Document downloaded from:

http://hdl.handle.net/10251/70229
This paper must be cited as:

Reafio Gonzalez, C.; Silla Jiménez, F. (2015). Reducing the Costs of Teaching CUDA in
Laboratories while Maintaining the Learning Experience Quality. En INTED2015
Proceedings. IATED. 3651-3660. http://hdl.handle.net/10251/70229.

The final publication is available at

https://library.iated.org/view/REANO2015RED

Copyright |ATED

Additional Information

REDUCING THE COSTS OF TEACHING CUDA IN
LABORATORIES WHILE MAINTAINING THE LEARNING
EXPERIENCE QUALITY

Carlos Reafio?, Federico Sillat

'Departament d'Informatica de Sistemes i Computadors (DISCA)
Escola Técnica Superior d'Enginyeria Informatica (ETSINF)
Universitat Politécnica de Valéencia (UPV, SPAIN)

Abstract

Graphics Processing Units (GPUs) have become widely used to accelerate scientific applications;
therefore, it is important that Computer Science and Computer Engineering curricula include the
fundamentals of parallel computing with GPUs. Regarding the practical part of the training, one
important concern is how to introduce GPUs into a laboratory: installing GPUs in all the computers of
the lab may not be affordable, while sharing a remote GPU server among several students may result
in a poor learning experience because of its associated overhead.

In this paper we propose a solution to address this problem: the use of the rCUDA (remote CUDA)
middleware, which enables programs being executed in a computer to make concurrent use of GPUs
located in remote servers. Hence, students would be able to concurrently and transparently share a
single remote GPU from their local machines in the laboratory without having to log into the remote
server. In order to demonstrate that our proposal is feasible, we present results of a real scenario. The
results show that the cost of the laboratory is noticeably reduced while the learning experience quality
is maintained.

Keywords: CUDA, reducing teaching costs, teaching labs.

1 INTRODUCTION

Parallel computing has been traditionally included in Computer Science and Computer Engineering
curricula in order to teach students how to address the challenges imposed by complex problems,
which demand large amounts of computing resources that must collaborate to achieve high
performance computing.

During the last years, Graphics Processing Units (GPUs) have become widely used to accelerate
applications from areas as diverse as data analysis [1], chemical physics [2], image analysis [3],
finance [4], algebra [5], computational fluid dynamics [6], etc. Therefore, it is important that Computer
Science and Computer Engineering curricula include the fundamentals of parallel computing with
GPUs. In this regard, although OpenCL [7] is an open standard that may be used to program GPUs,
CUDA [8] (Compute Unified Device Architecture), the parallel computing architecture proposed by
NVIDIA —the largest GPU manufacturer for the last years— is currently the most used GPU
programming environment in the professional field, also achieving higher performance. These reasons
may influence the decision of professors for teaching CUDA instead of the open standard OpenCL.

As regards the practical part of CUDA training, one important concern is how to introduce CUDA
GPUs into a laboratory in an efficient way, mainly from an economic perspective, but also considering
the learning quality. On the one hand, when building a CUDA laboratory, installing CUDA GPUs in all
the computers of the lab may not be affordable in terms of the economic cost of this approach, given
the price of these cards. On the other hand, the opposite approach consists of requesting students to
log into a remote GPU server, which may be located in the same lab or in a computer room
somewhere in the university. However, this option may result in a poor learning experience quality
because of its associated overhead in terms of time: all the students starting graphical sessions in the

server in order to use visual programming environments, all the students consuming the server main
memory, additional CPU overhead when compiling and executing the test programs in the server, etc.

In this paper we propose a solution to efficiently address the introduction of GPUs into a teaching lab.
Our proposal is based on the use of the rCUDA [9] [10] (remote CUDA) middleware. rCUDA enables
programs being executed in a computer to make concurrent use of GPUs located in remote servers.
Hence, students would be able to concurrently and transparently share one or more remote GPUs
from their local machines in the laboratory without having to log into the remote server. In this way,
students would use the computer at their workplace to load the visual programming environment and
to develop and compile their programs. Thus, the remote server offering the GPU services will not be
overloaded with these tasks. Moreover, the practical exercises coded during the lab session would
also be executed at the workplace computer and rCUDA would transparently execute the part of the
program not requiring the GPU (i.e., the CPU part) in the student's computer, while the part of the
program actually demanding the intervention of the GPU would be run in the remote server owning the
GPU (this will be transparently done by rCUDA without the students’ intervention). In this manner, the
remote server would not be overloaded by the CPU parts of students' programs. In addition, rCUDA is
fully compatible with CUDA, so that CUDA programs do not need to be modified and thus students will
still learn only CUDA without having to worry about rCUDA, which would be transparent to students.

