2) The second method is based on measuring nutrient content in plant tissues. Not 

only can this method provide information about plant uptake, but it can also 

differentiate about the allocation of this uptake to different parts of the plant. This 

technique is very useful in crops with a growing period of several months, in which 

nutrient content in their tissues can be easily related to its uptake during a known 

period of time. However, in other crops such as woody plants in which their cultivation 
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lasts several years, the time when the nutrient content measured in plant tissues was 

absorbed is more difficult to be estimated. Redistribution processes among the 

different parts of the plant are common in woody plants. For example, in rose plants, 

endogenous N is redistributed within the plant during each flowering cycle (Cabrera et 

al., 1995). Therefore, in these cases, the measurement of nutrient content in plant 

tissues can be carried out by using isotopically labeled fertilizers and tracing the fate 

and recovery of these nutrients by the crop (Strong, 1995). Nitrogen is the element 

that has been most widely used as labeled 15N for being quantitatively the most 

abundant in plant tissues. It represents about 2% of total plant dry matter and its 

availability is often an important limitation factor for plant growth and yield (Miller and 

Cramer, 2004). 15NO3
- and/or 15NH4

+ fertilizers have been used in several crops (Dong 

et al., 2001; Quiñones et al., 2003; Chapter 4.2 of this thesis). The disadvantage of 

measuring the nutrient content in plant tissues is that it is a destructive technique and, 

in the case of using labelled fertilizers, it is expensive and requires qualified personal. 

Factors that regulate nutrient uptake by the plant. 

There are two theories that explain how plants absorb nutrients. One theory (1) states 

that plant nutrient uptake is proportional to nutrient supply. In that case, the optimum 

solution should equal the amount of nutrients that are found in the tissues of plants 

with the desired productions. The second theory (2) affirms that the plant regulates its 

uptake according to its needs. Hence, the optimum nutrient solution should exactly 

match the demand of the plant. Further details of both theories are explained below. 

1) The first theory assumes that the only factor driving nutrient uptake is nutrient 

supply. This was supported by Bugbee (2003), who recommended adding nutrients to 

the solution depended on what one wanted the plant to absorb. This theory is based in 

the proved fact that nutrients transporters are induced by the concentration of its own 

substrate outside the root (Crawford and Glass, 1998; Glass et al., 2002). Actually, the 

high degree of specificity for individual ions is equivalent to the way enzymes do for a 

specific substrate (Bassirirad, 2000). Because of this analogy, Epstein and Hagen 

suggested in 1952 that carrier-mediated ion transport across the root can be described 

by the Michaelis-Menten kinetics: 

cmK

cV
v

+

⋅
= max    (2) 

where c is the concentration of an individual ion whose uptake rate, ν, is controlled by 

uptake capacity when all available carriers are occupied (Vmax), and by the apparent 

affinity of the transporters (Km). Although this hypothesis has been mainly proved for 

low external ion concentrations (<1 mM), the correlation between ions uptake and 
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external ions concentration also occurs for the high range (>1 mM) (Devienne-Barret et 

al., 2000; Kim et al., 2008). Many authors have adapted Epstein and Hagen’s work 

(1952), to different crops like rose plants (Silberbush and Lieth, 2004; Mattson and 

Lieth, 2007; Kim et al., 2008; Massa et al., 2009) maize (Caassen and Barber, 1976), 

cotton (Brouder and Cassman, 1994) or tomato (Cardenas-Navarro et al., 1999) 

through the development of mathematical models. 

According to this theory, the way to design the optimum solution would be by 

choosing plants having the best productions in terms of quantity and/or quality and/or 

having the highest resistance to stresses, and measuring the nutrient content in their 

tissues throughout the cultivation period. This would result in nutrient absorption 

curves based on which, optimum nutrient solutions may be formulated. Moreover, 

based on this theory, routine analysis of nutrient content in the leaf during the 

cultivation period may be used for corrections of the nutrient solution by comparison 

with the desired concentrations (Thomas, 1937). Several approaches have been 

suggested to diagnose plant nutritional status according to foliar analysis but Diagnosis 

and Recommendation Integrated System (DRIS), which was proposed by Beaufils in 

1973, has been considered the most accurate of all (Rodriguez and Rodriguez, 2000; 

Cañamero et al., 2008). 

The error of this theory is that it assumes that the plant would absorb the same 

amount of nutrients when keeping the same solution composition although other 

factors could change. However, it is well known that plant nutrient uptake changes 

with the season or its developmental stage among others. For example, in rose plants, 

a different pattern of N uptake was observed depending on the developmental stage 

of the flower shoot (Cabrera et al., 1995; Kim et al., 2008; Chapter 3 of this thesis). On 

the other hand, in summer, plant water uptake increases more than mineral 

requirement, and therefore, more diluted solutions are required during this season (Le 

Bot et al., 1998a; Chapter 3 of this thesis). Therefore, this approach alone cannot 

provide optimum nutrient solutions. 

2) The second theory suggests an active role of the plant in nutrient uptake and 

establishes that plants regulate their uptake according to their demand. If that 

statement is true, one would have to predict plants demand to design the optimum 

nutrient solution. So next question would be: what does plants demand depend on? In 

order to answer this question, many authors have developed mechanistic or empirical 

models that try to predict nutrients uptake by different crops from several factors, 

either including or not nutrient solution concentration (Papadopoulos and Liburdi, 

1989; Brun and Chazelle, 1996; Mankin and Finn, 1996; Kläring et al., 1997; Kläring and 

Cierpinski, 1998; Le Bot et al., 1998b; Zerche, 2000; Pardossi et al., 2005). Plant 

nutrient uptake depends on the transport rate of ions across root membrane, and this 



2. Optimization of nutrition in soilless systems: a review 

27 

is determined by the number of transporters in the membrane and the activity of 

those transporters (Smith, 2002). Besides, nutrient uptake needs energy to be carried 

out (Marschner, 1995). Then, any factor that affects directly or indirectly any of those 

parameters will affect nutrients uptake and will be a candidate for the model. The 

most interesting from the perspective of optimizing plant nutrition would be 

developing models that include simple measurable parameters so that they can be 

implemented in decision support systems for the management of nutrient solution in 

soilless culture (Marcelis et al., 1998; Carmassi et al., 2005; Massa et al., 2008). 

Examples of simple measurable parameters that have been related to nutrient uptake 

are water uptake (Del Amor and Marcelis, 2004; Pardossi et al., 2005) and climatic 

factors such as radiation (Brun and Chazelle, 1996; Mankin and Finn, 1996; Cedergreen 

and Madsen, 2003; Pardossi et al., 2005), vapour pressure deficit (VPD) (Kläring et al., 

1997), air temperature (Adams, 1992; Kläring et al., 1997; Pardossi et al., 2005) and 

nutrient solution temperature (Adams, 1992; Brun and Chazelle, 1996; Bassirirad, 

2000; Bougul et al., 2000; Dong et al., 2001).  

Problems may arise when deviations between the output of these models and the 

real demand of the plant appear because of being applied in different conditions, i.e. 

when using different cultivars or when any kind of stress affects the plant (Kläring et 

al., 1997; Grattan and Grieve, 1998). This is due to the fact that there are other 

internal factors that control nutrients uptake (Imsande and Touraine, 1994). For that 

reason, in order to try to reduce over- or underestimation of nutrient uptake models, 

empirical models for rose plants were developed in this thesis (Chapter 3), which 

besides some of the abovementioned variables, they also include the effect of flower 

shoot production and of some common practices that significantly affect nutrients 

uptake. However, there are two additional limitations of this theory. On the one hand, 

as the concentration of the nutrient solution is an important factor that drives plant 

nutrient uptake, different recommendations about the optimum nutrient solution may 

result depending on the concentration used in the experiment. On the other hand, 

sometimes it might not be advisable to use a nutrient solution that exactly matches 

plant demand because the use of high concentrations may lead to a product of higher 

quality (Fanasca et al., 2006). 

Therefore, it may be suggested that the best solution between these theories 

would include a combination of both approaches. 

Diagnosis of plant stress caused by nutrient solution composition 

An inadequate management of nutrient solution composition may be a consequence 

of the use of too high or too low concentration of the nutrient solution, or of 

imbalanced ions composition. The first situation involves a high EC of the nutrient 
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solution and, thus, a salt stress so this will be discussed below. The other two 

situations lead to a similar problem in plants: nutrient deficiency. One is due to 

insufficient supply and the other to ion antagonism, but both cases have similar 

consequences: a decrease of plant growth. A reduction of plant biomass has been 

reported under N, P, K, Ca, Mg, S, Cu, Zn or Mn deficiencies (Yu and Rengel, 1999; 

Fujita et al., 2004; Tewari et al., 2004; Zhao et al., 2005; Matcha, 2007; Ding et al., 

2008). 

It is well known that characteristic visual symptoms of specific nutrient deficiencies 

may appear in plant tissues. However, most of the classic deficiency symptoms 

described in textbooks are characteristic of acute deficiencies, i.e. when a nutrient is 

suddenly no longer available to a rapidly growing plant. In commercial cultivation in 

soilless systems, it is more common to find chronic deficiencies, which occur when 

there is a limited supply of a nutrient, at a rate that is insufficient to meet the growth 

demands of the plant (Berry, 2006). For chronic deficiencies, visual symptoms are not 

that clear so other methods have to be used to diagnose nutrient deficiencies. These 

methods are based on the key roles that nutrients play in plant metabolism, because 

limiting levels of a nutrient affect the metabolic role in which it is involved.  

For example, deficiencies of any of the essential mineral elements may affect 

photosynthesis (Dietz and Harris, 1997). A decrease in the rate of photosynthesis has 

been observed under N deficiency (Ciompi et al., 1996; Lima et al., 2000; Cruz et al., 

2003; Fujita et al., 2004; Huang et al., 2004; Zhao et al., 2005; Matcha, 2007), under P 

deficiency (Lima et al., 2000) or under Mg deficiency (Ding et al., 2008). This has been 

attributed to the lower plant leaf area (Zhao et al., 2005), but also to a decrease of 

chlorophyll content (Cruz et al., 2003; Zhao et al., 2005), a reduced stomatal and/or 

mesophyll conductance (Natr, 1975; Cruz et al., 2003; Zhao et al., 2005) and to direct 

effects on light and dark reactions.  

There are several cases of specific nutrients deficiency affecting photosynthetic 

light reactions. Mineral nutrients influence photosynthetic electron flow either for 

being constituents of the light harvesting complex, or for facilitating electron flow. For 

review about the specific roles of different nutrients in photosynthetic light reactions 

see Dietz and Harris (1997) and Cakmak and Engels (1999). This effect can be assessed 

by the chlorophyll fluorescence (CF) technique. A number of studies have shown that 

CF parameters are good indicators of nutrient deficiency. For example, Jacob (1995) 

stated that in P deficient plants, the ability of photosystem II (PSII) pigments to absorb 

and transfer light energy to the reaction centers is decreased, a phenomenon that is 

accompanied by an increase in non-photochemical quenching and linked to a higher 

dissipation of thermal energy, which is also associated with enhanced formation of the 

xanthophyll pigment zeaxanthin. This is considered a protective response against 
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overexcitation of PSII and destruction of photosynthetic apparatus (Demming-Adams 

and Adams, 1992). Likewise, N deficiency has been associated with a higher dissipation 

of the absorbed light energy and the formation of zeaxanthin, paralleled by a decrease 

in the quantum yield of electron transport that suggests a down-regulation of PSII 

photochemistry (Cakmak and Engels, 1999; Lu and Zhang, 2000; Cruz et al., 2003). This 

may occur in order to match the decreased demand in the Calvin cycle (Lu and Zhang, 

2000) due to low CO2 influx (i.e. closed stomata) or reduced carboxylation efficiency 

(Ciompi et al., 1996; Huang et al., 2004). Photoinhibition has been reported in some 

studies under different nutrient deficiencies (Lima et al., 2000; Huang et al., 2004) 

while it has not observed in others (Sun et al., 1989; Lima et al., 2000; Lu and Zhang, 

2000; Cruz et al., 2003). One of the most useful indicators of N stress in plants is the 

ratio of UV excited blue fluorescence to chlorophyll fluorescence (BF/CF) (Cavender-

Bares and Bazzaz, 2004). An increase in this ratio in stressed plants is due to an 

accumulation of phenolic or flavonoid compounds in leaf epidermis. Also, a dual 

fluorescence emission ratio of red fluorescence to far-red fluorescence excited at 355 

and 532 nm was found to be strongly positively correlated with chlorophyll content, 

which decreases with mineral deficiencies (Cavender-Bares and Bazzaz, 2004). 

Moreover, certain nutrient deficiencies can directly affect the dark reactions 

through non-stomatal factors. For instance, the rate of CO2 fixation shows a strong 

positive correlation with leaf N content because the main portion of the leaf N is in 

RuBisCO, with the reminder is primarily localized within thylakoid proteins and the 

Calvin cycle enzymes (Dietz and Harris, 1997). Additionally, Mg is directly involved in 

the activation of RuBisCO (Dietz and Harris, 1997) and a decrease in the content of 

RuBisCO has been observed observed in S-deprived plants (Lunde et al., 2009). 

Nutrient deficiencies may also affect the fate of the Calvin cycle products. The 

biosynthesis and degradation of starch and sucrose are affected by nutrient 

deficiencies (Cakmak and Engels, 1999; Lunde et al., 2009). Most nutrient limitations 

may result in starch accumulating in plant tissues (Loescher et al., 1990), although an 

increase in the sucrose/starch ratio has been observed in N-stressed sunflower plants 

(Ciompi et al., 1996). Moreover, nutrient deficiencies also affect the synthesis and 

accumulation of amino acid in plant tissues. Under N-limiting conditions, the levels of 

proline, asparagine and glutamine may decrease (Lemaître et al., 2008). In contrast, 

deficiencies of other nutrients different from N may increase amino acids content 

(Black, 1993).  

Nutrient deficiencies also affect photoassimilates partitioning between plant 

organs. It is important to point out that although total dry matter production is 

similarly affected by different nutrient deficiencies, the effects on its partitioning are 

specific of the nutrient involved (Cakmak and Engels, 1999). For example, K and Mg 



2. Optimization of nutrition in soilless systems: a review 

30 

deficiencies influence phloem export of photosynthates (Cakmak and Engels, 1999), 

which results in higher accumulation of sucrose in leaves (Ding et al., 2008) and in 

lower accumulation of photosynthates in the sinks such as cereal grains or roots 

(Cakmak and Engels, 1999). On the other hand, P and N deficiencies stimulate the 

phloem export of photosynthates. This often results in a reduction of leaf area that 

decreases the sink strength of the shoots, leading to a preferential allocation of 

photoshynthates to the roots and to reduced shoot/root ratios (Ciompi et al., 1996; 

Cakmak and Engels, 1999; Fujita et al., 2004; Zhao et al., 2005; Matcha, 2007; Cakmak, 

2008). 

As a consequence of the decreased rate of photosynthesis and reduced ability of 

the plant to deliver photosynthates to the sinks, the number and metabolic activity of 

sink organs is negatively affected by nutrient deficiencies. Moreover, deficiencies of 

mineral nutrients severely limit flower initiation and development, development and 

viability of pollen grains and development of vegetative sink organs such as tubers, 

which eventually affects yield (Cakmak and Engels, 1999).  

Nutrient deficiencies may also cause photooxidative damage, i.e., light-dependent 

generation of reactive oxygen species (ROS) in chloroplasts, which is a key process 

involved in cell damage of plants exposed to environmental stress factors (Cakmak, 

2008). Any factor that reduces the capacity of photosynthetic electron transport, CO2 

fixation and protective mechanisms, combined with high light intensity may induce 

severe photooxidative damage to chloroplasts, and consequently cause further 

decrease in plant yield. For example, it has been proved that deficiencies of N, Mg, K 

and Zn increase the sensitivity of plants to photooxidative damage (Cakmak and 

Engels, 1999; Lu and Zhang, 2000; Cakmak, 2008). This higher susceptibility has been 

associated with the increased accumulation of inactivated PSII reaction centers, the 

decreased capacity of non-photochemical quenching, and the increased fraction of the 

reduction state of the primary quinone acceptor (QA) (Lu and Zhang, 2000). 

ROS react with lipids on the cell membrane to form lipid peroxides such as ethane 

or malondialdehyde (MDA) (Kiyoshi et al., 1999). Enhanced lipid peroxidation, 

accumulation of MDA and hydrogen peroxide (H2O2), and premature senescence of 

older parts implying oxidative stress in plants has been observed in several crops under 

different nutrient deficiencies (Kiyoshi et al., 1999; Lima et al., 2000; Tewari et al., 

2004; Ding et al., 2008). Plants have defense mechanisms to be protected against ROS, 

which include low molecular antioxidants and antioxidant enzymes (Kiyoshi et al., 

1999). Particularly, an increase in the levels of ascorbic acid was observed under N 

deprivation (Kandlbinder et al., 2004), of ascorbate and glutathione under P starvation 

(Kandlbinder et al., 2004), of ascorbate under Mg deficiency (Anza and Riga, 2001) and 

of flavonoids and anthocyanins under S deprivation (Lunde et al., 2009). In addition, 
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stimulation of the activities of antioxidant enzymes such as superoxide dismutase 

(SOD), ascorbate peroxidase (APX) and other peroxidases (POX), glutathione reductase 

(GR), monodehydroascorbate reductase (MDAR), or catalase (CAT) has been observed 

under limiting supply of N (Polesskaya et al. 2004; Tewari et al., 2004), P (Kandlbinder 

et al., 2004; Tewari et al., 2004), K (Tewari et al., 2004), Mg (Anza and Riga, 2001; Ding 

et al., 2008), Ca (Tewari et al., 2004) and S (Kandlbinder et al., 2004; Tewari et al., 

2004; Lunde et al., 2009). However, under N deficiency, a decrease in the activity of 

SOD (Polesskaya et al. 2004), APX (Kandlbinder et al., 2004) and CAT (Kandlbinder et 

al., 2004) have been reported, which may be related to a severe deficiency. 

Micronutrient deficiency (Cu, Zn or Mn) has been also observed to alter the activities 

of SOD depending on the kind and severity of the deficiency stress (Yu and Rengel, 

1999).  

Besides the effect of nutrient deficiency on the activity of antioxidant enzymes, 

there are other enzymes, either with an antioxidant role or not, which may be affected 

if that nutrient is part of the specific enzyme molecule. Therefore, the measurement of 

the activities of these enzymes may be used as indicators of nutrient deficiencies in 

plants (Lavon and Goldschmidt, 1999). For example, POX activity, for which Fe is a 

constituent, has been measured to distinguish iron deficiency from Mn deficiency in 

citrus (Bar Akiva, 1961). Carbonic anhydrase has been employed to identify Zn 

deficiency (Barker and Pilbeam, 2007). Ascorbic acid oxidase or cytochrome oxidase 

activities have been used to identify Cu deficiency (Bar Akiva et al., 1969; Walker and 

Loneragan, 1981). Mo and Fe deficiencies have been associated with low levels of 

nitrate reductase (NR) activity (Shaked and Bar Akiva, 1967; Alcaraz et al., 1986). NR 

activity has been also used for the assessment of N deficiency (Oosterhuis and Batea, 

1983; Tanaka et al., 1987; Hall et al., 1990; Barker and Pilbeam, 2007; Lemaître et al., 

2008), glutamate-oxaloacetate aminotransferase for P deficit and pyruvic kinase for K 

shortage (Lavon and Goldschmidt, 1999). 

In conclusion, diagnosis of nutrient deficiencies can be carried out successfully by 

measuring the activity or resulting products of certain metabolic functions in which the 

limiting element is actively involved. This includes: measurements of biomass 

production and yield, photosynthetic activity, stomatal conductance, chlorophyll 

content, RuBisCO content or activity, CF, the formation of zeaxanthin, carbohydrates 

and amino acid content, sucrose/starch ratio, carbohydrates and dry matter 

partitioning in the plant, shoot/root ratio, lipid peroxidation and ROS species, the 

amount of antioxidant compounds and the activity of several enzymes. 
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Water supply 

Optimization of water supply 

In soilless culture, an accurate and dynamic control of the water supply is needed to 

meet plant water requirements due to the low water-holding capacity of the system 

(De Boodt and Verdonck, 1972). Optimum water supply should fulfill plant demand 

and also prevent salt accumulation in the substrate area surrounding the root. 

However, under conditions of high transpiration (e.g. at midday in summertime), 

supply of water may be often insufficient leading to temporal water stress in the plant. 

In order to avoid it, sometimes too much supply is given. This results in excessive ion 

lixiviation within the root environment and in loss of unabsorbed water, which should 

be avoided from an environmental standpoint because water is a scarce resource. For 

review about the environmental impact of irrigation see Stockle (2001).  

In order to carry out an effective management of irrigation, precise information of 

water status of the group substrate-plant-environment is needed. Different methods 

try to approach this objective through measurements in the plant, in the substrate or 

by means of climatic sensors. An in detail review of these methods is included in 

Medrano (1999). Currently, most soilless systems rely on the measurement of a single 

sensor, normally a radiometer to determine solar radiation or a tensiometer to 

determine substrate water potential. When the level of water potential or cumulated 

radiation reaches a threshold, an irrigation event is activated. A higher level of 

precision, though, may be obtained through the integration of a more complex model 

in the irrigation control system, which estimates water demand according to several 

parameters. Many models have been developed with different levels of complexity 

(Medrano, 1999) but currently, most of them are based on Penman-Monteith 

equation, which include radiation, VPD and leaf area, among other parameters 

(Monteith and Unsworth, 2007). In this thesis (Chapter 3) a model for water uptake in 

a rose crop (cv. Grand Gala) cultivated for cut flower production has also been 

developed. 

Due to water scarcity, new irrigation scheduling approaches designed to ensure 

the optimal use of water have appeared. Deficit irrigation and partial root-zone drying 

are two ways of maximizing water use efficiency for higher yields per unit of irrigation 

water applied. The expectation is that any yield reduction will be insignificant 

compared with water saved (Kirda, 2002). Although certain water stress might be 

suffered by plants irrigated through those strategies, sometimes a mild water stress 

may be advisable for obtaining a high quality of the product. For example, water stress 

conditions significantly affected xylem anatomy and functioning of two Zinnia elegans 

cultivars, which resulted in a longer vase life (Twumasi et al., 2004). Concerning fruit 
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quality, solute accumulation is a recognized physiological response to water stress. 

Moderate water stress late in the season improved kiwi fruit quality in terms of higher 

soluble solids and earlier accumulation of sucrose (Miller et al., 1998). Similarly, water 

stress also improved the quality of ‘Merlot’ grapes and wine (Peterlunger et al., 2005) 

and of wheat kernel (Ozturk and Aydin, 2004). Withholding irrigation water during 

certain periods of time may be a useful management tool to manipulate some quality 

attributes of the produce (Miller et al., 1998), but it is important to study when to 

apply water stress to avoid a significant yield reduction. 

Diagnosis of plant stress caused by water supply 

If water supply is higher that plant demand, salt may lixiviate from the root 

environment possibly leading to nutrient deficiencies if irrigation is excessive. In 

contrast, if water supply is lower than plant demand, plant water status may decrease. 

When water deficit is very limiting, plants wilt and visual symptoms are clear. 

However, water supply can be at suboptimum levels while showing no visual 

symptoms. In that case, several techniques based on the effects of water deficit on 

plant functions can help to evaluate the degree of the stress, which may vary 

depending on the cultivar and on the extent and duration of water deprivation. 

The first process that might be affected by a decrease in plant water content is cell 

expansion (Munns and Tester, 2008). This results in a reduction of leaf expansion and 

root elongation, being leaf expansion a more sensitive process (Ball et al., 1994) which 

leads to a decrease in shoot/root ratio (Fageria et al., 2006). Besides leaf expansion, 

the number and growth rate of branches are reduced and old leaves abscission is 

stimulated. Therefore, whole plant leaf area decreases (Taiz and Zeiger, 2002). 

The decrease in plant water status may be quantified as a decrease (i.e. more 

negative) of water potential (Verslues et al., 2006). Leaf water potential has been 

measured as an indicator of crop water status (Clark and Hiler, 1973; Chelab et al., 

2009). In contrast, stem water potential has appeared as a better indicator of vine 

water status (Choné et al., 2001). For review about the measurement of water 

potential see Taiz and Zeiger (2006). Relative water content has been also used as a 

measure of plant water status. Plants can actively modify its water potential through 

osmotic adjustment, by which a reduction of osmotic potential may be achieved by 

increasing the cell concentration of a variety of common solutes (Taiz and Zeiger, 

2002). Through osmotic adjustment, leaves may maintain turgor during certain time 

under water stress. This increases the lifetime of active tissues and extends the period 

of tissue preparation for drought (drought hardening) (Pugnaire et al., 1999). Under 

water stress conditions, high amounts of sugars like sorbitol, manitol, glucose or 

sucrose (Fredeen et al., 1991; Kameli and Losel, 1993; Wang et al., 1995; Arji and 



2. Optimization of nutrition in soilless systems: a review 

34 

Arzani, 2008; Chelab et al., 2009) and high levels of proline (Prasad et al., 1982; Kameli 

and Losel, 1993; Ramachandra Reddy et al., 2004; Arji and Arzani, 2008) have been 

measured in several crops a result of osmotic adjustment. The majority of drought-

tolerant species have the ability to build up a high content of sugars in dry habitats, 

whereas drought-sensitive species accumulate far less. Several genes coding for 

enzymes associated with osmotic adjustment are up-regulated or down-regulated by 

water stress (Taiz and Zeiger, 2002). In addition, the expression of genes that encode 

proteins associated with membrane transport including H+-ATPases and aquaporins 

are sensitive to water stress (Taiz and Zeiger, 2002; Galmés et al., 2007). 

In order to prevent water loss, stomata can actively close when leaves and roots 

are dehydrating. This is triggered by ABA, which accumulates in stressed tissues (Jiang 

and Zhang, 2002; Taiz and Zeiger, 2002; Ramachandra Reddy et al., 2004). Stomatal 

closure reduces CO2 intake and, thereby decreases net photosynthesis (Dejong and 

Phillips, 1982; Huber et al., 1984; Dubey, 1997; Tezara et al., 2008). In any case, the 

photosynthetic rate per unit leaf area is affected by water deficit in a lesser extent 

than leaf area (Taiz and Zeiger, 2002). In order to be adjusted to the reduced CO2 

assimilation, electron transport rate and photochemical quenching have to be down-

regulated (Chaves et al., 2002; Tezara et al., 2008). As a result, a great proportion of 

incoming light energy is dissipated as heat and non-photochemical quenching 

increases (Cavender-Bares and Bazzaz, 2004; Calatayud et al., 2006; Tezara et al., 

2008). Moderate stress does not induce a decrease in the PSII primary photochemistry 

as judged by the unchanged Fv/Fm in several crops (Fracheboud and Leipner, 2003; 

Calatayud et al., 2006; Tezara et al., 2008). In contrast, the steady-state parameter Fs 

appears useful in detecting water stress in plants. In well-watered plants, Fs increases 

with light intensity, but as water stress progresses it decreases with increasing light 

intensity (Flexas et al., 2000). Fs/F0 is also an indicator of declining stomatal 

conductance, CO2 assimilation, and generation of non-photochemical quenching 

during water stress (Flexas et al., 2002). 

Under severe water deficit, photosynthetic activity may be affected by non-

stomatal factors due to a strong dehydration of mesophyll cells (Fracheboud and 

Leipner, 2003). Decreased activity of many enzymes of the Calvin Cycle has been 

reported (Pugnaire et al., 1999), e.g. a strong decrease in RuBisCO activity in sunflower 

(Pankovic et al., 1999). This effect may be reversible if water stress is not too severe 

(Pugnaire et al., 1999). In addition, water stress may lead to ultrastructural changes in 

chloroplasts (Ackerson and Herbert, 1981; Dubey, 1997), which ultimately impair 

photosynthesis (Dubey, 1997). Concerning the light reactions, although leaf PSII 

photochemistry has been proved to be very resistant to water-stress conditions (Flexas 

et al., 2009), it may be completely lost if the stress is severe (Cavender-Bares and 

Bazzaz, 2004). In rose plants under severe water deficit, energy dissipation by non-



2. Optimization of nutrition in soilless systems: a review 

35 

photochemical quenching, electron transport rate and the fraction of the oxidized 

state of QA decreased, while non-regulated energy dissipation increased (Calatayud et 

al., 2006) allowing, hence, a higher ROS production. It has been suggested that the 

weak tolerance of PSII photochemical capacity to severe water stress in desiccation-

sensitive plants is related oxidative stress (Cavender-Bares and Bazzaz, 2004; Flexas et 

al., 2006). Down-regulation of PSII photochemistry is, hence, needed to prevent the 

generation of ROS within the chloroplast (Navari-Izzo and Rascio, 1999). 

Accumulation of ROS or lipid peroxidation has been measured in several crops 

subjected to water stress (Sairam et al., 1998, Jiang and Zhang, 2002; Esfandiari et al., 

2007). Crop species that are tolerant to water stress show reduced membrane damage 

due to increased synthesis of free radical scavengers (Dubey, 1997). An enhanced 

activity of GR, CAT, APX, SOD or MDAR (Sairam et al., 1998; Jiang and Zhang, 2002; 

Ramachandra Reddy et al., 2004; Esfandiari et al., 2007) and an increase in the content 

of antioxidant compounds such as ascorbic acid (Sairam et al., 1998, Ramachandra 

Reddy et al., 2004) have been measured in different crops under water stress. For 

review about oxidative stress under water deficit see Navari-Izzo and Rascio (1999). 

Translocation of photosyntates may be unaffected until water deficit becomes 

severe. This relative insensitivity of translocation to mild water stress allows plants to 

mobilize and use reserves where they are needed (Taiz and Zeiger, 2002). Export of 

assimilates is less affected by water stress than carbon exchange rates (Huber et al., 

1984). The decrease in the export of assimilates, which leads to the accumulation of 

carbohydrates in the leaves (Pugnaire et al., 1999), may be due to the dependence of 

phloem transport on turgor pressure (Taiz and Zeiger, 2002) and might depend on 

plant acclimation to water stress. For example, drought-adapted cotton plants 

exported sucrose whereas non-adapted plants accumulated sucrose at the same leaf 

water potential (Ackerson, 1981).  

In addition to what has been said, water stress induces other responses in plants. 

The decreased transpiration rate under water deficit causes an increase in leaf 

temperature, which may lead to heat damage under hot conditions. A decrease of 

respiration has been measured in beans and peppers (González-Meler et al., 1997) and 

a decrease in ATP production was measured in sunflower (Tezara et al., 2008) and 

soybean (Ribas-Carbo et al., 2005). Water deficit has an important indirect effect on 

nutrient uptake, which may be as important as its effect on growth (Pugnaire et al., 

1999). Maybe because of that, N content in the plant is reduced under water deficit 

(Dejong and Phillips, 1982; Mahieu et al., 2009) and the activity of NR is also depressed 

(Pugnaire et al., 1999; Correia et al., 2005; Fresneau et al., 2007). Finally, besides the 

reduction of yield due to reduced cell expansion and decreased export of assimilates 
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towards grains or fruits, water stress may also affect yield production by delaying 

flowering, leading to male sterility and reducing grain set (Acquaah, 2007). 

