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Abstract 

MOFs with Cu2+ centers linked to four nitrogen atoms from azaheterocyclic 

compounds, i.e., pyrimidine [Cu(2-pymo)2] and imidazole [Cu(im)2], are active 

catalysts for aerobic oxidation of activated alkanes, such as tetralin, cumene and 

ethylbenzene. Differences in activity among the two MOFs appear to be related with 

differences in their ability to decompose the hydroperoxide and to coordinate to the 

resulting radical ·OH species. Copper ions in [Cu(im)2] can coordinate by expanding 

their coordination sphere from 4 to 5 in a reversible way, while in the case of [Cu(2-

pymo)2] it results in a displacement of one of the pyrimidine ligands. The MOFs can be 

used in combination with a silylated Ti-MCM-41 to catalyze the epoxidation of olefins 

with oxygen by means of a tandem reaction in where the MOF produces cumene 

hydroperoxide, that is used by Ti-MCM-41 to epoxidize the olefin. 

 

1. Introduction 

 There is much interest in the design of hybrid materials for selective and multi-step 

catalytic processes 1. In this field, Metal-Organic Frameworks (MOFs) can play an 

important role due to the possibility to control and fine tune the crystalline structure, 

porosity, chemical environment and functionalities of the material. Compared to purely 

inorganic porous materials, MOFs offer in general higher flexibility for the design of 
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the catalytic center 2-4, which makes them interesting materials for heterogeneous 

catalysis, provided that mild reaction conditions are required. In this way, it is possible 

to design MOF-based heterogeneous catalysts in which the active sites are located either 

at the metallic sites or at the organic linkers, or even associated to catalytic species 

bonded or entrapped inside the pore system of the MOF 5, 6. Moreover, this large 

flexibility can readily lead to the design of multi-functional MOF catalysts 7, 8 by 

combining two or more types of active centers in the same material, such as metal-

metal, metal-acid, metal-base or acid-base functionalities.  

 We have recently reported 9 that a copper-containing MOF, [Cu(2-pymo)2] (2-pymo 

= 2-oxypyrimidinolate, 10) could be of interest as heterogeneous catalyst for the liquid-

phase oxidation of tetralin (T-H) using air as oxidant. Under the reactions conditions 

studied, a relatively high T-H conversion (ca. 52%) was attained without affecting the 

crystalline structure of the solid, which allowed to reuse the MOF without important 

loss of activity 9. However, this Cu-MOF showed some limitations. The most important 

was the high level of tetralinhydroperoxide (T-OOH) accumulated at the beginning of 

the reaction (up to 24mol% yield) and a low selectivity to the ketone, α-tetralone 

(T=O). We found that this inconvenience can be avoided by physically mixing [Cu(2-

pymo)2] with another MOF, i.e., cobalt benzimidazole ZIF-9 11, that react the 

hydroperoxides. 

 In the present work, we have extended our studies on the aerobic oxidation of tetralin 

to a copper-containing MOF, [Cu(im)2] (im = imidazolate, 12), which has a chemical 

composition and crystalline structure related to that of [Cu(2-pymo)2]. Recently, we 

have successfully used both materials for coupling reactions; viz. 1,3-dipolar 

cycloadditions of azides to alkynes 13, and three-component coupling of aldehydes, 

amines and terminal alkynes 14. In the present work, we have found that [Cu(im)2] has a 

better catalytic performance as compared to [Cu(2-pymo)2] for tetralin oxidation, in 

terms of activity, maximum T-H conversion and selectivity to the ketone. At the same 

time, [Cu(im)2] produces less T-OOH accumulation in the reaction medium than [Cu(2-

pymo)2] under the same conditions, avoiding the use of a second MOF to deal with the 

hydroperoxides. Therefore, [Cu(im)2] largely overcomes the limitations of the 

previously reported [Cu(2-pymo)2] as a catalyst for aerobic tetralin oxidation, with no 

need to prepare physical mixtures with a second catalyst.  Besides tetralin, we have also 

studied the aerobic oxidation of other substrates; viz., cumene and ethylbenzene, which 

let us make an evaluation of the potential of both [Cu(2-pymo)2] and [Cu(im)2] as 
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catalysts for the oxidation of benzilic paraffins. Since both MOFs were active for such 

oxidations we have attempted a cascade reaction.  Then, we will also show that, when 

[Cu(2-pymo)2] is combined with a second solid catalyst (silylated Ti-MCM-41), the in 

situ generated hydroperoxide can be used to transform an olefin into the corresponding 

epoxide with good selectivity and acceptable yield. A comparison will be made between 

the performance of this mixed catalytic system under different working setups (i.e., one-

pot and two-pot setups).  

