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Abstract— Las imágenes de Rayos-X o de tomografía 

computarizada (CT) pueden contener ruido debido al proceso 

de adquisición. Este ruido complica sustancialmente el proceso 

diagnóstico, por lo que será necesario el desarrollo de filtros 

efectivos. En este trabajo se estudia el comportamiento del 

filtro Fuzzy Peer Group Averaging (FPGA) sobre una colección 

de imágenes mamográficas que ha sido previamente 

contaminada con ruido impulsivo y gaussiano. El objetivo del 

trabajo es averiguar si FPGA es adecuado para la mejora de 

imágenes CT obtenidas con una dosis de radiación reducida. 

Los resultados indican que FPGA se comporta, efectivamente, 

mejor que el resto de métodos estudiados en este trabajo y por 

tanto resulta un candidato adecuado. 

 

I. INTRODUCTION 

Filtering techniques to improve images, i.e. to detect and 
correct noise in images, has been a main subject in the last 
years, particularly in medical image (X-Rays or computer 
tomography CT methods) where the quality of the image can 
influence the diagnosis of a disease (for instance, in the 
detection of microcalcifications in a mammogram).  

Besides that a good filter can be employed to improve 
the output image as a result of using a reduced radiation 
dose, as in CT images, where exposure to X-Rays is very 
high. 

In this work we compare filtering methods over one 
mammogram image from de Database of mini-MIAS[1]. 
The methods studied are the proposed in [2-7] and the 
method proposed in [8]. In this first study the Peer Group 
with Fuzzy Metric (PGFM) method and the Non-linear 
Diffusion method (NDF) were used over a black and white 
image of a mammogram, that is, in the medical domain. In 
the second one the method Fuzzy Peer Group Average filter 
is presented. This filter was used over a set of color images 
unrelated to the medical domain. The object of this study is 
to test the usefulness of FPGA in the medical image domain 
as we did in a previous work [2] and compare the results in 
terms of quality measures using the same mammogram 
image employed in the mentioned study, and adding the 
same amount of impulsive and/or Gaussian noise to be able 
to compare the methods in an appropriate manner. A good 
restoration algorithm can lead to the reduction of the 
radiation dose used as was stated in [9]. 
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Several methods have been studied for image filtering 
determined by the type of noise to remove, for instance, for 
Gaussian noise, the methods based on filtering the image in 
the space or in the frequency domain (see [10] for a review), 
methods based on solving regularized least-squares 
problems [11] and methods based on the use of non-linear 
Diffusion equations [12-21]. In the case of impulsive noise, 
recent techniques based on the concept of peer group with 
fuzzy metric which have provided good results in RGB 
images [22-24]. 

The paper is organized as follows: Section II explains the 
different compared methods. The results of the experimental 
study are shown in Section III and, the conclusions are 
presented finally, in Section IV. 

 

II. METHODS OF NOISE SUPPRESSION 

A. Peer Group and Fuzzy Metric (PGFM)  

This method is a two-tiered process. The first one try to 
detect erroneous pixels and the second step try to correct 
them. For the detection stage, the fuzzy metric between pixel 
xi and xj is used as described in [22], which is given by the 
following function: 
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where k > 0.  

The value k reduces the non-uniformity or avoids 
reducing the significance of the data for two different 
consecutive pairs or distanced vectors. Fuzzy metric (1) is 
employed in peer group P(xi,d), where xi is the central pixel 
in a window W with size n x n (in present study, n = 3 was 
considered) and d ϵ [0,1]. The representation of the P(xi,d), 
in mathematical formulation, is as follows: 

P(xi, d)={ xj ϵ W: M (xi,xj) ≥ d}.               (2) 

The peer group [23] associated with the central pixel xi 
of W is the set formed by the central pixel and neighbouring 
pixels, that are part of the window whose fuzzy distance 
from xi is greater than d. 

The detection step performs two phases. The first phase 
calculates the peer group of xi in W and all pixels that belong 
to the peer group. It is declared as non-corrupted if the 
cardinality of the P(xi,d) is greater than (m+1), where m is a 
threshold. Otherwise they are labeled as undiagnosed.  In the 
second phase, the pixels labeled as undiagnosed are 
analyzed. All pixels that belong to the peer group are labeled 
as non-corrupt if the cardinality of the P(xi,d) is greater than 
(m+1), otherwise the central pixel is marked as corrupted. 
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The three parameters (k, d and m), which are determined 
heuristically in the described process take values in a certain 
range depending on the input image. The value of d depends 
on the amount and type of noise introduced. 

