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Abstract 

Computer-aided design tools can be of great assistance in the design process. However, 

commercial software typically caters to the optimisation of one objective and does not 

address the fact that real world problems tend to be solved by assessing the trade-offs 

between multitudes of competing objectives. Therefore the question is posed as to how 

computer-aided design tools can become assimilated into current design practice while 

aiding the complex decision-making process. A prototypical tool is presented that offers the 

capability to perform trade-off studies and is integrated within a parametric modelling 

environment.  By defining the objectives, design variables and constraints of interest, a 

series of Pareto-optimal solutions comprising the trade-off surface is put forth from all 

possible permutations. The designer is assured that there exists no other solution whereby 

an objective can be improved upon without simultaneously placing another objective at a 

disadvantage. Such a tool can be effectively adopted and utilized to make more informed 

decisions in a relatively short amount of time. 

 

Keywords:   multi-objective optimisation, Pareto optimal, trade-off, parametric and 

associative design systems 

 

1. Introduction 

One of the roles of a designer in any discipline is to blend intuition, experience, and 

heuristics into a design and then communicate the results to others. Time and budget 

constraints challenge the ability to perform this role, while maintaining high levels of 

quality. Computer aided design tools could be of assistance under such conditions, most 

often to perform iterative analysis in order to determine a solution of a single objective 

optimisation problem. In practice, however, design problems encompass many objectives 
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that must be balanced against one another in order to determine a final design. As the 

number of objectives increases, finding a solution by grasping the trade-offs between all 

objectives is likely to become complex and difficult. There is a certain reliance on the 

ability of the designer to intuit the relationship between the input variables and performance 

functions. Therefore a prototypical tool is presented that offers the capability to perform 

trade-off studies by utilizating the pre-established geometric and quantitative relationships 

within a parametric modelling environment. In the following pages the background of the 

applied multi-objective decision making methods will be described along with the manner 

in which the methods are used as the basis for the tool framework. Finally a simple case 

study is presented to show the utility of using such a tool. 

 

2. Applied methods of multi-objective optimisation 

Several key components of a multi-objective design optimisation problem are adopted into 

the tool framework. Briefly described here, they include the problem definition, a method 

to determine Pareto optimal solutions, and the expression of preference for a dual objective 

problem.  

2.1 Mathematical definition of multi-objective design problem 

A multi-objective optimisation problem is typically concerned with minimizing a number 

of objective functions subject to equality and/or inequality constraints (Collete and Siarry 

[1]). Mathematically, a dual objective problem is expressed as the following: 
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Where m is the number of inequality constraints, e is the number of equality constraints, 

and x is a vector of design variables. In order to explore the various potential solutions, 

several plots are of interest. 

The first illustrates the design space, Ω, defined as a plot of the objective function values in 

a space defined by the design variables. Applicable constraints may also be plotted and the 

region bounded by these constraints form the feasible design space. Conversely the 

criterion space, Λ, is a plot whereby each axis is attributed one of two objective functions. 
The mapping of points from the feasible design space to the criterion space creates the 

feasible criterion space.  
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(a) Design space         (b) Criterion space 

Figure 1 Mapping from a design space with two variables to a criterion space of two 

objective functions (Mathworks [2]) 

2.2 Definition of Pareto optimality 

It is rarely the case where a vector of design variables x minimizes both objective functions 

simultaneously. Instead, the plots of criterion space are used to determine a set of vectors 

whereby no other combination of design variables improves upon the values of one 

objective function without having a determinental affect on the other. By this definition the 

solution associated with this instance of design variables is considered to be Pareto 

optimal. In other words, these solutions are considered to be nondominated, implying that a 

dominated solution can be improved upon in all objective functions and is therefore 

considered of no interest.   

Looking at the criterion space of Figure 2, the set of nondominated solutions lies on the 

darkened curve C-D. When moving from point A to point B, the value of f1 decreases from 

f1A to f1B, a desired move in case of a minimization problem. However the value of f2 

increases from f2A to f2B, an undesired move. Because an improvement in one objective, f1, 

requires degradation in the other, f2, points A and B are considered nondominated in 

relation to each other. Ultimately, multi-objective optimisation methods are concerned with 

the generation and selection of nondominated points. 