 

2. Materials and methods 

2.1. Preparation of the Cu-MOFs 

The Cu-MOFs were prepared according to the corresponding procedures reported in the 

original references for [Cu(2-pymo)2] 
10 and [Cu(im)2] 

12. X-ray diffraction (Phillips 

X’Pert, Cu Kα radiation) was used to confirm the expected crystalline structure of the 

materials. 

2.2. Silylated Ti-MCM-41 

Silylated Ti-MCM-41 was prepared following the original procedure15. First, Ti-MCM-

41 was obtained from a gel having the following molar composition: SiO2: 0.015 

Ti(OEt)4: 0.26 CTABr: 0.26 TMAOH: 24.3 H2O where CTABr is 

cetyltrimethylammonium bromide and TMAOH is tetramethylammonium hydroxide. 

The silica source, Aerosil-200, was obtained from Degussa. The crystallization was 

performed at 100 °C for 48 h in Teflon lined stainless steel autoclaves. The occluded 

surfactant was completely removed following a two step extraction procedure. Ti-

MCM-41 was then fully silylated with hexamethyldisilazane (HMDS) as the silylating 

agent. The silylation was carried out at 120 °C with a solution of HMDS in toluene 

under inert atmosphere. The MCM-41 structure was preserved after silylation and the 

surface area of the silylated sample was close to 1000 m2 g-1. 

2.3. Computational details 

Calculations were carried out by means of the Gaussian03  program package 16 using 

the density functional B3PW91 method 17, 18 and the standard 6-311G(d,p) basis set 19. 

The Cu active sites in [Cu(im)2] and [Cu(2-pymo)2] MOFs were modeled by means of 

two clusters of atoms consisting of a central Cu2+ cation surrounded by either four 

imidazole or four 2-hydroxypyrimidine molecules. Each of the four organic ligands in 

the resulting models was saturated with a proton placed in the direction of the next Cu2+ 

cation in the real MOF material, so that each model bears a net positive charge of +2, 
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and the geometry of the two cluster models was fully optimized without any restriction. 

For the complexes formed by interaction of the Cu2+ sites with CM-OOH, with CM-O· 

radical and with a ·OH radical, two types of geometry optimizations were performed: i) 

a restricted optimization, in which the positions of the four terminal hydrogen atoms 

saturating the organic ligands were kept fixed to model the partial flexibility of the 

MOF material, and ii) a full optimization in which the positions of all atoms in the 

system were allowed to relax without any restriction. Calculations were performed with 

different spin states of the central copper atom for all models, and the singlet state was 

found the most stable in all cases. Finally, thermal corrected Gibbs free energies at 298 

K were obtained from vibrational frequency calculations at the same B3PW91/6-

311G(d,p) level of theory. 

 

2.4. Catalytic reactions 

Liquid phase oxidation. Liquid phase aerobic oxidation of tetralin, cumene and 

ethylbenzene were carried out in two-necked flask reactors with the amount of catalysts 

to obtain an alkane/metal molar ratio of 2000 (for tetralin) or 200 (for cumene and 

ethylbenzene). The system was heated at either 90ºC (for tetralin) or 80ºC (for cumene 

and ethylbenzene) and air was fed into the reactor by bubbling at a constant rate (0.5 

mL/s) by means of an adjustable valve. A reflux system with PEG at 0 ◦C was installed, 

so that vapours were condensed, being the total mass balances 99±1%. After each 

catalytic test, the solid catalyst was recovered by filtration and thoroughly washed with 

acetone and dried in an oven at 60ºC overnight. The crystallinity of the used catalyst 

was confirmed by X-ray diffraction comparing with the fresh material spectra. Time 

evolution of products was determined by GC analysis of the samples (Varian 3900, 

capillary column HP-5) using n-hexadecane as external standard. The intermediate 

hydroperoxides formed (T–OOH, CM-OOH and EB-OOH) were quantitatively 

determined by means of an indirect method using triphenylphosphine (TPP) 20. 

Preliminary experiments were performed to find the conditions in where the reaction is 

not controlled by external diffusion. Then, three experiments were performed at stirring 

rates of 500, 1000 and 1500 rpm. No differences in the initial reaction rate were 

observed, indicating that for stirring speeds of 500 rpm the reaction is not controlled by 

external diffusion. Therefore, the experiments have always been performed at 500 rpm. 
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Tandem cumene oxidation and 1-octene epoxidation. 1 ml of cumene and 1 ml of 1-

octene were placed in a 10 ml pressured tubular reactor. A solid mixture of 5 mg of 