In conclusion, diagnosis of water stress in plants can be assessed by different 

techniques that measure plant processes affected by the loss of turgor. Measurements 

of plant water potential or relative water content can be performed as indicators of 

plant water status. Measurements of biomass production and yield, leaf area, water 

uptake, photosynthetic activity, stomatal conductance, ABA accumulation, CF, RuBisCO 

activity, osmotic adjustment, carbohydrates content and partitioning in the plant, 

accumulations of several compounds in the leaves for osmotic adjustment (sugars, 

amino acids…), lipid peroxidation and ROS species, the amount of antioxidant 

compounds, the activity of antioxidant enzymes, the activity of NR, leaf temperature, 

nutrient uptake, N content, respiration or the expression of genes coding for H+-

ATPases and aquaporins may give clues to determine the severity of water stress in the 

plant. 

Electrical conductivity and pH of the nutrient solution 

Control of electrical conductivity and pH in the nutrient solution 

EC is an index of salt concentration that informs about the total amount of salts in a 

solution. Hence, EC of the nutrient solution is a good indicator of the amount of 

fertilizer available to the plants in the root zone (Nemali and Iersel, 2004). When plants 

absorb nutrients and water from the solution, the total salt concentration, i.e. the EC 

of the solution changes, and measurements of EC level are easy, fast and economic so 

they can be carried out daily by growers. For that reason, fertirrigation management is 

currently based on the control of EC and pH in order to correct a pre-set nutrient 

solution prepared according to previous experience. This is a practical method but it is 

important to notice that EC does not inform about the concentration of specific ions in 

the solution so this way of managing nutrient solution may lead to nutrient 

imbalances. 

The ideal EC range for soilless crops is between 1.5 and 2.5 dS/m. However, the 

effect of salinity on crops is specific on the specie and cultivar (Greenway and Munns, 

1980). In general, EC>2.5 dS/m may lead to salinity problems while EC<1.5 dS/m may 

lead to nutrient deficiencies. In greenhouse culture, the high input of fertilizers is the 

main cause of the salinity problems (Li, 2000). In addition, a high EC may also be 

caused by the presence of specific ions such as Na+ and Cl- in the solution. In order to 

avoid salinity problems, growers add fresh water to reduce EC. However, in some 

regions there is the added problem of having irrigation water of bad quality, i.e. with 

high content of Na+ and/or Cl-. In that case, the addition of fresh water to the nutrient 
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solution would not alleviate the problem of salinity and the use of cultivars with 

salinity tolerance may be the solution.  

In some cases, though, it may be advisable to use a high EC to improve the quality 

of the produce. For example, the quality of flavoring and health-promoting compounds 

in hydroponically grown tomatoes improves with increasing electrical conductivity in 

the nutrient solution (De Pascale et al., 2003; Krauss et al., 2007). 

On the other hand, pH is a measure of the acidity or basicity of a solution and 

determines the availability of essential elements for plants. The pH is an essential 

parameter to control in soil and soilless system, but in the second one its correction 

should be done daily due to the lower buffering capacity of soilless systems 

(Urrestarazu, 2004). In fertirrigation, pH should be such that does not damage plant 

roots and allows that all essential nutrients are solved in the nutrient solution to 

prevent the formation of precipitates that block the irrigation systems and decrease 

nutrients availability by plants. The optimum nutrient solution pH depends on the 

plant but, in general, it ranges between 5.5 and 6.5, in which the maximum number of 

elements is at their highest availability for plants (Taiz and Zeiger, 2002). Chemical 

buffers can adjust the pH of a nutrient solution if it strays outside the ideal. The pH can 

be lowered by adding dilute concentrations of phosphoric or nitric acids and raised by 

adding a dilute concentration of potassium hydroxide. The incorporation of 

ammonium in the nutrient solution as another source of N (5-10%) may be also used to 

regulate pH. For review about of the management of pH in soilless systems see 

Urrestarazu (2004). 

Diagnosis of plant stress caused by electrical conductivity and pH in the 

nutrient solution 

The use of solutions with too low EC and the incorrect management of pH may lead to 

nutrient deficiencies, which have been reviewed above. In this section, we will discuss 

about how to detect salinity stress in plants. Depending on whether high EC is due to 

the use of highly concentrated solutions or to the use of water with high levels of Na+ 

and Cl-, the responses of plants are two-fold. First, the presence of high levels of salts 

in the solution reduces the ability of the plant to take up water, which is referred to as 

the osmotic or water-deficit effect of salinity. Second, if excessive amounts of injurious 

ions (e.g. Na+ or Cl-) enter the plant in the transpiration stream there may be injury to 

cells in the transpiring leaves, which is called the salt-specific or ion-excess effect of 

salinity (Greenway and Munns, 1980). 

The osmotic effect of salinity induces metabolic changes in the plant identical to 

those caused by water stress (Munns, 2002). Specifically, the following effects have 
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been observed in different crops under salinity stress: a decrease of biomass 

production and growth (Soussi et al., 1998; Shani and Ben-Gal, 2005; Zhao et al., 2007; 

Giuffrida et al., 2008; Tavakkoli et al., 2008; Zribi et al., 2009); a decrease of leaf area 

(Terry et al., 1983; Taiz and Zeiger, 2002; Netondo et al., 2004; Zhao et al., 2007; 

Giuffrida et al., 2008); an increase of leaf abscission (Taiz and Zeiger, 2002); a decrease 

of root growth (Rodríguez et al., 1997) but to a lesser extent than the reduction in leaf 

growth (Munns, 2002); a lower shoot/root ratio (Meloni et al., 2004; Houlimi et al., 

2008); a reduction in stomatal conductance (Terry et al., 1983; Sultana et al., 1999; 

Netondo et al., 2004; Zribi et al., 2009); an accumulation of ABA (He and Cramer, 

1996); a decrease in CO2 assimilation (Netondo et al., 2004; Maricle et al., 2007), being 

the effect in photosynthetic rate less important than the effect in leaf enlargement 

(Terry et al., 1983); a decrease of water uptake (Giuffrida et al., 2008); a decrease in 

water potential (De Pascale et al., 2003; Zribi et al., 2009); a decrease in relative water 

content (Meloni et al., 2004); an increase in osmotic adjustment (Taiz and Zeiger, 2002; 

De Pascale et al., 2003) due to accumulation of glycine betaine (Agastian et al., 2000; 

Meloni et al., 2004), proline (Mattioni et al., 1997; Soussi et al., 1998; Agastian et al., 

2000) or sugars (Soussi et al., 1998, Agastian et al., 2000) among other compounds; 

down-regulation of photosynthetic electron transport (Netondo et al., 2004); a relative 

resistance of PSII primary photochemistry (Maricle et al., 2007; Zribi et al., 2009); an 

increased production of ROS (Cakmak, 2008); a stimulation of antioxidant enzymes 

such as SOD, APX, MDAR, CAT or GR (Tanaka et al., 1999; Hernández et al., 2000; 

Esfandari et al., 2007); a higher synthesis of antioxidant compounds like glutathione, 

carotenoids and lycopene (Ruiz and Blumwald, 2002; De Pascale et al., 2003); a 

decrease in RuBisCO activity (Miteva et al., 1992); a change in the ultrastructure of 

chloroplasts similar to that caused by water stress (Dubey, 1997); a lower translocation 

of photosynthates leading to an accumulation of carbohydrates in the 

photosynthesizing leaves (Dubey, 1997); an increase of leaf temperature (Kluitenberg 

and Biggar, 1992); a decrease of nutrient uptake (Dubey, 1997) and N content (Meloni 

et al., 2004); a decreased ATP synthesis (Dubey, 1997); a decrease of NR activity 

(Meloni et al., 2004); a reduced viability of reproductive organs (Munns, 2002); and, 

finally, a change in gene expression, similar to that caused by water stress (Taiz and 

Zeiger, 2002). Therefore, the same methods can be used for diagnosis of any osmotic 

effect, either caused by water or by salinity stress. 

On the other hand, salt-specific effects may result in toxicity, deficiency, or 

changes in mineral balance. Firstly, plant deficiency of several nutrients and nutritional 

imbalance (i.e., extreme ratios of Na+/Ca2+, Na+/K+, Ca2+/Mg2+, and Cl-/NO3
- in plant 

tissues) may be caused by the higher concentration of Na+ and Cl- in the nutrient 

solution derived from ion antagonism (Grattan and Grieve, 1998). For example, Ca2+ 

and K+ deficiency have been observed under salt stress, which affects membrane 
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integrity (Cramer et al., 1985) and root growth (Munns, 2002). Secondly, toxicity in 

plant cells may appear as a consequence of Na+ and/or Cl- accumulating in transpiring 

leaves. Plants are capable of compartmentalizing these ions in the vacuole up to a 

certain extent, but if the limit is exceeded, ions build up in the cytoplasm and inhibit 

enzyme activity, or they build up in the cell walls and dehydrate the cell, eventually 

causing cell death (Munns, 2002). The salt-specific effects of salinity depend on the 

concentration of salts, the duration of salinity exposure as well as on the plant species. 

Salt tolerant plants differ from salt-sensitive ones in having a low rate of Na+ and Cl- 

transport to leaves, and in the ability to compartmentalize these ions in vacuoles to 

prevent their build-up in cytoplasm or cell walls and, thus, avoid salt toxicity (Munns, 

2002). Therefore, the resistance of salt-tolerant plants to salts is not consequence of 

salt-resistant metabolism but of strategies that avoid salt injury (Taiz and Zeiger, 2002). 

The toxicity effects of salts have metabolic consequences. Photosynthesis may be 

inhibited when high concentrations of Na+ and/or Cl- accumulate in chloroplasts (Plaut 

et al., 1989; Taiz and Zeiger, 2002). For example, alterations in the photochemical 

activity have been observed under salinity in salt sensitive crop species (Dubey, 1997; 

Muranaka et al., 2002). Accumulation of injurious ions in the cytoplasm inactivates 

enzymes, inhibit protein synthesis and damage chloroplasts and other cell organelles 

(Taiz and Zeiger, 2002). These effects are more important in older leaves as they have 

been transpiring the longest so they accumulate more ions (Munns, 2002). This results 

in a progressive loss of the older leaves with time and reduces the photosynthetic leaf 

area of the plant to a level that cannot sustain growth. The rate at which leaves die 

becomes the crucial issue determining the survival of the plant (Munns, 2002). For 

example, vine mortality has been correlated with the increase in Na+ and Cl- content of 

leaves (Shani and Ben-Gal, 2005). 

Plant growth might be, hence, reduced by both the osmotic and the salt-specific 

effect of salinity, being sometimes difficult to determine which of the effects is the 

responsible for growth reduction. For that reason, Munns et al. (1995) proposed a two-

phase model of salt injury, where growth is initially reduced by osmotic stress and then 

by salt toxicity. According to these authors, the effect of salinity takes some time to 

develop and may become obvious over weeks, especially in the more sensitive species 

(Munns, 2002). This model has been proved in broccoli under salinity stress (López-

Berenguer et al., 2006). However, it is difficult to assess with confidence the relative 

importance of the two mechanisms on yield reduction because they overlap (Tavakkoli 

et al., 2008). In brief, diagnosis of salinity stress in plants can be evaluated by the same 

techniques used for water stress in addition to the measurement of the concentration 

of Na+ and Cl- content in leaves. Special attention should be placed in the old leaves as 

they are the target of salt injury.  
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Dissolved oxygen concentration in the nutrient solution 

Optimization of oxygen concentration in the nutrient solution 

Oxygen is essential for roots functioning so its deficiency is an important concern. 

Problems with oxygen supply may periodically appear in soil conditions after rain 

showers. Also, in soilless systems, water and nutrients are supplied continuously and 

these wet conditions limit the diffusion of oxygen to the root system (Veen, 1988). An 

inadequate management of irrigation may lead to temporal hypoxia conditions 

(insufficient supply of oxygen) caused by inadequate aeration in some parts of the root 

system (Morard and Silvestre, 1996). In contrast, anoxia (complete lack of oxygen) is 

rare in soilless culture (Morard and Silvestre, 1996; Kläring and Zude, 2009). Oxygen 

deprivation stress in plants is distinguished by three physiologically different states: 

transient hypoxia, possible anoxia and reoxigenation (Blokhina et al., 2002). 

In order to avoid oxygen deficiency in the root environment, it is essential to 

provide the nutrient solution with enough O2. Possibilities for accurate control of root 

oxygen supply are more easily achieved in soilless cultures than in soils systems 

(Olympios, 1999). The best system regarding oxygenation of the root environment is 

the aeroponic system, which allows the roots to grow in air with a plentiful supply of 

oxygen so no extra mechanism is needed. In liquid systems, aeration might be needed 

by means of pumps if the solution culture is static. However, in continuous flow 

solution culture like the nutrient film technique, there is an abundant supply of oxygen 

to the roots of the plants if the system is well designed. In substrate systems, it is 

essential to choose a substrate that has a correct distribution of particle size, a low 

bulk density, a high porosity and a stable structure so that the supply of air to the roots 

is sufficient (Abad et al., 2004). If more aeration was needed, Urrestarazu and Mazuela 

(2005) have observed that the addition of potassium peroxide as chemical oxygenation 

improves water uptake and yield of different vegetables as sweet pepper, melon and 

cucumber. Also, the application of exogenous nitrate to plants under oxygen 

deprivation has been observed to improve their survival through the mechanism of 

‘nitrate respiration’ (see below) (Morard et al. 2004).  

In addition to the capacity of the system to provide the roots with enough 

aeration, the availability of oxygen in the root environment also depends on O2 

consumption by roots and microorganisms (Naasz et al., 2008). O2 consumption 

increases with increasing nutrient solution temperature, root weight and 

photosynthates concentration in the roots, which leads to an increase in the relative 

CO2 concentration in the root environment if root aeration is not adequate. The 

increased CO2 concentration leads to an increase of anaerobic respiration which 
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continues releasing CO2. Therefore, oxygen depletion is linked to the increase in the 

relative CO2 concentration in the root environment (Morard and Silvestre, 1996). 

Diagnosis of plant stress caused by dissolved oxygen concentration. 

An insufficient supply of oxygen to the root has a negative effect in a number of 

metabolic processes, and its symptoms become visible, i.e. plants become wilted and 

defoliated (Morard and Silvestre, 1996), when plants are irreversibly damaged (Kläring 

and Zude, 2009). Growth may be decreased and sometimes impaired under oxygen 

deficiency (Wagner and Dreyer, 1997; Incrocci et al., 2000; Taiz and Zeiger, 2002; 

Kogawara et al., 2006; Parelle et al., 2006). Leaf growth is restricted (Pezeshki et al., 

1996; Incrocci et al., 2000) and older leaves senesce prematurely because of 

reallocation of phloem mobile nutrients to younger leaves (Taiz and Zeiger, 2002), so 

an important reduction in plant leaf area occurs in the plant. Root growth is limited 

(Pezeshki et al., 1996; Mielke et al., 2003; Smethurst et al., 2005) even more than 

shoot growth (Smethurst and Shabala, 2003), which increases the shoot/root ratio 

(Kläring and Zude, 2009). Therefore, it is very important to detect the stress caused by 

hypoxia in time to prevent further yield reductions or even plant death (Kläring and 

Zude, 2009). The effect of oxygen deficiency and subsequent recovery in plant tissues 

depends on the duration and severity of oxygen deprivation, on the tolerance of the 

species or cultivars to oxygen deficiency, on the age and developmental stage of the 

plant, on the type of tissue and also on the light level and ambient temperature 

(Morard et al., 2000; Bragina et al., 2001; Blokhina et al., 2002; Fukao and Bailey-

Serres, 2004; Smethurst et al., 2005; Kläring and Zude, 2009). Therefore, varied and 

sometimes contradictory plant responses have been recorded in literature. 

The most immediate effect of the decline of oxygen concentration in the root 

environment is that root aerobic respiration is seriously restricted (Taiz and Zeiger, 

2002; Islam and Macdonald, 2004). Pyruvate, the product of glycolysis, is then 

transformed to lactate, malic acid or mainly ethanol, which represent the main 

fermentation pathways in plants (Saenger, 2002; Sousa and Sodek, 2002). 

Fermentation involves a severe reduction of ATP synthesis that affects plant cell 

metabolism (Morard and Silvestre, 1996; Bertrand et al., 2003). It also leads to the 

accumulation of toxic compounds like ethanol or acetaldehyde (Morard and Silvestre, 

1996; Schmull and Thomas, 2004; Kläring and Zude, 2009), but normally to levels that 

do not injure plant tissues (Lambers et al., 2008). Fermentation causes cytoplasm 

acidosis which decreases the activity of many enzymes, a possible cause of cell death 

(Vartapetian and Jackson, 1997). Despite its negative consequences, fermentation 

seems to ensure root survival under anaerobic conditions and it is very important for 

stress tolerance (Blokhina et al., 2002; Taiz and Zeiger, 2002; Fukao and Bailey-Serres, 

2004). The early induction of the ethanolic fermentation pathway and sugar utilization 
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under hypoxia allows the maintenance of the energy status and, hence, improves 

anoxia tolerance (Blokhina et al., 2002). Acclimation to anaerobic conditions enhances 

the expression of genes that encode many of the anaerobic stress proteins, which are 

mainly related to enzymes of the glycolytic and fermentation pathways (Blokhina et al., 

2002; Taiz and Zeiger, 2002; Lambers et al., 2008). A high activity the fermentative 

enzyme alcohol dehydrogenase (ADH) has been measured in many plants, whether 

tolerant to hypoxia or not (Pezeshki et al., 1996; Weng and Chang, 2004; Kogawara et 

al., 2006) and it is considered an indicator of hypoxia in plants (Kogawara et al., 2006). 

The activity of enzyme sucrose synthase is also promoted under hypoxia with the aim 

of sustaining the glycolytic flux (Parelle et al., 2006; Kläring and Zude, 2009). However, 

an inhibition of the sucrolytic, glycolytic and fermentative enzymes may occur under 

anoxia (Mustroph and Albrecht, 2003).  

Fermentation accelerates the use of carbon reserves, so a prolonged period of 

oxygen deficiency may lead to the exhaustion of substrates (Bertrand et al., 2003). In 

order to protect root functions, plants tolerant to oxygen deficiency appear capable of 

sustaining photoassimilate transport to hypoxic roots (Kogawara et al., 2006). 

However, a reduction in distribution of photosynthates towards the roots has been 

reported in sensitive plants, which leads to an increased concentration of 

carbohydrates in the shoots (Islam and Macdonald, 2004; Kogawara et al., 2006) and 

may lead to feedback inhibition of photosynthesis (Smethurst et al., 2005). Once in the 

roots, photoassimilates may be partitioned among metabolic, structural and storage 

processes (Kogawara et al., 2006), being the partitioning into metabolically available 

forms the most advisable to maintain a high energy status, as occurs in highly tolerant 

species (Kogawara et al., 2006). However, in sensitive species, root hypoxia might 

increase photoassimilate partitioning into the storage fraction and decrease 

partitioning to metabolic processes and structural components in roots (Kogawara et 

al., 2006). 

As a result of the reduced root biomass (Smethurst et al., 2005) and of the 

decrease of ATP in the roots due to both the inhibition of aerobic respiration (Morard 

and Silvestre, 1996; Morard et al. 2004) and the lower import of photosynthates in the 

roots, the absorption of nutrients may decrease under oxygen deprivation 

(Vartapetian and Jackson, 1997; Taiz and Zeiger, 2002; Smethurst et al., 2005). The 

depressive effects of oxygen deficiency on uptake have been classified by Morard and 

Silvestre (1996) in the following order: K>N>P>H2O>Mg-Ca. Potassium uptake is the 

most sensitive and even efflux has been observed soon after the exposition to oxygen 

deficiency (Morard et al., 2000). It has been attributed to depolarization of root cell 

membranes, a direct consequence of H+-ATPase inhibition (Morard and Silvestre, 

1996). In addition, a low concentration of oxygen in the root environment decreases 

the selectivity of K+/Na+ uptake in favour of Na+ and retards the transport of K+ to the 
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shoots (Armstrong and Drew, 2002). Smethurst et al. (2005) observed nutrient 

deficiencies after 20 days of oxygen deficiency in Medicago sativa L. However, 

irreversible nutritional stress has not been detected in plants under these conditions 

(Morard and Silvestre, 1996). 

Stomatal closure has been observed under root oxygen deficiency in many species 

(Jackson and Hall, 1987; Bradford and Hsiao, 1982; Weng and Chang, 2004; Incrocci et 

al., 2000; Yordanova and Popova, 2001; Yordanova et al., 2003; Pezeshki et al., 1996; 

Mielke et al., 2003; Islam and Macdonald, 2004; Schmull and Thomas, 2004; Kogawara 

et al., 2006) often associated with a high concentration of ABA in their tissues (Jackson 

and Hall, 1987; Sojka, 1992; Incrocci et al., 2000). This has been mostly attributed to 

the production of ABA by the older lower leaves that wilt and export their ABA to the 

younger leaves, where stomata close (Zhang and Zhang, 1994). In addition, roots may 

stimulate ABA production or reduce cytokinin synthesis (Morard and Silvestre, 1996) 

under oxygen deficit. The decrease in stomatal conductance leads to a reduction of 

transpiration, water uptake and root hydraulic conductance (Jackson and Hall, 1987; 

Morard and Silvestre, 1996; Yoshida et al., 1996; Vartapetian and Jackson, 1997; 

Morard et al., 2000; Yordanova and Popova, 2001; Smethurst and Shabala, 2003; 

Yordanova et al., 2003; Islam and Macdonald, 2004; Schmull and Thomas, 2004; Weng 

and Chang, 2004; Nicolás et al., 2005). Unexpectedly, this has no negative 

consequences to leaf hydration since leaf water potential is unchanged (Bradford and 

Hsiao, 1982; Incrocci et al., 2000; Taiz and Zeiger, 2002; Weng and Chang, 2004) or 

even increased (Jackson and Hall, 1987).  

In addition to the effect of stomatal closure on transpiration, it also reduces CO2 

intake and, thus, CO2 assimilation (Pezeshki et al., 1996; Wagner and Dreyer, 1997; 

Mielke et al., 2003; Mustroph and Albrecht, 2003; Islam and Macdonald, 2004; 

Kogawara et al., 2006). Nevertheless, some species tolerant to oxygen deficiency can 

sustain photosynthesis under root hypoxic conditions (Kogawara et al., 2006). In 

addition to stomatal closure, other non-stomatal factors may affect photosynthesis. 

For example, a reduction of RuBisCO content or activity (Yordanova and Popova, 2001; 

Yordanova et al., 2003; Panda et al., 2008) and a decrease in leaf chlorophyll content 

(Wagner and Dreyer, 1997; Schlüter and Crawford, 2001; Yordanova and Popova, 

2001; Smethurst and Shabala, 2003) have been measured under oxygen deficiency. 

Also, changes in the profile of carotenoids may occur and, accordingly, Kläring and 

Zude (2009) suggested that the measurement of leaf diffuse reflectance in the 

carotenoids absorption bands (at 550 and 455 nm) may provide a sensitive tool of 

stress diagnosis under these conditions. 

Photochemistry might be also affected by oxygen deprivation as a consequence of 

the lower CO2 assimilation rate (Mielke et al., 2003). Down-regulation of PSII has been 
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measured by CF as an increase of non-photochemical quenching (Schlüter and 

Crawford, 2001; Mielke et al., 2003) usually coupled with a decrease in photochemical 

quenching (Schlüter and Crawford, 2001). In the long-term, though, photochemistry 

may be affected by direct damage to components and membranes of the 

photosynthetic apparatus (Yordanova et al., 2003) or even by the nutrient deficiency 

caused by the impaired nutrient uptake (Smethurst et al., 2005). Then, the capacity for 

non-photochemical quenching may diminish, which leads to a permanent over-

excitation of the thylakoids and enhanced danger of photoinhibitory damage (Schlüter 

and Crawford, 2001). As a result, a decrease of Fv/Fm has been measured in some 

species under oxygen deficit (Wagner and Dreyer, 1997; Schlüter and Crawford, 2001; 

Smethurst and Shabala, 2003; Smethurst et al., 2005, Panda et al., 2008). Fv/Fm and 

non-photochemical quenching have been considered as reliable indicators of tolerance 

to oxygen deficiency (Smethurst and Shabala, 2003; Smethurst et al., 2005).  

In addition to the already explained consequences of oxygen deficiency, it also 

contributes to oxidative stress in plants. An in-depth review about oxidative stress in 

plants under oxygen deficiency has been performed by Blokhina et al. (2002). 

Generation of ROS can take place in hypoxic tissues under hypoxia and especially 

under reoxygenation. Hence, anoxic stress is always accompanied to some extent by 

oxidative stress (Blokhina et al., 2002). Hydrogen peroxide accumulation has been 

reported under hypoxic conditions (Yordanova et al., 2003). In order to protect 

membranes integrity, the antioxidant system is stimulated by oxygen deficiency 

(Blokhina et al., 2002). For example, an increase in the activities of several antioxidant 

enzymes like CAT, APX or SOD (Biemelt et al., 1998; Yordanova et al., 2003) or a higher 

level of antioxidant compounds like ascorbate and glutathione (Biemelt et al., 1998) 

have been measured under oxygen deprivation.  

After hypoxia and/or anoxia conditions, physiological functions can eventually be 

recovered (Morard and Silvestre, 1996; Schlüter and Crawford, 2001; Smethurst et al., 

2005; Panda et al., 2008), although, sometimes, growth may remain reduced 

(Smethurst et al., 2005). For example, although the photosynthetic apparatus could 

result damaged by oxygen deprivation, a complete recovery may be achieved once 

stress conditions disappear (Smethurst et al., 2005). This recovery may take different 

time depending on the duration of the stress or the tolerance of the species (Schlüter 

and Crawford, 2001) and might depend on the preservation of membrane integrity 

under anoxia (Blokhina et al., 2002). Under reoxigenation, plants suffer not only from 

weakening by anoxia stress, but they also have to endure the formation of ROS 

(Schlüter and Crawford, 2001).  

Plants may adapt to the lack of oxygen in the root environment by a mechanism 

called ‘nitrate respiration’, where NO3
- is reduced in root cells to NO2

- by NR and acts 
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as an alternative electron acceptor to O2 (Morard and Silvestre, 1996). This 

phenomenon has been observed in tomato when, after 12 hours of anoxia, nitrites 

were detected in the nutrient solution (Morard et al., 2000). An increase of NR activity 

has been also observed by Allègre et al. (2004) and by Morard et al. (2004) under 

oxygen deficiency. It has been suggested that nitrate reduction actually serves as an 

intermediate step of a respiratory pathway alternative to glycolytic fermentation: the 

haemoglobin (Hb) / nitric oxide (NO) cycle. In this cycle, NO produced from nitrate is 

oxidized back to nitrate in a reaction involving non-symbiotic Hb. The drop in ATP 

levels seems to stimulate the gene expression of Hb (Parelle et al., 2006), and enhance 

the activation of NR (for review see Igamberdiev and Hill (2004) and Igamberdiev et al. 

(2005)). 

To sum up, in order to carry out a reliable diagnosis of oxygen deficiency in plants, 

the following techniques can be used: measurements of biomass production and yield, 

shoot/root ratio, leaf area, root respiration, accumulation of ethanol and 

acetaldehyde, measurements of lipid peroxidation and ROS species, the amount of 

antioxidant compounds, photosynthetic activity, chlorophyll content, stomatal 

conductance, transpiration, water uptake, root hydraulic conductance, ABA 

accumulation, CF, content, type and partitioning of carbohydrates, leaf diffuse 

reflectance, nutrient uptake, and measurements of the level, gene expression and/or 

activity of ADH, sucrose synthase, Hb, NR, RuBisCO or antioxidant enzymes.  

Nutrient solution temperature 

Optimization of nutrient solution temperature 

Nutrient solution temperatures may reach injuriously high levels during summer, or 

damaging low levels in winter, which strongly influence growth and survival of whole 

plants. This parameter depends on solar radiation and aerial temperature, but also on 

the characteristics of the system. In general, soilless systems are exposed to larger 

daily variations in root temperature than soil systems (Kafkafi, 2001) but possibilities 

for accurate control of root temperature are more easily carried out in soilless cultures 

than in soils systems (Olympios, 1999), through cooling or heating systems. However, 

sometimes an excessive energy input is spent to protect the crop due to incorrectly 

established temperature ranges. In order to optimize the use of energy in greenhouse 

production it is necessary to know the range of nutrient solution temperatures, 

specific for each crop cultivar (Kafkafi, 2001), which permits plant growth and 

promotes high yields. In general terms, root zone temperatures below 18 °C and above 

28 °C may seriously impair uptake and root growth so temperatures outside this range 

should be avoided (Bar-Yosef, 2008). In some cases, though, a higher product quality 

may be obtained when exposing roots to infra- or supra- optimum temperatures 
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during a short period of time. For example, a treatment of one week of low 

temperature stress in spinach plants increased the leaf concentrations of quality 

compounds like sugars, ascorbic acid and Fe2+, while reduced the leaf concentrations 

of others considered harmful for human health like NO3
- and oxalic acid (Hidaka et al., 

2008). 

Diagnosis of plant stress caused by nutrient solution temperature 

If the root temperature, significantly affected by the management of nutrient solution 

temperature, strays from the optimum range several metabolic processes may be 

affected. This depends on the actual temperature, the duration of the stress, the 

physiological stage of the crop, the species and even cultivar (Sanders and Markhart, 

2000; Rachmilevitch et al., 2006b; Kafkafi, 2008). In spite of the importance of root 

temperature to whole-plant responses, relatively little is known in comparison to the 

effect of air temperature, which has been studied extensively (Rachmilevitch et al., 

2006a; Zhang et al., 2007). However, Xu and Huang (2000) suggested that root 

temperature appears to be more critical than air temperature in controlling plant 

growth.  

One of the most widely observed symptoms of root temperature stress is that root 

growth is inhibited and number of roots and root dry weight may decrease. This has 

been observed in many plants with their roots subjected to supra-optimal 

(Sattelmacher et al., 1990; Rachmilevitch et al., 2006a; Lyons et al., 2007; Kafkafi, 

2008) or infra-optimal temperatures (Bowen, 1970; Ali et al., 1996; Sanders and 

Markhart, 2000; Franklin et al., 2005; Apostol et al., 2007). Root viability decreases 

(Rachmilevitch et al., 2006b) and plants may die if the stress is very severe. The cause 

of the reduced root growth may be due to a reduced import of photosynthates from 

the shoots (see below), but in the case of supra-optimal root temperatures, the cause 

seems to be mainly related to the enhanced consumption by root respiration rather 

than to the reduced translocation.  

Root respiration increases with root temperature (Xu and Huang, 2000; 

Rachmilevitch et al., 2006a; Lyons et al., 2007). Oxygen is consumed at a high rate and, 

accordingly, high root temperature is generally associated to hypoxia stress in soilless 

systems (Incrocci et al., 2000). Respiration is a major avenue of carbohydrates 

consumption and may lead to shortage of assimilates when temperatures are too high. 

Actually, this fact has been proposed to be a primary factor responsible for root 

growth inhibition and dysfunction at high root temperature (Rachmilevitch et al., 

2006a; Kafkafi, 2008). The down-regulation of plant respiratory rates and the increase 

of respiratory efficiency by lowering maintenance and ion uptake costs are key factors 
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for plant acclimation to high root temperatures (Rachmilevitch et al., 2006a, b; Lyons 

et al., 2007). 

