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Inconsistency-tolerant Integrity Checking
Hendrik Decker and Davide Martinenghi

Abstract— All methods for efficient integrity checking require
all integrity constraints to be totally satisfied, before any update is
executed. However, a certain amount of inconsistency is the rule,
rather than the exception in databases. In this paper, we close
the gap between theory and practice of integrity checking, i.e.,
between the unrealistic theoretical requirement of total integrity
and the practical need for inconsistency tolerance, which we
define for integrity checking methods. We show that most of them
can still be used to check whether updates preserve integrity, even
if the current state is inconsistent. Inconsistency-tolerant integrity
checking proves beneficial both for integrity preservation and
query answering. Also, we show that it is useful for view updating,
repairs, schema evolution and other applications.

Index Terms— Integrity Checking, Inconsistency Tolerance.

I. INTRODUCTION

Integrity constraints are statements declared in the database

schema. They express semantic properties, meant to be invariably

satisfied by the stored data across state changes.

For preserving the satisfaction of simple constraints like pri-

mary keys, foreign keys, or CHECK constraints, sufficient support

is usually provided by the database management system (DBMS).

For constraints that are not supported by the DBMS, the majority

of scientific publications on the subject proposes to use some au-

tomated, application-independent method for integrity checking.

Each such method takes as input the set of constraints in the

schema, an update consisting of two (possibly empty) sets of data-

base elements to be inserted or, respectively, deleted, and possibly

the current, also called ‘old’ state of the database. The output

of the methods indicates whether the ‘new’ state, obtained from

updating the old state, would satisfy or violate integrity.

In theory, each method requires the total integrity of the old

state, i.e., no violation whatsoever is tolerated at any time. Total

integrity, however, is the exception, rather than the rule in practice.

Integrity violation may sneak into a database in many ways. For

instance, new constraints may be added without being checked

for violations by legacy data. Or, integrity control may be turned

off temporarily, e.g., when uploading a backup for which a

total check would last too long. Or, integrity may deteriorate by

migrating to the DBMS of a different vendor, since the semantics

of integrity constructs tends to be proprietary. Or, integrity may

be compromised by the integration of databases, when constraints

that had held locally fail to hold after databases have been merged.

Other database applications where inconsistencies may occur

are view updating, schema evolution, data mining and warehous-

ing, diagnosis, replication, uncertain data, and many more.

Often, users consider efforts to completely repair all incon-

sistencies unnecessary, inopportune, unaffordable or impossible.

Violations of constraints may even be desirable, e.g., when
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constraints are used to detect irregularities, such as indications of

security attacks, tax dodging, etc. So, even though the standard

logic foundations are intolerant wrt. inconsistency, there is a

strong practical need for integrity checking methods that are able

to tolerate extant cases of constraint violations.

For convenience, we abbreviate, from now on, inconsistency-

tolerant integrity checking by ITIC.

Fortunately, no new methods for ITIC have to be invented.

The main purpose of this paper is to show that the gap between

theory and practice of integrity checking can be closed by already

approved, time-tested methods. Contrary to common belief, these

methods can waive the unrealistic requirement of total integrity

satisfaction, without forfeiting their capacity to check integrity,

even in the presence of inconsistency. Our approach to ITIC yields

major quality improvements, both of data wrt. their intended

semantics, and of answers to queries.

The aims pursued in this paper are the following.

1) To distinguish methods that are inconsistency-tolerant from
those that are not. In this paper, we formalize the notion of ITIC.

Before that, the behavior of methods for checking declaratively

stated constraints in the presence of inconsistency has never been

contemplated. Traditionally, integrity checking methods were not

legitimized to be used in the presence of inconsistency, although

many databases are not totally consistent. Now, inconsistency-

tolerant methods can be soundly used in the presence of an

arbitrary amount of inconsistency. Thus, the applicability of

integrity checking methods is widened immensely. To the best

of our knowledge, our definition is the first of its kind.

2) To bridge the gap between theory and practice of integrity
checking by using inconsistency tolerance. The theoretical total-

integrity requirement is a formidable desideratum in practice.

Typically, practical approaches to deal with extant inconsistency

are based on exception handling. They tend to have the character

of workarounds or ad-hoc solutions. Theoretical approaches to

deal with extant inconsistency have been based on non-classical

logics such as modal, many-valued or paraconsistent calculi. Our

approach is based on classical logic and does not need any

changes or adaptations of existing integrity checking methods.

3) To evaluate the effects of ITIC on database evolution
and query answering. Ultimately, integrity checking is about

preserving the semantics of data through updates and, conse-

quently, obtaining query answers that can be trusted. Without

total integrity, full trustability is lost. Yet, some databases may

be less inconsistent than others, and thus better behaved wrt.

query answering. In this paper, we propose a comprehensive set of

experiments for observing the impact of ITIC on databases subject

to evolution through updates. We report both on the number of

constraint violations and on the number of incorrect answers to

complex benchmark queries. We also compare our approach to

consistent query answering [1], which is an orthogonal technique

for dealing with inconsistent data.

4) To describe several application contexts that may benefit
from ITIC. The vision brought forward in this paper can be applied
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to various knowledge and data management problems. We show

that ITIC naturally extends to view updates, database repairs,

schema evolution, risk management, and unsatisfiability handling.

Section II outlines the background. The main contributions are:

to develop a concept of ITIC (Section III), to show the inconsis-

tency tolerance of known methods (Section IV), to outline several

applications of ITIC (Section V), and to validate the practical

relevance of ITIC (Section VI). Related work is discussed in

Section VII. In Section VIII, we conclude.

II. PRELIMINARIES

We adopt the usual terminology and notation of datalog, and

refer to textbooks in the field (e.g., [2]) for further background.

A. Logic and Databases

Throughout, let symbols a, b, . . . denote constants, p, q, . . .

predicates and x, y, . . . variables. A term is either a variable

or a constant. Sequences of terms are denoted as vectors, e.g., �t.

Predicates, terms, logical connectives ∼,∧,∨,←, 0-ary predicates

true, false, and quantifiers ∀, ∃ are used in formulas, defined as

follows: i) if p is an n-ary predicate and t1, . . . , tn are terms then

p(t1, . . . , tn) is a formula; ii) if F and G are formulas then so

are ∼F , F ∧G, F ∨G, F ← G; iii) if F is a formula and x a

variable such that neither ∀x nor ∃x occurs in F , then ∀xF and

∃xF are formulas; in ∀xF and ∃xF , each occurrence of x in F

is said to be bound. A formula in which all variables are bound is

said to be closed. A formula preceded by ∼ is said to be negated.

Formulas of the form p(t1, . . . , tn), where p is a predicate and the

ti are terms, are called atoms. A literal is either an atom (positive
literal) or a negated atom (negative literal).

An expression is either a formula or a term. A substitution σ is

a set of pairs of terms {x1/t1, . . . , xn/tn}, where x1, . . . , xn are

distinct variables; let {x1, . . . , xn} be denoted by Dom(σ). The

restriction of a substitution σ to a set of variables V ⊆ Dom(σ)

is the substitution σ′ ⊆ σ such that Dom(σ′) = V .

For an expression E (or a set of expressions E) and a substitu-

tion σ, the expression Eσ (Eσ) be obtained by replacing each

occurrence of each variable from Dom(σ) in E (E) by the

corresponding term in σ. An expression is called ground if it

contains no variable. A substitution σ is more general than a

substitution θ if there is a substitution φ such that, for each

expression E, Eθ = (Eσ)φ. A substitution σ is a unifier of

expressions E1, . . . , En if E1σ = · · · = Enσ; σ is a most
general unifier (mgu) of E1, . . . , En if σ is more general than

any other unifier of E1, . . . , En.

A clause is a formula of the form H ← B1 ∧ · · · ∧ Bn

(n≥ 0), where H is a positive literal, B1, . . . , Bn are literals and,

implicitly, each variable in H ← B1 ∧ · · · ∧ Bn is universally

quantified in front of the clause. H is called the head and

B1 ∧ · · · ∧Bn the body of the clause. The head is optional; when

absent, the clause is called a denial, and its body can be read as

a condition that must not hold. The empty clause is a denial with

an empty body; it is equivalent to false. A fact is a clause whose

head is ground and whose body is empty.

A database clause is a clause with non-empty head

H /∈{true, false}. A database is a finite set of database clauses.

The dependency graph DD of a database D is a directed graph

such that its nodes are labeled with the predicates in D, and there

is a positive (resp., negative) arc (p, q) in DD for each clause

H ← B in D and each pair of predicates p, q such that q occurs

in H and p in a positive (resp., negative) literal in B. A database

D is relational if each clause in D is a fact; D is hierarchical
if no cycle exists in DD , i.e., no predicate recurs on itself; D is

stratified if no cycle with a negative arc exists in DD , i.e., no

predicate recurs on its own negation.

An update is a bipartite finite set of clauses to be deleted and

inserted, respectively. For a database D and an update U , let DU

denote the updated database; we also call D and DU the old and

the new state, respectively. For a fact A in U to be inserted or

deleted, we may write “insert A” or, resp., “delete A”.

B. Integrity

We are going to formalize basic notions of database integrity.

1) Syntax: An integrity constraint (in short constraint) is a

closed first-order predicate logic formula. As usual, constraints

are represented either a denials or in prenex conjunctive normal
form (PCNF), i.e., formulas of the form I = QI ′, where Q is a

sequence of quantified variables Q1x1 . . . Qnxn, each Qi is either

∀ or ∃, and the so-called matrix I ′ is a conjunction of disjunctions

of literals.

A variable x in a constraint I is called a global variable in I

if x is ∀-quantified and ∃ does not occur left of ∀x in the PCNF

of I. Let Glb(I) denote the set of global variables in I.

An integrity theory is a finite set of integrity constraints.

2) Semantics: We use true and false also to denote truth values.

We only consider databases that have a two-valued semantics,

given by a unique standard model, e.g., stratified databases with

the stable model semantics [3]. That also determines the semantics

of integrity, as follows.

Let I be a constraint, IC an integrity theory, and D a database.

We write D(I) = true (resp., D(IC) = true) and say that I (resp.,

IC) is satisfied in D if I (resp., each constraint in IC) is true in

D. Else, we write D(I) = false (resp., D(IC) = false) and say

that I (resp., IC) is violated in D.

In the literature, the semantics of integrity is not always defined

by the truth or falsity of constraints, as in the preceding definition.

For instance, the “consistency view” in [4] defines satisfaction

not by truth, but by satisfiability. The “theoremhood view” in

[5] defines that a constraint is violated if it is not true, which

does not necessarily mean that it is false, e.g., in the completion

of databases with predicates defined by recurring on themselves.