 

Figure 2 Set of nondominated solutions (Mathworks [2])  
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2.3 Expressing preference using utility functions  

In multi-objective design problems it is possible to express preference for particular values 

of objective functions. In doing so, the designer can more quickly arrive at desired 

solutions. Various approaches of generating and selecting non-dominated points are 

available, of which the linear weighting method, the distance function method, physical 

programming method are common (Messac [3]). The preference in the case study tool [see 

Chapter 4] will be expressed according to the physical programming method. This method 

is based on the use of a utility function as expressed in Equation 2: 

[ ]2)x()x(
)x( offS

eU
−−=                  (2) 

whereby U takes on a value between 0 and 1, f(xo) is the most preferred objective function 

value, f(x) represents the objective function value unique to the instance of design vector x, 

and S represents the rate of the attenuation to zero of the slope of U(x).  

For example, a set of solutions with objective function values between 0 and 40 are 

evaluated. The effect of modifying the preferred objective function value to favor higher 

numbers (i.e. f(xo) = 40) or lower values (i.e. f(xo) = 0), is illustrated in Figure 3. In 

addition, the varied slope of the function demonstrates the effect of modifying the value of 

S between 0.001, 0.01, and 0.1. 

 

 

       (a) Less is better, f(xo) = 0                      (b) More is better, f(xo) = 40                  

Figure 3 Comparison of utility functions with varying values of S and f(x0) 

 

3. Design Tool Framework 

As demonstrated in Figure 4, the goal of the proposed design tool is to improve upon the 

traditional method whereby external programs outside of the CAD model perform 

optimisation routines. The improvement is accomplished by fully integrating optimisation 

methods into pre-existing industry software. With this approach the learning curve 

associated with using a new program and the lag time between updating both models is 
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bypassed. An added benefit of integrating the optimisation framework within the CAD 

model is the ability to represent results visually rather than numerically. 

 

 

Figure 4 Comparison of non-integrated method vs. proposed integrated method  

 

The design tool workflow is outlined in Figure 6. As represented by the vertical dashed 

line, a key component to the workflow is the human-computer feedback loop. The human 

component consists of transcribing the methods of multi-objective design, as described in 

Chapter 2, into the parametric model through features uploaded via a dynamic link library. 

The features include the vector of design variables x, objective functions, constraints, and 

the preference functions. With these components captured into the design model history, 

the computer component solves an algorithm is used to determine the set of Pareto optimal 

solutions. The iterative looping occurs when the designer chooses to modify the 

components of the design problem as a reaction to the solutions presented. It is the intent 

that this iterative process becomes an interactive experience with which to explore the 

design space and direct the search of Pareto optimal solutions. Plots of the design space, 

criterion space, and set of Pareto optimal solutions can be plotted and viewed as shown in 

Figure 5. In order to explore the Pareto optimal points, each plotted point in Figure 5d can 

be selected to reveal the instance of design variables to that solution.  

 

                

(a) Criterion                  (b) Feasible criterion    (c) Pareto optimal      (d) point and click      .            

space                              space                            solutions                    display of vector x 

Figure 5 Plot of criterion space for a two objective design problem 
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Figure 6 Tool workflow chart 

4. Application to building model case study  

A parametric model of an orthogonal, multi-story building with glass facade is created as a 

demonstrational case (Fig. 7b). The design variable feature is composed of both the number 

of columns, Ni, and column bay widths, Si, in each respective direction (Fig. 7a). These 

values have a set minimum, maximum, and step size value. From the permutation of 

possible variable combinations there are 4,096 different building models to evaluate. 

