TRABAJO FINAL DE GRADO

SIMULACIÓN CFD DE FLUJO INTERNO EN TOBERAS DIÉSEL PARA MOTORES INDUSTRIALES

GRADO EN INGENIERÍA AEREOESPACIAL

AUTOR: MIGUEL ÁNGEL GISBERT SORIA

TUTORA: GABRIELA BRACHO LEÓN

DEPARTAMENTO DE MOTORES TÉRMICOS

UNIVERSITAT POLITÈCNICA DE VALÈNCIA

VALENCIA, JULIO 2016
Agradecimientos

Quiero agradecerles el apoyo recibido a todas las personas que han estado a mi lado durante la realización de este proyecto.

A mis padres por ser un ejemplo a seguir y por los ánimos y buenas palabras cuando las cosas no funcionaban.

A mis amigos por esos buenos momentos que han hecho más llevadera la realización del proyecto.

A mis profesores por la paciencia y las ganas de enseñar que tienen.
Abstract

In this project a CFD study was developed with the aim of analyzing the influence of diesel injector hole geometry in the internal flow behavior with the assumption of quasi-steady conditions (full needle lift). To do this, four nozzle geometries was analyzed. Furthermore, this study has been wanted to use to quantify the pressure losses in the injector and in the needle seat through a comparison with experimental data.

The results obtained in the work, lead to three important conclusions: on the one hand the mass flow is increased with the square root of the injection pressure and with the square of the outlet diameter, on the other hand the k-factor has an important influence in the apparition of cavitation phenomena; finally, it is important to highlight that the percentage of pressure losses decreases according to the increase of the injection pressure due to the needle is deformed and it provokes less losses of pressure in the nozzle inlet.

Finally, this document will be appropriate for people working on the study of injection and/or combustion processes, through experiments or simulations, providing them some useful information for their studies about the influence of injector hole geometry.
Resumen

En este trabajo se ha llevado a cabo un estudio CFD en condiciones cuasi-estacionarias (máximo levantamiento de la aguja) con la finalidad de analizar la influencia de la geometría del orificio de las toberas de inyección diésel en las características del flujo interno de la misma. Para ello, se han analizado cuatro geometrías de tobera. Además, se ha querido aprovechar el estudio para cuantificar las pérdidas de presión en el inyector y en el asiento de la aguja mediante la comparación con datos experimentales.

Los resultados obtenidos en el trabajo llevan a tres conclusiones principalmente: por una parte el gasto másico crece con la raíz de la presión de inyección y con el cuadrado del diámetro de salida, por otra parte el k-factor tiene gran influencia en la aparición de cavitation, finalmente se ha de destacar que el porcentaje de pérdidas de presión disminuye conforme aumenta la presión debido a que la aguja se deforma y existen menos pérdidas a la entrada de la tobera.

Finalmente, este documento servirá para que la gente que trabaje en el estudio de los procesos de inyección y/o combustión ya sea mediante experimentación o simulaciones encuentre información útil para sus estudios sobre la influencia de la geometría del orificio del inyector.
Resum

En aquest treball s’ha dut a terme un estudi CFD en condicions quasi-estacionaries (màxima alçada de la agulla) amb la finalitat d’analyitzar la influència de la geometria del orifici a/en les toveres d’injecció dièsel en les característiques del flux en l’interior d’aquesta. Per aquesta raó, s’han analitzat quatre geometries de tovera. A més a més, s’ha volgut aprofitar aquest estudi per quantificar les pèrdues de pressió en l’injector i en seient de l’agulla mitjançant la comparació amb dades experimentals.

Els resultats obtinguts a aquest treball donen peu a tres conclusions principalment: per una part el flux de combustible creix amb l’arrel quadrada de la pressió i amb el quadrat del diàmetre d’eixida , d’altra banda el \(k \)-factor té una gran influència a l’aparició del fenomen de la cavitatció, per finalitzar s’ha de destacar que el percentatge de pèrdues de pressió disminueix conforme s’augmenta la pressió d’injecció degut a que l’agulla es deforma i provoca menys pèrdues a l’entrada de la tovera.

Per acabar, cal dir que aquest document serà per a què aquelles persones que treballen en l’estudi dels processos d’injecció i/o combustió ja siga experimentalment o mitjançant simulacions puguin trobar informació útil per als seus estudis sobre l’influencia que té la geometria del orificis de la tovera d’injecció.
DOCUMENTO I:

MEMORIA
Índice General

DOCUMENTO I: MEMORIA

Capítulo 1. Introducción __ 1
 1.1. Motivación ___ 1
 1.2. Objetivos y Justificación __ 2
 1.3. Estructura del Trabajo ___ 2

Capítulo 2. Marco Teórico __ 5
 2.1. Introducción __ 5
 2.2. MCIA: Motores de encendido por compresión _______________________________ 6
 2.3. Sistemas de inyección directa: Common Rail ________________________________ 7
 2.3.1. Funcionamiento ___ 8
 2.3.2. Inyector __ 9
 2.3.3. Tobera de inyección ___ 11
 2.3.3.1. Asiento de la aguja __ 11
 2.3.3.2. Orificio de salida de tobera ______________________________________ 12
 2.4. Flujo interno en toberas de inyección ______________________________________ 14
 2.4.1. Pérdidas de presión ___ 14
 2.4.1.1. Pérdidas de presión por fricción ____________________________________ 14
 2.4.1.2. Pérdidas de presión por efecto entrada _____________________________ 15
 2.4.2. Coeficiente de descarga ___ 16
 2.4.3. Cavitación ___ 18

Capítulo 3. Mecánica de fluidos computacional ____________________________________ 21
 3.1. Introducción __ 21
 3.2. Ecuaciones de la mecánica de fluidos ______________________________________ 22
 3.2.1. Ecuación de la continuidad __ 22
3.2.2. Ecuación del momento de la cantidad de movimiento 22
3.2.3. Ecuación de la energía .. 22
3.2.4. Ecuación del transporte de fracción másica .. 23
3.2.5. Ecuación de estado ... 23
3.2.6. Efecto de la turbulencia .. 23
3.3. Programa de CFD: OpenFOAM .. 24
3.3.1. Esquemas de discretización ... 24
3.3.2. Modelos de turbulencia ... 25
3.3.2.1. Modelo $k – \epsilon$.. 26
3.3.3. Solvers ... 27
3.3.3.1. SimpleFOAM .. 27

Capítulo 4. Casos de estudio .. 29
4.1. Introducción ... 29
4.2. Geometrías .. 29
4.3. Configuración y descripción del estudio computacional 30
4.3.1. Malla ... 30
4.3.1.1. Generación de malla ... 31
4.3.1.2. Calidad de malla ... 32
4.3.1.3. Independencia de malla ... 34
4.3.2. Condiciones iniciales ... 36
4.3.3. Condiciones de contorno .. 37
4.3.4. Descripción de los casos ... 39
4.4. Validación ... 39

Capítulo 5. Resultados .. 43
5.1. Introducción ... 43
5.2. Estudio de geometría y condición de operación 43
5.2.1. Geometría B .. 44
5.2.1.1. Presión de inyección: 500 bar ... 44
5.2.1.2. Presión de inyección: 1000 bar ... 45
5.2.1.3. Presión de inyección: 1600 bar ... 45
5.2.1.4. Influencia de la presión

5.2.2. Geometría A

5.2.2.1. Presión de inyección: 500 bar

5.2.2.2. Presión de inyección: 1000 bar

5.2.2.3. Presión de inyección: 1600 bar

5.2.2.4. Influencia de la presión

5.2.3. Geometría C

5.2.3.1. Presión de inyección: 500 bar

5.2.3.2. Presión de inyección: 1000 bar

5.2.3.3. Presión de inyección: 1600 bar

5.2.3.4. Influencia de la presión

5.2.4. Geometría D

5.2.4.1. Presión de inyección: 500 bar

5.2.4.2. Presión de inyección: 1000 bar

5.2.4.3. Influencia de la presión

5.2.5. Comparativa entre toberas

5.3. Estudio de la pérdida de presión

5.3.1. Geometría B

5.3.1.1. Presión de inyección: 500 bar

5.3.1.2. Presión de inyección: 1000 bar

5.3.1.3. Pérdida de presión

5.3.2. Geometría A

5.3.2.1. Presión de inyección: 500 bar

5.3.2.2. Presión de inyección: 1000 bar

5.3.2.3. Pérdida de presión

Capítulo 6. Conclusiones y trabajo futuro

DOCUMENTO II: PLIEGO DE CONDICIONES

Capítulo 1. Introducción

Capítulo 2. Ordenanza general de seguridad e higiene en el trabajo

2.1. Condiciones generales de los centros de trabajo y de los mecanismos y medidas de protección

Artículo 13: Seguridad estructural

Artículo 14: Superficie y cubicación

Artículo 15: Suelos, techos y paredes
Capítulo 3. Disposiciones mínimas relativas al trabajo con equipos que incluyen PVD

3.1. Equipo
 Pantalla y Teclado
 Mesa o superficie de trabajo.
 Asiento de trabajo.

3.2. Interconexión ordenador/persona

DOCUMENTO III: PRESUPUESTO

Capítulo 1. Introducción

Capítulo 2. Costes

2.1. Coste de personal

2.2. Costes de cálculo

2.3. Otros costes

2.4. Coste total
Índice de Figuras

Ilustración 1.1: Edificio del CMT __ 2
Ilustración 2.1: Ciclo de presión constante de un motor de 4 tiempos ________________ 7
Ilustración 2.2. Esquema de un sistema Common Rail. __________________________ 8
Ilustración 2.3. Esquema de un inyector por solenoide de un sistema Common Rail. ___ 9
Ilustración 2.4. Tipologías de asiento de toberas. _______________________________ 11
Ilustración 2.5. Parámetros geométricos del orificio de salida de una tobera. _________ 12
Ilustración 2.6. Visualización de una tobera multi-orificio a través de microscopio electrónico.__ 13
Ilustración 2.7. Desprendimiento de la capa limite en una tobera mono orificio axisimétrica.__ 15
Ilustración 2.8. Factor de pérdida de presión a la entrada de un orificio en función del Reynolds ___ 16
Ilustración 2.9. a. Situación real. b. Situación simplificada mediante el uso de parámetros efectivos. __ 17
Ilustración 2.10. Esquema de una tobera axisimétrica en condiciones de cavitación. __ 18
Ilustración 3.1. Diagrama de flujo del algoritmo SimpleFOAM. _________________ 28
Ilustración 4.1. Ejemplo de a) malla estructurada y b) malla no estructurada. ________ 31
Ilustración 4.2. Interfaz del código de mallado. a) definición de la geometría, b) relaciones de expansión y c) número de divisiones de la geometría. ________________________ 32
Ilustración 4.3. Malla de 500000 celdas donde a) es un corte de la vista interior de la malla y b) es el del orificio de salida. ________________________________ 32
Ilustración 4.4. Esquema de la definición del Skewness. __________________________ 33
Ilustración 4.5. Zona de celdas de baja calidad. ________________________________ 33
Ilustración 4.6. Influencia de la malla en la velocidad promedio a la salida del orificio de la tobera. __ 35
Ilustración 4.7. Influencia de la malla en la cantidad de combustible inyectada. ______ 36
Ilustración 4.8. Influencia de la malla en el perfil de velocidades a la salida del orificio de la tobera. __ 36
Ilustración 4.9. Validación de los resultados CFD derivados del estudio de la independencia de malla. ___ 40
Ilustración 5.1. Campo de velocidades en m/s para la Tobera B con presión de inyección de 500 bar y una contrapresión de 50 bar a) en el plano medio de la tobera, b) detalle del orificio

Ilustración 5.2. Campo de presiones en bar para la Tobera B con presión de inyección de 500 bar y una contrapresión de 50 bar a) en el plano medio de la tobera, b) detalle del orificio

Ilustración 5.3. Campo de velocidades en m/s para la Tobera B con presión de inyección de 1000 bar y una contrapresión de 50 bar a) en el plano medio de la tobera, b) detalle del orificio

Ilustración 5.4. Campo de presiones en bar para la Tobera B con presión de inyección de 1000 bar y una contrapresión de 50 bar a) en el plano medio de la tobera, b) detalle del orificio

Ilustración 5.5. Campo de velocidades en m/s para la Tobera B con presión de inyección de 1600 bar y una contrapresión de 50 bar a) en el plano medio de la tobera, b) detalle del orificio

Ilustración 5.6. Campo de presiones en bar para la Tobera B con presión de inyección de 1600 bar y una contrapresión de 50 bar a) en el plano medio de la tobera, b) detalle del orificio

Ilustración 5.7. Coeficiente de descarga para la Tobera B en función de las condiciones de operación.

Ilustración 5.8. Vectores de velocidad del flujo coloreados por la presión para una presión de inyección de a) 500 bar, b) 1000 bar y c) 1600 bar.

Ilustración 5.9. Perfil de velocidades adimensionalizado con la velocidad de Bernoulli a lo largo del radio adimensionalizado con el radio del orificio de salida de la tobera B.

Ilustración 5.10. Campo de velocidades en m/s para la Tobera A con presión de inyección de 500 bar y una contrapresión de 50 bar a) en el plano medio de la tobera, b) detalle del orificio

Ilustración 5.11. Campo de presiones en bar para la Tobera A con presión de inyección de 500 bar y una contrapresión de 50 bar a) en el plano medio de la tobera, b) detalle del orificio

vi
Ilustración 5.12. Campo de velocidades en m/s para la Tobera A con presión de inyección de 1000 bar y una contrapresión de 50 bar a) en el plano medio de la tobera, b) detalle del orificio __ 50

Ilustración 5.13. Campo de presiones en bar para la Tobera A con presión de inyección de 1000 bar y una contrapresión de 50 bar a) en el plano medio de la tobera, b) detalle del orificio __ 50

Ilustración 5.14. Campo de velocidades en m/s para la Tobera A con presión de inyección de 1600 bar y una contrapresión de 50 bar a) en el plano medio de la tobera, b) detalle del orificio __ 51

Ilustración 5.15. Campo de presiones en bar para la Tobera A con presión de inyección de 1600 bar y una contrapresión de 50 bar a) en el plano medio de la tobera, b) detalle del orificio __ 51

Ilustración 5.16. Coeficiente de descarga para la Tobera A en función de las condiciones de operación. ___ 52

Ilustración 5.17. Vectores de velocidad del flujo coloreados por la presión para una presión de inyección de a) 500 bar, b) 1000 bar y c) 1600 bar. _____________________ 53

Ilustración 5.18. Perfil de velocidades adimensionalizado con la velocidad de Bernoulli a lo largo del radio adimensionalizado con el radio del orificio de salida de la tobera A. _ 53

Ilustración 5.19. Campo de velocidades en m/s para la Tobera C con presión de inyección de 500 bar y una contrapresión de 50 bar a) en el plano medio de la tobera, b) detalle del orificio.___ 54

Ilustración 5.20. Campo de presiones en bar para la Tobera C con presión de inyección de 500 bar y una contrapresión de 50 bar a) en el plano medio de la tobera, b) detalle del orificio.___ 54

Ilustración 5.21. Campo de velocidades en m/s para la Tobera C con presión de inyección de 1000 bar y una contrapresión de 50 bar a) en el plano medio de la tobera, b) detalle del orificio.___ 55

Ilustración 5.22. Campo de presiones en bar para la Tobera C con presión de inyección de 1000 bar y una contrapresión de 50 bar a) en el plano medio de la tobera, b) detalle del orificio.___ 55
Ilustración 5.23. Campo de velocidades en m/s para la Tobera C con presión de inyección de 1600 bar y una contrapresión de 50 bar a) en el plano medio de la tobera, b) detalle del orificio. 56