The preceding definition avoids such incongruences, as long as

only databases with a unique two-valued model are considered.

3) Soundness and Completeness: Each integrity checking

method M can be formalized as a function that takes as input a

database, an integrity theory and an update, and outputs either sat
or vio. To compute this function usually is much more efficient

than the brute-force method, henceforth denoted by Mbf , which

exhaustively evaluates all constraints upon each update.

The soundness and completeness of integrity checking methods

can now be generically defined as follows.

Definition 2.1: [Sound and complete integrity checking]

An integrity checking method M is called sound or, resp., com-

plete, if, for each database D, each integrity theory IC such that
D(IC) = true, and each update U , (1) or, resp., (2) holds.

If M(D, IC, U) = sat then DU (IC) = true . (1)

If DU (IC) = true then M(D, IC, U) = sat . (2)
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Definition 2.1 only states soundness and completeness prop-

erties for the output sat of M. Symmetrically, soundness and

completeness properties for the output vio could be defined. We

refrain from doing so, since, under the additional condition that

M terminates, it is easy to show that soundness and completeness

for sat is equivalent to completeness and, resp., soundness for vio.

Soundness, completeness and termination have been shown for

the methods in [6], [5], [4], [7] and others. Other methods (e.g.,

[8], [9]) are only shown to be sound. Thus, they provide sufficient

but not necessary conditions for guaranteeing integrity.

4) Simplifications: Most methods for efficient integrity check-

ing attemp to “simplify” the constraints that are potentially

violated by an update U , so that computingM(D, IC, U) becomes

more efficient than querying all constraints by brute force.

Example 2.1: Let p(ISBN ,TITLE) be a relation with predi-

cate p about published books, and I the constraint

← p(x, y) ∧ p(x, z) ∧ y �= z .

I states that no two books with the same ISBN may have different

titles. Let U be an update that inserts p(i, t). For any database D,

most methods M compute M(D, {I}, U) by evaluating D(I ′),
where I ′ is the simplified constraint ← p(i, y) ∧ y �= t. It states

that no book with ISBN i may have a title different from t. If

M is sound (and complete), the new state DU is guaranteed to

satisfy I if (and, resp., only if) DU (I ′) = true. �

Such simplifications typically yield major gains in efficiency, as

can be seen by comparing I and I ′ in Example 2.1. For any given

update pattern, simplifications can be generated even without

depending on any database state, but only on the schema and

the integrity theory. Thus, database performance is not affected,

since simplifications can be anticipated ahead of update time.

For instance, take i and t in Example 2.1 as placeholders for

actual ISBNs and titles. For the insertion of a concrete fact, e.g.

p(17, abc), values 17 and abc replace i and, resp., t in I ′. The

cost of checking the resulting simplification then is that of a table

look-up, while the brute-force evaluation of I would be quadratic

in the size of the extension of p (if no index is used).

III. INCONSISTENCY TOLERANCE IN INTEGRITY CHECKING

The motivation behind this paper is the need for methods that

are capable of checking constraints without insisting on total

integrity satisfaction. No method has ever been defined without

requiring total integrity, which was thought of as indispensable.

However, inconsistencies often are unavoidable, or even useful

(e.g., for diagnosis, or mining fraudulent data). Thus, extant cases

of violated constraints should be tolerable. Nonetheless, integrity

checking should prevent that any new cases of integrity violation

are introduced. That is captured by the definitions in III-A.

A. The Main Definitions

The goal of this section is to characterize methods that can

tolerant extant cases of constraint violation in databases. For

attaining that goal, we first formalize what we mean by “case”.

Definition 3.1: [Case]

Let I be a constraint and σ a substitution. Iσ is called a case of
I if Dom(σ) = Glb(I); it is a basic case if Glb(Iσ) = ∅. For a
database D and an integrity theory IC, let S(D, IC) denote the
set of all cases C of all constraints in IC such that D(C) = true.

Example 3.1: Consider two relations with predicates r, s, and

the foreign key constraint I = ∀x, y ∃z(s(x, y) → r(x, z)) on the

first argument of s, which references a primary key, the first

argument of r. The global variables of I are x and y. For a fact

s(a, b) to be inserted, integrity checking methods usually focus

on the (basic) case ∃z(s(a, b) → r(a, z)) of I. It requires the

existence of a fact in r whose primary key value matches the

foreign key value of the inserted fact. Other cases are ignored. �

Example 3.1 illustrates the crucial role of cases for ITIC.

Intuitively, at most those cases whose global variables match with

values of the update need to be checked. All other cases can be

ignored, even if they are violated. Most methods in the literature

and in practice work that way: they focus on cases that may

be violated by updated facts, while ignoring extant violations.

However, the traditional theory of simplified integrity checking,

anchored in Definition 2.1, does not reflect that focus. Rather, it

coarsely treats each constraint I as either satisfied or violated. It

does not consider that, e.g., only a few, tolerable cases of I may

be violated, while all others are satisfied. The following definition

does.

Definition 3.2: [Inconsistency-tolerant integrity checking]

An integrity checking methodM is sound or, resp., complete wrt.

inconsistency tolerance if, for each database D, each integrity
theory IC, and each update U , (3) or, resp., (4) holds.

If M(D, IC, U) = sat then S(D, IC) ⊆ S(DU , IC). (3)

If S(D, IC) ⊆ S(DU , IC) then M(D, IC, U) = sat . (4)

As opposed to the traditional Definition 2.1, Definition 3.2 does

not require total integrity, i.e., it may well be that D(IC) = false.

However, in both definitions, the same function M(D, IC, U)

is used for integrity checking. Thus, no new method needs to

be invented for achieving inconsistency tolerance. Rather, any

traditional method can be employed if it complies with (3).

Example 3.2: Let I be as in Example 2.1. Let D con-

sist of p(1, a) and p(1, b). Clearly, D(I) = false. Let U =

{insert p(2, c)}. The simplification ← p(2, y)∧y �= c, as obtained

in Example 2.1, is true in DU . Each method M that evaluates

this simplification outputs sat, i.e., U is accepted because it does

not introduce any violation of integrity. Thus, M guarantees that

all cases of I that were satisfied in D remain satisfied in DU ,

while tolerating the inconsistency of violated cases of I. �

Several non-trivial examples and counter-examples for Defini-

tion 3.2 are featured in section IV. A trivial example of a method

that is sound wrt. inconsistency tolerance isMbf . However,Mbf

is not complete wrt. inconsistency tolerance, as shown below.

Example 3.3: Let D, I and U be as in Example 3.2. Clearly,

Mbf (D, {I}, U) = vio, but the only violated basic case of I in

DU , ← p(1, a) ∧ p(1, b) ∧ a �= b, was already violated in D. �

Theorem 1 below states that ITIC generalizes the traditional

approach which insists on total integrity. The generalization is

proper, i.e., some but not all methods are inconsistency-tolerant,

as we shall see in IV-D.

Theorem 1: Let M be a method for integrity checking.

Then, for each database D, each integrity theory IC such that

D(IC) = true, and each update U , the implications (3) ⇒ (1)

and (4) ⇒ (2) hold.

Proof: To show (3) ⇒ (1), note that D(IC) = true entails

IC ⊆ S(D, IC). Hence, if (3) holds and M(D, IC, U) = sat, the

conclusion of (3) entails DU (C) = true for each C ∈ IC. Hence

(1) follows. Similarly, (4) ⇒ (2) can be shown.

Theorem 1 entails that relaxing traditional integrity checking

(which requires total integrity) to ITIC causes no loss of efficiency
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and no extra cost at all. On the other hand, the gains are immense:

with an inconsistency-tolerant method, database operations can

proceed even in the presence of (obvious or hidden, known or

unknown) violations of integrity. As opposed to that, integrity

checking was traditionally not legitimate in the presence of con-

straint violations, i.e., it had to wait until integrity was repaired.

Example 3.4 below illustrates another advantage of ITIC: each

update that does not introduce any new case of integrity violation

can be accepted, while extant violated cases may disappear,

intentionally or accidentally.

Example 3.4: Let D and I be as in Example 3.2, and let

U = {delete p(1, b)}. Since D(I) = false, no method that insists

on total integrity is in the position to check this update. How-

ever, each inconsistency-tolerant method is. Each method that is

complete wrt. inconsistency tolerance (and in fact each method

assessed in Section IV) returns sat for this example, since U

does not introduce any new violation of I. Since U even repairs a

violated constraint, there are several reasons to accept this update,

and the lack of total integrity is no reason to reject it. �

B. Sufficient and Necessary Conditions

We are now going to discuss conditions that will be used for

assessing the inconsistency tolerance of methods in section IV.

Conditions (5) and (6) below are sufficient for soundness (3) and,

resp., completeness (4), as shown in Theorem 2. Later, (8), which

is also interesting on its own, is shown to be necessary for (4).

If M(D, IC, U) = sat
then, for each C ∈ S(D, IC), M(D, {C}, U) = sat

(5)

If, for each C ∈ S(D, IC), M(D, {C}, U) = sat
then M(D, IC, U) = sat

(6)

Theorem 2: Let M be a sound method for integrity checking.

Then, for each database D, each integrity theory IC, the implica-

tions (5) ⇒ (3) and (6) ⇒ (4) hold.

Proof: By applying (1), the “then” part of (5) becomes

for each C ∈ S(D, IC), DU (C) = sat, (7)

which is the same as S(D, IC) ⊆ S(DU , IC), hence the thesis.

Similarly, applying (1) on the “if” part of (6) yields (4).

In Section IV, condition (5) is verified for the methods in [6],

[5], [4], and (6) is verified for [6]. Interestingly, we are going

to see that many other methods turn out to not fulfill (4), since,

e.g., they may output vio whenever an update yields a redundant

new path for deriving some already violated case. So, if the update

causes no other violation of integrity, the premise of (4) holds, but

its conclusion does not. In other words, the output vio of methods

that are sound but incomplete wrt. inconsistency tolerance does

not guarantee that the given update would violate a case of

some constraint that was satisfied in the old state. However, the

following, somewhat weaker property holds for several methods.

Definition 3.3: [Weakly complete inconsistency tolerance]

Let M be a method for integrity checking. M is called weakly

complete wrt. inconsistency tolerance if, for each database D,
each integrity theory IC and each update U , the following holds.

If DU (IC) = true then M(D, IC, U) = sat . (8)

The technical difference between (2) and (8) is that, for (2),

total integrity of the old state is required, but not for (8).

