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Abstract

This thesis gathers some contributions to statisticabpatecognition and, more specifically,
to several natural language processing (NLP) tasks. Savellsknown statistical techniques
are revisited in this thesis: parameter estimation, loasstfan design and probability mod-
elling. The former techniques are applied to several NLRst@sich as text classification
(TC), language modelling (LM) and statistical machine sfation (SMT).

In parameter estimation, we tackle the smoothing problemroposing a constrained
domain maximum likelihood estimation (CDMLE) techniquéeTCDMLE avoids the need
of the smoothing stage that makes the maximum likelihodchesion (MLE) to lose its good
theoretical properties. This technique is applied to téas$sification by mean of the Naive
Bayes classifier. Afterwards, the CDMLE technique is exézhtb leaving-one-out MLE
and, then, applied to LM smoothing. The results obtaineceiresal LM tasks reported an
improvement in terms of perplexity compared with the staddaoothing techniques.

Concerning the loss function, we carefully study the desifjltoss functions different
from the0O—1 loss. We focus our study on those loss functions that whikenmg a similar
decoding complexity than th@-1 loss function, provide more flexibility. Many candidate
loss functions are presented and analysed in severalis@timachine translation tasks and
for several translation models. We also analyse some owlistg translations rules such as
the direct translation rule and we give a further insight into tHeg-linear modelswhich
are, in fact, particular cases of loss functions.

Finally, several monotone translation models are proptsesgd on well-known mod-
elling techniques. Firstly, an extension to the GIATI teicjue is proposed to infer finite
state transducers (FST). Afterwards, a phrased-basedtor@anslation model inspired in
hidden Markov models is proposed. Lastly, a phrased-baisieigih semi-Markov model is
introduced. The latter model produces slightly improvets@ver the baseline under some
circumstances.
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Resumen

Esta tesis reune algunas contribuciones al reconocimierfrmas estadistico y, mas especi-
ficamente, a varias tareas del procesamiento del lenguajeha/arias técnicas estadisticas
bien conocidas se revisan en esta tesis, a saber: estinges@Emétrica, disefio de la funcién
de pérdiday modelado estadistico. Estas técnicas semmpliaaias tareas del procesamiento
del lenguajes natural tales como clasificacion de docursemtodelado del lenguaje natural
y traduccion automética estadistica.

En relacion con la estimacion paramétrica, abordamos dllgmaa del suavizado pro-
poniendo una nueva técnica de estimacién por maxima veitissahcon dominio restringido
(CDMLE®). La técnica CDMLE evita la necesidad de la etapa de suavigad propicia la
pérdida de las propiedades del estimador maximo verodisia técnica se aplica a clasifi-
cacion de documentos mediante el clasificador Naive Bayés. thtde, la técnica CDMLE
se extiende a la estimacion por méaxima verosimilitud poavieg-one-out” aplicandola al
suavizado de modelos de lenguaje. Los resultados obteeaidwarias tareas de modelado
del lenguaje natural, muestran una mejora en términos giefidad.

En cuanto a la funcién de pérdida, se estudia cuidadosarakdigefio de funciones de
pérdida diferentes a I&-1. El estudio se centra en aquellas funciones de pérdida tgte re
niendo una complejidad de decodificacion similar a la fum6iél, proporcionan una mayor
flexibilidad. Analizamos y presentamos varias funcionepérelida en varias tareas de tra-
duccion automatica y con varios modelos de traduccion. f@amhbanalizamos algunas reglas
de traduccidon que destacan por causas practicas como,gpaplej la regla de traduccion
directa; y, asi mismo, profundizamos en la comprensiéonsimiodelos log-lineares, que son
de hecho, casos particulares de funciones de pérdida.

Finalmente, se proponen varios modelos de traduccion manogbasados en técnicas de
modelado estadistico bien conocidas. En primer lugar,&gopie una extensién a la técnica
de GIATI, para inferir trasductores de estados finitos. Mdédd, se propone un modelo de
traduccion basado en secuencias de palabras e inspirads rotlelos ocultos de Markov.
En ultimo lugar, se presenta un modelo de traduccion basade@iencias de palabras y
semi-modelos de Markov. Este ultimo modelo produce mefgohse la referencia en ciertas
circunstancias.

aDel inglés “Constrained Domain Maximum Likelihood Estiroat
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Resum

Aquesta tesi reuneix algunes contribucions al reconeixirde formes estadistic i més es-
pecificament a diverses tasques del processament deldlgegoatural. Diverses tecniques
estadistiques ben conegudes sén revisades en aquestastanacid parameétrica, disseny
de la funcié de pérdua i modelatge estadistic. Les técnigniesiors s'apliquen a diverses
tasques del processament del llenguatge natural com asifidacié de documents, mode-
latge estadistic del llenguatge i traduccié automaticadéstica.

En relacié amb I'estimacié paramétrica, portem a cap ellproa del suavitzat proposant
una técnica d’estimacié per maxima versemblanca amb damdtiingit (COMLE). La
tecnica CDMLE evita la necessitat de I'etapa de suavitzat afavoreix la pérdua de les
bones propietats de I'estimador per maxima versemblangae#ta técnica s'aplica a classi-
ficacié de documents mitjancant el classificador Naive Balyss tard, la tecnica CDMLE
s'exten a I'estimacioé per maxima versemblanca amb “leaving-out”, i aleshores, s'aplica
al suavitzat de models de llenguatge. Els resultats olsrgudiverses tasques de modelat
del llenguatge mostren una millora en perplexitat.

En el diseny de la funcié de perdua, s’estudia cuidadosasiatiseny de funcions de
pérdua diferents a l6—1. Lestudi es centra en aquelles funcions de perdua queemten
una complexitat de decodificacié semblant a la furtzid pero proporcionant una major
flexibilitat. Analitzem i presentem diverses funcions dedp& en diverses tasques de tra-
ducci6é automatica amb diversos models de traduccié. Tambktzem algunes regles de
traduccié que destaquen per causes practiques com arddadeetraduccio directa; i axi
mateixa, s'aprofundeix en la comprensié dels models logdl, que son de fet casos partic-
ulars d’aquestes funcions de pérdua.

Finalment, es proposen diversos models de traducciéo mosdiasats en tecniques del
modelatge estadistic ben conegudes. En primer lloc, e@paama extensié a la técnida de
GIATI per a inferir transductors d’estats finits. Més tard ,pgoposa un model de traduccié
basat en sequéencies de paraules i inspirat en els modets deMarkov. En darrer lloc, es
presenta un model de traducci6 basat en sequéncies degsdranlisemi-models de Markov.
Aquest darrer model produiex millores en certes circuntign

bDe I'anglés “Constrained Domain Maximum Likelihood Estiina”
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Preface

Natural language processing (NLP) is a dynamic researchtfiek aims at developing com-
puter systems that are able to automatically generate atetstand natural human language,
both written and spoken. NLP is a subsoiled of artificial liigence and linguistics, and as
such it combines theories, methodologies, and experts lrxaitmworlds in order to address
challenging problems.

Current technology in NLP is mainly based on inductive staial pattern recognition
approaches. These approaches define one or several chtistidels that have to be esti-
mated from a training dataset or corpus. There are sevdeatiimg criteria to perform such
tasks; however, the maximum likelihood estimation (MLEpiee of the most wide-spread
techniques.

The MLE verifies several desirable properties; however,cp@r generalisation is con-
spicuous for its absence. Actually, the MLE tends to ovéréitrhodels to the training dataset,
and, hence, to produce the corresponding lack of geneffalisaro amend this problem, a
common approach is to apply several heuristics in an additemoothing step

Once the training criterion is chosen and a proper proligimiiodel is designed for the
task that is of interest, the best rule for building the systaust be determined. Decision
theory (DT) properly deals with this question by introdugithe loss function. The loss
function assesses the mistakes that a given system cangarodypically, in many of the
NLP tasks, @-1 loss function is assumed. Roughly speaking, this functamoants for the
intuitive idea of minimising the number of errors that theteyn produces. This loss function
yields the optimal Bayes' rule, which is the best rule thatlsa built in order to minimise this
loss. However, this simple and intuitive loss does not talkeaflvantage of this framework.

This statistical framework is applied to several NLP tasl8pecifically, this thesis is
focused on exploring three of these NLP tasks: text claasidin (TC), machine translation
(MT), and language modelling (LM).

Given a repository of documents, the purpose of TC is to aatmailly structure the
documents by assigning a label to each one. The label cantbmatically generated in the
case of clustering or defined by an expert. In this way, thiesta$ searching and browsing
documents in the repository is eased. The TC technology séeimave reached a mature
stage of research; nevertheless, there is still room forargment.

The objective of MT is to make the computer automaticallystate texts or utterances
from one language into another language, without chandieguhderlying meaning. The

Xiii



MT community is mainly focused on three main applicationdlyfautomatic MT, computer-
assisted MT and understandable rough translation. ThemuMT technology is based on
statistical methods in general and on the statistical paterognition theory in particular.

Fully-automatic statistical MT consists in the developtnefistatistical models that are
automatically inferred from bilingual parallel texts. Img respect, there have been different
proposals for statistical translation models ranging fiond-alignment translation models,
such as the IBM models, the HMM word-alignment model, etqghioase-based and syntax-
based translation models. These last models are usuaky lmsbyproducts of the word-
alignment model training process. The most widespread amhonly used models are the
phrased-based models; however, these models do not utalkalynto account the bilingual
segmentation process, and are consequently heuristicailed.

The last topic of this thesis is LM itself. This problem is awdemanding and interesting
problem since language models are used in a vast range of KNililems such as speech
recognition and machine translation among many others.nidst widely used models, not
only for their simplicity but also for their outstanding f@mmance, are the so-calledgram
models. Similar to most of the statistical models in patterognition,n-gram language
models suffer from overfitting. Several smoothing techeijhave been proposed in the
literature to deal with this problem.

The main objectives of this thesis are the followings: tospré a new smoothing ap-
proach applied to TC and LM; to introduce new models in theg@im of MT for monotone
languages; and to study the loss function. The contribatidthis thesis can be divided into
three groups:

1. Constrained-Domain Maximum likelihood estimation. By reviewing the MLE de-
ficiencies and the smoothing techniques used to alleviata tive propose a modified
version of the MLE that avoids the smoothing step. This nesppsal is applied to two
different modelling problems and tasks: text classificaiad language modelling. In
text classification, we show how the constrained-domainimam likelihood estima-
tion (CDMLE), is applied to multinomial distribution avaity the additional smooth-
ing step. In language modelling, we use the CDMLE technigueooth the leaving-
one-out (LOO) estimation of the-gram models since it is the milestone of the most
successfuk-gram smoothing techniques. This approach yields severeadlismooth-
ing techniques some of which slightly improve the standardathing techniques.

2. Fundamental equation of statistical machine translation.The optimal Bayes’ rule
is the basis of all statistical machine translation systeidswever, this rule is ob-
tained with the assumption of(e-1 loss, i.e. assuming the CER as the error measure.
We review classical statistical decision theory, and byngirag this loss function, we
boost the system performance. We apply these ideas to SMprand that the log-
linear models are actually optimising a loss function, ahiesembles the actual error
measure, such as tha. Bu or the WER.

3. Monotone statistical machine translation: One of the deficiencies of the phrase-
based models is that they are not “properly” modelled fromirly statistical point of
view. This implies several problems in practise, since robste systems use heuristics
to estimate those models. For instance, several statistiodifications or estimation
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techniques cannot be properly applied without severaltigalqproblems. We start

by defining a purely statistical phrase-based finite tracsdmodel. Once we have
outlined the deficiencies of this model, we propodeidden Markov model (HMM)

that solves some of these deficiencies. However, forcing &HMtake into account

the bilingual segmentation process of a phrase-based nwdet easy, and it yields
highly demanding training algorithms. Finally, we prop@seimproved model that is
based orhidden semi-Markov models (HSMMhis latter HSMM takes into account
the segmentation process smoothly, without producinghidemanding training al-

gorithms.

The above contributions are sequentially organisesi @hapters that cover most of the
work developed in this thesis. We recommend a sequentidirrgaf the document. How-
ever, should readers be interested in a specific reseailtlaeg can opt to read those specific
chapters taking into account the following graph:

| 1. Preliminaries |

2. Constrained-domain

maximum likelihood estimation

3. Constrained Ieaving—one-odjt 4. The loss function in
for language modelling statistical pattern recognitign

T~ Y

5. Statistical stochastic
finite state transducers

v

6. A phrase-based
hidden Markov model
for monotone machine
translation

v

7.A phrase-based hiddégn
semi-Markov model for
monotone machine
translation

v

8. Conclusions |

The constrained-domain MLE approach is proposed in Ch@pfEne experimental prop-
erties of this new approach are compared with classical #mmgpmethods in the task of TC.
Later, in Chapter 3, this approach is extended tortiggam models that are estimated and
smoothed by leaving-one-out (LOO). If readers are not familith leaving-one-out smooth-
ing methods for language modelling, then Section 1.2 woeltddpful to them.
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The optimal Bayes’ decision rule obtained whef-d loss function is used is one of
the bases of most statistical pattern recognition systedpecifically, when it is applied to
statistical MT, it is called the fundamental equation ofistecal machine translation and it is
a milestone of the current MT systems. This optimal rule igsited and studied in detail in
Chapter 4.