Ilustración 5.24. Campo de presiones en bar para la Tobera C con presión de inyección de 1600 bar y una contrapresión de 50 bar a) en el plano medio de la tobera, b) detalle del orificio. 56

Ilustración 5.25. Coeficiente de descarga para la Tobera C en función de las condiciones de operación. 57

Ilustración 5.26. Vectores de velocidad del flujo coloreados por la presión para una presión de inyección de a) 500 bar, b) 1000 bar y c) 1600 bar. 58

Ilustración 5.27. Perfil de velocidades adimensionalizado con la velocidad de Bernoulli a lo largo del radio adimensionalizado con el radio del orificio de salida de la tobera C, se muestra en línea discontinua la asimetría que se da para la presión de 1000 bar. 58

Ilustración 5.28. Campo de velocidades en m/s para la Tobera D con presión de inyección de 500 bar y una contrapresión de 50 bar a) en el plano medio de la tobera, b) detalle del orificio. 59

Ilustración 5.29. Campo de presiones en bar para la Tobera D con presión de inyección de 500 bar y una contrapresión de 50 bar a) en el plano medio de la tobera, b) detalle del orificio. 59

Ilustración 5.30. Campo de velocidades en m/s para la Tobera D con presión de inyección de 1000 bar y una contrapresión de 50 bar a) en el plano medio de la tobera, b) detalle del orificio. 60

Ilustración 5.31. Campo de presiones en bar para la Tobera D con presión de inyección de 1000 bar y una contrapresión de 50 bar a) en el plano medio de la tobera, b) detalle del orificio. 60

Ilustración 5.32. Coeficiente de descarga para la Tobera D en función de las condiciones de operación. 61

Ilustración 5.33. Vectores de velocidad del flujo coloreados por la presión para una presión de inyección de a) 500 bar, b) 1000 bar. 62

Ilustración 5.34. Perfil de velocidades adimensionalizado con la velocidad de Bernoulli a lo largo del radio adimensionalizado con el radio del orificio de salida de la tobera D, en línea discontinua se muestra la asimetría para la presión de inyección de 1000 bar. 63
Ilustración 5.35. Gasto másico en función de la raíz de la presión de inyección y de la geometría de la tobera. ... 64
Ilustración 5.36. Influencia del tamaño del orificio de la tobera mediante el uso de datos experimentales y obtenidos mediante técnicas CFD. ... 65
Ilustración 5.37. Gasto másico y velocidad promedio en el orificio de salida en función del diámetro de dicho orificio para a) una presión de 500 bar y b) de 1000 bar, respectivamente. ... 65
Ilustración 5.38. Coeficiente de descarga en función de la raíz de la presión de inyección para las diferentes geometrías de tobera. ... 66
Ilustración 5.39. Influencia del k-factor del orificio de la tobera mediante el uso de datos experimentales y obtenidos mediante técnicas CFD. ... 66
Ilustración 5.40. Coeficiente de descarga del orificio de salida para las tobera C y D en función de la raíz de la presión de inyección. ... 67
Ilustración 5.41. Gasto másico calculado para las diferentes pérdidas de presión con una presión de inyección de 500 bar y gasto másico medido experimentalmente con las pérdidas de presión asociadas. ... 68
Ilustración 5.42. Gasto másico calculado para las diferentes pérdidas de presión con una presión de inyección de 1000 bar y gasto másico medido experimentalmente con las pérdidas de presión asociadas. ... 69
Ilustración 5.43. Gasto másico calculado para las diferentes pérdidas de presión con una presión de inyección de 500 bar y gasto másico medido experimentalmente con las pérdidas de presión asociadas. ... 71
Ilustración 2.1. Coste horario dividido por tareas del alumno y del tutor. 93
Índice de Tablas

Tabla 2.1 Componentes de un inyector Common Rail. ... 10
Tabla 2.2. Parámetros característicos en los orificios de salida de la tobera. 12
Tabla 3.1. Esquemas de discretización de OpenFOAM .. 25
Tabla 4.1. Datos geométricos de las diferentes tipologías de tobera. 30
Tabla 4.2. Casos realizados para el estudio de la independencia de malla. 34
Tabla 4.3. Condiciones de contorno de OpenFOAM más utilizadas. 38
Tabla 4.4. Condiciones de contorno de OpenFOAM utilizadas en el desarrollo del trabajo. ... 38
Tabla 4.5. Condiciones de operación a estudiar de las diferentes tipologías de tobera. 39
Tabla 5.1 Velocidad promedio en la sección de salida del orificio y el coeficiente de descarga para cada presión de inyección en la Tobera B. 47
Tabla 5.2. Velocidad promedio en la sección de salida del orificio y el coeficiente de descarga para cada presión de inyección en la Tobera A. 52
Tabla 5.3. Velocidad promedio en la sección de salida del orificio y el coeficiente de descarga para cada presión de inyección en la Tobera C. 56
Tabla 5.4. Velocidad promedio en la sección de salida del orificio y el coeficiente de descarga para cada presión de inyección en la Tobera D. 61
Tabla 5.5. Estudio pérdida de presión en la geometría B para una presión de inyección de 500 bar. ... 68
Tabla 5.6. Estudio pérdida de presión en la geometría B para una presión de inyección de 1000 bar. ... 69
Tabla 5.7. Estudio de la pérdida de presión en la geometría A para una presión de inyección de 500 bar. ... 70
Tabla 5.8. Parámetros de gasto másico, densidades, velocidades y diámetros calculados y reales de la tobera A para una presión de inyección de 500 bar y una contrapresión de 50 bar con un 8.2% de pérdidas de presión. ... 71
Tabla 3.1. Características del portátil utilizado. ... 86
Tabla 2.1. Coste de personal. .. 94
Tabla 2.2. Coste de cálculo. .. 94
Tabla 2.3. Coste del material fungible. ... 95
Tabla 2.4. Coste de licencias .. 95
Tabla 2.5. Coste total del proyecto ... 96
Capítulo 1. Introducción

1.1. Motivación

La motivación que ha hecho posible la realización de este trabajo se sustenta en los siguientes puntos.

El primero, es el poder aprender y principalmente poder profundizar en el conocimiento de los Motores de Combustión Interna Alternativa (MCIA), pues éstos han experimentado una evolución en los últimos años tanto en términos de eficiencia como de emisiones de ruido y contaminantes. Además, poder de comprender el papel que ha tenido los sistemas de inyección en dicha evolución.

El segundo motivo, es el gran interés, que como ingeniero aeroespacial tengo por la mecánica de fluidos. Además de poder aplicar las nuevas tecnologías y el uso ordenadores para ampliar el entendimiento sobre esta materia.

El tercero de ellos, es el poder estar inmerso en el día a día en una de los centros de investigación de referencia en el sector de la automoción como es el CMT. En la Ilustración 1.1, se puede ver el edificio del CMT. En este edificio se encuentran los distintos grupos que forman esta institución, como puede ser el de renovación de la carga, ruido, combustión y el que se encarga de este proyecto, el de inyección.

Y el último, pero no por ello menos importante; es el académico, pues no se ha de olvidar que este documento tiene como finalidad ser parte del trabajo de fin de grado del alumno.
1.2. Objetivos y Justificación

El principal objetivo y el que justifica la existencia de este trabajo, es la realización de un estudio para analizar la influencia de los diferentes parámetros geométricos y condiciones de operación en las toberas de inyección para motores diésel industriales utilizando para ellos herramientas computacionales (CFD). Este proyecto está realizado por el CMT para una excelentísima multinacional del sector energético.

Pese que lo citado, es el principal objetivo del trabajo, no es el único que está presente en la realización del mismo. Ya que el aprendizaje del software de CFD OpenFOAM, la mejora de los conocimientos fluidodinámicos, sobretodo de flujo interno en toberas, además de la inmersión en el día a día en un centro de investigación puntero como es el CMT con más de 30 años de experiencia, son los objetivos formativos tanto a nivel académico como personal que el alumno se propone con la realización de este trabajo.

1.3. Estructura del Trabajo

El presente trabajo está compuesto de tres documentos:

La Memoria, es el primero de ellos y se divide en seis capítulos.

El capítulo 1, tiene por título Introducción, en el cual se encuentra ahora el lector. En este capítulo, se muestran las motivaciones y objetivos del trabajo, además de la importancia de su realización, así como, un esquema de cómo se encuentra estructurado el trabajo.
El capítulo 2, tiene por título Marco teórico. En este capítulo, se irá profundizando por la teoría que rige los MCIA, pasando por los sistemas de inyección diésel, hasta llegar al elemento de interés para este trabajo, la tobera de inyección, de la cual se analizará, su funcionamiento y los diferentes fenómenos que en ella ocurren además de los parámetros característicos que los rigen.

El capítulo 3, tiene por título Mecánica de fluidos computacional. En este capítulo, se tratarán las ecuaciones fundamentales de la mecánica de fluidos y de la problemática que presenta resolverlas analíticamente, sobretodo en flujos turbulentos. Se introducirá la necesidad de las técnicas CFD para estos problemas y se presentara el software que se utilizará para el desarrollo de este trabajo, presentando los modelos y esquemas matemáticos del mismo.

El capítulo 4, tiene por nombre Casos de estudio. En este capítulo, se tratarán las diferentes tipologías de tobera donde se podrá ver la influencia de los parámetros geométricos de la misma, además se analizará la influencia de las condiciones de funcionamiento. Se explicará el preprocesado, donde, se hará hincapié en la independencia de malla, el procesado y la validación de los estudios CFD comparándolos con datos experimentales.

El capítulo 5, tiene por nombre Resultados. En este capítulo, se mostrarán los resultados obtenidos para los diferentes estudios CFD y se compararán con datos experimentales.

El capítulo 6, tiene por nombre Conclusiones y trabajos futuros. En este capítulo se mostrarán las conclusiones que se extraen de la realización del presente trabajo. Además, se discutirán posibles investigaciones futuras del trabajo realizado en este proyecto.

El Pliego de Condiciones es el segundo documento, en este se recogen las condiciones teóricas y técnicas en las se ha basado la realización de este proyecto.

El Presupuesto, es el tercer y último documento. En éste, se hará un cálculo del coste que ha supuesto la realización del actual proyecto, haciendo un desglose de cada uno de los costes.
Capítulo 2. Marco Teórico

2.1. Introducción

Los motores de los automóviles, en su inmensa mayoría, obtienen energía mediante un proceso de combustión. Este proceso de combustión va a producir una serie de contaminantes nocivos para la salud pública; entre esos contaminantes se encuentran los óxidos de nitrógeno, el monóxido de carbono, los hidrocarburos sin quemar y partículas de hollín.

La cantidad máxima de estos contaminantes está regulada en la normativa pertinente, y pese a ser diferente en las diferentes regiones del mundo (EEUU, Europa,...) la tendencia seguida por todas ellas es disminuir la cantidad de contaminantes que pueden emitir los vehículos.

Esta imposición hace que las empresas fabricantes de motores encarguen, a centros de investigación especializados, la búsqueda de nuevas estrategias para reducir los contaminantes.

Una de esas estrategias, es mejorar los sistemas de inyección estudiando el flujo en la tobera del inyector, pues de este proceso dependerán en gran medida los procesos de atomización y de mezcla del combustible, que al final se traduce en la dependencia del proceso combustión.
2.2. MCIA: Motores de encendido por compresión

Un MCIA, por definición es un elemento que permite la transformación de energía química, almacenada en los enlaces del combustible, en energía térmica almacenada en un fluido compresible mediante el proceso de la combustión en el seno del fluido de trabajo; para finalmente, obtener, a partir de ésta, energía mecánica mediante los elementos adecuados que interaccionen con el fluido de trabajo en instantes discretos de la escala temporal. En resumen se entiende un MCIA como un motor térmico y volumétrico cuya superficie de trabajo móvil tiene movimiento rectilíneo, de combustión discontinua e interna.

Esta tipología de motores se ha usado en un amplio abanico de aplicaciones. Tienen presencia en aplicaciones industriales (plantas generadoras de energía, grupos electrógenos...), navales, aeronáuticas, pero sobretodo, están presentes en la industria automovilística.

La importancia de los MCIA, antes citada, en los distintos sectores se debe principalmente a las siguientes características que presentan:

La primera característica a destacar es el rango de potencias que pueden abarcar los MCIA, éste cubre un rango desde los pocos vatios para modelismo hasta los varios megavatios que generan los MCIA implantados en los grandes barcos.

Como la finalidad de este trabajo es estudiar la inyección en motores diésel de inyección directa, se cree conveniente explicar únicamente, esa topología de motor.

Esta tipología de MCIA, se caracteriza por presentar una combustión localizada, por deflagración del combustible que se difunde a la vez que se quema; esto presenta problemas de contaminantes en forma de humos debido a zonas con dosado rico.

Este proceso de combustión se inicia de manera espontánea cuando tras un tiempo de retraso se alcanzan, localmente, condiciones de autoencendido. Este fenómeno se puede asemejar a cientos de micro-bujías en dichas zonas. Este proceso de combustión se asemeja al ciclo teórico Diésel, representado en la Ilustración 2.1.

El método para controlar dónde y cuándo se produce el autoencendido es mediante el sistema de inyección, pues con este se podrá controlar la formación de la mezcla controlando las zonas donde esta mezcla presenta un dosado cercano al estequiométrico, es decir, las zonas en las que las probabilidades de autoencendido son mayores. Además,
como el combustible se inyecta al final de la carrera de compresión, la inyección tiene un papel fundamental en la formación de la mezcla.

![Diagrama de Ciclo de presión constante de un motor de 4 tiempos]

Ilustración 2.1: Ciclo de presión constante de un motor de 4 tiempos

2.3. Sistemas de inyección directa: Common Rail

Es sabido que existen tanto sistemas de inyección indirecta como directa, la elección de los mismos dependerá de la tipología del motor. El presente trabajo, se centra en los sistemas ID, por lo que, de aquí en adelante, no se volverá a prestar atención a los sistemas de IDI.

Los sistemas de ID, se caracterizan por inyectar el combustible directamente en la cámara de combustión. Además, son los encargados de generar la mayor parte de la turbulencia necesaria para la mezcla del combustible y el aire, por lo que tienen una gran relevancia en el proceso de combustión.

Existen principalmente dos tipologías de sistemas de ID, el sistema de inyector bomba y el sistema de acumulación *Common Rail*.

Los sistemas de inyector bomba, presentan una gran flexibilidad por el hecho de estar gestionado electrónicamente, es decir mediante la ECU. Pero, la característica principal de este sistema de inyección es que el sistema generator de presión se encuentra en el mismo inyector, mediante un sistema de levas. Este hecho, permite, en general, obtener presiones muy elevadas, pero dependientes del régimen de giro; además el hecho de que el sistema de presión se encuentre en el propio inyector presenta dificultades constructivas en la culata.
Los sistemas de inyección por acumulación *Common Rail*, presentan la misma flexibilidad que los sistemas de inyector bomba, pues se también están gestionados por la ECU. Pero, la característica principal es que la presión es independiente del régimen de giro, lo que permite tener la presión de inyección requerida para cada instante de tiempo. Esta característica ha hecho que estos sistemas de inyección sean más utilizados que los de inyector bomba [1].

2.3.1. Funcionamiento

En la Ilustración 2.2, se puede ver un esquema de un sistema de inyección *Common Rail*. En ella, se pueden ver tres partes diferenciadas.

La primera, es la de alimentación, la cual está compuesta por la bomba de baja y alta presión y los filtros correspondientes. Ésta, se encarga de suministrar combustible desde el depósito hacia el rail a la presión demandada por la ECU.

