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Heterogeneous nuclear reactors require numerical methods to solve the neutron diffusion 

equation (NDE) to obtain the neutron flux distribution inside them, by discretizing the 

heterogeneous geometry in a set of homogeneous regions. This discretization requires 

additional equations at the inner faces of two adjacent cells: neutron flux and current 

continuity, which imply an excess of equations. The Finite Volume Method (FVM) is suitable 
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to be applied to NDE, because it can be easily applied to any mesh and it is typically used in 

the transport equations due to the conservation of the transported quantity within the volume. 

However, the gradient and face averaged values in the FVM are typically calculated as a 

function of the cell averaged values of adjacent cells. So, if the materials of the adjacent cells 

are different, the neutron current condition could not be accomplished. Therefore, a 

polynomial expansion of the neutron flux is developed in each cell for assuring the 

accomplishment of the flux and current continuity and calculating both analytically. In this 

polynomial expansion, the polynomial terms for each cell were assigned previously and the 

constant coefficients are determined by solving the eigenvalue problem with SLEPc. A 

sensitivity analysis for determining the best set of polynomial terms is performed.  

 

neutron diffusion equation; finite volume method; polynomial expansion; steady-state  

 

 

1. Introduction 

 The spatial distribution of the neutron flux in nuclear reactors is relevant to assure 

nuclear reactor safety since it is related with the power. The neutron transport equation could 

be used to determine it accurately, but it requires high computational resources. In contrast, 

the neutron diffusion equation, which is a simplification of the neutron transport equation 

using the Fick’s Law [1], requires less computational resources and is suitable to be applied to 

LWR nuclear reactors. 

The neutron diffusion equation contains spatial and time-dependent terms, so the 

spatial distribution is calculated by transforming it into an eigenvalue problem, explained in 

section 2.1. Moreover, this equation contains spatial partial derivatives terms and therefore, 

heterogeneous nuclear reactors require numerical methods to solve the neutron diffusion 

equation applied to them, by discretizing the heterogeneous geometry in a set of 
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homogeneous regions. 

On the one hand, neutron diffusion equation is an approximation of the neutron 

transport equation. On the other hand, neutron calculations require a coupled 

thermalhydraulic-neutronic calculation. In fact, best estimate thermal-hydraulics calculations 

as Computational Fluid Dynamics (CFD) codes use the Finite Volume Method (FVM), 

because it can be easily applied to unstructured meshes and is typically used in the transport 

equations due to the conservation of the transported quantity within the volume [2]. 

Consequently, the FVM is suitable to be applied to the neutron diffusion equation [3, 4]. 

Furthermore, the neutron diffusion theory applied to discretized geometries requires 

additional equations at the inner faces of two adjacent cells: neutron flux and neutron current 

continuity, which imply an excess of equations. In addition, the neutron current is 

proportional to the neutron flux gradient, and the proportional constant depends on the 

material. Since the gradient in the FVM is typically calculated by using the cell-averaged 

values of the neighbouring cells [5], the gradient is a continuous function of the adjacent cells. 

Nevertheless, if the materials of the two adjacent cells are different, the neutron current 

condition will not be accomplished. 

In this paper, a polynomial expansion of the neutron flux is developed in each cell, up 

to the same number of equations as unknowns, for calculating the gradient analytically. In this 

polynomial expansion, the polynomial terms for each cell were assigned previously and the 

constant coefficients are determined by solving the eigenvalue problem by means of SLEPc 

library, because it is appropriate for large and sparse matrices [6, 7]. A sensitivity analysis for 

determining the best set of polynomial terms is performed. 

The outline of the paper is as follows. Section 2 explains the polynomial expansion 

method for the steady-state 2 energy-group neutron diffusion equation discretized by the 

Finite Volume Method. Sections 3 describes the reactors used and exhibits the results. Section 

4 summarizes the conclusions about this work.   
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2. Materials and Methods 

2.1. Steady-state 2 energy-group neutron diffusion equation discretized by the Finite 

Volume Method 

The time-dependent multigroup neutron diffusion approximation most widely used for 

commercial nuclear reactors is that of 2-energy groups [1], exhibited in Equation 1.  

1

𝑣1

𝑑𝜙1(𝑟, 𝑡)

𝑑𝑡
= −𝛻 (−𝐷1�⃗⃗�𝜙1(𝑟, 𝑡)) − (Σ𝑎,1(𝑟) + Σ𝑠,1→2(𝑟))  𝜙1(𝑟, 𝑡)

+ (1 − 𝛽) (𝜐Σ𝑓,1(𝑟) 𝜙1(𝑟, 𝑡) + 𝜐Σ𝑓,2(𝑟) 𝜙2(𝑟, 𝑡)) + ∑ 𝜆𝑖 𝐶𝑖

𝑖

 

1

𝑣2

𝑑𝜙2(𝑟, 𝑡)

𝑑𝑡
= −∇ (−𝐷2 ∇⃗⃗⃗𝜙2(𝑟, 𝑡)) − Σ𝑎,2(𝑟) 𝜙2(𝑟, 𝑡) + Σ𝑠,1→2(𝑟) 𝜙1(𝑟, 𝑡) 