The final part of this thesis is concerned with the definitibamefficient monotone ma-
chine translation model. Chapter 5 summarises the firsramu in this area. Inspired from
Chapter 5, the following chapter tackles the monotone MTblenm by defining a phrased-
based hidden Markov model (PBHMM). Unfortunately, this rabalso had some important
drawbacks. From the experience acquired with these two lmddeChapter 7, we introduce
a phrased-based hidden semi-Markov model (PBHSMM) thaeaeh our objective: good
performance, efficient training algorithms, and a propeésyined statistic framework that
would allow us to further improve the proposed model. Thiglelas based on the hidden
semi-Markov models (HSMMs). In Section 1.1.6 Chapter 1, @fermulate the HSMM fol-
lowing a new notation, that to our knowledge, has not beepgsed elsewhere. Moreover,
Section 1.1.6 paves the way towards the novel model proposedapter 7. Should readers
be unfamiliar with the HSMM, we encourage them to read Sedid.6 in Chapter 1.
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Notation

Symbol | Meaning
const(x) | is a constant function o, i.e., a function thatloes notdepend orx
(o) is the actual unknown probability distribution
Pe(--+) it is used to outline the fact that the probability is not tiseual probability
but a model that depends on a parametric vetor
p(e) orp, | the probabilities depicted in this way are already a modedpeter for the
evente
A:=B is used to stress that Aisodelledby B, and also to stress that Adefined
asB
d(a,b) is the Kronecker delta function, i.€. jf and only if a = b, and0 otherwise
:cj1 is used to denote the (sub)string. .. z;
N is the natural number set, i.B.= {0,1,2,3,...}
(f(z))y is used to denote the expectationfdfc) over the probability distributiorj
pr(y)
(f(z))qy) | is used to denote the expectationfife) using the functiony(y) as the
probability distribution
D(pllq) is the Kullback-Leibler divergence betwepmandg
suf ,_1(z) | stands for thes — 1 ending elements af or the full stringz if || <n—1

For denoting probability distributions throughout thedise we identify values and ran-
dom variables whenever this entails no confusion. For imts&ainstead of

pr(Q =w) ()
we use
Pr (w) (2)

In the case of summations and products, we will omit the Sraitset in which the index
variable varies whenever this entails no confusion. Fdaimse,

dof@ =Y f@ , ®)

xeX™*
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or

T
[Tro=11r® - 4
t t=0
Moreover, we use here the notation for which a summation avichset is equal to,
d f@y=0, (5)
zel)

and where a void product is equaltp

[[r@=1 . (6)

zcl

In this thesis several conditional probabilities will beedsFor instance,

p(u|v) 7)

where we have used the symbdl™to divide the random variables into the given part,
and the random variable for which the probability functisrdefinedu. However, in order
to avoid cumbersome notation, the conditional probabdgitivill sometimes be written as
follows

p(u/v) (8)
where “/” plays the role of | . This ambiguity in the notation, is better understood vifib
following example

p(u /v, o], [ul) ©)

instead of */”, the equation would have been awkward and unclear:

where if we had used

p(u|v,|v],|ul) . (10)
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Chapter 1. Preliminaries

1.1 Statistical Pattern Recognition

A pattern recognition problem consists in classifying epoBsible input or object, say € X, in
one class, say, from the set of all possible classes, $ay Examples of pattern recognition prob-
lems include text classification, speech recognition, ienglgssification, face recognition, and machine
translation, among others. A classification system is,,thearacterised by theassification function
or rule

c: X —Q (1.2)

In the eighties, the most popular approaches to most of thiterparecognition problems were
rule-based. Rule-based approaches define a huge set obaged on the knowledge engineers and
domain experts in order to build the classification systerhe main problem of these approaches is
the definition of hand-crafted rules and their maintenahtéhe nineties, the rule-based approach was
replaced by inductive approaches, which manly involsttistical methods These approaches have
numerous advantages:

e The classification function is learnt from the observatiéa set of preclassified documents by
an inductive process.

e The same inductive process can be applied to generatedtiffelassifiers for different domains
and applications. This fact introduces an important degfeitomation in the construction of
ad-hoc classifiers.

e The maintenance task is significantly simplified, since iyarquires to retrain the classifier
with the new working conditions.

e The existence of off-the-self software to train classifrexguires less skilled man power than for
constructing expert systems.

e The accuracy of classifiers based on inductive techniquegetes with that of human beings
and supersedes that of knowledge engineering methodsdreséasks such as text classification,
and speech recognition.

Several methodologies can be applied to define the claggificunction. Therefore, it is needed
to find a measure for comparing among different classificasigstems. In order to quantify systems,
the classification error rate (CERIis defined as the percentage of misclassifications perfobmede
system.

The classification system performance is usually measwedianction of the classification error.
However, there are problems in which all the classificationre do not have the same consequences.
Therefore, a function that ranks each kind of error shoulgroeided. Thdoss function](w,|z, w.),
evaluates théossin which the classification system incurs when classifylmgdbjectr into the class
wp, knowing that the correct classds. An outstanding loss function is tfie-1 loss function

0 wp=we

: 1.2)
1 otherwise

(wpl®,we) = {

If a 01 loss function is provided, then the optimal system minimige classification error rate.

Taking into account the loss function definition, we defineribk when classifying an objegt, the
so-calledconditional risk givenz, as the expected value of the loss function according to dlstepior
class probability distribution, i.e.

R(wplz) = Y Wwple, we) pr(wele) 1.3

weEN
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1.1. Statistical Pattern Recognition

wherep, (w.|x) stands for the actual class posterior probability distidsu Note that byp,.(...) we
will henceforth denote the actual probability distribuiso

Usually, we want to compare system risks independently pfspecific objecte. Using the con-
ditional risk, we define th¢he global risk[Duda et al., 2001] as the contribution of all objects to the
classifier performance, i.e.

R(C):Em[R(C(w)Iw)]:AR(C(w)Iw)pr(w)dw ; (1.4)

whereR(c(x)|z) is the conditional risk giver, as defined in 1.4.
In practise, the global risk is approximated by the law ofagreumbers for a given test Sét =
(€, wn)Y_, ii.d. according tg.(w, z),

Rr(c) = % S Uc(@n) @, wn) (L5)

The approximation of the global risk using a testBes calledempirical riskon the test seT". If we
use theD—1 loss function, then the empirical risk simplifies to the femy defined classification error
rate

Re(c) = = 3 8(c(@n),wn) (L.6)
N

whered stands for the Kronecker delta function.

Our aspiration is to design the classification function thatimises the global risk. Since minimis-
ing the conditional risk for each objegtis a sufficient condition to minimise the global risk, wittiou
any loss of generality, the optimal classification rule, eBhmminimum Bayes’ riskis the one that
minimises the conditional risk for each object

¢(x) =argmin R(w|x) . 1.7)
wenN

If 0-1 loss function is assumed, then the conditional risk is sifirepl to
R(wplz) =1 — pr(wplz) (1.8)
and then the optimal classification rule is given by

é(x) = argmaxpyr(w|x) . (1.9)
weN
This equation is well-known and often assumed to be optimakfl pattern recognition problems,
although, the assumption of0al loss function is always taken, either consciously or uncimsly.

1.1.1 Statistical modelling

In Eq. (1.9) theclass-posterior probabilitys used in order to find the optimal class, although this
probability is unknown. If we knew such probability, then wauld define the best classifier for this
framework, the so-calleBayes classifierand its CER would be the minimum possible CER, the so-
calledBayes classification error rate

Since the posterior probability in Eq. (1.9) has to be apipnaxed with a model, a common pre-
liminary approach is to use the Bayes’ theorem in Eq. (1.8dymg

c(z) = argul)nax {%} = arginax {p,W)pr(z|w)} , (1.10)
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Chapter 1. Preliminaries

where the posterior probability is substituted by two phuliiges: the class priop,.(w), and the object
posteriorp.(z |w). If actual probabilities are known, then both Egs. (1.10) éh9) are equivalent.
However, the latter Eq. (1.10) typically yield better appnoations on real systems provided that actual
probabilities are unknown, and it is needed to model them.

It is particularly worthy of note that from Eq. (1.10) and kviag thatp, (A, B) = p-(A)p-(B | A)
the following equation is obtained

c(z) = argmax {pr(z,w)} . (1.11)

Provided that we are focused on approximations to actudighitities, most of the modelling
techniques are based on statistics. Typically, classiciikbquentist statistics are applied, producing a
classification of the models in two categories

e Parametric modelswhere the actual probabilities are modelled according yostatistical dis-
tribution, such as, the normal distribution, or the betaritigtion.

e Non-parametric modelswhere the actual probability is decomposed using stagiséquiva-
lences and afterwards modelled directly.

Another emerging modelling technique that has succegdbaién applied to several tasks such as
text classification [Sutton and McCallum, 2006], or speestognition [Heigold et al., 2007] is the
discriminative model§Berger et al., 1996] or thivg-linear models A log-linear model is defined as
an approximation to a probability distribution parametdsn the following way

po(w|z) = ﬁ exp(3 Oufu(@,w) (112)
k=1

with the set of paramete®, and wheref (x,w) is a vector offeatures defined a priory as a part of
the modelling process. Finallge (x) is the normalisation constant that ensures that the posteess
probability sums up to one,

K

Zo(x) =Y exp(d_Oxfr(z,w)) . (1.13)
weN k=1

The feature vectof (x, w) is whatever vectorial function that obtaifs real values from the objeat

and its classu. Anyway, the features are often count events, such as whettertain word appears or
not; or such as the number of occurrences of a given word.

1.1.2 Training criterion

In order to train the model parameters, tygimalset of parameters, s@ymust be found. The prob-
lem of the training criterion rises up because of the wordifopl”. Appropriateness depends upon a
criterion, which is summarised by tlogiterion function C). Given a criterion function, the optimal set
of parametersd, is determined by

6 = argmax {C()} . (1.14)
0c®

Often the criterionC (@) cannot be mathematically calculated, and then, it is nacgss sample to
approximate itD = {x1,...,x,},

6= aregenéax {¢(6; D)} . (1.15)
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1.1. Statistical Pattern Recognition

Nevertheless the expression in Eq. (1.14) is used inditinEwhether a sample is needed or not.

It is important to remark the difference between the los<fion defined in Section 1.1 and the
training criterion defined in the Eq. (1.14). The former de$ithe best way to build a system for given
probability functions, whereas the latter determines thst lvay to obtain the optimal parameters,
which would be used to approximate those probabilities.

There are several well-known and studied criteria such agmen likelihood estimation (MLE),
maximum a posteriori probability (MAP) or minimum mean ene(MME). We focus on the former,
the wide-spread MLE.

1.1.3 Maximum likelihood estimation (MLE)

The maximum likelihood estimation (MLE) criterion is one thle most wide-spread criteria which
has a well-founded motivation. It can be argued that sinceargeanterested in the actual probability
distribution, we should minimise the “distance” (in ternfgtee Kullback-Leibler divergence) between
the model and the actual distribution, that is

6 = arg min {KL(p,|[pe)} (1.16)
0c®

whereKL(p-|| pg) is the Kullback-Leibler distance between the model and theeh probability, de-
fined as follows

KL(pllpo) = [ po(@)ogpr(@)de— [ pel@)logpo(a)ia . (1.17)
X X
Plugging previous Eq. (1.17) into Eq. (1.16) yields
6 = arg max {/ pr(x) logpg(w)dw} . (1.18)
6co® X

Since Eqg. (1.18) is typically unfeasible to solve, it can ppraximated by the law of great numbers.
For a given sampl® = {x1,...,z,} i.i.d. according tg. (x), Eq. (1.18) is approximated by

0 = arg max {Zlogpg(xn)} (1.19)

6cO

If we define thdog-likelihood function ILL) as follows

LL(6) = > logpe(zs) (1.20)

then Eq. (1.19) is expressed as
6 = arg max {LL(8)}
6co

Therefore, minimising the divergence between the actuatbatility distribution and the model
yields the log-likelihood function as the criterion furantj i.e. C(@) = LL(@). This criterion is
named after the log-likelihood function and is so-calteaximum likelihood (MLgriterion. Maximum
likelihood criterion typically leads to the intuitive saian of the relative frequencies. Note that since
the logarithmic is an increasing function, maximising thg-likelihood function depicted in Eq. (1.20)
is the same that maximising the likelihood function definsddadows,

L) = [[po(zn) . (1.21)
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Chapter 1. Preliminaries

In summary, given an independent and interchangeable sabpk {z,...,z~}, the MLE

consists in solving the following maximisation
6 = arg max{z logpe(xzn)} . (1.22)
6c® ~

The maximum likelihood estimation has been a core techniigyattern recognition. However,
there is a little confusion in the bibliography around theBMierm. The term ML criterion is understood
in statistics as the statistical criterion that we have gméesd here which is used to estimate the optimal
set of parameters for any given probability distributiamtHe pattern recognition literature, MLE refers

to the estimation of the probability, (z,w) using “statistical MLE”, i.e. maximising the following
expression

6 = arg max{z log po (T |wn) +logpe(wn)} . (1.23)
deo 4

The MLE has several desirable properties:
e The MLE is asymptotically unbiased

e The MLE is asymptotically efficient, i.e., asymptoticaliy unbiased estimator has lower mean
squared error than the MLE

e The MLE is asymptotically normal. As the number of sampleseases, the distribution of the
MLE tends to the Gaussian distribution with the actual valsea mean and covariance matrix
equal to the inverse of the Fisher information matrix

e The maximum likelihood estimator is consistent

There are some regularity conditions which must be satisfiethsure this behaviour:
e The first and second order derivatives of the log-likelihfwtttion must be defined
e The Fisher information matrix must be continuous and nat-zetued

Although, the MLE is asymptotically unbiased, the MLE isd®d in practice for “small” datasets.
The term small depends on the ratio of the dataset size tautinder of parameters. In pattern recogni-
tion, this problem is very common and it is known as the ow@rfjitproblem. The overfitting problem
is understood in pattern recognition as the fact that thenteset of parameters is very specialised for
the training data, and hence, a small amount of probabéityains to be distributed among the unseen
data.

A typical approach to alleviate this problem is to resort tenaoothing technique. A smoothing
technique distorts the optimal set of parametérsn order to obtain a “smoothed” version of theén,
Several of the smoothing techniques are heuristicallyiiedm@nd make the optimal solution to lose all
its theoretical properties.

1.1.4 Maximum likelihood estimation for hidden variable madels

Maximum likelihood estimation usually leads to simple oexoptimisation problems. However, if
some variables were unobserved, finding the optimal pararset is not a simple problem any more.
Many useful models arkidden variable mode]s.e. part of the random variables are not observed in
practice. Fortunately, thExpectation-Maximisation (EMJIgorithm [Dempster et al., 1977a, Neal and
Hinton, 1998, Wu, 1983] finds the maximum likelihood paraengestimates in such problems. In this
section, we briefly review the EM algorithm according to [Naad Hinton, 1998].