[Cu(2-pymo)2] and 2.5 mg of sylilated Ti-MCM-41 (2.1 wt% TiO2) 
15 were added to the 

solution and the reactor was pressured at 3 bar with air. The reaction was carried out at 

two control temperatures: 333 K and 363 K  

 

3. Results and discussion 

3.1. Liquid phase oxidation of tetralin 

 Oxidation of tetralin to the corresponding ketone, α-tetralone, is interesting for the 

preparation of a number of chemicals (insecticides, agrochemicals and drugs) and for 

the production of oxygenated diesel molecules 21. This reaction can be performed using 

air as the oxidant and in the presence of a suitable oxidation catalyst, yielding a mixture 

of tetralinhydroperoxide (T-OOH), α-tetralol (T-OH) and α-tetralone (T=O), as 

depicted in Scheme 1: 

 

[Scheme 1 near here] 

 

 As we have shown in a previous work 9, the copper-containing MOF [Cu(2-pymo)2] 

is an active and reusable catalyst for the liquid phase oxidation of T-H using air as the 

oxidant. A maximum T-H conversion of about 52% was achieved after 48 h of reaction 

at 90 ºC, with a T-H/metal molar ratio of 2000. Conversely, when the reaction was 

carried out in the presence of [Cu(im)2], keeping all the other reaction conditions 

unchanged, the maximum amount of T-H converted increased up to 68%, and this value 

was reached after only 22 h of reaction. A comparison of the two catalysts for the 

oxidation of T-H can be seen in Figure 1 and Table 1. [Cu(im)2] also showed a higher 

activity than [Cu(2-pymo)2], being turnover frequencies (TOF) calculated from the 

initial reaction rates from Figure 1 19000 and 4000 h-1 for [Cu(im)2] and [Cu(2-

pymo)2], respectively. Thus, for instance, after 8 h of reaction, the conversion of T-H 

over [Cu(2-pymo)2] was only 18%, while the conversion over [Cu(im)2] already reached 

55%. Blank experiments performed in the absence of any MOF catalyst (i.e., 

autothermal oxidation) gave very poor conversions, attaining a maximum T-H 

conversion of 1.3mol% after 24 h (see Table 1), being T-OOH the only product formed. 

 

[Figure 1 near here] 
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[Table 1 near here] 

 

 Another important parameter of the oxidation reaction is the final selectivity to the 

ketone, which is usually expressed as the molar ratio of α-tetralone to α-tetralol, 

T=O/T-OH. As it can be seen in Table 1, also from this point of view the performance 

of [Cu(im)2] is better than [Cu(2-pymo)2]: the values of T=O/T-OH calculated at 

maximum conversion were 3.5 and 2.7 for [Cu(im)2] and [Cu)2-pymo)2], respectively. 

Finally, as we mentioned above, the use of [Cu(2-pymo)2] as catalyst for T-H oxidation 

showed an undesired accumulation of hydroperoxides in the reaction medium, which 

reaches up to 24% of the initial amount of T-H after 18 h. The presence of large 

quantities of the hydroperoxide during the reaction can be a safety hazard, so must be 

avoided. On the contrary, when [Cu(im)2] was used as catalyst, the concentration of T-

OOH was kept much lower during all the reaction, reaching a maximum concentration 

of only 9 mol% at short reaction time (1 h) and dropping below 1-2 mol% shortly 

afterwards (see Figure 1b). 

 In summary, as we have shown in Figure 1 and Table 1, the use of [Cu(im)2] as 

catalyst for the liquid phase aerobic oxidation of T-H presents a number of benefits with 

respect to [Cu(2-pymo)2] which makes it a very interesting material for this reaction. 

We also observed that both catalysts were stable under the experimental conditions 

used, since the materials recovered after the catalytic reaction showed XRD patterns 

practically undistinguishable from those of the fresh materials. The occurrence of 

copper leaching from the framework was also ruled out by a hot filtration test and by 

chemical analysis of the filtrate after removing the solid catalyst at the end of the 

reaction. Stability and leaching tests were already reported and discussed in detail for 

[Cu(2-pymo)2] in our previous work 9, so they are not reproduced again here, being the 

results obtained with [Cu(im)2] completely analogous.  

 Encouraged by the good results obtained with [Cu(im)2] for T-H oxidation, we 

extended our studies to other substrates: cumene and ethylbenzene. We wanted, on one 

hand to determine the general applicability of these copper-containing MOFs as 

catalysts for paraffin oxidation. And if the result were positive, we thought on designing 

a multistep catalytic process in where the cumene hydroperoxide formed could further 

react, as oxidizing agent, for the synthesis of epoxides from olefins. 