𝑑𝐶𝑖

𝑑𝑡
= 𝛽𝑖 (𝜐Σ𝑓,1(𝑟) 𝜙1(𝑟, 𝑡) + 𝜐Σ𝑓,2(𝑟) 𝜙2(𝑟, 𝑡)) − 𝜆𝑖 𝐶𝑖     ;   𝑖 = 1, … , 6   

(1) 

 

The steady-state of Equation 1 is accomplished only for certain geometry and nuclear 

parameters, which are the coefficients of Equation 1. As a result, Equation 1 is transformed 

into the eigenvalue problem expressed by Equation 2, to attain the steady-state. 

0 = −𝛻 (−𝐷1�⃗⃗�𝜙1(𝑟, 𝑡)) − (Σ𝑎,1(𝑟) + Σ𝑠,1→2(𝑟))  𝜙1(𝑟, 𝑡)

+
1

𝒌
(𝜐Σ𝑓,1(𝑟) 𝜙1(𝑟, 𝑡) + 𝜐Σ𝑓,2(𝑟) 𝜙2(𝑟, 𝑡)) 

0 = −∇ (−𝐷2∇⃗⃗⃗𝜙2(𝑟, 𝑡)) − Σ𝑎,2(𝑟) 𝜙2(𝑟, 𝑡) + Σ𝑠,1→2(𝑟) 𝜙1(𝑟, 𝑡) 

(2) 

If one applies the FVM to Equation 2, Equation 3 is obtained [3]. In this equation, the 

face-averaged values of the neutron flux gradient (�⃗⃗�𝜙𝑔,𝑖,𝑗) have to be determined. In the 

reference mentioned [3], �⃗⃗�𝜙𝑔,𝑖,𝑗  is calculated by means of Arb [5] algorithm, which 

calculates it as a weighted sum of the cell averaged values of the neutron flux of the 

neighbouring cells (𝜙𝑔,𝑛) as in Equation 4 [3, 5]. Nonetheless, it works well for fine meshes, 
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but it requires high computational time [3]. Besides, the neutron flux continuity is not applied 

in this method and the neutron current continuity is imposed by several approximations [3], 

since they imply an excess of equations in comparison with the unknowns, which are the cell 

values. 

∑  (
𝑆𝑗

𝑉𝑖
 𝑢𝑗  (−𝐷1

i  �⃗⃗�𝜙1,𝑖,𝑗 ))

𝑗

+ (Σ𝑎,1
i + Σ𝑠,1→2

i ) 𝜙1,𝑖 =
1

𝒌
(𝜐Σ𝑓,1

i  𝜙1,𝑖 + 𝜐Σ𝑓,2
i  𝜙2,𝑖) 

∑  (
𝑆𝑗

𝑉𝑖
 𝑢𝑗  (−𝐷2

i   �⃗⃗�𝜙2,𝑖,𝑗 ))

𝑗

+ Σ𝑎,2
i 𝜙2,𝑖 − Σ𝑠,1→2

i  𝜙1,𝑖 = 0 

 

(3) 

 

�⃗⃗�𝜙𝑔,𝑖,𝑗 = �⃗⃗�𝜙𝑔,𝑗 = ∑ 𝑘𝑛,𝑗
𝑔𝑟𝑎𝑑

 𝜙𝑔,𝑛

𝑛𝜖𝑖

 (4) 

 

2.2. Inter-cells polynomial expansion method 

In this paper, a polynomial expansion of the neutron flux for each cell is proposed. 

Firstly, the number of terms of this expansion must equal the number of equations for each 

cell. Figure 1 shows a geometry discretized into 2 cells, where the diffusion equations, 

boundary conditions, neutron flux continuity and current continuity are applied. In Figure 1, 

one could appreciate that the number of equations for each cell is the number of faces plus 

one, so this will be the number of terms of this expansion, which is exhibited in Equation 5. 

< Figure 1>  

 

𝜙𝑔,𝑖(𝑥, 𝑦, 𝑧) = ∑ 𝑎𝑔,𝑖,𝑡 𝑝𝑡(𝑥, 𝑦, 𝑧)

𝑁𝑓𝑎𝑐𝑒𝑠+1

𝑡=1

 (5) 

 

In this expansion, each polynomial term (𝑝𝑡(𝑥, 𝑦, 𝑧)) is assumed to be known, and is 
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defined in Equation 6. In contrast, the coefficients of the expansion (𝑎𝑔,𝑖,𝑡) are unknown and 

will be determined by solving the eigenvalue problem. Since there are infinite polynomial 

combinations, a sensitivity analysis was done to determine the best polynomial set. 