In practice, weak completeness wrt. inconsistency tolerance is

a desirable property: The output vio of any sound but incomplete

TABLE I

PROPERTIES OF INTEGRITY CHECKING METHODS

MN MLST MSK MG MCM

sound for int. check. Yes Yes Yes Yes Yes
complete for int. check. Yes Yes Yes No Yes
sound wrt. inc. tol. Yes Yes Yes No Yes∗
complete wrt. inc. tol. Yes weakly weakly No No
∗ For singleton integrity theories

integrity checking method means that further checking is needed

for deciding if the update preserves or violates integrity. However,

the contraposition of (8) ensures that, if a weakly complete

method outputs vio, integrity surely is violated after the update,

i.e., no further checking is needed. In fact, it is easy to show the

following direct consequences of Definitions 2.1, 3.2 and 3.3.

Corollary 3: Let M be a method for integrity checking.

a) If M is complete wrt. inconsistency tolerance, then it is also

weakly complete wrt. inconsistency tolerance ((4) ⇒ (8)).

b) If M is weakly complete wrt. inconsistency tolerance, then it

is also a complete integrity checking method ((8) ⇒ (2)).

IV. ASSESSMENT OF INTEGRITY CHECKING METHODS

As seen in section III, the differences between traditional

integrity checking and ITIC are quite subtle. However, it would

be wrong to think that inconsistency tolerance was for free or

marginal. In this section, we assess five methods to determine

if they are or are not inconsistency-tolerant, spanning from the

seminal work by Nicolas [6] to more recent ones.

The result that many, though not all well-known methods are

inconsistency-tolerant is of utmost practical significance, since

each simplification method hitherto has been believed to be dis-

capacitated, hence useless, in the presence of inconsistency. To

show that several methods continue to function well even if

integrity is violated thus breaks radically with all expectations.

Without this result, there would be no justification at all for using

integrity checking methods in inconsistent databases.

We chose methods [6], [5], [4] due to their impact on subse-

quent works. In particular, [6] initiated and popularized the notion

of simplification. Its extensions in [5] and [4] have generalized

integrity checking to datalog. A lot more extensions have ap-

peared. Since it is unfeasible to discuss them all, we have chosen

just two more methods. (Others are analyzed in [10].) One is from

the 1990’s [8]. It excels for constraints that lend themselves to

optimizations related to query containment [11]. The other is from

the 2000’s [7]. It generates provably optimal simplifications, and

generalizes previous methods that evaluate their simplifications

in the old (instead of the new) state. Thus, costly rollbacks of

updates that violate integrity are avoided. Table I summarizes the

properties of the methods assessed in this section.

A. The Method of Nicolas

We are going to show that the well-known method for integrity

checking by Nicolas [6], henceforth denoted by MN , is sound

and complete wrt. inconsistency tolerance.

We adopt the notation Γ+
f,I from [6]. For a database D, a

constraint I = �QI ′ in PCNF and a fact f to be inserted, MN

generates the simplification

Γ+
f,I = �Q(I ′γ1 ∧ · · · ∧ I ′γm) (m ≥ 0) (9)
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where the γi are unifiers, restricted to Glb(I), of f and the m

different occurrences of negated atoms in I unifying with f . Then,

each occurrence of f in Γ+
f,I is replaced by true in Γ+

f,I , which is

then further simplified by standard rewritings. Symmetrically, for

a fact f to be deleted, a simplification obtained by instantiating

I with restricted unifiers of f and non-negated occurrences of

matches of f , is generated. For simplicity, we only deal with

insertions here; result and proof wrt. deletions are symmetrical.

Under the total integrity premise D(I) = true, the simplifica-

tion theorem in [6] states that DU (I) = true iff DU (Γ+
f,I) = true.

Example 4.1: Let I and U be as in Example 2.1. A PCNF of

I is

∀x∀y ∀z (∼p(x, y) ∨ ∼p(x, z) ∨ y = z) .

Clearly, p(i, t) unifies with two atoms in I, by unifiers {x/i, y/t}
and {x/i, z/t}. The simplification Γ+

p(i,t),I
returned by MN is

∀x∀y ∀z (∼p(i, t)∨∼p(i, z)∨ t=z) ∧ (∼p(i, y)∨∼p(i, t)∨ y=t).

Since the two conjuncts are obviously equivalent, one of them

can be dropped, yielding ∀x ∀y (∼p(i, y) ∨ ∼p(i, t) ∨ y = t).

Then, replacing p(i, t) by true and dropping the corresponding

disjunct yields the same simplification as in Example 2.1.

It is worth noting that each simplification step above is believed

to be valid in [6] (and in fact in all the rest of the literature on

integrity checking methods) only if I is satisfied in the old state.

Theorem 4 rebuts this belief by confirming that the simplifications

are valid also if I is violated in the old state. �

Theorem 4 (Inconsistency tolerance of MN ): MN is sound

and complete wrt. inconsistency tolerance in relational databases.

Proof: Let D be a relational database, IC an integrity theory

and U an update. For the proof below, we assume that IC is sin-

gleton and U = insert f , for some fact f /∈D. A symmetric proof

for deletions and straightforward extensions to multiple updates

and constraints are omitted. In part a), we show soundness, in b)
completeness.

a) Soundness: Let I = �QI ′ be an integrity constraint in PCNF

with matrix I ′, Γ+
f,I the simplification of MN for I and U , σ a

substitution such that Dom(σ) = Glb(I), and D(Iσ) = true. We

have to show that DU (Iσ) = true if DU (Γ+
f,I) = true. According

to Theorem 2, it suffices to show:

If DU (Γ+
f,I) = true then DU (Γ+

f,Iσ) = true

where Γ+
f,Iσ is the simplification of Iσ byMN . For each conjunct

J in Γ+
f,Iσ , there is a negated atom g in I such that gσβ = gγ = f ,

where β and γ are the substitutions used to compute Γ+
f,Iσ and,

resp., Γ+
f,I . Thus, J = I ′σβ = I ′γ also occurs in Γ+

f,I . Hence,

Γ+
f,I entails Γ+

f,Iσ .

b) Completeness: We show the following contrapositive claim:

If MN (D, I, U) = vio then there is a case C of I

such that D(C) = true and DU (C) = false .
(10)

Assume MN (D, I, U) = vio. We distinguish D(I) = true and

D(I) = false. If D(I) = true, then DU (I) = false, since MN is

complete for integrity checking. Hence, (10) follows.

Now, let D(I) = false. Since MN reports a violation, there is

a conjunct I ′γ in Γ+
f,I such that C = �Q(I ′γ) is violated in DU ,

where γ is a unifier of f and a negative literal in I. Thus, one of

the disjuncts in I ′γ is a negated occurrence of f . Since f /∈ D,

D(C) = true holds. Hence (10) follows.

B. The Method of Lloyd, Sonenberg and Topor

We are going to show that the integrity checking method in

[5], here denoted by MLST , is sound and weakly complete wrt.

inconsistency tolerance.

In [5], two sets posD,D′ and negD,D′ are defined that capture

the difference between any two databases D and D′ such that

D ⊆ D′. The sets consist of atoms that either are the head of

some clause in the update U = D′ \D or the head of a clause in

D that is possibly affected by reasoning forward from clauses in

U . In particular, posD,D′ captures a superset of the facts that are

actually inserted, i.e., provable after the update but not before,

and negD,D′ a superset of the facts that are actually deleted, i.e.,

provable before but not after the update.

Let D be a stratified database and U an update that preserves

stratification. Applying the deletions in U to D leads to an

intermediate state D′′. Then, applying the insertions in U to D′′

leads to the updated state D′ = DU . It is shown in [5] that

posD′′,D′ ∪negD′′,D captures a superset of facts that are actually

inserted, and negD′′,D′ ∪ posD′′,D captures a superset of facts

that are actually deleted by U .

Thus, the principles for identifying all relevant, i.e., potentially

violated constraints, as established in [6], apply as follows. Only

those atoms in posD′′,D′ ∪ negD′′,D that unify with the atom

of a negative literal in I by some mgu φ capture a possibly

inserted fact that may violate integrity. That is checked by

evaluating �Q(I ′φ′), where φ′ is the restriction of φ to Glb(I),

and I ′ the matrix of I. Symmetrically, only those atoms in

negD′′,D′ ∪posD′′,D that unify with the atom of a positive literal

in I by some mgu φ capture a possibly deleted fact that may

violate integrity. That is then checked by evaluating the case
�Q(I ′φ′) of I, where φ′ is defined as above.

Let Φ(I, D, U) denote the set of all such substitutions φ′

for identifying relevant constraints. Assuming the total integrity

premise D(I) = true, the simplification theorem in [5] states that,

for any stratified database D and update U preserving stratifica-

tion, DU (I) = true iff, for all φ ∈ Φ(I, D, U), DU ( �Q(I ′φ)) =

true.

Example 4.2: Let D consist of the four clauses

p(x, y)← q(x) ∧ r(y), r(b),

p(x, y)← s(y, x), s(b, a),

I =←p(x, a) and U = {insert q(a)}. Clearly, D(I) = true.MLST

generates Φ(I, D, U) = {x/a}, indicating that some fact matching

p(a, y) may violate I. Thus, the simplification to be evaluated is

← p(a, a). Hence,MLST (D, {I}, U) = sat. By the soundness of

MLST , DU (I) = true follows.

Note thatMLST (D, {I}, U) = sat also if s(a, b)∈D. That high-

lights the inconsistency tolerance of MLST , as stated below. �

Theorem 5 (Inconsistency tolerance of MLST ): MLST is

sound wrt. inconsistency tolerance in stratified databases.

Proof: Let D be a stratified database, I = �QI ′ be a

constraint in PCNF with matrix I ′, I∗ = �Q(I ′ζ) a case of I,

and U an update preserving stratification. Assume D(I∗) = true.

We have to show that DU (I∗) = true if DU ( �Q(I ′φ)) = true, for

all φ ∈ Φ(I, D, U). That follows from (5) and lemma 4.1.

Lemma 4.1: DU ( �Q(I ′ζφ∗)) = true for all φ∗ ∈ Φ(I∗, D, U)

if DU ( �Q(I ′φ)) = true for all φ ∈ Φ(I, D, U).

This lemma is a direct consequence of the following one.

Lemma 4.2: For each substitution φ∗ ∈ Φ(I∗, D, U) there is a

substitution φ ∈ Φ(I, D, U) that is more general than φ∗.
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Proof: Each φ∗ ∈ Φ(I∗, D, U) either originates from a

potentially inserted atom A that unifies with a negated atom A∗ in

I∗ or a potentially deleted atom B that unifies with a non-negated

atom B∗ in I∗. Since I∗ is a case of I, there is a negated atom

A′ (or a non-negated atom B′, resp.) in I such that A∗ = A′ζ
(B∗ = B′ζ, resp.). Thus, A (B, resp.) a fortiori unifies with A′

(B′, resp.), by some mgu φ that is more general than φ∗.