 

3.2. Liquid phase oxidation of cumene 
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 Oxidation of cumene (CM) with air yields cumene hydroperoxide (CM-OOH) in the 

first place, which is then converted into cumene alcohol (CM-OH), usually 

accompanied by other byproducts (mainly acetophenone, AP) coming from non-

selective decomposition side reactions 22. Figure 2 and Table 1 show a comparison of 

the results obtained for the liquid phase aerobic oxidation of cumene (80 ºC, 0.5 mol% 

Cu) using either [Cu(2-pymo)2] or [Cu(im)2] as catalyst. 

 

[Figure 2 near here] 

 

 The results obtained for cumene oxidation are qualitatively very similar to those 

obtained for the oxidation of T-H, which demonstrates that both Cu-MOFs are able to 

catalyze this reaction. As occurred before for T-H, the imidazolate material [Cu(im)2] 

also shows a better oxidation performance as compared to [Cu(2-pymo)2], although the 

differences observed between the two catalysts are less pronounced than in the 

oxidation of T-H. Complete CM conversion was achieved after 23 h over [Cu(im)2], 

while some lower conversion (i.e., 87%) was obtained with [Cu(2-pymo)2]. The 

selectivity towards CM-OH was also higher in the case of [Cu(im)2] (74%, versus 64% 

obtained for [Cu(2-pymo)2]). In both cases, at the end of the reaction the sole product 

observed besides CM-OH was acetophenone, which accounted for the rest of CM 

converted (25% and 23%, respectively). It can also be observed in Figure 2 that the 

amount of accumulated CM-OOH is higher (and lasts longer) in the case of [Cu(2-

pymo)2] (up to 24% CM-OOH after 8 h, see Table 1, entry 4). However, the activity of 

both materials is practically the same at short reaction times (up to 2 h), as evidenced by 

the superposition of both curves in Figure 2a. From the slopes of the time-conversion 

curves at short reaction times, a TOF of about 3500 h-1 was calculated for both copper 

catalysts. Blank experiment in the absence of catalyst yielded 21% CM-OOH and 3% 

AP after 24 h (see Table 1).  

 

3.3. Ethylbenzene oxidation 

 Oxidation of ethylbenze is expected to be more difficult than in the case of tetralin or 

cumene, since the carbon atom to be oxidized is less activated. In the case of 

ethylbenzene, oxygen is added onto a secondary carbon atom, while in cumene the 

preferred position for the attack is on a tertiary carbon atom, which allows a major 

stabilization of the radical species formed. In tetralin the addition of oxygen is onto a 
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secondary carbon atom, but in this case, it belongs to a six-member ring, which adds an 

extra activation as compared to ethylbenzene. 

 Although the conversion of ethylbenzene was considerably lower than that observed 

for cumene under similar conditions (at 80 ºC, 0.5 mol% Cu), both [Cu(2-pymo)2] and 

[Cu(im)2] demonstrated to be active catalysts for this reaction, as shown in Figure 3. In 

this case, [Cu(im)2] showed a better performance at short reaction time, although at the 

end of the reaction the two materials gave similar results: 29% (25%) conversion after 

40 h and 86% (87%) selectivity to acetophenone for [Cu(im)2] and for [Cu(2-pymo)2], 

respectively. 

 

[Figure 3 near here] 

   

 If we compare the kinetic data obtained for EB oxidation (Figure 3) with the data 

obtained for TH and CM oxidation (Figures 1 and 2), clear differences can be observed. 

On one hand, accumulation of hydroperoxide in the reaction medium does not occur 

during EB oxidation, not even when [Cu(2-pymo)2] was used as catalyst. This is not 

surprising, since the hydroperoxyde derived from ethylbenzene is the least stable among 

all the substrates studied in this work. Thus, when 1-phenylhydroperoxide (EB-OOH) is 

generated, it is immediately converted into other products (i.e., acetophenone and 1-

phenylethanol). On the other hand, we also observed clear induction periods of about 2-

3 h, in which EB is not converted, irrespective of the catalyst used. Both observations 

indicate that in the EB oxidation reaction, formation of the hydroperoxide species is 

difficult for both Cu-MOF catalysts. However, once this primary species is formed, it is 

converted to reaction products more effectively over [Cu(im)2] than over [Cu(2-

pymo)2]. Blank experiment in the absence of catalyst yielded only 2% EB-OH and 0.5% 

EB-OOH after 24 h (see Table 1). 