A model is said to be a hidden variable model if part of the nhedgable is not seen in our training
data. Therefore, it is diffuse whether hidden refers to tloeleh or to the sample. In such a case, we
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1.1. Statistical Pattern Recognition

split the observatior: into two random variables; = (y, z): the hidden pary and the visible part.
Therefore, the model probability is given by

pr(x) ;== py(y,z) . (1.24)

The model in Eq.(1.24) is referred to e complete model
Suppose that the joint probabilityandz is parametrised using, then the marginal probability of
z, the so-calledncomplete models given by

Po(2) = pe(y,2) (1.25)

where, for simplicity, we have assumed thyahas a discrete domain, as is often the case; anyway the
results can be generalised.

Given the observed datg we wish to find the maximum likelihood estimate for the mqukaiam-
eters, that is to say the value @that maximises the incomplete log-likelihood functionegivby

LL(6) = logpg(z) =log Y pe(z,y) - (1.26)

The EM algorithm starts with some initial poifit®’, and then it proceeds to iteratively generate
successive estimate®()), 02 | . .. by repeatedly applying two steps: the Expectation (E) stebthe
Maximisation (M) step. On the one hand, the E step consisfimdiing the (best) distribution for the
unobserved variables, given the observed variables ancuthent estimate of the parameters. On the
other hand, the M step re-estimates the parameters to be witds maximum likelihood, under the
assumption that the distribution found in the E step is theadistribution for the latent or unobserved
variables.

It can be shown that each EM iteration improves the log-liled or leaves it unchanged. Note
that this implies that the EM algorithm is able to find a locaiximum but not a global one. This is both
the most important property and also the most important blaaw of this technique. Broadly speaking,
the main drawback of the EM is that it delegates to the ing#ion the responsibility of finding a global
maximum, and, hence, a bad initialisation of the paramei@nsuin the system performance.

The basis of the EM algorithm relay on defining an alternathjective functionZ(- - - ) to the log-
likelihood function in Eqg. (1.26), and then maximise thieahative criterion. This alternative objective
function is a variation and hence, one of its parameters i©bability function. Therefore, given a
parameter se and a probability functiory(y), the variationZ(q, ) is defined as follows

£L(q,0) = LL(6) — D(al|pe) (1.27)

where byp, we denotey, (y | z) andD(-||-) is the Kullback-Leibler divergence. It can be proved [Neal
and Hinton, 1998] that if a local (or global) maximum 6foccurs a®) andq, thenLL () has a local
(global) maximum a#.

An iteration of the standard EM algorithm can be expressedrims of the functior, since each
steps corresponds to the maximisation of one of its parametiile retaining the other fixed, i.e.,
E step Setq®)(---) to theq(y) thatmaximisesC(q, 8%~ V).
M Step Setf*) to thed thatmaximisesC(q*, 6).

It has been proved [Neal and Hinton, 1998] that the E step iémised whery®) = p, (y | z). Then
the EM algorithm can be expressed in its conventional wayrjpster et al., 1977a]

E step Compute the distribution™ over the domain of® such thatj(y) = pyo—1) (y | 2)

aActually over the domain of the random variable that accordingly to our notation is identified with its valu
y.
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M Step Setd® to the@ that maximises expected valuelof pg (y, z) with respect ta;'®, that is to
say, (log py (¥, 2)) () -

Moreover, the M step of the EM algorithm may be only partidthplemented; and then the new
estimates for the paramete#§” improve the functionC(q*’, ) given the distribution found in the
E stepq®, but do not maximise it. This partial M step always producesnaprovement of the true
likelihood. This variant is known as th@&eneralised Expectation-Maximisation (GEfD)empster
et al., 1977a). On the other hand, the E step may also be onfialpaimplemented, with the new
estimate for the hidden probability distributiogf*’, only improving the functionC(q, 8*~%) given
the optimal parameter set in previous iteration, insteadafimising it. In summary, the EM algorithm
can be expressed as follows

E step Find aq thatimprovest(q, 8%~ ) with respect toZ(q* =1, 8%*~1), and se;™ to it.
M Step Find a@ thatimprovesZ(q(®, 8) with respect to2(q'¥), 8*~1), and sep® to it.

These two steps are repeated until convergence. The cemaergs typically achieved when the
relative increment of log-likelihood from iteratidnto k£ + 1 goes below a given threshold or when a
maximum number of iterations is achieved.

The so-calledviterbi EM, is an outstanding version of the EM algorithm. In thissien, the
hidden probability distributiony obtained in the E step is assumed to be a Dirac’s delta funetithe
maximum pointy according top,-1) (y | ). This assumption restates the E step as follows

y" = argmaxpye-1) (y]2) (1.28)
yeY

and yields the hidden probability distribution

(k)

1 y=
(k) _ y=y 1.29
4 () {O otherwise (1.29)

The maximisation step is, then, reduced to a usual MLE witlfetent variables but with the sample
completed with they*) estimates.

Since the Viterbi algorithm constrains the family of furects to optimise in the E-step, i.g*) (y) =
8(y,y™); the parameter set that is obtained by the Viterbi approtiémas typically worse than that
of the actual EM without any constraint in the E-step.

In the remaining subsections, we will analyse two outstagdiidden variable models: the hidden
Markov models (HMMS) and the hidden semi-Markov models (H&l

1.1.5 Hidden Markov models (HMMs)

Although initially introduced and studied in the late 1968%d early 1970s, statistical methods of
Markov source oHidden Markov modelling (HMMhave become an increasingly field of interest
in the last few decades. There are two strong reason bedaese HMMs have become so popular.
First, the models are very rich in mathematical structuexdfd, the models obtain very good results
in practise when applied properly. The applications of HMAhge from several pattern recognition
problems such as speech recognition to the field of bio4médics [Rabiner, 1989]. In this section, we
briefly introduce the model in a generic way.

Given a vectorc{, we want to model its probability distributiop,-(2). For simplicity reasons,
we assume through this section that all the inputs have akamd fixed lengthy, that is to say, when
we write p,(x), we are actually referring tp,.(x | J). In order to model the previous probability, we
assume that each elementof the vectorz has been produced emittedin a different statey; € Q
and, hence, the same elementcan have different probability distribution depending be state in
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x1 Z2 x3 T4 T5 Te Z7 zs Z9

Figure 1.1: A graphical representation of the emission of a sequencetplitsz? by
a HMM. Note that this is not a graphical representation of aNHipology.

which it was emitted, i.ep(z; | ¢;). Since we do not observe the vector of stajés the training data,
we need to model the emission probability with a hidden ‘deianodel. Mathematically,

pr(®) =Y pr(xl@p(a) (1.30)

where, as discussed above,
pr(xlq)==]]po(z;la) - (1.31)
J

A left-to-right decomposition is taken to model the statelability p- (¢) under a first order Markovian
assumption, i.e.,

pr(q) = Hpr(qj- lad™") = p(q0) Hp(q]' lgj—1) - (1.32)

So far, no special model for the emission probabilifigéz; | ¢) is assumed.

Each statey; € Q can represent either an indéx = {0, 1,...,Q}, or something relevant. It is
also valuable to highlight that there is one special sate¢he so-callednitial state, which does not
emit any dimension ak. This special state models the chances that any of the remgaitates has to
be the state to emit the first output element. Note that afthove have add here our notation to the
initial state notation, the initial state event is also mt&tkEby using an initial state distribution [Rabiner,
1989].

Given a set of parametefs which comprises the transition probabilitip&; | ¢') and the emission
parameter®; the HMM is given by

Py (@) =D _plao) [ [ p(ai [a5-1)po(as10) (1.33)

wherep(go) = 1 since this “phantom” state is is always present (it is a suea®; wherep(q | ¢’) are
the model parameters for the transition probabilities ahérep,(z; | g) is the emission probability
modelled with the parameter st

There are many interesting questions to solve when dealitigHiviM, however we focus here on
3 of them:

1. How to compute the probability, (x) for a given set of parametersand a given object.
2. How to obtain the (most probable) sequence of sé@atbsit has emitted a specific object
3. How to estimate the optimal set of parametfsr a given training seD = {x1,...,zn}.

The first question is typically solved by defining the so-eafbrward recursion. This recursion is
obtained by reordering the sums of the probability in Eq33}..i.e.,

p. (x]) = ZZ"'ZHPe(%‘ lai) p(aslgi-1) (1.34)

9 91 qJ
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is equal to

Py (@) = plao)-- > poleslas)plasla—1) > po(slas)plgslas-1) . (1.35)

In this way, the forward recursiam; (¢) is defined as the joint probability of emitting the preﬁ{( and
emitting the last element; in the statey, i.e.

a;(q) :=pe(®1, Q5 = q) = pe(z;19) Y _p(qld)as-1(q) (1.36)

q

with the base caseo(qo) = 1. The forward recurrence requires a time complexity)gt)>.7) to fill
in a table ofO(QJ) elements.
Finally, the probability of a given sequened is computed as follows

po(@i) =D asla) (1.37)

A similar recursion can be defined using a post-fix arrangemwfethe sums instead of a prefix one.
The so-calledackward recursioris defined as follows

Bi(@) = po(@]11Q5=9) = pel(wj+11d)p(d | 9)Bi+1(d) (1.38)

with the base casé;(¢) = 1. The computational requirements for computing the backwaturrence
are the same of that of the forward recursion.

The second question is answered by defininguiterbi recurrence Given an emitted object we
want to obtain the state vectgrthat maximises the probability of emitting such an objeet, i

q- argmax{argmax{AAargmax{Hpm 4) plas |qj1>} }} (1.39)

q0 q1 J j

By reordering the maximisations and the products, the bitexcurrence is defined as follows

9;(q) = argmax {3;-1(¢') p(q] ¢')} Po (w5 [ a) (1.40)
q
with the base cas& = q,. Note that, by backtracking fromax, §.7(¢) , the optimalg is obtained in
a time complexity of0(Q?7) with the aid of a recursion table 6#(Q.J) elements.

Since the HMM is a hidden or latent model, some approximdtrémce algorithm is needed, and
hence the third question has as many answers as approxitgatitens. The classical algorithms are
obtained as the result of applying the EM. There are two migiordhms: Viterbi based training and
Baum-Welch training. The former is théterbi EM training (see Section 1.1.4) applied to HMM, in
which the Viterbi recursion is used in the E step.

The latter is the instantiation of the conventional EM tiagnto the HMM case. The re-estimation
equation in the M step for the transition probabilities iatthase are given by

Do 2 €ni(4,d")
plald) = =L (1.41)
2on 22 i (@)
wherev,;(g) is the probability of using the statein the j-th emission independently of which is the
previous state

i (@) =D &ns(a,4) (1.42)
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i T2 €3 T4 T5 Z6 X7 xs T9 Z10

Figure 1.2: Aninstance of the generative segmentation process cawidsy a HSMM
for an output sequence of 10 elements.

and wheret,,;(q, ¢') stands for the probability of using the statéor emitting thej-element having
used the statg’ for the previous emission, i.e.

(¢ )pe(zjl9)pald)Bi+1(q)
5o (@) (1.43)

We omit the estimation equations for the emission prolghilj (x; | ¢) since no assumption is
made in its modelling. It should be noted that this is the nimgtortant part of the model, and if it
is modelled incorrectly, then it can ruin the system perfamge. However, for our interest, it is not
needed to further assume any specific emission distribution

The main advantage of the Viterbi training with respect te Baum-Welch is its speed. The
Baum-Welch training is slower than the Viterbi training. wiver, it is also expected that Baum-Welch
training obtains better practical results than the Vitérdining since the Viterbi training only takes into
account the most probable path for each sample instead thieafiossible paths. Recall that this topic
has already been addressed in Section 1.1.4.

Throughout all the section we have assumed that all the botpectsz had the very same length
J. In order to make the same model able to manage differentiseng usual approximation is to add
a non-emitting final stater or output symboB, and hence, the transition probabilitygr | ¢) or the
emission probabilityp($ | gs+1) is used for modelling the length. For instance in the caséefinal
state the parametrised model is given by:

Py (@) =D p(a0) [T p(as | as-1) po(i ) plar las) - (1.44)

6ni(a,d) =pe(Q =¢, Q-1 =¢ |zn) =

Note that a further subtle assumption is hidden in this meithele each transition probability and emis-
sion probability does not depend on the lendthand, hence, the emission and transition probabilities
have been merged for all the lengths [Rabiner, 1989].

1.1.6 Hidden semi-Markov models (HSMMs)

Given a sequence of observationg, a hidden semi-Markov model (HSMM) [Ostendorf et al., 1996]
is a modification of HMM. A HSMM emits a segmemjﬁ“*1 at each state instead of constraining
the emission to one elemen} as the (conventional) HMM. This way, the probability of etinig a
sequence of observation%”’l_1 in any state depends on the segment ledgthd the state itself. The
figure 1.2 depicts an instance of the emission process daieby a HSMM.

In a hidden Markov model (HMM), the probability of emittingsagment of lengthwhile remain-
ing in the same statg, can only be simulated by transitions to the same staf€his approximation
yields a exponential decaying length probability model

p(llq) =[pla] )" . (1.45)
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Figure 1.3: The “simulated” length probability in a HMM for several valsi of loop
probabilitiesp(q | ¢). Note that we have used a continuous plot instead of a hestogr
plot for clarity’s sake.

which is depicted in Fig. 1.3. This exponential decayingtérprobability model is not a good approx-
imation for many cases.

Even if the decaying length probability is not an importassuie for a given problem, the simula-
tion of a HSMM using a HMM also constrains the segment emispi@mbability to be a naive Bayes
decomposition, i.e.

J+ii—1

il —
po(z) gy = J[ pelzxla) | (1.46)
by

which again is not the best choice for many cases.

These two differences between an HMM and a HSMM, i.e., theeaptial length distribution and
the naive Bayes posterior emitting probability; introdube HSMM as a very interesting, appealing
and powerful extension to the conventional HMM.

There are several ways to formalise the HSMM extension. Hegeadvocate for a similar formal-
isation of that found in Murhpy [2007]. The HSMMs are basedhdridden state sequengewhich is
a property inherited from HMM. Additionally, HSMMs also retéo define a length random variable,
1, which stores the length of the segments emitted at eaah SBqtpositely to traditional HMM, the
state sequence and the length vector can show differenndioreto that of the emitted objegt/ (see
Fig. 1.2 for an example). However, in order to clearly spetlie semi-Markov modelling technique, a
special representation of the state sequence and lengtir i®needed. Under this representation, both
state and length random variables share the length withutpeibobject, i.e.,J.