The constraint feature applies a maximum building height, minimum floor area, and 

minimum floor-to-floor clearance height. Solutions that are generated which fail to meet the 

constraint criteria are discarded. Three performance function features and corresponding 

preference features express the desirability to maximize the depth of exposure to natural 

light, minimize the structural costs, and minimize the cooling load due to heat gain through 

the facade.  
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      (a) Plan view showing design variables              (b) Isometric view of parametric model 

Figure 7 Views of parametric model used for demonstration problem 

 

Specific data is researched externally and included in the definition of the performance 

functions. This information includes building orientation, environmental data, thermal 

properties of glass facades, and unit material costs. The results show that from the 4,096 

potential solutions, 42 Pareto-optimal solutions exist. The data attributed to three sample 

solutions are shown in Table 1 in order to illustrate the idea of nondomination and how 

Pareto optimal points are determined. 

 

Table 1 Comparison of sample selections of potential solutions 

4o. Iteration U1(x) U2(x) U3(x) 

1 125 0.278 0.817 0.996 

2 1340 0.235 0.865 0.987 

3 1600 0.229 0.864 0.981 

 

When comparing solution #1 and #2, it is evident that solution #1 dominates solution #2 in 

performance objective 1 and 3, and is dominated by solution #2 in performance objective 2. 

In this case these solutions are considered nondominated in relation to one another and lie 

on the Pareto optimal front. However, when comparing solution #2 and #3, it is evident that 

solution #2 dominates solution #3 in all objectives. Solution #3 is therefore considered of 

no value to the designer and discarded. 

The plots of the criterion space, feasible criterion space, and the set of Pareto optimal 

solutions are illustrated in Figure 8. All data associated with the Pareto optimal solutions 

are captured within the design model and can be used as input for other features.  
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(a) Criterion space                      (b) Feasible criterion space      (c) Pareto optimal solutions 

Figure 8 Plot of criterion space and Pareto optimal solutions given three performance 

objectives 

 

For example, as shown in Figure 9, the instances of design variables are used to quickly 

model the floor plan of each solution. Additional information, such as the iteration number 

and the specific utility function value, can easily be included in the graphical output as text. 

 

 

Figure 9 Representation of all Pareto optimal solutions in model space 

 

5. Discussion 

The potential benefits of working in the proposed method are four fold. First, rather than 

using a stand-alone program, the multi-objective design problem is captured within a 

parametric model and is updated in real-time as changes to the model are made. Secondly, 

the data relating to the Pareto optimal solutions can be used as inputs for other modeling 

features, significantly decreasing the time between acquiring, interpreting, and 

communicating numerical results. Thirdly, there is a certain insight and control the designer 

achieves by participating in the iterative human-computer loop. For example, the designer 

can begin searching the solution spaces without specifying any preference. As certain 
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values of the performance functions are identified as desirable, the designer can narrow the 

window of preference and effectively steer the design toward particular area of the design 

space. As the design evolves, the range and step size of the design variables can be refined 

to explore subregions of the design space. Finally, as is custom with parametric models, 

“black box” issues do not arise due to the reliance on the designer for the definition of 

performance rather than an external analysis program. Although this limits the depth of 

analysis, such quick assessment proves especially useful during conceptual phases of 

design. 

 

6. Conclusion  

The idea of integrating multi-objective design methods into a parametric associative 

modeling environment expands upon the use of stand-alone single-objective optimisation 

programs. Such a tool is an aide to the complex decision making process by providing a 

framework in which to define the components of a design problem. In doing so, the focus is 

placed less on exploration through heuristic methods and more on exploration through the 

holistic perspective gained from viewing the criterion space. With such an understanding 

the designer can anticipate the effect on the project as design changes arise. The extraction 

of Pareto optimal solutions streamlines the evaluation period by ensuring that only 

solutions worth the designer’s time are selected from the entire design space. The 

application of such tools into parametric associative environments encourages the designer 

to develop both the model and design problem simultaneously. In this way, the benefits of 

multi-objective methods are more readily adopted by being integrated into the already 

established design process. These advantages together provide an integrated aide to the 

complex decision making process, ultimately leading to better design. 
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