La segunda, es la de acumulación, la cual está compuesta por el rail y los sensores de presión y temperatura, además de un limitador de presión. El rail, es el que actúa como acumulador del combustible y se encarga de amortiguar las fluctuaciones de la presión que se producen tanto, aguas arriba como aguas abajo del mismo es decir las provenientes del sistema de alimentación como las provenientes de los inyectores. Además, esta parte cuenta con una serie de sensores de presión y temperatura comunicados con la ECU que permiten, mediante el retorno o suministro de combustible mantener las condiciones termodinámicas adecuadas en cada instante de tiempo.

![Ilustración 2.2. Esquema de un sistema Common Rail.](image-url)
La tercera y última, son los inyectores; que como su propio nombre indica se encargan de inyectar el combustible, la ECU controla los instantes, el porcentaje de apertura y la presión de inyección y en definitiva la cantidad de combustible que los inyectores suministran.

2.3.2. Inyector

Este elemento, el inyector, es la parte del sistema de inyección *Common Rail* que presenta mayor importancia y complejidad. En la Ilustración 2.3, se puede ver una representación esquematizada del inyector. En este esquema se pueden diferenciar los componentes que se muestran en Tabla 2.2.
Capítulo 2. Marco Teórico

Tabla 2.1 Componentes de un inyector Common Rail.

<table>
<thead>
<tr>
<th>COMPONENTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Muelle de la tobera de inyección</td>
</tr>
<tr>
<td>2. Cámara de control del inyector</td>
</tr>
<tr>
<td>3. Estrangulador de salida</td>
</tr>
<tr>
<td>4. Inducido de la electroválvula</td>
</tr>
<tr>
<td>5. Retorno de combustible</td>
</tr>
<tr>
<td>6. Terminal eléctrico</td>
</tr>
<tr>
<td>7. Electroválvula</td>
</tr>
<tr>
<td>8. Empalme de alimentación</td>
</tr>
<tr>
<td>9. Bola de válvula</td>
</tr>
<tr>
<td>10. Estrangulador de entrada</td>
</tr>
<tr>
<td>11. Embolo del inyector</td>
</tr>
<tr>
<td>12. Canal de entrada a la tobera</td>
</tr>
<tr>
<td>13. Celda volumétrica</td>
</tr>
<tr>
<td>14. Aguja de la tobera</td>
</tr>
</tbody>
</table>

En cuanto al funcionamiento del inyector, se pueden diferenciar dos etapas.

La primera etapa, es cuando el inyector se encuentra en reposo. En esta posición existe una igualdad en presiones entre la celda volumétrica (13) y la cámara de control del inyector (2), esto junto con el hecho de que la electroválvula (7) se encuentra cerrada provocan que el inyector se encuentre en reposo, es decir sin inyectar combustible. Para asegurar la estanqueidad y que las fluctuaciones de presión no abran el inyector de forma accidental, se diseña la superficie del embolo del inyector (11) y la superficie de la aguja de la tobera (14) de tal forma que la del embolo sea lo suficientemente mayor para que en el caso de existir esas fluctuaciones de presión, la fuerza que ejerza el embolo sea mayor que la de la aguja, manteniendo la estanqueidad en la tobera.

La segunda etapa, es cuando el inyector está en funcionamiento. En este momento se está aplicando una corriente eléctrica a la electroválvula (7) lo que va a generar una fuerza electromagnética que vencerá la fuerza del muelle de la misma. Esto provoca que el equilibrio de presiones que existía entre la cámara de control del inyector (2) y la celda volumétrica (13) desaparezca. Esto se traduce en el levantamiento de la aguja de la tobera (14) iniciando la inyección de combustible. En el momento en el que se deje de aplicar la corriente eléctrica a la electroválvula (7), ésta se cerrará y, tras un transitorio, el inyector volverá a la situación de reposo.

Actualmente, los inyectores piezoeléctricos están sustituyendo a los inyectores con solenoide, pues los piezoeléctricos permiten un mejor control de las inyecciones ya que los
transitorios son más breves que en los solenoides. Esto puede ser interesante para la combustión y emisiones en cuanto a realizar inyecciones piloto y post-inyecciones.

2.3.3. Tobera de inyección

Este elemento del inyector es el encargado de realizar la transformación de energía hidrostática, almacenada en el flujo a presión, en energía cinética. La forma de ésta, influirá, pues, en la forma en la que se realizar dicha transformación. La geometría de la tobera queda definida por dos elementos, el asiento de la aguja y la geometría del orificio de salida.

2.3.3.1. Asiento de la aguja

La interferencia entre el flujo y el asiendo de la aguja, en condiciones estacionarias se suele considerar despreciable, pues la sección de paso del flujo es elevada. En cambio, en situaciones no estacionarias, como el inicio de la inyección, inyecciones piloto o la finalización de la misma, la aguja se encuentra parcialmente elevada, por lo que la sección de paso no es tan ancha provocando que los efectos que ésta tiene sobre el flujo ya no sean despreciables.

En la actualidad existen dos tipologías de asiento de agujas. Las conocidas como VCO y micro-saco. La representación de ambas tipologías se puede observar en la Ilustración 2.4. En esta figura, se puede ver que en las VCO se produce cierre de los orificios de salida de la tobera, mientras que en micro-saco queda una cavidad conectada con los orificios.

![Ilustración 2.4. Tipologías de asiento de toberas.](image)

Esta diferencia va a provocar que las toberas con micro-saco tengan problemas de goteo incontrolado del combustible remanente en el saco, que se traducirá en un aumento de las
emisiones contaminantes. Por otra parte, las VCO, no presentan ese problema, pero tienen el inconveniente que durante los transitorios de apertura y cierre el asiento de la aguja puede provocar asimetrías importantes en el flujo.

2.3.3.2. Orificio de salida de tobera

Este elemento de la tobera, es el lugar de la misma donde se realiza la transformación de la energía potencial de presión en energía cinética.

En la Ilustración 2.5, se puede ver un esquema de los parámetros característicos de los orificios de salida de las toberas de los sistemas de ID modernos. Estos parámetros son: ambos diámetros, de salida y entrada, la longitud del orificio y el radio de acuerdo a la entrada. Relacionando estos parámetros se pueden llegar a una serie parámetros adimensionales. Los valores usuales de los parámetros dimensionales y sus relaciones adimensionales quedan recogidos en la Tabla 2.2.

Ilustración 2.5. Parámetros geométricos del orificio de salida de una tobera.

- \(L/D_0 \) = Relación longitud del orificio con el diámetro de salida.
- \(r_e/D_i \) = Relación radio de acuerdo con el diámetro de entrada.
- \(D_i/D_o \) = Relación diámetro de entrada con el diámetro de salida.

| Tabla 2.2. Parámetros característicos en los orificios de salida de la tobera. |
|-------------------|------------------|
| Parámetro | Valor |
| \(D_o \) | 100 - 250 \(\mu \)m |
| \(L \) | 700 - 1000 \(\mu \)m |
| \(r_e \) | 0 - 50 \(\mu \)m |
| \(L/D_0 \) | 4 - 10 |
El último parámetro mide la conicidad del orificio, es decir, el grado de convergencia/divergencia que presenta. Un parámetro más usual para determinar esta característica es el denominado \textit{K-factor}. La definición de este parámetro viene expresada en la ecuación (2.1). La problemática que presenta este parámetro es que no tiene en cuenta el tamaño absoluto del diámetro de salida, sino la diferencia que presenta con el de entrada.

\begin{equation}
 k - \text{factor} = \frac{D_e - D_o}{10[\mu m]}
\end{equation}

Por todo lo expuesto y lo que se expondrá en capítulos venideros, estos parámetros y sus relaciones tienen gran importancia en la inyección. Por esto, es importante que a la hora de realizar cualquier estudio estos valores sean los más verosímaples posible, pero el tamaño reducido de los mismos dificulta su medida con precisión; por ello se usan negativos de silicona de la tobera real y mediante técnicas de escáner por microscopio electrónico se obtienen las imágenes del interior de la tobera, el resultado de esta técnica se puede observar en la Ilustración 2.6. Finalmente, se usan programas de CAD, para, a partir de las imágenes, obtener los parámetros geométricos de la tobera.
2.4. Flujo interno en toberas de inyección

Para poder controlar las condiciones de inyección se ha de entender cómo es el movimiento del fluido a través del inyector, así como los fenómenos que suceden en el inyector.

Si se considerara el problema simplificado es decir 1D, estacionario, no viscoso e incompresible, el flujo se podría modelar a través de la ecuación de Bernoulli (2.2). En ésta se pueden distinguir tres términos, el primero sería el de la presión, el segundo la energía cinética y el último la energía potencial por altura; este término se suele despreciar en inyección por ser varios ordenes de magnitud menor que los otros dos.

\[
\frac{p}{\rho} + \frac{u^2}{2} + g \cdot h = Cte
\]

En realidad, el proceso de transformación de energía potencial de presión en cinética, no se puede considerar ideal debido a la aparición de fenómenos isentrópicos durante dicha transformación. Entre estos fenómenos están los efectos de la viscosidad del fluido que inducirá pérdidas de presión, los cambios bruscos de geometría que provocaran que el flujo sea incapaz de seguir la geometría de la tobera y se desprenda produciendo zonas de recirculación que inducen pérdidas de presión pudiendo incluso producir un cambio de fase en el combustible.

2.4.1. Pérdidas de presión

El hecho de considerar que el fluido de trabajo tiene viscosidad no nula implica que la interacción del mismo con las paredes va a provocar una serie de pérdidas. Estas pérdidas, se pueden dividir en dos, las pérdidas por fricción con la pared y las pérdidas por desprendimiento a la entrada.

2.4.1.1. Pérdidas de presión por fricción

Estas pérdidas se originan por la fricción entre el fluido viscoso y la pared. Éstas, se pueden evaluar a través de la ecuación (2.3), en esta expresión se puede ver la dependencia de las pérdidas de dos parámetros. El primero de ellos es un parámetro geométrico y es la relación entre la longitud del orificio y el diámetro de salida del orificio. Se ve que cuanto mayor es este parámetro mayores son las pérdidas por fricción; por lo que se podría pensar en la reducción de este parámetro; pero, una reducción excesiva puede dar lugar a otros
Capítulo 2. Marco Teórico

fenómenos que induzcan pérdidas, como puede ser el desprendimiento a la entrada, que se explicará en el apartado 2.4.1.2.

\[
\Delta p_{fric} = f \frac{L}{D_o} \frac{\rho_{fluído}}{2} u_{media}^2
\]

El otro parámetro del que dependen las pérdidas por fricción, es el coeficiente de fricción \(f \). El valor de este coeficiente tiene una dependencia inversa del número de Reynolds y en menor medida, una dependencia directa del acabado superficial de las paredes.

Para finalizar con esta tipología de pérdidas, cabe destacar que su importancia es menor que las pérdidas que se explicarán a continuación, pero no son despreciables, sobretodo, en el caso de que las otras pérdidas sean pequeñas [3].

2.4.1.2. Pérdidas de presión por efecto entrada

Este tipo de pérdidas se originan debido al desprendimiento de la capa límite del fluido a la entrada del orificio ya que en esta zona existe un cambio de sección abrupto. Esto originará que las líneas de corriente ocupen parcialmente el canal, ya que existen zonas de recirculación debidas al desprendimiento, que reducen la sección de paso efectiva. Un esquema de esta situación, que recibe el nombre de vena contracta, se puede observar en la Ilustración 2.7. En dicho esquema, se puede observar un estrechamiento inicial, lo que provocará que el flujo se acelere a la entrada, proceso que se puede considerar sin pérdidas, y a continuación, se observa un ensanchamiento donde el fluido se decelera interaccionando con la zona de recirculación originando pérdidas de carga.

![Ilustración 2.7. Desprendimiento de la capa límite en una tobera mono orificio axisimétrica.](image)

Estas pérdidas, se pueden evaluar mediante la ecuación (2.4), donde se puede ver que las pérdidas dependen de las características del flujo a través de su densidad, de la velocidad
Capítulo 2. Marco Teórico

en el conducto y de un coeficiente de pérdidas. Este último parámetro tiene gran dependencia del número de Reynolds y de la geometría de la entrada del orificio [2], [3].

\[\Delta p_{ent} = \xi \frac{f}{2} u_{media}^2 \]

(2.4)

La dependencia con el número de Reynolds se puede observar en la Ilustración 2.8, fruto del estudio realizado por Idelchik [4]. En ella se pueden observar dos zonas. La primera de ellas, se sitúa para número de Reynolds menores a 10000, en la cual este coeficiente de pérdidas decrece a medida que el Reynolds aumenta. En la segunda zona, que comprende valores de Reynolds mayores a 10000, el valor de este parámetro deja de depender del Reynolds y se mantiene constante.

El efecto de la geometría en este factor está dominado por la relación entre el radio de acuerdo y el diámetro de entrada. Cuanto mayor es dicha relación más sencillo es para el flujo seguir la geometría y menor es el coeficiente de pérdidas.

Ilustración 2.8. Factor de pérdida de presión a la entrada de un orificio en función del Reynolds

2.4.2. Coeficiente de descarga

Para poder evaluar el flujo a través del orificio de la tobera, se suele recurrir a una serie de parámetros, uno de los más utilizados es el coeficiente de descarga. Éste se define como la relación entre el flujo másico real que trasiega el orificio y el flujo máximo que podría trasegar teóricamente.
Haciendo uso de la ecuación de Bernoulli (2.2), entre la entrada y la salida del orificio se puede obtener la velocidad máxima teórica o velocidad e Bernoulli, éste queda expresada en la ecuación (2.5)

$$u_{bernoulli} = \sqrt{\frac{2(p_i - p_o)}{\rho_f}} \quad (2.5)$$

Además, si se supone que no existe desprendimiento de la capa límite y el fluido ocupa todo el canal, el flujo máximo teórico vendría dado por la ecuación (2.6)

$$m_{teo} = A_o \ u_{bernoulli} \ \rho_f \quad (2.6)$$

Finalmente, se definiría el coeficiente de descarga mediante la ecuación (2.7)

$$C_d = \frac{m}{A_o \ u_{bernoulli} \ \rho_f} \quad (2.7)$$

Existen, aparte del coeficiente de descarga, otros parámetros y coeficientes que permiten caracterizar el proceso de la inyección. Los parámetros son el área y velocidad efectiva. Estos parámetros se crean de la imposibilidad, mediante el uso de técnicas experimentales, de obtener el perfil de velocidades. Ante esta imposibilidad se recurre a un flujo simplificado que presenta una velocidad efectiva a través de un área efectiva. Un esquema de esta situación se puede observar en la Ilustración 2.9.

Para poder estimarlos se hace uso de la cantidad de movimiento y del caudal másico [3], quedado los coeficientes como expresan sendas ecuaciones (2.8) y (2.9)
Capítulo 2. Marco Teórico

\[u_{ef} = \frac{\dot{M}}{\dot{m}} \] \hspace{1cm} (2.8)

\[A_{ef} = \frac{\dot{m}^2}{\rho_f \dot{M}} \] \hspace{1cm} (2.9)

2.4.3. Cavitación

Este fenómeno se caracteriza por el cambio de fase de líquida a vapor y se produce cuando la presión estática local del mismo desciende por debajo de la presión de vapor del combustible. Esto sucede, normalmente, en las zonas donde existe flujo desprendido debido a la alta vorticidad en las zonas de recirculación. Es un fenómeno no estacionario, ya que una vez formado el vapor, éste es arrastrado por el flujo hacia la salida del orificio, por lo que su estudio, tanto de manera experimental como mediante el uso de CFD, es más complicado.

El hecho de que aparezcan zonas en fase vapor va a provocar que las características del fluido y por tanto las del flujo cambien. El principal cambio se produce en la densidad media del fluido, ésta sufre un descenso debido a que la densidad del fluido gaseoso es, al menos, dos órdenes de magnitud menor que la del fluido en estado líquido. Este hecho, tiene una consecuencia inmediata sobre el coeficiente de descarga, siendo ésta la reducción del mismo.