We define the length vectdr = (l1,12,--- ,1s) as a random variable that stores the length of
each segment at the position at which the segment beginghéAlemaining positions, which are not
segment beginnings, are set@o For instance, in the example given in Fig. 1.2 the lengthorelc
is11° = (3,0,0,2,0,3,0,0,2,0). The vectorl can be extended with an additional elem&nt= 0
whenever it is necessary, yieldidg = (lo, l1,l2,--- ,1).
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1.1. Statistical Pattern Recognition

Given a length emission vectbrwe define its prefix counterparas

J
ijzlk7 §=0,1,-,J (2.47)

as well as its previous segment prefix length

i(5)
7Tj:1+zlk7 j=01,--,J (1.48)
k=1

with i(5) equal to the starting of the previous segment. For instancEig. 1.2, the prefix segment
length isl = l0 = (0,3,3,3,5,5,8,8,8,10, 10) and the previous prefix segment length is given
by m = wi® = (1,1,1,1,4,4,6,6,6,9,9). Note that if we know a prefix of, sayl?, then the
corresponding prefixes dland, sayl} andfrg, are known as well.

A similar definition to that of the length vectérwould be handful for dealing with the state se-
quence vector. Lef) be the set of all possible states in which the model can emiugout segment,
and let® ¢ Q be an extra null state. The state sequence vegfostores the state in which each
segment has been emitted at the starting position of theesgigrilence, the remaining positions not
corresponding to the starting of any segment are set to thstate,®. For instance in the example in
Fig. 1.2 the state vectay is defined agy” = (qo, g1, ®, ®, @4, ®, g6, @, @, go, ®). Given a pair made
of a state vector and a length vecti@, ), they must verify that the null states and the0 lengths
co-occur at the very same positions with the exceptiogoofvhich can never be, in other words,
qg; = ©ifandonlyifi; =0,forj=1,2,...,J.

Note that we assume no specific parametrisation for the sgigengission probability distribution

JHl—1 i i
Po (T} | g;,1;) through the remaining of the current section.

Finally, in order to model the output emission probability & given sequence of observatians

we unhide the state vectgrand the length vectdr

=3 praOp(x]ql) , (1.49)
L q

where we have introduced two probabilities: the state angtleprobabilityp. (g, !) and the emission
probability p, (z | g, 1).
The first probability in Eq. (1.49) is decomposed from leftight as follows

J
D=1[r(alila " 0" - (1.50)

The state transition probability in Eq. (1.50), is modeléetdy in the segment boundaries. Let say
that j is one of these boundaries, thgn, + 1 = j and thereby, the current state cannot be null,
q; # ©. Note also that if there is a segment boundary,ahen the previous segment length cannot
be 0 and the previous state cannot be null; that is tolsay, > 0 and Qr;_ # ©. Finally, note
that all the segment Iengthls(and stateg), must be0 (and null), betweenrj 1andj — 1; thatis
to sayerJj1+1 = 0 (and qm—l = ). Although many of those conditions are redundant, we have
specified them for clarity’s sake. In order to simplify naat we useC'(5) to denote the predicate that
corresponds to all the previous conditions, i.e.,

C(]) = Zj—l +1= Js erJ_-,ll-y-l =0, l7l'j71 >0, qj 75 o, qgr;,ll =0, qrj_1 75 © . (151)
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Using the previous definition, the state transition proliigp, (¢;,1; | g}~ ", 12~ ") is, finally, modelled
as follows

Lo p(qja lj | qTrj_l) C(])
pr(qjvlj | qg) vl{ ) =41 lfj_1+1 7& Js lj =0, g =0 (152)
0 otherwise

Note that the latter cage - (¢;,1; | g} *,12~") = 0, is only possible if a segment length vector or state
vector is out of the domain.
In this way, the state path probability in Eq. (1.52) is siifigdl to

pT(Qal) = H 1 H p(qj’lj|qﬂ'j—1) ) (1.53)

j€Z(q) j¢Z2(q)

whereZ(q) or simply Z stands for the set of positiorigor which g¢; is the null stated, or alternatively
the positions for whicli is 0, i.e.l; = 0. For instance, in Fig. 1.2 we have = {2, 3,5, 7, 8,10}.
Since one of the two products in Eq. (1.52) simplified t¢he state path probability in Eq. (1.53)
is equal to
pr(q7 l) = H p(qjv L | qTrj—l) ) (1.54)
J¢Z

or, in order to simplify notation, to

pr(g,0) =[] plae le | gm, ) (1.55)

where we have explicitly omitted thate Z, but we use the indexinstead ofj to keep in mind the
whole simplification process without the need of specifyamyg part of it.

Note that although we have modelled the transition and kepigibabilities with the same parameter
p(gj,1; | g:), these parameters are typically modelled with the foll@aimo parameters

(g, 1qi) == p(gs @) plilas) - (1.56)

Since this does not affect to the algorithms significantky keep the more general notatiofy;, I; | g:).
The emission probability in Eq. (1.49) can be decomposedsim#ar way to the state transition
probability as follows

po(x]q,1) = [[po(a(t)]ar,ls) (1.57)

wherex(t) stands foes! ™t 1,
Plugging Egs. (1.55) and (1.57) into Eq. (1.49) the emisgiabability for HSMM is defined as
follows

po(xi) =Y > [Ipacle|gn, ) pe((t)|ale) (1.58)
l q t

Similarly to the HMMs discussed in Section 1.1.5, we shouldveer to the same questions such
as how to compute the probability for a given outputThe answer to these questions is very similar
to the HMM case, but taking into account an extra sum on the staission lengths. For instance, the
forward recursionfor this model is defined by

ai(q) = pe(®1, Qe =q) = D> > po(@i i1 |, 1) p(a,l]q)a-i(q) - (1.59)
g
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1.2. Language Modelling

The time complexity for computing such a recurrenc€®{€)?.J?), which is.J times slower than the
HMM counterpart. However, the segment length is often caingtd to a maximum length/ yielding
a time complexity ofO(Q?JM); which is justM times slower andloes not scale with the sentence
lengthJ.

The analogou¥iterbi and backward recursions to the ones defined for HMM are edsfiped in
a similar way. On the one hand, the backward recursion espioé following equation

Be(q) = po (i1 Q= q) Z Zpe thrl )p(d', L a)Bea(d’) (1.60)

On the other hand, the Viterbi recursion needs an additioretimisation for the emitted segment
length in order to exploit the recursion, i.e.,

8¢(q) = max {H;%x {6:-1(d)p(a,114") } Po(@i—141 | q, l)} : (1.61)

Finally, the estimation of the model parameters is perfatine similar way to the HMM but using
the re-defined recurrences.

1.2 Language Modelling

Language modelling is a core task in several natural langpagcessing problems such as statistical
machine translation (see Section 1.3) or speech recogriitiadas, 1984] among others. The language
modelling (LM) task is stated as the problem of designingrappate models that approximate the
probability of a given textp.(w). Therefore, given a sentence or textmade up ofl” words chosen
from a lexiconWV with replacement, our aim is to model the probabiity(w) with an “appropriate”
modelp, (w).

There are several models for approximating the actual kgejyrobability distribution. For in-
stance, hierarchical models use context-free grammarmpinie long term dependencies [Benedi and
Sanchez, 2005]. However, one of the most widespread maigien-gram model [Goodman, 2001],
which obtains surprisingly good performance although Iy @aptures short term dependencies. The
main advantage of this model is the simplicity and good perfmce compared with other more com-
plex models.

Then-gram model decomposes the language probability fromdefght as follows

T
w) = Hpr(wt|w§71) . (1.62)

In theory we could turn each product term in Eq. (1.62) int@emeter. In practice, however, this
would lead to a huge set of parameters that would be unfeatibirain. Therefore, a-Markovian
assumption is made in order to keep a manageable amountashp#ars. That is the same to say that,
the probability of the-th word is assumed to depend only on the- 1 previous words, yielding the
n-gram model

T
H (wi|hn (wi™) (1.63)
whereh., (w!™') or simplyh, stands for thén — 1) words previous to the current positioni.e.

ho(Wi™) =i iy (1.64)
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We will henceforth usé to denote the — 2 previous words
h=h, (wi™) | (1.65)

h to denote the, — 3 previous words, and so on.

Note that in the Eq. (1.63), we have abused of notation sfocéstance, the first term in the prod-
uct isp(w1), which is not a unigram but the probability @f; to be in thefirst position of the sentence
Hence, if there are not — 1 previous positions in the history, then the probability (w; | w!™') is
not at-gram probability, but the probability fap; to be thet-th word knowing thatw? ™" are at the
t — 1 first positions. This fact is usually made explicit in praetby concatenating at the beginning of
the sentence a special symbol, say “<s>".

1.2.1 Evaluation

In order to compare between different language model¢dabeditional) perplexityBahl et al., 1983]
on atestsetS = {si,...,sam} is defined as

PP(S) = 2% =1 loga pra(sm) , (1.66)

for a givenlanguage model (LMpras(- - - ); and whereV stands for the total number of words in the
test set. If the LM is ae-gram model, then

PP(S) _ 2% M, ZIT:’"l' logg p(smi | hn(sm’i™1)) ’ (1.67)

whereT,, stands for the length of the-th outcomes,,.
Note that thgconditional) perplexitys a geometric average of the log-likelihood,

PP(S) = 2~ Mrm(S) (1.68)

The perplexity can be understood as the average number sibjmsvords that can come after a
given prefix. The perplexity depends on two factors: the rheffeciency and the task complexity.
Under the same circumstances, the less the perplexity ibdtter. Therefore, if we compare two
different smoothing techniques or models, the one with thallest perplexity is the best one. However,
the criticism to this measure lies on the fact that an impmuet in perplexity is not always related to
an improvement on the system performance.

1.2.2 Maximum Likelihood Estimation

Once then-gram model is simplified by the — 1 previous words assumption, its parameter set is
still large enough to annihilate our chances for obtainingleble estimation from the training data.
Specifically, then-gram parameter set’is

{p(w|h)} YweW,Yhe W " | (1.69)
with the following normalisation constraints

d pwlh)=1 VYhew"!' (1.70)

whereW denotes the vocabulary.

bWe have intentionally omitted the parameters that ingtiakhe history for simplicity sake, for instangéws ).
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Due to the large number of free parameters and the alwaysesdata, it is a common approach
to resort to smoothing techniques. For instance, for aaniglanguage model, the events that occur
only once or not at all typically represent a huge percentfgée total occurrences. Therefore, the
probabilities of these events are difficult to estimate withventional methods.

For better understand the overfitting problem in thgram LM context, we must bare in mind
the (conventional) MLE estimation. Given a training corpus . . . ws, . .. wn; We Know in each text
position, n, the observed wordv,, and its conditional history,,. In this case, the log-likelihood
function is given by:

LL({p(w|h)}) = SN log p(wy | ) (1.71)
>wn N(w, h)logp(w|h) (1.72)

where in the last line we have changed the summation indexdayp@ng the occurrences for the same
word w and historyh. We will henceforth denote by (w, k) to all the occurrences in the training set
of a givenn-gram,hw.

In order to obtain the MLE for the-gram model, we must maximidel.({p(w|h)}) constrained
by Eq. (1.70). Applying some convex optimisation technig[iey et al., 1997], the MLE is computed
as follows
N(w, h)

plulh) = Z5a57 (L.73)
whereN (h) stands for the occurrences of the histérin the training corpus, that is to say
N(h)=> N(w,h) . (1.74)

It is seen that the-gram parameter set is very sparse, leading to poorly esddLE probabili-
ties. For instance, in Eq. (1.73), it is observed that foruhgeem.-grams the probability is estimated
as0 even if all the words of thex--gram occur in the training data. This overfitting problermivk
from the scarce training data, is one of the most importaeavdacks of the:-gram model.

1.2.3 Leaving-one-out smoothing techniques

The smoothing techniques fargram models [Goodman, 2001] range from adding a pseudott¢ou
each occurrence count, to discounting a probability niassrom the seem-grams for each history
h and redistribute it according to a smoothing distributié(,| #). For instance, the linear interpola-
tion [Chen and Goodman, 1998] distributes the gained piibyaimass B;, among all words according
to the smoothing distribution. On the other hand, the bagkiffi redistributes the probability only
among unseen events.

The most successful smoothing techniques are based duting-Good (TG) countgSood, 1953,
Nadas, 1984] which are obtained Baving-one-out (LOQ)Specifically, the modified Kneser-Ney,
which obviously is a modified version of the Kneser-Ney srhow [Kneser and Ney, 1995], obtains
the best results [Goodman, 2001].

