

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

 The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-02481-
8_61

http://link.springer.com/chapter/10.1007/978-3-642-02481-8_61

http://hdl.handle.net/10251/69249

Springer Verlag (Germany)

Poza-Lujan, J.; Posadas-Yagüe, J.; Simó Ten, JE. (2009). From the Queue to the Quality of
Service Policy: A Middleware Implementation. En Distributed Computing, Artificial
Intelligence, Bioinformatics, Soft Computing, and Ambient Assisted Living. Springer Verlag
(Germany). 432-437. doi:10.1007/978-3-642-02481-8_61.

From the Queue to the Quality of Service Policy: a

Middleware Implementation

José L. Poza, Juan L. Posadas, José E. Simó

Institute of Industrial Control Systems

 Polytechnic University of Valencia

Camino de Vera s/n, 46022, Valencia, Spain

{jopolu, jposadas, jsimo}@ai2.upv.es

Abstract. Quality of service policies in communications is one of the current

trends in distributed systems based on middleware technology. To implement

the QoS policies it is necessary to define some common parameters. The aim of

the QoS policies is to optimize the user defined QoS parameters. This article

describes how to obtain the common QoS parameters using message queues for

the communications and control components of communication. The paper

introduces the “Queue-based Quality of Service Cycle” concept for each

middleware component. The QoS parameters are obtained directly from the

queue parameters, and Quality of Service Policies controls directly the message

queues to obtain the user-defined parameters values.

1. Introduction

Manage the quality of service (QoS) on the middleware layer is one of the current

trends in the field of distributed systems. Each component of a distributed system has

some particular characteristics so it is difficult the distributed management of the QoS

parameters. To make easier the QoS management appears the concept of QoS policy.

There are a lot of middleware with QoS support [1]. Among the current

middleware architectures, stands out the Data Distribution Service (DDS) model

proposed by the Object Management Group (OMG) [2]. DDS introduces the concept

of QoS policy instead of QoS parameters to manage communications between the

components of a distributed system. The concept of QoS policy is extended to the

control layer. The control layer is based on the Sensor Web Enablement (SWE)

model, proposed by Open Geospatial Consortium (OGC) [3]. The model presented in

this article, called FSA-Ctrl [4], is based on the synergy of two standards models:

DDS and SWE.

The remainder of the paper is organized as follows. In Section 2, we overview the

definition on QoS, with particular attention to the parameters widely used in the main

bibliography. Section 3 describes the FSACtrl architecture and how to manage the

QoS policies based on the “QoS-cycle” concept. Conclusions and future work are in

Section 5.

2 José L. Poza, Juan L. Posadas, José E. Simó

Fig. 1. Evolution of QoS parameters and relations between them.

2. Quality of Service, Parameters and Policies

2.1 Quality of Service

Is difficult to find a QoS definition, there are a lot of authors that defines Quality of

Service based on the context of application. In the communications field, the

following definitions are interesting.

• Quality of service represents the set of those quantitative and qualitative
characteristics of a distributed multimedia system necessary to achieve the required

functionality of an application [5].

• Quality of Service is a set of service requirements to be met by the network while
transporting a flow [6].

• The collective effect of service performance, which determines the degree of
satisfaction of a user of the service [7].

In the above definitions, services must have a set of measureable characteristics. To

measure the characteristics, the middleware uses the parameters.

From the Queue to the Quality of Service Policy: a Middleware Implementation 3

2.2 QoS Parameters

Initially, the QoS is measured directly from the parameters of the message queues [8],

like service time, capacity or throughput. If the QoS is applied to the computation

performance, most of the parameters are the same as the message queues parameters

[9], related to the computation like delay or deadline. However, in the distributed

systems, is usual to use more complex parameters [10], like availability, reliability or

efficiency. The user viewpoint about the QoS is a difficult problem, some questions

about the translation between user and application can be obtainer from [11]

Figure 1 show how the concept of QoS parameters has changed depending on the

context in which the parameter is applied. It is interesting to note, how the parameters

are closely related to each other. Moreover, from the message queue parameters can

be obtained the usual QoS parameters. For example, the throughput of a component

can be obtained from the occupancy rate of the message queue associated with the

component. [8], this relationship is shown in equation 1.

λi = (1- p0) µi (1)

µ = 1 / E[S] (2)

The throughput of a component is represented by λi. "The probability of finding a

message queue occupied is (1- p0). Finally µ represents the service rate. If the

equation is extended to the relations among the components, the common throughput

can be obtained from the throughput of each single component. Equation 2 shows

how the service rate (µ) can be obtained from the average of messages in the queue

(E[S]).

2.3 QoS Policies

The concept of QoS is used to measure all relevant characteristics of a system.

Generally, QoS is associated with a set of measurable parameters. QoS policy can be

defined as the dynamic management of the QoS parameters whit a negotiated values.

Next, we try to define both concepts: QoS and Parameters. The aim of the FSACtrl

architecture is unify both concepts: QoS policies and message queues using a set of

well defined parameters. In [12] there is an example of other middleware with QoS

policies support.

DDS specification proposes 22 different QoS policies that cover all aspects of

communications management: message temporal aspects, data flow and metadata. For

example, by means the “Deadline” policy, that determines the maximum time for the

message arrival, and the “TimeBasedFilter” policy, that determines the minimum time

between two messages, a component can establish a temporal window to receive

messages from other components.

4 José L. Poza, Juan L. Posadas, José E. Simó

Fig. 2. Major components of the FSACtrl architecture, and his message queues.