Para el estudio de la cavitación Nurick, haciendo uso de un modelo 1D tal como el que se muestra en la Ilustración 2.10, representa el efecto de la misma recurriendo al número adimensional representado en la ecuación (2.10).
Este parámetro es el que en condiciones de cavitation va a controlar el flujo, en vez del Reynolds, que lo hacía en condiciones no cavitantes. También permite estimar la presión a la cual se va a producir la cavitation, la cual solo se producirá para valores de K inferiores a un valor K_{crit} el cual es función de la geometría del orificio. La última conclusión que se puede extraer de este coeficiente es que incrementar la presión de inyección o descender la contrapresión favorecerán el fenómeno de la cavitation.
Capítulo 3. Mecánica de fluidos computacional

3.1. Introducción

Por definición, la mecánica de fluidos es la rama de la mecánica de medios continuos que estudia el comportamiento de los fluidos, basándose en las leyes fundamentales de la conservación de la masa y la cantidad de movimiento así como las leyes termodinámicas.

Atendiendo a la definición citada, se puede entender mecánica de fluidos computacional como aquella rama de la mecánica de fluidos que utiliza técnicas computacionales para predecir el comportamiento de los fluidos con el mínimo error posible.

Para esto, se ha de realizar un proceso de discretización del volumen fluido a estudiar, en volúmenes de control lo suficientemente pequeños para conseguir la precisión deseada, esto se conoce como mallado, este tema se tratará con mayor profundidad en la sección 4.3.1.

Una vez discretizado el dominio fluido, se procede a la selección de los esquemas de discretización de los diferentes términos diferenciales de las ecuaciones de la mecánica de fluidos.

Una vez elegidos los esquemas de discretización, si el problema lo requiere se ha de seleccionar la forma de resolver la turbulencia; particularmente en este estudio se realizará una simulación RANS, por tanto se ha de seleccionar el modelo de turbulencia a utilizar.

Para finalizar, hay que seleccionar el Solver que se requiera según el problema a resolver.
3.2. Ecuaciones de la mecánica de fluidos

El estudio de los fluidos, como ya se ha mencionado, se rige por una serie de leyes fundamentales. Éstas, pueden ser descritas mediante ecuaciones diferenciales, que presenten la forma de la ecuación (3.1), donde ϕ, es la propiedad del flujo que gobierna la ecuación. Los términos involucrados en la ecuación son cuatro, de izquierda a derecha son: término de acumulación donde se incluye la dependencia del tiempo, término convectivo, término difusivo y, finalmente, término fuente [2], [3], [10].

$$\frac{\partial (\rho \phi)}{\partial t} + \nabla \cdot (\rho \bar{U} \phi) + \nabla (\rho J \phi) = S_\phi$$ \hspace{1cm} (3.1)

3.2.1. Ecuación de la continuidad

La ecuación de la continuidad (3.2), se puede obtener a partir de la ecuación (3.1), sustituyendo $\phi = 1, J = 0$ y $S = 0$.

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \bar{U}) = 0$$ \hspace{1cm} (3.2)

3.2.2. Ecuación del momento de la cantidad de movimiento

Si se aplica el balance de momentos a la ecuación (3.1), es decir se ha asignado $\phi = U_i J = -\nu \nabla U_i$ y $S = -\nabla p + \rho \bar{g}$, se llega a la ecuación (3.3), donde el subíndice i, indica la componente espacial ($i=1$ indica la componente cartesiana x) y el término v modela los efectos viscosos.

$$\frac{\partial (\rho U_i)}{\partial t} + \nabla (\rho \bar{U} U_i) - \nabla^2 (\nu U_i) = -\nabla p + \rho \bar{g}$$ \hspace{1cm} (3.3)

3.2.3. Ecuación de la energía

Puesto que en el presente trabajo, no se considera el proceso de combustión, se puede asumir que la ecuación de la energía no es necesaria para desarrollo del mismo.
3.2.4. Ecuación del transporte de fracción másica

Para obtener esta ecuación, (3.4), se ha de sustituir \(\phi = X_k \), \(J_\phi = 0 \) y \(S_\phi = r_k \) en la ecuación (3.1), donde \(X_k \) indica la fracción másica de la fase \(k \), y \(r_k \) indica el término fuente de la fase \(k \).

\[
\frac{\partial (X_k \rho_k)}{\partial t} + \nabla \cdot (X_k \rho_k \vec{U}_k) = r_k \tag{3.4}
\]

La fracción volumétrica se puede relacionar con la fracción másica mediante la ecuación (3.5), mediante el cociente entre la densidad de la fase \(k \) y la densidad de la mezcla.

\[
Y_k = \frac{\rho_k}{\rho} X_k \tag{3.5}
\]

3.2.5. Ecuación de estado

Existen diversas ecuaciones que relacionan las variables de la presión, densidad y temperatura [3], [5]. Si se considera que la fase gaseosa se comporta como gas ideal, se puede hacer uso de la ecuación (3.6), como ecuación de estado, donde \(P \) es la presión, \(\rho \) es la densidad media del flujo, \(R \) es la constante universal de los gases y \(T \) es la temperatura del flujo.

\[
P = \rho R T \tag{3.6}
\]

3.2.6. Efecto de la turbulencia

El hecho de que el flujo de trabajo se encuentre en condiciones turbulentas, debido a que en cualquier caso el Reynolds supera el valor de 4000 [7], supone una dificultad añadida a la resolución de las anteriores ecuaciones.

Esta dificultad reside en que, si se acepta que cada magnitud se puede descomponer mediante la descomposición de Reynolds, tal como se ve en (3.7), donde el primer término es la parte media y el segundo es la parte fluctuante, el número de incógnitas se duplica respecto al caso laminar, mientras que el número de ecuaciones es el mismo.

\[
\phi(x, y, z, t) = \bar{\phi}(x, y, z, t) + \phi'(x, y, z, t) \tag{3.7}
\]
Este hecho tiene varias implicaciones: la primera, es que el flujo se vuelve tridimensional aunque el flujo medio sea unidimensional, la segunda es que si hubiese solución analítica para el caso laminar ésta no se puede obtener y la última implicación es el ser un problema indeterminado por el hecho de tener más incógnitas que ecuaciones.

3.3. Programa de CFD: OpenFOAM

Por todo lo antes mencionado, existe la necesidad de utilizar técnicas computacionales para poder resolver los problemas, especialmente flujos turbulentos en geometrías complejas.

Existen decenas de códigos CFD que sirven para la resolución de este tipo de problemas, para la realización de este trabajo se ha utilizado el software OpenFOAM® (Open Field Operation and Manipulation) en la versión más reciente al inicio del trabajo, la versión 2.4.0.

La elección de este código de CFD sobre otros existentes se basa en las siguientes ventajas:

- Es un software gratuito, de código abierto lo que permite que se pueda modificar y añadir extensiones creadas por el usuario.
- Presenta una gran variedad de Solvers, modelos de turbulencia y esquemas de discretización.
- Tiene herramientas para mallar y para realizar el post-procesado.

3.3.1. Esquemas de discretización

El hecho de que existan no linealidades en las ecuaciones que rigen el comportamiento de los flujos turbulentos requiere el uso de métodos numéricos para la resolución de las mismas. Estos métodos numéricos no se aplican al continuo del campo fluido, si no que requiere la discretización del mismo; este hecho se detallará en el apartado 4.3.1; además requieren que las ecuaciones que rigen el comportamiento del fluido también se discreticen. En la Tabla 3.1, se pueden ver algunos de los esquemas de discretización más utilizados en OpenFOAM [8].
Tabla 3.1. Esquemas de discretización de OpenFOAM

<table>
<thead>
<tr>
<th>Término</th>
<th>Esquema Numérico</th>
<th>Información</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Euler</td>
<td>Primer orden, implícito y delimitado.</td>
</tr>
<tr>
<td>Temporal</td>
<td>backward</td>
<td>Segundo orden e implícito.</td>
</tr>
<tr>
<td></td>
<td>crankNikolson</td>
<td>Segundo orden, implícito y delimitado.</td>
</tr>
<tr>
<td></td>
<td>linear</td>
<td>Segundo orden, no acotado.</td>
</tr>
<tr>
<td>Divergencia</td>
<td>upwind</td>
<td>Primer orden y delimitado.</td>
</tr>
<tr>
<td></td>
<td>linearUpwind</td>
<td>Primer/Segundo orden, delimitado.</td>
</tr>
<tr>
<td></td>
<td>Gauss linear</td>
<td>Segundo orden, integración Gaussiana.</td>
</tr>
<tr>
<td>Gradiente</td>
<td>Gauss upwind</td>
<td>Segundo orden, integración Gaussiana.</td>
</tr>
<tr>
<td></td>
<td>Gauss cubic</td>
<td>Tercer orden, integración Gaussiana.</td>
</tr>
<tr>
<td></td>
<td>corrected</td>
<td>Corrección explícita no ortogonal.</td>
</tr>
<tr>
<td></td>
<td>orthogonal</td>
<td>Corrección ortogonal.</td>
</tr>
<tr>
<td>Componente del gradiente normal a la superficie</td>
<td>linear corrected</td>
<td>Segundo orden, no acotado, conservativo.</td>
</tr>
<tr>
<td></td>
<td>linear orthogonal</td>
<td>Segundo orden, ortogonal.</td>
</tr>
<tr>
<td></td>
<td>upwind corrected</td>
<td>Segundo orden, no acotado, conservativo.</td>
</tr>
<tr>
<td>Interpolación entre puntos</td>
<td>linear</td>
<td>Interpolación lineal.</td>
</tr>
<tr>
<td></td>
<td>upwind</td>
<td>Interpolación lineal de primer orden, delimitado.</td>
</tr>
</tbody>
</table>

3.3.2. Modelos de turbulencia

Como ya se ha mencionado, la turbulencia es un fenómeno tridimensional, además sus escalas tienen son de amplio espectro ya que abarcan desde las escalas cuyo tamaño característico es similar al geométrico del problema hasta las micro escalas de Kolmogorov, el tamaño de estas últimas se escala con la inversa del Reynolds. Esto implica que, en problemas ingenieriles donde el Reynolds es elevado, existan escalas turbulentas de muy
diversos tamaños. El cómo abordar esta última afirmación deriva en las tres metodologías para modelar la turbulencia hoy en día.

- **Direct Number Solution (DNS)**
- **Large Eddy Simulation (LES)**
- **Reynolds Averaged Navier Stokes (RANS)**

Los métodos DNS se basan en la resolución de todas las escalas turbulentas, esto implica que el tamaño de celda de la malla sea extremadamente pequeño, lo que implica mallas con elevada cantidad de celdas para problemas sencillos. Esto se traduce en que el método DNS tenga un coste computacional solo asumible para el estudio de la turbulencia y no para problemas ingenieriles debido a la limitación en términos de potencia de cálculo de los ordenadores actuales.

Los métodos LES, a diferencia de los DNS, no resuelven todas las escalas de la turbulencia, sino que solo resuelven aquellas escalas turbulentas cuyo tamaño característico es superior al tamaño de celda. El coste de este tipo de simulación empieza a ser asumible para algunos problemas ingenieriles debido al gran incremento de la capacidad de cómputo que se ha experimentado en los últimos años.

Los métodos RANS no resuelven la turbulencia sino que la modelan, estos métodos introducen ecuaciones de transporte adicionales de la forma de la ecuación (3.1), estas ecuaciones no tienen un sentido físico sino que predicen como afectaría la turbulencia al flujo según la naturaleza del mismo. Es por esto que existen decenas de modelos RANS, cada uno de ellos funciona mejor para un tipo de flujo; es por ello que en este trabajo sólo se mencionará el modelo $k - \epsilon$, pues el que mejor se adapta al tipo de flujo que se trata.

[6], [9]

3.3.2.1. Modelo $k - \epsilon$

El modelo $k - \epsilon$ se compone de dos ecuaciones de transporte, una de ellas modela el transporte de la energía cinética turbulenta k y la otra modela el ratio de disipación de la energía cinética turbulenta ϵ. Dentro del modelo $k - \epsilon$ existen diferentes sub-modelos que difieren en la forma en la que se definen las variables así como las constantes del modelo.

- **Standard $k - \epsilon$**
Este sub-modelo presenta parte una parte teórica en el modelado de la energía cinética turbulenta y un carácter empírico para la obtención de las constantes para modelar la disipación ε.

- **Realizable $k - \varepsilon$**

Este modelo es similar al **Standard**, pero difiere de él en la forma en la que se formula la energía cinética.

- **RNG $k - \varepsilon$**

Es un método basado en el modelo **Standard**, pero introduciendo el uso de la estadística. Esto impone un término extra en la ecuación de la disipación que mejora la estabilidad y precisión y, además, mejora la solución en zonas con desprendimiento (elevada vorticidad).

3.3.3. Solvers

Se entiende por **Solver** aquellos algoritmos basados en métodos numéricos que resuelven las ecuaciones del transporte previamente expuestas adaptando éstas al problema en concreto, mediante las correspondientes simplificaciones e hipótesis.

En el problema que se va a tratar en el trabajo, es un problema estacionario, de flujo turbulento, isotermo e incompresible. Por lo que, únicamente, se cree necesario explicar el **Solver** que resuelve dicha tipología de problemas.

3.3.3.1. SimpleFOAM

Este **Solver** SIMPLE (**Semi-Implicit Method for Pressure-Linked Equations**) permite resolver las ecuaciones de Navier Stokes mediante un proceso iterativo, el esquema de este método se puede observar en la Ilustración 3.1. Se puede ver que primero se imponen unas condiciones de contorno y condiciones iniciales, con estos parámetros resuelve las ecuaciones del momento para obtener el campo de velocidades, con el campo de velocidades resuelve la ecuación de la continuidad, para finalizar con la ecuación de la presión corrigiendo con el nuevo valor de la presión los campos de velocidades y flujos másicos. Una vez se obtienen estos valores corregidos, se actualizan las condiciones de contorno con ellos y se repite el proceso hasta conseguir la precisión requerida por el problema. [8], [10]
Ilustración 3.1. Diagrama de flujo del algoritmo SimpleFOAM.
Capítulo 4. Casos de estudio

4.1. Introducción

En este capítulo se mostrarán al lector las cuatro tipologías de toberas que se van a estudiar mediante técnicas CFD, definiendo de cada una de ellas los parámetros geométricos más relevantes así como las condiciones de operación en cuanto a presión de inyección y contra presión.

Además, se mostrará el pre-procesado que se les ha realizado, haciendo hincapié en la forma en la que se ha realizado la discretización del volumen fluido mediante un estudio de la independencia de malla y en la definición de las condiciones de contorno e iniciales utilizadas.

Para finalizar se procesarán los datos obtenidos para su comparación con datos obtenidos de forma experimental que permitirán realizar el estudio de independencia de la malla antes mencionado.

4.2. Geometrías

Como se ha mencionado, se van a estudiar cuatro tipologías de tobera. Para el caso, se nombraran con letras desde la A hasta la D.

De los parámetros geométricos que afectan a las características del flujo en toberas de inyección, expuestos en la sección 2.3.3.2., la diferencia principal entre las toberas es el
Capítulo 4. Casos de estudio

diámetro de los orificios. En la Tabla 4.1 se recogen dichos parámetros geométricos, así como otros que se consideran relevantes.