𝑝𝑡(𝑥, 𝑦, 𝑧) = 𝑥𝛼𝑡𝑦𝛽𝑡𝑧𝛾𝑡  (6) 

The volume and surface averaged values of the neutron flux are easily calculated 

because the polynomial terms are known and depend exclusively on the geometry of cells and 

faces and number of faces, as Equations 7 and 8 show. In addition, the neutron flux gradient 

can be easily and analytically calculated with Equations 9-12. Then, surface averaged values 

of the neutron flux gradient are determined by means of Equation 13. 

𝜙𝑔,𝑖 =
1

𝑉𝑖
∫ 𝜙𝑔,𝑖(𝑥, 𝑦, 𝑧) 𝑑𝑉

𝑉𝑖

= ∑ 𝑎𝑔,𝑖,𝑡 
1

𝑉𝑖
 ∫ 𝑝𝑡(𝑥, 𝑦, 𝑧) 𝑑𝑉

𝑉𝑖

𝑁𝑓𝑎𝑐𝑒𝑠+1

𝑡=1

= ∑ 𝑎𝑔,𝑖,𝑡 𝑝�̅�
𝑉𝑖

𝑁𝑓𝑎𝑐𝑒𝑠+1

𝑡=1

 

(7) 

 

𝜙𝑔,𝑖,𝑗 =
1

𝑆𝑗
∫ 𝜙𝑔,𝑖(𝑥, 𝑦, 𝑧) 𝑑𝑆

𝑆𝑗

= ∑ 𝑎𝑔,𝑖,𝑡 
1

𝑆𝑗
 ∫ 𝑝𝑡(𝑥, 𝑦, 𝑧) 𝑑𝑆

𝑆𝑗

𝑁𝑓𝑎𝑐𝑒𝑠+1

𝑡=1

= ∑ 𝑎𝑔,𝑖,𝑡 𝑝�̅�
𝑆𝑖,𝑗

𝑁𝑓𝑎𝑐𝑒𝑠+1

𝑡=1

 

(8) 

 

�⃗⃗�𝜙𝑔,𝑖,𝑗(𝑥, 𝑦, 𝑧) =
𝑑𝜙𝑔,𝑖(𝑥, 𝑦, 𝑧)

𝑑𝑥
 𝑢𝑖𝑗𝑥  +

𝑑𝜙𝑔,𝑖(𝑥, 𝑦, 𝑧)

𝑑𝑦
 𝑢𝑖𝑗𝑦  +

𝑑𝜙𝑔,𝑖(𝑥, 𝑦, 𝑧)

𝑑𝑧
 𝑢𝑖𝑗𝑧 =

= ∑ 𝑎𝑔,𝑖,𝑡 (  
𝑑𝑝𝑡(𝑥, 𝑦, 𝑧)

𝑑𝑥
𝑢𝑖𝑗𝑥 +   

𝑑𝑝𝑡(𝑥, 𝑦, 𝑧)

𝑑𝑦
𝑢𝑖𝑗𝑦

𝑁𝑓𝑎𝑐𝑒𝑠+1

𝑡=1

+  
𝑑𝑝𝑡(𝑥, 𝑦, 𝑧)

𝑑𝑧
𝑢𝑖𝑗𝑧) 

(9) 
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𝑑𝑝𝑡(𝑥, 𝑦, 𝑧)

𝑑𝑥
= 𝛼𝑡 𝑥𝛼𝑡−1𝑦𝛽𝑡𝑧𝛾𝑡  (10) 

 

𝑑𝑝𝑡(𝑥, 𝑦, 𝑧)

𝑑𝑦
= 𝛽𝑡 𝑥𝛼𝑡𝑦𝛽𝑡−1𝑧𝛾𝑡 (11) 

 

𝑑𝑝𝑡(𝑥, 𝑦, 𝑧)

𝑑𝑧
= 𝛾𝑡 𝑥𝛼𝑡𝑦𝛽𝑡𝑧𝛾𝑡−1 (12) 

 

�⃗⃗�𝜙𝑔,𝑖,𝑗 =
1

𝑆𝑗
∫ �⃗⃗�𝜙𝑔,𝑖,𝑗(𝑥, 𝑦, 𝑧) 𝑑𝑆

𝑆𝑗

=

= ∑ 𝑎𝑔,𝑖,𝑡 (𝑢𝑖𝑗𝑥  
1

𝑆𝑗
 ∫

𝑑𝑝𝑡(𝑥, 𝑦, 𝑧)

𝑑𝑥
 𝑑𝑆

𝑆𝑗

𝑁𝑓𝑎𝑐𝑒𝑠+1

𝑡=1

+ 𝑢𝑖𝑗𝑦   
1

𝑆𝑗
 ∫

𝑑𝑝𝑡(𝑥, 𝑦, 𝑧)

𝑑𝑦
 𝑑𝑆

𝑆𝑗

+ 𝑢𝑖𝑗𝑧  
1

𝑆𝑗
 ∫

𝑑𝑝𝑡(𝑥, 𝑦, 𝑧)

𝑑𝑧
 𝑑𝑆

𝑆𝑗

)  

