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Abstract. Quality of service policies in communications is one of the current 

trends in distributed systems based on middleware technology. To implement 

the QoS policies it is necessary to define some common parameters. The aim of 

the QoS policies is to optimize the user defined QoS parameters. This article 

describes how to obtain the common QoS parameters using message queues for 

the communications and control components of communication. The paper 

introduces the “Queue-based Quality of Service Cycle” concept for each 

middleware component. The QoS parameters are obtained directly from the 

queue parameters, and Quality of Service Policies controls directly the message 

queues to obtain the user-defined parameters values. 

1. Introduction 

Manage the quality of service (QoS) on the middleware layer is one of the current 

trends in the field of distributed systems. Each component of a distributed system has 

some particular characteristics so it is difficult the distributed management of the QoS 

parameters. To make easier the QoS management appears the concept of QoS policy. 

There are a lot of middleware with QoS support [1]. Among the current 

middleware architectures, stands out the Data Distribution Service (DDS) model 

proposed by the Object Management Group (OMG) [2].  DDS introduces the concept 

of QoS policy instead of QoS parameters to manage communications between the 

components of a distributed system. The concept of QoS policy is extended to the 

control layer. The control layer is based on the Sensor Web Enablement (SWE) 

model, proposed by Open Geospatial Consortium (OGC) [3]. The model presented in 

this article, called FSA-Ctrl [4], is based on the synergy of two standards models: 

DDS and SWE. 

The remainder of the paper is organized as follows. In Section 2, we overview the 

definition on QoS, with particular attention to the parameters widely used in the main 

bibliography. Section 3 describes the FSACtrl architecture and how to manage the 

QoS policies based on the “QoS-cycle” concept. Conclusions and future work are in 

Section 5. 
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Fig. 1. Evolution of QoS parameters and relations between them. 

2. Quality of Service, Parameters and Policies 

2.1 Quality of Service 

Is difficult to find a QoS definition, there are a lot of authors that defines Quality of 

Service based on the context of application. In the communications field, the 

following definitions are interesting. 

 

• Quality of service represents the set of those quantitative and qualitative 
characteristics of a distributed multimedia system necessary to achieve the required 

functionality of an application [5]. 

• Quality of Service is a set of service requirements to be met by the network while 
transporting a flow [6]. 

• The collective effect of service performance, which determines the degree of 
satisfaction of a user of the service [7]. 

 

In the above definitions, services must have a set of measureable characteristics. To 

measure the characteristics, the middleware uses the parameters. 
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2.2 QoS Parameters 

Initially, the QoS is measured directly from the parameters of the message queues [8], 

like service time, capacity or throughput. If the QoS is applied to the computation 

performance, most of the parameters are the same as the message queues parameters 

[9], related to the computation like delay or deadline. However, in the distributed 

systems, is usual to use more complex parameters [10], like availability, reliability or 

efficiency.  The user viewpoint about the QoS is a difficult problem, some questions 

about the translation between user and application can be obtainer from [11] 

Figure 1 show how the concept of QoS parameters has changed depending on the 

context in which the parameter is applied. It is interesting to note, how the parameters 

are closely related to each other. Moreover, from the message queue parameters can 

be obtained the usual QoS parameters. For example, the throughput of a component 

can be obtained from the occupancy rate of the message queue associated with the 

component. [8], this relationship is shown in equation 1. 

 

λi = (1- p0) µi (1) 

µ = 1 / E[S] (2) 

 

The throughput of a component is represented by λi. "The probability of finding a 

message queue occupied is (1- p0). Finally µ represents the service rate. If the 

equation is extended to the relations among the components, the common throughput 

can be obtained from the throughput of each single component. Equation 2 shows 

how the service rate (µ) can be obtained from the average of messages in the queue 

(E[S]). 

2.3 QoS Policies 

The concept of QoS is used to measure all relevant characteristics of a system. 

Generally, QoS is associated with a set of measurable parameters. QoS policy can be 

defined as the dynamic management of the QoS parameters whit a negotiated values.  

Next, we try to define both concepts: QoS and Parameters. The aim of the FSACtrl 

architecture is unify both concepts: QoS policies and message queues using a set of 

well defined parameters. In [12] there is an example of other middleware with QoS 

policies support. 

DDS specification proposes 22 different QoS policies that cover all aspects of 

communications management: message temporal aspects, data flow and metadata. For 

example, by means the “Deadline” policy, that determines the maximum time for the 

message arrival, and the “TimeBasedFilter” policy, that determines the minimum time 

between two messages, a component can establish a temporal window to receive 

messages from other components. 
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Fig. 2. Major components of the FSACtrl architecture, and his message queues. 

3. Queue-based Quality of Service Cycle 

3.1 Where are the messages queues placed? 

The research group has developed a middleware with QoS support. The architecture is 

called FSACtrl [4]. All components of FSCtrl are based on a common component that 

contains a unique message queue. Figure 2, shows how communications layer and 

control layer has similar messages queues. QoS policy management acts in the 

negotiation between the elements of control and communication. 

There are two important components: reader and writer. Readers and Writers are 

the common components from DDS and SWE model. Readers and Writers are placed 

on the intersection of the DDS and SWE model. Their primary function is to manage 

the message flow between the control layer and the communication layer. The QoS 

layer is the responsible of the managing of the message flow and time restrictions. 

3.2 Steps to control the Message Queues 

Each of the components of the FSACtrl architecture has a unique message queue. 

With the combination of the message queues behaviour, system can be adjusted to 

accomplish the user-defined requirements. 
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Fig. 3. Graphic of the queue-based quality of service cycle concept. 

Figure 3 shows the four steps of the Queue-based Quality of Service Cycle. The 

steps are repeated for all the communication process. Next, the steps shown in the 

figure 3 will be described. 

 

1. Initially the queue provides the simple parameters, like the number of messages 
waiting in the queue, or the time difference between the arrival and the departure 

of a message to be processed. 

2. From the simple formulas, like the formula shown in the equation 1, component 
can obtain the QoS parameters based on the relations displayed on the figure 1. 

3. QoS parameters are analyzed and combined by the QoS policy algorithm. The 
result determines if the user-defined requirements are between the correct values. 

4. If the result is out of limits, the policy acts on the message queue. Message queues 
allow changes as the priority to send the messages to the rest of the system queues 

or the message buffers sizes. 

 

The previous steps, provides to the control layer an important feedback about how 

the values of a queue can be used to determine a QoS policy.  

 

 

Fig. 4. Local QoS parameters and common QoS Policy. 
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Figure 4, shows how each single component contributes with a small part of the 

final component QoS values. Each QoS policy processes the relevant values and 

sends the results to each control sensor. If a component needs increase the throughput, 

a single control sensor can modify his service average rate, through the prioritization 

of messages in the queue or decreasing the number of messages processed, although 

this involves a decrease in the accuracy of the result. 

5. Conclusions 

This article has presented a concept called "Queue-based QoS Cycle," by which a 

distributed system can be managed from the parameters obtained from their individual 

components.  

The QoS is based on the DDS model. Its main use is to predict the temporal needs 

and message flow to each component of a control algorithm. Defining the values of 

the QoS parameters, a system can self-configure the behaviour of the message queues. 

Moreover, the load of each control component can be calculated with a simple 

simulation. However, the overload produced by the use of a message queue for each 

component, makes the architecture difficult to use in a embedded systems. 

Currently are being implemented all the QoS policies specified in the DDS model. 

The next step is determining the main formulas to obtain QoS parameters from the 

message queues. 
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