<table>
<thead>
<tr>
<th>TOBERA</th>
<th>Dc [µm]</th>
<th>Do [µm]</th>
<th>L [µm]</th>
<th>L/Do [-]</th>
<th>k-factor [-]</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>281.5</td>
<td>243</td>
<td>1160</td>
<td>4.77</td>
<td>3.85</td>
</tr>
<tr>
<td>B</td>
<td>328.5</td>
<td>284</td>
<td>1160</td>
<td>4.08</td>
<td>4.45</td>
</tr>
<tr>
<td>C</td>
<td>346.0</td>
<td>301</td>
<td>1160</td>
<td>3.85</td>
<td>4.50</td>
</tr>
<tr>
<td>D</td>
<td>320.0</td>
<td>300</td>
<td>1160</td>
<td>4.00</td>
<td>2.00</td>
</tr>
</tbody>
</table>

4.3. Configuración y descripción del estudio computacional

Esta parte del estudio CFD es la más compleja e importante pues, atendiendo al dicho en inglés garbage in - garbage out, si se realiza un mal el pre-procesado los resultados que se obtengan, si se obtienen, serán incorrectos.

Por todo esto se hace necesario prestar especial atención a la malla realizada, así como, a que las condiciones de contorno e iniciales sean lo más próximas al proceso real.

4.3.1. Malla

Como ya se ha mencionado, el mallado es el proceso que convierte un dominio continuo en un dominio discreto para poder calcular en él, mediante los esquemas numéricos expuestos en la sección 3.3.1, las características del flujo.

Existen dos formas, principalmente, de realizar la malla, tal como se puede ver en la Ilustración 4.1.
Capítulo 4. Casos de estudio

La primera que se muestra es una malla estructurada cuyas celdas están orientadas en la dirección del flujo, esto presenta una ventaja clara sobre las mallas no estructuradas ya que las mallas estructuradas necesitan de un menor número de celdas pues presentan mayor estabilidad y menores problemas de convergencia [11].

4.3.1.1. Generación de malla

Para la generación de la malla se ha utilizado el software Matlab® haciendo uso de un código realizado por Daniel Martínez Sanchís [12].

Este código permite crear la malla desde tres niveles, tal como se puede ver en la Ilustración 4.2, el primero de ellos es el geométrico donde se define la geometría del inyector a mallar, el segundo es el número de divisiones a realizar en algunas zonas específicas de la geometría y el último es el control de las relaciones de expansión de las celdas.

Un ejemplo de la malla que resulta tras el uso de este código se muestra en la Ilustración 4.3, donde se puede ver que es una malla estructurada con gran resolución en las paredes del orificio.
4.3.1.2. Calidad de malla

No todas las mallas que se realicen son válidas para realizar el cálculo CFD ya que ésta ha de tener una calidad mínima para conseguir que el cálculo sea estable y se pueda conseguir la precisión adecuada. Para medir la calidad de la malla se usan los siguientes parámetros: [8], [13], [14].

- **Aspect Ratio** (relación de aspecto de la celda)
- **Skewness** (oblicuidad de la celda)
- **Orthogonality** (ortogonalidad de la celda)

El **Aspect Ratio** es el ratio entre la longitud más grande y la más pequeña de una celda. En el caso de celdas 3D el **Aspect Ratio** se calcula mediante la expresión (4.1), donde ax, ay y az son las áreas de las caras que forman la celda 3D, y V es el volumen de la celda. Un **Aspect Ratio** de valor unidad es el mejor de los resultados.

$$ AR = \frac{1}{6} \cdot \frac{|ax| + |ay| + |az|}{V^2} \quad (4.1) $$

El **Skewness** mide la distancia entre la intersección de la línea que une los centros de dos celdas con la cara que comparten ambas celdas y el centro de esa cara. Un esquema de
cómo medir el Skewness se puede ver en la Ilustración 4.4, donde δ representa el Skewness. Cuanto menor sea este valor mayor calidad de malla se ha obtenido.

Ilustración 4.4. Esquema de la definición del Skewness.

El parámetro de Orthogonality mide el ángulo de desalineamiento entre el vector normal a la cara de unión de dos celdas y el vector que une los centros de las celdas.

En la malla que se mostraba en la Ilustración 4.3, se puede observar que presenta alta ortogonalidad, un Skewness reducido y un Aspect Ratio moderado, aunque más elevado en la zona de la capa límite. Esto es cierto en la mayoría del volumen fluido, exceptuando la zona que se observa en la Ilustración 4.5, en la cual existen celdas con alta no-ortogonalidad, elevado Skewness y Aspect Ratio, pero la influencia de éstas sobre el comportamiento del flujo es pequeña ya que están en una zona donde los gradientes del flujo son pequeños y se encuentra alejada del orificio que presenta mayor interés para el estudio que se realiza. Además cabe mencionar que esta morfología de las celdas en esa zona es inevitable debido a que al buscar reducir el tamaño del problema mediante la hipótesis de axisimetría del flujo todas las celdas han de colapsar en el eje haciéndose inevitable los problemas ya mencionados [12].

Ilustración 4.5. Zona de celdas de baja calidad.
4.3.1.3. Independencia de malla

Puesto que el tamaño de la celda afecta a la calidad de la malla y ésta influye en la calidad de los resultados induciendo errores en los términos convectivos y difusivos de las ecuaciones [13], [14] se hace necesario realizar un análisis paramétrico del número de celdas de la malla a fin de conocer el valor de las mismas para el cual la solución es independiente del mismo, a este análisis se le conoce como estudio de independencia de malla.

El estudio de independencia de malla se ha hecho a partir de la geometría de la Tobera B (Ver Tabla 4.1). El estudio de independencia de malla que en este trabajo se ha realizado se basa en hacer un barrido desde una malla de 200.000 elementos hasta una malla de aproximadamente 2.500.000. El número de celdas y los tamaños característicos de cada caso se puede ver en la Tabla 4.2.

Como condiciones de contorno, más relevantes a nombrar, se ha impuesto una presión de inyección de 500 bar en el rail (antes de entrar al inyector), con unas pérdidas de 50 bar, que ocurre en los conductos internos del inyector antes de llegar al saco de la tobera y una contrapresión de 50 bar, el resto de condiciones de contorno se explicarán en la sección 4.3.3.

<table>
<thead>
<tr>
<th>Caso</th>
<th>Número de celdas</th>
<th>Tamaño de celda en la pared [µm]</th>
<th>Tamaño de celda en el centro del orificio [µm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.1</td>
<td>200.000</td>
<td>11.2x1.2</td>
<td>4.94x4.94</td>
</tr>
<tr>
<td>I.2</td>
<td>500.000</td>
<td>10.9x1.17</td>
<td>4.94x4.94</td>
</tr>
<tr>
<td>I.3</td>
<td>800.000</td>
<td>5.6x1.1</td>
<td>2.48x2.48</td>
</tr>
<tr>
<td>I.4</td>
<td>1.400.000</td>
<td>4.6x0.97</td>
<td>2.08x2.08</td>
</tr>
<tr>
<td>I.5</td>
<td>2.000.000</td>
<td>4.1x0.8</td>
<td>1.77x1.77</td>
</tr>
<tr>
<td>I.6</td>
<td>2.500.000</td>
<td>5.3x0.55</td>
<td>2.35x2.35</td>
</tr>
</tbody>
</table>

Tabla 4.2. Casos realizados para el estudio de la independencia de malla.
Los resultados de este estudio, en cuanto a flujo másico, velocidad promedio y perfil de velocidades se pueden ver en la Ilustración 4.6, Ilustración 4.7 e Ilustración 4.8, respectivamente.

Del mismo, se puede concluir que en todos los casos se obtiene una convergencia física, pues los valores resultantes tanto en tasa como en velocidad promedio son prácticamente constantes con el número de celdas al igual que los perfiles de velocidad, pero como se busca no solo el rigor físico sino, el rigor matemático se exige que los residuales de todos los parámetros se encuentren por debajo de 10^{-3}; aunque, si se aceptase que la convergencia matemática fuese con los residuales por debajo de 10^{-3} [15] todos los casos cumplirían ambas condiciones.

![Ilustración 4.6. Influencia de la malla en la velocidad promedio a la salida del orificio de la tobera.](image)

Por todo lo expuesto, la malla que se utilizará para realizar las simulaciones será la de 1.500.000 pues es la primera que cumple tanto la condición de convergencia física como matemática y al presentar menor número de celdas que los casos I.5 e I.6 el coste computacional de la misma será menor.
4.3.2. Condiciones iniciales

Las condiciones en las que el flujo se encuentra en el momento de inicial la simulación. Para que la simulación sea coherente con la realidad y no de problemas de estabilidad éstas han de ser lo más próximas a la realidad.
Para el caso de las variables de velocidad y presión definir las condiciones iniciales es sencillo, pues se puede suponer que todo el campo fluido se encuentra en reposo y con una presión igual a la contra-presión existente.

Por otra parte, el definir las condiciones iniciales de las variables utilizadas para el modelado de la turbulencia como son k y ε no es una tarea tan sencilla como el de las variables anteriores.

Para definir el valor inicial de k hay que hacer uso de la expresión (4.2). Donde U es la velocidad de Bernoulli e I es la intensidad turbulenta, valor de la cual oscila entre el 1% para flujos poco turbulentos hasta el 20% para flujos muy turbulentos [6], [16]. En el caso de estudio se considera un flujo turbulento con una intensidad turbulenta del 5 al 10%

$$ k = \frac{3}{2} (U I)^2 $$ \hspace{1cm} (4.2)

Para definir las condiciones iniciales de ε hay que obtener primero el valor de k y seguidamente hacer uso de la ecuación (4.3). Donde C_μ es una constante que usualmente toma el valor de 0.09, k es la energía cinética turbulenta y l es la longitud de la turbulencia, cuyo valor suele ser el 7% del diámetro de salida [6], [16].

$$ \varepsilon = C_\mu \frac{k^3}{l} $$ \hspace{1cm} (4.3)

4.3.3. Condiciones de contorno

Estos son los últimos ajustes que hay que hacer antes de poder empezar a calcular, pero no por ello son menos importantes, pues las condiciones de contorno son los parámetros que diferencian un caso de estudio de otro.

Al igual que pasaba con las condiciones iniciales, para poder obtener resultados coherentes con la realidad las condiciones de contorno se han de parecer lo máximo posible a las condiciones reales. Para poder conseguir esto, OpenFOAM tiene una gran variedad de condiciones de contorno entre las que se puede elegir para cada variable tal como se ve en la Tabla 4.3, además las utilizadas en el desarrollo de este trabajo se muestran en la Tabla 4.4.
Tabla 4.3. Condiciones de contorno de OpenFOAM más utilizadas.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Condición de contorno</th>
<th>Función</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presión</td>
<td>totalPressure</td>
<td>La presión total se conserva, ajusta la estática si la velocidad cambia.</td>
</tr>
<tr>
<td>Velocidad</td>
<td>pressureInletVelocity</td>
<td>A partir de la presión, calcula la velocidad con el flujo normal a la superficie.</td>
</tr>
<tr>
<td>En. cinética turbulenta</td>
<td>kqRWallFunction</td>
<td>Función de pared para el cálculo de k.</td>
</tr>
<tr>
<td>Disipación turbulenta</td>
<td>epsilonWallFunction</td>
<td>Función de pared para el cálculo de ε.</td>
</tr>
<tr>
<td>General</td>
<td>zeroGradient</td>
<td>El gradiente normal a la superficie es nulo.</td>
</tr>
<tr>
<td></td>
<td>fixedValue</td>
<td>Impone un valor constante de la variable.</td>
</tr>
<tr>
<td></td>
<td>simmetryPlane</td>
<td>Plano de simetría.</td>
</tr>
<tr>
<td></td>
<td>cyclic</td>
<td>Simetría cíclica.</td>
</tr>
</tbody>
</table>

Tabla 4.4. Condiciones de contorno de OpenFOAM utilizadas en el desarrollo del trabajo.

<table>
<thead>
<tr>
<th>Zona</th>
<th>Variable</th>
<th>Condición de contorno</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inlet</td>
<td>Velocidad</td>
<td>zeroGradient</td>
</tr>
<tr>
<td></td>
<td>Presión</td>
<td>fixedValue</td>
</tr>
<tr>
<td></td>
<td>k</td>
<td>zeroGradient</td>
</tr>
<tr>
<td></td>
<td>ε</td>
<td>zeroGradient</td>
</tr>
<tr>
<td>Outlet</td>
<td>Velocidad</td>
<td>zeroGradient</td>
</tr>
<tr>
<td></td>
<td>Presión</td>
<td>fixedValue</td>
</tr>
<tr>
<td></td>
<td>k</td>
<td>zeroGradient</td>
</tr>
<tr>
<td></td>
<td>ε</td>
<td>zeroGradient</td>
</tr>
<tr>
<td>Wall</td>
<td>Velocidad</td>
<td>fixedValue</td>
</tr>
<tr>
<td></td>
<td>Presión</td>
<td>zeroGradient</td>
</tr>
</tbody>
</table>
4.3.4. Descripción de los casos

Como se dijo en la sección 4.2 se va a estudiar la influencia de la geometría en cuatro tipologías de tobera, pero además se va a realizar un análisis de la influencia de la presión de inyección en cada caso. Igualmente, se realizará un análisis para determinar las pérdidas de presión existentes entre la zona donde se situaba el captador de presión y la zona donde empieza el dominio fluido que se estudia en la presente simulación, pues diversos estudios [17], [18] llegan a la conclusión de que la pérdida de presión en esa zona es importante y hay que tenerlo en cuenta a la hora de comparar los datos experimentales con los resultados obtenidos mediante el uso de CFD.

En la Tabla 4.5 se pueden ver los valores de presión de inyección que se van a analizar para cada una de las 4 geometrías, así como las pérdidas de presión en porcentaje de presión de inyección, junto con la contra presión que es invariante en todos los casos de estudio.

<table>
<thead>
<tr>
<th>Presión de inyección</th>
<th>500 bar</th>
<th>1000 bar</th>
<th>1600 bar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contra-presión</td>
<td>50 bar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>% Pérdida de presión</td>
<td>0 %</td>
<td>8 %</td>
<td>10 %</td>
</tr>
</tbody>
</table>

4.4. Validación

Para finalizar este capítulo, se va a realizar una validación de los resultados CFD derivados del estudio de la independencia de malla realizada en la sección 4.3.1.3. comparándolos con datos experimentales. La comparación entre los datos obtenidos
mediante técnicas CFD y los datos obtenidos experimentalmente se puede ver en la Ilustración 4.9.

Para todos los casos la diferencia entre el flujo másico calculado y los datos experimentales es de aproximadamente el 2%. Esto se debe a que la pérdida de presión impuesta (10% de la presión de inyección) es superior a la que realmente se produce en el interior del inyector, la determinación de la pérdida de presión que realmente existe se tratará en el Capítulo 5.

Ilustración 4.9. Validación de los resultados CFD derivados del estudio de la independencia de malla.
Capítulo 5. Resultados

5.1. Introducción

Una vez se ha hecho el estudio de la independencia de malla, se ha definido el tipo de simulación a realizar y los esquemas numéricos, se proceden a realizar simulaciones mediante CFD de los diferentes casos de estudio.

Los casos de estudio son, como ya se ha mencionado, el estudio de la influencia de las 4 geometrías de tobera, junto con la influencia de la presión de inyección y el estudio de la pérdida de carga que se da en el inyector.

5.2. Estudio de geometría y condición de operación

En esta sección se mostrarán los resultados obtenidos al realizar el estudio de la geometría y de las condiciones de operación. Cabe mencionar que se asume que no existen pérdidas de presión en el interior del inyector.

La primera geometría de la cual se muestran los resultados es la B ya que la tobera B ha tenido mayor relevancia al realizar el estudio, pues en ella se realizó la independencia de malla y es la tobera de la que se conocen más de talles de la geometría y de los resultados experimentales.

Una vez se muestren los resultados obtenidos de las 4 geometrías en las 3 condiciones de operación (500, 1000 y 1600 bar) se procederá con la comparación entre las toberas en términos de velocidad media en el orificio de salida y de gasto másico comparándolos con

Si buscas resultados distintos, no hagas siempre lo mismo.