= ∑ 𝑎𝑔,𝑖,𝑡 (𝑢𝑖𝑗𝑥  
𝑑𝑝𝑡

𝑑𝑥

̅̅̅̅̅𝑆𝑖,𝑗

+ 𝑢𝑖𝑗𝑦  
𝑑𝑝𝑡

𝑑𝑦

̅̅̅̅̅𝑆𝑖,𝑗

 + 𝑢𝑖𝑗𝑧  
𝑑𝑝𝑡

𝑑𝑧

̅̅ ̅̅̅𝑆𝑖,𝑗

)

𝑁𝑓𝑎𝑐𝑒𝑠+1

𝑡=1

= ∑ 𝑎𝑔,𝑖,𝑡 �⃗⃗�𝑝𝑡
̅̅ ̅̅ ̅𝑆𝑖,𝑗

𝑁𝑓𝑎𝑐𝑒𝑠+1

𝑡=1

 

(13) 

 

If one substitutes these averaged values in Equation 3, Equation 14 is obtained, which 

is the discretized neutron diffusion equation. Finally, the face equations are required to 

complete the system of equations. These equations are the boundary conditions, the neutron 

flux and current continuity. The boundary conditions most commonly used are the zero flux 

and the reflective flux, which are discretized in Equations 15 and 16 respectively. The neutron 

flux and current continuity are discretized in Equations 17 and 18 respectively. 
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∑ 𝑎1,𝑖,𝑡 (
−𝐷1

i

𝑉𝑖
 ∑ (𝑆𝑗   �⃗⃗�𝑝𝑡

̅̅ ̅̅ ̅𝑆𝑖,𝑗

)

𝑗

+ 𝑝�̅�
𝑉𝑖  (Σ𝑎,1

i + Σ𝑠,1→2
i ))

𝑁𝑓𝑎𝑐𝑒𝑠+1

𝑡=1

=
1

𝒌
( ∑ 𝑎1,𝑖,𝑡 𝑝�̅�

𝑉𝑖  𝜐Σ𝑓,1
i

𝑁𝑓𝑎𝑐𝑒𝑠+1

𝑡=1

+  ∑ 𝑎2,𝑖,𝑡 𝑝�̅�
𝑉𝑖  𝜐Σ𝑓,2

i

𝑁𝑓𝑎𝑐𝑒𝑠+1

𝑡=1

) 

∑ 𝑎2,𝑖,𝑡 (
−𝐷2

i

𝑉𝑖
 ∑ (𝑆𝑗   �⃗⃗�𝑝𝑡

̅̅ ̅̅ ̅𝑆𝑖,𝑗

)

𝑗

+ 𝑝�̅�
𝑉𝑖  Σ𝑎,2

i )

𝑁𝑓𝑎𝑐𝑒𝑠+1

𝑡=1

−  ∑ 𝑎1,𝑖,𝑡 𝑝�̅�
𝑉𝑖  Σ𝑠,1→2

i

𝑁𝑓𝑎𝑐𝑒𝑠+1

𝑡=1

= 0 

(14) 

 

𝜙𝑔,𝑖,𝑗 = 0 = ∑ 𝑎𝑔,𝑖,𝑡 𝑝�̅�
𝑆𝑖,𝑗

𝑁𝑓𝑎𝑐𝑒𝑠+1

𝑡=1

 (15) 

 

�⃗⃗�𝜙𝑔,𝑖,𝑗 = 0 = ∑ 𝑎𝑔,𝑖,𝑡�⃗⃗�𝑝𝑡
̅̅ ̅̅ ̅𝑆𝑖,𝑗

𝑁𝑓𝑎𝑐𝑒𝑠+1

𝑡=1

 (16) 

 

𝜙𝑔,𝑖,𝑗 − 𝜙𝑔,𝑖+1,𝑗 = 0 = ∑ (𝑝�̅�
𝑆𝑖,𝑗𝑎𝑔,𝑖,𝑡 − 𝑝�̅�

𝑆𝑖+1,𝑗𝑎𝑔,𝑖+1,𝑡)

𝑁𝑓𝑎𝑐𝑒𝑠+1

𝑡=1

 (17) 

 

(−𝐷𝑔
i �⃗⃗�𝜙𝑔,𝑖,𝑗) + (−𝐷𝑔

i+1�⃗⃗�𝜙𝑔,𝑖+1,𝑗) = 0

= ∑ (−𝐷𝑔
i 𝑎𝑔,𝑖,𝑡�⃗⃗�𝑝𝑡

̅̅ ̅̅ ̅𝑆𝑖,𝑗

− 𝐷𝑔
i+1𝑎𝑔,𝑖+1,𝑡�⃗⃗�𝑝𝑡

̅̅ ̅̅ ̅𝑆𝑖+1,𝑗

)

𝑁𝑓𝑎𝑐𝑒𝑠+1

𝑡=1

 

(18) 

 

2.3. Eigenvalue problem 

The generalized eigenvalue problem of Equation 19 is obtained by applying Equations 

14-18 to each cell and its faces of the discretized geometry.  