 

3.4. Origin of the different reactivities of [Cu(2-pymo)2] and [Cu(im)2] 

 In light of the results presented above, and which are summarized in Table 1, it is 

evident that [Cu(im)2] is a better catalyst than [Cu(2-pymo)2] for the oxidation of TH, 

CM and EB. In general, we have observed that both, formation of the primary 

hydroperoxide species and its conversion into final products is faster for the imidazolate 

compound. Both compounds feature Cu2+ ions coordinated to four N atoms from 

different diazaheteorcyclic compounds (imidazole and pyrimidine), thus leading to 
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CuN4 centers. However, Cu2+ ions are in square planar coordination in [Cu(2-pymo)2], 

while they are in a highly distorted coordination in [Cu(im)2], with trans N-Cu-N angles 

of 140º and 155º. In a first approximation, one can expect that these structural 

differences could account for the different reactivity observed for both materials. 

However, it is difficult for us to explain intuitively the structure-composition-reactivity 

correlation for the two Cu2+ MOFs studied. Then, and in order to get more insights into 

the structural and electronic properties of the two compounds, we have carried out first 

principle DFT calculations on MOF model clusters, as described in detail in the 

Experimental section. The models used consisted of a central Cu2+ ion surrounded by 

either four imidazole (im) or four 2-hydroxypyrimidine (2-pymo) molecules. Each of 

the four organic ligands in the cluster models was saturated with a proton placed in the 

direction of the next Cu2+ ion in the real MOF material, so that each model bears a net 

positive charge of +2. The geometry of the two resulting clusters was fully optimized 

without restrictions. 

 To bring some light on the different catalytic behavior of the two copper-containing 

MOFs [Cu(im)2] and [Cu(2-pymo)2], we have theoretically investigated using DFT the 

interaction of these two materials with cumene-hydroperoxide (CM-OOH) to form an 

adsorption complex [Cu2+-HOO-CM], and its subsequent dissociation into a hydroxyl 

radical that remains adsorbed on the copper center [Cu2+-OH]  and a free cumyl 

(·O-CM) radical. The fully optimized structures (see Computational details) resulting 

from CM-OOH adsorption on the two Cu2+ active site models are depicted in Figure 4. 

CM-OOH adsorption was found to be energetically favorable on the two materials 

studied, with calculated free energy values of -6 kcal/mol for [Cu(im)2] and -2 kcal/mol 

for [Cu(2-pymo)2], irrespectively of the type of geometry optimization performed (full 

or restricted). The optimized Cu2+-O distances found were 2.47 and 2.30 Å in [Cu(im)2] 

and [Cu(2-pymo)2] materials, respectively, also indicating a certain degree of 

interaction. It is worth noting that the initial geometry of the active center in both MOFs 

is not significantly distorted in any case as a consequence of the interaction with the 

hydroperoxide. However, after cumene hydroperoxide dissociation, substantial 

differences were found in the resulting [Cu2+-OH] complexes formed in the two 

materials. On one hand, Cu2+ ions in [Cu(im)2] were found to expand their coordination 

sphere from 4 to 5 upon binding of a ·OH radical. On the contrary, the interaction of the 

·OH radical with the Cu2+ centre in [Cu(2-pymo)2] implies the de-coordination of one of 

the four 2-pymo ligands. Note that this ligand displacement would not necessary imply 
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the collapse of the crystalline structure of the MOF. Actually, the Cu2+ centers would 

still remain connected to the framework through three out of the four initial 2-pymo 

ligands. Once the catalytic cycle is finished and the product desorbs from the active site, 

the 2-pymo ligand that has been displaced can coordinate again to the Cu2+ site to 

recover the initial catalytic centre, as shown in Scheme 2. A similar ligand displacement 

and re-coordination cycle has been demonstrated to occur in a series of zinc(II) 

benzoate coordination polymers during transesterification reactions 23. 

 

[Figure 4 near here] 

[Scheme 2 near here] 

 

 In conclusion, the results obtained from first principle calculations indicate that 

[Cu(im)2] has a more adaptable crystalline framework than [Cu(2-pymo)2], which 

allows that the copper sites expand their coordination sphere from 4 to 5 upon 

interaction with ·OH radical species. On the contrary, binding of the same radical to 

[Cu(2-pymo)2] produces the displacement of one of the 2-pymo ligands from the 

coordination sphere around the central Cu site. These differences could account for the 

higher activity of [Cu(im)2] to decompose the hydroperoxyde into final products, and at 

the same time could explain the experimentally observed accumulation of the CM-OOH 

intermediate in the oxidation of CM catalyzed by [Cu(2-pymo)2]. Even if this 

preliminary computational study does not include calculation of the transition states 

corresponding to the two Cu-MOFs, it is not unreasonable to expect that a higher energy 

would be required in the case of [Cu(2-pymo)2] to break a Cu-pyrimidine bond that in 

the case of [Cu(im)2] in which only a rearrangement of the ligands is required to 

accommodate the  ·OH radical. 