The main idea of the LOO-based smoothing models is to digcayrobability mass from all
the seem-grams by means of a discounting parameteffor countsr < R being R the maximum
count. Then, the gained probability mags,, is redistributed among the unseen events according to
a smoothing probability distributioff(w | k). No probability is discounted from the most frequent
n-gram, R. Therefore, in order to smooth thegram language model, we smooth the probability
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estimateg (w|h) with the following smoothing model

% N(w,h) =R

Ba(wlh) == (1= X\) sk 0<N(w,h)=r<R | (1.75)

BrB(w|h N(w,h) =0

where By, is the discounted probability mass defined as follows

R—-1
Bi =" A (h) Nzh) , (1.76)

so that the probability defined in Eq. (1.75) sums uf tand wheren,.(h) are the counts-of-counts
conditional to the previous history, i.e.

ne(h) =Y _(r,N(w,h)) . 1.77)

The discounting probability mas§(w|h), is a lower order smoothing probability distribution define
over the unseen words, i.e.
> Blwlh)=1 . (1.78)
w:N (w,h)=0

Theleaving-one-out (LOOgriterion [Katz, 1987] is based on the MLE criterion, wheaele sam-
ple plays the role of both training and testing. We summaitigsebasis of the formalisation found
in [Ney et al., 1997, Sec. 4]. Firstly, equivalence classed@@med by gathering all-gramshw which
share the very same count= N (w, h) and historyh, into the same equivalence class. Note that these
equivalence classes simulate the result of the conveitidbg in Eqg. (1.73), where all thex-grams
with the same count share the same probabjlity | 2). Secondly, we count the number of differ-
entn-grams in each class labelled with the count = 0,1, ..., R; and denote them by..(h) (see
Eq. (1.77)). Finally, by leaving-one-out angram observation in the class with courfor testing, it is
moved into the class with count— 1. Thus, the associated probability is replaced with the alodly
of the clasg- — 1, obtaining in this way the LOO probabilitigs,. (w | k)

(1=X-1)gmy L<N(wh)=r<R

BrnB(wlh) N(w,h) =1

Proo(w|h) = { (1.79)

If this process is repeated for all occurrences and for alivedence classes = 1, ..., R; then, the
LOO log-likelihood criterion is obtained

FAT1) =) N(w, h) log proo(w | h) (1.80)
wh
R R—1
= Zrnr log(1 — Ar1) + an(h) log <Z /\an(h)r> +const( AfTY)
- ' - (1.81)

wheren, stands for the the counts-of-counts unconditional to aryipus history, i.e.,

ne = ne(h) =Y 5(r,N(w,h) . (1.82)
h wh
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However, Eq. (1.81) is very difficult to deal with; furtherneo no close solution fok, is known.
Therefore, we make the following assumption [Ney et al.,713fxg. 186]

R—1 R—1
SO Ame(h)r=én > Amer (1.83)
r=1 r=1

whereg;, is a constant value depending on the previous higtdoyt not in the counts.
After taking assumption in Eq. (1.83) into Eq. (1.81), thedtion to maximise is given by

R R-1
FOAF = Zrn,« log(1 — Ar—1) + n1 log (Z Amm) + const(AFT) (1.84)

r=2 r=1

for which the solution is given by [Ney et al., 1997, pag. 186]
Ar=1- %(1 —nrR/N) | (1.85)

wherer* stands for the Good-Turing count [Good, 1953, Nadas, 198%,eX al., 1997]

e R R B N I (1.86)

Ty

and abusing of notatiol®* = R. If we further assume thatr R/N < 1, then Eq. (1.85) simplifies to
A=1-1 . (1.87)
T

Finally, the solution to the smoothed model is given by plagdeg. (1.87) into Eq. (1.75), i.e.,

*

R 0<N(w,h) =r<R
plwlh) = {Bhﬁ(wm) N(w,h) =0 ’ (1.88)

where the smoothing distributigh(w | ») is also estimated by LOO [Ney et al., 1997].

Itis very illustrative to define the discounted probabilityassB;, in terms of the TG counts. Using
the smoothing model solution in Eqg. (1.88), and the definitid the discounting probability mass in
Eq. (1.76); the formeB,, is computed as follows

R *
Bh=1- an(h)ﬁ (1.89)
r=1

1 ul .
= N <N(h) - ;nr(h)r ) ,

where taking into account the following property

R
N(h)=> rne(h) , (1.90)
By, is expressed as
1 (& .
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and grouping common terms

1 & .
= N ;(r —r)n-(h) . (1.92)

Note that the question of whether the normalisation coimtrdan Eq. (1.70) are satisfied depends on
By, and, hence, on the TG counts. This is due to the assumption in Eq. (1.83), since the difinif
our model ensured these normalisation constraint to b&esbri

It may be said that the conditional dependence of the coumis®dropped when the assumption in
Eq. (1.83) is taken; resembling, in this way, the solutiom @int smoothing model [Ney et al., 1997].
Consequently, we should analyse a joint smoothing modeteonhether this statement is true or not.
The joint smoothing model approximates the joint probébgip (w, k) instead of the conditional
ones,;px (w|h), as follows

¥ N(w,h) =R
Pa(w,h) =< (1-N)% O0<N(w,h)=r<R (1.93)
BB(w,h)  N(w,h)=0

with the gained probability3 independent from the previous history as follows

| Bl
B=— T 1.94
N;)\nr (1.94)

Note that both Egs. (1.93) and (1.94) are analogous to E¢&)(and (1.76), except for the normalisa-
tion constant that i8V (k) in the latter and has been replaced fain the former.

If we apply LOO to the joint smoothing model in Eq. (1.93), thihe solution in Eq. (1.85) is
obtained without any assumption. Therefore, we concludetiking assumption in Eq. (1.83) with
the conditional model in Eq. (1.75) is equivalent to takihg assumption of optimising the parameters
A1 for maximising the joint LOO log-likelihood function in E¢1.81) and, then, use them as if
they were the optimal parameters for the conditional modétq. (1.75). In theory, this assumption
can degenerate the probabilities as commented above, sotirm the normalisation constraints in
Eqg. (1.70). Moreover, in practice, we are interested in mising the conditional model, since it
would produce smaller perplexities and eventually, thisusthimprove the system performance. The
magnitude of this assumption mainly depends on the finalyabieur of these smoothing models.

Itis worth noting that we have broadly reviewed the standamahulation given in [Ney et al., 1997]
for introducing the Turing-Good counts. Furthermore, theeger-Ney (KN) smoothing [Kneser and
Ney, 1995] is a special case of the model defined in Eq. (1H&)ttes all the parameteps™ ' with
one discounting parametgri.e.,

(D) =2 | (1.95)

leaving just one free parameter to estimate: the formeodisting parameteb, Furthermore, an upper
and lower bound to this parameter is obtained by LOO [Ney.el8P7]

= <b< —1
ni1+2nz + 32, Sanr n1 + 2n2

(1.96)

In this case, similarly to other smoothing techniques, lpaitit and conditional smoothing models lead
to the same solution, without degrading the probabilitigsdt verifying the normalisation constraints
in Eq. (1.70).
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1.2.4 Language modelling for text classification

The unigram language model is a special case ofithjeam language model, for = 1. In such case,
the probability for a given sentence or texf is given by

T
pr(w) = [[p(wr) (1.97)
t=1
where we have assumed that the occurrence probability bfwand is independent of its position and
other words, the so-calleldaive Bayes assumptiomNote that if the probability of a text is given by

Eq.(1.97), then the count vector of words,such thatcy = Ny, (v4) is the number of occurrences of
the wordv, in the textw, follows a multinomial distribution, i.e.,

D
po(z|L) = ( i )Hggd 7 (1.98)
d=1

wheref, stands for the probability of the worg; to occur and, hence, they must sum up to one

D
D ba=1, (1.99)
d=1
with the definition |
L L!
— ) (2.100)
( z ) HdD:I 4!

Thenaive Bayesanguage model has long been a core technique in informedtaeval and, more
recently, it has attracted significant interest in pattegognition and machine learning [Lewis, 1998].
This technique is specially outstanding in text classificafJuan and Ney, 2002, Vilar et al., 2004]. In
Chapter 2, the naive Bayes language model is further ardalyse

1.3 Statistical Machine Translation

In this Section we review state-of-the-art applicationd approaches in the field afachine translation
(MT), focusing on the statistical approach. The goal of MT is thematic translation of a source
sentencex into a target sentenag,

r=z1...¢5...25, z;€X, j=1,...,J
y=vy1...%...y1, €Y, i=1,...,1
wherex; andy; denote source and target words; aKdandY’, the source and target vocabularies

respectively.
On the one hand, current MT technology is focused on threa aggilications:

e Fully-automatic MT in limited domains like weather foretfisanglais et al., 2005], hotel re-
ception desk [Amengual et al., 2000b], appointment sclieguétc.

e Post-editing for CAT, i.e., post-editing the human amenainoé automatic translations produced
by an MT system.

e Understandable rough translation in which the aim is tovalohuman to decide whether the
translated text includes relevant information. For instrthis is used for document finding
purposes or user assistance in software troubleshooting.
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e Interactive machine translation where a synergy betweemnisker and the system is achieved by
restating the user interaction as an iterative process inhathe user corrects the translations
given by the system which proposes a hew hypothesis for theaidated part of the translation
in its turn.

On the other hand, state-of-the-art MT approaches can bsifital according to the level of anal-
ysis of the source sentence before translating:

e The interlingua approach [Arnold et al., 1993, Nirenburglet 1992, Nyberg and Mitamura,
1992].

e The transfer approach decomposes the translation protegbiee steps: analysis, transfer and
generation. A review of transfer-based systems is predéntgiutchins and Somers, 1992].

e The direct approach refers to the word-by-word translatiom the source sentence into the
target sentence. Under this approach we find example-baSeshistatistical MT.

In statistical machine translation (SM;Tthis translation process is usually presented as a gtatist
pattern recognition problem in which for a given source seog¢x, the optimal target sentenggis
searched according to

Yy = argmax pr(y|x) , (1.101)
Yy
wherep,(y | x) is the probability fory to be the actual translation ef. Note that Eq. (1.101) is simply
the adoption of the Bayes’ optimal classification rule in 8g9) into the machine translation scope.

The so-calledsearch problenis to compute a target sentengdor which this probability is maxi-

mum. Applying Bayes’ theorem we can reformulate Eq. (1. E3Xljollows

y = argmax p.(z|y)p-(y) , (1.102)
Y
where the termp(y | ) has been decomposed inttranslation modep.(x | y) and alanguage model
pr(y). Intuitively, the translation model is responsible for rethithg the correlation between source
and target sentence, but it can also be understood as a rgeppittion from target to source words.
Whereas the language mogely) represents the well-formedness of the candidate traostgtiStol-
cke, 2002].

The application of Eq. (1.101), minimises the CER which in B£bpe corresponds the sentence
error rate (SER)However, the SER measure provides a rough and superfieillagion of the system
translation quality and it is rarely used in favour of othesrmpopular evaluation measures described
in Section 1.3.3.

The search problem presented in Eq. (1.102) was proved ta bPacomplete problem [Knight,
1999, Udupa and Maji, 2006]. However various research grdwgve developed efficient search al-
gorithms by using suitable simplifications and applyingimgation methods. Starting from the IBM
work based on a stack-decoding algorithm [Berger et al.613fieedy [Berger et al., 1994, Germann
et al., 2001, Wang and Waibel, 1998] and integer-programgrfBermann et al., 2001] approaches to
dynamic-programming search [Garcia-Varea and Casaeyt28®1, Tillmann and Ney, 2003].

Nevertheless, most of the current statistical MT systerasemt an alternative modelling of the
translation process different from that presented in EQ.Q1). The posterior probability is modelled
as a log-linear combination of feature functions [Och ang,[2804] under the framework of maximum

entropy [Berger et al., 1996]
M

Y = arg max Z Amhm(z,y) (1.103)
v m=1

where\,, is the interpolation weight anld., (x, y) is a function that assigns a score to the sentence
pair (x,y). Examples of features range fram, (xz,y) = log p-(x | y) or hm(x,y) = log pr(y), to
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hm(x,y) = exp(1). Note that under this framework, Eq. (1.102) is a particakse where

hi(z,y) = logpr(z|y) (1.104)
ha(z,y) = logp:(y) (1.105)

andi; = A2 = 1.

It is particularly worthy of note that Eq. (1.103) is quitersiar to alog-linear model depicted in
Eg. (1.12) without the normalisation coefficiedy (x). For this reason, these models are commonly
refereed to as log-linear models [Och and Ney, 2004]. Howeate that the ellipsis of the normal-
isation constant plays an interesting role in these tréingl& models since its omission is conserved
through the training process as well, in contrast to thedstathlog-linear models. We will further
analyse these differences in Chapter 4.

1.3.1 Statistical word-based translation systems

A great variety of statistical translation models have bpeaposed since the word alignment models
were proposed [Brown et al., 1993a, 1990]. Most of statéiefart statistical MT systems are based on
bilingual phrases [Callison-Burch et al., 2007]. Thesénbilal phrases are sequences of words in the
two languages and not necessarily phrases in the lingsistise. The phrase-based approach to MT is
further explored in Section 1.3.2.

Another approach which has become popular in recent yeageoimded on the integration of
syntactic knowledge into statistical MT systems [Ding aradnf®er, 2005, Graehl and Knight, 2004,
Lin, 2004, Wu, 1996, Yamada and Knight, 2001]. This apprgaatses the sentence in one or both of
the involved languages, defining then, the translationatfmers on parts of the parse tree. In [Chiang,
2007], Chiang constructs hierarchical transducers foistedion. The model is a syntax-free grammar
which is learnt from a bilingual corpus without any syntadtiformation. It consists of phrases which
can contain sub-phrases, so that a hierarchical structimeuced.

The third main approach, which is currently investigatedtatistical MT, is the modelling of the
translation process as a finite-state transducer [Alshawl. 22000, Bangalore and Riccardi, 1995,
Casacuberta and Vidal, 2004, Kanthak and Ney, 2004, Mati@h,e2006]. This approach solves the
translation problem by estimating a language model on seageof extended symbols derived from the
association of source and target words coming from the sé@ingual pair. The translation transducer
is basically an acceptor for this language of extended sysnbo

In this section we briefly review the word based models prieskim Brown et al. [1993a]. In this
work, the models were presented in its inverse way, p&x | y). However, since in Chapter 4 we
make use of direct translation models, we present here thientiBdels in its corresponding direct way,
i.e.,pr(y | ). Inthe direct version of IBM models, the translation of amseusentence into a target
sentencey, is carried out usinglignmentsbetween words, i.e. a target woud is aligned to the set
of source word positiona; = {ji1,...,7}, if the target word is directly generated as translation of
the source word group;,, ..., x;. This model requires the use of a hidden variable model gimee
alignments are typically never seen in training

pr(y|z) =p(I|2)y > pe(y,aila, 1) | (1.106)

wherea; is the alignment vector that indicates which source wordsaigned with the-th target word
yi, 1.e.

a; C{1,...,J} , (1.107)
and wherep,.(I | z) is a length distribution which is usually uniformly modelleand consequently
ignored.
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Some constraints are usually added to the alignmentcasitsiue to practical restrictions. For
instance, theoverage constraimequires all the source words to be in at least one alignnegnt s

The complete probability model in Eq. (1.106),(y, a! | ), can be decomposed left to right as
follows

pr(y7a{|$71):Hpr(ai|$7ai_17y§_17[)pr(yi|$7a§7'y§_171) ) (1108)

where two probabilities are used:
e The alignment probability,(a; |z, a’™*, y~1, 1)
e The translation dictionary probability. (y; | x,a?,y'™*, I)

Different alignment models were proposed in [Brown et €93b] (in its inverse form) based on
this idea, although onlg models where directly modelled constraining the probtdiin Eq. (1.108)
directly. These two models constrain the alignment sewimgality to 1 or 0, that is to say each target
word can be aligned to either one word or no word at all. In ptdesimplify notation, we redefine the
alignment variables since each alignment is composed ofvond. Therefore, we say that = j if
the target wordy; is “aligned” to the source word;, wherej can be any source positiof, ..., J})
or 0 indicating thaty; is not aligned to any word. In order to represent the “nogratient” event, a
NuLL word is introduced at the beginning of i.e. ¢ = zox1 - - - x ;. If @ target wordy; is aligned to
xo (a; = 0), the so-called NLL word, then it is equivalent to say that this target wgyds not aligned
to any source word.