(
L11 0
L21 L22

) (
Φ1

Φ2
) =

1

𝒌
(

M11 M12

0 0
) (

Φ1

Φ2
) (19) 
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L11: (
−𝐷1

i

𝑉𝑖
 ∑ (𝑆𝑗   �⃗⃗�𝑝𝑡

̅̅ ̅̅ ̅𝑆𝑖,𝑗

)𝑗 + 𝑝�̅�
𝑉𝑖  (Σ𝑎,1

i + Σ𝑠,1→2
i )) of Equation 14 and terms of Equations 

15-18. 

L21: 𝑝�̅�
𝑉𝑖  Σ𝑠,1→2

i  of Equation 14. 

L22: (
−𝐷2

i

𝑉𝑖
 ∑ (𝑆𝑗   �⃗⃗�𝑝𝑡

̅̅ ̅̅ ̅𝑆𝑖,𝑗

)𝑗 + 𝑝�̅�
𝑉𝑖  Σ𝑎,2

i ) of Equation 14 and terms of Equations 15-18. 

M11: 𝑝�̅�
𝑉𝑖  𝜐Σ𝑓,1

i  of Equation 14. 

M12: 𝑝�̅�
𝑉𝑖  𝜐Σ𝑓,2

i  of Equation 14. 

 

The neutron flux for each energy group (Φg) is composed of the neutron flux for 

each cell (Φg,i), which consists of each polynomial expansion coefficient (𝑎g,i,t). These 

definitions are shown in Equations 20 and 21. 

Φg = (

Φg,1

⋮
Φg,𝑁

) (20) 

 

Φg,i = (

𝑎g,𝑖,1

⋮
𝑎g,𝑖,𝑁𝑓𝑎𝑐𝑒𝑠+1

) (21) 

The dimension of the generalized eigenvalue problem of Equation 19 can be reduced 

by a factor of two. One can appreciate from Equation 19 the relationship between neutron flux 

for each energy group, expressed in Equation 22. If one uses Equation 22, Equation 19 is 

transformed into Equation 23, which represents an eigenvalue problem with half dimension of 

the original one. This equation is solved iteratively by means of the procedure exhibited in 

Equation 24, where x is the initial guess of Φ1 in the iterative method and y, z, w, v, u and t 

are vectors of the same dimension of Φ1. It is important to highlight that the inverse of 

matrices L22 and L11 are not calculated, but the vectors z and t are determined by solving 

linear systems of equations with direct methods as it is exhibited in Equations 25 and 26, 

where vectors y and u are known in the iterative procedure of Equation 24. 
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 Φ2 =  − L22
−1 L21 Φ1 (22) 

 

(𝐿11
−1 (M11 −  M12 L22

−1 L21 )) Φ1 =   𝒌 Φ1 (23) 

 

(L11
−1 (M11 −  M12 L22

−1 L21 )) 𝑥 = L11
−1 (M11 𝑥 −  M12 L22

−1 L21𝑥 )

=  L11
−1 (𝑣 −  M12 L22

−1 𝑦 ) =  L11
−1 (𝑣 −  M12 𝑧 ) =  𝐿11

−1 (𝑣 −  𝑤 )

= L11
−1 (𝑢 ) = 𝑡 

(24) 

 

𝐿22
−1 𝑦 = 𝑧  𝐿22 𝑧 = 𝑦 (25) 

 

𝐿11
−1  𝑢 = 𝑡  𝐿11 𝑡 = 𝑢 (26) 

 

3. Results and Discussions 

 Homogeneous and heterogeneous reactors are simulated to assess the method. The 

reactors are modelled and meshed by means of Gmsh code [8], which is a 3D finite element 

grid generator with a build-in CAD engine. Different structured and unstructured meshes were 

used to analyse its sensitivity. 

The structured meshes are composed of hexahedra and the unstructured meshes 

consist of tetrahedra. As a result, the number of polynomial terms for each cell has to be 7 for 

structured meshes and 5 for unstructured meshes. A sensitivity analysis of different 

polynomial sets is done, but only a maximum of second order terms are considered, because 

there are infinite possible combinations for higher order expansions. 

The power and eigenvalue errors are used to evaluate the results and are defined in 

Equations 27 and 28 respectively. SLEPc library can calculate several eigenvalues, in our case 

5 eigenvalues (the highest eigenvalues) and eigenvectors were computed. The eigenvalue is k 

of Equation 23 and the eigenvector is the neutron flux for the first energy group 𝜙1. The 
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neutron flux for the second energy group 𝜙2 is calculated with Equation 22. The modal 

power is a weighted sum of the 𝜙1 and 𝜙2 and it is defined in Equation 29. The results are 

normalized to attain mean power equals unity, which is defined in Equation 30. In this 

equation, only cells i with not null power are considered. With the aim of reducing the 

extension of this paper, the mean power error will be used to assess the power results, and it is 

defined in Equation 31. 