Albert Einstein (1879 -1955)
datos experimentales para poder obtener la influencia del tamaño del orificio de salida y el \(k \)-factor.

Finalmente, se mostrará los perfiles de velocidad a la salida de cada tobera para cada condición de operación.

5.2.1. Geometría B

5.2.1.1. Presión de inyección: 500 bar

Las Ilustraciones 5.1 y 5.2 muestran los campos de velocidades y presiones respectivamente, que resultan del estudio CFD para una presión de inyección de 500 bar y una presión de descarga de 50 bar.

![Ilustración 5.1: Campo de velocidades en m/s para la Tobera B con presión de inyección de 500 bar y una contrapresión de 50 bar a) en el plano medio de la tobera, b) detalle del orificio](image)

![Ilustración 5.2: Campo de presiones en bar para la Tobera B con presión de inyección de 500 bar y una contrapresión de 50 bar a) en el plano medio de la tobera, b) detalle del orificio](image)
5.2.1.2. Presión de inyección: 1000 bar

Las Ilustraciones 5.3 y 5.4 muestran los campos de velocidades y presiones respectivamente, que resultan del estudio CFD para una presión de inyección de 1000 bar y una presión de descarga de 50 bar.

![Ilustración 5.3 y 5.4](image)

Ilustración 5.3. Campo de velocidades en m/s para la Tobera B con presión de inyección de 1000 bar y una contrapresión de 50 bar a) en el plano medio de la tobera, b) detalle del orificio

![Ilustración 5.5 y 5.6](image)

Ilustración 5.4. Campo de presiones en bar para la Tobera B con presión de inyección de 1000 bar y una contrapresión de 50 bar a) en el plano medio de la tobera, b) detalle del orificio

5.2.1.3. Presión de inyección: 1600 bar

Las Ilustraciones 5.5 y 5.6 muestran los campos de velocidades y presiones respectivamente, que resultan del estudio CFD para una presión de inyección de 1600 bar y una presión de descarga de 50 bar.
5.2.1.4. Influencia de la presión

De las Ilustraciones 5.1, 5.3 y 5.5, se puede comentar que el rango de velocidades comprende desde los 0 \text{ m/s} que existen en la pared de la tobera por la condición de no deslizamiento existente en la misma hasta los 325, 477 y 557 m/s, respectivamente, existentes en el eje a la salida del orificio.

En la Tabla 5.1 se recogen gastos máquicos y velocidades calculadas para cada presión de inyección donde, además, se comparan con los que se obtendrían teóricamente para cada diferencia de presiones mediante las expresiones (2.5) y (2.6) para obtener el coeficiente de velocidad (dividiendo ambas velocidades) y coeficiente de descarga del orificio a partir de la ecuación (2.7). De una forma más gráfica se representa este último parámetro en la Ilustración 5.7. En esa ilustración se puede observar como el coeficiente de descarga calculado mediante CFD es, prácticamente, constante para las presiones de...
Capítulo 5. Resultados

inyección de 500 y 1000 bar tendencia lógica pues no se asumen ni pérdidas de presión ni deformación de la aguja debida a la presión. Además no se evidencian indicios de una posible zona cavitante en las Ilustraciones 5.2, 5.4 y 5.6. El por qué el coeficiente de descarga decrece para la presión de inyección de 1600 bar se debe a que la hipótesis de fluido incompresible empieza a no ser válida debido a las altas presiones y el Solver utilizado puede empezar a otorgar resultados no del todo exactos, además la deformación que provoca esta alta presión en la aguja no es despreciable y puede llegar a incrementar el levantamiento de la aguja un 32% [19], hacen distar aún más el resultado calculado del medido experimentalmente.

Tabla 5.1 Velocidad promedio en la sección de salida del orificio y el coeficiente de descarga para cada presión de inyección en la Tobera B.

<table>
<thead>
<tr>
<th>(P_{\text{iny}}) (bar)</th>
<th>(\dot{m}_{\text{calc}}) (g/s)</th>
<th>(\dot{m}_{\text{teó}}) (g/s)</th>
<th>(C_d)</th>
<th>(U_{\text{promedio}}) (m/s)</th>
<th>(U_{\text{Bernoulli}}) (m/s)</th>
<th>(C_v)</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>15.8</td>
<td>17.2</td>
<td>0.920</td>
<td>295.44</td>
<td>332.11</td>
<td>0.890</td>
</tr>
<tr>
<td>1000</td>
<td>22.9</td>
<td>24.9</td>
<td>0.919</td>
<td>433.14</td>
<td>484.17</td>
<td>0.895</td>
</tr>
<tr>
<td>1600</td>
<td>26.4</td>
<td>31.6</td>
<td>0.837</td>
<td>526.22</td>
<td>620.78</td>
<td>0.848</td>
</tr>
</tbody>
</table>

Ilustración 5.7. Coeficiente de descarga para la Tobera B en función de las condiciones de operación.

Además en la Ilustración 5.8 se muestran los vectores de velocidad del flujo para las diferentes presiones de inyección, a destacar de esta imagen es que los remolinos existentes
en el saco disminuyen de tamaño conforme se aumenta la presión de inyección debido a que el flujo está sometido a una diferencia de presiones mayor. También se ha de destacar que en el conducto de salida los vectores son más uniformes a presiones bajas que altas, esto se debe, principalmente, a que les da tiempo a ordenarse debido a que las velocidades en el conducto son menores.

Ilustración 5.8. Vectores de velocidad del flujo coloreados por la presión para una presión de inyección de a) 500 bar, b) 1000 bar y c) 1600 bar.

Para finalizar con la influencia que tiene la presión de inyección en las características del flujo en la tobera B se cree oportuno mostrar en la Ilustración 5.9 el perfil de velocidades a lo largo del radio del orificio de salida adimensionalizados por la velocidad de Bernoulli resultante de cada presión de inyección y el radio en dicha sección respectivamente. El principal resultado a destacar de dicha representación es que tanto para la presión de 500 bar como para la presión de 1000 bar el perfil de velocidades adimensional es prácticamente idéntico, presentando en ambos una forma ligeramente parabólica propia de flujos no desarrollados, a diferencia de estos dos casos, para la presión de inyección de 1600 bar el perfil de velocidades adimensionales es prácticamente cuadrado, típico de flujos totalmente turbulentos, es de interés para comentar que el motivo por el cual el valor máximo del perfil correspondiente a la presión de 1600 bar diste tanto del máximo que se obtiene con las otras dos presiones es debido a que el Solver utilizado asume el flujo como incompresible y a presiones tan elevadas, como es la de 1600 bar, subestima la solución real.
Capítulo 5. Resultados

Ilustración 5.9. Perfil de velocidades adimensionalizado con la velocidad de Bernoulli a lo largo del radio adimensionalizado con el radio del orificio de salida de la tobera B.

5.2.2. Geometría A

5.2.2.1. Presión de inyección: 500 bar

Las Ilustraciones 5.10 y 5.11 muestran los campos de velocidades y presiones respectivamente, que resultan del estudio CFD para una presión de inyección de 500 bar y una presión de descarga de 50 bar.

Ilustración 5.10. Campo de velocidades en m/s para la Tobera A con presión de inyección de 500 bar y una contrapresión de 50 bar a) en el plano medio de la tobera, b) detalle del orificio
5.2.2.2. Presión de inyección: 1000 bar

Las Ilustraciones 5.12 y 5.13 muestran los campos de velocidades y presiones respectivamente, que resultan del estudio CFD para una presión de inyección de 1000 bar y una presión de descarga de 50 bar.
5.2.2.3. Presión de inyección: 1600 bar

Las Ilustraciones 5.14 y 5.15 muestran los campos de velocidades y presiones respectivamente, que resultan del estudio CFD para una presión de inyección de 1600 bar y una presión de descarga de 50 bar.

![Imagen de campo de velocidades y presiones](image)

Ilustración 5.14. Campo de velocidades en m/s para la Tobera A con presión de inyección de 1600 bar y una contrapresión de 50 bar a) en el plano medio de la tobera, b) detalle del orificio

Ilustración 5.15. Campo de presiones en bar para la Tobera A con presión de inyección de 1600 bar y una contrapresión de 50 bar a) en el plano medio de la tobera, b) detalle del orificio

5.2.2.4. Influencia de la presión

De las Ilustraciones 5.10 5.12 y 5.14, se puede comentar que el rango de velocidades comprende desde los 0 m/s que existen en la pared de la tobera por la condición de no deslizamiento existente en la misma hasta los 309, 449 y 549 m/s, respectivamente, existentes en el eje a la salida del orificio, además en el detalle del orificio se observa una zona de flujo desprendido a la entrada del orificio, tanto en la parte superior como en la inferior, aunque como en el caso de la tobera B las Ilustraciones 5.11,5.13 y 5.15 no evidencian signos de una posible zona cavitante.
Capítulo 5. Resultados

En la Tabla 5.2 se recogen los gastos máscicos y velocidades calculadas para cada presión de inyección donde, además, se comparan con los que se obtendrían teóricamente para cada diferencia de presiones mediante las expresiones (2.5) y (2.6) para obtener el coeficiente de velocidad (dividiendo ambas velocidades) y coeficiente de descarga del orificio a partir de la ecuación (2.7). De una forma más gráfica se representa este último parámetro en la Ilustración 5.16, donde se observan las mismas tendencias ya comentadas en la tobera B.

<table>
<thead>
<tr>
<th>P\text{\textsubscript{iny}} (bar)</th>
<th>(\dot{m})\text{\textsubscript{\text{calc}}} (g/s)</th>
<th>(\dot{m})\text{\textsubscript{\text{teo}}} (g/s)</th>
<th>C\text{\textsubscript{d}}</th>
<th>U\text{\textsubscript{promedio}} (m/s)</th>
<th>U\text{\textsubscript{Bernoulli}} (m/s)</th>
<th>C\text{\textsubscript{v}}</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>10.8</td>
<td>12.5</td>
<td>0.859</td>
<td>291.29</td>
<td>333.00</td>
<td>0.877</td>
</tr>
<tr>
<td>1000</td>
<td>15.8</td>
<td>18.2</td>
<td>0.868</td>
<td>425.25</td>
<td>485.50</td>
<td>0.876</td>
</tr>
<tr>
<td>1600</td>
<td>18.8</td>
<td>23.0</td>
<td>0.816</td>
<td>518.61</td>
<td>621.77</td>
<td>0.834</td>
</tr>
</tbody>
</table>

Además en la Ilustración 5.17 se muestran los vectores de velocidad para las tres presiones de inyección mostrando un comportamiento similar al ya explicado en la Tobera B.
Ilustración 5.17. Vectores de velocidad del flujo coloreados por la presión para una presión de inyección de a) 500 bar, b) 1000 bar y c) 1600 bar.

Para finalizar con la influencia que tiene la presión de inyección en las características del flujo en la tobera A se cree oportuno mostrar en la Ilustración 5.18 el perfil de velocidades a lo largo del radio del orificio de adimensionalizados por la velocidad de Bernoulli resultante de cada presión de inyección y el radio en dicha sección respectivamente. El principal resultado a destacar de dicha representación es que a diferencia de lo que se veía en la Tobera B, los tres perfiles de velocidades presentan una forma más cuadrada, además, presenta la misma subestimación que ya se mostraba en la Tobera B para la presión de 1600 bar por las mismas razones ya expuestas.

Ilustración 5.18. Perfil de velocidades adimensionalizado con la velocidad de Bernoulli a lo largo del radio adimensionalizado con el radio del orificio de salida de la tobera A.
5.2.3. Geometría C

5.2.3.1. Presión de inyección: 500 bar

Las Ilustraciones 5.19 y 5.20 muestran los campos de velocidades y presiones respectivamente, que resultan del estudio CFD para una presión de inyección de 500 bar y una presión de descarga de 50 bar.

![Ilustración 5.19. Campo de velocidades en m/s para la Tobera C con presión de inyección de 500 bar y una contrapresión de 50 bar a) en el plano medio de la tobera, b) detalle del orificio.](image)

![Ilustración 5.20. Campo de presiones en bar para la Tobera C con presión de inyección de 500 bar y una contrapresión de 50 bar a) en el plano medio de la tobera, b) detalle del orificio.](image)

5.2.3.2. Presión de inyección: 1000 bar

Las Ilustraciones 5.21 y 5.22 muestran los campos de velocidades y presiones respectivamente, que resultan del estudio CFD para una presión de inyección de 1000 bar y una presión de descarga de 50 bar.
5.2.3.3. Presión de inyección: 1600 bar

Las Ilustraciones 5.23 y 5.24 muestran los campos de velocidades y presiones respectivamente, que resultan del estudio CFD para una presión de inyección de 1600 bar y una presión de descarga de 50 bar.
5.2.3.4. Influencia de la presión

De las Ilustraciones 5.19 5.21 y 5.23, se puede comentar que el rango de velocidades comprende desde los 0 \(m/s \) que existen en la pared de la tobera por la condición de no deslizamiento existente en la misma hasta los 328, 462 y 564 \(m/s \), respectivamente, existentes en el eje a la salida del orificio; además, en el detalle del orificio se observa una zona de flujo desprendido a la entrada del orificio, tanto en la parte superior como en la inferior, aunque debido al carácter convergente del orificio los contornos de la presión mostrados en las Ilustraciones 5.20 5.22 y 5.24 no se aprecia cavitation.

En la Tabla 5.3 se recogen los gastos máscicos y velocidades calculadas para cada presión de inyección donde, además, se comparan con los que se obtendrían teóricamente para cada diferencia de presiones mediante las expresiones (2.5) y (2.6) para obtener el coeficiente de velocidad (dividiendo ambas velocidades) y coeficiente de descarga del orificio a partir de la ecuación (2.7). De una forma más gráfica se representa este último parámetro en la Ilustración 5.25

<table>
<thead>
<tr>
<th>(P_{iny}) (bar)</th>
<th>(\dot{m}_{calc}) (g/s)</th>
<th>(\dot{m}_{teo}) (g/s)</th>
<th>(C_d)</th>
<th>(U_{promedio}) (m/s)</th>
<th>(U_{Bernoulli}) (m/s)</th>
<th>(C_v)</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>17.7</td>
<td>19.3</td>
<td>0.914</td>
<td>296.60</td>
<td>331.47</td>
<td>0.895</td>
</tr>
</tbody>
</table>
Capítulo 5. Resultados

<table>
<thead>
<tr>
<th>Prueba</th>
<th>Coeficiente de descarga calculado</th>
<th>Coeficiente de descarga medido</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>0.898</td>
<td>0.897</td>
</tr>
<tr>
<td>1600</td>
<td>0.849</td>
<td>0.855</td>
</tr>
</tbody>
</table>

Ilustración 5.25. Coeficiente de descarga para la Tobera C en función de las condiciones de operación.

Además en la Ilustración 5.26 se muestran los vectores de velocidad del flujo, éstos presentan en el saco un comportamiento similar al que se daba en las toberas anteriormente explicadas, pero difiere de ellas en cómo se ordenan los vectores dentro del orificio y sobre todo a la salida, esto es debido a que el parámetro \(L/\text{DO}\) es menor en este caso, por lo que la velocidad tiene menos tiempo para uniformizarse y esto se traduce en que los vectores están menos ordenados, sobre todo a la salida del orificio presentando cierta componente radial.

![Ilustración a](#)
![Ilustración b](#)
![Ilustración c](#)
Para finalizar con la influencia que tiene la presión de inyección en las características del flujo en la tobera C se cree oportuno mostrar en la Ilustración 5.28 el perfil de velocidades a lo largo del radio del orificio de adimensionalizados por la velocidad de Bernoulli resultante de cada presión de inyección y el radio en dicha sección respectivamente. El principal resultado a destacar de dicha representación es que, debido a lo ya comentando del orden de los vectores de velocidad, los perfiles de velocidad son asimétricos presentando un mayor valor en el lado superior del orificio (positivo en la imagen).