The method MLST is not complete wrt. inconsistency toler-

ance, as shown by the following counter-example.

Example 4.3: For the same D, I and U as in Example 4.2, let

D∗ = D ∪ {s(a, a)}. Clearly, ← p(a, a) is a violated case in D∗;

all other basic cases of I are satisfied in D∗. Although U does not

introduce any new violated case in (D∗)U ,MLST still generates

the simplification ← p(a, a). Thus, MLST (D∗, {I}, U) = vio.

Hence, by Def. 3.2, MLST is not complete wrt. inconsistency

tolerance. Yet, we have the following result. �

Theorem 6 (Weak completeness ofMLST ): MLST is weakly

complete wrt. inconsistency tolerance in stratified databases.

Proof: Let D be a stratified database, IC an integrity

theory and U an update. We have to show that DU (IC) = true
entails MLST (D, IC, U) = sat. If DU (IC) = true, then there is a

refutation of ← I ′ in DU for each case I ′ of each constraint I in

IC. Since each simplification of I checked by MLST is a case

of I, it follows that MLST (D, IC, U) = sat.

C. The Method of Sadri & Kowalski

We are going to show that the integrity checking method in

[4], here denoted by MSK , is sound and weakly complete wrt.

inconsistency tolerance.

Roughly, MSK works as follows. Each integrity theory IC is

a set of denials. Each update U may include denials. Denials to be

deleted cannot violate integrity and thus are simply dropped from

IC: let IC− = IC \ {I : delete I ∈ U}. Denials to be inserted are

queried in the new state. If any of them is refuted,MSK outputs

vio. Else, for checking if any other clause in U would cause

integrity violation, MSK computes an update U ′, consisting of

all clauses in U to be inserted and all ground negative literals

∼H such that H is true in D and false in DU . For each T ∈U ′,
MSK builds a resolution tree rooted at T , using input clauses

from DU∪ IC−. For each derivation δ in the tree, each step taken

in δ is either a standard backward-reasoning step, or a forward-

reasoning step from the literal selected in the head of T or of any

clause derived from T by previous steps in δ. In forward steps,

the selected literal is resolved with a matching literal in the body

of some input clause. If any such derivation yields a refutation,

MSK outputs vio. If the tree is finitely failed,MSK outputs sat.
Theorem 7 (Inconsistency tolerance ofMSK): MSK is sound

wrt. inconsistency tolerance in stratified databases.

Proof: Let D be a stratified database, IC an integrity theory

and U an update such that MSK(D, IC, U) = sat. Further, let

IC− and U ′ be as described above. We have to show that, for

each C ∈ S(D, IC−), DU (C) = true. By Theorem 2, it suffices

to verify (5), i.e. that for each C0 ∈U ′, MSK builds a finitely

failed tree TC , rooted at C0, with input from DU∪{C}.
Let C ∈ S(D, IC−), i.e., for some I ∈ IC−, C = Iσ, for

some substitution σ of Glb(I). Further, let C0 ∈U ′. Since

MSK(D, IC−, U) = sat, there is a finitely failed tree T in the

search space ofMSK , rooted at C0, built with input clauses from

DU ∪ IC−. From T , TC is obtained as follows.

Each derivation δ in T is replaced, if possible, by the following

derivation δ′ in TC . It starts from the same root as δ. For each i,

0≤ i < n, where n is the length of δ, the i+1-th resolvent of δ′

is obtained as follows. Suppose the j-th literal of the i-th clause

of δ is selected. Then, also the j-th literal in the i-th clause of δ′

is selected. If the i+1-th input clause of δ is I, then C is used as

input clause in δ′; if the k-th literal is selected in I, then also the

k-th literal is selected in C. Otherwise, the i+1-th input clause of δ

is also used in δ′, for obtaining the i+1-th resolvent of δ′. Clearly,

the latter is of form Ci+1σi+1, for some substitution σi+1, where

Ci+1 is the i+1-th resolvent in δ.

At any step of δ′, it may be impossible to continue its

construction by using the input clause corresponding to the one

used in δ: either the selected literal does not match with the

selected literal in the corresponding input clause in δ, or the latter

is a denial which cannot be used as input for TC . In both cases,

δ′ is discontinued, i.e., δ′ then terminates with failure.

It is easy to see that TC is the required finitely failed tree.

We illustrate the inconsistency tolerance of MSK with an

example inspired by a similar one in [12].

1 : r(x)← p(x)

2 : p(bob)

3 : p(ada)

4 : q(ada)

5 : s(chi, bob)

I : ← r(x) ∧ q(x)

U : r(x)← p(y) ∧ s(x, y)

r(x)← p(y) ∧ s(x, y)

2

r(x)← s(x, bob) r(x)← s(x, ada)

3

fail

5

I

r(chi)

← q(chi)

fail

���������

Fig. 1. Clauses and derivation tree of Example 4.4.

Example 4.4: Let D be a database consisting of clauses 1–5

in Figure 1, defining the predicates r (regular), p (pays taxes),

q (quitted) and s (signed). The integrity constraint I denies the

possibility to have regular status and to have quitted work at the

same time. The update U inserts a clause stating that persons

signed by a tax payer also have regular status.

Clearly, D(I) = false, since r(ada) and q(ada) are true in D.

The case I ′ = ← r(bob)∧ q(bob) of I, however, is satisfied in D

since q(bob) is not true in D.

From the root U , MSK builds the tree as shown in Figure 1

(selected literals are underlined). Since this tree is finitely failed,

it follows that U will not introduce new cases of inconsistency:

all cases of integrity constraints that were satisfied in D remain

satisfied in DU . In particular, I ′ is also satisfied in DU . �

The methodMSK is not complete wrt. inconsistency tolerance,

as shown by the following counter-example.

Example 4.5: Let D∗, U , and IC be as in Example 4.3,

and D∗∗ = D∗ ∪{r(a)}. The only violated basic case in D∗∗ is

← p(a, a), and U does not introduce any additional one. However,

starting from U , MSK derives p(a, y) ← r(y), which it then

refutes by two more steps for resolving the literals in head and

body against ← p(a, a) and r(a). Thus, MSK is not complete

wrt. inconsistency tolerance. Yet, we have the following result. �

Theorem 8 (Weak completeness of MSK ): MSK is weakly

complete wrt. inconsistency tolerance in stratified databases.

Proof: Let D be a stratified database, IC an integrity theory

and U an update for which MSK terminates. We have to show

that DU (IC) = true entails MSK(D, IC, U) = sat. Suppose that
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MSK(D, IC, U) = vio. Thus, by definition of MSK , there is a

refutation rooted at some clause in U with input clauses from

DU plus a denial clause in IC. Hence, integrity is violated in

DU . However, this contradicts the supposition above. SinceMSK

terminates, the result follows.

D. The Method of Gupta, Sagiv, Ullman and Widom

Not all methods are inconsistency-tolerant. An example is the

well-known method in [8], here denoted byMG. The constraints

considered in [8] are of the form

← L ∧R1 ∧ · · · ∧Rn ∧ E1 ∧ · · · ∧ Ek (11)

where L is a literal with a local, i.e., accessible predicate; the

Ri are literals with remote predicates that are not accessible for

integrity checking; the Ej are evaluable literals with arithmetic

expressions. Updates considered in [8] are insertions of facts

into the relation of L. (In fact, the method also works if L is

a conjunction of literals.) For convenience, let l be L’s predicate.

The main result, Theorem 5.2 in [8], refers to a simplification

called reduction. For a constraint I of the form (11) and a fact

f inserted in l, the reduction RED(f, L, I) is essentially the

corresponding simplification in MN . To check if I is satisfied

after inserting f , MG checks if, for facts g in the extension of l,

RED(f, L, I) �
[

g in l

RED(g, L, I)

holds, where � denotes query containment.

Example 4.6: The constraint I = ← l(x, y)∧ r(z)∧x ≤ z ≤ y

requires that no z in r must occur in an interval whose ends

are specified by l. Suppose D = {l(3, 6), l(5, 10)} and U inserts

l(4, 8). Then, DU (I) = true is inferred by MG from

r(z) ∧ 4 ≤ z ≤ 8 � (r(z) ∧ 3 ≤ z ≤ 6) ∪ (r(z) ∧ 5 ≤ z ≤ 10),

which essentially expresses that [4, 8] is contained in [3, 10]. �

Example 4.7 shows that MG is not inconsistency-tolerant.

Example 4.7: Consider D = {l(3, 6), l(5, 10), r(7)}, the case

I ′ = ← l(4, 8)∧ r(z)∧4 ≤ z ≤ 8 of I and also U as in Example

4.6. Clearly, D(I) = false, while D(I ′) = true. Assuming the

total integrity premise,MG guarantees, as in 4.6, that U does not

violate integrity, i.e., MG(D, {I}, U) = sat. However, DU (I ′) =

false. Thus MG is not sound wrt. inconsistency tolerance. �

As reported in [8], MG cannot be complete for integrity

checking since constraints may involve inaccessible remote data.

Thus, by Theorem 1, MG is not complete wrt. inconsistency

tolerance either, nor is it weakly complete, by Corollary 3b).

E. The Method of Christiansen and Martinenghi

For an integrity theory IC and an update U , the method in [7],

here dentoted by MCM , consists of the following two steps:

• First, a “pre-simplification” of IC for U , denoted AfterU (IC),

is computed, as described in Def. 4.3 below, such that

D(AfterU (IC)) = DU (IC), for every database D.

• Second, AfterU (IC) is optimized by removing from it all

denials and literals that can be proved to be redundant,

assuming that the total integrity premise, i.e., D(IC) = true,

holds. The result is denoted OptimizeIC(AfterU (IC)).

To run MCM (D, IC, U) is to compute the simplification

OptimizeIC(AfterU (IC)) and evaluate it in D.

Definition 4.3: For an integrity theory IC and an update U ,
let AfterU (IC) be obtained from IC by simultaneously replacing

each atom of the form p(�t) by (p(�t) ∧ �t �= �b1 ∧ · · · ∧ �t �= �bm)∨
�t = �a1 ∨· · ·∨�t = �an, where p(�a1), . . . , p(�an) are all facts inserted
to p and p(�b1), . . . , p(�bm) are all facts deleted from p by U .

By using De Morgan’s laws, AfterU (IC) is represented as a set

of denials. Then, OptimizeIC(AfterU (IC)) is obtained, as speci-

fied in Definition 4.4, by a terminating proof procedure, denoted

below by �, that is substitutive1, i.e., if F � F ′ then Fσ � F ′σ,

for each pair F , F ′ of sets of formulas and each substitution σ.