The rest of the paper is organized as follows. In Section 2 we present in more detail rCUDA. In
Section 3 we compare different ways for introducing GPUs in teaching laboratories, presenting results
of a real scenario in order to demonstrate that our proposal is feasible. Finally, Section 4 summarizes
the main conclusions of our work.

2 rCUDA: REMOTE CUDA

As mentioned before, CUDA is a technology created by NVIDIA which provides a parallel computing
platform and programming model to be used along with NVIDIA GPUs or compatible ones. CUDA
takes benefit from the great computational power of GPUs to accelerate certain parts of applications,
thus reducing their execution time. Nevertheless, it is the programmer who decides which parts of the
application are executed in the traditional CPU and which parts are offloaded to the GPU. This
decision depends, basically, on the level of parallelization of different parts of the application.

rCUDA [9] [10] (remote CUDA) is a software framework which enables sharing remote CUDA
compatible devices in a way that is transparent to the programmer. In this manner, a GPU installed in
one computer of a network (the server providing GPU services) can be concurrently used by other
computers of the network (the clients demanding acceleration services) to accelerate applications
using CUDA, as depicted in Fig. 1. rCUDA grants applications transparent access to GPUs installed in
remote computers, so that they are not aware of being accessing a remote device.

— o
- ;(L'i%h Computer 1
E(L_ ;_"'-TQ:_)':.,"- =4

"(l'm <
%V‘“\“‘ : With rCUDA, Computer 1 GPU is shared
Q’ all the computers of the network

Fig. 1. rCUDA sample scenario.

Fig. 2 presents the architecture of the rCUDA framework. As we can see, it is organized following a
client-server distributed architecture. When an application demands GPU services, the rCUDA client
forwards the request to the server side by means of the network. Notice that the application continues
using the same interface (i.e., the original CUDA API) as a regular CUDA program. Therefore, no
modifications are required in the application. The way to achieve this is by dynamically replacing at

runtime the CUDA library by the rCUDA one, which presents the very same interface, as commented.
Thus, when the application calls a CUDA function, it will actually execute the corresponding function
within the rCUDA library, which will forward the call to the remote server.

Once the rCUDA server receives the client request, it is executed in the real GPU. Upon completion of
the GPU task, the rCUDA server forwards the corresponding response to the client and, finally, the
rCUDA client sends on the result to the application initially requesting acceleration services from
CUDA. Notice that the application will not be aware of being accessing a remote GPU. All the process
is automatic and transparent to the application.

CLIENT SIDE SERVER SIDE
| Application | '

|

[Original CUDAAPI |

rCUDA Server
rCUDA Client :
S Communications APl |
""" CommunicationsAPi | | [TCP/IP i InfiniBand i Other
TCP/IP | InfiniBand : Other | [CUDA Library |
SOFTWARE . :
HARDWARE ﬂ ; ﬂ
| Network I GPU |

Fig. 2. rCUDA architecture.

Communication between the rCUDA client and the rCUDA server is done via a customized
communication protocol that uses the network available between the computer where the application
is running and the computer where the physical GPU is located. Currently, rCUDA provides two
different implementations of the communications protocol: (1) one optimized for InfiniBand networks,
which employs InfiniBand Verbs and is intended to be used in High Performance Computing (HPC)
clusters; and (2) a generic version using TCP sockets, which is supported by almost every network,
intended for those environments in which performance is not so crucial, such as, for example, when
using rCUDA for teaching purposes. In these scenarios, the widely available Ethernet network would
be used, thus incurring in no additional cost.

The last version of rCUDA, available at http://rcuda.net/, supports CUDA 6.5 Runtime API [8] and
Driver API [11]. It also offers support for some routines of the most common CUDA Libraries, such as
CUBLAS [12], cuFFT [13], cuRAND [14] and cuSPARSE [15]. Furthermore, the rCUDA middleware is
distributed at no cost, thus allowing an inexpensive introduction of this technology.