In the correction step, given a xi previously marked as 

corrupted, we replace it by the Arithmetic Mean Filter 

(AMF) [25] of its neighbour pixels (labeled as non-

corrupted) in its window W. 

B. Non-linear diffusive filter (NDF) 

As mentioned in the introduction, a class of image 
restoration methods is based on the use of non-linear 
Diffusion equations [12-17]), which appear associated to a 
variation problem and, may be obtained from the 
minimization of the appropriate functional. The choice of a 
particular functional depends upon the specific goal of 
interest. For example, several diffusive filters, suitable for 
medical imaging [18], have been obtained from the 
minimization of the appropriate functional. 

Let us consider the functional [19], 
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where I0 is the observed image (with noise), u is filtered 
image, μ and ε are constant and Ω is a convex region of R

2
 

constituting the support space of the surface u(x,y), 
representing the image. The first term in the functional for β 
= 1 represents the area of the surface representing the image, 
[14], the second term gives account of the distance between 
the observed image and the desired solution u (Filtered 
image), and the third term controls the regularity of the 
solution. 

We will consider the minimization problem [13], [14] 
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that is, we search for the image u that minimizes the 

functional J(u,β,μ,ε ) and presents a variance with respect to 

the observed image I0 equal to σ
2
; σ, the noise standard 

deviation of the image a priori, is unknown, but it is 

important to know its value to minimize equation (4). In our 

work we estimate, σ, by taking the median absolute 

deviation of the empirical wavelet coefficient of the finest 

scale and dividing by 0.6745 [18]. For all the images 

studied, the wavelet was a Daubechy of order 25. This 

process is the key stone of the non-linear diffusive filter. 
For the time discretization, we use a semi-implicit 

scheme, and for solving the equations we use the alternative 
additive operator splitting (AOS) [15], [19]. The stopping 
time selection in the Diffusion equation was proposed by 
Mrázek and Navara, based on the decorrelation criterion 
[20]. 

C. Fuzzy Non-linear diffusion filter (FNLDF) 

This technique is the combination of PGFM and NDF 

method. The sequence of application of the methods is as 

follows: first PGFM and then NDF. The peer group with 

fuzzy metric approach removes the impulsive noise and the 

Gaussian noise is eliminated by NDF. 

D. Fuzzy Peer Group Averaging Filter (FPGA) 

This filter performs in two steps, (i) impulse noise 

detection and reduction, and (ii) Gaussian noise smoothing. 

Both steps use the fuzzy peer group of a central pixel    in a 

window W of     according to [8] and using a fuzzy 

metric.  

The definition of peer group is based on the ordering of 

the pixel neighbors with respect to its similarity to the 

central pixel xo.  

Let   be an appropriate similarity measure between two 

color vectors. Color vectors xi   W are sorted in a 

descending order with respect to their similarity to xo, 

obtaining an ordered set W' = { x(o), x(1) , … , x(n
2
-1) } such 

that   (xo, x(o))      (xo, x(1))   …     (xo, x(n
2
-1)), where  xo 

= x(o). The peer group    
   of m + 1 members associated 

with pixel xo is the set  
 

  
   = { x(o), x(1) , … , x(m) } (5) 

 

In [8], a fuzzy logic-based method is proposed to 

determine the best number of members  ̂ of a peer group. 

The fuzzy peer group of a central pixel xo in a window W 

according to [8] is defined as the fuzzy set    
   defined on 

the set { x(o), x(1) , … ,    ̂  } and given by the membership 

function    
      (xo, x(i)) . Then the best number  ̂ of 

members of   
  is defined as the value of       

             maximizing the certainty of the following 

fuzzy rule. 

Fuzzy Rule 1: Determining the certainty of m to be the 

best number of members for   
   

IF "xm is similar to xo" and the accumulated similarity for 

x(m) is large THEN "the certainty of m to be the best number 

of members is high".  

CFR1(m) denotes the certainty of the Fuzzy Rule 1 for m. 

Then, CFR1(m) is computed for each       w and the 

value which maximizes the certainty is selected as the best 

number  ̂ of members of   
  , i.e., 

 ̂            
       . 