IBM model 1

The first of the IBM models, the so-called IBM model 1, is esisdly defined as a statistical bilingual
dictionary.
The IBM model 1 [Brown et al., 1993b] makes the following asgtions

e The alignment probability is uniform, i.e.

; 1
1 i—1
)

pr(ai|z,ai™" y] =7 (1.109)

e The dictionary probability depends only on the aligned ward
pr(yilz,at,yy 1) = p(yi| za,) (1.110)

where note that we have introduced the notatido refer to parameters, and where the following
normalisation constraint must be verified

> plbla)=1 VaeX . (1.1112)
b
Taking into account the assumptions in Egs. (1.109), arid (), the model probability is given by

1 I J
pr(yle) = <J—+1) 11D pwilzs) - (1.112)

i j=0

Since the model is a hidden variable model, the EM algoritBenfipster et al., 1977b] is used to
estimate the parameter s@:= {p(b|a)|be Y, ,a € X }.

The aim of the IBM model 1 typically is to initialise the tréig of superior IBM models. Another
interesting property of the IBM model 1 is the concavity aflitg-likelihood function, and therefore the
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1.3. Statistical Machine Translation

unigueness of a maximum value under non-degenératiilisation. However, the IBM model 1 has
been widely applied to different tasks of statistical MTss-lingual information retrieval and bilingual
TC due to its simplicity and applicability of its parametadwes.

In statistical MT, the IBM model 1 has traditionally been ampiortant ingredient in applications
such as the alignment of bilingual sentences [Moore, 200#], alignment of syntactic tree frag-
ments [Ding et al., 2003], the segmentation of bilingualgaentences for improved word align-
ment [Nevado et al., 2003], the extraction of parallel sects from comparable corpora [Munteanu
et al., 2004], the estimation of word-level confidence mess{lUeffing and Ney, 2007] and serves as
inspiration for lexicalised phrase scoring in phrase-tiagsstems [Koehn, 2005, Koehn et al., 2003].
Furthermore, it has also received attention to improve stomstural problems [Moore, 2004].

IBM model 2

The IBM model 2 is an extension of the IBM model 1 where theratignt probability is not uniformly
modelled. Specifically, the IBM model 2 parametrises thgratient probability as follows

prlai|z, iyt ) = plai|i,1,J) (1.113)
where the following normalisation constraint must be vedfi

Zp(ju,I,J) =1 (1.114)

Taking into account the assumptions in Egs. (1.110), arid 8), the model probability is given by

pr(y|x) ::Hzp(jlivkn})p(yil%’) : (1.115)

Since the model is a hidden variable model, the EM algoritemasied to estimate the parameter
set,{p(b|a),p(j |4, I,J)}. Inorder to train this model, firstly, some iterations of tB& model 1 are
performed in order to obtain good dictionary estimateseAfards a retraining is performed using the
EM update equations for the IBM model 2.

1.3.2 Statistical phrase-based translation systems

The basis of the mainstream and better statistical mactanslation models are based on the so-called
phrase-based models. The idea of modelling the translptimess using phrase dictionaries was firstly
introduced in the alignment template approach [Och and R@§4]. In this section we review several
proposed phrase-based models.

Generative phrase-based models

We outline here an example of generative phrase-based niad&lill serve us to present the problems
faced by this approach, and to motivate the introductioreofistically estimated phrase-based systems.
We follow the model presented in Zens et al. [2002].

Let (x, y) be a pair of source-target sentences, we introduce the ctorel conditional probabil-
ity p(y | «) for the translation model. Let assume thahas been divided int@' phrases or segments;
and so hagy. We further assume that each source phrase has been gdrirfist one target phrase.
We unhidde the hidden variablg which is a segmentation of the bilingual segmentation fajry)

CStarting point in which none of the initial parameter valigegero.
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into T phrasegz?,§T). Note that, the source segmenis,, ..., &7, are not required to be in the
same source order, i.ez,could be different fronz? = &, - - - & although it must be a reordering of
it. Finally, a generative model can be seemdsll exploration of all possible bilingual segmentatioh o
x andy and all possible alignments between them

pr(y|z) = > ppr(y, B|x) (1.116)
= ZBpT(B|w)pT(y|B,w) ) (1117)

wherep, (y | B, z) is modelled using a phrase-table

T
(y|B,2): H (T | E) (1.118)

whereas the remaining probability in Eq. (1.117), usuadigored, i.e., uniformly modelled for all
possible target phrase reordering.

The estimation of a phrase-based model as that presentee isteocumbersome problem that pos-
sess not only computational efficiency challenges, but@lsowvhelming data requirements. One of the
main difficulties that phrase-based models have to copeigitie problem of the bilingual segmenta-
tion and reordering. In the model proposed above, this setatien is modelled by the hidden variable
B, which leads us to a large combinatorial number of possiétgrentations to explore. As can be
guessed, these problems are further aggravated with ththlefithe source and target sentence. De-
spite this obstacle, there have been several proposalbfas@-based models, from the joint probability
model [Birch et al., 2006, Marcu and Wong, 2002], over the HiMase-based models [Andrés-Ferrer
and Juan, 2007, Deng and Byrne, 2005] to the statistical Gi#ddel [Andrés-Ferrer et al., 2008].

However, the most popular approach to the development afsghbased systems has been the
log-linear combination of heuristically estimated phrassed models [Koehn et al., 2003, Och and
Ney, 2004], since these systems offer better performararettiose based on generative phrase-based
models [DeNero et al., 2006].

Heuristic phrase-based models

The heuristic estimation of phrase-based models is gralindethe Viterbi alignments computed as
a byproduct of word-based alignment models. The Viterlgratient is defined as the most probable
alignment given the source and target sentences and araéistimf the model parametefis

a =argmaxpg(a|x,y) , (1.119)
can also be rewritten

a = argmaxpg(z,aly) |, (1.120)
or

a = argmaxpy(y,a|x) . (1.121)

For instance, the conventional alignments, those provige@®M models, disallow the connection
of a source word with more than one target word. This unréalisnitation negates the common
linguistic phenomenon in which a word in one language issieted into more than one word in another
language. To circumvent this problem, alignments are niyt computed from the source language to
the target language, but also from the target language tsdimee language. Doing so, we can reflect
the fact that a single word is connected to more than one word.
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Once the Viterbi alignments have been computed in both titires; there exist different heuristic
algorithms to combirfethem [Koehn et al., 2003, Och and Ney, 2003]. These algosttange from
the intersection of both alignments in which we have higtcigien, but low recall alignments, to
the union in which we have low precision, but high recall. btieen, there are algorithms like the
refined method [Och and Ney, 2003] and trew-diag-final[Koehn et al., 2003] that starting from the
intersection, heuristically add additional alignmentyisitaken from the union. This is a previous step,
before extracting bilingual phrases, to construct a phbased system.

Bilingual phrase extraction is based on the conceptafsistencyof a bilingual phrase€z,y)
(derived from a bilingual segmentation) with a word aligmne. Formally,

(z,y)consistent witle <  Vz; €T : (zj,y:) Ea — yi EYA
Yy €Y (25,¥5) Ea@a — x5 ETA
e,y €Y : (z5,¥5) €a (1.122)

basically Eq. (1.122) means that a bilingual phrase is stasi if and only if all the words in the source
phrase are aligned to words in the target phrase, and thetelésist one word in the source phrase
aligned to a word in the target phrase.

Given the definition of consistency, all bilingual phraseg (0 a maximum phrase length) that are
consistent with the alignment resulting from the symmatiis process are extracted.

The next step is to define functions that assign a score or lzapility to a bilingual phrase in
isolation or as part of a sequence of bilingual phrases ivengtiegmentation. These score functions
are integrated in a log-linear fashion under the maximurnropgtframework.

The most commonly used score functions are the direct amaidayphrase translation probability
estimated as a relative frequency

count(u, v) count(u,v)

Pa(u|v) = >~ count(u/,v) piv]u) = >~ count(u,v’) (1.123)
wherew stands for a source phrase, amdor a target phrase. A direct and inverse lexical transtatio
probability inspired in the IBM model 1 [Cohn and Lapata, 20Roehn et al., 2003] are also used in
the log-linear model. Other score functions are relate@todering capabilities, such as the distance-
based reordering model [Och and Ney, 2004] and the lexazhlisordering model [Koehn et al., 2005].
Additional score functions are the phrase and the word petalcontrol the length of the translated
sentence.

The weight of each score function in the log-linear combarats adjusted on a development set
with respect to a predefined criterion, usually BLEU. Thesstavo popular techniques in statistical MT
to carry out this process, minimum error rate training [(&303] and minimum Bayes risk [Kumar and
Byrne, 2004]. Furthermore, the most common approach togbeding process in log-linear models is
the well-known multi-stack decoding algorithm [Koehn, 20@ch and Ney, 2004, Ortiz et al., 2006].
The Moses toolkit [Koehn et al., 2007], that implements astantiation of this type of multi-stack
decoding algorithms, will be used throughout this thesidafine a baseline reference.

1.3.3 Automatic MT evaluation metrics

In MT, the use of automatic evaluation metrics is imperative to the high cost of human made
evaluations. Also the need of rapid assessment of the &t@oslquality of an MT system during its
development and tuning phases is another reason for the o$agtomatic metrics. These metrics are

dThis process is also known as symmetrisation.
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used under the assumption that they correlate well with mupdgements of translation quality. This
arguable statement must be considered bearing in mindwhi@ier-annotator agreement on translation
quality [Callison-Burch et al., 2007]. This fact makes amé&tic evaluation an open challenge in MT.

In this thesis, we mainly use two conventional translatiesdation metrics, WER and BLEU, al-
though other measures like METEOR [Banerjee and Lavie, P@@btranslation edit rate (TER) [Snover
et al., 2006] are becoming more and more popular.

The WER metric [Amengual et al., 2000a, Casacuberta et @04]2is defined as the minimum
number of word substitution, deletion and insertion operst required to convert the target sentence
provided by the translation system into the reference ka#ios, divided by the number of words of the
reference translation. It can also be seen as the ratio ddhalistance between the system and the
reference translation, and the number of words of the reéeréranslation. This metric will allow us to
compare our results to previous work on the same task. Eergththe WER metric can value more
than 100, it will be expressed as a percentage as it is commonly presdém the SMT literature. The
WER metric can also be evaluated with respect to multipleregfces, however, in this thesis, we have
a single reference translation at our disposal.

The BLEU score [Papineni et al., 2001] is the geometric meéaheomodified precision for dif-
ferent order ofn-grams (usually from unigram up tb-grams) between the target sentence and the
reference translation, multiplied by an exponential iyepénalty (BP) factor that penalises those trans-
lations that are shorter than the reference translatiothobh some voices have been raised against
BLEU as the dominant evaluation methodology over the paatsyfCallison-Burch et al., 2006], it
is still a reference error measure for the evaluation ofdietion quality in MT systems. The BLEU
ranges fron®.0 (worst case) td.00 (best case), however, it is a common practice referred ascenmmte
age ranging fron®.0 (worst score) td 00.0 (best score).

€The number of occurrences of a word in a target sentence itedirto that of this word in the reference transla-
tion.
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Chapter 2. Constrained-Domain Maximum Likelihood Estiorat

2.1 Introduction

Most pattern recognition systems are based on the optima®eaule (see Section 1.1 and Section 4.2).
This rule highly depends on the posterior class probabilitys|x). Provided that the actual posterior
probability is not available in real tasks, it is approxietiby a modebe (w|x) which is characterised
by a parameter sefl, € ©.

The selection of the optimal parameter Setlepends on the function criterion. As reviewed in
Section 1.1.3 Chapter 1, maximum likelihood estimation @)llis one of the most widespread crite-
ria. This criterion finds the parameter gethat maximises the likelihood function which is defined in
Section 1.1.3. One of the most important flaws concerning lt&lié that it tends to overfit the param-
eters to the training data at the expense of reserving smadibpilities or even zero probability to the
remaining non-training data. This overfitting problem iteafa straight consequence of the ratio of the
number of parameters to the training size; roughly speakirgdata is scarce for what the model needs
to learn.

In order to alleviate the overfitting problem, it is a comma@pwpach to distort the optimal param-
eter seP obtaining a non-overfitted version of the optimal paramség9. However, on the one hand,
several smoothing techniques are heuristic techniquesdbas practical observation. For instance,
such is the case of the interpolate smoothing in which thkermblvector@ is usually interpolated with
a uniform distribution. On the other hand, some of the smagtkechniques are based on statistical
methods. The maximum a posteriori estimation or the leavimgrout estimation are examples of such
smoothing methods.

In this chapter, we propose a method to avoid the scarce @atged problems such as overfitting.
Instead of smoothing the optimal solution obtained by MLE,imtroduce the idea of constraining the
parametric domain®, before searching for the optimal parameter set. Sincéyisnvtay, there is no
possible overfitted parameter set in the domain; the optra@meter set is smoothed in the parametric
optimisation. Even more, the optimal parameter set obdiafr@m the constrained domain retains the
properties of the MLE whilst the classical smoothed paramsgt does not.