3. Queue-based Quality of Service Cycle

3.1 Where are the messages queues placed?

The research group has developed a middleware with QoS support. The architecture is

called FSACtrl [4]. All components of FSCtrl are based on a common component that

contains a unique message queue. Figure 2, shows how communications layer and

control layer has similar messages queues. QoS policy management acts in the

negotiation between the elements of control and communication.

There are two important components: reader and writer. Readers and Writers are

the common components from DDS and SWE model. Readers and Writers are placed

on the intersection of the DDS and SWE model. Their primary function is to manage

the message flow between the control layer and the communication layer. The QoS

layer is the responsible of the managing of the message flow and time restrictions.

3.2 Steps to control the Message Queues

Each of the components of the FSACtrl architecture has a unique message queue.

With the combination of the message queues behaviour, system can be adjusted to

accomplish the user-defined requirements.

From the Queue to the Quality of Service Policy: a Middleware Implementation 5

Fig. 3. Graphic of the queue-based quality of service cycle concept.

Figure 3 shows the four steps of the Queue-based Quality of Service Cycle. The

steps are repeated for all the communication process. Next, the steps shown in the

figure 3 will be described.

1. Initially the queue provides the simple parameters, like the number of messages
waiting in the queue, or the time difference between the arrival and the departure

of a message to be processed.

2. From the simple formulas, like the formula shown in the equation 1, component
can obtain the QoS parameters based on the relations displayed on the figure 1.

3. QoS parameters are analyzed and combined by the QoS policy algorithm. The
result determines if the user-defined requirements are between the correct values.

4. If the result is out of limits, the policy acts on the message queue. Message queues
allow changes as the priority to send the messages to the rest of the system queues

or the message buffers sizes.

The previous steps, provides to the control layer an important feedback about how

the values of a queue can be used to determine a QoS policy.

Fig. 4. Local QoS parameters and common QoS Policy.

6 José L. Poza, Juan L. Posadas, José E. Simó

Figure 4, shows how each single component contributes with a small part of the

final component QoS values. Each QoS policy processes the relevant values and

sends the results to each control sensor. If a component needs increase the throughput,

a single control sensor can modify his service average rate, through the prioritization

of messages in the queue or decreasing the number of messages processed, although

this involves a decrease in the accuracy of the result.

5. Conclusions

This article has presented a concept called "Queue-based QoS Cycle," by which a

distributed system can be managed from the parameters obtained from their individual

components.

The QoS is based on the DDS model. Its main use is to predict the temporal needs

and message flow to each component of a control algorithm. Defining the values of

the QoS parameters, a system can self-configure the behaviour of the message queues.

Moreover, the load of each control component can be calculated with a simple

simulation. However, the overload produced by the use of a message queue for each

component, makes the architecture difficult to use in a embedded systems.

Currently are being implemented all the QoS policies specified in the DDS model.

The next step is determining the main formulas to obtain QoS parameters from the

message queues.

Acknowledgements. The middleware architecture described in this article is a part of

the coordinated project SIDIRELI: Distributed Systems with Limited Resources.

Control Kernel and Coordination. Education and Science Department, Spanish

Government. CICYT: MICINN: DPI2008-06737-C02-01/02

References

1. Aurrecoechea, C., Campbell, A.T. and L. Hauw, "A Survey of QoS Architectures",

ACM/Springer Verlag Multimedia Systems Journal, Special Issue on QoS Architecture,

Vol. 6 No. 3, pg. 138-151, May 1998.

2. OMG. “Data Distribution Service for Real-Time Systems, v1.1.” Document formal/2005-

12-04. December 2005.

3. Botts M, Percivall G, Reed C, Davidson J, (2006) OGC®. Sensor Web Enablement:

Overview And High Level Architecture, OpenGIS Consortium Inc

4. Poza, J.L., Posadas, J.l. and Simó, J.E. QoS-based middleware architecture for distributed

control systems. International Symposium on Distributed Computing and Artificial

Intelligence. Salamanca. 2008

5. Andreas Vogel, Brigitte Kerherve, Gregor von Bochmann, Jan Gecsei. Distributed

Multimedia and QoS: A Survey. Vol.2,. No. 2, 1995, pp.10-19.

6. Crawley, E.; Nair, R; Rajagopalan, B. “RFC 2386: A Framework for QoS-based Routing in

the Internet”. August. 1998, pp. 1-37, XP002219363.

7. ITU-T Recommendation E.800 (0894). Terms and Definitions Related to Quality of

Service and Network Performance Including Dependability, 1994.

From the Queue to the Quality of Service Policy: a Middleware Implementation 7

8. B.W. Stuck and E. Arthurs. A Computer & Communications Network Performance

Analysis Primer. Prentice Hall. 1984.

9. Raj Jain. The art of Computer Systems Performance Analysis. John Wiley & Sons Inc.

New york. 1991.

10. Coulouris, G., Dollimore, J., Kindberg, T. Distributed Systems. Concepts and Design.

Third Edition. Addison Wesley. Madrid. 2001.

11.Jae-ll Jung, "Quality of Service in Telecommunications Part II: Translation of QoS

Parameters into ATM Performance Parameters in B-ISDN", IEEE Comm. Mag. Aug. 1996,

pp.112-117

12.Eric Wohlstadter, Stefan Tai, Thomas Mikalsen, Isabelle Rouvellou, Premkumar Devanbu,

"GlueQoS: Middleware to Sweeten Quality-of-Service Policy Interactions," icse,pp.189-

199, 26th International Conference on Software Engineering (ICSE'04), 2004