𝑃𝑜𝑤𝑒𝑟 𝑒𝑟𝑟𝑜𝑟 (%) =
|𝑃𝑜𝑤𝑒𝑟 − 𝑃𝑜𝑤𝑒𝑟𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒|

𝑃𝑜𝑤𝑒𝑟𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
∗ 100 (27) 

𝐸𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒 𝑒𝑟𝑟𝑜𝑟 (𝑝𝑐𝑚) =
|𝒌 − 𝒌𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒|

𝒌𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
∗ 105 (28) 

𝑃𝑜𝑤𝑒𝑟𝑖 = (𝛴𝑓,1
𝑖  𝜙1,𝑖 + 𝛴𝑓,2

𝑖  𝜙2,𝑖) · 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (29) 

𝑀𝑒𝑎𝑛 𝑃𝑜𝑤𝑒𝑟 =
∑ |𝑃𝑜𝑤𝑒𝑟𝑖| 𝑉𝑖

𝑁
𝑖=1

∑  𝑉𝑖
𝑁
𝑖=1

 (30) 

𝑀𝑒𝑎𝑛 𝑃𝑜𝑤𝑒𝑟 𝐸𝑟𝑟𝑜𝑟 =
∑ 𝑃𝑜𝑤𝑒𝑟 𝑒𝑟𝑟𝑜𝑟𝑖 · |𝑃𝑜𝑤𝑒𝑟𝑖| · 𝑉𝑖

𝑁
𝑖=1

∑ |𝑃𝑜𝑤𝑒𝑟𝑖| ·  𝑉𝑖
𝑁
𝑖=1

 (31) 

 

 

3.1. 3D homogeneous reactor 

It is a parallelepiped reactor of dimensions 99 cm x 60 cm x 180 cm and is composed 

of one material, whose diffusion coefficients and cross sections are exhibited in Table 1. 

Regarding the boundary conditions, zero flux condition was imposed in each boundary. With 

respect to the meshes, 3 structured and 4 unstructured meshes were simulated. The first 

structured mesh is composed of 3x3x6 hexahedra, the second one is composed of 6x6x12 

hexahedra and the third one is composed of 12x12x24 hexahedra. The unstructured meshes 

are presented in Figures 2-5. 

< Table 1>  
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<Figure 2> 

<Figure 3> 

<Figure 4> 

<Figure 5> 

As far as polynomial terms are concerned, there are only several possible 

combinations giving valid results. For structured meshes, there are 120 polynomial 

combinations of order 2 composed of 7 monomials, all of them were used, but only one 

combination gave valid results: 1, x, y, z, x
2
, y

2
, z

2
. In case of unstructured meshes, there are 

252 polynomial sets composed of 5 monomials, all of them were used, but only 3 

combinations gave valid results. The first combination is 1, x, y, z, x
2
; the second one is 1, x, 

y, z, y
2
 and the third one is 1, x, y, z, z

2
. In addition, the authors tested other combinations 

with terms of higher orders and they noted that the following combination gives also valid 

and accurate results for coarse unstructured meshes: 1, x, y, z, x
2
y

2
.  

Regarding the reference solution, this reactor has analytical solution. As regards 

eigenvalues, the analytical eigenvalues are: 0.99391916952, 0.97602952377, 0.94734259138, 

0.93778667636, 0.92148598185. With respect to power results, the modal power 

corresponding to the unstructured mesh 4 and the third combination of polynomial is shown 

in Figures 6 and 7 for the first and second eigenvectors. Regarding the power errors, the 

reference power and power errors are evaluated at 3x3x6 nodes. Only the Mean Power Error 

(Equation 31) is exhibited in this paper due to the extension of the results. 

Table 2 contains the computational time and eigenvalue errors for the structured 

meshes. Mean power errors are 0.00 %. First, the computational time has an order of 

magnitude of seconds, which is appropriate for neutron diffusion codes. Regarding the 

eigenvalue errors, only the third mesh gives accurate eigenvalue results. As regards the mean 

power errors, the 3 meshes give null errors.  

< Table 2 > 
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Table 3 contains the computational time and eigenvalue errors and for the 

unstructured mesh 1. Table 4 contains the same results for the unstructured mesh 4. Mean 

power errors are 0.00% for both meshes. In this case, all polynomial combinations give 

accurate results, but the finer the mesh the more accurate the eigenvalues. One can see high 

differences of the eigenvalue errors for the unstructured mesh 1, but these differences are 

negligible for the unstructured mesh 4, so for fine meshes the polynomial set is almost 

insensitive.  

< Table 3 > 

< Table 4 > 

A sensitivity analysis of the unstructured mesh was performed and one can see the 

results in Table 5, in which the polynomial combination is fixed (the third combination was 

used). In this table, the higher the number of cells, the more accurate the eigenvalue results. 

 

< Table 5 > 

With respect to mean power errors, unstructured meshes 2 and 3 give non zero errors 

due to their asymmetry. Therefore, these errors are due to the modelling, not to the method. 

One notes these errors are virtually zero for the unstructured mesh 3, so the asymmetry is 

negligible for fine meshes and the polynomial sets are almost insensitive. 