We apply the idea afonstrained-domain maximum likelihood estima(iG®MLE) [Andrés-Ferrer
and Juan, 2006, Andrés-Ferrer and Juan, 2009] todhes Bayesext classifier [Juan and Ney, 2002,
McCallum and Nigam, 1998, Vilar et al., 2004]. Thaive Baye<lassifier [Andrés-Ferrer and Juan,
2006, Andrés-Ferrer and Juan, 2009] has long been a cor@deehin information retrieval and, more
recently, it has attracted significant interest in pattegognition and machine learning [Lewis, 1998].
Given the document class and length, this classifier malkesdive Bayesaassumption that the prob-
ability of occurrence of a word does not depend on its pasitio other words in the document. In
spite of being completely unrealistic, this assumption th@sadvantage of greatly simplifying clas-
sifier training. In particular, conventional, maximum likeod estimation of class-conditional word
occurrence probabilities reduces to a simple normalisatfavord counts. However, due to data spare-
ness, these estimates suffer from overfitting; i.e. thenedéid probabilities memorise the training data
and are unable to explain unseen events. Overfitting is lysaiédviated usingparameter smoothing,
which is simply a heuristic modification of maximum likelibd estimates to avoid null values [Vilar
et al., 2004]. Unfortunately, the resultisgnoothed parameteese no longeoptimalin terms of max-
imum likelihood and thus we cannot attribute to them therdé$é properties of maximum likelihood
estimators.

The proposed algorithm is described in Section 2.4, afteied teview of the naive Bayes model
and its conventional maximum likelihood estimation in tbédwing two Sections. Empirical results
and concluding remarks are given in Sections 2.5 and 2.pectisely.
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2.2. Naive Bayes model

2.2 Naive Bayes model

We denote the class variable by= 1, ..., C in the remaining of this chapter; the word variable by
d=1,...,D;and adocument of length by w¥ = wiw, - - - wr,. The joint probability of occurrence
of ¢, L andw? may be written as

pr(c, Lwt) :=p(c) p(L) pg(wi | ¢, L) 21

where we have assumed that document length does not depdine class.

Given the clasg and the document length, the probability of occurrence of any particular docu-
mentw? can be greatly simplified by making the so-callelve Bayesr independence assumption:
the probability of occurrence of a word; in w¥ does not depend on its positidor other wordsw;,

U #1,
po(wi | ¢, L) =12, p(wi | c) . (2.2)

Using the above assumptions, we may write plesterior probability of a document belonging to a
classc as:

P-n-,e(cv L7 wlL)

Prolc|Lwr) = S b o(@ Ll (2.3)
_ Te H5:1 0:; (2.4)
Do e HdDzl 005
= prolc|z) (2.5)
wherez is the count of word] in wr, z = (z1,... ,mD)t, and® is the set of unknown parameters,

which includesr. for the class: prior andé..; for the probability of occurrence of wortlin a document
from classc. Clearly, these parameters must be non-negative andystitéshormalisation constraints:

2eme=1 (2.6)
S ba=1  (c=1,...,0) .7
The Bayes’ decision rule associated with model (2.5) is diluepr classifier:
Cr,0(x) = argmax pr.e(c|x) (2.8)
= arg max {log e + Z xqlog ch} (2.9)
¢ d

2.3 Conventional naive Bayes training

Naive Bayes training refers to the problem of deciding (gedon and) a method to compute an appro-

priate estimate fofr, 6} from a given collection ofV labelled training samplds1, c1), ..., (z~, cn).
A conventional training criterion is thieint log-likelihood function:
LL(w,0) =3 Nclogme + 3, Nealogfea . (2.10)

where N, is the number of documents in classind N, is the number of occurrences of woddn
training data from class. It is well-known that the global maximum of this criterionder constraints
(2.6)-(2.7) can be computed in closed-form:

N,
o= —2 2.11
7 ( )
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Chapter 2. Constrained-Domain Maximum Likelihood Estiorat

and

fog = e (2.12)

Zd’ ch/

Despite the optimality of the estimates (2.12), they araligismoothedmodified) to avoid null
estimates originated by data spareness. For instanceginfdhe experiments reported in Section 2.5,
we face the problem of estimatirig87M class-conditional word probabilities and orily.3% of them
are non-zero according to (2.12). Thus, without smoothihg,sole occurrence of a rare word in a
test document is likely to introduce dominant and underestied terms in the decision rule (2.8) and,
hence, it may certainly be the cause of a classification.error

A popular smoothing method for (2.12) consists of simplyiadé “pseudo-counts > 0 to every
N4 count:

A ch + 0
Oed = == >
2@ (Near +9)
with § = 1 as the default value. This method is sometimes referredltagiace smoothingMcCallum
and Nigam, 1998].

Alternatively, as done in the context sfatistical language modellintpr speech recognitignwe
may use the idea dadbsolute discountingo avoid null estimates [Juan and Ney, 2002, Vilar et al.,
2004]. Instead of using artificial pseudo-counts, we gaiee’ probability mass by discounting a small
constant to every count associated witlseenevent (positive count). The gained probability mass
is then distributed among events in accordance witfemeralised distributiorsuch as theuniform
distribution,

(2.13)

1
Ba = D (2.14)
theunigramdistribution,
Z ch
B = =—=—— | (2.15)
Zd’ Zc NCd/

or whatever distribution providing a reliable estimatidnctass-independent word probabilities. De-
pending on the set of events that receives the gained piipabass, we distinguish betwedack-off
andinterpolation Back-off only considers unseen events:
Neg — b .
—__ if Nea >0
S Nea ¢
Oca = (2.16)

Ba .
M =————F ifNa=0
Zd’:NCd/:O Bar

where the probability mass gained in clags:

b |{d’ >1: N,y >0}
Zd/21 Near ’

and the discound is restricted to the intervgl0, 1). In contrast, interpolation distributes the gained
probability mass among all events:

M. (2.17)

~ Neg—b
ed = o M. ) 2.1
0.q = max {O S New } + Ba (2.18)

where0 < b < 1.
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2.4 Constrained-domain maximum likelihood estimation

As itis said in the introduction, smoothed parameters ardemger optimal in terms of maximum like-
lihood and thus we cannot attribute to them the desirablpgsties of maximum likelihood estimators.
In this Chapter, we advocate the reduction of the set of iéapiarameter estimates, that is, the use of
additional constraints on it. In particular, we focus ouwenest in conventional naive Bayes training,
without smoothing, but constrained to class-conditionatdyprobability estimates not smaller than a
predefined non-negative constantThat is to say that we are interested in the maximisatior2 dfQ)
subject to constraints (2.6), (2.7) and

Oca > € (c=1,...,C;d=1,...,D) (2.19)

wheree is the minimum probability of occurrence of a word in a docatfeom any classq < e < %).
Obviously, this is not a value we intend to learn from the dhtda a meta-parameter to restrict the set
of feasible estimates to “conservative” values. If we clgaos- 0, we do not move from conventional
naive Bayes training. On the contraryeif= <, the only solution is to set all word probabilities ¢o

In general, the more training data, the smadlehould be chosen.

2.4.1 Characterisation of the solution

Maximisation of (2.10) subject to constraints (2.6), (&@yl (2.19) is a convex (concave maximisation)
problem with differentiable objective and constraint ftiogs, for which we can find a global maximum
using theKarush-Kuhn-Tucke(KKT) conditions (see Appendix A). The Lagrangian functien

whereA(w, 6, \) stands for Lagrangian part corresponding to the equalitgtraints, i.e.,

+> A [Z g — 1} , (2.21)
c d

where)\, and . are Lagrange multipliers associated with constraints) @nél (2.7), respectivelfe =
1,...,C). Conversely, th&'(0, ) function in Eq. (2.20) stands for the Lagrangian part cqroesling
to the inequality constraint, i.e.,

A(m,0,2) = o [Zm -1

D(0,1) = preale—0ca) (2.22)
c,d
wherep.q are Lagrange multipliers associated with constraint92(t =1,...,C; d=1,..., D).

The KKT conditions for a poinf, 8, X, jx to be a global maximum are

Vﬂ,gc(w,e,x,u)u?é,m =0 (2.23)
Zﬁ-c =1 (2.24)
 ba=1  (c=1,...,0C) (2.25)
d

Oy >€¢ (c=1,...,C;d=1,...,D) (2.26)

fea(e —0ea) =0 (¢c=1,...,C;d=1,...,D) (2.27)

flea >0 (ec=1,...,C;d=1,...,D) (2.28)
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From (2.23) and (2.24) immediately follows that, as in thevemtional case, the optimal class priors
can be computed in closed-form using (2.11). However, thisot the case of the class-conditional
word occurrence probabilities. From (2.23), we have
A 1
acd:ﬁszd (02177C,d:177D) (229)
)\c + fed

but now we cannot rewrité.. + fi.q in terms of word counts to arrive at a closed-form solution
like (2.12). Instead, by some straightforward manipulaijowe arrive at the following characterisa-
tion for each class:

. e ifda<e
Ocq = _ = d=1,...,D 2.30
¢ {ﬂcd o >e ) (2:30)
where N
Vo= ——=—2—(1-M,) (d=1,...,D) (2.31)
chl
g g1>e
with
M. = |{d" :9cqr < €} e (2.32)

The idea behind this characterisation is as follows. Fiogt that we distinguish between “rare” words,
in the sense that we assign a probability of exacttythem ¢ : 9.4 < €), and “frequent” words, which
have probability greater than(d : ¥.q > €). The probability mass allotted to rare words is simplythei
number timeg and is denoted by, in (2.32). The remaining probability mass;- M., is distributed
among frequent words in accordance with (2.31), which ipbima normalisation of word counts as
in the conventional case (2.12). Thus, generally speakilegoroceed as in the conventional case, but
using only the probability mass not assigned to words thatal@ross the threshold ef

2.4.2 The algorithm

The above characterisation does not tell us how to partitiords into rare and frequent, not even if
such a partition exists. Nevertheless, it can be easily shiyt a solution exists and can be found
iteratively for each class separately. lebe the current class. The basic algorithm consists in first
assuming that the set of rare words is emﬁgﬂ) = (); then, in iteratiork (k = 1,2,...), the new set

of rare words R{", is obtained fromz{" " by addition of each word,

R¥ = RFV U {d} (2.33)

which is notinR% " butitis actually rare according to our criterion of not haya probability greater
thane,

9D <€ (2.34)
where N
ok = 4 (1 - mEY 2.35
cd Z ch/ ( ) ( )
d/gR‘(;kfl)
with
MFD = |RFD| ¢ (2.36)

At the end of iteratiork, the algorithm assures that condition (2.34) is satisfiecflovords inR%).
This condition may be also satisfied by words nofift” though, in general, it will not be satisfied by
most of them.
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2.4. Constrained-domain maximum likelihood estimation

1 Algorithm CDM.E

2 Input:
3 C, D /I number of classes and words
4 (wl, cl), ey (wN, CN) /I N labelled training samples
5 e:0<e< % /I minimum word occurrence probability
6 CQutput:
7 {écd} /I solution as characterised by Egs. (2.30) (2.32)
8 Vari abl es:
9 {ch} /I word counts for each class

10 R', R 1/ previous and current set of rare words

11 S', S Il previous and current sum of non-rare word counts

12 M’ , M previous and current rare words probability mass

13 Met hod:

14 for ¢:=1to C do /I each class c is processed separately

15 for d:=1to D do N.:=0 endfor
16 for n:=1to N do

17 if ¢,=c then

18 for d:=1to D do N. := N.q+ x,q endfor

19 endi f

20 endf or /I word counts for class ¢ computed

21 R:=0; S:=0; M:=0
22 for d:=1to D do S:=S5+ N, endfor

23 repeat /1 main loop for class c
24 R =R, =85, M =M

25 transfers := false

26 for d:=1to D do if d¢ R then

27 feq = 2et - (1 - M)

28 if 6.4<e then

29 éch=€ /I d has minimum probability in c
30 R:=RU {d} /I d is a new rare word
31 S:=5— Ny

32 M:=M+e¢€

33 transfers := true

34 endi f endif

35 endf or

36 until mnot transfers

37 endfor

Figure 2.1: The Constrained-Domain Maximum Likelihood Estimation (@CE) al-
gorithm.
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AsR!is empty,MﬁO) is zero and the initial probability estimate“écfi), are exactly those obtained in
the conventional case (2.12). Therefore, in the first itenatve use conventional probability estimates
to distinguish between rare and frequent words. Part of thiegbility mass assigned to frequent words
is transferred to rare words for them to arrivecatThe remaining probability mass is redistributed
according to (2.35) and, as it is smaller than that distetitefore the transference, it may well happen
that a frequent word become a new rare word. If it happenswaiteeation is carried out; otherwise,
the algorithm stops and returns the desieg as characterised by (2.30).

A detailed description of the basic algorithm describedvalis given in Fig. 2.1. Give, D, the
training data and, it returnsé.q for all ¢ andd, as characterised by Egs.(2.30)-(2.32). The main loop
processes each clagst a time (linesl4—37). After computation of word counts (linel$5—20), the
optimal CDMLE solution is obtained iteratively (lin@d—36). Initially, no words are considered rare
(R := 0) andf.4 is computed for all words as in the conventional case (dutiedirst iteration of the
loop in lines23-36). If a word d is found such thafl.; < e (line 28), thend is added taR and a new
iteration is executed; otherwise, no transfergitare carried out and the algorithm stops.

2.4.3 Algorithm correctness and complexity

Let ¢ be the current class and &ébe a non-rare word in iteratioh— 1 (d & Rg’“‘l)) for which (2.34)
holds. Then, it follows that

€ ch
1— <1- (2.37)
1-— Mc(kil) ZdlgR‘(;k—l) ch’
and, rearranging terms,
11— MmEY - 1— MY
c € c (2.38)

<
D grgrt-v New = Nea = 32, pte—1) Near

Asd & R~V put satisfies Eq. (2.34), the algorithm adéi$o the set of rare words in iteration
R = RV y {d}. Using this updated set of rare words, Eq. (2.38) can be ttanras

1—Mm® 1—ME (2.39)
2wgrt Nea = 205 -1 Near
from which we have, for any word” € R",
9, <ol (2.40)

by multiplying each side of Eq. (2.39) hy.,». From Eq. (2.40) and the fact thﬂﬁ’;;l) < e for all

d" € R™, it follows thatﬁi’fl?, < eforalld” € R, This means that, in iteratide, word d becomes
rare while all rare words in the previous iteration remairerailgorithm correctness follows from this
result.

The time complexity of the CDMLE algorithm depends on theecak the best case, no word
transfers are done in the repeat-until loop and the alguritforks exactly as the conventional naive
Bayes training (without parameter smoothing). More pelgjsafter the first repeat-until iteration, a
second iteration is needed for the algorithm to check thatarsfers to the set of rare words are carried
out. Then, in the best case, its time complexitf2iE” N D). On the other hand, the repeat-until loop
is executedD times in the worst case, and thus the algorithm@é§'N D + C'D?) time complexity.
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However, in practice, the repeat-until loop is expectederate only a few times. Therefore, the com-
putational behaviour of the CDMLE algorithm is expected oo differ significantly from conventional
naive Bayes training.