Definition 4.4: Let IC, IC′ be sets of denials, I a denial, K

a conjunction of literals, L a literal, and � a terminating proof
procedure. OptimizeIC(IC′) is obtained by exhaustively applying
on IC′ the following rewrite rules, where IC′′ = IC′ \{←K ∧L}.
1) IC′ � IC′′ ∪ {←K} if ←K ∧L ∈ IC′ and IC∪ IC′ �←K

2) IC′ � IC′ \ {I} if I ∈ IC′ and IC ∪ (IC′ \ {I}) � I

In [7] it is shown that MCM is both sound and complete.

Example 4.8: Let I and U be as in Example 3.2. We have

AfterU ({I}) = { ← p(x, y) ∧ p(x, z) ∧ y �= z,

← x = i ∧ y = t ∧ p(x, z) ∧ y �= z,

← p(x, y) ∧ x = i ∧ z = t ∧ y �= z,

← x = i ∧ y = t ∧ x = i ∧ z = t ∧ y �= z}

Then, Optimize removes the first constraint (subsumed by I), the

second (subsumed by the third), and the fourth (a tautology). The

simplification returned byMCM (to be evaluated in the old state)

is the third constraint, equivalent to I ′ as found in Example 3.2.

Then, for each database D, DU (I) = true iff D(I ′) = true. �

The MCM method is not sound wrt. inconsistency tolerance

due to the behavior of Optimize, as illustrated in Example 4.9.

Example 4.9: Let IC = {← p∧q,← p∧∼q,← p∧r(x)∧s(x)}
and U = {insert r(a)}. The simplification IC′ of IC for U com-

puted by MCM is ∅ (i.e., U cannot violate integrity if D(IC) =

true), since ← p, derived from IC by �, subsumes all denials in

AfterU (IC) = {← p∧q,← p∧∼q,← p∧r(x)∧s(x),← p∧s(a)}.
Now, let D = {p, s(a)}. Clearly, I =← p∧r(a)∧s(a) is a case

of the last constraint in IC. We have: D(IC) = false, D(I) = true
and D(IC′) = true. However, DU (I) = false, which shows that

MCM is not sound wrt. inconsistency tolerance. �

One may object that IC above is equivalent to ← p and thus

redundant. For IC = {← p}, misleading optimizations would be

avoided. In general, however, redundancy is undecidable.

Optimize never harms inconsistency tolerance if IC contains a

single constraint, as shown by Theorem 9 below. (More generally,

it can be shown that MCM is sound wrt. inconsistency tolerance

if each pair of constraints has no predicate in common.)

Theorem 9 (Inconsistency tolerance of MCM ): For singleton

integrity theories, MCM is sound wrt. inconsistency tolerance in

hierarchical databases.

Proof: Let D be a hierarchical database, I a denial, U an

update, I ′ the simplification of {I} for U obtained byMCM and

θ a substitution such that Iθ ∈ S(D, I). Since M(D, {I}, U) =

D(I ′), we have to show:

If D(I ′) = true then DU (Iθ) = true. (12)

We prove (12) by transitivity of (13) and (14), below, as follows.

If D(I ′) = true then D(I ′θ) = true. (13)

If D(I ′θ) = true then DU (Iθ) = true. (14)

1Substitutivity of � is assumed implicitly in [7].
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Evidently, (13) holds. Note now that, by Definition 4.3, After is

substitutive, i.e., AfterU (Iθ) = AfterU (I)θ. Since � is also sub-

stitutive, I ′θ is obtained from AfterU (Iθ) by the same sequence

of Optimize steps as I ′ is obtained from AfterU (I). Then, (14)

holds because, as shown in [7] to prove soundness of MCM ,

the evaluation of the result of After in the old state is a sound

integrity checking method, and the application of any of the steps

in Optimize preserves soundness.

The interplay between multiple constraints also causes MCM

to be not complete (not even weakly) wrt. inconsistency tolerance.

This is shown by the following counter-example.

Example 4.10: For D = {q(b)}, IC = {← p(a)∧q(x), ← q(b)}
and U = {insert p(a), delete q(b)}, we obtain AfterU (IC) =

{← q(x) ∧ a=a ∧ x�=b, ← p(a) ∧ q(x) ∧ x�=b, ← q(b) ∧ b �=b}.
From that, OptimizeIC(AfterU (IC)) = {← q(x)} is obtained

as follows. First, the third denial in AfterU (IC) is dropped,

since it is subsumed by the second denial in IC. Then, a = a is

dropped in the first denial. That then subsumes the second denial,

which is thus removed. Last, x �= b is dropped from the remain-

ing denial ← q(x)∧ x �= b, since ← q(x) can be proved from

← q(x)∧ x �= b and ← q(b) in IC. Thus, since DU (IC) = true
and MCM (D, IC, U) = D(OptimizeIC(AfterU (IC))) = false,

neither (4) nor (6) holds for MCM . �

V. APPLICATIONS

Inconsistency-tolerant integrity checking can improve solutions

to several problems of database management. We show that for

update requests in V-A, for repairs in V-B, for schema evolution in

V-C, for reliable risk management in V-D, and for unsatisfiability

handling in V-E.

Updates are a cornerstone of each database management ap-

plication addressed in this section. Each update U is required to

preserve the satisfaction of a given integrity theory IC. Tradition-

ally, integrity preservation has meant that U maps a state D such

that D(IC) = true to a state DU such that DU (IC) = true. But

as soon as constraint violations in D become tolerable, the notion

of integrity preservation must be generalized as follows.

Definition 5.1: For a database D and an integrity theory IC,
an update U is said to preserve integrity if S(D, IC)⊆S(DU , IC).

Note that definition 5.1 does not require total integrity of D,

i.e., U may preserve integrity even if executed in the presence

of violated constraints. The following corollary of Definitions 3.2

and 5.1 states that updates can be checked for preserving integrity

by any method that is sound wrt. inconsistency tolerance.

Corollary 10: For a database D, an integrity theory IC and an

inconsistency-tolerant integrity checking methodM, an update U

preserves integrity if M(D, IC, U) = sat.
In general, the only-if half of Corollary 10 does not hold, as

shown in Example 5.1. It is easily seen that it does hold for

methods that are complete wrt. inconsistency tolerance.

Example 5.1: Let p be defined by p(x, y)← s(x, y, z) and

p(x, y)← q(x)∧ r(x, y) in a database D in which q(a) and r(a, a)

are the only facts that contribute to the natural join of q and r.

Further, let IC = {← p(x, x)} and U = {insert s(a, a, b)}. Clearly,

U preserves integrity, since the case C =← p(a, a) is already vio-

lated in D. However, the inconsistency-tolerant methods MLST

and MSK and others generate and evaluate the simplification

← p(a, a) of ← p(x, x) and thus output vio. �

A. Inconsistency-tolerant Satisfaction of Update Requests

We define an update request as a closed first-order formula

intended to be made true by some integrity-preserving update. For

a database D, an update U is said to satisfy an update request R if

DU (R) = true and U preserves integrity. ‘View update’ requests

are a common variant of update requests. An update method is a

method to compute updates for satisfying update requests.

Similar to integrity checking, also all known update methods

have traditionally postulated the total satisfaction of all constraints

in the old state. However, that requirement is as unrealistic for

satisfying update requests as for integrity checking. And, in fact,

we are going to see that it can be abandoned just as well, for the

class of methods defined as follows.

Definition 5.2: An update method UM is inconsistency-

tolerant if each update computed by UM preserves integrity.
For an update request R and a database D, many update

methods work in two phases. First, an update U such that

DU (R) = true is computed. Then, U is checked for integrity

preservation by some integrity checking method. If that check is

positive, U is accepted. Else, U is rejected and another update

candidate, if any, is computed and checked. Hence, the following

corollary follows from Definition 5.2 and Corollary 10.

Corollary 11: Each update method that uses an inconsistency-

tolerant method to check its computed updates for preserving

integrity is inconsistency-tolerant.

Corollary 11 serves to identify several known update methods

as inconsistency-tolerant, since they use inconsistency-tolerant

integrity checking methods. Among them are, e.g., the update

methods in [13], [14] which use the integrity checking method of

[5], shown to be inconsistency-tolerant in IV-B.

Another well-known update method, by Kakas & Mancarella,

is described in [15]. For convenience, let us name it KM. It

does not use any integrity checking method as a separate module,

hence Corollary 11 is not applicable. However, the inconsistency

tolerance of KM can be tracked down as outlined below.

For satisfying an update request, KM explores a possibly

nested search space of ‘abductive’ derivations and ‘consistency’

derivations. Roughly, abductive derivations compute hypothetical

updates of facts for satisfying a given update request; consistency

derivations check these updates for integrity. Each update gener-

ated by KM consists of a bipartite set of positive and negative

ground literals, corresponding to insertions and, resp., deletions

of ground facts. For more details, we refer the reader to [15].

It suffices here to mention that, for KM, all constraints are

represented by denials that are used as candidate input clauses

in consistency derivations. Each consistency derivation of each

update computed by KM corresponds to a finitely failed attempt

to refute the update as inconsistent.

It is easy to verify that, for an update request R, each update

U computed by KM makes R become true in DU , even if some

constraint is violated in D. What is at stake is the preservation

of the satisfaction of each case that is satisfied in D, while cases

that are violated in D may remain violated in DU . The following

theorem entails that satisfied cases are preserved by KM.

Theorem 12: The method KM is inconsistency-tolerant.

Proof: By Definition 5.2, we have to show that each update

computed by KM preserves integrity. Suppose that, for some

update request in some database D and some integrity theory

IC, KM would compute and accept an update U that does not

preserve integrity. Then, by Definition 5.1, there is a constraint I
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in IC such that D(I) = true and DU (I) = false. Hence, by the

definition of KM, there is a consistency derivation δ rooted at

one of the literals in U , that uses I as input clause and terminates

by deducing the empty clause. That, however, signals that the

root of δ causes a violation of I. Thus, KM rejects U , which

contradicts the supposition that KM accepts U .

Example 5.2 illustrates the usefulness of inconsistency-tolerant

update methods.