 Nevertheles, in order to demonstrate that the two MOFs have indeed different 

abilities for decomposing the hydroperoxyde, we have designed an additional 

experiment. Thus, when we contacted the two MOFs with cumene hydroperoxide, it 

was observed that [Cu(im)2] decomposes the hydroperoxide significatively faster than 

[Cu(2-pymo)2] under identical conditions (0.01 mmol Cu, 0.9 mL CM, 0.1 mL CM-

OOH, 80ºC under N2 atmosphere). After 1 hour, [Cu(im)2] decomposed 55mol% of the 

initial CM-OOH, while only 31mol% was decomposed over [Cu(2-pymo)2]. 
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3.5. Tandem Cumene oxidation and 1-octene epoxidation using a combination of 

catalysts: One-pot versus two-pot setups 

 As we have mentioned above, one of the drawbacks of [Cu(2-pymo)2] as oxidation 

catalyst is that a considerable amount of hydroperoxide is accumulated in the reaction 

medium, especially in the case of cumene and tetralin oxidation. This limitation can be 

turned into an advantage if we are able to use the hydroperoxide generated in situ during 

the oxidation as a reagent for a second reaction. This becomes even more interesting if 

one can couple the two reactions in a one-pot process, thus leading to a tandem catalytic 

process. Taking as a source of inspiration the Sumitomo process 24, 25 for olefin 

epoxidation using cumene hydroperoxide, we have combined [Cu(2-pymo)2] with a 

state-of-the-art epoxidation catalyst (silylated Ti-MCM-41 15) to perform the tandem 

process depicted in Scheme 3. The experimental setup is shown in Fig. 5a. Thus, [Cu(2-

pymo)2] is used in the first reaction to oxidize CM into CM-OOH using air as the 

oxidant (reaction R1). Then, silylated Ti-MCM-41 can use the generated CM-OOH to 

oxidize an olefin (1-octene) in reaction R2, producing 1-octene oxide and one 

equivalent of CM-OH. 

 

[Scheme 3 near here] 

[Figure 5 near here] 

 

 However, this simple reaction scheme is complicated by the occurrence of competing 

unwanted side reactions, which decrease the overall selectivity to 1-octene oxide by 

either yielding secondary products of 1-octene (SR2 and/or SR3), or by spuriously 

consuming CM-OOH without transferring the oxygen to 1-octene (SR1). Side reaction 

SR1 consists in the decomposition of the CM-OOH into CM-OH and AP. This reaction 

is catalyzed by [Cu(2-pymo)2], as we have already demonstrated in the previous section, 

and it can also take place thermically (non catalytic decomposition). SR2 consists in the 

direct allylic oxidation/isomerization of 1-octene, to produce a mixture of oxidized 

products. SR2 can also be catalyzed by copper or an uncatalyzed thermal reaction. 

Finally SR3, consisting in the ring opening of the epoxide, is another reaction that in 

principle could decrease the overall yield of 1-octene oxide.  

 After a preliminary screening of different conditions, we found a satisfactory 

experimental setup, as detailed in the experimental section. Among others, the 

following parameters were considered: i) [Cu(2-pymo)2] to silylated Ti-MCM-41 ratio; 
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ii) cumene to 1-octene ratio; iii) temperature of the reaction; iv) order of addition of the 

reagents; and v) oxygen pressure. To evaluate the relevance of the different competing 

side reactions, we carried out the oxidation process at two different temperatures, viz. 

333 and 363 K. A summary of the results obtained is shown in Table 2. 

 

[Table 2 near here] 

 

 When the reaction was performed at 333 K, an overall conversion of 1-octene of 7.1 

mol% was achieved after 48 h, producing 1-octene oxide with a selectivity of 63.4%, 

together with other products coming from the allylic oxidation of 1-octene. In a separate 

experiment we have observed that pure [Cu(2-pymo)2] can indeed catalyze the allylic 

oxidation of 1-octene using air as the oxidant, yielding mainly the products indicated in 

Scheme 3 (12 % maximum conversion of 1-octene achieved after 24 h at 363 K). Note 

that these oxidation products can also be formed through a non-catalyzed thermal 

reaction. It is important to stress that in our system we did not detect any traces of 

products coming from ring aperture of the formed epoxide (SR3), which is largely 

suppressed by the hydrophobic character of the silylated Ti-MCM-41 catalyst used and 

the absence of water in the reaction medium 15. 

 When the reaction temperature was increased to 363 K, the overall reaction rate 

dramatically increased: 17.1% 1-octene conversion after 24 h was observed, which 

represents an almost 5-fold increase of the reaction rate. Interestingly, the selectivity to 

1-octene oxide was practically the same (63.2%), with a similar distribution of 

secondary products than at lower temperature.  