The certainty of “xm is similar to xo” is given by the 

membership function      determined by the similarity 

measure 
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The accumulated similarity for xm denoted    (    ) is 

defined by  

   (    )   ∑ (       )
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Then, the certainty of “   (    ) is large” is given by the 

membership function     defined by 
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The  product t-norm was used as the conjunction operator 

and therefore no defuzzyfication is needed. Then, 

            (    )  
  (    ). 

The fuzzy similarity function,  , used was  
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where ||.|| denotes the Euclidean norm and    is a parameter 

which will be discussed in Section III. This function   takes 

values in [0, 1] and satisfies that            if and only if 

     . 

Another fuzzy rule is used to detect impulse noise. 

Fuzzy Rule 2: Determining the certainty of the pixel x0 to be 

free of impulse noise 

IF "accumulated similarity    (   ̂ ) is large" and "   ̂  is 

similar to   " THEN "   is free of impulse noise". 

In order to compute the certainty of the Fuzzy Rule 2, 

denoted by CFR2, the certainty of “   (   ̂ ) is large” is 

given by   , (defined in (8)) and the certainty of “   ̂  is 

similar to   ” is given by     given by formula (6). The t-

norm product is used as conjunction operator and then 

             (   ̂ )  
  (   ̂ ). This certainty is already 

computed since                 ̂  and then no additional 

computation is needed. If the certainty of Fuzzy Rule 2, 

     satisfies  

              (10) 
 

then    is free of impulse noise else    is an impulse and it is 

replaced with        [26].    is a threshold parameter with 

values in [0,1] which will be discussed in Section III. 

 

III. RESULTS 

In this section we present the experimental results of 
filtering a grayscale image taken from the database of mini-
MIAS [1] (Fig. 1) with the filters mentioned in the previous 
section.  

We added Gaussian and fixed impulsive noise to the 
image. In order to measure the resulting quality of the 
images, we used PSNR and MAE. PSNR (Peak Signal-to-
Noise Ratio) is used to measure noise reduction and MAE 
(Mean Absolute Error) is used for the preservation of the 
signal. To define the PSNR, we need to calculate the mean 
square error (MSE), which for two monochrome images u 
(Filtered image) and I0 (Observed image) of size M x N is 
defined as: 
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where MxN the is image size. 

Thus, the PSNR is defined as: 

)12(

2

0
10log10



















MSE

IMAX

PSNR  

where MAX1 is the maximum possible pixel value of the 
image. 

The mean absolute error is given by,  
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We tested the image with different types and amount of 
noise. The first image contains 0.10 noise density (D) of 
fixed impulsive noise, the second one contains σ = 0.01 for 
generate Gaussian noise and the last one contains a mix of 
impulsive noise with D=0.10 and Gaussian noise with 
σ=0.01. 

A study was conducted to find the best value of d and m 
for each case in the PGFM method. Table I shows the best 
results for each type of noise. Values d and m depend on the 
type and amount of noise introduced. In the cases which 
involve the variance, m has the same value (8, all neighbors), 
otherwise the value is 4. With variance of 0.01, the value of 
d is 0.92.  

 

Figure 1.  Original Image. 1024x1024 

TABLE I.  BEST VALUE OF  THE PARAMETERS M AND D. 

 m D 

D=0.10 for fixed impulsive noise 5 0.85 

σ= 0.01 for Gaussian noise 8 0.92 

D=0.10 for fixed impulsive noise with σ=0.01 

for Gaussian 

8 0.92 

 

Through a similar process to that used in article [14], there 
was obtained the value of k whose optimal value is usually 
1024 for this type of images.  

Another study was conducted to find the best    and    
parameters for the FPGA method. Table II shows the best 
results for each contaminated image. 

TABLE II.  BEST VALUE OF  THE PARAMETERS    AND    . 

       

D=0.10 for fixed impulsive noise 0.85 475 

σ= 0.01 for Gaussian noise 0.85 340 

D=0.10 for fixed impulsive noise with σ=0.01 

for Gaussian 

0.85 350 

 



  

Once the heuristic parameters k, d, m,    and    are 
determined we will perform a comparative analysis of the 
performance of the filters FNLDF, PGFM and NDF, and we 
compare them with FPGA for an image size of 512×960.  