 

3.2. Langenbuch reactor 

It is a heterogeneous reactor composed of 4 materials, whose cross sections are shown 

in Table 6. Figures 8 and 9 exhibit its geometry. Zero flux boundary condition was imposed, 

except at west and south boundaries, where reflective flux condition was used. With respect to 

the meshes, 3 structured and 4 unstructured meshes were simulated. The structured mesh 1 is 

composed of 6x6x10 hexahedra, which is shown in Figures 8 and 9. The structured mesh 2 is 

composed of 12x12x20 hexahedra and the third one is composed of 24x24x40 hexahedra. The 
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unstructured meshes are shown in Figures 10-13. Regarding the polynomial sets, the same 

sets as in section 3.1 were used, because they were the only ones giving valid results. 

< Table 6> 

<Figure 8> 

<Figure 9> 

<Figure 10> 

<Figure 11> 

<Figure 12> 

<Figure 13> 

With respect to the reference solution, the nodal diffusion codes PARCS [9] and 

VALKIN [10, 11] were used. On the one hand, PARCS is the reference code in neutron 

diffusion field, but it only calculates one eigenvalue. On the other hand, VALKIN can 

calculate several eigenvalues. The eigenvalue calculated by PARCS is 0.995088. The 5 

eigenvalues which VALKIN obtains are 0.994881227, 0.948210698, 0.911891847, 

0.907632411 and 0.877972136. As regards power results, the modal power errors were 

evaluated at the nodes of Figures 8 and 9, without considering the nodes containing the 

reflector, that is 8 axial levels (2-9) and 5x5 radial nodes. The results corresponding with the 

first eigenvector are compared with PARCS and the rest of eigenvectors are compared with 

VALKIN. Modal power distribution corresponding to the unstructured mesh 4 and the third 

combination of polynomial is shown in Figures 14 and 15 for the first and second 

eigenvectors. 

< Figure 14 > 

<Figure 15> 

Computational time, eigenvalue errors and mean power errors for the structured 

meshes are shown in Table 7. This table exhibits accurate eigenvalue results for the 3 meshes, 

but the power results are not good enough for the structured mesh 1. However, the structured 
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mesh 2 and 3 give excellent power results. Moreover, the computational time is about seconds, 

which is appropriate for diffusion codes. 

< Table 7 > 

Table 8 shows the results for the unstructured mesh 1 and Table 9 those for the 

unstructured mesh 3. By comparing these tables, one can see that the finer the mesh the more 

accurate the results, but also the higher the computational time. Overall, the unstructured 

mesh 1 gives accurate results with computational time about seconds. As regards the 

polynomial combinations, one can see different results for the coarsest mesh, but the results 

are almost insensitive for the finest mesh. 

< Table 8 > 

< Table 9 > 

Another sensitivity analysis of the unstructured mesh was performed for Langenbuch 

reactor, and the results are shown in Table 10, in which the polynomial combination is fixed 

(the third combination was used). Another time, the higher the number of cells, the more 

accurate the eigenvalue results. However, the coarsest mesh gives accurate results and 

requires few seconds, so it is the best unstructured mesh.  

< Table 10 > 

On the whole, the best mesh is the structured mesh 2, because it gives accurate results 

with computational time of 7 seconds. 

 

3.3. Eigenvalue calculation of a commercial PWR  

In this section, the results of a commercial PWR is included to show the power of the 

method developed. However, the whole description of the reactor is omitted due to the 

extension of the paper, but its geometry is exhibited in Figure 16. Table 11 shows only the 

first 5 eigenvalues and its comparison against the results obtained with VALKIN, for a real 

reactor with structured mesh composed of 8194 nodes. The computational time was 17.65 
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seconds and the eigenvalue errors are about 200 pcm which are acceptable. 

< Figure 16 > 

< Table 11 > 

 

4. Conclusions 

 The inter-cell polynomial expansion method improves the solution of the eigenvalue 

problem of the 2-energy group neutron diffusion equation discretized by the FVM by 

reducing the computational time, increasing the accuracy and assuring the flux and current 

continuity. 

The method was applied to homogeneous and heterogeneous reactors, obtaining good 

results in both cases. A sensitivity analysis of the meshes and polynomial sets was performed. 

In case of structured meshes, there is only one polynomial set of order 2 giving valid results. 

In case of unstructured meshes, there are 3 polynomial sets of order 2 giving valid results. In 

addition, the symmetry of the mesh and the polynomial is important to obtain the best results. 

The finer the mesh, the more accurate the results and more insensitivity with respect to the 

polynomial set. 

In conclusion, this method gives accurate results for structured and unstructured 

meshes with computational time about seconds. The finer the mesh, the more accurate the 

results, but also the higher the computational time. However, this method is capable of 

obtaining accurate results with relatively coarse meshes, and consequently with low 

computational time.  