In order to better understand how a CUDA program is executed when using the rCUDA framework, in
Fig. 3 we present a sequence diagram of a typical CUDA program executed with rCUDA. First of all,
when the program is loaded, the operating system will automatically replace the use of the CUDA
library by the rCUDA one. This is easily done by properly setting an environment variable. The only
requirement is that the application is compiled using dynamic libraries instead of static ones. Once the
program starts its execution, rCUDA automatically creates a new connection to the remote server
owning the GPU. In second place, the program wants to allocate memory in the GPU. rCUDA
intercepts the CUDA call that initiates such memory allocation and forwards it to the remote server,
which allocates memory in the remote GPU transparently to the program, which is not aware of being
using a remote GPU. Third, the input data is copied from system memory in the node executing the
application (the client) to the GPU memory in the remote server. This is transparently done by rCUDA,
which copies the data to the remote GPU memory. Next, after some computations (i.e., kernel
execution) are done in the remote GPU managed by rCUDA, the accelerated application executes a
cudaMemcpy function to copy the results from GPU memory to main memory. This call is actually
executed by rCUDA and the results are copied back from the remote GPU memory to the local system
memory without the program intervention. Finally, the application is programmed to free the memory in

http://rcuda.net/

the GPU. Again, this call is attended by the rCUDA library, which forwards it to the remote server so
that the remote GPU memory is freed and, when the program exits, the rCUDA server connection is
closed.

- - - - Connecttoserver | ___ _ iy

<~ cudaMalloc] _______ "]
= - - - - - cudaMemcpy() ______ i
F= N I R |
|z |2 |® c| e
=< |5 I =)
8| |2 [w----Kemelss<22> 0 “iS|a
< (S| | . Sl<|®

> 8 Qla

3(°[3® » 0|2
3 “ lag-----cudaMemcpy() _______ C =

€ - - - - - - cudafree)________ "]

| - - Close server connection_ _ _ _ _"' 1

Fig. 3. Sequence diagram of a typical CUDA program executed with rCUDA: (1) connect to rCUDA
server, (2) allocate memory in the remote GPU, (3) copy input data from local CPU memory to remote
GPU memory, (4) kernel execution in the remote GPU, (5) copy output data from remote GPU
memory to local CPU memory, (6) free memory in the remote GPU, (7) close connection.

3 INTRODUCING GPUS IN TEACHING LABORATORIES

As commented in the introduction, installing CUDA GPUs in all the computers of a laboratory may not
be affordable in terms of the economic cost of this approach. In this section, we expose different ways
of introducing GPUs in teaching laboratories, comparing their cost and commenting on the advantages
and disadvantages that they present.

3.1 Theimportance of the GPU to achieve a good learning experience quality

From our point of view, it is very important that the students realize of the benefits of parallel
computing with GPUs, such as the important reduction of execution time, in order to motivate them
making the effort of learning a new programming paradigm. Consequently, the GPUs used in the
laboratory must clearly outperform the CPUs to really appreciate the performance benefits of GPUs. If
not, the students will not be motivated and they will not take as much profit as possible from the time
spent in the lab. In this section, we show the importance of the GPU to encourage students and have,
therefore, a good learning experience quality.

In Table | we show the price of three different NVIDIA desktop GPUs currently available in the market.
It can be seen that the cost of GPUs varies in a very wide range, which mainly depends on the
computing capabilities of the GPUs as well as on the amount of GPU memory. We will use these
GPUs in next experiments.

Although Table | compares the three GPUs from an economical point of view, it is also necessary to
consider their computing power to have the full picture. In order to do so, in Fig. 4 we present results
of the matrixMul program from the NVIDIA CUDA Samples 6.5 [19], which performs a matrix

multiplication in the GPU. This program has been selected because it illustrates various CUDA
programming principles and, from our point of view, it is a good starting point for encouraging the
attendees of a CUDA course. The program was run with the 3 different GPUs previously exposed in
Table I. In addition, results for a similar matrix multiplication performed without GPU, using the well-
known GotoBLAS?2 [20] library, is included for reference.

Table I. NVIDIA Desktop GPUs comparison.