Example 5.2: Let D = {q(x)← r(x) ∧ s(x), p(a, a)}, IC =

{← p(x, x), ← p(a, y)∧ q(y)} and R the update request to make

q(a) true. To satisfy R, most update methods compute the can-

didate update U = {insert r(a), insert s(a)}. To check if U pre-

serves integrity, most integrity checking methods compute the

simplification ← p(a, a) of the second constraint in IC. Rather

than accessing the p relation for evaluating ← p(a, a), integrity

checking methods that are not inconsistency-tolerant may use the

invalid total integrity premise that D(IC) = true, by reasoning as

follows. The first constraint ← p(x, x) in IC is not affected by U

and subsumes ← p(a, a), hence both constraints remain satisfied

in DU . Thus, such methods conclude that U preserves integrity.

However, that is wrong, since the case← p(a, y)∧ q(y) is satisfied

in D but violated in DU . By contrast, each inconsistency-

tolerant update method rejects U and computes the update

U ′ = U ∪{delete p(a, a)} for satisfying R. Clearly, U ′ preserves

integrity. Incidentally, U ′ even removes a violated case. �

B. Partial Repairs

Roughly, ‘repairing’ is to compute updates to databases with vi-

olated constraints such that the updated databases satisfy integrity.

Based on cases, Definition 5.3 introduces ‘partial repairs’. They

repair only a fragment of the database.

Definition 5.3: Let D be a database, IC an integrity theory
and S a set of cases of constraints in IC such that D(S) = false.
An update U is called a repair of S in D if DU (S) = true; if
DU (IC) = false, U is also called a partial repair of IC in D, else
U is called a total repair of IC in D.

Related notions in the literature [1], [16], [17] only deal with

total repairs, additionally requiring them to be minimal, in some

sense. In [18], null values and a 3-valued semantics are used to

“summarize” total repairs.

Repairing can be costly, if not intractable [19]. Thus, at first

sight, a good heuristic to curtail inconsistency could be to use

partial instead of total repairs, particularly in large databases with

potentially unknown inconsistencies. However, partial repairs may

not preserve integrity, as shown by the following example.

Example 5.3: Let IC = {← p(x, y, z)∧∼q(x, z), ←q(x, x)}
and D = {p(a, b, c), p(b, b, c), p(c, b, c), q(a, c), q(c, c)}. The vio-

lated basic cases are← p(b, b, c)∧∼q(b, c) and← q(c, c). Repair-

ing {← q(x, x)} by {delete q(c, c)} does not preserve integrity,

since ← p(c, b, c)∧∼q(c, c) is satisfied in D but not in DU .

However, the partial repairs {delete p(b, b, c)} and {insert q(b, c)}
of IC do preserve integrity. The only subset-minimal total

repairs are {delete q(c, c), delete p(b, b, c), delete p(c, b, c)} and

{delete q(c, c), insert q(b, c), delete p(c, b, c)}. �

The dilemma that total repairs may require more update op-

erations than partial repairs, while the latter may not preserve

integrity, is relaxed by the following corollary of Corollary 10.

It says that it suffices to check partial repairs for integrity

preservation by an inconsistency-tolerant method.

Corollary 13: For each inconsistency-tolerant method M,

each database D and each integrity theory IC, each partial repair

U of IC such that M(D, IC, U) = sat preserves integrity.

The following example illustrates how integrity-preserving re-

pairs can be computed by inconsistency-tolerant update methods.

Example 5.4: Let D be a database and S = {←B1, . . . ,←Bn}
(n ≥ 0) a set of cases of constraints in an integrity theory

IC. Thus, D(S) = false if and only if D(← Bi) = true for

some i. Hence, an integrity-preserving repair of S that tol-

erates extant violations of cases not in S can be computed

by each inconsistency-tolerant update method, by issuing the

update request ∼vioS , where vioS is defined by the n clauses

vioS←B1, . . . , vioS←Bn. Update methods that are not incon-

sistency-tolerant cannot be used, since they may accept repairs

that do not preserve integrity, as seen in Example 5.2. �

C. Inconsistency-tolerant Schema Evolution

A database schema evolves via schema updates, i.e., removals,

additions or alterations of integrity constraints or of database

clauses with non-empty bodies. Since changes of the set of clauses

can be captured by update requests as in V-A, and deletions of

constraints never cause any violation, we focus below on schema

updates consisting of insertions of constraints.

Whenever a new constraint I is added to the integrity theory,

it may be too costly to evaluate it on the spot, let alone to

immediately repair all violated cases of I. As long as such repairs

are delayed, traditional integrity checking is not applicable, since

the total integrity premise does not hold. However, inconsistency-

tolerant integrity checking can be used, no matter for how long

the repair of violated cases is delayed.

More precisely, let IC∗ = IC∪{I} be an integrity theory ob-

tained by the schema update insert I. Then, each inconsistency-

tolerant methodM for computingM(D, IC∗, U) for each update

U issued after IC has been updated can guarantee that all cases in

IC∗ that are satisfied in D remain satisfied in DU . If M was not

inconsistency-tolerant, then a possible inconsistency of D ∪ IC∗

would invalidate any output of M(D, IC∗, U), even if integrity

was totally satisfied before IC was updated.

Theorem 14 below captures another advantage of incon-

sistency-tolerant integrity checking for schema evolution.

Theorem 14: For each database D, each pair of integrity

theories IC, IC′, each update U and each inconsistency-tolerant

method M, the following holds, where IC∗ = IC∪ IC′.

If D(IC)=true and M(D, IC∗, U)=sat then DU (IC)=true (15)

Proof: Since IC ⊆ S(D, IC∗), (15) follows from (3).

Theorem 14 says that M guarantees the preservation of to-

tal integrity of IC even if D(IC′) = false. That is useful for

distinguishing hard constraints (those in IC), the satisfaction of

which is indispensable, and soft constraints (in IC′), the violation

of which is tolerable. Thus, by Theorem 14, each inconsistency-

tolerant method guarantees that all hard constraints remain totally

satisfied across updates even if there are violated soft constraints.

Example 5.5: Let hr and lr be two predicates that model

a high, resp., low risk in some application domain. Further,

I1 =←hr(�x), I2 =← lr(�x), be a hard, resp., soft constraint

for protecting against high and, resp., low risks. Then, each

inconsistency-tolerant method M can be used to preserve the

satisfaction of I1 across updates, even if I2 is violated. �
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D. Inconsistency-tolerant Risk Management

Since constraint violations may be hidden or unknown, and

since all integrity checking methods traditionally have insisted

on total integrity, their use has not been reliable. But now, the

definition of inconsistency-tolerant integrity checking provides

a decision criterion for distinguishing reliable from unreliable

methods. The unreliability of methods that are not inconsistency-

tolerant is illustrated in the following elaboration of example 5.5.

Example 5.6: Let D = {p(0, 0), p(1, 2), p(2, 3), p(3, 4), ...}.
Further, let the predicates in IC = {← lr(x), ← hr(x)} be

defined by the clauses

lr(x) ← p(x, x)

hr(x) ← p(0, x), q(x, y), y > th
where lr and hr indicate a low and, resp., a high risk. In the clause

defining hr, the term th may stand for a threshold value.

The purpose of IC is to protect the application from any risk.

Yet, in D, the low-risk presence of p(0, 0) is tolerated. Now, let U

= insert q(0, 100000). Then, methods that are not inconsistency-

tolerant, such as MG, MCM , reason as follows for checking if

U preserves integrity. Using U for simplifying ← hr(x) yields

the case ← p(0, 0), 100000 > th. It is obtained from the body of

the definition of hr by binding the variables x and y to 0 and,

resp., 100000, and then dropping the literal q(0, 100000). Clearly,

that case is subsumed by ← p(x, x), which defines lr and is not

affected by U . The total integrity premise entails that ← p(x, x)

is satisfied in D. Hence, methods that are not inconsistency-

tolerant may deduce that ← p(x, x) remains satisfied in DU .

From that, such methods deduce that also the subsumed constraint

← p(0, 0), 100000 > th, and hence ← hr(x) is satisfied in DU .

Thus, even if 100000 > th, methods such as those mentioned

above accept U , i.e., they fail to detect that U causes a high

risk. Thus, their output is not reliable in the presence of extant

low risks. As opposed to that, if 100000 > th, then U is reliably

rejected by each inconsistency-tolerant method, since the case

← hr(0) is satisfied in D but violated in DU . �

E. Unsatisfiability-tolerant Integrity Checking

By bad design or faulty schema updates, database evolution

may lead to an unsatisfiable integrity theory, i.e., no state could

ever satisfy integrity. Theoretically, unsatisfiable integrity is the

worst possible situation, since each state then is irreparable. Since

unsatisfiability is known to be undecidable in general, it even

might never be detected. Anyway, with an unsatisfiable integrity

theory, schema evolution may seem to have reached a dead end.

However, inconsistency-tolerant integrity checking can be ap-

plied even if the constraints are unsatisfiable, i.e., if integrity

is inevitably violated in any state. By using an inconsistency-

tolerant method, one can guarantee that all satisfied cases of

constraints remain satisfied, even though integrity as a whole is

never attainable. Thus, each inconsistency-tolerant method is also

unsatisfiability-tolerant, as defined below.

Definition 5.4: An integrity checking method M is called
unsatisfiability-tolerant if, for each database D, each unsatisfiable
integrity theory IC and each update U , (3) holds.

Definition 5.4 straightforwardly entails Corollary 15, since

unsatisfiability of IC is in fact not excluded in Definition 3.2.

Corollary 15: Each inconsistency-tolerant integrity checking

method is unsatisfiability-tolerant.

Example 5.7: Let IC be the unsatisfiable integrity theory

{← p(x, x), ← ∼p(0, 0), ← q(x)∧ r(x)}. Clearly, the first

two denials in IC can never be satisfied at a time. However, in D =

{p(0, 0), q(0), r(0), q(1), r(2), q(3), r(4), q(5), . . . , q(99), r(100)},
all basic cases of IC except ← p(0, 0) and ← q(0) ∧ r(0) are

satisfied. Although IC can never be fully satisfied, it makes sense

to accept updates such as deleting q(0), which would actually

remove a case of violated integrity, and to prevent insertions,

e.g., of q(2), that would introduce new violations. Also, no

inconsistency-tolerant method would ever reject any request to

delete any fact from q or r. Or when, e.g., the insertion of a fact

of the form q(a) is requested, only the simplification ← r(a) will

be checked, i.e., the request is rejected only if r(a) is in DU . �

VI. EXPERIMENTAL EVALUATION

We now describe the experiments performed for evaluating,

first, the benefits of ITIC for database updating, second, its

benefits for query answering, and, third, the impact of ITIC

on the performance of updating, checking, and querying. Each

experiment is based on a series of updates, starting from an

initial state and leading to a final state. Updates are either

checked by ITIC, as proposed in this paper, or not checked at all,

since checking updates in inconsistent databases is traditionally

considered invalid. More precisely, we run the following three

kinds of experiments, the setups of which are described in VI-A.