In addition to the effect of root temperature on root growth, it also affects root 

morphology. Under low root temperature, roots might be more succulent (Kanda et 

al., 1994; Dieleman et al., 1998; Chapter 4.1 of this thesis), whiter (Dieleman et al., 

1998; Chapter 4.1 of this thesis), with lower development of lateral roots (Bowen, 

1970; Dieleman et al., 1998; Sanders and Markhart, 2000) and with higher content of 

unsaturated fatty acids in phospholipids (Kanda et al., 1994). The latter has been 

associated with tolerance to low root temperature (Lee et al., 2005b). In contrast, 

under high root temperature, roots may be shorter and highly branched (Stout et al., 

1997). These differences in root morphology may lead to changes in hydraulic 

properties and in roots capacity for ion and water uptake.  

The majority of the studies about the effect of root temperature on water uptake 

have been carried out under low temperatures, although water uptake may be 

affected by heat stress as well (Geater et al., 1997; McMichael and Burke, 1999). Many 

studies have reported a decrease in water uptake as root temperatures drop 

(Cornillon, 1988; Economakis, 1997; Pavel and Fereres, 1998; Sanders and Markhart, 

2000; Abdel-Mawgoud et al., 2005; Murai-Hatano et al., 2008; Chapter 4.1 of this 

thesis). The decrease in water uptake seems to be immediate (Sanders and Markhart, 

2000) and has been attributed to higher water viscosity (Abdel-Mawgoud et al., 2005; 

Affan et al., 2005) and to higher root hydraulic resistance (Pavel and Fereres, 1998). A 

decrease in the permeability of the root cell membranes (Yoshida and Eguchi, 1990) 

caused by a reduction in the activity of the plasma membrane H+-ATPases and linked 

to changes in the activity (open/closed) of aquaporins (Radin, 1990; Yoshida and 

Eguchi, 1990; Sanders and Markhart, 2000; Lee et al., 2005a; Kafkafi, 2008; Murai-

Hatano et al., 2008), have been suggested as the causes for the increase in root 

hydraulic resistance. 

In addition to water uptake, nutrient uptake is very sensitive to nutrient solution 

temperature (Xu and Huang, 2006). A restriction of nutrient uptake has been observed 

under supra-optimal (Rachmilevitch et al., 2006a) or infra-optimal temperatures 

(Macduff et al., 1987; Ali et al., 1996; Dong et al., 2001). Actually, crops may suffer 

from nutrient deficiencies during long cold periods (Sanders and Markhart, 2000). 

However, in some studies no significant effect has been measured (Osmond et al. 

1982) or even an increase of nutrient uptake has been determined under low 

temperatures (Chapter 4.1 of this thesis). This might be dependent on the tolerance of 

the species and the specific temperature used in the study. Nutrient uptake may be 

limited by uptake per unit root surface or by reduced root growth. The latter may 

become more significant over the long term (Sanders and Markhart, 2000). Regarding 
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supra-optimal temperatures, the reduction of nutrient uptake per unit root surface 

may be due to the shortage of root assimilates consumed by the enhanced respiration. 

With regard to the decrease of nutrient uptake per unit root surface under low root 

temperatures, it has been associated with the change in the structure of membrane 

lipids in roots and with the decrease in the activities of enzymes responsible for 

nutrient uptake such as H+-ATPase (Dong et al., 2001). The uptake of different 

nutrients may have different sensitivities to root temperature. For example, NO3
- 

absorption appears more sensitive than NH4
+ absorption to low root temperatures 

(Clarkson and Warner, 1979; Macduff et al., 1987; Kafkafi, 2008) maybe due to the 

lower energy demand for NH4
+ assimilation (Kafkafi, 2008). 

The reduced nutrient uptake under non-optimal root temperatures may lead to a 

decrease in the leaf concentration of several nutrients (Kafkafi, 2008; Malcolm et al., 

2008). Besides nutrient uptake, nutrient partitioning and assimilation are also altered 

by root temperature (Sanders and Markhart, 2000). For example, an increase of NR 

activity has been measured under low root temperature in leaves (Chapter 4.1 of this 

thesis) and roots (Sanders and Markhart, 2000), while nitrate assimilation rate seems 

to decrease under high root temperature (Rachmilevitch et al., 2006b). Besides, both 

an increase of ammonium content in leaves (Chapter 4.1 of this thesis) while a 

decrease of amino acid content (Kubota et al., 1987) have been measured under low 

root temperature. These divergences may depend on the specie and the specific 

temperature of the study. 

Another root function that is influenced by root temperature is the synthesis and 

translocation of hormones like cytokinins, gibberellins and ABA (Ali et al., 1996; 

McMichael and Burke, 1999; Rachmilevitch et al., 2006a; Singh et al., 2007). A high 

level of cytokinins in the roots (Kanda et al., 1994) has been associated with tolerance 

to infra-optimal temperatures. Moreover, there is evidence that ABA is involved in 

cold-temperature signaling (Franklin et al., 2005), and that it may be a means of long-

distance root-to-shoot signaling in plants with cooled root systems (Franklin et al., 

2005). 

The reduced water uptake at low root temperatures might decrease leaf water 

potential and leaf turgor (Radin, 1990; Sanders and Markhart, 2000). Nevertheless, 

plants can respond to their decreased water status by increasing ABA concentrations in 

the shoot (Udomprasert et al., 1995; Zhang et al., 2008), which triggers stomatal 

closure (Apostol et al., 2007; Zhang et al., 2008). The decrease in transpiration caused 

by stomatal closure has been indirectly determined by measuring leaf temperature 

(Ahn et al., 1999; Malcolm et al., 2008), which has been suggested as a very sensitive 

parameter in identifying stress caused by low root temperature (Ahn et al., 1999). In 
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sensitive species, stomata may be slow to respond and water stress may occur, which 

can result in transient or permanent wilting (Sanders and Markhart, 2000).  

The closure of stomata results in a decrease of CO2 assimilation rate (Zhang et al., 

2008). A decline in photosynthetic rate has been measured under high (Xu and Huang, 

2000; Rachmilevitch et al., 2006a, b; Lyons et al., 2007) and low root temperatures 

(Apostol et al., 2007; Malcolm et al., 2008), and a decrease in the maximum and 

effective quantum yield of photochemical efficiency of PSII and in the fraction of open 

PSII reaction centres has been observed at non-optimal temperatures (Repo et al., 

2004; Rachmilevitch et al., 2006b; Zhang et al., 2007; Zhang et al., 2008). In contrast, 

the effective quantum yield and the fraction of open PSII reaction centres increased in 

rose plants with their root exposed at 10 °C (Chapter 4.1 of this thesis). In addition to 

the closure of stomata, changes in the ultrastructure of cortical cells that may affect 

the photosynthetic apparatus have been observed under low root temperature (Lee et 

al., 2002). 

The decline in photosynthetic activity results in the reduction of shoot growth, 

shoot dry weight and/or leaf area under both supra-optimal (Kafkafi, 2008) and infra-

optimal root temperatures (Ali et al., 1996; Sanders and Markhart, 2000; Franklin et 

al., 2005; Solfjeld and Johnsen, 2006; Apostol et al., 2007; Malcolm et al., 2008; Field et 

al., 2009). A high root temperature may also accelerate the senescence of aerial parts 

and may reduce the shoot dormancy period and the subsequent level of floral 

initiation (Guedira and Paulsen, 2002; O'Hare, 2004). In contrast, a low root 

temperature may prolong the shoot dormancy period and may cause developmental 

delay (Mowat, 1995; Lieten, 1997; Sanders and Markhart, 2000). As a result of any of 

these affected processes, a decrease of yield might be observed in plants exposed to 

non-optimal root temperature (Sanders and Markhart, 2000).  

The assimilate use in plants is altered by root temperature but differently 

depending whether temperatures are above or below the optimum range. Under low 

temperatures, the leaf content of total nonstructural carbohydrates increases (Ali et 

al., 1996; Repo et al., 2004; Solfjeld and Johnsen, 2006). This been attributed to a 

lower partitioning of assimilates into structural carbohydrates (Solfjeld and Johnsen, 

2006), a delayed loss of starch (Repo et al., 2004), a reduction of translocation (phloem 

loading/unloading) or a decrease of root sink demand (Sanders and Markhart, 2000). 

In contrast, some authors (Ali et al., 1996; Chapter 4.2 of this thesis) have measured an 

increase of carbohydrates in the roots, which has been associated with tolerance to 

low root temperatures (Kanda et al., 1994). On the other hand, at high root 

temperature total nonstructural carbohydrates decrease in shoots and roots (Kubota 

et al., 1987; Xu and Huang, 2000; Guedira and Paulsen, 2002) due to the imbalance 

between photosynthesis and respiration in which carbon consumption exceeds 
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production (Xu and Huang, 2000). Also, high root temperature leads to changes in 

allocation pattern favoring root growth at the expense of shoot growth (Rachmilevitch 

et al., 2006b). 

The exposure of plant roots to non-optimal temperatures may lead to oxidative 

stress. Actually, membranes injury has been pointed as the cause of the inhibition of 

root functions (Sanders and Markhart, 2000). H2O2 (Rhee et al., 2007) and MDA (Zhang 

et al., 2007) have been detected in plant tissues under non-optimal root temperatures. 

In order to prevent the accumulation of ROS in root cells, plants may respond to 

unfavorable root temperatures by increasing their synthesis of ascorbate and 

glutathione, or the activity of SOD, CAT or APX (Zhang et al., 2007). Plants tolerant to 

non-optimal root temperatures should be capable of dealing with ROS (Rhee et al., 

2007) and preventing membranes injury (Rachmilevitch et al., 2006a). 

In conclusion, diagnosis of stress caused by non-optimal root temperatures in 

plants may be assessed by different techniques: measurements of biomass production 

and yield, leaf area, shoot/root ratio, root morphology, root respiration, water and 

nutrient uptake, nutrient content in plant tissues, photosynthetic activity, CF, stomatal 

conductance, transpiration, root hydraulic resistance, hormone accumulation in roots 

and shoots, carbohydrates content and partitioning in the plant, amino acid and 

ammonium content in plant tissues, lipid peroxidation and ROS species, the amount of 

antioxidant compounds, leaf temperature and the activity of several enzymes. 

Conclusions 

Optimization of nutrition in soilless systems can be achieved by means of an accurate 

management of all factors involved (i.e. nutrient solution composition and 

concentration, water supply, nutrient solution temperature, dissolved oxygen 

concentration, EC and pH of the nutrient solution). If any factor affecting plant 

nutrition is under non-optimal conditions, plants may suffer from stress, and yields 

(quantity and/or quality) may diminish. A precise diagnosis of plant stress caused by 

these factors is, hence, of great importance so that non-optimal levels of each factor 

could be determined and strategies for maximum benefits for growers can be planned. 

Regarding methods for diagnosis of plant stress, many physiological techniques are 

available. They are based on the fact that the above-mentioned factors affect the 

functioning of several plant physiological processes, and changes in these processes 

may be a sign of stress. It is important to point out, though, that the effect on these 

processes may depend on the tolerance of the specie or cultivar and on the duration 

and severity of the stress. In the short-term, plants may activate their defense 

mechanisms against stress. However, in the long-term, plants may acclimate to a mild 

stress or may be seriously damaged if the stress was severe. In addition, similar 
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symptoms might be the result of different stresses. Therefore, it is important to keep 

in mind the conditions of the measurement in order to give a correct diagnosis. 
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EMPIRICAL MODELS OF NUTRIENT AND WATER UPTAKE BY ROSE PLANTS 

FOR FERTIRRIGATION MANAGEMENT 

Abstract 

Empirical models for nutrient and water uptake of greenhouse rose plants were developed by 
multiple regression with data obtained along 14 months. The interest of this work lies in the high 
applicability of the models for their use in real conditions. Generally, independent variables 
included in the nutrient uptake models (nitrate, phosphate, potassium, calcium and magnesium) 
were water absorption, nutrient solution concentration, vapour pressure deficit, radiation 
integral inside the greenhouse, and several indicator variables related to periods of time were 
nutrient uptake was enhanced or diminished due to internal factors. The models also integrated 
the effect of flower shoot production and of some common practices such as renewal of old 
bent shoots, the use of shade screen or the synchronization of flower shoot development for 
scheduling purposes. The coefficient of determination ranged between 0.336 and 0.785 for 
magnesium and nitrate uptake models, respectively. However, a higher value (0.902) was 
obtained for the water uptake model, which included the variables vapour pressure deficit, air 
temperature, nutrient solution temperature, radiation integral inside the greenhouse, as well as 
renewal of old bent shoots and flower shoot production. The strong and weak points, usefulness 
and ways to improve the models are discussed.  

Introduction 

Current management practices in greenhouse rose cultivation include the use of 

luxuriant amounts of fertilizers in relation to that actually consumed by the crop. This 

is done to avoid any nutrient deficiency in the plant, but leaching of unused nutrients 

can lead to water contamination (Mankin and Finn, 1996). Besides, supplying fertilizers 

in high amounts can cause toxicity and nutrient imbalances in the crop. Therefore, in 

order to reduce the environmental impact and achieve optimum nutrient use 

efficiency, nutrient demand and supply should be synchronized (Kläring et al., 1997). 

Understanding the factors involved in nutrient uptake from a deterministic or 

empirical approach can help in this synchronization.  

Regulation of nutrients uptake occurs through different mechanisms. Firstly, 

transport is driven by the H+ gradient across the plasma membrane established by an 

H+-ATPase pump, so ions uptake is thermodynamically uphill and thus dependent on 

metabolism (Marschner, 1995). Ion uptake is one of the major sinks for energy in roots 

(Van der Werf et al., 1988). For instance, nitrate uptake rate has been closely related 

to diurnal root respiration (Hansen, 1980). Secondly, uptake velocity has been 

associated with external nutrient concentration (Le Bot et al., 1998) because nutrients 

transporters are known to be induced by the concentration of its own substrate 

outside the root (Crawford and Glass, 1998; Glass et al., 2002). In contrast, ion 

transporters are down-regulated by the concentration of their specific ion within the 

root cells (Siddiqi and Glass, 1982; 1987; Glass et al., 2002). Finally, uptake rates of 
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most ions are seemingly controlled by specific demand-driven regulatory mechanisms. 

According to this idea, plant demand would result in the transport of feedback 

substances to the root transporters that would improve/reduce ions uptake (Imsande 

and Touraine, 1994; Glass et al., 2002; Smith, 2002).  

Climatic factors affecting the regulation of nutrient transporters will affect 

nutrients uptake. The positive effect of radiation on nitrate uptake of different crops 

has been shown by many studies (Brun and Chazelle, 1996; Mankin and Finn, 1996; 

Cedergreen and Madsen, 2003; Pardossi et al., 2005). Air temperature (Adams, 1992; 

Kläring et al., 1997; Pardossi et al., 2005) and nutrient solution temperature (Adams, 

1992; Brun and Chazelle, 1996; Bassirirad, 2000; Bougul et al., 2000; Dong et al., 2001; 

Chapter 4.1 of this thesis) also seem to affect nutrient uptake while air humidity, 

measured as relative humidity or vapour pressure deficit (VPD), has appeared in less 

studies (Kläring et al., 1997).  

In addition, correlation between water and nutrient uptake of different crops has 

been proved on the large time scale (Le Bot et al., 1998; Pardossi et al., 2005) although 

at an hourly time scale, the correlation is not so clear (Le Bot and Kirkby, 1992; 

Cárdenas-Navarro et al., 1998). As far as water uptake is concerned, it has been mainly 

related to radiation, to VPD and to leaf area (Baille et al., 1994; Medrano, 1999; Suay 

et al., 2003), but also to air temperature (Medrano, 1999) and to nutrient solution 

temperature (Chapter 4.1 of this thesis).  

A good knowledge of the factors affecting nutrient uptake allows the development 

of models that can be implemented in decision support systems for the management 

of nutrient solution in soilless culture (Marcelis et al., 1998; Carmassi et al., 2005; 

Massa et al., 2008). Roses are valuable for studying dynamics of nutrient uptake, 

storage and remobilization in woody crops because they exhibit many flushes of flower 

shoot growth every year (Cabrera et al., 1995; Mattson and Lieth, 2007a). These 

growth flushes may cause periods of high and low plant demand for mineral nutrients 

(Cabrera et al., 1995). In general, flowers at different stages of development can be 

found in the greenhouse at the same time but, when dealing with special dates, 

harvests are scheduled and flower development is homogenous in the greenhouse 

(Mattson and Lieth, 2007b). Most reported works on nutrient uptake of cut roses have 

focused largely on nitrogen, and information on uptake of other essential nutrients is 

quite limited (Brun and Chazelle, 1996; Bougoul et al., 2000; Silberbush and Lieth, 

2004; Mattson and Lieth, 2007a; Kim et al., 2008; Massa et al., 2008; Massa et al., 

2009). Most of these models were obtained from short-time experiments (Brun and 

Chazelle, 1996; Silberbush and Lieth, 2004; Kim et al., 2008; Massa et al., 2008; Massa 

et al., 2009), which would limit their validity in normal growing conditions. Moreover, 

many of them only include few factors, basically the concentration of the nutrient in 
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the root environment, and explain nutrient uptake according to the Michaelis-Menten 

kinetics (Silberbush and Lieth, 2004; Mattson and Lieth, 2007a; Kim et al., 2008; Massa 

et al., 2009).  

The objective of this work was to develop empirical models for the uptake of five 

different nutrients (nitrate, phosphate, potassium, calcium and magnesium) and one 

model for water uptake by rose plants. Plants were grown in usual greenhouse 

conditions and managed using common practices, for an experimental trial of 14 

months. Emphasis was given in building models with high applicability under real 

conditions that might be implemented in decision support systems. 

Materials and methods  

Plant growing conditions 

A rose crop (Rosa hybrida L. cv. Grand Gala) in its third year after planting was grown 

in a polycarbonate greenhouse, equipped with convective heating (minimum 16°C), 

high pressure fogging and roof ventilation. Plants were grown following the bending 

technique as it is commonly done by local growers (Calatayud et al., 2007) and 

produced flower shoots all year-round. The experiment began on the 15th February 

2005 and finished on the 12th April 2006. From the 1st of June until the 24th of October, 

coinciding with the period of highest incoming solar radiation, an external aluminized 

screen was placed over the greenhouse to reduce incoming solar radiation and 

temperature inside. Renewal of old bent shoots was done through pruning on the 29th 

of August. 

The composition of the nutrient solution was slightly modified according to the 

season as it is commonly done by experience. We used a nutrient solution more 

diluted than the one commonly used by local rose growers in order to gain accuracy in 

the measurements, as explained below. Nevertheless, we observed that plants did not 

show any nutrient deficiency as it is also discussed below. The water for the nutrient 

solution was previously treated with reverse osmosis and ion columns in order to avoid 

variation of nutrient concentration in the solution. The actual concentration of NO3
-, 

H2PO4
-, K+, Ca2+ and Mg2+ in the nutrient solution along the whole experiment is shown 

in Fig. 1. 

A set of 30 plants was grown in a closed-looped aeroponic system with a single 

tank that received the drain and from which solution was pumped again to feed all 

plants. Nutrient solution was recycled and was renewed once a week to ensure an 

optimum nutrient balance. 
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Fig. 1. Concentration of the nutrient solution along the experiment (mmol L-1) (15/02/2005-
12/04/2006). A: nitrate concentration ( ), potassium concentration ( ) and calcium 
concentration ( ). B: phosphate concentration ( ) and magnesium concentration ( ). 

During the first 9 months of the experiment, flowers at different stages of 

development were found in the greenhouse at the same time. However, in order to 

include in the model two different situations in the greenhouse with respect to flower 

development, flower shoot development was synchronized during the last 5 months. 

For that purpose, the flowering shoots of all plants were pruned down to two nodes 

from their base on the 25th of November 2005 and on the 9th of February 2006 so that 

2 flower cycles could be studied. For each cycle, 2 periods were differentiated 

according to its relative growth rate (Steininger et al., 2002): from flower soot pruning 

till the appearance of the visible bud of the immature flower shoot and from the latter 

until the open flower is ready to harvest. The fresh weight of all harvested flower 

shoots was quantified. 
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Solar radiation outside and inside the greenhouse, temperature of the air and 

solution, and relative humidity, were recorded every 15 s by means of electronic 

sensors placed over the canopy and connected to a data acquisition system. The 

evolution of the climatic parameters used for building the models is shown in Fig. 2. 

Lack of values appears in some dates when failure in the data acquisition occurred. All 

parameters followed the expected evolution for Mediterranean conditions. However, 

the external aluminized screen used around summertime had a profound effect on the 

incident radiation integral inside the greenhouse, lowering it down to values common 

for autumn and winter. VPD was also affected although in a lesser extent. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Evolution of climate parameters along the experiment (15/02/2005 - 12/04/2006). A: 
incident radiation integral outside ( ) and inside ( ) the greenhouse (MJ m-2 day-1). B: mean air 
( ) and nutrient solution temperature ( ) inside the greenhouse (°C), and mean vapour pressure 
deficit inside the greenhouse ( ) (KPa). 
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Water and nutrient absorption by plants 

Water and nutrient uptake rates were calculated by measuring depletion of nutrients 

in the nutrient solution tank, which represented the root zone solution since the 

inertia of the aeroponic system was assumed to be nonexistent. 

The tank of the aeroponic system was associated with a precision weighing 

balance (±0.1 g resolution) connected to a data logging system, so that the weight of 

the tank was recorded every 15 s. A linear regression between weight an volume of the 

tank of R2 equal to 0.99, was calculated before the beginning of the experiment 

assuming solution density as constant. Daily water uptake, expressed as L plant−1 day−1, 

was calculated according to the volume difference in the system between two 

consecutive days. The system was watertight, so all volume losses were attributed to 

water and nutrient uptake. Every working day of the experiment at noon, 40 mL of 

nutrient solution were collected from the tank. The concentration of NO3
- and H2PO4

- 

was measured using Flow Injection Analyzer (FIASTAR 5000, Foss Analytical, Höganäs, 

Sweden), while the concentration of K+, Ca2+ and Mg2+ was measured by an ion 

absorption spectrophotometer (Perkin-Elmer Analyst 200, USA). Daily nutrient uptake 

was expressed as mmol plant-1 day-1, and was calculated using equation 1 of Chapter 2. 

Daily nutrient and water uptake were calculated between 12 noon of one day and 12 

noon of the following day. 

Nutrient uptake ratios 

Several daily ratios of nutrient uptake were calculated along the whole experiment. 

The nutrient uptake to water uptake ratio (mmol nutrient absorbed/L water absorbed) 

was calculated daily for every ion. We studied as well the daily ratio between each 

nutrient uptake and its concentration in the nutrient solution [(mmolnutrient absorbed plant-

1 day-1)/(mmol L-1)]. Also, daily nutrient use efficiencies [(mmol nutrient absorbed)·(L 

water absorbed)-1)/(mmol L-1)] were calculated according to equation 1 (Kläring, 2001): 

 

( )
sC

uCLF
efficiencyuseNutrient

⋅−
=

1
  (1) 

 

where Cu is the daily nutrient uptake to water uptake ratio, Cs is the concentration in 

the nutrient solution and LF is the leaching fraction, which can be considered zero 

when dealing with an aeroponic closed-loop system. 

Statistical data analysis 

In order to develop a statistical model for each nutrient, all experimental data were 

arranged in a matrix containing 210 observations (days) by 6 dependent variables (i.e., 
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the daily absorption data of nutrients and water) and the following variables 

containing climatic values: incident radiation integral outside (Ro) and inside (Ri) the 

greenhouse, mean air temperature inside the greenhouse (Ta), mean nutrient solution 

temperature (Ts) and mean VPD inside the greenhouse. These parameters were 

calculated between 12 noon of one day and 12 noon of the following day. On the other 

hand, the concentration of every ion, the pH and electrical conductivity of the nutrient 

solution as well as the flower shoot production, through the variable PROD (see 

below), were also included in the matrix as additional variables. Moreover, several 

indicator variables were included to study the effect of factors such as pruning for 

renewal of old bent shoots or the stage of development of the flower shoots, and also 

to study the effect of factors not quantified in the experiment. These indicator 

variables take the values 0 or 1 to indicate the absence or presence of some effect that 

may be expected to shift the outcome. They were created according to the evolution 

versus time of the model residuals, which allowed the identification of periods of time 

when the average of the residuals was significantly different to zero.  

For modeling purposes, data were subjected to stepwise multiple regression. The 

normality of the distribution of residuals was verified and a few outliers were 

removed. The possible differences between seasons in several nutrient ratios were 

analyzed by one-way ANOVA and means were compared by Fisher’s least significant 

differences (LSD). The length of the different seasons considered in this study was only 

the standard for wintertime (22/12/05 - 21/03/06), but for the remaining seasons it 

depended on the use of the screen. Spring (21/03/05 - 31/05/05) and autumn 

(25/10/05 - 21/12/05) were shorter due to the fact that the period with screen 

(01/06/05 - 24/10/05) was longer than the standard summer. A significance level of 

α=0.05 was used in all cases. Statgraphics Plus 4.1 was used for statistical analysis. 

Results 

Flower production  

Flower production was not constant along the 14 months but followed a cyclical 

pattern of flushes of flower shoot growth. This pattern can be seen in Fig. 3 that shows 

the production along the year. A new parameter called PROD was calculated as the 

sum of the fresh weight (g) of flower shoots harvested per plant on a specific day and 

on the following 6 days. This was done to obtain an estimation of the flower shoots 

present in a plant, either ready to harvest or almost, and therefore estimate sink 

strength and leaf area due to flower shoots. Actually, the value of PROD in one day was 

assumed to be approximately proportional to the leaf area of the plant in that day 

(data not shown). 
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Fig. 3. Production of flower shoots along the experiment measured as the variable PROD, which 
is the sum of the fresh weight (g) of flower shoots harvested per plant on a specific day and on 
the following 6 days. Flower shoots were in continuous production till the end of November. 
From then, 2 flower cycles, indicated by arrows, were consecutively synchronized by pruning 
down all flower shoots at the beginning of each cycle. 

In general terms, production was lower in winter and higher in June and July (Fig. 

3). The length of the flower cycle and of the two phases of each flower cycle can be 

calculated from the two synchronized flower cycles at the end of the experiment (Fig. 

3). The period from flower shoot pruning to visible bud lasted from 25/11/05 to 

18/01/06 in the 1st cycle and from 10/02/06 to 14/03/06 in the 2nd cycle. The period 

from visible bud until harvest time lasted from 19/01/06 to 09/02/06 in the 1st flower 

cycle and from 15/03/06 to 12/04/06 in the 2nd cycle. Therefore, the average duration 

of the flower cycle was higher in winter (76 days) than in spring (62 days). 

Daily water and nutrient uptake rates 

Daily water and nutrient uptake rates along the experiment are shown in Fig. 4 and Fig. 

5. They all followed a similar pattern. In general terms, daily rates increased in spring 

(highest values from April to July), decreased in summer, and remained relatively 

stable in autumn and winter (lowest values). Roughly speaking, daily water and 

nutrient uptake rates followed the evolution of climatic parameters (see Fig. 2).  

Data dispersion was higher for the nutrients absorbed in a lower amount, that is, 

phosphate and magnesium (Fig. 5), and increased in the periods of higher 

concentration of phosphate and magnesium in the nutrient solution. 
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Fig. 4. Actual water uptake (L plant-1 day-1) and nutrient uptake (mmol plant-1 day-1) along the 
experiment. A: nitrate uptake (dashed line) and water uptake (solid line); B: potassium uptake 
(dashed line) and calcium uptake (solid line). 

Nutrient uptake ratios 

Nutrient concentration in the nutrient solution was not the only factor affecting 

nutrient uptake, given that the ratio of nutrient uptake to nutrient concentration was 

not constant along the seasons, and changed significantly. In spring, this ratio yielded 

the highest values for all nutrients (Fig. 6A).  

The ratio of nutrient uptake to water uptake, also called nutrient uptake 

concentration (Schwarz et al., 2001), is shown in Fig. 6B. Nitrate uptake concentration 

(NUC) had the highest values and was the nutrient that changed the most, with 

statistically significant differences, along the year, in particular between the period 

when the screen was used (3.77) and autumn (7.18). However, no significant 

differences were found in NUC between spring and winter. Phosphate uptake 

concentration (PUC) was significantly higher in spring than in the rest of the year. 
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Potassium uptake concentration (KUC) showed significant differences between winter 

and the period with screen, while magnesium uptake concentration (MgUC) showed 

significant differences between winter and both spring and the period with screen. 

Conversely, in calcium uptake concentration (CaUC) no statistically significant 

differences were observed among the 4 periods. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Actual phosphate (A) and magnesium (B) uptake (mmol plant-1 day-1) along the 
experiment. 

In general, the highest nutrient use efficiency calculated by equation 1 was 

achieved in autumn, while the lowest was obtained in the period with screen, for all 

nutrients. Nitrate use efficiency (NUE) yielded the highest values while magnesium use 

efficiency (MgUE) was the lowest (Fig. 6C). 
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Fig. 6. Evolution of several nutrient ratios along the experiment. A: ratio of nutrient uptake to 
nutrient concentration, in [(mmolnutrient absorbed plant-1 day-1) / (mmol L-1)solution]. B: ratio of 
nutrient uptake to water uptake, i.e. nutrient uptake concentration, in (mmol nutrient 
absorbed/L water absorbed). NUC, PUC, KUC, CaUC and MgUC stand for nitrate, phosphate, 
potassium, calcium and magnesium uptake concentration, respectively. C: nutrient use 
efficiency, in [(mmol nutrient absorbed)·(L water absorbed)-1) / (mmol L-1)solution]. NUE, PUE, KUE, 
CaUE and MgUE stand for nitrate, phosphate, potassium, calcium and magnesium use efficiency, 
respectively. For each nutrient, one-way ANOVA was performed with factor season (spring ( ): 
21/03/05 - 31/05/05; the period with screen ( ): 01/06/05 - 24/10/05; autumn ( ): 25/10/05 - 
21/12/05; winter ( ): 22/12/05 - 21/03/06). Intervals indicate Fisher’s least significant 
differences (LSD). Whenever LSD intervals overlap, not significant differences at 5% are found 
between those seasons. 
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Empirical models 

The evolution of the actual nutrient and water uptake is shown in Fig. 4 and Fig. 5. 

These data were used for modelling nutrient and water uptake. 

Nitrate uptake (NU) 

The model of nitrate uptake developed in this work is the following: 

VBPRUN PPPROD

VPDRiWUNU

⋅−⋅−⋅+
+⋅−⋅+⋅+=

460619000560

7891174003834221

...

....
  (2) 

The effect of water uptake (WU) and the climatic parameters VPD and Ri were 

statistically significant (p<0.0001). A model built with these 3 parameters 

overestimated nitrate uptake during a period between the 30th of August and the 29th 

of September. This period takes place just after the renewal of old bent shoots, so it 

was attributed to this practice. Thus, pruning had a negative effect on nitrate uptake 

during one month (30/08/05 - 29/09/05) until the plant could recover from this 

practice. The effect of the indicator variable PPRUN, that accounts for this period, was 

statistically significant (p=0.0035). Besides the pruning practice, the physiological stage 

of development of the flower shoot had also an effect on nitrate uptake. The indicator 

variable PVB, which represented a period of time 15-20 days before and 7-9 days after 

the appearance of the visible bud (29/12/05 - 26/01/06 in the 1st cycle and 28/02/06 - 

24/03/06 in the 2nd cycle), was statistically significant (p=0.0007). Finally, flower shoot 

production (PROD), calculated as explained above, had a positive significant effect on 

nitrate uptake (p=0.0437). 