Graphic Card Cost
NVIDIA GeForce GT 520 [16] 100€
NVIDIA GeForce GTX 590 [17] 300€
NVIDIA GeForce GTX 780 Ti [18] 600€

As it can be seen in Fig. 4, using a regular desktop GPU, like a GeForce GT 520, may not be enough
to encourage students to learn a new programming paradigm, because better results can be obtained
using a CPU. Actually, using such a GPU would completely demotivate the students, thus making the
rest of the CUDA course harder to attend. For that reason we believe that, when teaching parallel
programming with GPUs, it is important that results with GPUs clearly show the gain of this model
when compared to the traditional one based on the use of CPUs. For instance, using more advanced
GPUs, like the GeForce GTX 590 or GTX 780 Ti showed in Table I, the profit of parallel computing
with GPUs is obvious. Therefore, this technology will be more appealing to the students, and the
learning experience will be, in consequence, better. In any case, from our point of view, the higher the
performance of the GPU is, the better would be the learning experience. This is why we use the GTX
780 Ti in next sections.

450 7
400 +
350 A

300 A
ECPU

GeForce GT 520
GeForce GTX 590
B GeForce GTX 780 Ti

250 ~

GFlopl/s

200 A
150 A
100 A

50 1
1 .
0

Execution of matrixMul program

Fig. 4. Execution of matrixMul program from NVIDIA CUDA Samples with 3 different GPUs compared
to a matrix multiplication executed in the CPU using GotoBLAS?2 library.

3.2 Installing CUDA GPUs in all the computers of the laboratory

Obviously, having a CUDA GPU installed in each computer of the laboratory should be the most
desirable configuration in terms of both performance and learning experience quality, especially when
compared to a configuration where the students log into a shared GPU server and all the students use
this single server during the entire lab session. For that reason, we will use this approach as the
reference case.

In Table Il we present the cost of a laboratory composed of 20 computers, each one with an NVIDIA
GeForce GTX 780 Ti. Although this GPU is initially intended for gaming, it offers a very good
performance for a teaching lab, as shown in the previous section, at less price than other GPUs
specifically manufactured for parallel computation, such as for example the NVIDIA Tesla K20, which
costs more than 2,000€. The cost shown in Table Il includes a commodity computer with a current
typical configuration.

Table Il. Cost of a laboratory composed of 20 computers with GPUs.

Component Cost
Intel Core 13-3220 3,30GHz with 4GB RAM 20 x 300€
NVIDIA GeForce GTX 780 Ti 20 x 600€

TOTAL 18,000€

Notice that we have excluded in Table Il the network expenses because we assume that current
laboratories are compulsory connected to an Ethernet network, and therefore the cost of the network
will represent a constant value, not therefore modifying the cost of the different proposals described in
this paper.

3.3 Logging into aremote GPU server

In a first attempt to reduce the cost of building a CUDA teaching laboratory, one possible solution is
having one single GPU server so that the students log into this server remotely from their different
workplaces in the lab. With this approach, we will avoid installing a GPU in all the computers, and the
total cost of the laboratory will be similar to the one presented in Table Ill. In this table, we present the
cost of a laboratory composed of 20 computers, and one additional GPU server with an NVIDIA
GeForce GTX 780 Ti. Notice that the hardware configuration of the GPU server is noticeably better
than that of the computers of the students’ workplaces, since this server will have to host all the
graphical environments of the different students, as well as their programming tools.

Table Ill. Cost of a laboratory composed of 20 computers and 1 GPU server.

Component Cost
Intel Core i3-3220 3.30GHz with 4GB RAM 20 x 300€
Intel Core i7-4790 3.6Ghz with 32GB RAM 1 x 1000€
NVIDIA GeForce GTX 780 Ti 1 x 600€
TOTAL 7.600€
As it can be seen, the total cost of the laboratory is noticeably reduced, but this approach may result in
a poor learning experience because of its associated overhead: all the students starting graphical

sessions with the server in order to use visual programming environments, all the students consuming
the server main memory, additional CPU overhead when compiling and executing the test programs in

the server, etc. Next we present some experiments using a similar laboratory to the one exposed in
Table lIl.

For instance, in Fig. 5 we show how the compilation time of the matrixMul program from the NVIDIA
CUDA Samples, used in previous sections, increases with the amount of concurrent users compiling it
at the same time. Of course, having all the students compiling a program at the same time will be the
worst case. Usually, there is not such level of concurrency in the laboratories, while having 5-10 users
out of 20 may be the common scenario.

Results in Fig. 5 show the average compilation time for each user. As we can see, the time is
increased from 10 seconds when there is only one user compiling the program, to 40 seconds when
the 20 students are compiling the program at the same time. Taking into account that when students
are learning compilations are very frequent, this waiting time will definitely worsen the learning
experience. Notice also that the processors of the computers in the students’ workplaces remain
basically unused, thus not amortizing their cost.