• Updates may change the amount of inconsistency. In VI-B,

we assess how inconsistency varies between initial and final

states, both when ITIC is used and when integrity is not

checked. We do that by measuring the percentage of tuples

that participate in constraint violations.

• Extant inconsistency may cause incorrect answers. In VI-C,

we measure and compare the amounts of incorrect tuples in

the answers to queries posed in the final states, both when

ITIC is used and when integrity is not checked. That way, we

obtain an indication of the quality of query answers depend-

ing on whether ITIC is used or not. We compute answers

both by traditional query evaluation and by consistent query
answering (CQA), a technique for improving the quality of

query answers in the presence of inconsistency [1].

• Using ITIC obviously weighs in more on performance than

running no integrity checks at all. In VI-D, we measure and

report on the times required for integrity checking, updating

and querying both when ITIC is used and when integrity is

not checked.

A. Parameters and setups

The tests are run on the databases and queries of the TPC-H

decision support benchmark2, which is known to have a broad

industry-wide relevance. In order to cover a significant spectrum

of update series, we have experimented with the following vari-

ants of parameter values for the initial state and the updates.

• s: initial state size. We experiment with s = 100MB, 500MB,

1GB, 2GB. A database with s = 2GB has approximately 16

million tuples.

• p: initial inconsistency, expressed as the percentage of tuples

that participate in constraint violations in the initial state.

For simplicity, we only consider primary key constraint

violations. We experiment with p = 0%, 1%, 10%, 33%. For

example, p = 10% and s = 2GB means that 1,600,000 tuples

2http://www.tpc.org/tpch/
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violate a primary key constraint. Violations occur when the

same key value is repeated; we experiment with violations

caused by 2 to 50 repetitions, and an equal percentage of

violations in all tables.

• i: percentage of insertions in the update series that violate a
primary key constraint. We experiment with i = 10%, 50%,

90%. We generate update series consisting of insertions and

deletions of a size equal to 10% and, respectively, 1% of the

size of the initial database, so as to simulate a significant

evolution of the database. For example, with i = 10%, and

s = 2GB, there will be 160,000 insertions violating primary

key constraints, i.e., 10% of 10% of 16 million tuples. (Note

that deletions cannot cause any violation of primary key

constraints.)

The TPC-H suite provides a script, called dbgen, for generat-

ing database states of a given size that satisfy the constraints. In

order to set the initial inconsistency, we use the same technique

as in [20], where the authors test their CQA approach against the

TPC-H benchmark. To have, e.g., p = 10% and violations with 2

key repetitions each in a database of s = 1GB, dbgen is first used

to create a consistent state of size 0.95GB; we denote that state

by D̄p
s . Then, a set A of tuples of size 0.05GB from the database

is randomly selected from a uniform distribution; a new set B of

size 0.05GB is generated from this, with the same key values as

in A, and non-key values taken randomly from the other tuples in

the database. Then, set B is added to D̄p
s , and the resulting state

Dp
s has the desired size s and inconsistency p. Similarly, we use

dbgen to generate a set of updates U i
s consisting of deletions

(of size 1% of s) and insertions (10% of s), i percent of which

introduce new constraint violations.

B. Measuring inconsistency variations through updates

The first measurement we have performed assesses the incon-

sistency, i.e., the percentage of tuples that violate a constraint,

in the final state reached after a series of updates. We denote

as DNC (resp., DITIC) the state reached after executing on Dp
s

the updates in U i
s with no checking (resp., if accepted by an

ITIC method). Both here and in the other tests, we use MN as

the integrity checking method, since it is sound, complete and

inconsistency-tolerant. Figure 2 shows how inconsistency varies

between the initial state Dp
s and the final states DNC and DITIC for

s = 100MB and for all possible values for p (lines with squares

for p = 0%, circles for p = 1%, lozenges for p = 10%, and

triangles for p = 33%) and i (light grey for i = 10%, dark grey

for i = 50%, and black for i = 90%). The dashed lines refer

to the no-checking scenario, where inconsistency always grows,

unless i < p (which is the case in our tests only for p = 33% and

i = 10%). The continuous lines refer to the ITIC scenario, where

the number of violations cannot increase; in fact, inconsistency

naturally decreases, since the database tends to become bigger

after executing our series of updates, while inconsistency does not

increase. The differences in the amount of inconsistency between

DNC and DITIC are quite significant in many cases. For example,

for p = 1% and i = 10%, inconsistency amounts to 1.81% of the

database in DNC, while it is only 0.99% in DITIC (differences are

even bigger for bigger values of i). Needless to say, if the initial

state is consistent (p = 0), integrity is totally preserved with ITIC,

while it is lost with no checking. Similar considerations hold also

for the other values considered for s.

Another quantitative difference, not shown in Figure 2, between

DNC and DITIC regards their sizes. Obviously, DITIC does not

contain any new violation and is therefore always smaller than

DNC whenever i > 0 (their difference increases as i increases).

For example, for p = 10% and i = 90%, the size varies from

953,088 tuples in DNC to 875,109 in DITIC.
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Fig. 2. Inconsistency measured after updates applied to an initial state
with size s = 100MB and different values for p (initial inconsistency) and
i (percentage of insertions in the update series violating a constraint), as
indicated. Continuous lines indicate tests run with ITIC (where inconsistency
never increases), while dashed lines indicate no checking (NC).

C. Measuring incorrect tuples in query answers

Our second experiment tests the negative effect of inconsistency

on query answering, and to which extent such effect can be cured

by handling database maintenance with ITIC.

Inconsistency may be responsible for incorrect answers to

queries. Let us indicate with QD the set of tuples in the answer

to query Q evaluated in database D. We define a tuple t to

be a correct answer to Q in D if t ∈ QD̄ , where D̄ is the

reference database of D, i.e., the state in which D would be if no

inconsistency had occurred at any time. Accordingly, we define

the false positives of Q in D as the set Q+
D = QD \QD̄ , the false

negatives as Q–
D = QD̄ \QD . The smaller Q+

D and Q–
D , the better

the quality of QD . Determining the reference database for a given

D requires, in general, information on all the updates that have

led to D, which is typically unavailable. However, since in our

experiments we have that kind of information, for our purposes

it is sufficient to assume that D̄p
s is the reference database of Dp

s .

Another way to remove inconsistency from Dp
s is to eliminate

all tuples that participate in constraint violations. This is a very
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strict repair procedure, since some of the eliminated tuples may

indeed be correct. However, it is more feasible than determining

the reference database, in general. We denote by D̃p
s the state

obtained in this way. Because of its consistency, traditional

integrity checking can be applied to any series of updates starting

from D̃p
s . We denote by Dclean the state obtained from D̃p

s by

executing the updates in U i
s accepted by MN .

Our tests measure and compare, for given benchmark queries,

the amounts of false positives and negatives in DNC, DITIC, and

Dclean. To this end, consider that the database Dideal obtained

by executing on D̄p
s the updates in U i

s accepted by MN is the

reference database of each of DNC, DITIC, and Dclean.

Queries that always return a fixed, very small number of

results coming from complex aggregations are not well-suited

for our purposes, since even tiny variations in the state may

imply different aggregate values, and thus false positives and

negatives. Therefore we choose to focus on queries that return

at least 10 results, namely queries Q3 and Q10 of the benchmark.

Such queries are “top-k” queries that output the first few results

of an aggregation operation.3 Q3 involves 3 relations, selects 4

attributes, and returns 10 results. Q10 involves 4 relations, selects

8 attributes, and returns 20 results.

In order to compare false positives and negatives of large query

answers, we also consider queries Qall
3 and Qall

10 , that we define

as identical to Q3 and, resp., Q10, but without being limited to

the top 10 or, resp., 20 results.

Finally, we also consider the rewritings Qcqa
3 and Qcqa

10 of

Q3 and, resp., Q10 obtained by the CQA rewriting technique

described in [20]. Intuitively, CQA consists in rewriting a given

query Q over a database D with an integrity theory IC into a new,

more complex query Qcqa, the evaluation of which only produces

the consistent answers to Q. In the definition of [1], [20], a tuple

is a consistent answer to Q in D if it is an answer to Q in each

consistent database whose set difference wrt. D is minimal. CQA

can therefore be regarded as a technique for reducing the amount

of incorrect answer tuples.

We measure |Q+
D| and |Q–

D| for every Q ∈ {Q3, Q10, Qall
3 ,

Qall
10 , Qcqa

3 , Qcqa
10 } and every D ∈ {DNC, DITIC, Dclean}. Note that

|Q+
D| = |Q–

D| for Q ∈ {Q3, Q10}, since the cardinality of the

query answers is fixed by the “top-k” clause.

Figures 3 and 4 compare the amounts of false positives for Q3

and, resp., Q10 in DNC, DITIC, and Dclean, with s = 100MB and

all combinations of p and i. The benefits of ITIC are significant,

especially for lower amounts of initial inconsistency. For example,

for p = 1% and i = 10%, there are only 4 incorrect answers

among the top 10 answers to Q3 in DITIC, whereas all top 10

answers are incorrect in DNC. The graph also signals that initial

repairing is beneficial: removing all potentially incorrect data

lowers false positives and negatives considerably. Recall, however,

that repairing is costly.

Moreover, although the answers in Dclean are usually better than

those in DITIC, it is not necessarily so, as shown, e.g., for Q10

with i = 10% and p = 1%, where the number of false positives is

7 in Dclean, but 4 in DITIC. The other lines in the figure report the

amounts of false positives for Qcqa
3 and Qcqa

10 in DNC and DITIC

(not in Dclean, since it is consistent, so the answers to Qcqa
3 and

Qcqa
10 coincide with those to Q3 and, resp., Q10). Although slower

3The queries in the TPC-H specification are parameterized, and the standard
suggests values for these parameters. In the experiments, we used the
suggested values in all the queries.

in execution, such queries further improve the quality of answers,

and in some cases they even eliminate all false positives in DITIC.

This suggests that, for quality-critical OLTP applications, where

some extra time is affordable for CQA but not for total repairs,

ITIC should be used for database maintenance together with CQA

for query answering. When the database is too inconsistent, as,

e.g., for p = 33%, an update phase of 10% the size of the database

cannot do much to significantly improve consistency, so all top

answers are incorrect both in DNC and DITIC in Figure 4.
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Figure 5 shows the amounts of both false positives and neg-

atives for Qall
3 and Qall

10 , for s = 100MB, p = 1%, and for all

values of i. Note that these values are higher than in Figures 3

and 4, since Qall
3 and Qall

10 do not restrict to the top 10, resp., 20

results. Again, the benefits of ITIC seem impressive.