The coefficient of determination was quite high (R2=0.79), which indicates that 

79% of variability of the nitrate uptake could be explained by the statistical model. The 

standard deviation of the residuals was 0.564 and the standard deviation of the 

measurement error of nitrate uptake was estimated as 0.324. By replacing the residual 

variance by the variance of the measurement error in the R2 formula, one would get 

the maximum R2 that could be achieved with a given measurement method if all 

factors affecting nitrate uptake were known. In this case, maximum R2 would be about 

0.928, a value relatively close to that obtained in this work. The only way to enhance 

R2 over 0.928 would be improving the accuracy of the measurement method. 

Phosphate uptake (PU) 

The model of phosphate uptake developed in this work is the following: 
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21 22601140

068034023901190

PP

PRUNP

PP

PCWUPU

⋅+⋅+
+⋅−⋅+⋅+−=

..

....
 (3) 

Phosphate uptake was predicted with an R2 of 0.596. The effect of water uptake 

(WU), phosphate concentration (Cp) and of 2 indicator variables associated with 

periods of time taking place around April (PP1: 30/03/05 - 13/05/05; PP2: 28/03/06 - 

12/04/06) were statistically significant (p<0.0032). Although the pruning-affected 

period (PPRUN) was not clearly significant (p=0.072), it was not eliminated from the 

model since it also appeared in the model of low concentration, as explained below, 

with a lower dispersion of the data.  

Residual variance of this model was very different depending on the concentration 

of phosphate in the nutrient solution which was reduced to almost the half by the end 

of August (Fig. 1B). Actually, residual variance of the model was 0.039 for the first 

group of data (high concentration; from the beginning of the experiment till the 23rd of 

August) while it was 0.0053 for the second group of data (low concentration; from the 

24th of August till the end of the experiment). The reduction of phosphate 

concentration caused a decrease in the measurement error. The standard deviation of 

the measurement error was estimated as 0.195 for the first group and 0.071 for the 

second group. This fact justifies modelling the data variability separately for each data 

set.  

When phosphate concentration was low (Eq. 4), the effect of water uptake was 

statistically significant (p<0.0001) and the pruning practice affected negatively 

(p=0.014). During one month just after pruning, plants absorbed less phosphate. 

However, this model underestimated a period of time in April 2006, at the end of the 

experiment, when the actual uptake was higher than the one predicted. This effect is 

explained by the indicator variable PP2, which entered in the model with significance 

(p<0.0001).  

2225004320249005080 PPRUN PPWUPU ⋅+⋅−⋅+= ....   (4) 

When phosphate concentration was high (Eq. 5), the effect of phosphate 

concentration was statistically significant (p=0.011). Although water uptake was not 

clearly significant (p=0.074), its coefficient was similar to that in Eq. 4 (+0.24), and we 

decided to keep it in the model. The effect of the indicator variable PP1 was also 

statistically significant (p=0.037).  

111404860247028080 PP PCWUPU ⋅+⋅+⋅+−= ....   (5) 
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The coefficient of determination was quite different depending on the data set 

because as residual variance of the model increased, R2 declined strongly (low 

concentration=0.718; high concentration=0.268). 

Potassium uptake (KU) 

The model of potassium uptake developed in this work is the following (R2=0.626): 

KVBP PPVPDWUKU ⋅+⋅+⋅−⋅+= − 177.0165.0655.0236.24253.0  (6) 

The effect of water absorption was statistically significant (p<0.0001) as well as for 

VPD (p=0.0006). However, a model with these two variables underestimated several 

periods of time, when the actual uptake was higher than the one predicted. The 

indicator variable PK accounts for one of the periods that took place between the 

middle of May and the beginning of July (19/05/05 - 08/07/05) (p=0.034). Two 

additional periods were those from flower shoot pruning to visible bud of the 2 flower 

cycles taking place at the end of the experiment. The effect of the indicator variable PP-

VB, which accounts for these periods, was statistically significant (p=0.036).  

Calcium uptake (CaU) 

The model of calcium uptake developed in this work is the following (R2=0.633): 

CaCa PCVPDWUCaU ⋅+⋅+⋅−⋅+−= 171502130362301087108760 .....           (7) 

The effects of water absorption, calcium concentration in the nutrient solution 

(CCa) and VPD were statistically significant (p<0.0066). However, a model with these 

variables underestimated a period from the middle of April till the beginning of August 

(20/04/05 - 05/08/05). The indicator variable PCa associated to this period entered in 

the model with significance (p=0.0037). 

Magnesium uptake (MgU) 

The model of magnesium uptake developed in this work is the following: 

MgMg PCWUMgU ⋅+⋅+⋅+−= 067.0154.01877.0041.0   (8) 

The effects of water absorption and magnesium concentration (CMg) in the 

nutrient solution were statistically significant (p<0.0001), but this model 

underestimated a period from the middle of April till the beginning of June (15/04/05 - 

02/06/05). The indicator variable PMg, associated to this period, entered in the model 

with significance (p=0.0023). Residual variance was quite high as in the case of 

phosphate and, thus, R2 was low (0.336). 
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Water uptake (WU) 

The model of water uptake developed in this work is the following: 

PRUNPPRODRi

TaTsVPDWU

⋅−⋅+⋅+
+⋅+⋅+⋅+−=

08380002002260

021900270263709870

...

....
  (9) 

Water uptake followed a similar evolution as VPD (Fig. 2B and 4A). In this case, the 

following climatic parameters resulted statistically significant (p<0.0001): VPD, Ri, Ts 

and Ta. However, despite its high goodness-of-fit (0.86), the model did not forecast 

properly several cyclical periods with accuracy. We observed a cyclical pattern in the 

evolution of residuals versus time that resembled the evolution of flower production 

(Fig. 3). This suggested the inclusion in the model of additional variables. After 

including 2 variables in the model that referred to periods of different plant leaf area, 

the R2 increased up to 0.902. One of the variables was the indicator variable PPRUN, 

related to the pruning-affected period, which had a negative coefficient and a 

significance of 0.0116. The other variable was PROD, which had a positive coefficient 

and p<0.0001.   

Discussion 

In this work, empirical models were developed for nitrate, phosphate, potassium, 

calcium, magnesium and water uptake. The interest of these models lies in the fact 

that they were built in normal conditions of rose cultivation during 14 months, so that 

all different climatic situations and several common management practices could be 

reflected by the models. This makes them very practical to be used in real conditions. 

Both nutrient and water uptake rates underwent seasonal variations, as observed 

in Fig. 4 and Fig. 5. As their seasonal pattern was similar to that of climatic parameters 

(Fig. 2), it suggested that nutrient and water uptake rates depended on climatic 

conditions so they might be modelled according to them. The highest values of 

nutrient and water uptake rates were obtained from April to July, and the lowest along 

autumn and winter. This agrees with Cabrera et al. (1995), who found that nutrient 

uptake of rose plants in summer was twice than in winter. The same was found by 

Ferrante et al. (2000) in gerbera. 

Goodness-of-fit of nutrient uptake models 

The highest goodness-of-fit of all nutrient uptake models developed in this work was 

that of nitrate uptake (R2=0.79), which suggests that most factors affecting nitrate 

uptake were already included in the model. Thus, probably, the best way to improve it 

would be by enhancing the accuracy of the measurement method. The R2 obtained 
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here for the nutrient uptake models were similar to those obtained in other studies 

with melon (Pardossi et al., 2005), which was 0.65, 0.56, 0.66, 0.72 and 0.57 for the 

models of nitrate, phosphate, potassium, calcium and magnesium weekly uptake, 

respectively. In a reported work with roses (Brun and Chazelle, 1996), R2 of 0.71 was 

obtained for an hourly nitrate uptake model.  

It is important to understand the effect of nutrient solution concentration on the 

accuracy of measuring depletion of nutrients in the root environment, since it 

influenced the goodness-of-fit of the models obtained. The higher the nutrient solution 

concentration, the lower the difference in nutrient solution concentration between 

two consecutive days, and the more difficult (i.e. less accurate) to measure nutrient 

uptake through Eq. 1 (Chapter 2). Some authors have also found difficulties that limit 

the accuracy of uptake rate measurements when the nutrient solution concentration is 

elevated (Le Bot et al., 1998). This problem is greater with nutrients that are absorbed 

at a low rate. Therefore, it is often necessary to use a nutrient solution more diluted 

than the standard (Fig. 1) in order to obtain accurate measurements. However, the 

dilution used in this work was not enough for nutrients that were absorbed at a low 

rate, i.e. phosphate and magnesium, where the residual variance of the models 

increased considerably, and the coefficients of determination decreased to a great 

extent. In the case of phosphate, it was clearly seen that when using a more diluted 

solution, residual variance of the models decreased and R2 increased. For future work, 

a more diluted concentration of these nutrients should be used. The problem is that an 

adequate concentration to gain accuracy in the measurements might result in nutrient 

deficiencies that could affect nutrient uptake. Therefore, it could be appropriate to 

carry out physiological measurements in the plant to ensure that no stress is observed. 

In this work, plants did not show apparently any nutrient deficiency and the 

physiological measurements carried out in the plants during the last 4 months of the 

experiment proved that plants were in good conditions (Chapter 4 of this thesis). 

Factors affecting nutrient uptake rate 

Generally, independent variables included in the nutrient uptake models were water 

absorption, nutrient solution concentration, the climatic parameters vapour pressure 

deficit and radiation integral inside the greenhouse, and several indicator variables 

related to periods of time when nutrient uptake was enhanced or diminished due to 

internal factors. Next, the influence of each of the variables on the different nutrients 

uptake will be discussed. 

One of the parameters most studied in relation to nutrient uptake is nutrient solution 

concentration. In fact, most of the nutrient uptake models for rose plants are based on 

the Michaelis-Menten kinetics (Silberbush and Lieth, 2004; Mattson and Lieth, 2007a; 
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Kim et al., 2008; Massa et al., 2009) and include basically the concentration of the 

nutrient in the root environment to explain nutrient uptake. In our work, 

concentration of phosphate, calcium and magnesium appeared in their respective 

models with significance. Although this parameter did not have apparently an effect on 

nitrate and potassium uptake, it was probably implicit in another variable. Actually, the 

simple correlation between nitrate uptake and nitrate concentration, and between 

potassium uptake and potassium concentration was statistically significant (p<0.016). 

The concentration of a nutrient in the root environment has been verified to induce a 

higher capacity for uptake on its transporter (Crawford and Glass, 1998; Glass et al., 

2002). However, this work clearly proves that nutrient solution concentration is 

important but it is not the only factor affecting nutrient uptake as seen by the 

statistically significant variation of the ratio nutrient uptake to nutrient concentration 

among seasons (Fig. 6A). 

Water uptake appears in every nutrient uptake model with high significance, so it 

might affect all nutrients uptake through a common mechanism. Several studies have 

found a significant correlation between water and nutrient uptake of different crops 

on a large time scale (Le Bot et al., 1998; Pardossi et al., 2005). In contrast, the ratio of 

nutrient uptake to water uptake was not constant along the year, as seen in Fig. 6B. 

We suggest that water uptake may affect nitrate and other nutrients uptake via 2 

ways. Once absorbed, ions are transported through the xylem with the transpiration 

flux. Transpiration from leaves and the rate of water uptake in the root, determines 

flow within the xylem and the concentration of its solutes (Marschner, 1995). As 

nutrient uptake may be down-regulated by its accumulation in the root cells (Siddiqi 

and Glass, 1982; Siddiqi and Glass, 1987; Glass et al., 2002), a higher water uptake 

would prevent ion accumulation in root cells by transporting ions far from the roots. 

Alternatively, nutrients in the solution tend to concentrate around the root surface 

due to water uptake (Wallach, 2008). As nutrients transporters are induced by the 

concentration of its own substrate outside the root (Crawford and Glass, 1998; Glass et 

al., 2002), a higher water uptake that would lead to a higher nutrient concentration in 

the root surface, would in turn increase root nutrient uptake capacity.  

Incident radiation integral inside the greenhouse had a positive effect on nitrate 

uptake but did not have a significant effect on the rest of nutrients studied. However, 

other authors have shown that total uptake of P, K, Ca or Mg increased with increasing 

irradiances (Chu and Toop, 1975; Magalhaes and Wilcox, 1983). In our results, in 

general terms, the uptake of these nutrients also increased with increasing irradiances 

but the effect was not significant. The positive effect of radiation on nitrate uptake of 

different crops has been reported by many studies (Brun and Chazelle, 1996; Mankin 

and Finn, 1996; Cedergreen and Madsen, 2003; Pardossi et al., 2005). As Mankin and 

Finn (1996) showed, radiation affects nitrate uptake via its effect on photosynthesis. 



3. Empirical models of nutrient and water uptake 

88 

According to Cedergreen and Madsen (2003), plants grown at high irradiance have 

higher growth rates and higher nitrate uptake rates and reduction capacity, and vice 

versa. It can be suggested that radiation may affect nitrate uptake through different 

mechanisms. Firstly, a high radiation, up to a threshold level, increases CO2 fixation 

and, thus, production of assimilates, which may be used in growth and also, in root 

respiration. Ion uptake is one of the major sinks for ATP in roots (Van der Werf et al., 

1988), which is produced by root respiration (Johnson, 1990). Actually, root respiration 

has been closely related to nitrate uptake rate (Hansen, 1980). Secondly, the higher 

photosynthetic rate induced by high radiation may result in a higher growth rate 

(Poorter, 1999), and nitrate uptake has been suggested to be driven by growth rate 

(Willits et al., 1992) and regulated in response to plant demand through feedback 

control (Imsande and Touraine, 1994). According to this idea, plant demand would 

result in the transport of feedback substances to the root nitrate transporters that 

would improve/reduce nitrate uptake. Finally, root nitrate reductase, which reduces 

nitrate to nitrite and, thus, decreases nitrate concentration in the root cytoplasm, is 

induced by light (Cerezo, 1998; Tischner, 2000; Cedergreen and Madsen, 2003). There 

is evidence that accumulated nitrate in the root cells down-regulates transporter 

function (Glass et al., 2002). Therefore a high nitrate reductase activity in the root 

would prevent the inhibition of nitrate transporters by nitrate accumulation. In brief, 

the positive effect of radiation on nitrate uptake may be due to its effect on root 

respiration, plant demand and nitrate reductase activity, which would in turn affect 

nitrate transporters uptake capacity. 

Vapour pressure deficit had a negative coefficient in the models of nitrate, 

potassium and calcium uptake. However, the simple correlation between VPD and 

each of the five nutrients studied was positive (r>0.36) and significant (p<0.0001), so 

the negative sign makes no physiological sense. Actually, VPD may affect positively 

nutrient uptake via its effect on water uptake (see Eq. 9). When a model is built with 

correlated variables, as it happens in this case, the interpretation of the coefficients 

may sometimes result confusing and lead to wrong conclusions. This should be, thus, 

interpreted as the best lineal combination of variables that maximizes the R2. 

Flower shoot production represented by the variable PROD affected nitrate uptake 

positively. Plant demand was higher during periods of high production, which would 

enhance nitrate uptake through feedback control (Imsande and Touraine, 1994). 

Besides, the higher leaf area of the plant during the periods of high production would 

increase net assimilation rate, which would increase availability of assimilates in the 

roots and, thus, nitrate uptake (Hansen, 1980). None of the other nutrients uptake was 

significantly affected by this parameter, but this does not mean that plant demand did 

not affect the uptake of these nutrients as it is explained below. 
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Besides these quantitative variables, some indicator variables appeared in the 

models with significance. They were related to periods of time in which some known 

(pruning practice and developmental stage of the flower shoot) or unknown factors 

had an effect on nutrient uptake.  

The practice of pruning old bent shoots had an effect on nitrate and phosphate 

uptake. The pruning-affected period lasted one month and its negative effect was 

maybe due to the reduction of leaf area that reduced photosynthetic rate in the plant 

(Macduff and Jackson, 1992). Also, pruning may have caused death of some roots or 

may have reduced relative growth rate of roots, thus reducing uptake surface (Fuchs, 

1986). A negative effect of shoot pruning on N and P uptake was also observed by 

Cadisch et al. (2004) in Peltophorum dasyrrhachis and Gliricidia sepium, and by 

Caradus and Snaydon (1986) in white clover, respectively. Nurseries suggest carrying 

out the pruning of old bent shoots in summer but before August, when metabolic 

activity of the plant is the highest (Real, 1997). Maybe, pruning in another date 

according to Nurseries’ suggestion would have affected nitrate and phosphate uptake 

in a lesser extent, but this was not tested in this work. 

The developmental stage of the flower shoot had an effect on nitrate and 

potassium uptake but in a different way. On the one hand, the indicator variable PVB 

indicates that nitrate uptake was significantly lower approximately 2 weeks before and 

a week after the appearance of the flower bud (i.e. visible bud stage), compared with 

the rest of the flower cycle. This phase approximately coincides with the period with 

highest elongation rate of the flower shoot (Cabrera et al., 1995). Cabrera et al. (1995) 

and Kim et al. (2008) found that the pattern of N uptake depended on the 

developmental stage of the flower shoot. According to these authors, N uptake was 

minimum when the flower buds became visible and elongation rate was maximum. 

Cabrera et al. (1995) attributed this pattern to competition within the plant for 

photoassimilates because of the dependence of N uptake on the availability of 

assimilates in the roots. They also found a similar pattern for potassium, calcium, 

magnesium and phosphate, but this was not observed in our work. In contrast, 

according to the positive effect of the indicator variable PBB_VB in Eq. 6, an opposite 

pattern was observed for potassium uptake suggesting that, during the stage between 

flower shoot pruning and visible bud, an extra amount of potassium was required. 

Potassium plays central roles in plant growth and development, including maintenance 

of turgor pressure and cell elongation (Fox and Guerinot, 1998). Silberbush and Lieth 

(2004) stated that the flower contained the highest amount of K of all branch parts, 

which would lead to an enhanced requirement for K at visible bud stage. Maybe, that 

is why an extra amount of potassium was required in the period of higher elongation 

rate of the flower shoots. 



3. Empirical models of nutrient and water uptake 

90 

Finally, some indicator variables related to periods of time when nutrient uptake 

was enhanced by unknown factors had a significant effect on the models of phosphate, 

potassium, calcium and magnesium. In all cases, the period of extra uptake took place 

in spring and summer, which is the time of plant reactivation and highest production, 

that is, a period of high demand for photoassimilates and mineral nutrients. Kim et al. 

(2008) stated that due to the cyclical nature of rose flower shoot production in flushes, 

it is difficult to optimize the supply of nutrients. Shoot demand has been considered as 

the driving force in nutrient uptake (Silberbush and Lieth, 2004). Therefore, these 

indicator variables included in the models may be related to an internal plant factor 

related to the demand of the plant for a specific nutrient, which induces a feedback 

response in the roots in order to improve the absorption of those ions. This feedback 

response may be similar to that described for nitrate uptake, where an enhancement 

of transporter activity and/or the synthesis of new transporters are stimulated to fulfill 

plant demand (Imsande and Touraine, 1994). 

Factors affecting water uptake rate 

Water uptake was modelled according to the climatic parameters VPD, Ri, Ts and Ta. 

Besides, pruning of old bent shoots and periods of high flower shoot production had 

an effect on water uptake. Although both factors had opposite effects, the 

physiological basis is the same since they are related to the leaf area of the plant. Leaf 

area constitutes the surface of heat and vapour transfer of the plant (Allen et al., 1998) 

so a lower leaf area would result in a lower transpirating surface and lower water 

uptake rate, as was observed in tomato by Schwarz and Kuchenbuch (1998). Periods of 

high production, in which there is a high number of flower shoots per plant that results 

in a high leaf area in the plant, affected water uptake positively. According to Allen et 

al. (1998), leaf area of a crop reaches its maximum before or at flowering. By contrast, 

pruning reduced leaf area of the plant considerably, which affected water uptake 

negatively as was also observed by Cadisch et al. (2004). 

In different studies (Baille et al., 1994; Medrano, 1999; Suay et al., 2003), water 

uptake models have been based in Penman-Monteith equation (Monteith and 

Unsworth, 2007) and have been related to radiation, to VPD and to leaf area. The 

positive effect of Ts on water uptake is shown in Chapter 4.1 (this thesis), although 

solution temperatures higher than 30°C can reduce transpiration (Medrano, 1999). 

This author stated that, between a range of temperatures, the higher the Ta, the higher 

the VPD and stomatal conductance, so the higher the water absorbed by the plant. R2 

was much higher in the water uptake model than in any of the nutrient uptake models. 

The reason for that may lie in the fact that water uptake by plants is often described as 

a purely physical process, where water moves passively through the roots in response 
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to a water potential gradient set up by transpiration (Kirkham, 2006), while nutrient 

uptake is under feedback control by plant demand (Imsande and Touraine, 1994). 

Evaluation of the fertilization strategy 

Nutrient use efficiency was calculated in order to evaluate the fertilization strategy 

used in this experiment. The ratio should be as close to 1 as possible to match nutrient 

uptake concentration with nutrient solution concentration and, thus, synchronize 

demand to supply (Kläring et al., 1999; Kläring, 2001). Fertilizing in this way would 

reduce groundwater contamination. A value lower than 1 shows that nutrient solution 

is too concentrated, and both an increase in electrical conductivity of the nutrient 

solution and contamination through leaching of unused nutrients may occur. A value 

higher than 1 indicates that nutrient solution is too diluted and a problem of nutrient 

deficiency may appear if not well controlled. In our results, even though the nutrient 

solution was more diluted than the one used by local growers, in most cases the 

nutrient solution concentration was higher that nutrient uptake concentration, so 

nutrient use efficiency was lower than 1 (Fig. 6C). Nitrate was the nutrient with highest 

nutrient use efficiency and even in autumn and winter it was higher than 1, so a higher 

nitrate concentration could have been used.  

The ratio nutrient uptake to water uptake rate (Fig. 6B) has been used to give 

recommendations of the optimum nutrient solution concentration (Bougoul et al., 

2000; Kläring, 2001; Mattson and Lieth, 2007a) with the premise that nutrient 

concentration should equal nutrient uptake concentration (Kläring et al., 1999). Based 

on this idea, in this work, the recommendation for each season of the optimum 

nutrient solution concentration for a greenhouse rose crop grown in aeroponic system 

would be equal to the values shown in Fig. 6B.  

Main advantages and disadvantages of the models 

In this study, empirical models for nitrate, phosphate, potassium, calcium, magnesium 

and water uptake of a greenhouse rose crop were developed in normal growing 

conditions with data acquired during 14 months. This makes them suitable for being 

integrated in decision support systems for fertirrigation according to plant demand in 

every season, although a validation of the models in place would be needed 

beforehand. In addition, they are based on simple measurable parameters since 

sensors for climatic variables are available at a reasonable price. The models integrate 

the effect of nutrient solution concentration and flower shoot production as well as of 

some common practices in rose cultivation such as renewal of old bent shoots, the use 

of shade screen in summer or the synchronization of flower shoot development for 

scheduling purposes. The resulting equations might provide useful clues for better 

understanding nutrient uptake mechanisms in plants from a global point of view 
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because most of the factors affecting nutrients uptake are taken into account. In 

contrast, many of the models that have been reported in literature only included some 

of these factors. 

On the other hand, the models have some weak points that should be discussed. 

Firstly, except for the model of nitrate and water uptake, the R2 of the others is 

medium-low and quite low in the case of magnesium uptake. This can lead to over- or 

underestimations when making predictions. In any case, the R2 obtained here are 

similar to those reported in other studies as stated above. In a study from Mattson and 

Lieth (2007a), magnesium uptake results were also the most erratic. In their work, 

authors pointed out that another factor that can have an influence on the predictive 

power of the nutrient models is the capacity of the rose plant to store nutrients and 

redistribute them to new growth when needed, which would affect nutrients uptake. 

In any case, the crops have tolerance thresholds for optimum nutrient concentration in 

plant tissues, also called sufficiency ranges (Plank, 1989), which means that the short-

time deviations between fertirrigation and exact plant demand may not have any 

negative consequence on plant nutrient status. Thus, these models, when tested as 

tools to steer fertirrigation, should be combined with physiological measurements of 

plant nutrient status to check if they are good enough or should be improved. 

Secondly, because dealing with empirical models, they might not be suitable out of 

the range of conditions where the model was fitted. For instance, if plants are 

suffering from stress such as salinity stress, nutrient uptake may change (Kläring et al., 

1997; Grattan and Grieve, 1998). In any case, as the parameters that appear in the 

model have a physiological background, it is likely that most of the parameters would 

also appear although with different coefficients. Even though they have been 

developed in normal growing conditions, this is not exactly true for the concentration 

of the nutrient solution given that a more diluted solution was used to improve the 

accuracy of the measurements. An aeroponic system was used also for that purpose, 

which is different to the perlite system commonly used by local growers. Maybe, other 

results would have been obtained in commercial conditions. However, a test that was 

carried out before in our group, using the common nutrient solution concentration and 

a system with perlite as substrate, showed that measurement errors were excessive. 

The strong influence of using a nutrient solution highly concentrated on the 

measurement error was apparent in the phosphate uptake model. In line with the 

latter, the models of phosphate and magnesium uptake could be improved if a lower 

nutrient solution concentration is used. 
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4.1. EFFECT OF TWO NUTRIENT SOLUTION TEMPERATURES ON NITRATE 

UPTAKE, NITRATE REDUCTASE ACTIVITY, NH4
+ CONCENTRATION AND 

CHLOROPHYLL a FLUORESCENCE IN ROSE PLANTS. 

Abstract   

The effect of two nutrient solution temperatures, cold (10 °C) and warm (22 °C), during two 
flowering events of rose plants (Rosa hybrida cv. Grand Gala grafted on Rosa Manetti) were 
examined by measuring chlorophyll a fluorescence, ammonium content and NR activity in four 
different leaf types, that is, external and internal leaves of bent shoots and lower and upper 
leaves of flowering stems. Besides, nitrate uptake and water absorption, total nitrogen 
concentration in the plant, dry biomass, and the ratios shoot/root and thin-white 
roots/suberized-brown roots were determined. Generally, cold solution decreased water uptake 
but increased NO3

- uptake and thin-white roots production, so plants grown at cold solution had 
to improve their NO3

- uptake mechanisms. The higher NO3
- uptake can be associated with the 

increase in NR activity, NH4
+ content and total N concentration at cold solution. Nutrient solution 

temperature also had an effect on the photosynthetic apparatus. In general terms, the effective 
quantum yield (φPSII) and the fraction of open PSII reaction centres (qL) were higher in rose 
plants grown at cold solution. These effects can be associated with the higher NO3

- uptake and 
total N concentration in the plant and were modulated by irradiance throughout all the 
experiment. Plants could adapt to cold solution by enhancing their metabolism without a 
decrease in total dry biomass. Nevertheless, the effect of nutrient solution temperature is not 
simple and also affected by climatic factors. 

Introduction 

Soilless culture techniques are used for commercial production of several high value 

ornamental plants in the Mediterranean area. In this region, in winter, air temperature 

can get down below the rose plant biological minimum of 14 °C to 16 °C (Tesi, 1969) in 

unheated greenhouses at night. The temperature of the nutrient solution can 

frequently get to 7-9 °C considered critical for root functions (Mortesen and Gislerød, 

1996). In soilless systems, root temperature can be controlled by warming or cooling 

the nutrient solution (Moss and Dalgleish, 1984) providing the energy requirements for 

optimum plant development. Sometimes an excessive energy input is spent to protect 

the crop from climatic constraining conditions due to poorly established guidelines 

(Willits and Peet, 2001). In order to reduce energy costs in greenhouse production it is 

necessary to know the range of temperatures that permits plant growth and the 

production of high yields. However, results from temperature studies are sometimes 

difficult to understand because temperature may affect in a different way depending 

on the physiological process and on the plant organ that is studied (Theodorides and 

Pearson, 1982).  

Root temperature has been shown to have pronounced effects on shoot growth of 

a number of plant species (Bowen, 1991) but optimal values vary among them (Barr 
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and Pellet, 1972). Research about root temperature in rose plants is sometimes 

contradictory and depends on the cultivar, climatic conditions, the combination root-

air temperatures, among other factors. Some studies indicate that 18 °C root-zone 

temperature is the optimal for shoot growth of ‘Better Time’ and ‘Sonia’ roses grafted 

on the rootstock Rosa indica (Shanks and Laurie, 1949; Zeroni and Gale, 1982). 

However, no effects of root temperature increases from 18 °C to 25 °C on stem length 

and flower production have been reported (Kohl et al., 1949; Zeroni and Gale, 1987). In 

contrast, other studies show that soil heating is beneficial for roses (Brown and 

Ormrod, 1980; Zeroni and Gale, 1982) because when root temperature is lowered 

from 18 °C to 10-12 °C, shoot growth is reduced (Moss and Dalgleish, 1984; Mortensen 

and Gislerørod, 1996).  

Main root functions are water and nutrient uptake and synthesis of plant 

hormones (Dieleman et al., 1998). Soil temperature affects water and nutrient uptake, 

root and shoot growth and metabolic processes (Dong et al., 2001). Among them, 

nutrient uptake is one of the most sensitive processes to temperature (Xu and Huang, 

2006). Dong et al. (2001) have shown that low soil temperatures (8 °C) reduced 

absorption of 15N by roots of apple trees. In contrast, Osmond et al. (1982) reported 

that the whole root system of soybean plants absorbed NO3
- similarly at both cool (14 

°C) and warm temperatures (22 °C). On the other hand, root temperature also 

influences water uptake. This may be due to the fact that both the viscosity of water 

and root hydraulic resistance increase at low root temperature, causing a decrease of 

water flow to the root (Pavel and Fereres, 1998). 

Nitrogen absorption is directly related to the reduction rate of nitrate nitrogen (N-

NO3
-) to nitrite. This reduction is the first step of N assimilation and involves enzyme 

NR (Toseli et al., 1999), which is sensitive to high temperature (Lauri and Stewart, 

1993). Younis et al. (1965) found that an increase in temperature from 30 to 35 °C 

caused a 60 to 70 % decrease in NR activity in young corn plants. Increase of NR 

activity after low temperature treatment has been reported in wheat (Yaneva et al., 

2002) and in oil-seed rape (Macduff and Trim, 1986).  

Low root temperature can also affect photosynthesis. Chlorophyll a fluorescence, 

an indicator of the fate of excitation energy in the photosynthetic apparatus, has been 

used as early indication of many types of plant stress (Calatayud et al., 2004). We 

propose the use of CF imaging technique as a tool to detect the possible stress in rose 

plants under low root temperature. It has been shown that sensitivity to low 

temperatures may be verified by measuring CF in potato (Greaves and Wilson, 1987), 

tomato (Willits and Peet, 2001), lettuce (He et al., 2001), cucumber (Ahn et al., 1999), 

maize (Fracheboud et al., 1999) or roses (Hakan et al., 2000). 
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The objective of this work was to test root chilling tolerance of rose plants (Rosa x 

hybrida cv. Grand Gala grafted on Rosa Manetti) by studying the physiological 

response of the plant, with the final aim of optimising nutrient solution temperature 

and reducing energy cost in winter. To reach this objective, CF, NR activity and NH4
+ 

concentration were measured in different types of leaves, as well as NO3
- and water 

absorption by the roots, total biomass produced and total nitrogen concentration in 

roots and leaves under two root-zone temperature conditions, i.e. a level supposedly 

limiting root activity (10 °C) and a non-limiting level for root processes (22 °C).  