45 7

40
35
30
25
20

15

10

m

0 - T T T

1 5 10 20

Concurrent Compilations of matrixMul program

Time (s)

Fig. 5. Average compilation time of matrixMul program when one or more users are logged into the
GPU server compiling this program at the same time.

Another disadvantage of this approach is the performance decrease when several students are
running programs that use the GPU. For example, in Fig. 6 we present the average throughput of the
matrixMul program when several users are running it at the same time. Again, the results are
considerably worsened when compared to the execution of just one instance of the program. In this
manner, GPU performance is reduced by a factor of over 10 when 20 students are concurrently using
it with respect to the performance of a single student making use of the GPU. This low performance
will also deteriorate the learning experience.

3.4 Using rCUDA

The approach presented in the previous subsection considerably reduces the cost of the teaching
laboratory, but also affects the learning experience. In this subsection we propose a solution with the
same cost as the one showed in previous subsection 3.3, but maintaining the learning experience of
the approach shown in subsection 3.2.

Our proposal is based on the use of the rCUDA (remote CUDA) middleware. As explained in Section
2, rCUDA enables programs being executed in a computer to make concurrent use of GPUs located in
remote servers. Hence, students would be able to concurrently share a single remote GPU from their
local machines in the laboratory without having to log into the remote server. In this way, students
would use the computer at their workplace to load the visual programming environment and to develop
and compile their programs. Thus, the remote server offering the GPU services will not be overloaded
with these tasks. Moreover, the exercises coded during the lab session would also be executed at the
workplace computer and rCUDA would transparently execute the part of the program not requiring the
GPU (i.e., the CPU part) in the student's computer, while the part of the program actually demanding
the intervention of the GPU would be run in the remote server owning the GPU. In this manner, the
remote server would not be overloaded by the CPU parts of students' programs.

450
400
350
300
250
200
150
100
50 1

0 | . B e

5

1 10 20

GFlop/s

Concurrent Executions of matrixMul program

Fig. 6. Average execution time of matrixMul program when one or more users are logged into the GPU
server executing this program at the same time.

Fig. 7 shows the same experiment performed in Fig. 6 (with the same equipment exposed in Table 111},
but using rCUDA instead of logging into a remote server. As we can see, in this case the performance
of using a remote GPU (bars labeled as rCUDA in the chart) is slightly reduced in comparison to the
performance of a local GPU (black line labeled as CUDA). However, it still clearly outperforms the
CPU results shown in Fig. 4. Furthermore, the performance is maintained independently of the amount
of concurrent executions. In this manner, the cost of the teaching laboratory has been reduced over
half of the initial cost exposed in Table Il, while the learning experience quality is maintained.

N (CUDA === CUDA

450 7
400

350
300
250
200
150+
100 +
50
0 - T T T
1 5 10 20

Concurrent Executions of matrixMul program

GFlop/s

Fig. 7. Average execution time of matrixMul program when one or more users are using rCUDA and
the GPU server executing this program at the same time.

4 CONCLUSIONS

In this paper we have proposed a solution to efficiently address the introduction of GPUs into a
teaching laboratory. Our proposal is based on the use of the rCUDA (remote CUDA) middleware.
rCUDA enables programs being executed in a computer to make concurrent use of GPUs located in
remote servers. Hence, students are able to concurrently and transparently share a single remote
GPU from their local machines in the laboratory without having to log into a remote server.

We have exposed three different ways to introduce GPUs in the teaching lab: (1) installing GPUs in all
the computers, (2) logging into a remote GPU server, and (3) sharing the GPU of a remote server
using rCUDA. In order to compare the three different approaches, we have presented results of a real

scenario: the experiments were carried out in a teaching laboratory with 20 computers. In addition,
one GPU server was used for approaches 2 and 3.

Our study shows that the approach consisting of installing GPUs in all the computers provides the best
learning experience quality, but its cost may not be affordable to some institutions. For the purpose of
reducing the cost, the strategy of not having GPUs in the computers but logging instead into a remote
GPU server reduces the expenses by more than half. However, this methodology also deteriorates the
learning experience quality. Finally, the proposal based on the use of rCUDA achieves both goals: the
cost of the laboratory is noticeably reduced while the learning experience quality is maintained.

