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Abstract. Current integration scales are increasing the number and
types of faults that embedded systems must face. Traditional approaches
focus on dealing with those transient and permanent faults that impact
the state or output of systems, whereas little research has targeted those
faults being logically, electrically or temporally masked -which we have
named fugacious. A fast detection and precise diagnosis of faults occur-
rence, even if the provided service is unaffected, could be of invaluable
help to determine, for instance, that systems are currently under the in-
fluence of environmental disturbances like radiation, suffering from wear-
out, or being affected by an intermittent fault. Upon detection, systems
may react to adapt the deployed fault tolerance mechanisms to the diag-
nosed problem. This paper explores these ideas evaluating challenges and
requirements involved, and provides an outline of potential techniques to
be applied.

Keywords: Fault detection; transient faults; intermittent faults; per-
manent faults; fault diagnosis; VLSI design workflow

1 Introduction

Current embedded VLSI systems are widespread and operate in multitude of
applications in different markets, ranging from life support, industrial control,
or airborne electronics to consumer goods. It is unquestionable that the former
require different degrees of fault tolerance, given the human lives or great in-
vestments at stake, but it is not so obvious to admit that unexpected failures in
consumer products can undermine their success in the marketplace [1]. Hence,
there is great interest in protecting equipment from eventual faults, which in
turn involves providing a certain degree of service reliability over the whole life-
time. Specifically this relies on controlled operation of both software and hard-
ware. While it is clear that potential programming bugs will affect the software
behaviour, recent studies on complete systems highlight the disastrous impact
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which even transient faults happening in the hardware may have in the code
execution of critical applications [2]. Therefore in order to achieve dependable
devices it is no longer possible to preclude hardware implications from software
design.

In the design stage of a product it is foreseeable an evolution in its oper-
ational state, from an ideal scenario to another posing several dependability
threats. Since a set of specifications has to be met, a conservative approach is
taken and security margins are applied to compensate for expected negative ef-
fects which may hinder correct service delivery. But that evolution can be no
longer predicted accurately enough [3], leaving the only alternative to adapt the
system to unexpected changes during its service lifetime. Hence, it is a growingly
important requisite to create an information flow from environment to hardware
and finally software. A major source of such sudden changes in a system is the
occurrence of faults.

To explain why faults appear, there are a number of reasons to be men-
tioned. For instance, manufacturing capabilities have been evolving at a fast
pace, bringing a new breadth of improvements to embedded systems in terms of
logic density, processing speed and power consumption. However, those benefits
become threats to the dependability of systems, causing higher temperatures,
shorter timing budgets and lower noise margins which increase fault proneness.
In addition, deep-submicron technologies have both decreased the probability
of manufacturing defect-free devices, and increased the likelihood of problem-
atic events originated by wear-out. Moreover, the susceptibility of extremely
integrated electronics to a-particles and neutrons, arriving from outer space or
radioactive materials grows steadily, yielding a non-negligible degree of so called
soft errors [4], which affect temporarily the correctness of processing.

The mentioned faults can be classified in permanent or transient categories.
Research in the field has focused mainly in tackling permanent faults, disregard-
ing transient faults when their effect is not visible as errors in the captured data.
For instance, transient faults with short activation times (percentage of time in
which it is affecting the system relative to clock period), which have been shown
difficult to detect by conventional means [5], may not produce incorrect outputs
at once, but are a good indication of a problematic environment. We have named
them fugacious. According to [6], out-of-range supply voltages, abnormal noise,
temperature, etc. are triggers for such transient faults, which if repeated are
called intermittent faults. Whether the final nature of the fault is transient or
intermittent will depend on the wear-out conditions. For that reason we must
make an effort to be able to detect and diagnose such types of faults, because
these will provide valuable information when taking decisions for the evolution
of the system. An example would be to change the data codification in a bus
to a more robust scheme in the hardware, or to enable additional processing
iterations or variable checks in the software, for redundancy purposes. Studies
devoted to detection and diagnosis of fugacious faults are scarce or non-existent.
However, certain known detection techniques could be applied to fugacious faults
with limited success [24], since only a reduced period of time is monitored.
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The contribution of this paper is based in 2 major points: (i) to identify
and ponder the challenges of detection and diagnosis of fugacious faults in VLSI
systems and (ii) to provide insight on methods and technologies to cover such
challenges.

The rest of the paper is structured as follows. Section 2 justifies the impor-
tance of on-line detection, and underlines the difficulties of detecting transient
and intermittent faults with short activation times. Furthermore it presents the
different fault models while providing an overview on diagnosis of such faults. A
set of methods and technologies is presented in Section 3 to cope with the task.
Finally, Section 4 indicates the following actions to be taken and related issues.