Finally, Figure 6 shows the amount of false positives for Qall
3

and Qall
10 with i = 50% and p = 1% for different values of s,

both in DNC and in DITIC. We observe that the amount of false

positives in DNC is about 6 times higher than in DITIC, therefore

with remarkable benefits due to ITIC. The mentioned factor

depends of course on the chosen parameters and on the selection

predicates in the queries, and can be explained as follows. Queries

Qall
3 and Qall

10 turn out to retrieve a number of false positives that

is proportional to the number of tuples violating the constraints,

which, in turn, is proportional to s, since p is fixed. Since the

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
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size of the insertions is 10% ·s, the inconsistency in DNC is about

(i · 10% + p)/p = 6 times higher than that in DITIC.

D. Measuring execution times

In our last test, we measure the time consumed for integrity

checking, updating, and querying in the states obtained by all

update series considered so far, i.e., leading 1) from Dp
s to DNC, 2)

from Dp
s to DITIC, 3) from D̃p

s to Dclean, 4) from D̄p
s to Dideal. The

test machine sports a 2.66GHz Quad Core Intel processor with

4GB 800MHz RAM and runs Sqlserver 2005 under Windows XP.

Apart from 1), where no time is spent for integrity checking,

there are little notable differences of measured times across

different update series. For example, for s = 1GB and p = 1%,

integrity checking, if performed, always takes around 450 seconds

in total, updating about 18 seconds, answering non-CQA queries

2.2 seconds, and answering CQA queries 12 seconds. For larger

amounts of inconsistency, e.g., p = 33%, improvements up to 10%

of the execution times wrt. the update series 2) are observed both

for query answering and for integrity checking in 4) and up to

20% in 3). These, however, are due to the different sizes of initial

states, which are the smaller the higher the initial inconsistency:

while Dp
s has size s, D̃p

s has size (1 − p) · s and D̄p
s has size

(1− p/2) · s.

Note that we did not perform any particular tuning of the

database, so as to speed up query answering or integrity checking.

E. Summary of experimental results

The experiments reported in this section have provided evi-

dence of the following benefits of ITIC:

• A series of updates executed on a database state leads to

lower amounts of inconsistency if filtered by ITIC, with

no extra checking cost incurred with respect to integrity

checking in a traditional, consistent setting.

• The query answers obtained from a database state reached

after a series of updates checked by ITIC are generally

better than without checking, in that they contain fewer false

positives and negatives.

• Traditional query answering can be replaced by CQA to

further improve the quality of query answers.

The smaller the initial amount of inconsistency and the larger

the amount of inconsistency introduced by updates, the more the

above effects become visible. Or, in other words, larger initial

amounts of constraint violations require longer periods of updates

checked by inconsistency-tolerant methods for decreasing the

initial inconsistency significantly.

VII. RELATED WORK

Various forms of exception handling for dealing with persis-

tent inconsistencies as embodied by constraint violations have

been proposed in [21], [22], [23] and others. However, integrity

checking is not addressed in any of those works.

Another approach to deal with inconsistencies is to repair them

(cf. V-B), which, despite recent advances [18], [17], is known

to be intractable in general. Anyway, all approaches that either

eliminate or work around inconsistencies (e.g., by repairing them

or treating them as exceptions) need to know about extant integrity

violations. As opposed to that, ITIC simply leaves inconsistencies

alone. That works reliably, even if violated cases of constraints

are unknown to the user or the application, as seen in V-D.

To the best of our knowledge, the putatively fundamental

role alleged to total integrity as an indispensable premise for

simplified integrity checking has never been challenged. That may

be due to the classical ex contradictione quodlibet rule, by which

conclusions derived from inconsistency cannot be considered

reliable. However, in V-D, we have seen that, on the contrary,

the use of inconsistency-tolerant methods is fully reliable.

On the other hand, it is astonishing that total integrity has

always been insisted on, since many database contexts in practice

suffer from some amount of inconsistency.

Nevertheless, interesting work has been going on in recent

years under the banner of “inconsistency tolerance”. A lot of

it is concerned with consistent query answering in inconsistent

databases (abbr. CQA) [1], [16], [19]. CQA defines answers to

be correct if they are logical consequences of each reasonably

repaired state of the database, i.e., each state that satisfies integrity

and differs from the given violated state in some minimal way.

CQA and ITIC have in common that they neither capitulate in

the presence of inconsistency (as classical logic would), nor need

to appeal to repairing violated constraints (as traditional query

answering and integrity checking would). However their main

purposes are different, since CQA enables query answering, while

ITIC enables updating, even when the database violates integrity.

Yet, integrity checking (which can be seen as a special-purpose

variant of query answering) has, to the best of our knowledge,

never been addressed in detail by the CQA community. As
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IEEE TRANSACTIONS ON DATA AND KNOWLEDGE ENGINEERING 14

was observed in Section VI, ITIC can be considered as largely

complementary to CQA, since the former prevents new integrity

violations to occur during updates but does not remove the effect

that extant violations may have on query answers, which is

precisely what the latter does.

Also, a variety of paraconsistent logic approaches that are

tolerant and robust wrt. inconsistency have received some atten-

tion, e.g., [24], [25]. Most of them, however, deviate significantly

from the syntax and semantics of classical first-order logic, while

ITIC does not. Some paraconsistent approaches resort to modal

or multivalued logic. As opposed to that, ours complies with

conventional two-valued semantics of databases and integrity in

the literature.

Yet, resolution-based query answering (by which each of the

methods mentioned in this paper has been implemented) can be

characterized as a procedural form of paraconsistent reasoning

[26]. This is particularly noteworthy for proof procedures that

use integrity constraints as candidate input clauses, such as those

in [12], [4]. Thus, the paraconsistency of logic programming nat-

urally qualifies it as a paradigm for implementing inconsistency-

tolerant approaches to database integrity.

Further relevant work on the management of inconsistencies in

databases comes from the field of inconsistency measuring [27].

Inconsistency measures are useful for updates and integrity

checking if one wants to accept an update only if the measure

of inconsistency of the old state does not increase in the new

state. That, however, is precisely accomplished by ITIC, as soon

as the set of violated cases of an integrity theory is measured:

that set cannot be increased by an update if the update is checked

by an inconsistency-tolerant method. Also other measures, such

as those proposed in [27], should be useful for determining the

increase or decrease of inconsistency across updates. Alternative

ways to characterize ITIC, including definitions based on inconsis-

tency measures, are described in [10]. There, different classes of

integrity checking strategies are identified, studied and compared

wrt. their inconsistency tolerance capabilities.

This paper improves and extends [28] in several ways. New

are the properties and conditions for completeness and weak

completeness wrt. inconsistency tolerance. Also the application

of ITIC to various database management problems in section V

is new. Another important addition of this paper is the validation

of the practical relevance of ITIC in section VI.

VIII. CONCLUSION

The purpose of integrity checking is to ensure that the satis-

faction of each constraint is preserved across updates. Tradi-

tionally, the theory of efficient integrity checking stipulates total

integrity, i.e., that all constraints be satisfied in each state, without

exception. In practice, however, that is an almost utopian wish.

To overcome this gap between theory and practice, we have

relaxed the total integrity premise by a new requirement that

tolerates inconsistency. Essentially, it asks that only those cases

of constraints that are satisfied in the old state remain satisfied

in the new state, while any amount of extant violated cases can

be tolerated. (Cases are obtained from constraints by instantiating

∀-quantified variables that are not governed by ∃-quantified ones.)

We have seen that many (though not all) existing integrity

checking methods comply with this relaxation without penalty,

i.e., no change or adaptation of methods that can be shown to

be inconsistency-tolerant is necessary at all. For such methods,

traditional integrity checking becomes merely a special border

case of our inconsistency-tolerant generalization.

The main benefits of inconsistency-tolerant integrity checking

(ITIC) as identified in this paper can be summarized as follows.

1) The applicability of integrity checking methods is broadened

significantly. ITIC allows updates to be fruitfully checked for

integrity preservation even in the presence of inconsistency.

2) The application of ITIC tends to reduce the amount of

inconsistency. In particular, ITIC guarantees that the number of

violated basic cases cannot increase. Therefore, insertions cannot

increase the percentage of inconsistency in the data either.

3) ITIC tends to improve the quality of answers to queries.

Experimentally, we have shown that lower amounts of inconsis-

tency obtained with ITIC typically result in lower amounts of false

positives and negatives.

4) Procedural constructs for integrity maintenance can be

avoided. Many applications do not comply with the demand

of total integrity. Thus, instead of using methods for checking

declarative constraints, application programmers often have re-

sorted to less reliable procedural constructs, such as dynamic

constraints, triggers or stored procedures. The results of this paper

now legitimize the use of methods for ITIC, since their output is

reliable also in the presence of inconsistency.

Future work includes further investigation of the interplay be-

tween the notion of inconsistency-tolerant repair, as introduced in

V-B, and CQA. Instead of referring to total repairs for answering

a query, as CQA does, it should be sufficient to be content with

partial repairs that tolerate inconsistencies that do not “interfere”

with the query. This would also mean that CQA could even deal

with unsatisfiable theories without trivializing query answers (by

definition, every n-tuple is in the CQA answer to an n-ary query

if no repair exists).

Other pending work concerns inconsistency measures, as men-

tioned in Section VII. Acceptance of updates by an ITIC method

depends on the measure in use, which, in this paper, is based

on cases. Other measures may prove relevant for ITIC [10]. We

also intend to investigate the capacity of inconsistency tolerance

of abduction-based procedures, such as those described in [29].

Further ongoing studies are concerned with ITIC for concurrent

transactions and replicated databases.

To conclude, we believe that the notion of ITIC can be em-

braced by producers and vendors of DBMSs at no additional cost

in most of the existing implementations. Thus, the problematic use

of triggers and other non-declarative constructs can be reduced

in favor of ITIC, which is more useful and more reliable than

methods that insist on total integrity.
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in Valencia, Spain. His main area of interest has always been computational
logic, and in particular the semantic integrity and consistency of stored data.

Davide Martinenghi Dr. Martinenghi received a MS
as Computer Engineer from Politecnico di Milano,
Italy, in 1998 and a Ph.D. in Computer Science from
Roskilde University, Denmark, in 2005 with a disser-
tation on integrity checking for deductive databases.
Presently, he is assistant professor at Politecnico
di Milano. His main interests are data integrity
maintenance, data integration, logic programming,
knowledge representation, and, in a broad sense,
applications of logic to databases. He is currently
focusing on inconsistency tolerance in database sys-

tems as well as on query optimization aspects related to web data access and
web search.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.