REFERENCES

[1] Haicheng Wu, Gregory Diamos, Tim Sheard, Molham Aref, Sean Baxter, Michael Garland, and
Sudhakar Yalamanchili. 2014. Red Fox: An Execution Environment for Relational Query
Processing on GPUs. In Proceedings of Annual IEEE/ACM International Symposium on Code
Generation and Optimization (CGO '14). ACM, New York, NY, USA, Article 44, 11 pages.
DOl:http://dx.doi.org/10.1145/2544137.2544166

[2] D.P. Playne and K.A. Hawick. 2009. Data Parallel Three-Dimensional Cahn-Hilliard Field Equation
Simulation on GPUs with CUDA. In Proc. 2009 International Conference on Parallel and
Distributed Processing Techniques and Applications (PDPTA’09). WorldComp, Las Vegas, USA,
104-110.

[3] Yuancheng Luo and R. Duraiswami. 2008. Canny edge detection on NVIDIA CUDA. In Computer
Vision and Pattern Recognition Workshops, 2008. CVPRW ’08. IEEE Computer Society
Conference on. 1-8. DOI:http://dx.doi.org/10.1109/CVPRW.2008.4563088

[4] Abhijeet Gaikwad and loane Muni Toke. 2009. GPU Based Sparse Grid Technique for Solving
Multidimensional Options Pricing PDEs. In Proceedings of the 2Nd Workshop on High
Performance Computational Finance (WHPCF '09). ACM, New York, NY, USA, Article 6, 9 pages.
DOIl:http://dx.doi.org/10.1145/1645413.1645419

[5] Sergio Barrachina, Maribel Castillo, Francisco D. Igual, Rafael Mayo, Enrique S. Quintana-Orti,
and Gregorio Quintana-Orti. 2009. Exploiting the capabilities of modern GPUs for dense matrix
computations. Concurr. Comput. : Pract. Exper. 21, 18 (December 2009), 2457-2477.
DOI=10.1002/cpe.v21:18 http://dx.doi.org/10.1002/cpe.v21:18

[6] Kyle E. Niemeyer and Chih-Jen Sung. 2014. Recent progress and challenges in exploiting
graphics processors in computational fluid dynamics. J. Supercomput. 67, 2 (February 2014), 528-
564. DOI=10.1007/s11227-013-1015-7 http://dx.doi.org/10.1007/s11227-013-1015-7

[71 Khronos OpenCL Working Group. 2013. OpenCL 2.0 Specification.
[8] NVIDIA. 2014. CUDA API Reference Manual 6.5.

[9] Carlos Reafio, Rafael Mayo, Enrique S. Quintana-Orti, Federico Silla, José Duato, and Antonio J.
Pefa. 2013. Influence of InfiniBand FDR on the performance of remote GPU virtualization. Cluster
Computing (CLUSTER), 2013 IEEE International Conference on, vol., no., pp.1-8.
DOI:10.1109/CLUSTER.2013.6702662

[10] Antonio J. Pefia, Carlos Reafio, Federico Silla, Rafael Mayo, Enrique S. Quintana-Orti, and José
Duato. 2014. A complete and efficient CUDA-sharing solution for HPC clusters. Parallel Comput.
40, 10 (2014), 574 — 588. DOI:http://dx.doi.org/10.1016/j.parco.2014.09.011

[11] NVIDIA. 2014. CUDA Driver API1 6.5.
[12] NVIDIA. 2014. CUBLAS Library 6.5.
[13] NVIDIA. 2014. CUFFT Library 6.5.

[14] NVIDIA. 2014. CURAND Library 6.5.
[15] NVIDIA. 2014. CUSPARSE Library 6.5.

[16] NVIDIA. GeForce GT 520. Available online: http://www.geforce.com/hardware/desktop-
gpus/geforce-gt-520/specifications. Last accessed: January, 2015.

[17] NVIDIA. GeForce GTX 590. Available online: http://www.geforce.com/hardware/desktop-
gpus/geforce-gtx-590/specifications. Last accessed: January, 2015.

[18] NVIDIA. GeForce GTX 780 Ti. Available online: http://www.geforce.com/hardware/desktop-
gpus/geforce-gtx-780-ti/specifications. Last accessed: January, 2015.

[19] NVIDIA. 2014. CUDA Samples Reference Manual 6.5.

[20] Texas Advanced Computing Center (TACC), The University of Texas at Austin. GotoBLAS2
Library 1.13. Available online: https://www.tacc.utexas.edu/research-development/tacc-
software/gotoblas2. Last accessed: January, 2015.