2 The problem of Fast Fault Detection and Diagnosis

According to Avizienis [7] the basic criterion to catalogue faults in permanent or
transient type is the persistence. This can however be an incomplete information
to comprise the whole picture and thus, activation reproducibility is the concept
introduced to better describe the observed situations. For permanent faults, dif-
ferent activation patterns lead to solid, hard faults when these are systematically
reproducible or to elusive, soft faults when they are not. Depending on circum-
stances those soft faults can be intermittent in time. For transient faults, elusive
activation is the most common but certain circumstances can likewise make them
manifest intermittently.

Such differentiated activation patterns require tailored fault tolerant tech-
niques of detection and diagnosis for dependability threats caused by faults and
errors. In several situations including high availability or high performance sys-
tems, a concurrent detection (on-line) becomes critical. Next the existing sce-
nario related to such concepts is explained.

2.1 On-line detection of faults and errors

In order to test proper development of the systems several methods have been
described. From post-manufacture checking by means of test vectors or burn-in
testing used to discard flawed units, to assigning slots of regular service time
for test, for instance, many off-line techniques are currently employed. But the
advantage of on-line detection is clear. A loose detection or notification latency,
can have disastrous consequences in certain situations [8]. Besides, the longer
a fault is present in the system without detection the higher the probability
of facing a multiple fault situation. Provided that the latter is a problem of
increased complexity we find justified interest in early detection.

There is long tradition in the dependability community to develop on-line er-
ror detectors. Typically, they are based in the use of special data codification or
in the replication and comparison of outputs or state variables. But the relation-
ship between a fault occurred at the processing network and an error manifested
in the outputs or state variables is a limiting factor known as observability [9)].
When the observability in an output is null for a given fault, no matter which
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input data combination was applied the fault will not show at the output. Like-
wise if more than one output is observable for that fault, multiple alterations
would be detectable at those outputs. This can be specially important when
using encoded circuits, where several properties describe different types of such
circuits according to the consequences of a set of faults [10].

— Fault-Secure. Circuits where in presence of a fault either the outputs are
correct or they are not a valid code word.

— Self-Checking. If for every fault of the fault models and for every input either
the output is correct or it is detected as error.

— Self-Testing. Circuits in which for every fault of the fault set there is at least
one possible input which causes the error to be detected.

— Totally Self-Checking. Circuits that are simultaneously Fault-Secure and
Self-Testing.

— Code-disjoint. Circuits where a non-code word input generates a non-code
output. This allows detection of erroneous inputs or cascading of blocks.

Therefore when employing codification it will be desirable to maximise the
observability in order to achieve a good fault coverage.

There are 3 possible causes for fault filtering: electrical, logical or temporal.
When dealing with permanent faults, temporal causes are discarded and due to
the nature of hard faults, logical filtering can only be short in time. For those
reasons any checking methodology will obtain positive results with hardly any
misses meanwhile the observability is good enough.

Nevertheless, detection of transient or elusive and intermittent faults is not
so straightforward. On the one hand, and according to field data from digital sys-
tems [11], transient faults have been shown to account for up to 80% of failures.
These can be caused by several reasons as it is known. Among those reasons, the
arrival of a-particles, protons or neutrons from radiation is one of the most stud-
ied and popular. If we pay attention to the evolution of transient fault duration
produced by one of these particles impacting a CMOS node, the result is directly
proportional to the feature size of the electronics [12]. However, the operational
frequency of devices has not been following the historic monotonic growing trend,
due to well known power dissipation issues. Consequently transients produced
by radiated particles and charge build-ups are narrower and narrower compared
to the clock periods. This paves the way to believe that although the number
of faults affecting a system may be high, chances are these would not be easily
captured by clock edges at the storage elements (heavy temporal filtering, see
Figure 1) . The derivatives of this are that the moment a fault is detected many
more could have already happened and the available time for reaction could be
too short. Therefore for self-awareness purposes it is desirable to detect them.

On the other hand, intermittent errors caused as studied by Nightingale [13]
a total of 39% of all hardware errors which, according to reports by Microsoft
from 950.000 computers, induced a crash in the operating system. This gives a
hint on the number of intermittent faults that can be happening in the system
if we consider that not all of them will end in an operating system crash. Other



Detection and Diagnosis of Fugacious Hardware Faults 5

clk /ﬁ

inputs X A \X B

transient_fault )

internall

transient_fault
internal2

transient_fault
outl

intermittent_fault

out2

out_r X Prev \X Aout

faults not captured

Fig. 1. Temporal filtering

examples of can be found in certain cruise control modules for vehicles [14] which
hit a return rate of 96% due to undetected intermittent failures. These figures
can be uneven depending on the context of operation since, as distinguished
by Savir [15], random originated intermittent faults appear and disappear in
an unpredictable fashion whether systematic intermittent faults evolution can
be numerically characterized [16]. This enables a proper decision on the best
moment to apply recovery actions to maximise availability. Such systematic in-
termittent faults start by small fluctuations which grow in time and intensity
until their effect is severe [17]. In order to set focus on the considered problem,
a description of fault models is required.