Materials and methods 

Plant management and greenhouse conditions 

A three-year-old rose crop (Rosa x hybrida), cv. Grand Gala, grafted on the rootstock 

Rosa Manetti, was grown in a polycarbonate greenhouse, equipped with convective 

heating (minimum 16 °C), high pressure fogging and roof ventilation. Two units of 

closed aeroponic growing system were used.  

Thirty plants were grown in each aeroponic unit at two different nutrient solution 

temperatures while their aerial parts were subjected to the same climate conditions, i. 

e. radiation, air temperature and relative humidity. In the cold solution treatment, a 

heat exchanger placed in the solution tank and connected to a cooling equipment, 

cooled the solution down to 9 °C, automated by means of a thermostat. The average 

values and standard deviation of nutrient solution temperatures along the whole 

experiment were 10.5 ± 1.02 °C in the cold solution treatment and 21.72 ± 2.22 °C in 

the warm one, which was the control treatment. Climate variables inside the 

greenhouse such as temperatures of the air and nutrient solution, air humidity and 

VPD were recorded. Solar radiation integral per period (MJ m-2 period-1) (see period 

length in Table 1) and the average radiation (W m-2) when the physiological 

measurements were done (11:00 to 13:00), defined here as growth radiation, are 

shown in Table 1. They increased as the experiment progressed and were higher in the 

2nd flowering event. 

Plants were grown following the bending technique as it is commonly done by 

local growers (Calatayud et al., 2007). The experiment began at the end of November 

and was finished at the beginning of April, after two complete flowering cycles. The 1st 

flowering cycle started at the end of November (25/11/05) and finished at the 

beginning of February (09/02/06), when the 2nd one began, which finished at the 

beginning of April (12/04/06). Just before the beginning of both flower cycles, all 

flowering shoots, either mature or immature, were pruned down to two nodes from 
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their base. The physiological measurements (see below) were carried out at the same 

physiological stages independently of the date:  

T0: Flower stems with a small visible flower bud (in the middle of January; first 

floral cycle). 

T1: Flower stems in commercial harvesting stage (at the beginning of February; first 

floral cycle). 

T2: Flower stems with a small visible flower bud (at the beginning of March; second 

floral cycle). 

T3: Flower stems in commercial harvesting stage (at the beginning of April; second 

floral cycle). 

All measurements done in the aerial part of the plant were carried out in fully 

developed leaves. Samples were taken from 4 different locations within the plant: 

external (sunny) and internal (dark) position of the bent shoots, basal (second leaf 

from the base) and upper (leaf below the flower or bud) position of flower shoots 

(Calatayud et al., 2007).  

At the end of each flowering cycle (at times T1 and T3), 5 plants from each 

treatment were taken for destructive measurements. Fresh and dry weight (FW and 

DW respectively), and total N concentration of roots and leaves, which was done by 

using a C/N analyser (NC 2500, Eager 300 software®, CE instruments, ThermoQuest 

Italia, Rodano, Italy), were measured. 

Following previously described methodology (Chapter 3 of this thesis), daily water 

and nitrate uptake were measured throughout the experiment. 

Measurements of chlorophyll a fluorescence imaging  

CF imaging of rose leaves was performed using an imaging-PAM fluorometer (Walz, 

Effeltrich, Germany). Leaflets were darkened for 15 min prior to measurement. Then, a 

saturating pulse of light (blue light, 800 ms, 2400 µmol m-2 s-1) was applied and the 

maximum quantum yield of PSII photochemistry, Fv/Fm, which is equivalent to (Fm-

F0)/Fm (Schreiber et al., 1989), was determined being F0 the minimum fluorescence 

yield in the dark and Fm the maximal fluorescence yield after receiving the saturating 

pulse of light. Both Fm and F0 yields were measured by the equipment. Next, in order to 

assess light-adapted parameters, actinic illumination (blue light, 200 µmol m-2 s-1) was 

switched on and saturating pulses were applied at 20 s intervals for 5 min in order to 

determine the maximum chlorophyll fluorescence yield (Fm’), and the chlorophyll 

fluorescence yield during the actinic illumination before the saturation pulse (Fs). The 
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minimum fluorescence yield of the illuminated sample (F0’) was calculated according to 

Oxborough and Baker (1997). After 5 minutes, it was assumed that the steady state 

had been reached. The actual quantum efficiency of PSII photochemistry, φPSII, was 

calculated according to Genty et al. (1989) by the formula: (Fm’ − Fs)/Fm’. The 

coefficient of photochemical quenching based on the lake model, qL, was defined by 

Kramer et al. (2004) as:  
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The quantum yield of regulated energy dissipation in PSII, φNPQ, was calculated 

according to Kramer et al. (2004) by the equation:  
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The quantum yield of non-regulated energy dissipation in PSII, φNO, was 
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 where NPQ is defined as (Fm-Fm’)/Fm’. For more details about this technique see 

Calatayud et al. (2006). 

CF was measured in the central part away from the midrib of the terminal leaflet 

of n ≥ 6 leaves of each of the four types, and between 11:00 and 13:00 h to minimize 

diurnal fluctuations. CF kinetics was determined at times from T0 to T3, in plants at 

each nutrient solution temperature treatment.  

 Nitrate reductase activity 

Nitrate reductase activity (EC 1.6.6.1) was determined in vivo with methods described 

by Hageman and Hucklesby (1971) and Jaworki (1971). Discs of 1 cm diameter were 

punched out from fully expanded mature leaf tissue. 200 mg of discs per sample were 

introduced in a glass vial containing 10 mL of 100 mM potassium phosphate buffer 

(pH=7.5), 1% (v/v) n-propanol and 100 mM KNO3. The glass vial was subjected to 

vacuum infiltration in order to induce anaerobic conditions in the incubation medium. 

Plant samples were incubated in a water bath at 30 °C for 60 min in the dark and then 

placed in a boiling water bath for 5 min to stop the enzymatic reaction. Nitrite released 
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from plant material was determined colorimetrically at 540 nm (spectrophotometer 

Uvikon XS, Bio-Tek, USA) by adding 0.02% (w/v) N-(1-naphthyl)-

ethylenediaminehydrochloride and 1% sulphanilamide. In order to calculate the 

amount of NO2
- contained in the samples a standard curve with KNO2 was prepared. 

NR activity was measured in n ≥ 4 leaves of each type at times from T0 to T3 in both 

nutrient solution temperature treatments.  

Ammonium determination 

Ammonium was analysed in a FIA system (FIASTAR 5000, Foss Analytical, Höganäs, 

Sweden). Extraction of NH4
+ from leaves was performed by Husted et al. (2000) with 

slight modifications for adaptation to rose leaves. One gram of leaves was frozen in 

liquid N2 and homogenized with 10 mL of 10 mM cold formic acid. The homogenate 

was centrifuged twice at 25000 g (2 °C) for 10 min. The clarified supernatant was used 

for analysis in FIA system. Ammonium standard curve (0.010-1mg/L) was prepared 

with the extraction media as solvent. NH4
+ concentration was measured in n ≥ 4 leaves 

of each type at times from T0 to T3 in plants at both nutrient solution temperature 

treatments. 

Statistical analysis 

The effect of the nutrient solution temperature was evaluated using nine response 

variables, i.e. NH4
+ content, activity of the enzyme NR, NO3

- uptake, water absorption, 

total N concentration in the plant and four fluorescence parameters: Fv/Fm, φPSII, 

φNPQ y qL. All measurements were carried out in leaves except for NO3
- and water 

uptake that were done from nutrient solution samples and total N determination that 

was measured in both leaves and root parts.  

Nutrient solution temperature had 2 levels: cold and warm solution. Three more 

factors were included in the study. One factor was the position in the plant of the leaf 

sample analysed, with 4 levels: external and internal leaves of bent shoots, and highest 

and lowest leaves of the flowering stems. The two other factors were related to time, 

and were the flowering event (1st and 2nd) and the stage of development of the 

flowering shoot (stage 1: visible flower bud; stage 2: harvest time). The first reflected 

the variability in the parameters due to the change of the climatic conditions, and the 

second one, was related to the internal behaviour of the plant in two different 

development stages. When the main effect of stage of development of the flowering 

shoot was statistically not significant, both time factors were reduced to one, time 

event with 4 levels: T0, T1, T2 and T3 which was only related to the change in climatic 

characteristics.  
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The normality of the distribution was verified by Q-Q plot for most of the response 

variables, but Fv/Fm and φPSII showed non-normal behaviour. Because of that, Fv/Fm 

and φPSII populations were analysed by the Wilcoxon test for median comparison.  

For the rest of parameters, one-, two-, three- and four-way ANOVA were 

performed to compare the means of these parameters among the levels of the factors 

involved. For all inferences, 5% significance was specified. Calculations were made with 

the aid of a statistical software (Statgraphics Plus for Windows 4.1). 

Results 

Effect of nutrient solution temperature on nitrate and water uptake and total 

nitrogen in the plant 

For the analysis of NO3
- and water uptake, one-way ANOVA, with nutrient solution 

temperature as factor, was performed for each period of time (Table 1). The stage of 

development of the flowering shoot was not a significant factor. NO3
- uptake was 

statistically higher in the plants grown at cold solution, in all the periods of the 

experiment, except at the end of the second flowering event (T2-T3). Water 

absorption (Table 1) was statistically higher in plants grown at warm solution during all 

the experiment. NO3
- and water uptake were affected by the change in climate 

characteristics and increased with radiation. 

One-way ANOVA, with nutrient solution temperature as factor, was carried out to 

analyse the effect of temperature on total N concentration in both roots and leaves at 

the end of each flowering cycle. Plants grown at cold solution showed statistically 

higher levels of N concentration in the roots at the end of both flower cycles, but only 

at the end of the 1st one in the leaves (Table 1). 

Effect of nutrient solution temperature on biomass parameters 

The effect of nutrient solution temperature on total biomass per plant, on the thin-

white roots/suberized-brown roots ratio (TR/SR) and on the shoot/root ratio was 

studied (Table 1). At the end of the first flowering event, the total DW per plant was 

higher in the plants growing at cold solution (Table 1) with significant differences, 

while at the end of the 2nd one, no significant differences between temperature 

treatments were found.  

Plants growing at cold solution showed more succulent and white roots than 

plants grown at warm solution, where roots were mainly browner and more suberized. 
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Accordingly, the ratio between TR/SR (Table 1) was higher in plants grown at cold 

solution at the end of both flowering events.  

Table 1. Effect of cold (10 °C) and warm (22 °C) nutrient solution temperature (TS) on daily mean 
values of nitrate uptake (mmol NO3

- plant day-1) and water absorption (L plant day-1) in each 
period. Also, effect on total nitrogen in roots (Ntotal roots) and leaves (Ntotal leaves) (g N g DW-1), 
on dry weight per plant (g DW plant-1), on the relation between thin-white roots and suberized-
brown roots (TR/SR) and on shoot/root ratio (both ratios in dry weight basis) at the end of each 
flowering event for n=5 plants. Besides, solar radiation integral per period inside the greenhouse 
(Rad period-1, MJ m-2 period-1) and mean radiation during physiological measurements (Growth 
Rad) between 11:00 to 13:00 h (W m-2). The periods are: from flower soot pruning till the 
appearance of the visible bud of the immature flower shoot ((P-T0) in the 1st flower event and 
(T1-T2) in the 2nd flower event) and from the latter until the open flower is ready to harvest ((T0-
T1) in the 1st flower event and (T2-T3) in the 2nd flower event). For each period or flower event, 

one-way ANOVA was performed with solution temperature as factor. Values (means±SE) 
followed by the same letter within each period indicate not significant differences at 5%. 

Periods TS NO3
- uptake H2O absorption Rad period-1 Growth Rad 

P-T0 
10 

22 

1.724±0.09a 

1.377±0.10b 

0.154±0.01b 

0.229±0.01a 
139.39 298.95 

T0-T1 
10 

22 

2.083±0.13a 

1.499±0.11b 

0.199±0.02b 

0.271±0.02a 
62.70 370.79 

T1-T2 
10 

22 

2.588±0.10a 

2.279±0.07b 

0.261±0.04b 

0.434±0.03a 
121.63 461.30 

T2-T3 
10 

22 

4.044±0.38a 

4.410±0.41a 

0.653±0.04b 

0.842±0.05a 
222.68 444.32 

 

Flower 
event 

TS Ntotal roots Ntotal leaves g DW plant-1 TR/SR Shoot/Root 

1st 
10 

22 

3.011±0.07a 

2.484±0.07b 

2.837±0.07a 

2.532±0.08b 

258.11±10.6a 

198.38±10.6b 

1.06±0.06a 

0.78±0.06b 

6.41±0.35a 

5.66±0.39a 

2nd 
10 

22 

3.224±0.09a 

2.792±0.09b 

3.030±0.13a 

2.711±0.13a 

291.06±16.1a 

333.83±16.1a 

1.50±0.12a 

0.45±0.12b 

6.67±0.53a 

7.39±0.59a 
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Shoot/root ratio showed no statistical differences between temperature 

treatments in any of the two samplings.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Effect of two different nutrient solution temperatures: cold () and warm (�), on NH4

+ 
concentration (µmol NH4

+ g-1 FW) in internal and external leaves of bent shoots (A, B) and lower 
and upper leaves of the flowering stems (C, D) at four time events (T0: Shoots with visible 
flowering bud in the middle of January, T1: Flower stems in commercial harvesting stage at the 
beginning of February, T2: Shoots with visible flowering bud at the beginning of March and T3: 
Flower stems in commercial harvesting stage at the beginning of April). Data are means±SE of 
n=4. For each time event one-way ANOVA was performed with temperature of nutrient solution 
as factor. Values followed by the same letter within each time event indicate not significant 
differences at 5%. 

Effect of nutrient solution temperature on ammonium concentration 

The variation with time in the amount of NH4
+ in the leaves, at four leaf positions in 

plants grown at both nutrient solution treatments is shown in Fig. 1. A four-way 

ANOVA with solution temperature, leaf position, flowering event and stage of 

development of the flowering shoot as factors, showed that the stage of development 

of the flowering shoot was highly significant (p<0.0001). On average over levels of the 

rest of the factors, there was a higher amount of NH4
+ in the leaves at the visible bud 

stage (T0 and T2). Besides, the statistically significant 2-way interaction between 

solution temperature and flowering event (p=0.0004) suggested a different effect of 

solution temperature depending on the flowering event. On average, there was a 

significantly higher amount of NH4
+ in all leaf types of plants at cold solution during the 

second flower cycle, but only in the leaves of the bent shoots during the first one. 
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Fig. 2. Effect of nutrient solution temperatures: cold () and warm (�), on NR activity ((µmol 
NO2

- g-1 FW h-1) in external leaves of bent shoots (A) and in the rest of the leaves sampled 
(internal leaves of bent shoots, lower and upper leaves of the flowering stems) (B) along the 
experiment between the time event T0 and T3. Data are means±SE of n=4. For each time event 
one-way ANOVA was performed with temperature of nutrient solution as factor. Values 
followed by the same letter within each time event indicate not significant differences at 5%. 

Effect of nutrient solution temperature on NR activity 

The variation of NR activity in the leaves with time in plants grown at both nutrient 

solution treatments is shown in Fig. 2. 

A four-way ANOVA showed a significant interaction between solution temperature 

and leaf position (p=0.0019), which led to a separate analysis for the data of two parts 

of the plant where the effect of solution temperature on NR activity was opposite: 

external leaves of bent shoots (Fig. 2A), on the one hand, and the rest of the leaves 

(Fig. 2B), on the other hand. In plants at cold solution, the NR activity of the plants was 

higher (p=0.002) in the internal leaves of bent shoots and flowering stems, but lower 

(p=0.0023) in the external leaves of bent shoots. Additionally, stage of development of 

the flowering shoot had a significant effect (p=0.0001): NR was higher at the visible 

bud stage (T0 and T2) than at harvest time (T1 and T3). 
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Fig. 3. Changes in dark-adapted chlorophyll fluorescence parameter Fv/Fm at four time events 
(T0, T1, T2 and T3) with respect to nutrient solution temperatures (cold () and warm (�)) in 
internal and external leaves of bent shoots (A, B) and lower and upper leaves of the flowering 
stems (C, D). Data are medians of n= 6. For each time event the Wilcoxon test was performed 
with temperature of nutrient solution as factor. Values followed by the same letter within each 
time event indicate not significant differences at 5%. 

Effect of nutrient solution temperature on Fv/Fm 

Fv/Fm and φPSII were not analysed by ANOVA because of their non-normal distribution. 

Thus, the medians for each solution temperature treatment were compared by 

Wilcoxon test.  

Fv/Fm (Fig. 3) was higher in the leaves of plants grown at warm solution, and this 

difference was mainly due to the bent shoots (p=0.0016 (internal leaves) and p<0.0001 

(external leaves)). Differences between temperature treatments in the leaves of 

flowering shoots, were significant only at T3 in lower leaves and T1 and T2 in upper 

leaves), but not on average over all (p=0.2339 (lower leaves) and p=0.2914 (upper 

leaves)). 

Effect of nutrient solution temperature on φPSII 

Averaged over leaf position levels and times, φPSII was higher (p=0.0004) in the leaves 

of plants grown at cold solution. Significant differences occurred on average over leaf 

positions in the first three measurement times (p=0.0205, 0.0035 and 0.014, 

respectively), but not in the last one (p=0.804). Comparing results for each leaf 

position, solution temperature had a significant effect only in the external leaves of 

bent shoots (p=0.001) and the upper leaves of the flowering stem (p=0.0036) (Fig. 4). 
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Fig. 4. Changes in chlorophyll fluorescence parameter φPSII in internal and external leaves of 
bent shoots (A, B) and lower and upper leaves of the flowering stems (C, D) showing steady-
state values after fluorescence induction kinetics, at two nutrient solution temperatures (cold 
() and warm (�)) and at four time events (T0 to T3). Data are medians of n= 6. For each time 
event the Wilcoxon test was performed with temperature of nutrient solution as factor. Values 
followed by the same letter within each time event indicate not significant differences at 5%. 

Effect of nutrient solution temperature on qL 

qL and φNPQ followed the normal distribution, so the ANOVA test was applied.  

Averaged over the other factors, qL (Fig. 5) was higher in the leaves of plants 

grown at cold solution (p<0.0001). The effect was statistically significant at all time 

events (p<0.0028) and for all leaf types, except for the lower leaves of the flowering 

stem (p=0.0836). On the other hand, the effect of the stage of development of the 

flowering shoot was not significant.  

Effect of nutrient solution temperature on φNPQ  

Averaged over all measurement times, the effect of solution temperature on φNPQ 

was significant only in internal and external leaves of the bent shoots (p<0.009), where 

φNPQ was higher in the leaves of the plants grown at warm solution (Fig. 6).  
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Fig. 5. Changes in chlorophyll fluorescence parameter qL showing steady-state values after 
fluorescence induction kinetics, at two different nutrient solution temperatures ((cold () and 

warm (�)) and at four time events (T0 to T3). Data are means±SE of n=6 internal and external 
leaves of bent shoots (A, B) and lower and upper leaves of the flowering stems (C, D). For each 
time event one-way ANOVA was performed with temperature of nutrient solution as factor. 
Values followed by the same letter within each time event indicate not significant differences at 
5%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Quantum yield of regulated energy dissipation in PSII (φNPQ) showing steady-state values 
after fluorescence kinetics induction in internal and external leaves of bent shoots (A, B) and 
lower and upper leaves of the flowering stems (C, D) from T0 to T3 under two different nutrient 
solution temperatures (cold () and warm (�)). Data are means±SE of n=6. For each time event 
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one-way ANOVA was performed with temperature of nutrient solution as factor. Values 
followed by the same letter within each time event indicate not significant differences at 5%. 

Discussion 

Plants sense transient temperature fluctuations and may respond to these changes by 

actively adjusting their biology to fit the subsequent temperature regime. In our 

results, root morphology was considerably changed by nutrient solution temperature. 

A great proportion of roots at cold solution were white and succulent, while at warm 

solution roots were mainly brown and more suberized. Accordingly, the ratio obtained 

in our experiment between thin-white roots and suberized-brown roots was higher in 

plants grown at cold solution in both flowering events (Table 1). These morphological 

characteristics were also found by Dieleman et al. (1998) in rose plants and they were, 

maybe, the result of an adaptation process against the limitation of plant water 

absorption at low temperature, possibly caused by an increase of water viscosity and 

root hydraulic resistance (Pavel and Fereres, 1998; Toselli et al., 1999). Shanks and 

Laurie (1949) observed that rose plants grown at high temperatures produced fewer 

root hairs and the endodermis cells were filled with tannins. Early studies suggest that 

suberized roots are somewhat less permeable to water (Chapman and Parker, 1942; 

Kramer and Bullock, 1966) but, in our experiment, water uptake was higher in the 

warm solution treatment, where roots were more suberized.  

With respect to the influence of cold solution on NO3
- uptake, the results in the 

bibliography are contradictory. A decrease in N uptake has been measured at low 

temperatures (Dong et al., 2001). In contrast, after long-term exposure to low 

temperature, roots of rye, barley and maize increased their capacity for ion uptake 

(Siddiqi et al., 1984; Clarkson, 1986; White et al., 1987; Engels et al., 1992). This has 

been attributed to an increased number of ion transporters in the root plasma 

membrane (Siddiqi et al., 1984) maybe the consequence of higher shoot demand per 

unit root fresh weight (Clarkson et al., 1986; White et al., 1987; Engels et al., 1992). 

Also, increased plasma membrane H+-ATPase gene transcription and translation was 

shown in roots of cucumber at low temperature (Ahn et al., 1999). In our results (Table 

1), we have observed an increase in NO3
- uptake at cold solution with respect to warm 

solution, associated with an increase of total N in the plant. The higher capacity for 

NO3
- uptake while lower for water uptake indicates that plants grown at cold solution 

had to stimulate their NO3
- uptake mechanisms. This may reflect the first step of an 

adaptation process to suboptimal conditions. However, in the last period of the 

experiment (T2-T3), NO3
- uptake became similar in both temperature treatments 

suggesting an interaction between the increase of light intensity and photoperiod 

(spring) and the response to nutrient solution temperature (Browse and Xin, 2001). 

NO3
- and water uptake increased with radiation in this study.  
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The higher NO3
-
 uptake by roots at cold solution resulted in an increase of total N 

concentration in the leaves at the end of the first flowering event. In the same way, 

total N concentration of shoots and roots (Clarkson et al., 1986) and NO3
-
 

concentration in root xylem exudates (Bigot and Boucaud, 1996) have been referred to 

be positively affected by cold root treatment. Toselli et al., (1999) stated that the 

higher NO3
- uptake by roots at cold solution may increase the xylem flow of NO3

- to the 

leaves where it is reduced. The enzyme NR, which is involved in the reduction of NO3
- 

to nitrite, the first step of N assimilation, is induced by its own substrate (NO3
-) 

(Crawford, 1995). It hence follows that the higher the NO3
- concentration, the higher 

the activity of the enzyme. As expected in our case, a higher activity of NR was shown, 

on average, in leaves of rose plants grown at cold solution. The external leaves of bent 

shoots are the exception, where a higher activity was obtained at warm solution (Fig. 

2) and for which behaviour we do not have an explanation. NR activity was higher in 

the visible bud stage (T0 and T2) than in the commercial harvesting stage, for all leaf 

types. This effect can be associated with the support of bud growth demand (Mor and 

Halevy, 1979; Jiao and Grodzinski, 1998). The effect of this factor was more important 

than the effect of radiation, where the relation with NR activity is not so clear since it 

seems to be hidden by the former.  

The product of NR, nitrite, is converted into ammonium by nitrite reductase in the 

chloroplast, which is later transformed into amino acids (Husted et al., 2000). In our 

results with rose plants a higher NH4
+ concentration was obtained at cold solution (Fig. 

1). This was probably the consequence of a higher NR activity but also, it may be a 

result of the adaptation process. NH4
+ may be kept as a store of soluble N (Miller and 

Cramer, 2004). This would explain the behaviour of the external leaves of bent shoots, 

where a lower NR activity was linked to a higher NH4
+ concentration at cold solution 

compared to the warm treatment. On average, NH4
+ content was higher in the visible 

bud stage than in the commercial harvesting stage, which correlated with a higher NR 

activity in this stage too. As for NR activity, the effect of radiation seemed to be 

disguised by the effect of the stage of development of the flowering shoot, being the 

latter a more important factor affecting NH4
+ content. The upper leaves of flower 

stems had the highest NH4
+ concentration at the visible bud stage and this effect could 

indicate a major demand of NH4
+ for flower development (Jiao and Grodzinski, 1998; 

Gonzalez-Real and Baille, 2000). In contrast, external leaves of bent shoots had the 

lowest concentration of NH4
+, which suggests that part of the NH4

+ produced there was 

probably sent to the growing flower stems. 

Measurements of CF have been used to detect effects of stress on the functioning 

of the photosynthetic apparatus (Calatayud et al., 2004, 2006, 2007). In our results, the 

maximum quantum efficiency of PSII photochemistry (Fv/Fm) was, generally, higher in 

plants at warm solution (Fig. 3). The lower values of Fv/Fm in rose plants grown at cold 
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solution, were associated with a decrease in F0 paralleled to a decrease in Fm (data not 

shown). The decrease in Fv/Fm ratio could result from a reduction in the fraction of PSII 

centres that are capable of photochemistry and/or down-regulation (an increase in 

non-photochemical quenching, φNPQ) (Baker and Oxborough, 2004). However, except 

for the measurements at the end of the experiment, φNPQ was lower in plants grown 

at cold solution in some leaf types. Despite the possible decrease in the percentage 

functional PSII centres, the obtained φPSII values were high enough in plants grown at 

cold solution. Actually, the effective PSII quantum yield (Fig. 4) and the fraction of 

open PSII reaction centres (Fig. 5) were higher in plants grown at cold solution, which 

meant that the majority of photons absorbed by PSII were used in photochemistry and 

that PSII centres were maintained in an oxidised state. φPSII gives a measure of the 

rate of non-cyclic electron transport so it is an indication of overall photosynthesis. A 

positive correlation between the N content of leaves and photosynthetic activity has 

been reported in many plants (He et al., 2001; Chen et al., 2003). Therefore, the 

increase in photochemical activity experimented by plants at cold solution treatment, 

may be associated with the higher N content in leaves (Table 1), which is the result of a 

higher NO3
- uptake, a higher NR activity and NH4

+ content in those leaves. 

At the end of the experiment (T3) a change in the CF parameters with respect to 

solution temperature was observed. The parameters φPSII and qL became similar in 

both treatments and, for some types of leaves, φNPQ was significantly higher and Fv/Fm 

was significantly lower in plants at cold solution. These results suggest that at T3, there 

may have been a down-regulation of the capacity of PSII electron transport in plants at 

cold solution with respect to their capacity in the previous measurements, which 

involved increases in the thermal dissipation of excess excitation energy and a 

decrease in the percentage functional PSII centres. This was related to a similar NO3
- 

uptake and total N concentration in the leaves at both temperature treatments during 

this period. In the beginning of spring, light intensity and photoperiod improved, which 

may be involved in this response (Browse and Xin, 2001).  

CF parameters were not affected by the stage of development of the flower stem 

but all were modulated by radiation. This can be clearly observed in arched stem 

leaves. φPSII (Fig. 4) and qL (Fig. 5) decreased throughout the experiment with similar 

shape following an increase of sunlight radiation, which was associated with 

photoprotective thermal energy dissipation, that is, to an increase of φNPQ. This has 

been also reported by other authors (He et al., 1996; Calatayud et al., 2007). Maximum 

quantum efficiency of PSII photochemistry (Fv/Fm) increased with radiation as well (Fig. 

3). The pattern of the leaves in the flowering stems throughout the experiment is not 

that clear, maybe due to their higher sink strength. It seems that radiation is not the 
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only factor driving photosynthesis, but another internal factor may also have a strong 

impact on it.  

The highest values of φPSII and qL were obtained in leaves receiving high radiation, 

that is, upper leaves of flower stems and external leaves of bent shoots. This agrees 

with Jiao and Grodzinski (1998), who attributed the highest photosynthetic capacity to 

the upper leaves below flower bud measured at high PAR. In contrast, in the same type 

of leaves, the minimum values of Fv/Fm and φNPQ were obtained. These results were 

similar to those obtained by Calatayud et al. (2007).  

In conclusion, rose plants were well adapted to cold solution in winter in our 

experimental conditions without any decrease in dry biomass or photochemical 

activity. However, other climatic factors may modify this response. 
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4.2. NITROGEN AND CARBOHYDRATE DYNAMICS UNDER TWO DIFFERENT 

ROOT TEMPERATURES IN ROSE PLANTS. 

Abstract 

The effect of two different nutrient solution temperatures, cold (10 °C) and warm (22 °C), on 
nitrogen absorption, partitioning and dynamics, and on carbohydrates concentration and 
distribution throughout two flowering cycles (winter-spring) was studied in rose plants (Rosa 

hybrida var. Grand Gala grafted on Rosa Manetti). The 15N study showed that the level of N 
derived from the fertilizer (Ndf) in every plant compartment was higher in plants grown at cold 
nutrient solution during the 1st flower cycle. Also, during this cycle, a higher aerial biomass was 
observed in this treatment. The study of subsequent re-translocation of Ndf within the plant 
during the 2nd cycle showed that, in general terms, the roots, the structure and the stems of the 
bent shoots acted as sources while the rest of the aerial compartments acted as sinks. The 
solution temperature differenciated the Ndf dynamics of the thin root: at 10 °C they were sinks 
while at 22 °C they were sources. The concentration of soluble sugars and starch was higher at 
cold solution during the first cycle, mainly in the roots. However, the effect of low solution 
temperature depended on the season. At the end of the 2nd flower cycle, biomass and the 
concentration of soluble sugars and starch were similar at cold and warm solution. The 
differences in carbohydrates levels between the ends of the 1st and 2nd flowering cycle suggest 
that there might have been a substantial consumption of carbohydrates at cold solution during 
the 2nd cycle. Also, during this cycle, a higher aerial biomass production was observed at warm 
solution. Regarding yield, there were no differences between treatments at any cycle. These 
results suggest that rose plants have high capacity to adapt to cold solution in winter by 
increasing nitrogen absorption and carbohydrate levels in the roots.  

Introduction 

Roses are one of the most important cut flowers in greenhouse production of 

ornamentals in the world. Rose plants have multiple fast cycles of flower shoot growth 

over a year (Zieslin and Moe, 1985). Therefore, the year round production of cut roses 

demands a continuous supply of sugar and nitrogen to the developing flower shoots 

(Calatayud et al., 2007). Soilless cultivation techniques, often used for rose plants, 

enable the control of the root environment, including nutrition, irrigation, root 

temperature and aeration (Moss and Dalgleish, 1984). In spite of recent developments 

in these techniques, the nitrogenous fertilizers have been used in excess, with serious 

repercussions on both the environment and agricultural crops. The general strategy of 

soilless culture is based on supplying nutrient solution with an excess of 20-30% 

respect to the estimated needs of the crop (Cid et al., 2001). Therefore, rational 

guidelines that respect the environment and, at the same time, maintain production 

and flower quality, must be established for nitrogen fertilization. The first step is to 

understand how rose plants control the absorption and distribution of acquired 

nitrogen. Nitrogen fertilizer recovery by plants is influenced by many factors such as 

the nature of the plants and its roots system (Tamimi et al., 1999). In Chapter 4.1, it 
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has been shown that root temperature modified root morphology and nitrate uptake 

in rose plants. Limited information is available on the rate of uptake and distribution of 

nitrogen within rose plants exposed to low nutrient solution temperature, which is a 

common situation in greenhouses without heating in winter. Labeled 15N fertilizers 

have been used in several fruit species (Dong et al., 2001; Quiñones et al., 2003) to 

study the uptake, distribution of N and sink/source organs within the plant. In 

greenhouse roses, there are few studies about nitrogen uptake and partitioning 

(Cabrera et al., 1995) but, as far as we know, there is no research about nitrogen 

translocation in plants.  