Regarding future work, other polynomial expansions will be considered as exponential 

or sine functions and Legendre polynomial. Moreover, more equations could be added to 

increase the number of terms of the polynomial expansion. The parallelization of both 

geometry and solver will be performed. With respect to additional nuclear applications, the 

following steps will be the thermal-hydraulic coupling and the transitory state. 
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Nomenclature 

𝜙𝑔: Neutron flux of the g energy group 

𝑣𝑔: Neutron velocity of the g energy group 

𝐷𝑔: Neutron diffusion coefficient of the g energy group 

Σ𝑎,𝑔: Absorption macroscopic cross-section of the g energy group 

Σ𝑠,1→2: Scattering macroscopic cross-section from the first to the second energy group 

𝜐Σ𝑓,𝑔: Nu-fission macroscopic cross-section of the g energy group 

𝛽𝑖: Fraction of delayed neutrons of the precursors of group i 

𝛽: Total fraction of delayed neutrons 

𝜆𝑖: Decay constant of the precursors of group i 

𝐶𝑖: Concentration of delayed neutrons precursors of group i 

𝑆𝑗: Area of the face j 

𝑉𝑖: Volume of the cell i 

𝐷𝑔
𝑖 : Neutron diffusion coefficient of the g energy group for the cell i 

𝑘𝑛,𝑗
𝑔𝑟𝑎𝑑

: Kernel of the neutron flux of the cell n used to calculate the gradient of the neutron 

flux at the face j. The gradient is calculated by multiplying this kernel by the neutron flux of 

the cell n. 

𝜙𝑔,𝑖: Neutron flux of the g energy group for the cell i 

Σ𝑎,𝑔
i : Absorption macroscopic cross-section of the g energy group for the cell i 

Σ𝑠,1→2
i : Scattering macroscopic cross-section from the first to the second energy group for the 

cell i 

𝒌: Eigenvalue 

𝜐Σ𝑓,𝑔
i : Nu-fission macroscopic cross-section of the g energy group for the cell i 

𝑁𝑓𝑎𝑐𝑒𝑠: Number of faces of each cell 

𝑎𝑔,𝑖,𝑡: Coefficient multiplying the term t of the polynomial expansion of the flux of g energy 

group for the cell i  
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𝑝𝑡(𝑥, 𝑦, 𝑧): Term t of the polynomial expansion of the flux  

𝑝�̅�
𝑉𝑖: Volume averaged value of the term t of the polynomial expansion of the flux for the cell 

i  

𝑝�̅�
𝑆𝑖,𝑗: Surface averaged value of the term t of the polynomial expansion of the flux for the cell 

i and its face j 

�⃗⃗�𝑝𝑡
̅̅ ̅̅ ̅𝑆𝑖,𝑗

: Surface averaged value of the gradient of the term t of the polynomial expansion of 

the flux for the cell i and its face j 

𝑢𝑖𝑗𝑥 : X-component of the unit vector which is normal to face j and in the outgoing direction 

of cell i  

𝑢𝑖𝑗𝑦 : Y-component of the unit vector which is normal to face j and in the outgoing direction 

of cell i  

𝑢𝑖𝑗𝑧 : Z-component of the unit vector which is normal to face j and in the outgoing direction 

of cell i  
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Figure captions     

 

Figure 1. Equations applied to a discretized geometry 

Figure 2.  Unstructured mesh 1 of the homogeneous reactor 

Figure 3.  Unstructured mesh 2 of the homogeneous reactor 

Figure 4.  Unstructured mesh 3 of the homogeneous reactor 

Figure 5.  Unstructured mesh 4 of the homogeneous reactor 

Figure 6.  Power corresponding to 1
st
 eigenvector and the homogeneous reactor 

Figure 7.  Power corresponding to 2
nd

 eigenvector and the homogeneous reactor 

Figure 8.  Axial plane of Langenbuch reactor 

Figure 9.  Frontal planes of Langenbuch reactor 

Figure 10.  Unstructured mesh 1 of Langenbuch reactor 

Figure 11.  Unstructured mesh 2 of Langenbuch reactor 

Figure 12.  Unstructured mesh 3 of Langenbuch reactor 

Figure 13.  Unstructured mesh 4 of Langenbuch reactor 

Figure 14.  Power corresponding to 1
st
 eigenvector and Langenbuch reactor 

Figure 15.  Power corresponding to 2
nd

 eigenvector and Langenbuch reactor 

Figure 16.  Commercial PWR reactor 
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Table captions     

 

Table 1. Cross sections of the homogeneous reactor 

Table 2.  Results of the homogeneous reactor and the structured meshes 

Table 3.  Results of the homogeneous reactor and the unstructured mesh 1 

Table 4.  Results of the homogeneous reactor and the unstructured mesh 4 

Table 5.  Sensitivity analysis of the unstructured mesh of the homogeneous reactor with 

the third polynomial set 

Table 6.  Cross sections of Langenbuch reactor 

Table 7.  Results of Langenbuch reactor and the structured meshes 

Table 8.  Results of Langenbuch reactor and the unstructured mesh 1 

Table 9.  Results of Langenbuch reactor and the unstructured mesh 3 

Table 10.  Sensitivity analysis of the unstructured mesh of Langenbuch reactor with the 

third polynomial set 

Table 11.  Results of a commercial PWR 

 

 