Applying the filters to the image with 10% fixed impulsive 
noise, we obtained the quality of the filtered image from the 
original shown in table III and figure 2. As we can see, when 
the image contains only impulsive noise, the best method is 
FPGA. We can also use the PGFM or the FNLDF method 
with a little quality difference below the FPGA method. The 
NDF method does not provide good image quality.  

TABLE III.  RESULTS OF QUALITY FOR THE IMAGE WITH D = 

0.10 (FIXED IMPULSIVE NOISE) 

 MSE PSNR MAE 

Filtered image with PGFM 5.5365 40.6985 0.1793 

Filtered image with NDF 36.4523 24.3934 9.4899 

Filtered image with FNLDF 7.1813 39.5688 0.759 

Filtered image with FPGA 4.8948 41.2335 1.1214 

Noisy image 1.90E+02 15.3459 12.821 

          

 

     

a b c d e 

Figure 2.  Results for image size 512x960: a) D =0.01 for fixed impulsive 

noise, b) Filtered image with PGFM, c)Filtered image with FNLDF, d) 
Filtered image with NDF, e) Filtered image with FPGA 

TABLE IV.  RESULTS OF QUALITY FOR IMAGE WITH  0.01 OF 

GAUSSIAN NOISE 

 MSE PSNR MAE 

Filtered image with PGFM 305.8954 23.2751 13.266 

Filtered image with NDF 88.5022 28.6613 7.3277 

Filtered image with 

FNLDF 
99.7893 28.14 6.9826 

Filtered image with FPGA 68.9717 29.7441 6.4761 

Noisy image 621.5723 20.1959 19.672 

 

In the case of images only with Gaussian noise, again 
FPGA outperforms the rest of the methods, the performance 
of Diffusion method (NDF) and FNLDF have similar results 
and better than  PGFM method. Table IV shows the results 
and figure 3 shows the resulting image. 

For images contaminated with two types of noise (Table V 
and Fig. 4) shows that the FPGA method is slightly better 
than FNLDF which is about 4 units PSNR better than the 
other methods, and with respect to the noisy image is 
approximately 15 units PSNR better.  

IV. CONCLUSIONS 

In this paper we present the results obtained by applying 
the FPGA method and comparing it with FNLDF, PGFM and 
NDF methods to remove the impulsive noise (fixed), 
Gaussian and a mix of the two of them on a mammogram 
obtained from the database mini-MIAS. 

If the image contains only impulsive noise (fixed), the 

best technique is FPGA, although the methods PGFM and 

FNLDF provide similar results. If the image contains only 

Gaussian, the best technique for removing noise is FPGA 

again, followed closely by the NDF and the FNLDF methods. 

When the image contains the discussed combination of noise, 

although FPGA get the best PSNR score, the MSE and the 

MAE scores denote that some improvement could be made. 

FPGA shows a good behavior in all types of images 

revealing itself as a good method to be employed in CT 

images for reduction of radiation dose. 

In view of this, the future works will include the study of 
FPGA over a set of images with a variable amount of 
radiation dose in order to quantify the improvement. Besides 
that, and due to the high computational cost of the process, 
we will introduce high performance computing (GPUs, 
Multicore, libraries). 

     

a b c d e 

Figure 3.  Results for image size 512x960: a) σ =0.01 for Gaussian noise, 

b) Filtered image with PGFM, c)Filtered image with FNLDF, d) Filtered 
image with NDF, e) Filtered image with FPGA. 

 

     

a b c d e 

Figure 4. Results for image size 512x960: a)Density D=0.10 for fixed 

impulsive and σ =0.01 for Gaussian noise, b) Filtered image with PGFM, 

c)Filtered image with FNLDF, d) Filtered image with NDF, e) Filtered 
image with FPGA. 

 

 
 

 

 
 



  

 

TABLE V.  RESULTS OF QUALITY FOR IMAGE WITH (D) = 0.10 

AND  0.01 OF GAUSSIAN  (FIXED IMPULSIVE AND GAUSSIAN NOISE) 

 MSE PSNR MAE 

Filtered image with PGFM 322.9214 23.0398 13.6645 

Filtered image with NDF 299.4993 23.3668 12.5675 

Filtered image with FNLDF 103.1628 27.9956 7.3411 

Filtered image with FPGA 74.9976 29.3803 6.6121 

Noisy image 2.23E+03 14.6383 29.6629 
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