Ilustración 5.27. Perfil de velocidades adimensionalizado con la velocidad de Bernoulli a lo largo del radio adimensionalizado con el radio del orificio de salida de la tobera C, se muestra en línea discontinua la asimetría que se da para la presión de 1000 bar.

5.2.4. Geometría D

5.2.4.1. Presión de inyección: 500 bar

Las Ilustraciones 5.28 y 5.29 muestran los campos de velocidades y presiones respectivamente, que resultan del estudio CFD para una presión de inyección de 500 bar y una presión de descarga de 50 bar.
5.2.4.2. Presión de inyección: 1000 bar

Las Ilustraciones 5.30 y 5.31 muestran los campos de velocidades y presiones respectivamente, que resultan del estudio CFD para una presión de inyección de 1000 bar y una presión de descarga de 50 bar. En el contorno de presiones se observa en la entrada del orificio una zona donde la presión alcanza valores negativos, físicamente no posibles, esto se podría solucionar utilizando un Solver diferente que resolviese la cavitación; por todo ello se cree oportuno no realizar el estudio para una presión de 1600 bar puesto que los resultados que obtendríamos no serían válidos.
5.2.4.3. Influencia de la presión

De las Ilustraciones 5.28 y 5.30, se puede comentar que el rango de velocidades comprende desde los 0 m/s que existen en la pared de la tobera por la condición de no deslizamiento existente en la misma hasta los 326 y 458 m/s, respectivamente, existentes en el eje a la salida del orificio; además, en el detalle del orificio se observa una zona de flujo desprendido a la entrada del orificio, tanto en la parte superior como en la inferior, que debido al carácter cilíndrico del orificio provocan que la presión en esa zona, tal como se observa en las Ilustraciones 5.29 y 5.31 caiga por debajo de la presión en cámara llegando en el caso de presión de inyección de 1000 bar a dar un resultado con presión negativa, resultado no correcto físicamente, pero cuya interpretación evidencia la probable existencia de cavitation en esa zona.
En la Tabla 5.4 se recogen los gastos máscicos y velocidades calculadas para cada presión de inyección donde, además, se comparan con los que se obtendrían teóricamente para cada diferencia de presiones mediante las expresiones (2.5) y (2.6) para obtener el coeficiente de velocidad (dividiendo ambas velocidades) y coeficiente de descarga del orificio a partir de la ecuación (2.7). De una forma más gráfica se representa este último parámetro en la Ilustración 5.32.

<table>
<thead>
<tr>
<th>P_{inj} (bar)</th>
<th>\dot{m}_{calc} (g/s)</th>
<th>\dot{m}_{teó} (g/s)</th>
<th>C_d</th>
<th>U_{promedio} (m/s)</th>
<th>U_{Bernoulli} (m/s)</th>
<th>C_v</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>17.2</td>
<td>19.2</td>
<td>0.894</td>
<td>287.05</td>
<td>331.47</td>
<td>0.866</td>
</tr>
<tr>
<td>1000</td>
<td>24.3</td>
<td>27.7</td>
<td>0.878</td>
<td>426.43</td>
<td>484.88</td>
<td>0.879</td>
</tr>
</tbody>
</table>

Además en la Ilustración 5.33 se muestran los vectores de velocidad coloreados con la presión, en ellos se observa como la zona de recirculación en el saco es de mayor tamaño para la presión de inyección de 500 bar que para la de 1000 bar. Además se observa como en la entrada del orificio los vectores están más uniformes para la presión de inyección de 500 bar que para 1000 bar, esto es debido a que en la entrada se aumenta el desprendimiento del flujo conforme se aumenta la presión de raíl, provocando una zona donde la cavitation es probable, esta no uniformidad se mantiene durante todo el conducto.
Para finalizar con la influencia que tiene la presión de inyección en las características del flujo en la tobera D se cree oportuno mostrar en la Ilustración 5.34 el perfil de velocidades a lo largo del radio del orificio adimensionalizados por la velocidad de Bernoulli resultante de cada presión de inyección y el radio en dicha sección respectivamente. El principal resultado a destacar de dicha representación es la asimetría que se da entre la parte superior e inferior del orificio, principalmente a 1000 bar de presión de inyección, debido a la no uniformidad de los vectores del flujo a lo largo del orificio originada por la posible cavitation en la zona inferior de la entrada del orificio.
5.2.5. Comparativa entre toberas

Una vez se han mostrado los resultados de las toberas individualmente para las diferentes presiones de inyección se va a proceder a realizar una comparación entre las toberas haciendo un resumen de la influencia de la presión en las toberas ya mostrada en los puntos anteriores, pero sobretodo centrándose en la influencia de la geometría.

En la Ilustración 5.35 se muestran los gastos máscicos de las diferentes toberas en función de la raíz de la presión de inyección.

A destacar en primer lugar, la tobera D presenta una zona con presiones negativas para la presión de inyección de 1000 bar, esto significa que probablemente en esa zona se dé el fenómeno de la cavitation, por lo que se ha creído oportuno no realizar el caso con 1600 bar de presión de inyección ya que a los problemas del Solver ya comentados se le suma el problema de la cavitation por lo que los resultados que se obtuviessen no serían verosímiles.

El siguiente comentario que se ha de realizar es que el gasto máscico crece con la raíz cuadrada de la presión de inyección independientemente de la tobera, faltaría como ya se ha dicho analizar la influencia de la cavitation en el gasto máscico y el coeficiente de descarga.
Para analizar la influencia que tiene la geometría del orificio en las características del flujo se ha creído conveniente analizar por separado la influencia del tamaño del orificio con un *k-factor* constante usando para ello las toberas A, B y C, y la influencia del *k-factor* con un tamaño de diámetro de salida constante utilizando para ello las toberas C y D.

El resultado del primero de los estudios, el de la influencia del tamaño del orificio se puede ver en la Ilustración 5.36. En ésta, se muestran los resultados tanto experimentales como los obtenidos mediante el presente estudio CFD, observando la misma tendencia en ambos; esta tendencia es que al aumentar el tamaño del orificio se aumenta el gasto másico saliente. Además, en la Ilustración 5.37 se observa el gasto másico para la presión de 500 y 1000 bar para los tres diámetros de salida viendo que ambos casos el gasto másico crece con el cuadrado del diámetro.

En la Ilustración 5.38 se muestra el coeficiente de descarga en función de la presión para cada una de las geometrías analizadas, se observa como este parámetro es mayor para las geometrías B y C respecto a la geometría A y es prácticamente constante entre la B y C siendo ligeramente mayor en la B, la explicación de este fenómeno es la asimetría del flujo y la componente radial de la velocidad existente a la salida del orificio.
Ilustración 5.36. Influencia del tamaño del orificio de la tobera mediante el uso de datos experimentales y obtenidos mediante técnicas CFD.

Ilustración 5.37. Gasto másico y velocidad promedio en el orificio de salida en función del diámetro de dicho orificio para a) una presión de 500 bar y b) de 1000 bar, respectivamente.
Capítulo 5. Resultados

Ilustración 5.38. Coeficiente de descarga en función de la raíz de la presión de inyección para las diferentes geometrías de tobera.

El resultado de la influencia del \textit{k-factor} se puede ver en la Ilustración 5.39, en ésta se observa como la tobera C, que presentaba un \textit{k-factor} superior, tiene mayor gasto másico que la tobera D, tanto en los datos experimentales como los calculado mediante CFD.

Ilustración 5.39. Influencia del \textit{k-factor} del orificio de la tobera mediante el uso de datos experimentales y obtenidos mediante técnicas CFD.

Además, en la Ilustración 5.40 se muestra el coeficiente de descarga para ambas geometrías, siendo éste mayor para la tobera C, debido a que en la tobera D se producen mayores
Capítulo 5. Resultados
desprendimientos del flujo en la entrada del orificio, llegando a producir para la presión de inyección de 1000 bar una zona con alta probabilidad de cavitación.

Ilustración 5.40. Coeficiente de descarga del orificio de salida para las tobera C y D en función de la raíz de la presión de inyección.

5.3. Estudio de la pérdida de presión

En este apartado se va a estudiar la pérdida de presión que se da en el inyector, aguas arriba de la tobera de inyección. Para realizar dicho estudio se va asumir la hipótesis de que en las cuatro geometrías existen las mismas pérdidas en el inyector.

El estudio se va a realizar sobre la tobera B por las razones ya expuestas en la sección 5.2. Se van a realizar simulaciones para cada presión de inyección asumiendo un 8% y un 10% de pérdidas de presión respecto a la presión de inyección además del caso con un 0% de pérdidas calculado en la sección anterior.

Una vez realizados estos casos, se va a proceder a realizar el mismo estudio de la tobera de geometría A pero únicamente para la presión de inyección de 500 bar, estos casos extras se realizan con la intención de estimar, mediante datos experimentales, el diámetro real de la misma pues el diámetro no se pudo medir mediante el uso del microscopio electrónico y se usó para los estudios el diámetro proporcionado por los planos del fabricante.
Capítulo 5. Resultados

5.3.1. Geometría B

5.3.1.1. Presión de inyección: 500 bar

En la Tabla 5.5, se muestra la pérdida de presión y el flujo másico calculado para cada pérdida de presión y una comparación con el flujo másico experimental.

<table>
<thead>
<tr>
<th>$P_{inyección}$ (bar)</th>
<th>$ΔP$ (%)</th>
<th>$ΔP$ (bar)</th>
<th>$\dot{m}_{calculated}$ (g/s)</th>
<th>$\dot{m}_{experimental}$ (g/s)</th>
<th>Error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>15.27</td>
<td></td>
<td>6.3</td>
</tr>
<tr>
<td>500</td>
<td>8</td>
<td>40</td>
<td>14.34</td>
<td>14.37</td>
<td>0.1</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>50</td>
<td>14.09</td>
<td></td>
<td>1.9</td>
</tr>
</tbody>
</table>

Representando en la Ilustración 5.41 los gastos másicos, que se veían en la Tabla 5.5, en función de la raíz de la presión de inyección restándole a esta las pérdidas de presión y realizando una regresión lineal de los gastos másicos, se calcula el porcentaje de pérdidas que se dio en el inyector al realizar las medidas experimentales del gasto másico para una presión de inyección de 500 bar. El valor de las pérdidas es del 8.2% de la presión de raíl.

Ilustración 5.41. Gasto másico calculado para las diferentes pérdidas de presión con una presión de inyección de 500 bar y gasto másico medido experimentalmente con las pérdidas de presión asociadas.
5.3.1.2. Presión de inyección: 1000 bar

En la Tabla 5.6, se muestra la pérdida de presión y el flujo másico calculado para cada pérdida de presión y una comparación con el flujo másico experimental.

Tabla 5.6. Estudio pérdida de presión en la geometría B para una presión de inyección de 1000 bar.

<table>
<thead>
<tr>
<th>$P_{inyección}$</th>
<th>ΔP (%)</th>
<th>ΔP (bar)</th>
<th>$\dot{m}_{calculated}$ ($\frac{g}{s}$)</th>
<th>$\dot{m}_{experimental}$ ($\frac{g}{s}$)</th>
<th>Error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>22.24</td>
<td></td>
<td></td>
<td>1.9</td>
</tr>
<tr>
<td>1000</td>
<td>8</td>
<td>80</td>
<td>21.29</td>
<td>21.83</td>
<td>2.5</td>
</tr>
<tr>
<td>10</td>
<td>100</td>
<td>20.95</td>
<td></td>
<td></td>
<td>4.0</td>
</tr>
</tbody>
</table>

Representando en la Ilustración 5.42 los gastos másicos, que se veían en la Tabla 5.6, en función de la raíz de la presión de inyección restándole a esta las pérdidas de presión y realizando una regresión lineal de los gastos másicos, se calcula el porcentaje de pérdidas que se dio en el inyector al realizar las medidas experimentales del gasto másico para una presión de inyección de 1000 bar. El valor de las pérdidas es del 5.35% de la presión de raíl.

Ilustración 5.42. Gasto másico calculado para las diferentes pérdidas de presión con una presión de inyección de 1000 bar y gasto másico medido experimentalmente con las pérdidas de presión asociadas.
5.3.1.3. Pérdida de presión

De los resultados que se han dado para la presión de inyección de 500 y 1000 bar en cuanto a las pérdidas se refiere, se puede comentar que estas son decrecientes con la presión de inyección debido a la reducción del coeficiente de fricción conforme aumenta el Reynolds [20] y que la aguja se deforma incrementando la sección de paso efectiva a la entrada y así reduciendo el cambio de sección que se traduce en una reducción del porcentaje de pérdidas en la entrada de la tobera.

5.3.2. Geometría A

Para analizar la pérdida de presión en esta geometría se va a proceder de la misma manera que se procedió en el caso anterior. Para ello se muestra en la Tabla 5.7, la pérdida de presión y el flujo másico calculado para cada pérdida de presión y una comparación con el flujo másico experimental.

<table>
<thead>
<tr>
<th>$P_{inyección}$</th>
<th>ΔP (%)</th>
<th>ΔP (bar)</th>
<th>$\dot{m}_{calculated}$ ($\frac{g}{S}$)</th>
<th>$\dot{m}_{experimental}$ ($\frac{g}{S}$)</th>
<th>Error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>8</td>
<td>40</td>
<td>10.49</td>
<td>10.71</td>
<td>-2.0</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>50</td>
<td>10.32</td>
<td></td>
<td>-3.6</td>
</tr>
</tbody>
</table>

Representando en la Ilustración 5.43 los gastos másicos, que se veían en la Tabla 5.7, en función del porcentaje de pérdida de presión junto con el gasto másico experimental con un 8.2% de pérdidas de presión se ve claramente que existe una diferencia de flujo másico entre el experimental y el que se obtiene de la interpolación de los resultados para una pérdida de presión del 8.2%. Esto es debido a que el diámetro de la tobera real es mayor que el diámetro que se da en el plano de la misma.
Ilustración 5.43. Gasto másico calculado para las diferentes pérdidas de presión con una presión de inyección de 500 bar y gasto másico medido experimentalmente con las pérdidas de presión asociadas.

Para el cálculo del diámetro real se hace uso de la ecuación (5.1), donde $\Delta \dot{m}$ es la diferencia de flujo másico entre el experimental y el que se obtiene de la regresión para una pérdida de presión del 8.2%, ρ es la densidad del flujo en el inyector, U es la velocidad promedio en la sección de salida del orificio y ϕ_{plano} es el diámetro de la sección de salida del orificio que proporciona el plano del fabricante. Los valores numéricos de estos parámetros están recogidos en la Tabla 5.8, en la cual también se muestra el valor del ϕ_{real} del orificio estimado con esta metodología y la diferencia que existe respecto al diámetro que se proporciona en el plano.

\[
\phi_{real} = \sqrt{\frac{\Delta \dot{m}}{\frac{\pi}{4} \rho U}} + \phi_{plano}^2 \tag{5.1}
\]

Tabla 5.8. Parámetros de gasto másico, densidades, velocidades y diámetros calculados y reales de la tobera A para una presión de inyección de 500 bar y una contrapresión de 50 bar con un 8.2% de pérdidas de presión.
Capítulo 5. Resultados

<table>
<thead>
<tr>
<th>Variable</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\rho) (kg/m(^3))</td>
<td>811.6</td>
</tr>
<tr>
<td>(U) (m/s)</td>
<td>291.29</td>
</tr>
<tr>
<td>(\phi_{\text{plano}}) ((\mu)m)</td>
<td>243</td>
</tr>
<tr>
<td>(\phi_{\text{real}}) ((\mu)m)</td>
<td>245.87</td>
</tr>
<tr>
<td>(\phi_{\text{real}} - \phi_{\text{plano}}) ((\mu)m)</td>
<td>2.87</td>
</tr>
</tbody>
</table>
Capítulo 6. Conclusiones y trabajo futuro

Una vez se han mostrado los resultados de los estudios hechos se pasa, en este capítulo, a concluir este documento.