2.2 Considered fault models

According to the presented concept of activation time, and the activation re-
producibility described earlier, we have established the name of fugacious faults
to refer to a set of 3 different types of faults. The fugacious transient faults
are defined as those which remain active less than a clock cycle of the system.
Likewise, fugacious intermittent faults are those transient faults which activate
at least twice in a clock period. Finally, permanent faults are active the whole
time span of the clock period, that means for us a fault lasting more than one
clock period will be considered permanently active.

2.3 Fault diagnosis

Multiple efforts have been conducted towards an effective diagnosis of different
types of faults based on their activation reproducibility. As demonstrated in [18]
there are important benefits for the Mission Time Degradation and Mean Time
To Failure (MTTF) Degradation associated to correctly discriminating transient
from permanent faults. It is clear that no equal treatment has to be given to
both of them. For instance, transient faults will require no corrective action at
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all when hardware redundancy provides a voted fault tolerance. Disregarding
the affected element for a certain period of time will negatively affect the de-
pendability of the system. Furthermore, given the nature of intermittent faults
and their proneness to become permanent, a proper distinction provides insight
on the convenience to isolate or recover the functional unit. Intermittent faults
diagnosis is a hot-topic in the field. An analytical model for a fault controller was
presented in [19], using a thresholds-based « count methodology to discriminate
transient from intermittent faults. Its Stochastic Activity Networks (SAN) anal-
ysis is specifically based on the time step, where transient faults last for less than
one step and intermittent faults repeat their appearance in subsequent steps. Its
drawbacks are it requires a long latency to discriminate, and infrastructure to
detect and accumulate the respective faults. Other recent studies which also em-
ploy SAN with thresholds [20] applied to real systems only consider intermittent
errors captured in state variables, which last more than one clock cycle.

In the case of fugacious faults, we take into account events of a quickly
‘evanescent’ nature where the capture and diagnosis procedure must have in-
trinsically low latency. It must be able to process two or more faults per cycle
in order to discriminate an intermittent activation from a transient activation,
avoiding a new constraint in the frequency requirements.

3 Solutions for detection and diagnosis

Our effort has been focused in two directions: determining an appropriate struc-
ture to detect and diagnose the set of faults we have previously presented and
defining a procedure to apply such structure to the standard design flow.

3.1 Architecture of a faults detection and discrimination system

In every VLSI circuit we can find combinational stages separated by registers.
Since the pursued goal is to have accurate and flawless computations, we will
require 2 conditions:

— To produce correct results.
— To sense any deviations in the datapath which may be out of reach by just
checking registered values.

The steps to take in order to reach these goals start by considering hardware
replication and comparison. The large number of commercial systems utilizing
such technique tells about the effectiveness of the approach at the expense of
important amounts of hardware. The foremost advantage is quick on-line miti-
gation (when a voter is included), and usually there is no need to include voters
in every stage but just in critical ones. Nevertheless, for detection and diagnosis
a lighter, cheaper technique would enable the possibility to deploy detection to
a larger number of partitions spread around the system. The use of codification
may well fill the gap and combine with replication in a wise manner.
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An interesting feature of codification is that systematic codes do not require
to alter the original bits, thus alleviating the decoding of outputs in the datap-
ath. In order to minimise speed penalty applied to outputs, this makes a great
advantage [21]. Berger codes and parity groups are the most popular systematic
codes and have been profoundly studied. In [22] conditions for fault secureness in
parity predictors are derived. Furthermore [23] presents a generic optimisation
technique for parity prediction functions, to achieve quick and small circuits.

The envisioned topology using codification would follow that in Figure 2. In
it, a Detection Block would receive inputs directly from partition input registers,
and also from outputs prior to registering. A properly selected codification could
reduce block area and optimise the speed. This block would include thus a set of
Commercial Off-The-Shelf (COTS) encoder and decoder which can be a single
bit parity prediction/decoding pair in its simplest form.