Along with nitrogen, carbohydrates reserves play a crucial role in supporting 

growth (Zapata et al., 2004). The levels and translocation of carbohydrates are 

considered the main factors affecting the development of rose flowers (Kumar et al., 

2007). Carbon assimilation rate and export are influenced by the environmental 

conditions (Jiao and Grodzinski, 1996), by the demand for photosynthates in the sinks 

(Wardlaw, 1990) and by nitrogen supply (Druege et al., 2004). Storing nitrogen in the 

form of either protein or free amino acids requires carbon inputs to provide a carbon 

skeleton and energy supply (Cheng et al., 2004).  

The objective of this work was to study the effect of a plant external factor such as 

nutrient solution temperature on nitrogen uptake, partitioning and re-translocation, 

and on carbohydrate content, use and distribution within rose plants (Rosa x hybrida 

cv. Grand Gala) during two flower cycles under Mediterranean winter-spring 

greenhouse conditions. N uptake and distribution was studied in the 1st flower cycle, 

while re-translocation of N acquired during the 1st cycle was assessed in the 2nd flower 

cycle. Two different nutrient solution temperatures were chosen: 22 °C as the control 

temperature since it has been described as the optimum one (Zeroni and Gale, 1982), 

and 10 °C as the cold temperature, which can be achieved in winter in greenhouses 

without heating under Mediterranean conditions.  

Materials and methods 

Plant management and greenhouse conditions 

The experimental conditions and treatments were the same as described in Chapter 

4.1. The nutrient solution, which was renewed every week, had the following 

composition (mmol L-1): 5 NO3
- (isotopic enrichment of 4 % atom 15N excess); 0.5 

H2PO4
-; 0.5 SO4

2-; 2.5 K+; 1.5 Ca2+; 0.5 Mg2+. 15N-enriched solution was only applied 

during the first floral cycle (winter). The water for the nutrient solution was previously 

treated with reverse osmosis and ion columns.  
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The yield in fresh weight (FW) of all flower shoots harvested during each cycle was 

measured. At the end of each flowering cycle (1st and 2nd), 5 plants from each 

treatment were taken for destructive measurements 3 hours after sunrise. All samples 

of plant material were washed, divided into different compartments, frozen in liquid 

nitrogen, lyophilized-dried and milled. They were, then, ready for the measurements 

about nitrogen and carbohydrates. Dry weight of aerial and root biomass and of all 

plant compartments were measured. All the plants were separated in nine 

compartments (for each compartment, a number between brackets was assigned): 

thin roots (1), suberized roots (2), structural part (3), leaves of bent shoots (4), stems 

of bent shoots (5), leaves of flower shoots (6), stems of flower shoots (7), peduncle (8) 

and flower bud (9).   

Nitrogen measurements and calculations 

Three different measurements were carried out concerning nitrogen: nitrate (NO3
-) 

uptake, concentration of total nitrogen (N) and nitrogen derived from fertiliser (Ndf) in 

the plant. 

The measurement protocol of daily NO3
- uptake rate was described in Chapter 3. 

Nitrate uptake concentration (NUC) was calculated as the relation between the mmol 

of NO3
- absorbed and the L of nutrient solution absorbed by the plant. It is expressed 

as mmol NO3
- L-1 (Chapter 3 of this thesis).  

The allocation of nitrogen derived from the mineral N absorbed during the 1st 

flower cycle was determined by measuring the abundance of 15N in the different plant 

compartments of n=5 plants from each temperature treatment harvested at the end of 

this cycle (Dong et al., 2001; Meuriot et al., 2004). Total N (the sum of 14N and 15N) 

concentration (g N g DW-1 (%)) and 15N concentration in each compartment (g 15N g N-1 

(%)) were measured in continuous flow using a C/N analyser linked to an isotope ratio 

mass spectrometer (IRMS) (NC 2500, Eager 300 software®, CE instruments, 

ThermoQuest Italia, Rodano, Italy, and DELTAplus, Isodat NT 2.0 software®, 

ThermoQuest Finigan, Bremen, Germany, respectively). Natural 15N abundance 

(0.3663) of atmospheric N2 was used as reference for 15N analysis. The amount of N 

derived from fertilizer (g Ndf) in each compartment was calculated as: 

tcompartmenNg

fertilizerexcessNatom

tcompartmenexcessNatom

Ndfg ×





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









=
15

15
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%
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The amount of Ndf was also calculated on dry weight basis as g Ndf g DW-1 (%). 
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To analyse N partitioning within the plant in the 1st cycle, the percentage of Ndf in 

a compartment over the total amount of Ndf absorbed by the plant and on dry weight 

basis (g Ndfc g Ndft
-1 g DW-1 (%), where c means compartment and t means total) was 

calculated. All these equations were calculated for all compartments of plants at both 

temperature treatments sampled at the end of the 1st flower cycle since it was the 

cycle where 15N-enriched solution was applied. 

In order to analyse N re-translocation within the plants at any temperature 

treatment during the 2nd flower cycle, the difference of the percentage of Ndf in every 

compartment over the total Ndf in the plant between both cycles was calculated as: 

sttgNdf
cgNdf

ndtgNdf
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tgNdfcgNdf
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where 1st and 2nd are the flower cycles. 

Soluble sugars and starch 

Soluble sugars (SU) and starch (ST) were analysed using a colorimetric method based 

on McCready et al. (1950). For each plant compartment, 100 mg of lyophilised and 

milled sample were used for the analysis. The samples were mixed with heated 

ethanol and centrifuged. The liquid part contained the SU and the precipitate 

contained the ST. Anthrone-acid solution was added to the precipitate, which was 

placed in a boiling water bath. The resulting mixtures of SU and ST were read at 630 

nm (spectrophotometer Uvikon XS, Bio-Tek, USA). SU and ST were measured in all 

plant compartments of n=5 plants from each temperature treatment sampled at the 

end of both flower cycles.  

The amount of SU and ST in each compartment was expressed as g SU and g ST, 

and also on dry weight basis as g SU g DW-1 (%) and g ST g DW-1 (%). 

To analyse SU and ST partitioning within the plant in each cycle, the percentage of 

SU and ST in a compartment over the total amount of SU and ST in the plant and in dry 

weight basis (g SUc g SUt
-1 g DW-1 (%) and g STc g STt

-1 g DW-1(%), where c means 

compartment and t means total) was calculated.  

The relationship between carbon (C) and N levels in the plant was studied by 

calculating C/N ratio in every compartment. C content was measured by a C/N analyser 

(NC 2500, Eager 300 software®, CE instruments, ThermoQuest Italia, Rodano, Italy). 

All these equations were calculated for all compartments of plants at both 

temperature treatments sampled at the end of both flower cycles. 
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Statistical analysis 

The effect of the temperature of the nutrient solution on the concentration and 

distribution of soluble sugars, starch and Ndf was evaluated in rose plants by means of 

one-way ANOVA with nutrient solution temperature as factor. It had 2 levels: warm 

temperature, which was the control treatment, and cold temperature. In order to 

analyse the change in the content of carbohydrates in each nutrient solution 

treatment during the 2nd flowering event, the flowering event was considered as 

factor, with 2 levels: 1st and 2nd flowering event. Normality of distribution was verified 

by Q-Q plot. For all inferences, α=0.05. Calculations were made with the aid of a 

statistical software (Statgraphics Plus for Windows 4.1). 

Table 1. Effect of cold (10 °C) and warm (22 °C) nutrient solution temperature (TS) on daily mean 
values of nitrate uptake concentration (NUC, mmol NO3

- L-1 nutrient solution) throughout each 
flowering cycle. Also, effect on values of aerial and root biomass on dry weight basis (g DW) and 
on yield of flower stems (Yield, g FW plant-1) at the end of each flowering cycle for n=5 plants. 
For each flowering cycle, one-way ANOVA was performed with solution temperature as factor. 
Values (means±SD) followed by the same letter within each cycle indicate not significant 
differences at 5%. 

 

Flowering 
cycle 

TS NUC Aerial 
biomass 

Root 
biomass 

Yield  

1st 
10 11.7±3.2a 221.16±20a 36.94±6.4a 50.50±14a 

22 5.98±2.3b 165.64±10b 32.74±8.6a 47.70±17a 

2nd 
10 7.58±3.3a 251.13±16a 39.94±7.7a 172.4±30a 

22 5.37±1.8b 289.96±41a 43.86±7.7a 203.2±18a 

Results 

Biomass parameters 

At the end of the 1st flower cycle, plants grown at 10 °C had developed statistically 

higher aerial biomass than plants grown at 22 °C, while root biomass and yield of 

flower shoots were similar between treatments (Table 1). At the end of the 2nd flower 

cycle, there were not significant differences between treatments regarding yield of 

flower shoots and aerial and root biomass. Between the 1st and 2nd cycle both aerial 

and root biomasses increased in both treatments, with statistical differences in the 

case of aerial biomass (p=0.0005). The relation between produced biomasses of the 
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second and the first cycle was higher for plants at warm solution (175%) than at cold 

solution (113.5%) (Table 1).  

Fig. 1. Effect of nutrient solution temperature ((cold ( ) and warm ( )) on the amount 
of nitrogen derived from fertiliser (g Ndf) in every compartment (A); the relationship between g 
Ndf and g DW in plants at cold solution (O) (g Ndf = 0.0045 g DW + 0.0507; R2 = 0.946) and warm 
solution (�) (g Ndf = 0.0023 g DW + 0.0308; R2 = 0.872) (B); the effect of nutrient solution 
temperature on the concentration of Ndf in every compartment per 100 g of dry weight of the 
compartment (g Ndf g DW-1(%)) (C), and on the percentage of Ndf in a compartment over the 
total amount of Ndf absorbed by the plant and on dry weight basis (g Ndfc g Ndft

-1 g DW-1 (%), c 
means compartment and t means total) (D). Moreover, In A, C and D, the numbers on the X-axis 
are related to the different plant compartments: 1 (thin roots), 2 (suberized roots), 3 (structural 
part), 4 (leaves of bent shoots), 5 (stems of bent shoots), 6 (leaves of flower shoots), 7 (stems of 
the flower shoots), 8 (peduncle) and 9 (flower bud). For each compartment, one-way ANOVA 
was performed with solution temperature as factor. Values are means±SD of n=5. Columns with 
the same letter within each compartment indicate not significant differences at 5% between 
temperature treatments.  

N absorption by the plant 

The destination of N absorbed by the roots during the first flower cycle was tracked 

using 15N in the fertiliser. It revealed that plants at cold solution had statistically more 

Ndf (1.628 ± 0.253 g Ndf) than plants at the warm one (0.87 ± 0.418 g Ndf). In Fig. 1A, 

it is possible to see how many Ndf had ended up in each compartment of the plant at 
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the end of the 1st flower cycle. There were statistically more g of Ndf in the thin roots 

(1), the structural part (3), the leaves of the arched shoots (4) and the peduncle (8) of 

plants at cold solution. However, this parameter can be misleading since the amount 

of Ndf in a compartment is strongly related to the amount of biomass of it, being this 

regression much steeper for the cold solution (see Fig. 1B). So, to get rid of the 

overlapping effect of biomass, the parameter g Ndf was calculated on dry weight basis 

(Fig. 1C).  

The ratio g Ndf g DW-1 (%) was statistically higher in all compartments of plants at 

cold solution at the end of the 1st flower cycle. The greatest difference between 

treatments was found in the thin roots (1) and the lowest in the flowering bud (9), 

where g Ndf g DW-1 (%) was 65.4% and 20% lower in the warm treatment, respectively. 

The parameter g Ndf g DW-1 (%) was generally higher in the 4 compartments related to 

the flower shoots (6, 7, 8, 9), and lower in the structural part of the plant (3) (Fig. 1C). 

The whole plant grown at cold solution absorbed much more g Ndf per g (DW) than 

plants at warm solution (0.67 ± 0.032 vs 0.375 ± 0.078 g Ndf g DW-1 respectively). This 

is in agreement with the results about nitrate uptake per plant (Chapter 4.1 of this 

thesis), which was statistically higher in plants at cold solution during the 1st flower 

cycle. However, at the end of the 2nd flower cycle, no differences were found between 

treatments. In contrast, nitrate uptake concentration (NUC) was statistically higher, for 

both flower cycles, in plants at cold solution (Table 1). 

N partitioning in the plant 

To avoid the overlapping effect of biomass in Ndf partitioning, the percentage of Ndf 

on a compartment over the total amount of Ndf absorbed by the plant was calculated 

on dry weight basis for each of the treatments at the end of the first flower cycle, and 

the comparison between them can be seen in Fig. 1D. The low temperature of the 

nutrient solution affected N partitioning in the plant by increasing the percentage of 

Ndf distributed to 1 g of thin roots (1) and by decreasing the percentage of Ndf 

destined to 1 g of leaves of the flowering shoots (6) and to 1 g of flower bud (9). Even 

though the percentage destined to the leaves of the flowering shoots (6) and to the 

flower bud (9) was lower in the cold treatment, as the whole plant absorbed more Ndf, 

the final amount in each gram (DW) of the compartment was higher in plants at cold 

solution (Fig. 1C).  

Nitrogen dynamics in time 

Once N absorbed by the plant has arrived to its destiny, it can remain there or it can be 

re-translocated to another compartment. In order to know how the absorbed N during 

the 1st cycle moved in the 2nd cycle within the plant, no 15N was used in the fertiliser 

during the 2nd cycle. All the 15N measured in the plants at the end of the 2nd flower 
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cycle had been absorbed in the 1st one. Thus, except for the 15N contained in few plant 

parts that may had died during the 2nd cycle, mainly some leaves of bent shoots and 

thin roots, the amount of Ndf in the whole plant at the end of both cycles was very 

similar (data not shown). What could have changed was the percentage of Ndf in each 

of the compartments over the total Ndf in the plant, which would be related to re-

translocation of acquired Ndf within the plant. The difference between this percentage 

in the 2nd and 1st flower cycle is shown in Fig. 2.  

 

 

 

 

 

 

 

 

Fig. 2. Difference of the percentage of nitrogen derived from fertiliser (Ndf) in every 
compartment over the total Ndf in the plant between the 2nd and 1st flower cycle in the cold 

( ) and warm ( ) treatment (Δ g Ndfc g Ndft
-1, c means compartment and t means 

total). The numbers on the X-axis are related to the different plant compartments: 1 (thin roots), 
2 (suberized roots), 3 (structural part), 4 (leaves of bent shoots), 5 (stems of bent shoots), 6 
(leaves of flower shoots), 7 (stems of the flower shoots), 8 (peduncle) and 9 (flower bud). Values 
are means±SD of n=5.  

As the aim is to represent what happens in the 2nd flower cycle, in the case of the 

calculation of N dynamics in the flower shoots, the starting point was Ndf=0, since at 

the end of the 1st flower cycle all flower shoots of the plants were cut. The positive 

values indicate that the percentage of Ndf in that compartment over total Ndf in the 

plant had increased during the 2nd cycle. This means that the compartment was a sink 

of N as it attracted N from the other plant parts. The negative values denote that the 

percentage of Ndf in that compartment had decreased during the 2nd cycle, which 

means that either some death had occurred in that compartment during the 2nd cycle, 

or that the compartment was a source of N towards other plant parts that acted as 

sink. According to that reasoning, the whole flower shoots (6, 7, 8, 9) and the leaves of 

the arched shoots (4) were sinks of N, while the suberized roots (2), the structural part 

(3) and the stems of the arched shoots (5) were sources of N. On the other hand, the 

temperature of the nutrient solution differentiated the dynamics of the thin roots (1). 
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At the cold solution, thin roots were sinks, while in the warm one they behaved as 

sources. Alternatively, N losses may have occurred due to root death in this treatment. 

Besides, the structure (3) was a stronger source at cold than at warm solution. 

Fig. 3. Effect of nutrient solution temperature ((cold ( ) and warm ( )) on the amount 
of soluble sugars (g SU) at the end of the 1st flower cycle (A) and 2nd flower cycle (B), and on the 
amount of starch (g ST) at the end of the 1st flower cycle (C) and 2nd flower cycle (D) in every 
plant compartment. The numbers on the X-axis are related to the different plant compartments: 
1 (thin roots), 2 (suberized roots), 3 (structural part), 4 (leaves of bent shoots), 5 (stems of bent 
shoots), 6 (leaves of flower shoots), 7 (stems of the flower shoots), 8 (peduncle) and 9 (flower 
bud). For each compartment, one-way ANOVA was performed with solution temperature as 
factor. Values are means±SD of n=5. Columns with the same letter within each compartment 
indicate not significant differences at 5% between temperature treatments. 

Soluble sugars and starch content in the plant 

Concerning the whole plant, at the end of the 1st flower cycle, the amount of soluble 

sugars was statistically higher in plants at cold than at warm solution (11.156 ± 1.698 

vs 7.757 ± 2.311 g SU, respectively) while the amount of starch was similar in both 

treatments (38.076 ± 9.656 (cold) vs 29.378 ± 12.308 (warm) g ST). At the end of the 

2nd flower cycle, no differences were found between treatments related to the amount 

of soluble sugars (11.232 ± 2.992 (cold) vs 14.347 ± 3.736 (warm) g SU) and starch 
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(35.516 ± 10.817 (cold) vs 36.588 ± 8.113 (warm) g ST). However, regarding each 

compartment separately (Fig. 3), the amount of SU (Fig. 3A, 3B) and ST (Fig. 3C, D) 

were statistically higher at the end of both flower cycles in the thin roots (1) of plants 

at cold solution. In addition, at the end of the 1st flower cycle, there was a higher 

amount of SU in the structural part (3) of plants at cold solution (Fig. 3A, C). The 

content of ST was lower, at the end of the 2nd flower cycle, in the bent stems (5) of 

plants at the cold treatment (Fig. 3D). 

As for Ndf, the problem of using the amount of SU and ST to compare treatments 

can be confusing since both are strongly linked to biomass. There is a linear 

relationship (data not shown) between g SU and g (DW) and also between g ST and g 

(DW) very similar to the one seen in Fig. 1B, with R2 between 0.88 and 0.99, and with a 

higher slope for the cold treatment. That is why g SU and ST were calculated for each 

compartment on dry weight basis (Fig. 4).  

At the end of the 1st flower cycle, g SU g DW-1 (%) was statistically higher in whole 

plants at cold solution (4.607 ± 0.415 vs 3.447 ± 0.534 g SU g DW-1 (%)) while g ST g 

DW-1 (%) did not show significant differences between treatments concerning whole 

plants (15.446 ± 1.667 (cold) vs 12.826 ± 3.283 (warm) g ST g DW-1 (%)). At the end of 

the 2nd flower cycle, no differences were found between treatments on the amount of 

soluble sugars (3.801 ± 0.853 (cold) vs 4.293 ± 0.237 (warm) g SU g DW-1 (%)) and 

starch on dry weight basis (11.963 ± 2.817 (cold) vs 11.058 ± 0.925 (warm) g ST g DW-1 

(%)) of complete plants.  

The g SU and ST g DW-1 (%) for each compartment are represented in Fig. 4. At the 

end of the 1st cycle (Fig. 4A), g SU g DW-1 (%) was statistically higher in thin and 

suberized roots (1, 2), the structural part (3) and the flower stems (7) of plants at cold 

solution, while it was lower in the leaves of the arched shoots (4). Also, g ST g DW-1 (%) 

was statistically higher in thin and suberized roots (1, 2) and the peduncle (8) of plants 

at cold solution (Fig. 4C). At the end of the 2nd flower cycle, g ST g DW-1 (%) was 

statistically higher in suberized roots (2) and structure (3) at the cold treatment (Fig. 

4D). For the rest of the compartments, no differences were found between 

temperature treatments concerning SU and ST concentration (Fig. 4B, D).  

Carbohydrates partitioning in the plant 

So as to understand the distribution of carbohydrates within the plant, the percentage 

of SU or ST in a compartment over the total amount of SU or ST in the plant and on dry 

weight basis (to avoid the overlapping effect of biomass in carbohydrates partitioning), 

was calculated for each treatment at the end of both flower cycles, and the 

comparison between them can be seen in Fig. 5. 
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At the end of the 1st flower cycle, the percentage of SU and ST distributed to 1 g 

(DW) of thin roots (1) over the total amount of SU (Fig. 5A) and ST (Fig. 5C) in the plant, 

was statistically higher in the cold treatment, while the percentage of SU distributed to 

1 g of bent shoots (4, 5) and to 1 g of flower shoot (6, 7, 9) except for the peduncle (8) 

(p=0.0675) was statistically lower in this treatment. However, at the end of the 2nd 

flower cycle, no differences were found between treatments (Fig. 5B, D).  

Fig. 4. Effect of nutrient solution temperature ((cold ( ) and warm ( )) on the 
concentration of soluble sugars per 100 g of dry weight of the compartment (g SU g DW-1(%)) at 
the end of the 1st flower cycle (A) and 2nd flower cycle (B), and on the concentration of starch per 
100 g of dry weight of the compartment (g ST g DW-1 (%)) at the end of the 1st flower cycle (C) 
and 2nd flower cycle (D) in every plant compartment. The numbers on the X-axis are related to 
the different plant compartments: 1 (thin roots), 2 (suberized roots), 3 (structural part), 4 (leaves 
of bent shoots), 5 (stems of bent shoots), 6 (leaves of flower shoots), 7 (stems of the flower 
shoots), 8 (peduncle) and 9 (flower bud). For each compartment, one-way ANOVA was 
performed with solution temperature as factor. In the same graph, a pair of columns within a 
compartment with the same lower-case letter indicates not significant differences at 5% 
between temperature treatments. Also, for each compartment, one-way ANOVA was performed 
with the flower cycle as a factor with 2 levels (1st and 2nd). A pair of columns placed each one in a 
different graph (A and B for SU, or C and D for ST) within the same compartment, belonging to 
the same temperature treatment, and having a different capital letter indicates significant 
differences at 5% between the end of both flower cycles. The absence of capital letters means 
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that there were not significant differences at 5% between the end of both flower cycles. Values 

are means±SD of n=5. 

Fig. 5. Effect of nutrient solution temperature ((cold ( ) and warm ( )) on the 
percentage of soluble sugars in a compartment over the total amount of soluble sugars in the 
plant and on dry weight basis (g SUc g SUt

-1 g DW-1(%), c means compartment and t means total) 
at the end of the 1st flower cycle (A) and 2nd flower cycle (B), on the percentage of starch in a 
compartment over the total amount of starch in the plant and on dry weight basis (g STc g STt

-1 g 
DW-1(%), c means compartment and t means total) at the end of the 1st flower cycle (C) and 2nd 
flower cycle (D) in every plant compartment. The numbers on the X-axis are related to the 
different plant compartments: 1 (thin roots), 2 (suberized roots), 3 (structural part), 4 (leaves of 
bent shoots), 5 (stems of bent shoots), 6 (leaves of flower shoots), 7 (stems of the flower 
shoots), 8 (peduncle) and 9 (flower bud). For each compartment, one-way ANOVA was 
performed with solution temperature as factor. Values are means±SD of n=5. Columns with the 
same letter within each compartment indicate not significant differences at 5% between 
temperature treatments. 

Changes in carbohydrate content between the end of two successive cycles 

When comparing the levels of sugars and starch at the end of each cycle, differences 

were found, which depended on the temperature treatment. One-way ANOVA was 

carried out for each compartment taking the flower cycle as factor and g SU or ST g 

DW-1 (%) as response variables (Fig. 4, see capital letters). As plant samples for these 

measurements were taken at the end of both flower cycles, whenever significant 
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differences were found, they illustrated that during the 2nd flower cycle some increase 

or decrease in the concentration of SU or ST had happen in a given compartment.  

In the cold treatment, a significant decrease of g SU g DW-1 (%) (Fig. 4A, B) 

between cycles was observed in some compartments such as the suberized roots (2), 

the structural parts (3) and the flower stems (7), while a decrease of ST g DW-1 (%) (Fig. 

4C, D) was seen in the roots (1, 2), the bent stems (5) and flower stems (7)  

On the other hand, plants at warm solution did not experience such decrease 

except for the leaves of bent shoots (4) and structural part (3), where g SU and ST g 

DW-1 (%) decreased, respectively, during the 2nd cycle. What is more, the % g SU and ST 

g DW-1 increased during the 2nd cycle in the flower bud (9). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Effect of nutrient solution temperature ((cold ( ) and warm ( )) on the carbon 
(g) and nitrogen (g) ratio (C/N) at the end of the 1st flower cycle (A) and at the end of the 2nd 
flower cycle (B). The numbers on the X-axis are related to the different plant compartments: 1 
(thin roots), 2 (suberized roots), 3 (structural part), 4 (leaves of bent shoots), 5 (stems of bent 
shoots), 6 (leaves of flower shoots), 7 (stems of the flower shoots), 8 (peduncle) and 9 (flower 
bud). For each compartment, one-way ANOVA was performed with solution temperature as 
factor. Values are means±SD of n=5. Columns with the same letter within each compartment 
indicate not significant differences at 5% between temperature treatments. 
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Relation between N and C in the plant 

C/N ratio was calculated to know how the temperature of the nutrient solution had 

affected the relationship between C and N levels in the plant (Fig. 6). 

In both treatments, C/N ratio (Fig. 6A, B) was higher for the structural part (3), 

stems (5, 7) and peduncle (8). Comparing temperature treatments, this ratio was 

statistically higher in plants at warm solution in different compartments: thin roots (1), 

structural part (3), leaves of bent and flower shoots (4, 6) and peduncle (8) at the end 

of the 1st flower cycle (Fig. 6A), and thin roots (1) and bent and flower stems (5, 7) at 

the end of the 2nd one (Fig. 6B).   

Discussion 

Nitrogen demand depends on the stage of development of the plant (Cabrera et al., 

1995) and on the climatic conditions (Imsande and Touraine, 1994), among other 

factors. For instance, in Chapter 4.1 of this thesis we observed, in general terms, that 

roots of rose plants absorbed more nitrate when growing at cold nutrient solution (10 

°C) than if grown at 22 °C. In the cold treatment, roots were white and succulent and 

absorbed less water, while leaves increased their nitrate reductase activity, NH4
+ 

concentration and the activity of the photosynthetic light reaction with respect to rose 

plants grown at warm solution (22 °C). In this work we have shown that this improved 

metabolism leads to a higher concentration in the plant of carbohydrates and N 

derived from the fertiliser (Ndf), with a clear increase in the distribution of them, 

mainly, towards the thin roots. Nitrogen levels in the plant seemed to be more 

affected by the cold nutrient solution than carbon levels but, in any case, the effect of 

nutrient solution temperature is not simple but depends on air climatic variables linked 

to the change of the season. 

In this study, at the end of the first flowering cycle that took place in winter, plants 

at cold solution had statistically higher concentration of Ndf in all their compartments 

(Fig. 1), in relation to a higher NUC (Table 1) and a higher NO3
- uptake during that 

period (Chapter 4.1 of this thesis). In other studies, low root temperature increased 

leaf N concentration in tomatoes (Gosselin and Trudel, 1983) but reduced N content in 

peppers (Gosselin and Trudel, 1986). The Ndf in dry matter is frequently used as an 

indication of how adequate N supply is for crop growth (Lawlor et al., 2001). Most of 

the leaf N is present within the chloroplast, with a large proportion being a component 

of RuBisCO (Evans, 1989; Jensen, 2000). Thus, the higher concentration of Ndf 

measured might have contributed to a higher photochemical activity as observed in 

the leaves of plants at cold solution (Chapter 4.1, this thesis). The improved NO3
- 

uptake in the cold treatment may be due to an enhancement of the active NO3
- uptake 
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mechanisms of the roots. At cold solution the assimilate supply to the roots was not 

inhibited and even it was improved as indicated by the higher non-structural 

carbohydrates concentration (Fig. 4). Similar results were obtained in maize and wheat 

by Engels (1994). The addition of carbohydrates to the nutrient solution is known to 

increase NO3
- uptake (Delhon et al., 1996). 

Once absorbed, Ndf was distributed within the plant depending on the biomass of 

the compartment, that is, the bigger the compartment, the more Ndf destined to it, 

and on the sink strength of the compartment (Fig. 1). The flower shoots and the leaves 

of the bent shoots, organs with a high growth rate, appeared to be the compartments 

with the highest sink strength since they received a higher amount of Ndf per gram 

(DW) than the other compartments, both directly by root absorption or indirectly 

through re-translocation from other parts of the plant. Besides biomass and sink 

strength, the temperature of the nutrient solution modulated the distribution of Ndf 

by increasing the percentage of Ndf destined to each gram of thin roots and reducing 

the percentage destined to each gram of leaves of the flower shoots and the flower 

bud in plants with their roots at 10 °C (Fig. 1). In this treatment, thin roots strongly 

increased their sink strength with respect to the warm treatment. The greatest 

difference between treatments concerning the amount of Ndf per gram (DW) was 

observed in this compartment (Fig. 1) and, in the cold solution, thin roots seemed to 

receive Ndf through re-translocation from other compartments while, at the warm 

treatment, they did not (Fig. 2). Some studies have demonstrated that low 

temperature induces changes in source-sink relationships for N leading to a 

preferential allocation of N to the roots associated with an increase in the total soluble 

protein pool (Noquet et al., 2001).  

In rose plants, endogenous N is redistributed within the plant during each 

flowering cycle (Cabrera et al., 1995). In our results (Fig. 2), suberized roots, structure 

and stems of arched shoots represented the major source organs in rose plants at cold 

and warm solution, and N was redistributed from these organs to support, mainly, the 

flower shoot demand. Cabrera et al. (1995) showed that the N absorbed by the roots 

could supply 16% of the total N content of the flower shoot. But, not only were the 

flower shoots the sinks, but also the leaves of the bent shoots, which received N 

possibly from the bent stems. The bent shoot has been described as a promoter of the 

initiation and growth of vigorous flower stems (Calatayud et al., 2007). As stated 

before, the N remobilisation within the plant was affected by solution temperature, 

and this effect was observed mainly in two compartments: thin roots and structure. At 

cold solution, thin roots acted as sinks while at warm solution they were sources of N. 

This can be explained by the fact that, at cold solution, the plants had a higher 

proportion of thin root versus suberized root, being the first one more effective in 

mineral uptake (Murisier, 1996; Dong et al., 2003). As new tissues act as sinks for N 
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(Faust, 1989; Dong et al., 2001), the mobilization of N from source organs was 

necessary to support the growth and enhanced metabolism of thin roots.  