 Another important parameter of the tandem reaction is given by the CM-OH/epoxide 

ratio, which reveals the extent to which the competing side reaction SR1 is taking place. 

Indeed, if all the CM-OOH formed in R1 is used to produce 1-octene oxide following 

R2, the final CM-OH/epoxide ratio should be equal to 1. Any excess amount of CM-OH 

with respect to 1-octene oxide (as well as the presence of acetophenone in the products 

mixture) indicates that CM-OOH has been spuriously decomposed without producing 

the desired epoxide. This is an important factor to take into account, since in the 

envisaged reaction scheme the CM-OH produced has to be recovered and reconverted 

into CM (through a dehydration and hydrogenation process) for recycling. If we 

compare our results obtained at 333 and 363 K, we can see that at the lower 

temperature, although the reaction rate is considerable low, the process is highly 
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selective concerning the utilization of the CM-OOH formed (CM-OH/epoxide = 1.1). 

On the contrary, upon increasing the temperature of the reaction, the alternative SR1 

side reaction becomes the main reaction pathway for CM-OOH decomposition (CM-

OH/epoxide = 3.0). Thus, an increase of the reaction temperature has negative effects 

on the amount of CM-OH waste generated per mol of final product. 

 One evident limitation of this one-pot setup is the relatively low selectivity to the 

epoxide (63.2% at 363 K), which is due, as mentioned above, to the occurrence of the 

competing side-reaction SR2: allylic oxidation of 1-octene catalyzed by [Cu(2-pymo)2]. 

The only way of suppressing this reaction, thus increasing the selectivity to the epoxide 

product, is to avoid the contact between 1-octene and the copper-MOF by keeping them 

in separate reactors. In other words, it becomes necessary to adopt a two-pot setup, such 

as that shown in Fig. 5b.  In such a reaction setup, [Cu(2-pymo)2] is allowed to interact 

with CM under an O2 atmosphere at 363 K for 4 h, to produce CM-OOH in 24mol% 

yield (see Fig. 5b). Then, the copper-catalyst is removed by filtration and the liquid 

filtrate is fed into a second reactor, containing silylated Ti-MCM-41, and 1-octene is 

added at this point. Under these conditions, 1-octene was selectively converted into the 

corresponding epoxide, yielding 18.1 mol% after 24 h at 363 K. In this case, no traces 

of products coming from either the allylic oxidation of 1-octene, or from the ring-

opening of the epoxide, were detected. A final CM-OH/epoxide ratio of 3.0 was 

obtained. Note that most of this CM-OH was already present in the filtrate coming from 

the first reactor (38 mol%, see Fig. 5b). Indeed, CM-OOH is used to oxidize the olefin 

in the second reactor with a high selectivity (24 mol% CM-OOH produce 18.1 mol% of 

1-octene oxide), while direct decomposition of the hydroperoxide occurs only to a 

minor extent in the second reactor. This is largely prevented by the absence of the 

copper catalyst at this stage (which would catalyze the side reaction SR1) and to the 

relatively low temperature (which minimize the autocatalytic thermal decomposition of 

CM-OOH). 

 

Conclusion 

 In this work, we have shown that copper-containing MOFs in which Cu2+ centers are 

linked to 4 nitrogen atoms from azaheterocyclic compounds (i.e., pyrimidine and 

imidazole) have interesting potential as heterogeneous catalysts for aerobic liquid phase 

oxidation of activated paraffins. We have shown this for two materials, [Cu(im)2] and 

[Cu(2-pymo)2] and for three different substrates of increasing demands: tetralin, cumene 
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and ethylbenzene. Our results indicate that [Cu(im)2] has in general better performance 

than [Cu(2-pymo)2], which results in higher alkane conversion, higher selectivity and 

low accumulation of alkylhydroperoxides in the reaction medium. According to DFT 

calculations, the differences between the two catalysts could be related with the 

different ability of the two MOFs to decompose the hydroperoxyde and to coordinate to 

the resulting radical ·OH species. Copper ions in [Cu(im)2] can coordinate to these 

radicals by expanding their coordination sphere from  4 to 5. On the contrary, in the 

case of [Cu(2-pymo)2], coordination of a radical species to the Cu2+ ions results in the 

displacement of one of the pyrimidine ligands. This different behavior of the two MOFs 

also explains why the ROOH intermediate is accumulated in the reaction medium when 

[Cu(2-pymo)2] is used as catalyst, and not in the case of [Cu(im)2]. 