COTS
encoder

COTS
decoder

Unit

Fig. 2. Global scheme of the faults detection and diagnosis infrastructure. Timing
Control Unit handles temporisation of Detection decoder

Is that enough to handle every type of fault? The answer is 'no’. Coding
functions are effective techniques to detect permanent errors, or transient errors
which are not time filtered. For effective detection of transient faults of a limited
activation time (smaller than a clock period in general), additional elements are
required. An example using triplication was presented in [24], where intermittent
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faults were not considered at all, and the sensing time was rather reduced. On-
line detection of intermittent faults has been previously devised in different ways.
One proposed idea was to inject a carrier signal in the line under study and
monitor the correct behaviour of it [25]. Again, the cost is rather high: an injector
and receiver for the lines under analysis, plus extra wear-out due to increased
switching of the lines. A cheaper detection can be achieved by monitoring those
coded lines devoted to detection.

To avoid those shortcomings, an additional element included is the Timing
Control Unit (TCU). Its function is to adjust the timings of detection elements
with one goal in mind, i.e. to increase the observation window. The term refers to
the percentage of the clock period when the lines under study are monitored for
any potential faults. If we reduce the switching interval as opposed to the stability
interval of the signals, we will have increased the observation window and thus
the effectiveness of the detection (see Figure 3). The reason for preferring this
method to the observation of a reduced period of time assuming equiprobable
distribution of faults is clear, i. e. to gain in speed of detection.

clk
inputs X A X 5
outputs changing observation
out_monitored < )_( enlarged observation >.
out_r X Yout X Aout

Fig. 3. Observation window enlarged by means of reducing period of signal switching

Finally once gathered, the detection information could be codified against
faults using a code (&) and passed to a Diagnosis Block, where the same or
a different code (&) can be used to notify the diagnosed output to a fault
controller.

Inside the Diagnosis Block, inputs must be analysed and discriminated to
offer 5 different output possibilities:

— Transient fault.

— Permanent fault.

Intermittent fault.

— No fault.

Error in diagnosis infrastructure.

To achieve the goal, the Diagnosis Block will be built using a fault-tolerant
(FT) encoder designed to minimise resources taken. By providing all these dif-
ferent outputs and doing so in a fault tolerant codification, the most adequate
decision will be enabled to be taken at the fault controller. Hence, smart reac-
tions can be applied well in advance to an eventual collapse of fault tolerance
infrastructure.
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3.2 Workflow to apply in the proposed technique

In order to automate the process of deploying a detection and diagnosis infras-
tructure to a generic design block, a suggested procedure is shown in Figure 4.
What is depicted is a typical semi-custom design flow for VLSI products, where
the standard steps are on the left hand side. Technology files can represent a sil-
icon foundry design kit or an FPGA manufacturer primitives library. Likewise,
Physical element can be a layout file or a programming bitstream for an FPGA.
On the right we find detail of 2 interventions in the flow.

Specifications I
Design Entry

!
Original design

Synthesis

Addition of

: Modified design :
! 1
1
! 1
: 1
1

Constraints

Technology
files

Gate Level jm——=——==n
1

Implementation

Physical

Physical

Fig. 4. Tools interaction

A first intervention comes before the Synthesis and after Design Entry. This
step comprises an addition of required infrastructure in the Detection Block,
i.e. the COTS components and Timing Control Unit. Entry files are modified
as required and new timing constraints are generated for the TCU, to drive the
remainder of the design flow.

A second intervention happens in a loop between Gate-level and Physical
stages of the design. The purpose is to check timings against new constraints,
mainly affecting the TCU, and refine the implementation in a loop by tweaking
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in one of the 2 re-entry points A or B. If path B is selected, a faster process will
be obtained as a result, but deep knowledge of the underlying technology will
be required and we will find a side effect of loss of portability. With path A, a
more general solution will be obtained at the cost of speed of implementation.

The challenge in the integration of processes is derived from the difficulty to
achieve the optimum observation window for the whole range of process variabil-
ity. Other difficulties can come from the capabilities and restricted information
offered by technology suppliers.

4 Ongoing Work

An initial implementation is currently under development, where an FPGA-
based design flow has been chosen to support initial testing. Following the pre-
sented ideas, we have been able to develop first modification point working mod-
els. To reach optimal performance, we need first is to maximise the detection
capabilities of the structure, both in area and time. This means achieving a high
degree of observability at the check lines.

As for the second modification our efforts are devoted to achieve low per-
formance penalty results and at the same time maximising the period in which
lines are under surveillance. We need the least possibly intrusive system in order
not to give in too much in exchange for detection. This is vital when applied to
extreme performance demanding systems.

Last but not least, keeping the additional area small can be complex in cer-
tain circuits, if a powerful logic optimisation is not wisely applied. The upper
limit will be that imposed by pure replication but this should be perfectly re-
ducible without loosing much of the observability. An associated parameter to
area increase is the power drain due to new infrastructure. As usual in engineer-
ing, specifications and market constraints drive the balance between detection
and diagnosis capability and power/area/performance penalty.
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