On the other hand, the structure was a more important N source at cold than at 

warm solution. The structure, as all perennial organs of woody plants, may have a 

storage function (Kool et al., 1997). In the cold treatment during the first cycle, the 

structure accumulated more amount of Ndf (Fig. 1), and the higher capacity of 

accumulation of N may have provided subsequently higher source (export) capacity in 

the 2nd cycle (Fig. 2). Nutrient translocation rate in the xylem may depend on several 

processes: 1) net uptake of nutrients by the roots from the external solution, 2) the 

fraction of 1) which is retained in the roots for storage or root growth, 3) the amount 

of nutrient recycled in the phloem from the shoot to the root and 4) the fraction of 3) 

which is stored in the roots or utilized for root growth (Engels et al., 1992). Any of 

these processes may be affected by cold solution temperature in order to get Ndf 

through re-translocation in the thin roots.  

Along with nitrogen, carbohydrates reserves play a crucial role in supporting plant 

metabolism and growth (Zapata et al., 2004). At the end of the first flower cycle, whole 

plants had higher concentration of soluble sugars at cold than at warm nutrient 

solution. This means that there may be a higher production of carbohydrates during 

the first cycle in the cold treatment, which agrees with the fact that the photosynthetic 

light reaction was stimulated (Chapter 4.1, this thesis). Low temperature has been 

described to increase the carbohydrates content in roses (Kool et al., 1997). Looking 

into the soluble sugars and starch concentrations of the different plant compartments 

(Fig. 4), it could be suggested that some of the extra soluble sugars accumulated at 

cold solution in the less photosynthesizing compartments such as roots, structure or 

stems of flower shoots, were probably produced in the leaves of bent shoots and 

remobilized. Furthermore, the higher accumulation of carbohydrates in the form of 

starch in the roots and peduncle (Fig. 4) could indicate either that the concentration of 

soluble sugars was too high that a conversion to starch was promoted or that the 

possible mild stress caused by the cold solution stimulated a conversion of soluble 

sugars to starch to better keep carbohydrate reserves. The latter was observed in 

Norway spruce by Repo et al. (2004). Alternatively, if respiration increases 

exponentially with temperature, at cold solution, a lower respiration would consume 

fewer amounts of reserves.  

The distribution of soluble sugars and starch within the plant depended on the 

biomass of the compartment and source strength, i.e. net carbohydrate production of 

the photosynthetically active tissues. In addition, the temperature of the nutrient 

solution had an effect on the partitioning of carbohydrates. For both treatments, the 

higher soluble sugar concentration was in the photosynthetic compartments, in the 
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peduncle and in the flower bud (Fig. 4), which can be due to mobilization reserves 

from root to leaves with starch hydrolysis and/or synthesis of sugars in situ. Mor and 

Halevy (1979) reported that rose shoots are strong sinks for photoassimilates. For both 

treatments, the starch concentrations were higher in suberized roots and structural 

parts. These results confirm those previously reported for roses (Roca et al., 2005) and 

for other woody species like grape (Zapata et al., 2004), apple (Loescher et al., 1990) or 

birch (Soljeld and Johnsen, 2006). Carbohydrates reserves in roots are essential for 

flower production. With regard to the temperature of the nutrient solution, the 

percentage of soluble sugars and starch given to the thin roots increased in plants at 

cold solution during the 1st cycle, while this priority was done by distributing a lower 

percentage of soluble sugars to almost all the aerial compartments compared to plants 

at 22 °C (Fig. 5).  

C and N metabolism are linked by shared intermediates and products and also by a 

complex network of cross-talking signal pathways (Miller and Cramer, 2004). An 

evaluation of C/N balance (Fig. 6) indicates that it was lower in plants at cold solution 

which means that, the low solution temperature stimulated N uptake in a greater 

extent than C production. Similar results were obtained in rose plants by Hambrick et 

al. (1991). Compartments with lower C/N ratio have been described (Haneklaus and 

Schung, 2004) as having rapid growth and more plasticity in allocation, and this 

corresponds in our studies with thin roots, suberized roots, leaves of bent and 

flowering stem and flower bud, which are compartments with high growth potential. A 

higher C/N value may reflect a more active carbon import by the structure, stem of 

bent shoot, flowering stem and peduncle. C/N ratio of the different compartments, 

showed the same shape in 1st and 2nd cycle. Between treatments, there were more 

significant differences during the 1st cycle, in association with a higher NO3
- uptake and 

higher biomass in the aerial part of plants at cold solution.  

At the end of the 2nd flower cycle that took place at the end of winter and 

beginning of spring, the situation observed in the plant was quite different since the 

differences between temperature treatments diminished. For example, NO3
- uptake, 

which increased with respect to the 1st cycle in both treatments, was similar in plants 

at 10 °C and 22 °C (Chapter 4.1, this thesis). The concentration of soluble sugars and 

starch were also similar between treatments, and the only significant difference was 

found in the concentration of starch of suberized roots and structure. There was no 

priority in the destiny of carbohydrates towards the thin roots and the partitioning 

percentages were similar in plants at cold and warm solution. Aerial and root biomass 

were also similar between treatments. Moreover, the photochemical activity became 

similar between treatments (Chapter 4.1, this thesis). However, some differences were 

observed between treatments when comparing the 1st and 2nd cycle. On the one hand, 

in the cold treatment, a significant decrease of soluble sugars and starch between the 
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1st and 2nd cycle took place in many plant compartments, while in plants at warm 

solution there was some decrease but not so strong (Fig. 4). On the other hand, 

between the 1st and 2nd cycle, there was an increase in the production of aerial 

biomass in both treatments, but it was much higher in the warm treatment. The 

assimilates production is generally higher in spring than in winter due to higher light 

and air temperature, and a use of reserves is normal in woody plants in this period. An 

increase in the content of carbohydrates has been described in many species under 

winter conditions: maize and wheat (Engels, 1994; Guedira and Paulsen, 2002), birch 

(Solfjeld and Johnsen, 2006) and roses (Schrock and Hanan, 1981; Kool et al., 1997). 

Storage and mobilization of carbohydrates reserves are essential for winter survival 

and regrowth of perennial plants in spring (Loescher et al., 1990). Therefore, it could 

be suggested that the decrease in the levels of carbohydrates in spring could be 

related to the use of reserves, being this higher for plants at cold solution. Plants of 

this treatment decreased their carbohydrate levels much more than plants at warm 

solution in order to obtain the same yield at the end of the cycle. Besides, even though 

the decrease in carbohydrates was higher at cold solution, the increase in aerial 

biomass during the 2nd cycle was much lower in this treatment.  

The differences in the effect of nutrient solution temperature depending on the 

flower cycle may be due to a) the result of the different current environmental 

conditions (e.g. light, air temperature), which entails different growth rate and 

assimilate production by the plant and b) the result of the pre-conditioning to the 

different temperatures, which already occurred in cycle 1. 

In general terms, nutrient solution temperature influences the mechanisms 

controlling plant development and distribution of carbon and nitrogen into the 

different plant compartments. Plants grown at cold solution in winter increased the 

level of nitrogen derived from the fertiliser in every compartment, the carbohydrate 

concentration in some compartments and also increased their aerial biomass, respect 

to rose plants grown at warm solution. Therefore, rose plants showed plasticity and 

could adapt to grow without root heating in winter up to 10 °C under Mediterranean 

conditions. On the other hand, the change in the response of plants to nutrient 

solution temperature in the 2nd flower cycle might depend on other parameters such 

as air climatic variables and internal plant factors. 
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EFFECTS OF PREHARVEST NUTRITION ON VASE LIFE OF CUT ROSES AND ON 

POSTHARVEST CHANGES OF CHLOROPHYLL a FLUORESCENCE 

Abstract  

Rose plants (cv. Grand Gala) were grown using a perlite based soilless culture system under 
Mediterranean greenhouse conditions over a period of one year, and two different nutrient 
solution concentrations were used (control treatment: solution commonly used by local 
growers; low concentration treatment: 40% dilution with respect to the control). Flower shoot 
production and days of flower shoot vase life were determined in both treatments throughout 
the four seasons. Water balance of the flower shoots, chlorophyll a fluorescence and relative 
water content of the fifth uppermost leaf were measured over an 11-day period following 
harvest in each season. Although no relevant differences in flower production were observed 
between concentration treatments, the vase life of flower shoots at the low concentration 
treatment was, on average, shorter by one day. This was due to an inadequate regulation of the 
flower shoot water balance, resulting in an earlier loss of turgor that led to bent neck and petal 
wilting. Water balance during the first day after harvest was decisive for the subsequent 
duration of vase life. Vase life was found to be shorter in winter and in summer, in connection 
with a lower incoming radiation and higher daily minimum relative humidity. This work is 
pioneer in the in-depth analysis of the photochemical and non-photochemical processes 
occurring during vase life. Both treatments and all seasons showed that the stress caused by the 
excision activated a response of the photoprotective mechanisms in the leaves as soon as one 
day after harvest. However, when flower shoots began to wilt because of the progression of 
water loss, photoprotection mechanisms could not function properly, entailing a loss of 
regulation in the energy absorbed. After the end of vase life, there was an even higher loss of 
regulation that led to a decrease in the fraction of operational centres of photosystem II and 
ended up with the death of the flower shoot. In conclusion, the better the regulation of water 
balance and the longer the functioning of photoprotective mechanisms, the higher the duration 
of rose vase life. 

Introduction 

Roses (Rosa hybrida L.) make up about 33% of the total cut-flower production in the 

world (Kras, 1999). Several postharvest quality parameters -such as flower vase life 

duration- are very important for its commercial value. Therefore, an optimum 

management of the factors affecting this parameter is required in order to extend rose 

vase life. In particular, preharvest factors such as seasonal climatic conditions (light, 

relative humidity and temperature), as well as mineral nutrition, may be studied for 

this purpose. 

In general, with respect to the influence of seasonal climatic changes on vase life, 

increasing photosynthetic photon flux during rose cultivation may reduce cut rose vase 

life due to the increased transpiration rate caused by incomplete stomatal closing at 

night (Slootweg and Van Meeteren, 1991), or it may improve vase life by increasing the 

level of accumulated carbohydrates (Fjeld et al., 1994). An optimal management of 

relative humidity (RH) is critical for the subsequent vase life of flower shoots. In this 
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respect, a rise in the air RH from 75% to 91% reduced the vase life of 14 rose cultivars 

(Mortesen and Gilslerod, 1999). According to Torre and Fjeld (2001), plants grown 

under high air humidity experience no water stress and may lose the function of 

stomatal closure in postharvest conditions when the RH is lower. On the other hand, 

although preharvest temperature per se may not have an effect on vase life, the 

combination of effects of high temperature, high irradiance, low RH and high vapour 

pressure deficit (VPD) (i.e., dry conditions) leads to the production of cut flowers with 

a long vase life (In et al., 2007).  

Regarding the effect of preharvest nutrition on vase life, nutrition may affect 

osmoregulation, water content in plants, leaf water potential, chlorophyll content and 

hormone levels; it may also lead to sugar and organic acid accumulation, while 

excessive fertilization may cause secondary salt stress in plants, thus affecting 

postharvest life (Drüge, 2000; Bernstein et al., 2005). In particular, the effect of 

preharvest nutrition on abscisic acid (ABA) levels at harvest has been studied, yet the 

findings pertaining to the effect on vase life vary. High ABA levels at harvest have been 

related to a short vase life (Menard et al., 1995), although they have also been 

considered to possibly favour postharvest behaviour through a reduction in water loss 

and increased stress tolerance (Drüge, 2000). Concerning the effect of preharvest 

nutrition on osmoregulation, high mineral concentrations in the leaf seem to better 

maintain leaf water status due to the osmotic adjustment mechanism (Mahouachi, 

2009). Nitrogen is an important element for plant nutrition but it is not the only factor 

capable of affecting rose flower vase life. For instance, an optimum addition of 

micronutrients has been observed to have a positive effect on vase life 

(Khoshgoftarmanesh et al., 2008). An optimum management of the nutritional status 

of plants may be a means capable of delaying turgor loss of cut flowers, while 

prolonging their vase life. 

The effect of preharvest fertilization on flower vase life has been studied in several 

types of cut flowers. Bernstein et al. (2005) investigated the effect of nitrogen on 

growth, flower production and flower quality of Ranunculus asiaticus L. The longest 

vase life was obtained with the lowest N concentration (50 ppm vs. 100 ppm N), 

regardless of the level of NH4
+ applied. In contrast, the longevity of cut Pteris leaf was 

increased when increasing the nitrogen supply (Drüge, 2000), while contradictory 

results were obtained for Dendranthema grandiflorum in relation to nitrogen supply 

and vase life (Röber and Reuther, 1982; Drüge et al., 1998). In connection with cut 

roses, as far as we know, there is only one study about the effect of nutrient 

concentration on their vase life (Menard et al., 1995). This work showed that a 

preharvest nitrogen concentration of 21.4 mmol L-1 decreased the subsequent vase life 

in “Royalty” roses as compared to using 10.7 mmol L-1. However, as the concentration 

used in this study was very high (21.4 mmol L-1), the differences between treatments 
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were attributed to salinity rather than to a specific nitrogen effect. Moreover, the 

effect of nutrients other than nitrogen was not studied. To the best of our knowledge, 

no studies have ever approached the issue of how certain nutrient concentrations 

contained in the solution may affect the subsequent vase life of roses, under 

conditions in which the possible influences cannot be confused with salinity-induced 

effects and within the range of commercial concentrations under Mediterranean 

conditions. Accordingly, this became the objective of our work. 

Efforts attempting to determine the optimum concentration of nutrient solution 

are essential in order to improve the yield and quality of flower shoots, but are also 

necessary from an environmental standpoint. The nutrient solution is generally 

supplied in an amount exceeding the estimated needs of the crop in 20-30% (Cid et al., 

2001). Drainage containing high amounts of not absorbed fertilizers is then discarded, 

this resulting in the pollution of superficial water and groundwater. Hence, rational 

environment-friendly guidelines must be established in connection with the 

concentration of nutrient solution. Accordingly, based on the usual levels of nutrient 

solution concentration used by local growers in Mediterranean conditions, the present 

study considers whether the environment-friendly approach of diluting the solution 

affects yield and subsequent vase life of roses.  

On the other hand, the harvest practice leads to progressive stress throughout the 

vase life of harvested flower shoots due to both the injury caused by the excision and 

the decreased water content of the tissues, which may affect leaf photosynthesis. 

However, as far as we know, currently there are no studies on the development of 

photosynthesis and chlorophyll a fluorescence during the vase life of cut roses. 

Understanding photochemical and non-photochemical processes taking place after 

harvest may be useful to develop future strategies to prolong rose vase life. In this 

respect, CF imaging is a sensitive and non-destructive technique that allows a rapid 

quantification of any alteration in the light photosynthetic reaction. It permits the 

visualization of the spatial and temporal changes in photochemistry and non-

photochemistry on leaves under different types of stress (Calatayud et al., 2006, 2007). 

Hence, another objective of this work was to apply CF imaging to analyze how the 

photosynthetic apparatus functions throughout vase life as a basis to better 

understand the response mechanisms of the flower shoot to the stress caused by 

harvest.  
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Materials and methods 

Plant growing and harvest conditions 

A rose crop (Rosa hybrida var. Grand Gala) in its second year after planting was grown 

in a polycarbonate greenhouse, equipped with convective heating (minimum 16°C), 

high pressure fogging and roof ventilation. Plants were grown following the bending 

technique commonly used by local growers (Calatayud et al., 2007). The experiment 

lasted one year and was divided in 4 seasons; in each one the same measurements 

were carried out. Plants produced flower shoots all year-round. Throughout the 

experiment, the number and fresh weight of all harvested flower shoots as well as the 

percentage of those that suffered from crooked neck were quantified. Crooked neck is 

a quality defect whereby the peduncle of the flower shoots grows in the plant with a 

downward bend. 

Two sets of 150 plants were grown in a closed perlite system, each one having a 

different nutrient solution tank. Therefore, two treatments were differentiated 

according to the concentration of the nutrient solution: the control treatment, where 

the nutrient solution concentration was that generally used by local growers, and the 

low concentration treatment, which represented a 40% dilution with respect to the 

control. Following common practice, a different composition was used for every 

season, but the differences of concentration between the control and low 

concentration treatment were kept. The water for the nutrient solution was previously 

treated with reverse osmosis and ion columns in order to avoid variation of nutrient 

concentration in the solution. The nutrient solution was recycled but renewed once a 

week to ensure an optimum nutrient balance. The composition of the nutrient solution 

in each treatment during the experiment is shown in Table 1.  

Table 1. Nutrient solution concentration (mmol L-1) in every season for the two treatments (C: 
control treatment; L: low concentration treatment (dilution of 40% with respect to the control)) 
and composition of the tap water (mmol L-1) used in vase life measurements. The water for the 
nutrient solution was previously treated with reverse osmosis and ion columns. 

 
Winter Spring Summer Autumn Tap 

Water C L C L C L C L 

NO3
- 12 7.2 10 6 8.6 5.16 10 6 0.12 

H2PO4
- 1 0.6 1.3 0.78 1.3 0.78 1.3 0.78 1.00 

SO4
2- 0.5 0.3 1.2 0.72 0.5 0.3 0.6 0.36 2.18 

NH4
+ 0.7 0.42 0.6 0.36 0.6 0.36 0.6 0.36 - 

K+ 5 3 4.8 2.88 3.7 2.22 4.7 2.82 0.09 

Ca2+ 3.5 2.1 6 3.6 3 1.8 3 1.8 3.69 

Mg2+ 1.1 0.66 1.6 0.96 0.5 0.3 0.7 0.42 2.48 
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Solar radiation, air temperature, and relative humidity of air inside the greenhouse 

were recorded every 15 s by means of electronic sensors placed over the canopy and 

connected to a data acquisition system. From the 26th of June until the 1st of October, 

coinciding with the period of highest incoming solar radiation, an external aluminized 

screen (40% shading factor) was placed over the greenhouse to avoid stress due to 

high radiation and inside temperature. 

Once each season (3rd of March, 26th of May, 28th of July and 17th of November), 38 

flower shoots from each treatment were harvested for vase life assessment. Shoots 

were immediately placed in tap water after harvest and taken to the laboratory within 

15 minutes. A summary of the climatic conditions taking place during the 15-day 

period prior to harvest in each season is shown in Table 2. The aforementioned 

timeframe was chosen as it has been considered to have an important influence on 

vase life (In et al., 2007). 

Table 2. Summary of the climatic conditions inside the greenhouse taking place 15 days before 
flower shoot harvest in every season: 15-day mean of the maximal daily solar radiation (Max. 
Rad.), 15-day mean of the solar radiation during the daytime (Mean Rad.), 15-day mean of the 
day and night temperature (Tª day and Tª night, respectively), 15-day mean of the minimal 
relative humidity (Min. RH), and 15-day mean of vapour pressure deficit, VPD (Mean VPD). 

 
Max. 
Rad. 

(W m-2) 

Mean  
Rad. 

(W m-2) 

Tª 
day 
(°C) 

Tª 
night 
(°C) 

Min. 
RH 
(%) 

Mean 
VPD 
(KPa) 

Winter 463.0 216.2 24.39 15.69 50.77 0.518 

Spring 729.5 264.7 26.24 16.89 46.33 0.625 

Summer 356.7 162.5 29.34 22.06 56.68 0.647 

Autumn 425.0 243.3 26.66 15.74 35.41 0.776 

Vase life assessment 

Flower stem ends were re-cut to a length of 75 cm after harvest. Flower shoots of each 

treatment were distributed in 11 groups of 3 and one group of 5 shoots in every 

season. Each one of the 11 groups was placed in a plastic flask containing 1 L tap water 

(Table 1). Tap water was used instead of distilled water to simulate real postharvest 

conditions. In the group of 5 shoots, each shoot was weighed (balance of ±0.01 g 

resolution) and all 5 were placed together in a plastic flask containing 1 L tap water, 

which was weighed before placing the shoots. Also, two flasks with no shoots, filled 

with 1 L tap water, were weighed and placed next to the flasks with the flower shoots 

in order to estimate water loss through evaporation. In every season, all flasks were 

placed in a test-room at 23 °C, 50% RH and a 12-h photoperiod with 25 µmol m-2 s-1 

irradiance from cool-white fluorescescent lamps. 
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From harvest (day 0) and over 11 days (day 1-11), vase life of the group of 5 flower 

shoots from each treatment and season was assessed visually according to the 

association of Dutch flower auctions and research station for floriculture and 

glasshouse vegetables (VBN, 2005). Our work showed that the first symptoms that 

determined the end of vase life appeared in the flower bud, these being bent neck and 

visible petal wilting. The number of days until each rose flower shoot reached the end 

of its vase life was recorded. On day 11 and after all measurements had finished, the 

leaf area and stem diameter of the 5 flower shoots from each treatment and season 

were measured. A leaf area meter was used for leaf area measurements (model LI-COR 

3100). The transpiration surface was calculated in cm2 as the sum of leaf area and stem 

area, which was assumed to be cylindrical. 

Every day, from day 0 until day 11, at 9:00 a.m., every flower shoot from both 

groups of 5 and their flasks were weighed. The control flasks containing no shoots 

were also weighed. Flower shoot fresh weight (FSW) was calculated in percentage 

values with respect to FSW at day 0 (FSWD0) through the following equation, 

( )
0
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DFSW
iDFSW

%
iDweightfreshshootFlower

⋅
=    (1) 

where Di is a day of vase life from 0 to 11. 

Daily water uptake per unit surface area of flower shoot (mL cm-2) was calculated 

for each treatment as: 
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In this equation, Di+1 stands for the day after Di; WF means weight of the flask 

containing flower shoots, which was weighed without them in order to calculate any 

variation of the water content in the flask; WC is the average of the weight of the 2 

control flasks with no flowers. It was assumed that the density of water is 1 g/mL so, in 

the measurements, g is equivalent to mL. Total transpiration surface refers to the sum 

of the transpiration surfaces of the 5 flower shoots contained in the flask. 

Daily water loss per unit surface area of flower shoot (mL cm-2), which was 

assumed to be due to transpiration, was calculated for each treatment as follows: 
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  (3) 

Total FSW refers to the sum of the fresh weights of the 5 flower shoots in the flask.  

In the same 5 flower shoots per treatment and season, just after carrying out the 

daily measurements of water balance, CF was measured in the lamina of the external 

leaflet of the 5th uppermost leaf using an imaging-PAM fluorometer (Walz, Effeltrich, 

Germany). The method to measure CF is described in Chapter 4.1 (this thesis). The 

following parameters were determined: Fv/Fm, φPSII, qL, φNPQ and φNO. 

On the other hand, at 9:00 a.m. each day, from day 0 until day 11, the relative 

water content (RWC) of the external leaflet of the 5th uppermost leaf was calculated 

through the following equation: 

DWTW

DWFW
RWC

−
−=    (4) 

In this equation FW, DW and TW are fresh, dry and turgid weight (g) respectively. 

Turgid weight was obtained after 4 h floating in distilled water (Smart and Bingham, 

1974). After that, the leaflet was oven-dried at 75°C for 24 hours to obtain its dry 

weight. For RWC measurements, each day a different flask of the 11 groups of 3 flower 

shoots of each treatment was used. Thus, from day 0 to day 10, RWC measurements 

had 3 repetitions. On day 11, however, RWC was measured in the same 5 leaflets per 

treatment where CF had been measured during 12 consecutive days (days 0-11). 

Statistical analysis 

In order to compare nutrient concentration treatments and seasons, 2-way ANOVA, 

paired-sample comparison or multiple regression were carried out depending on the 

variable.  

A paired-sample comparison was performed on those variables related to flower 

production (weekly number of flower shoots harvested per plant, weekly fresh weight 

of harvested flower shoots per plant and weekly percentage of non-commercial flower 

shoot due to crooked neck over the total weekly amount of harvested flower shoots) 

due to the strong influence of the time factor on the evolution of these variables (Fig. 

1). Thus, this analysis was carried out for each variable and for every season with n=13. 
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Two-way ANOVA (n=5) was performed on variables such as days of flower shoot 

vase life and percentage of fresh weight of flower shoots, using the nutrient solution 

concentration (control and low) and the season (winter, spring, summer and autumn) 

as factors. In actual fact, two separate analyses were required to assess the evolution 

of the second variable: one referred to the percentage of fresh weight of flower shoots 

on the first day after harvest, and another regarding the falling rate in the percentage 

of fresh weight of flower shoots from day 2 until day 11 after harvest. In addition to 

that, simple linear regression (n=8) was performed on vase life (Table 3) and climate 

parameters shown in Table 2. 

In relation to other variables such as water uptake, water loss and the ratio 

between them, a multiple regression (n=88) was performed with the following 

independent variables: days of postharvest life (linear and quadratic component), the 

concentration of nutrient solution and the season. An indicator variable was created 

for the solution concentration, having the values 1 for the control treatment and 0 for 

the low concentration treatment. The seasons were also represented through three 

indicator variables (winter, spring and summer). 

Moreover, a multiple regression (n=42) was also performed between RWC of the 

leaf and the steady state values of several CF parameters (φPSII, φNPQ, φNO, qL and 

Fv/Fm) for each nutrient concentration treatment. Also, an indicator variable having the 

values 1 for the control treatment and 0 for the low concentration treatment was 

created and included in the regression analysis. The mean value of RWC at the end of 

vase life, averaged for all seasons and both concentration treatments, was 89.6 (with a 

standard deviation of 2.7), whereby only data of RWC>89.6 was used for the analysis 

to focus exclusively on the days of vase life. 

Finally, a multiple regression (n=8) was performed to determine the most 

important factors affecting vase life. The independent variables were the water loss to 

water uptake ratio, the concentration of nutrient solution and the season. As 

explained above, to include the effect of the last two variables, four indicator variables 

were used. 

Results 

Production of flower shoots 

According to our data, the concentration of the nutrient solution significantly affected 

the number and fresh weight of harvested flower shoots per plant and week in some 

seasons (Fig. 1A, B). However, no significant differences, at α=0.05, were observed 
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between concentration treatments regarding non-commercial production of flower 

shoots due to crooked neck in any season (Fig. 1C). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Annual variation in the weekly number of flower shoots harvested per plant (A), in the 
weekly fresh weight (g) of harvested flower shoots per plant (B), and in the weekly percentage 
of non-commercial flower shoot due to crooked neck over the total weekly amount of harvested 
flower shoots (C). Different points refer to each concentration treatment (control (C, ); low 
concentration (L, )). For each variable, a paired-sample comparison between concentration 
treatments was performed for each season (n=13), and the results are shown in each graph 
(α=0.05). 
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In particular, both the weekly number (Fig. 1A) and fresh weight (Fig. 1B) of 

harvested flower shoots per plant were significantly higher in the low concentration 

treatment during spring. This was also observed for the fresh weight of harvested 

flower shoots in winter, but the opposite was observed in autumn. It is important to 

note that, although the overall data for the whole season showed significant 

differences, these resulted from specific periods of time in which differences were 

more remarkable (Fig. 1). In fact, when considering the overall data for the whole year, 

no significant differences were observed between treatments regarding any variable.  

Table 3. Effect of the nutrient solution concentration and the season on the days of rose vase 
life, on the percentage of fresh weight of flower shoots in the first day after harvest, with 
respect to fresh weight at harvest (FSWD1), and on the slope of the decrease of the percentage 
of fresh weight of flower shoots from day 2 till day 11 after harvest (means±sd, n=5). For each 
variable, 2-way ANOVA (α=0.05) was performed and the result is shown. Values followed by a 
different letter in the same column indicate statistically significant differences among seasons. 
Means were compared by the Tukey-Kramer's multiple range test. 

  
Vase life 

(days) 
FSWD1 

(%) 
Slope 

(% day-1) 

Winter 
C 4.8±0.4 

b 
109.0±2.5 

ab 
-3.60±0.87 

b 
L 3.6±0.5 106.7±0.6 -4.43±0.69 

Spring 
C 7.2±0.6 

a 
107.7±1.9 

bc 
-3.91±0.48 

ab 
L 6.4±0.5 105.5±1.5 -4.36±0.44 

Summer 
C 5.3±1.0 

b 
105.6±1.1 

c 
-4.68±0.66 

a 
L 3.9±0.4 104.3±0.6 -5.03±0.37 

Autumn 
C 6.4±2.0 

a 
109.6±1.2 

a 
-3.69±0.60 

b 
L 5.8±1.8 108.4±2.5 -4.14±0.54 

P
-v

al
u

e 

Concentration 0.0067 0.0019 0.0106 
Season <0.0001 <0.0001 0.0059 
Concentration 
x Season 

0.839 0.814 0.821 

  

Vase life of flower shoots 

The duration of vase life was significantly lower (approximately 1 day shorter) in the 

low concentration treatment (Table 3). On the other hand, the factor season affected 

vase life significantly, which was longer in spring and autumn than in summer and 

winter (Table 3). Additionally, vase life was positively correlated with the 15-day mean 

of solar radiation during the daytime (p=0.047; r=0.71).  

Water balance during vase life 

Water balance of flower shoots during vase life changed according to the season and 

the concentration treatment (Fig. 2). 
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Fig. 2. Water balance of the flower shoots during 11 days after harvest according to the different 
seasons (winter ( ); spring ( ); summer ( ); autumn ( )) and nutrient solution concentration 
treatments (control: filled points, solid lines; low concentration: white points, dashed lines). (A) 
Daily water uptake and (B) daily water loss in mL cm-2 (n=1); (C) water loss to water uptake ratio 
(n=1) (a separate bar graph is shown for the first day after harvest; control: filled bars, low 
concentration: white bars); (D) fresh weight of flower shoots (FSW) (n=5), in percentage values 
with respect to FSW at harvest day (day 0, FSW=100%). 

In general, the first days after harvest, water uptake (Fig. 2A) and water loss (Fig. 

2B) were high but began to decrease around day 2. From approximately day 5 after 

harvest, water uptake and loss became very low and stable (Fig. 2A, B). Although a 

similar pattern of water balance was observed in all seasons, the multiple regression 

performed revealed that water uptake and loss were, on average, significantly 

different in every season (p<0.0001 in all three indicator variables associated with the 

season factor, for both water uptake and loss) and decreased in the following order: 

winter, autumn, summer and spring. In addition, in the low concentration treatment, 

water uptake and loss were, on average, significantly higher than in the control 

treatment (p=0.0075 for water uptake; p=0.0048 for water loss) (Fig. 2A, B). The ratio 

between water loss and uptake was <1 on the first day after harvest but, after the 3rd 

day it was >1 in all seasons and concentration treatments (Fig. 2C). It increased 

considerably in spring and summer during the days following the end of vase life. 

According to the multiple regression performed with this variable, no differences were 

observed between concentration treatments. However, when considering days 1 or 2 



5. Effect of preharvest concentration of the nutrient solution on rose vase life 

154 

only, this ratio was significantly higher for the low concentration treatment (p=0.0337 

for day 1 and p=0.0287 for day 2).  

This pattern of water balance resulted in a different evolution of the percentage of 

FSW over 11 days following harvest depending on the season and the concentration 

treatment (Fig. 2D). In general, as a result of the relationship between water uptake 

and water loss, the percentage of FSW of a certain day with respect to FSW at harvest 

(FSW=100%), increased during the first days after harvest but decreased, on average, 

after day 2. Both the increase of fresh weight one day after harvest (FSWD1) and the 

slope of subsequent decrease were significantly affected by the concentration 

treatment (Table 3). Flower shoots from the control treatment gained more weight 

one day after harvest and the subsequent loss of weight was slower. The largest 

difference in FSW (%) between concentration treatments was observed in winter, 

when on day 11 after harvest the difference was of 12% as compared to the 7% 

difference recorded for the other seasons (Fig. 2D). Besides, both the increase of fresh 

weight one day after harvest and the following decrease rate varied significantly from 

one season to another. In particular, the highest FSW (%) on the first day after harvest 

was observed in autumn and the lowest, in summer; moreover, summer was the 

season with the heaviest decrease rate of FSW (%) observed during postharvest life 

(Table 3). 