 We have also shown that the hydroperoxyde accumulated in the reaction medium 

when [Cu(2-pymo)2] is used as catalyst can be used as oxidant in a parallel reaction. To 

illustrate this, we have combined [Cu(2-pymo)2] with a good epoxidation catalyst 

(silylated Ti-MCM-41) to carry out a tandem process consisting in cumene oxidation 

and 1-octene epoxidation. We have studied this reaction using either a one-pot or a two-

pot setup. A main drawback of the one-pot setup is that [Cu(2-pymo)2] can also catalyze 

the allylic oxidation of 1-octene, thus decreasing the net epoxide yield. To overcome 

this problem, it is necessary to avoid he contact between the copper MOF and the olefin. 

Thus, it becomes necessary to work in two batch reactors.   
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Figure Captions 

Figure 1. Conversion of T-H over [Cu(im)2] and [Cu(2-pymo)2] (part a). Time 

conversion of T-H and time evolution of products over [Cu(im)2] and [Cu(2-pymo)2] is 

also shown in parts b) and c), respectively.  

 

Figure 2. Conversion of CM over [Cu(im)2] and [Cu(2-pymo)2] (part a). Time 

conversion of CM and time evolution of products over [Cu(im)2] and [Cu(2-pymo)2] is 

also shown in parts b) and c), respectively. 

 

Figure 3. Conversion of EB over [Cu(im)2] and [Cu(2-pymo)2] (part a). Time 

conversion of EB and time evolution of products over [Cu(im)2] and [Cu(2-pymo)2] is 

also shown in parts b) and c), respectively. 

 

Figure 4. Optimized structures of the complexes formed by interaction of: a) cumene-

hydroperoxide with [Cu(im)2] b) cumene-hydroperoxide with [Cu(2-pymo)2] (c) 

hydroxyl radical with  [Cu(im)2] and d) cumene-hydroperoxyl radical and [Cu(im)2]. 

Carbon, nitrogen, oxygen, hydrogen and copper atoms are grey, blue, red, white and 

yellow, respectively. 

 

Figure 5. Schematic representation of the one-pot (a) and two-pot setups (b) adopted 

for the tandem cumene oxidation/1-octene epoxidation reaction. CM = cumene; CM-

OOH = cumene hydroperoxyde;  AP = acetophenone; Epox = 1-octene oxide 

 

 

Scheme captions 

Scheme 1. Tetralin (T-H) oxidation reaction, leading to α-tetralinhydroperoxyde (T-

OOH), α-tetralol (T-OH) and α-tetralone (T=O). 

 

Scheme 2. Ligand displacement and re-coordination of 2-hydroxypyrimidine in [Cu(2-

pymo)2] upon coordination/release of a radical species. 
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Table 1. Selected kinetic data for the aerobic oxidation of various organic substrates 
over [Cu(2-pymo)2] and [Cu(im)2] MOF catalysts. 

     

Tetralin (T-H)     
 Conv. 8 h Conv. max T=O/T-OH [T-OOH]max 
[Cu(im)2] 55% 68% (22 h) 3.5 9% (1 h) 
[Cu(2-pymo)2] 18% 52% (48 h) 2.7 24% (18 h) 
Blank:  
 

4 h: 0.2% T-OOH; 24 h: 1.3% T-OOH 

Cumene (CM)     
 Conv. max Select. CM-OH [CM-OOH]max  

[Cu(im)2] 99% (23 h) 74% 2 (1.5 h)  
[Cu(2-pymo)2] 87% (23 h) 64% 24 (8 h)  
Blank: 
 

4 h: 0.5% CM-OOH; 24 h: 21% CM-OOH + 3% AP  

Ethylbenzene (EB)     
 Conv. 5 h Conv. max Select. AP  

[Cu(im)2] 23% 29% (40 h) 86%  
[Cu(2-pymo)2] 6% 25% (40 h) 87%  
Blank: 4 h: No conversión; 24 h: 2% EB-OH + 0.5% EB-OOH  
 

T-H: Tetralin; T-OOH: Tetralinhydroperoxide; T=O: α-tetralone; T-OH: α-tetralol; CM: Cumene; CM-
OOH: cumene hydroperoxide (2-phenyl-2-propylhydroperoxide); CM-OH: cumene alcohol (2-phenyl-2-
propanol); EB: Ethylbenzene; AP: Acetophenone. 

 

 

 

 

Table 2. Summary of the results obtained for the one-pot tandem reaction shown in 
Scheme 3. 

Temp (K) 
Conv./Time 

(mol%/h) 

Yield epox 

(mol%) 

Yield oxdn. 

(mol%) 

Select. epox 

(%) 
CM-OH/epox 

333 7.1 (48) 4.5 2.6 63.4 1.1 

363 17.1 (24) 10.8 6.3 63.2 3.0 

epox = 1-octene oxide; oxdn = products coming from the allylic oxidation of 1-octene. 
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