La principal conclusión que se extrae del estudio de la influencia de la presión es que el gasto másico crece de manera lineal con la raíz de la diferencia de presiones entre la entrada y salida del orificio de la tobera.

La conclusión que se quiere destacar del estudio de la influencia que tiene el tamaño del diámetro de salida es que el gasto másico crece con el cuadrado del diámetro del orificio de salida. Es de interés comentar que el coeficiente de descarga crece conforme se aumenta el diámetro de salida cuando no hay cavitation.

La conclusión que se extrae sobre la influencia que tiene el \(k\)-factor sobre el flujo de la tobera es que este parámetro tiene gran importancia sobre la probabilidad de aparición de cavitation.

De la pérdida de presión se puede concluir que el porcentaje de pérdidas decrece conforme se aumenta la presión de inyección debido a que se provoca una deformación de la aguja, lo que permite un mejor paso del flujo y acota las pérdidas.

Se propone como trabajo de continuación al presente trabajo ya realizado la utilización de otra tipología de Solver que tenga en cuenta los fenómenos de compresibilidad y bifásicos para poder abordar el fenómeno de la cavitation. Además se propone la realización de mallas móviles para la geometría que permitan tener en cuenta la deformación de la aguja en función de la presión además del estudio de transitorios con levantamiento parcial de

La vida es el arte de sacar conclusiones suficientes a partir de datos insuficientes.

Samuel Butler (1835-1902).
Capítulo 6. Conclusiones y trabajo futuro

la aguja; fenómeno de gran importancia en inyecciones piloto y post-inyección cada vez más usadas en las estrategias de inyección pues permiten una mejor preparación de la combustión.

Con todo, se concluye diciendo que el proceso de inyección tiene gran importancia pues de las características del flujo a la salida del orificio de la tobera depende, en gran medida, la calidad del proceso de combustión y en consecuencia en la formación de combustible.
DOCUMENTO II:

PLIEGO DE CONDICIONES
Capítulo 1. Introducción

En el presente documento se desarrollarán los principales artículos pertenecientes a la ordenanza general de seguridad e higiene en el trabajo recogida en el BOE-A-1971/380 que han condicionado la realización de este proyecto en unas condiciones laborales óptimas, además al tratarse el trabajo de un trabajo completamente realizado a través de un ordenador los artículos del Real Decreto 448/1997 del 14 de abril de 1997 complementan al BOE-A-1971/380 en los trabajos que incluyen pantallas de visualización “PVD”.

Los artículos pertenecientes al documento BOE-A-1997/380 se encuentran en el capítulo 2 y el complemento a éstos mediante el Real Decreto 448/1997 se encuentra en el capítulo 3 del presente documento.
Capítulo 2. Ordenanza general de seguridad e higiene en el trabajo

2.1. Condiciones generales de los centros de trabajo y de los mecanismos y medidas de protección

Artículo 13: Seguridad estructural

Tantos los edificios, ya sean de carácter permanente o provisional, como los cimientos y pisos deberán ser de construcción segura y firme, quedando prohibido sobrecargar los pisos y plantas de los edificios.

Artículo 14: Superficie y cubicación

El lugar de trabajo ha de tener al menos tres metros de altura desde el suelo hasta el techo, dos metros cuadrados y diez metros cúbicos por trabajador.

Artículo 15: Suelos, techos y paredes

El suelo ha de estar nivelado, ser liso y no resbaladizo, además de tener fácil limpieza. Las paredes han de ser lisas y pintadas en tonos claros, además de ser susceptibles de ser lavadas. Los techos han de resguardar a los trabajadores de las inclemencias del tiempo.
Artículo 25: Iluminación. - Disposiciones Generales

Todos los lugares han de tener iluminación, siendo de preferencia la iluminación natural sobre la artificial.

Artículo 30: Ventilación, temperatura y humedad

En el puesto de trabajo se ha de mantener unas condiciones atmosféricas adecuadas.

Los límites normales de temperatura y humedad para trabajos sedentarios se establecen como sigue:

- Temperatura de 17 a 22 grados centígrados
- Humedad relativa de la atmósfera oscilará del 40 al 60 por 100.

Artículo 31: Ruidos, vibraciones y trepidaciones

Los ruidos y vibraciones se evitarán o reducirán en su foco de origen, evitando, en lo posible, su propagación en los locales de trabajo. Esto se consigue aislando adecuadamente las máquinas que produzcan ruidos o vibraciones molestas, además de diseñar el recinto donde éstas se encuentren para evitar fenómenos de reflexión y resonancia.

2.2. Electricidad

Artículo 51: Protección contra contactos en los equipos eléctricos

En las instalaciones y equipos eléctricos se alejarán las partes activas de la instalación lo suficiente del lugar de trabajo para evitar un contacto fortuito y se recubrirán las partes activas con el aislamiento oportuno. Además, se han instalar tomas de tierra, interruptores diferenciales o relés de tierra.

Artículo 57: Electricidad estática

Para evitar peligros por la electricidad estática, se ha de mantener la humedad relativa del aire sobre el 50 por 100 además se han de neutralizar las cargas de electricidad estática que se puedan acumular por medio de conexiones a tierra.
Artículo 61: Equipos y herramientas eléctricas portátiles

La tensión de alimentación en las herramientas portátiles de cualquier tipo no podrá exceder de 250 voltios con relación a tierra. Además, los cables de alimentación de dichas herramientas deberán estar protegidos por un material resistente que no se deteriore por roces o torsiones.
Capítulo 3. Disposiciones mínimas relativas al trabajo con equipos que incluyen PVD

3.1. Equipo

Pantalla y Teclado

Los caracteres de la pantalla deberán estar bien definidos y configurados de forma clara, y tener una dimensión suficiente, disponiendo de un espacio adecuado entre los caracteres y los renglones.

La imagen de la pantalla deberá ser estable, sin fenómenos de destellos, centelleos u otras formas de inestabilidad.

El usuario de terminales con pantalla deberá poder ajustar fácilmente la luminosidad y el contraste entre los caracteres y el fondo de la pantalla, y adaptarlos fácilmente a las condiciones del entorno.

La pantalla deberá ser orientable e inclinable a voluntad, con facilidad para adaptarse a las necesidades del usuario.

La pantalla no deberá tener reflejos ni reverberaciones que puedan molestar al usuario.

El teclado deberá ser inclinable e independiente de la pantalla para permitir que el trabajador adopte una postura cómoda que no provoque cansancio en los brazos o las manos.
Tendrá que haber espacio suficiente delante del teclado para que el usuario pueda apoyar los brazos y las manos.

Por todo lo expuesto, el dispositivo que se utilizó para la realización del presente trabajo es el ordenador portátil propiedad del propio trabajador, cuyas características quedan reflejadas en la Tabla 3.1.

<table>
<thead>
<tr>
<th>Marca</th>
<th>Modelo</th>
<th>CPU</th>
<th>GPU</th>
<th>RAM</th>
<th>Pantalla</th>
<th>Teclado</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACER</td>
<td>Aspire V3</td>
<td>Intel Core I7 (3.1 GHz)</td>
<td>NVIDIA GF 840M (2 GB)</td>
<td>16 GB DDR3</td>
<td>Tamaño: 15.6”</td>
<td>Español, cubierta de aluminio</td>
</tr>
</tbody>
</table>

Mesa o superficie de trabajo.

La mesa o superficie de trabajo deberán ser poco reflectantes, tener dimensiones suficientes y permitir una colocación flexible de la pantalla, del teclado, de los documentos y del material accesorio.

El soporte de los documentos deberá ser estable y regulable y estará colocado de tal modo que se reduzcan al mínimo los movimientos incómodos de la cabeza y los ojos.

El espacio deberá ser suficiente para permitir a los trabajadores una posición cómoda.

Asiento de trabajo.

El asiento de trabajo deberá ser estable, proporcionando al usuario libertad de movimiento y procurándole una postura confortable.

La altura del mismo deberá ser regulable.

El respaldo deberá ser reclinable y su altura ajustable.
3.2. Interconexión ordenador/persona

Para la elaboración, la elección, la compra y la modificación de programas, así como para la definición de las tareas que requieran pantallas de visualización, el empresario tendrá en cuenta los siguientes factores:

- El programa habrá de estar adaptado a la tarea que deba realizarse.
- El programa habrá de ser fácil de utilizar y deberá, en su caso, poder adaptarse al nivel de conocimientos y de experiencia del usuario.

Por todo esto y debido a la naturaleza del proyecto el programa que se utiliza es OpenFOAM® en su versión 2.4.0 para realizar los cálculos y ParaView en su versión 4.1.0 para el post-procesado de los mismos, además de Matlab® para la generación de la malla y cálculos de diversa índole.
DOCUMENTO III:

PRESUPUESTO
Capítulo 1. Introducción

El presente documento tiene la finalidad de representar los costes que ha supuesto la realización el proyecto “SIMULACIÓN CFD DE FLUJO INTERNO EN TOBERAS DIÉSEL PARA MOTORES INDUSTRIALES”.

Para recoger de la manera más precisa posible el coste total del proyecto, éste se ha dividido en tres costes principales.

El primero de ellos es el coste de personal. En éste, se incluyen el coste del aprendizaje del software utilizado, el coste del pre-procesado, el coste del post-procesado, la redacción de este documento y las reuniones entre ingenieros durante todo el proyecto.

El segundo coste a mencionar es el coste del cálculo. En éste se incluyen la amortización del ordenador utilizado y del servidor de cálculo utilizado.

El último coste recibe el nombre de otros costes. En éste se incluyen aquellos costes que no se mencionan en los dos anteriores como son el coste del material fungible, el coste de electricidad y de alquiler/amortización del puesto de trabajo además de las licencias de los programas utilizados.

Una vez detallados estos tres costes, se sumaran y se les aplicarán los impuestos oportunos dando como resultado el coste total del proyecto.
Capítulo 2. Costes

2.1. Coste de personal

Para el cálculo del coste de personal se le ha asignado un salario de 41.84 €/hora al tutor del proyecto como ingeniero superior y el salario mínimo profesional al alumno que realiza el proyecto siendo este según el RD 1171/2015 de 21.84€/día laboral de 8 horas, por lo que el salario horario es de 2.73 €/hora. El coste horario del alumno ha sido de aproximadamente 300 horas repartidas, tal como se ve en la Ilustración 2.1, en aprendizaje, pre-procesado, post-procesado, redacción y reuniones con el tutor. El coste horario del ingeniero superior abarca las reuniones y parte del post procesado. En la Tabla 2.1 se muestra el coste monetario en euros de cada una de dichas actividades y el total del coste de personal.

Ilustración 2.1. Coste horario dividido por tareas del alumno y del tutor.
Capítulo 2. Costes

Tabla 2.1. Coste de personal.

<table>
<thead>
<tr>
<th></th>
<th>Coste Alumno (€)</th>
<th>Coste Tutor (€)</th>
<th>Coste Personal (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aprendizaje</td>
<td>273.00</td>
<td>1046.00</td>
<td>1319.00</td>
</tr>
<tr>
<td>Pre procesado</td>
<td>136.50</td>
<td>-</td>
<td>136.50</td>
</tr>
<tr>
<td>Post procesado</td>
<td>136.50</td>
<td>418.40</td>
<td>554.90</td>
</tr>
<tr>
<td>Redacción</td>
<td>177.45</td>
<td>-</td>
<td>177.45</td>
</tr>
<tr>
<td>Reuniones</td>
<td>81.90</td>
<td>1255.20</td>
<td>1337.10</td>
</tr>
<tr>
<td>Total</td>
<td>805.35</td>
<td>2719.60</td>
<td>3524.95</td>
</tr>
</tbody>
</table>

2.2. Costes de cálculo

Para poder realizar la estimación de este coste se asume que el portátil utilizado tiene un periodo de amortización de 5 años y un valor residual del 30 %. Si el coste del portátil utilizado, cuya descripción se mostraba en la Tabla 3.1 del documento anterior, es de 787 € el precio horario según la ecuación (2.1) es de 0.06856 €/hora, asumiendo que el portátil ha sido utilizado las 450 horas, repartidas en las horas para realizar las tareas expuestas en el apartado anterior más las horas de cálculo, el coste del portátil ha sido de 30.85 €.

\[
Coste_{horario} = \frac{Valor\ Inicial - Valor\ residual}{Horas\ de\ amortización}
\]

Para la estimación del coste de la estación de cálculo (Cluster) se ha asumido un periodo de amortización de 10 años durante los cuales está funcionando el 90 %. El precio de esta estación de cálculo es de aproximadamente 4500 € con un valor residual del 25 %, por lo que el coste horario según la ecuación (2.1) es de 0.04566 €/hora. Para el cálculo del coste total del Cluster se ha asumido un coste horario de 10 horas por cada uno de los 44 cálculos realizados, dando un total de 20.09 €.

En la Tabla 2.2 se detalla el coste de cálculo en euros.

Tabla 2.2. Coste de cálculo.

<table>
<thead>
<tr>
<th></th>
<th>Coste ordenador (€)</th>
<th>Coste estación de cálculo (€)</th>
<th>Coste de cálculo (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30.85</td>
<td>20.09</td>
<td>50.94</td>
</tr>
</tbody>
</table>
2.3. Otros costes

El material fungible utilizado y el precio del mismo se muestran en la Tabla 2.3, siendo el coste total del material fungible de 58.65 €.

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Unidades</th>
<th>Coste unitario (€)</th>
<th>Importe (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bolígrafo</td>
<td>5</td>
<td>0,35</td>
<td>1,75</td>
</tr>
<tr>
<td>Paquete papel 500 hojas</td>
<td>1</td>
<td>3,9</td>
<td>3,9</td>
</tr>
<tr>
<td>Tóner negro</td>
<td>1</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Tóner color</td>
<td>1</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>CD-ROM</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Para la estimación del coste de electricidad y el alquiler del despacho se ha asumido como el 15 % del coste de personal antes de impuestos, por lo que tendría un coste de 528.74 €.

Los programas utilizados en la realización del proyecto y el precio de sus licencias se muestra en la Tabla 2.4; por lo que el coste de las licencias asciende a 650 €

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Unidades</th>
<th>Coste anual (€)</th>
<th>Importe (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matlab 2012</td>
<td>1</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>OpenFOAM 2.4.0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ParaView 4.1.0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Microsoft Office 2013</td>
<td>1</td>
<td>150</td>
<td>150</td>
</tr>
</tbody>
</table>

El importe total de los costes expuestos en este apartado asciende a 1237.39 €.

2.4. Coste total

El coste total de este proyecto se recoge en la Tabla 2.5, siendo este de cinco mil ochocientos veinticuatro euros con ocho céntimos de euro.
Capítulo 2. Costes

Tabla 2.5. Coste total del proyecto

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Coste (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coste de personal</td>
<td>2719.60</td>
</tr>
<tr>
<td>Coste de cálculo</td>
<td>50.94</td>
</tr>
<tr>
<td>Otros costes</td>
<td>1237.39</td>
</tr>
<tr>
<td>Coste total sin impuestos</td>
<td>4813.29</td>
</tr>
<tr>
<td>I.V.A (21 %)</td>
<td>1010.79</td>
</tr>
<tr>
<td>Coste total</td>
<td>5824.08</td>
</tr>
</tbody>
</table>
Bibliografía