According to the multiple regression performed to determine the most important 

factors affecting flower shoot vase life, the ratio between water loss and water uptake 

in the 1st day after harvest (Fig. 2C) was critical for the subsequent vase life of the 

flower shoot. The best model (R2= 0.91) was obtained with the quadratic component 

of the ratio and the indicator variable linked to wintertime (W):  

2

1

8088191103511

D
uptakewaterDaily

losswaterDaily
WlifeVase














⋅−⋅−= ...   (5) 

Measurements of chlorophyll a fluorescence during postharvest life 

In general, the evolution of the mean steady state values (n=5) of several CF 

parameters throughout postharvest life followed relatively similar patterns in every 

season (Fig. 3). φPSII and qL (Fig. 3A) decreased progressively in the days following 

harvest. The pattern was usually steeper after the end of vase life, particularly in 

summer (both treatments), autumn and winter (low concentration treatment) (Table 

3). φNPQ and φNO (Fig. 3B) showed opposite patterns one from the other. During the 

first days following harvest, φNPQ increased while φNO decreased until they 

respectively reached a maximum and minimum point after which they then evolved 
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oppositely. The gradient after the end of vase life was steeper. On the other hand, the 

evolution of the values of Fv/Fm (Fig. 3A) throughout the 11 days of the experiment was 

quite different when compared to the aforementioned parameters. Fv/Fm remained 

around 0.8 during vase life and, in some cases, during the 11 days of the experiment. 

However, in summer (both treatments), autumn and winter (low concentration 

treatment), values suddenly dropped to around 0.4-0.5 some days after the end of 

vase life.  

Fig. 3. Variation in the mean steady state values (n=5) of several chlorophyll fluorescence 
parameters (A: qL ( ),Fv/Fm ( ), φPSII ( ); B: φNO ( ), φNPQ ( )) over a period of 11 days after 
harvest in every season and at 2 nutrient solution concentration treatments (control: solid lines, 
filled points; low concentration: dashed lines, white points). Harvest corresponds to day 0. 
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The same values of the parameters shown in Fig. 3 were plotted against leaf RWC, 

and a regression was established between RWC and each CF parameter (Fig. 4). The 

type of regression was polynomial (y=a+bx+cx2). Fig. 4 represents the regressions 

based on data from all the days of the experiment in order to graphically assess the 

evolution during and after vase life; however, only data of RWC>89.6 was used for 

another analysis to determine if the concentration treatment had affected the 

relationship between RWC and CF parameters during vase life only. For each of the CF 

parameters, a multiple linear regression analysis was performed with RWC and the 

indicator variable linked to the concentration treatment as independent variables. The 

indicator variable had a statistically significant effect on φNPQ (p=0.025), φNO 

(p=0.009) and qL (p=0.024). On average, for the same level of RWC and during vase life, 

φNPQ was 0.04 units higher, φNO was 0.029 units lower and qL was 0.024 units higher 

in the control treatment as compared to the low concentration treatment.  

Fig.4. Multiple linear regression (y=a+bx+cx2) 
between the relative water content of the leaf 
(RWC) and the steady state values of several 
chlorophyll fluorescence parameters (A: φPSII; 
B: φNPQ; C: φNO; D: qL; E: Fv/Fm) in both 
nutrient solution concentration treatments 
(control: solid line, ; low concentration: 
dashed line, ×). The arrow in every graph 
points at the average value of RWC (89.6) at 
the end of vase life. The R2 of the regression 

models were 0.629 (φPSII), 0.559 (φNPQ), 0.861 (φNO), 0.594 (qL) and 0.947 (Fv/Fm) for the 
control treatment and 0.828 (φPSII), 0.619 (φNPQ), 0.904 (φNO), 0.804 (qL) and 0.94 (Fv/Fm) for 
the low concentration treatment. 
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Fig. 5. General pattern of the dark-light induction curve for the parameter φNPQ/φNO. Four 
curves are distinguished corresponding to different phases of vase life. Phase 1 ( ) corresponds 
to the day of harvest (day 0). The dark-light induction curves corresponding to the remaining 
days from 1 to 11, were classified as phase 2 ( ), phase 3 ( ) and phase 4 (×) as indicated in 
Table 4. Phases were characterized according to the mean values of φNPQ/φNO at time=60 s 
and at time=300 s of the induction curve. In all cases, the end of vase life takes place in phase 3. 
Values are means±SE. 

Besides analyzing the steady state conditions, it is interesting to verify how these 

conditions were achieved. Actually, the dark-light induction kinetics curve changed 

substantially throughout the days after harvest. The parameter φNPQ/φNO was 

chosen to describe these changes during and after the end of vase life as it is an 

indicator of the photoprotection capacity of the photosystem (Klughammer and 

Schreiber, 2008). After a careful visual inspection of all 96 curves (i.e. 12 days x 4 

seasons x 2 concentration treatments), they were classified in 4 groups, corresponding 

to 4 phases of postharvest life (Fig. 4). All the curves belonging to a particular phase 

had, statistically, the same value of φNPQ/φNO at t=60 s, i.e. no significant differences 

were shown by one-way ANOVA (α=0.05), and the same value of φNPQ/φNO at t=300 

s (one-way ANOVA, α=0.05). However, in certain transitional cases a different result 

was obtained at t=60 and at t=300, and the conclusion was then visually assessed 

according to the pattern of the whole induction curve. Day of harvest or day 0 always 

corresponded to phase 1 and, in all cases, the end of vase life took place in phase 3.  

With regard to the 1st phase, φNPQ/φNO increased far more during the first 

minute than in any of the other 11 days of the experiment; after reaching a maximum 

at t=60, φNPQ/φNO decreased asymptotically until a steady state value (Fig. 5). In 

phases 2, 3 and 4, no relative maximum was observed and φNPQ/φNO progressively 

reached lower values during the first minute of the induction kinetics curve. With 

regard to the steady state value of φNPQ/φNO, while in the 2nd phase, it was much 
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higher than for phase 1, during the 3rd phase it became similar. Finally φNPQ/φNO 

decreased to the lowest values in the last phase (Fig. 5). 

Table 4. Distribution of days of vase life in the different seasons and nutrient solution 
concentration treatments (C: control; L: low concentration) among phases of vase life according 
to Fig. 5. Phase 1 stands for the day of harvest (day 0). The end of vase life takes place in phase 3 
in all cases. 

 

 

 

 

 

The evolution of Fv/Fm and the steady state values of φPSII, φNPQ, φNO and qL 

throughout the 4 phases of postharvest life can be seen in Fig. 6. A leaf from the low 

concentration treatment analyzed in winter was randomly taken as an example. In the 

images, different colours code for different values of the CF parameters ranging from 0 

(black) to 1 (pink), as indicates the code bar showed in the top of the figure. Based on 

these images, it is possible to study spatial differences of CF parameters within the 

leaf, which stand for a different photosynthetic performance across the leaf surface. In 

this figure, it is important to observe whether the values of a given parameter are 

homogenous or heterogeneous across the leaf and if these spatial differences change 

or not during postharvest life. It is also important to observe which areas develop 

more severe damage as flower shoots wilt and the temporal evolution of local wounds 

throughout postharvest life. The evolution of each parameter along a line 

perpendicular to the midrib is represented in graphs underneath each image.  

Discussion  

Vase life duration of cut flowers is an important quality parameter of great commercial 

value (In et al., 2007). It is important to increase flower shoot production but also to 

improve the quality of the product. However, a given preharvest factor may affect 

production and quality parameters differently. Our study showed that a dilution of the 

nutrient solution concentration in 40% with respect to that regularly used by local 

growers did not affect, over the whole year, commercial and non-commercial 

production of flower shoots, however it shortened vase life in 1 day. The physiological 

changes throughout postharvest life using two different nutrient solution 

concentrations are discussed below. 

 Phase 2 Phase 3 Phase 4 

Winter 
C 1-3 4-7 8-11 
L 1-2 3-6 7-11 

Spring 
C 1-6 7-11 - 
L 1-4 5-10 11 

Summer 
C 1-3 4-7 8-11 
L 1-2 3-8 9-11 

Autumn 
C 1-5 6-9 10-11 
L 1-3 4-9 10-11 
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Fig. 6. Images of the same leaf throughout the 4 phases of vase life, which are described in Fig. 5, 
showing the values of the CF parameters φPSII, φNPQ, φNO and qL at t=300 s of the induction 
curve, and Fv/Fm after dark adaptation. The images correspond to a leaf from the low 
concentration treatment analyzed in winter. The different colours stand for values from 0 (black) 
to 1 (pink) according to the code showed in the top of the figure. The evolution of each 
parameter along a line perpendicular to the midrib is represented in graphs underneath each 
image. This line corresponds to a length of 2 cm. 
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Water balance of flower shoots during postharvest life 

Flower shoots from plants grown using a 40% dilution of nutrient solution, showed 

poorer water balance regulation compared to those from plants at control treatment. 

This resulted in an earlier loss of turgor that led to bent neck and petal wilting, 

characteristic symptoms of the end of cut rose vase life. Mortensen and Giserøld 

(1999) also associated a shorter vase life with excessive water loss from leaves at 

harvest in 14 cultivars of rose plants.  

The ratio between water loss and water uptake during the first two days after 

harvest was higher in the low concentration treatment (Fig. 2). This means that a lower 

amount of the water absorbed during that period was retained in the tissues of shoots 

from this treatment. In flower shoots, water is lost mainly from the leaves (In et al., 

2007). As any water stressed plant, flower shoots can prevent water loss through two 

mechanisms: stomatal closure to reduce transpiration, and osmotic adjustment to 

avoid water loss from cells and to maintain tissue turgor (McCree and Richardson, 

1987). An inadequate water balance was noted in flower shoots from the low 

concentration treatment, possibly due to any of these mechanisms. Plant nutrition has 

been shown to play an important role in drought stress (Davis and Quick, 1998; 

Mahouachi, 2009) and, thus, in postharvest life of ornamentals (Drüge, 2000; 

Bernestein et al., 2005) through both mechanisms. Specifically, nutrient supply may 

indirectly affect stomata conductance via the increase or decrease of ABA or cytokinin 

levels in the leaves, or it may act directly through the K+ balance in guard cells (Davis 

and Quick, 1998). In fact, potassium deficient plants have lower tolerance for water 

stress due to the role of K+ in stomatal regulation (Davis and Quick, 1998), but also in 

osmotic adjustment (Mahouachi, 2009). Ca2+ (Chari et al., 1986) and NO3
- (Kusaka et 

al., 2005) accumulation in leaf cells also seem to contribute to osmotic adjustment. 

From approximately the 5th until the 11th day after harvest water uptake and water 

loss were strongly reduced (Fig. 2), probably due to the development of xylem 

blockage that hinders water uptake (Mayak et al., 1974; De Stitger, 1980). As the low 

concentration treatment was characterized by a heavier decrease of FSW during this 

period (Table 3), it is possible that shoots from this treatment might have suffered 

from xylem blockage more than shoots at control treatment. Torre and Fjeld (2001) 

observed that cut roses with low water loss were not so sensitive to vessel blockage as 

roses with high water loss. The water balance regulation in plants grown with a 40% 

dilution may be poorer than that of plants at control treatment due to a combination 

of a higher water loss to water uptake ratio during the first days after harvest and a 

faster decrease of FSW during postharvest life. 
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In addition to the concentration of nutrient solution, the season factor affected 

water balance and vase life significantly. This factor was linked to the change of 

climate conditions (Table 2). Slootweg et al. (2001) and Pompodakis et al. (2005) also 

found major differences between seasons, whereby the shortest vase life was 

recorded in winter. However, the longest was found in summer, which is apparently in 

disagreement with our results. This was due to the fact that those authors did not use 

a shade screen in summer, hence the incoming radiation reached maximum levels. In 

actual fact, our results offered a positive relationship between vase life and the 15-day 

mean of the solar radiation during the daytime. A similar relationship was also found 

by Pompodakis et al. (2005), who associated this result with higher carbohydrate levels 

as radiation increased. Such findings lead to a practical conclusion: although the shade 

screen used in our work during summertime was useful to reduce extreme conditions 

of temperature and radiation, its commercial shading factor (40%) may have been too 

high to produce flower shoots with a long vase life. 

The mean of the minimum relative humidity during 15 days before harvest had a 

negative correlation (r=-0.58) with vase life, although it was not significant (p=0.133) 

probably due to the low number of observations (n=8). This preharvest climate 

parameter has been considered to have a high repercussion on subsequent vase life of 

flower shoots (Mortensen and Giserøld, 1999; Marissen and Benninga, 2001; In et al., 

2007). For instance, the shorter vase life in winter has been put down to the high RH of 

this season (Slootweg et al., 2001). RH affects water loss of flower shoots through its 

effect on ABA levels, which influence stomatal anatomy and functionality (Franks and 

Farquhar, 2001; Torre and Fjeld, 2001; Torre et al., 2003; In et al., 2007). Rose plants 

grown under low RH conditions have smaller functional stomata and are able to 

regulate their water relations properly after harvest, resulting therefore in a longer 

vase life than rose plants grown under high RH conditions (Torre et al., 2003; In et al., 

2007). Also, Torre and Fjeld (2001) observed that the osmotic concentration of roses 

grown at RH=90% was 10% lower than in roses grown at RH=70%, both in leaves and 

petals, suggesting a lower ability to prevent loss of turgor when water deficit develops 

in the tissue. However, the primary reason for the shorter vase life of flowers grown 

under high RH conditions was assigned to stomatal malfunctioning (Torre and Fjeld, 

2001). 

Although the season factor was associated with the change of climate conditions, 

it is important to note that, in this study, the seasonal influence may also include the 

change of nutrient solution concentration during the experiment (Table 1). In any case, 

although the climate influence may be confused with solution concentration up to a 

certain extent, the main effect is in fact climate as confirmed by previous literature in 

line with the above discussion.  
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Ultimately, even though plugging or cavitation of xylem vessels has been identified 

as the cause of the end of vase life in some varieties of cut roses (Mayak et al., 1974; 

De Stitger, 1980; Ichimura et al., 2002; Ichimura 2006), our study of Grand Gala 

showed that the end of vase life took place just before water uptake was seriously 

limited (Fig. 2). Hence, it was probably more influenced by factors taking place before 

xylem blockage was fully developed. This is in agreement with the findings of In et al. 

(2007). The water loss to water uptake ratio on the 1st day after harvest was negatively 

and highly correlated with rose commercial longevity (Eq. 5). This means that if flower 

shoot tissues were able to retain a high amount of the water absorbed during the first 

day after harvest, they would be able to prolong vase life. A similar conclusion was 

obtained by Torre and Fjeld (2001), who observed that the water loss during the first 

30 minutes after subjecting the recently harvested flower shoot to the dry conditions 

of vase life were crucial in connection with subsequent neck bending, while the 

mechanical strength of the pedicel tissue was not a relevant factor.  

Although the nutrient solution concentration and the season had a major influence 

on vase life (Table 3), they did not appear in the model that better predicts the 

duration of vase life (Eq. 5). This suggests that their effect was hidden by the effect of 

the water loss to water uptake ratio, which means that the differences between 

concentration treatments and seasons were due to variations in this ratio on the first 

day after harvest. In winter, besides the effect of the water loss to water uptake ratio, 

an additional factor contributed to reduce the length of rose vase life in 1.19 days: the 

lower radiation in winter and, as a consequence, lower levels of carbohydrate might 

explain this fact. 

Variations of chlorophyll a fluorescence parameters throughout postharvest life 

Both the water loss in the flower shoot and the wound caused by the excision, involve 

the generation of a progressive stress in the shoot that ends up with its death after 

several days. The better the shoot can deal with this stress, the longer its vase life. 

Therefore, understanding the processes that take place in the photosynthetic 

apparatus, which is very stress-sensitive, may be useful to understand how the flower 

shoot tries to overcome this critical situation. CF imaging is a technique that can give 

information about plant stress. This technique provides images of the leaf showing the 

distribution of its CF values. It is therefore possible to study spatial differences showing 

a different performance of the photosynthetic apparatus depending on the part of the 

leaf. This technique has been used to study the impact of numerous stress types such 

as cold (Savitch et al., 2001; Ehlert and Hincha, 2008), extreme brightness (Muller-

Moule et al., 2004), wounding (Quilliam et al., 2006) and drought (Calatayud et al., 

2006; Woo et al., 2008). 
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The CF parameter that was less affected by changes throughout vase life was Fv/Fm 

(Fig. 3). Fv/Fm remained close to 0.83 during vase life, the typical value for non-

photoinhibited leaves in vascular plants (Björkman and Demmig, 1987). This means 

that the fraction of centres of the PSII that are capable of photochemistry was not 

affected by the progressive stress during vase life. Only after the end of vase life, in 

some seasons and when using certain concentration treatments, -when shoot water 

reserves declined to critical levels (RWC around 64%)-, did this parameter fall heavily, 

probably due to a decrease in the fraction of operational PSII centres caused by 

photodamage. The same pattern of Fv/Fm during increasing water deficit was also 

observed by Woo et al. (2008) in Arabidopsis thaliana, by Tezara et al. (1999) in 

sunflowers, by Giardi et al. (1996) in peas, and by Calatayud et al. (2006) in rose plants. 

This fact reveals that studies which only measure Fv/Fm as a stress indicator provide 

incomplete information that may lead to incorrect conclusions. Should we have 

measured this parameter only, we would have concluded that no stress was developed 

in PSII during vase life; yet, this is not true as explained hereunder. 

Among several other CF parameters, φNPQ/φNO is an indicator of the 

photoprotection capacity of the photosystem. φNPQ accounts for the fraction of 

energy dissipated in the form of heat via the regulated photoprotective non-

photochemical quenching mechanism, whereas φNO corresponds to the fraction of 

non-regulated energy that is passively dissipated in the form of heat and fluorescence, 

mainly due to closed PSII centres (Klughammer and Schreiber, 2008). Under a given set 

of environmental conditions, successful regulation is aimed at maximal values of φPSII 

and maximal ratio φNPQ/φNO (Klughammer and Schreiber, 2008). From the values of 

φNPQ/φNO at the first minute and at steady state of the dark-light induction kinetics, 

it was possible to assess the development of the photoprotection capacity of PSII 

throughout rose postharvest life, and four phases were accordingly suggested (Fig. 5). 

This pattern is valid for both concentration treatments and for all seasons. However, as 

the duration of vase life was different depending on the concentration treatment and 

the season, each phase covered different days according to every combination of 

factors (Table 4). The shorter the vase life, the faster the evolution through the 

different phases. 

The first phase corresponded to harvest day, when no signs of stress were 

observed in the CF parameters. The light induction of φNPQ/φNO after dark 

adaptation was very fast and achieved very high values within the 1st minute, but 

decreased rapidly afterwards reaching medium values at steady state (Fig. 5). This 

kinetics suggests that the leaf was in very good conditions since the photoprotective 

mechanisms were operational within seconds avoiding any possible damage by 

incoming light. Besides, the fast quenching after the 1st minute was related to the 

activation of the Calvin cycle, which means that production of photoassimilates was 
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not affected. The fast activation of the Calvin cycle required to use the products of 

photochemistry (Calatayud et al., 2002). This agrees with the high steady state values 

of φPSII and qL (Fig. 3 and Fig. 6), which means that most photons absorbed by PSII 

were used in photochemistry and that PSII centres were maintained in an oxidized 

state. With regard to the spatial distribution of the CF parameters (Fig. 6), steady state 

values of φPSII and φNO were lower in the area of the midrib, maybe motivated by an 

increase of photoprotective thermal energy dissipation as reflected by φNPQ. The 

reduction of φPSII was not due to a change in the reduction state of the first acceptor 

of PSII (quinone A) as reflected by a homogenous qL across the leaf, so it may have 

been related to a diminished trapping efficiency of the photosystem (Lu and Zhang, 

1999). Actually, the higher values of φNPQ confirm this idea. Similar results were 

shown by Calatayud et al. (2006) in rose plants subjected to water stress. Several 

authors (Bro et al., 1996; Meng et al., 2001) have observed a low φPSII along the main 

veins and neighbouring areas, which suggests that pigment composition and 

concentration, water potential and stomatal function differ in cells from different 

regions of the leaf, contributing to spatial differences in photochemical activity 

(Terashima, 1992; Chaerle et al., 2003; Rezaei Nejad et al., 2006). 

The second phase comprised the first days after harvest (Table 4) and was 

characterized by the highest steady state values of φNPQ/φNO (Fig. 5). During this 

phase, flower shoots were turgid and in visible good conditions. The induction by light 

of φNPQ/φNO after dark adaptation was slower than in the previous phase. This result 

indicates that, within 1 day after harvest, the stress caused by this harvest had affected 

the speed of the photochemical reactions because photoprotective mechanisms 

needed more time to be operational. However, once activated, these mechanisms 

were strongly promoted, which proves the response of the flower shoot to stress 

conditions. It is important to highlight that this response could only be motivated by 

the stress caused by the excision because, in this phase, FSW was higher than that at 

harvest (Fig. 2), so the leaf could not be suffering from water deficit. Quilliam et al. 

(2006) reported similar results with leaves of Arabidopsis thaliana that had been 

wounded. Only 1 day after the wound, NPQ increased in the parts of the leaf furthest 

from the wound. The high steady state values of φNPQ/φNO in our results were 

achieved by an increase of φNPQ and a subsequent decrease of φNO (Fig. 3 and Fig. 6). 

As a consequence of the increase of φNPQ, the exciton trapping efficiency of PSII 

might have decreased (Lu and Zhang, 1999); this circumstance, together with the 

decrease in the fraction of open centres (qL), resulted in a decrease of the quantum 

efficiency of PSII photochemistry φPSII (Fig. 3 and Fig. 6). Klughammer and Schreiber 

(2008) stated that a high φNPQ can compensate for the down-regulation of PSII and 

even cause a lowering of φNO. Antenna pigments may have turned from energy 

funnels into quenchers that dissipate the excitation energy as heat in order to protect 
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the PSII from stress (Horton et al., 1996). This does not mean that the Calvin cycle was 

inhibited, but it was considerably slowed down according to the lack of quenching in 

the values of φNPQ after the 1st minute of induction towards the steady state.  

During the 3rd phase, flower shoots began to wilt and, soon after the beginning of 

this phase, vase life ended. FSW was lower than the levels recorded at harvest (Fig. 2) 

and water loss from shoot tissues began to cause stress. This phase was characterized 

by a slower induction by light after dark adaptation of φNPQ/φNO and a decrease of 

its steady state values as compared to the previous phase (Fig. 5), due to a decrease of 

φNPQ and an increase of φNO (Fig. 3 and Fig. 6). This fact, together with the reduction 

of φPSII (Fig. 3 and Fig. 6), suggests a reduction in the ability of the plant to protect 

itself against damage by stress (Klughammer and Schreiber, 2008). Woo et al. (2008) 

also observed that the rapid decline in CF parameters occurred concurrently with the 

appearance of physical symptoms of drought stress (e.g. loss of turgor). The fate of 

excitation energy through regulated pathways such as photochemistry or thermal 

energy dissipation was reduced, and consequently, plant’s ability to cope with excess 

excitation energy diminished. This eventually results in photodamage of PSII reaction 

centres or associated chlorophylls due to the production of singlet 1O2 (Öquist et al., 

1992; Klughammer and Schreiber, 2008). However, this was not yet observed in this 

phase, as reflected by Fv/Fm (Fig. 3 and Fig. 6). Maybe the stress due to water loss up-

regulated the activity of antioxidant systems such as ascorbate peroxidase (APX), in 

order to scavenge active oxygen species as observed by Jin et al. (2006) in the rose 

cultivar Samantha. 

In the last phase, vase life was over but flower shoots were still alive, albeit 

considerably wilted and dry. This phase was characterized by a progression from the 

previous phase with respect to energy deregulation (Fig. 5). The decrease rate of 

φNPQ, φPSII and qL, and the increase rate of φNO were steeper in this phase (Fig. 3). 

This led in summer (both treatments), winter and autumn (low concentration 

treatment) to photodamage of membranes that reduced the fraction of operational 

PSII centres, as reflected by Fv/Fm (Fig. 3). This could have been caused by the 

degradation of the PSII reaction centre protein D1 motivated by the decrease of 

photoprotection mechanisms (Pieters et al., 2003). During water deficit, severe 

reduction of cellular water content results in elevated levels of reactive oxygen 

intermediates and chlorophyll degradation (Flexas et al., 1998; Rivero et al., 2007). 

Spatial differences were evident in this phase (Fig. 6). Leaf damage was greater next to 

the midrib. Besides, there were also certain areas that at harvest presented local 

damage which was invisible to the naked eye; the evolution of this damage was slow 

during the first three phases, but very rapid in the last phase. A similar development 

pattern of CF parameters throughout water stress was observed by Calatayud et al. 

(2006) in rose plants as well as by Lu and Zhang (1999) in wheat.  
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The variations of CF parameters after harvest were related to the variations of 

RWC in the leaves as shown by the polynomial correlations obtained when relating 

each CF parameter with RWC (Fig. 4). Every model decreased progressively as RWC 

became lower (i.e. as the leaf dried), with the exception of φNO which evolved 

oppositely. This means that RWC of the leaf, as an indicator of its water status and 

related to the water status of the whole shoot, had an important effect on the 

performance of PSII. However, it was not the only influencing factor since the 

correlation between some CF parameters (φNPQ, φNO and qL) and RWC was slightly 

but significantly different according to the concentration treatment during vase life. 

For the same level of RWC, φNPQ and qL were higher in the control treatment, and the 

opposite applied to φNO, which means that shoots from this treatment were able to 

deal with stress better than shoots from the low concentration treatment for the same 

leaf water status. Gupta and Berkowitz (1988) stated that although RWC declines 

during the first part of water stress, if chloroplast stromal volume was kept constant 

through osmotic adjustment, photosynthetic capacity could be maintained. It is likely 

that a higher accumulation of solutes in the chloroplasts of flower shoots from the 

control treatment could have led to a better capacity for photochemical reactions by 

keeping chloroplast stromal volume constant despite RWC decreased.  

Conclusion 

The use of a nutrient solution concentration with a 40% dilution with respect to that 

commonly used by local growers shortened vase life in about 1 day, which was derived 

from an inadequate regulation of water balance. Water balance during the first day 

after harvest was decisive for subsequent vase life, so the water loss to water uptake 

ratio might be used as an early predictor of rose vase life duration. With regard to the 

effect of climatic conditions, vase life was shorter with lower incoming radiation and 

higher daily minimum relative humidity. Only one day after harvest, the stress caused 

by the wound activated a response of the photoprotective mechanisms in the leaf. 

However, as water loss progressed in the flower shoots, they began to wilt and these 

mechanisms could not function correctly leading to a loss of regulation in the energy 

absorbed by pigments, which eventually led to a decrease in the fraction of 

operational PSII centres. In conclusion, the better the regulation of water balance and 

the longer the functioning of photoprotective mechanisms, the longer the vase life. 

The best CF parameter to describe the evolution of rose vase life was φNPQ/φNO, 

while Fv/Fm did not show any change during vase life. Finally, a study of the balance 

between the environmental benefits of diluting nutrient solution concentration and 

the economical impact of the reduction of rose vase life should be carried out to 

determine whether the dilution applied in this work could be recommended or not to 

local growers.  
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CONCLUSIONS OF THE THESIS 

The optimization of rose cultivation may be achieved by means of an accurate 

management of nutrition factors such as concentration and temperature of the 

nutrient solution, and through the formulation of optimum nutrient solutions. These 

are the conclusions of this thesis: 

1) Nutrient solution composition may be optimized by matching supply and plant 

demand. In this thesis (Chapter 3) empirical models that predict plant demand for 

nutrient (nitrate, phosphate, potassium, calcium and magnesium) and water were 

developed. These models are interesting for their high applicability in real conditions 

because they integrate the effect of a high number of factors affecting nitrate and 

water uptake during one-year period of commercial cultivation. This makes them 

practical and suitable for being integrated in decision support systems for fertirrigation 

management. R2 ranged between 0.336 and 0.785 in the nutrient uptake models, and 

equalled 0.902 in the water uptake model. 

2) The factors affecting nutrients uptake by rose plants under commercial conditions 

are represented by those variables included in the models (Chapter 3). These variables 

are water absorption, nutrient solution concentration, some climatic parameters 

(vapour pressure deficit and radiation integral inside the greenhouse), flower shoot 

production, some common practices in rose cultivation (renewal of old bent shoots, 

the use of shade screen and the synchronization of flower shoot development for 

scheduling purposes) and unknown internal factors.  

3) Factors affecting water uptake and, hence, included in the water uptake model 

were vapour pressure deficit, air temperature, nutrient solution temperature, 

radiation integral inside the greenhouse, as well as renewal of old bent shoots and 

flower shoot production (Chapter 3). 

4) In order to know the optimum range of nutrient solution temperatures for rose 

plants, it is necessary to study the limits of this range. In this thesis (Chapter 4), rose 

plants showed tolerance to 10 °C of root temperature during winter. This tolerance 

was achieved by increasing the production of thin roots, nitrate uptake, nitrate 

reductase activity, photochemical activity and carbohydrates production, and by 

enhancing the partitioning of N and carbohydrates towards the roots. However, this 

response to low solution temperatures was reduced in the beginning of spring maybe 

as the result of improved air climatic conditions. 

5) The optimization of nutrient solution concentration has two viewpoints: the plant 

and the environment. A 40% dilution of the nutrient solution is advisable for reducing 

groundwater pollution but, in this thesis (Chapter 5), it shortened vase life of rose 
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flowers by one day. This was due to an inadequate regulation of the flower shoot 

water balance caused by a combination of a higher water loss to water uptake ratio 

during the first day after harvest (key factor) and a faster decrease of flower shoot 

weight during postharvest life.  

6) Flower harvest results in a progressive stress in shoot tissues during portharvest 

life, which can be described with accuracy by chlorophyll fluorescence. This thesis 

shows (Chapter 5) that the stress caused by the excision activated a response of the 

photoprotective mechanisms in the leaves one day after harvest. The progression of 

water loss led to wilting of flower shoots and photoprotection mechanisms became 

less operational, eventually leading to a decrease in the fraction of PSII centres that are 

capable of photochemistry. The best CF parameter to describe the evolution of rose 

vase life was φNPQ/φNO and the less informative was Fv/Fm.  

Future work may be directed at: 1) validating the nutrient and water uptake 

models at commercial conditions, 2) improving the models of phosphate and 

magnesium uptake by using a lower nutrient solution concentration, 3) verifying 

whether the nutrient solution composition derived from the models results in the 

highest yields and qualities of rose flower shoots, 4) identifying the temperature from 

which root heating should be used in rose plants in wintertime, 5) finding out the 

highest optimum nutrient solution temperature in summer conditions, and the level 

from which root cooling should be used to avoid stress, 6) Analyzing the causes 

underlying the higher water loss to water uptake ratio in flower shoots from plants 

grown at lower nutrient solution concentration, and 8) integrating the study of vase 

life with complementary research fields such as economics and environmental impact, 

in order to analyze the balance between the environmental benefits of diluting 

nutrient solution concentration and the economical impact of the reduction of rose 

vase life. 



 

 



 

 

 

 