The previous discussion about the complexity of the CDMLgoathm only applies to a direct
implementation of it, such as that given in Fig. 2.1. Howelteis straightforward to derive a refined
implementation oD(CND + CD log D) time complexity. The idea behind this refinement is to ap-
ply Eq. (2.33) in non-decreasing order of occurrence pritibglas estimated in the conventional case.
That is, in iterationk, the next wordd to be considered in Eq. (2.33) must have minimum occurrence
probability, as given in Eq. (2.12), among all non-rare vgortt can be easily checked that, if condi-
tion (2.34) does not hold fod, then it will not hold for any other non-rare word and, theref the
optimal CDMLE solution will have been found.

2.5 Experiments

The proposed approach was empirically compared to the psaeatice of simply smoothing relative
counts, as described in Section 2.3. This comparison waedarn four text classification data sets
(tasks):Traveller, 20 Newsgroupdndustry SectoandJob Category

The Travellerdata set comes fromlanited-domainSpanish-English machine translation applica-
tion for human-to-human communication situations in tlafrdesk of a hotel. It was semi-automatically
built from a small “seed” data set of sentence pairs colteétem traveller-oriented booklets by four
persons; A, F, J and P, each of whom had to cater for a (noakulissubset of subdomains. TR2€
Newsgroupsorpus is a collection of approximatey, 000 newsgroup documents, partitioned (nearly)
evenly across 20 different newsgroups. We used the origéralon of this data set as provided by [Ren-
nie, 2001], in which document headers are discarded butRren:" and "Subject:" header fields are
retained. Thdndustry Sectotis a collection of web pages from different companies, dididnto a
hierarchy of classes. In our experiments, however, we éftaid" this structure, assigning each docu-
ment a class consisting of the whole path to the documentihitétrarchy tree. Thdob Categorydata
set consist of job titles and descriptions, also organisehierarchy of classes. This corpus contains
labelled and unlabelled samples and only the former weré inseur experiments. Table 2.1 contains
a summary with the basic information on these data sets. Ufthrefr details on them, see [McCallum,
2002, Rennie, 2001, Vidal et al., 2000, Vilar et al., 2004].

Table 2.1: Basic information on the data sets used in the experime8tagletonsare
words that occur oncé&lass n-tongefers to words that occur im classes exactly.)

Job Industry 20 Traveller

Category Sector Newsgroups (English)
Type of documents job tittes web pages nhewsgroups sentences
Number of documents 131 643 9629 19974 8000
Running words 11221K 1834K 2 549K 79K
Avg. document length 85 191 128 10
Vocabulary size 84212 64 551 102752 391
Singletons (Vocab %) 34.9 41.4 36.0 4
Classes 65 105 20 23.0
Class 1-tons (Mocab %) 49.2 58.7 61.1 74.9
Class 2-tons (Vocab %) 14.0 11.6 12.9 18.3
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Therainbowtoolkit [McCallum, 1998] was used for the preprocessinglbdiata sets butraveller.
We used html skip for web pages and elimination of UU-encazkginents for newsgroup messages.
We did not use stop-list removal, stemming or vocabularnioiy by occurrence count.

Figure 2.2 shows the results obtained in each data set. dpeged CDMLE algorithm is compared
to:

1. Laplace: conventional training and Laplace smoothing,
2. AD+1gBO: conventional training and absolute discounting with uaigrback-off, and
3. AD+1gl: as (2) with unigram interpolation.

Each classification technique considered has its own &&rHr rate curve as a function of the discount
b:

1. Laplace:b refers tod in Eq. (2.13),
2. AD+1gBO or 1gl:b has its usual meaning, as defined in Eq. (2.16), and

3. CDMLE: € is defined fromb ase = 107'°” - L in the Traveller data set and= b - % in the
other data sets.

Each plotted point corresponds to an average error raténebtérom30 random splits in whict80%
documents were used for training while the remairogb were held out for testing. Error rate esti-
mates have an approximaig% confidence interval ofE% + 1%] ([E% =+ 0.4%] for Job Category).

Table 2.2: Summary of the best results.

Job Industry 20 Traveller

Category  Sector News (English)
Laplace 33.2 38.9 15.0 3.3
AD+1gBO 34.0 38.0 14.9 3.3
AD+1¢l 34.2 37.8 14.8 3.3
CDMLE 33.0 38.6 15.3 3.1

From the results in Fig. 2.2, it is clear that the CDMLE algfum performs similarly to the other
techniques. In comparison with Laplace, CDMLE provideghtly better results and more stable (flat)
error curves in all data sets but 20 Newsgroups. In theseseétdait is indeed much better than Laplace
when, as usual with Laplace, the discount factor is simptytsene. In the case of 20 Newsgroups,
however, Laplace seems to be a bit better than CDMLE.

In comparison with absolute discounting (AD+1gBO and ADB1g can be said that there is
no superiority of one over the other. In Traveller and Jolegaty, the CDMLE algorithm provides
better rates than absolute discounting, but the contranpeaobserved in the other two data sets. All
in all, this is a comparatively good result for CDMLE since,dontrast to absolute discounting with
unigram back-off/interpolation, CDMLE does not take adege of the unigram distribution (2.15)
to obtain reliable class-independent word probabilityneates. Clearly, this estimates can be used to
replace (2.19) by better, word-dependent domain consstain

A summary of the best results obtained in the experimentsvengn Table 2.2. The CDMLE
algorithm obtains better results than Laplace and absdist®unting in Job Category and Traveller.
However, absolute discounting is better than Laplace aa€MLE algorithm in Industry Sector and
20 Newsgroups. Note that these differences are significaptto a limited extent.

As said in Section 2.4.3, the time complexity of the CDMLEa@lthm is Q(CN D) in the best
case and)(CND + CD?) in the worst case. More precisely, the difference betweesgtiwo cases
arises from the number of repeat-until iterations execlieds 23—36 in Fig. 2.1), which may vary
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from 2 to D. To study this in the average case, the number of repedtiantitions was recorded in

each CDMLE algorithm execution. On average, it was exatily the Traveller and 20 Newsgroups
data sets, that is, as in the best case. On the other hand; dnkaof2.5 iterations for Industry Sectors

and3.2 for Job category. Therefore, as expected, the repeatiaaflliterates only a few times. That
is, in practice, the computational behaviour of the CDMLgaaithm might be considered almost the
same as that of conventional naive Bayes training.

2.6 Conclusions

In this chapter, conventional naive Bayes training withapaeter smoothing has been restated as a
constrained-domain maximum likelihood estimation prabfer which an optimal, iterative algorithm
has been proposed. The general idea behind our contribistioravoid parameter estimates that can
cause over-fitting while retaining the properties of maximilikelihood estimators. Empirical results
on four real text classification tasks have shown that thpgsed algorithm provides results similar to
those of conventional training and parameter smoothintl) almost the same practical computational
requirements.

It is worth noting, however, that smoothing methods havenbmmtinuously improved over the
years, while our proposal is completely new and thus, thestill room for significant improvements.
For instance, the parameter domain might be better adjbsteedefining the constaatintroduced in
Eq. (2.19) and making it dependent on both the cteensd the wordi.

We think that the proposed approach is very promising. Ireganthe idea behind of the proposed
approach can be applied to many maximum likelihood estongtroblems in pattern recognition. For
instance, it can be easily applied to EM-based maximumilikeld estimation of finite mixture models.
For these models, it is unclear how to use parameter smapthithe M step without affecting the
EM behaviour. Instead, constrained-domain maximum Faad estimation can be used without any
side effect. Also, this constrained approach might be uisefine case of training criterion other than
maximum likelihood such as discriminative training [Juaale 2007].

The naive Bayes model follows a Multinomial distributiom@h and Ney, 2002]; and, hence, the
proposed algorithm can be applied for Multinomial estimiati Finally, since the naive Bayes model
is also a special case to thegram language models, this technique can be extended herhayder
n-grams. Specifically, this idea is covered in following ctesp
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Chapter 3. Constrained leaving-one-out for language niindel

3.1 Introduction

N the previous chapter, we introduced the idea of “smoothiegparametric domain” instead of
smoothing the optimal set of parameters. In this way, th@ogation of the training criterion
provides an optimal smoothed solution, avoiding the addii training smoothing stage. For

introducing this idea we analysed as case of study the naiyeclassifier for which simple threshold
constraints were applied.

In this chapter we further explore the idea of constrainhrgparametric domain. Specifically, we
study two aspects: the estimation criterion (see Sectibr2 Chapter 1) and the probabilistic model.
On the one hand, the starting point of this chapter id¢hging-one-out maximum likelihood criterion
(LOO) instead of the (conventional) maximum likelihood criteri@gee Section 1.2.3 Chapter 1). On
the other hand, we apply the estimation techniques to the mioespread language model, the so
calledn-gram model (see Section 1.2 Chapter 1).

Unfortunately, due to the large number of free parametetk veispect to the training data, the
n-gram model needs to resort to smoothing techniques. Ftarios, for a trigram language model,
the events that occur only once or not at all in the training dgpically represent a huge percentage
of all events. The probabilities of these events are diffibmlestimate with conventional methods
because they occur few times in the training data. Theseapilities are usually referred to amall
probabilities

As discussed earlier in Section 1.2 Chapter 1, the best $iimgoiethods, modified and original
Kneser-Ney [Goodman, 2001, Ney et al., 1997], are based e thing-Good (TG) counts [Good,
1953, Nadas, 1984]. The back-off parametrisations of thesmunts gain a probability mags and
re-distribute it among all the unseen events. The discdymtebability mass is obtained subtracting to
the actual count the Turing-Good count* for each seen event (see Eqg. (1.92) in Chapter 1).

An outstanding property of the Turing-Good (TG) countsis that their sparseness is inverse to
the (conventional) counts The smaller the countis, the larger the count-of-counts. is, and, then,
the more confident the estimation©f is. On the one hand, there is the unseegrams,r = 0; for
which the TG counts are well estimated singeandn; typically comprise a large amount of events.
On the other hand, there B — 1, for whichnr_1 andnr are typically equal td, leading to a poorly
estimated TG counts, and consequently, smoothed protiedili

Unfortunately, the previous property of the leaving-ong-.O0O) smoothed probabilities is also
one of their most important weakness, since the LOO proitiasilare noisy or badly estimated for
larger counts:. Typically, we want the LOO smoothed probabilitig3v | k) to be “close” to the relative
frequencies (the MLE estimate§(w | h)); or, in other words, we want the TG counts to be close to
the (conventional) counts. At least, we want the LOO prdiiés to retain the same monotonic order
that the (conventional) MLE verify; that is to say, ilmgramhw has occurred more timéghan other
n-gramh/w’, N(w, h) > N(w’, 1), then the probability of the formei(w | k) should be larger than
the latterp(w’ | h’). Note that the ML estimates fulfil this requirement wheréasltOO estimates do
not ensure it.

The first proposed smoothing based on LOO, Turing-Good ndettiefines a smoothed language
model as a function of unconstrained LOO probability estesaThis method is very noisy since for
large values of-, the TG count* is poorly estimated. On the other hand, the Kneser-Ney [&nes
and Ney, 1995] smoothing solved that problem approximadihthe probabilities with one parameter,
as depicted in Eqg. (1.95) in Section 1.2 Chapter 1. Thus, thend-Good method and the absolute
discounting method represent two extremes, namely eitheonstraints at all or a heavily constrained
model with only a single parameter. We focus, however, orirfiind trade-off between the number of

aUnder the assumptiolN (h') = N (h); or alternatively comparing the joint probabilitigéw, h) andp(w’, h').
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free parameters and suitable constraints in order to avm&y restimates and achieve optimum perfor-
mance.

Bare in mind that because of the assumption made when camypthié LOO estimates of the dis-
counting parametes* ! (see Eq. (1.83) in Section 1.2 Chapter 1); the probabilityrestes 5(w | h)
in Eqg. (1.88), obtained with the optimal discounting parmrmf\ffl, do not necessary fulfil the con-
ditional normalisation constraints,

> bwlh)=1, Vhew ' (3.1)

although they verify a joint normalisation constraint
S pw,h) =1, . 3.2)
w h

At this point is important to recall the equivalence betwées joint model,p(w, k), and the condi-
tional model,p(w | k), which is depicted in Section 1.2 Chapter 1, when some assomis taken
(see Eq. (1.83) in Section 1.2 Chapter 1).

Moreover, due to the way in which we use the paramexfs' when defining the smoothing
model as depicted in Eq. (1.88), the discounted probalifitycan be0 or even negative if < r*. In
such cases, the heuristic approaches renormalise thasag@rs adding the negative probability mass
plus1,i.e. — By + 1, to the total probability amount; or deactivate the smaator thatn-gram, as it
is done in the SRILM toolkit [Stolcke, 2002]. In this chaptete also try to avoid such problems.

In summary, since the TG counts are obtained from data, they suffer from similar sparsitybpr
lems than that of the original counts In this chapter, we present some novel estimation algostto
avoid the sparsity problems for the LOO estimates whilentgyto retain an optimal trade-off between
the number of parameters and their sparsity. We tackle tbisigm by constraining the domain, like-
wise to Chapter 2, in order to force the optimal value to fuléikirable properties that a not overfitted
solution must satisfy. This idea was previously outlinefkineser and Ney, 1995], where monotonic
and interval constrains were suggested but not appliectifBdly, in this chapter, we prese#itmeth-
ods that seek to optimise LOO while ensuring monotonicity:

e Interval constraints [Andrés-Ferrer and Ney, 2009 Section 3.3, we highly constrain the
LOO probability estimates ensuring monotonicity.

e Quasi-monotonic constraintghis method computes the LOO estimates so that they are mono-
tonic except for probability of the two most frequent prottieibs. This exception allow us to find
a simpler algorithm in Section 3.4 that paves the way for tllewing proposed algorithms in
Section 3.5.

e Monotonic constraints with upper bound$is method computes the LOO estimates so that they
are monotonic and never larger than the MLE estimates. &wthy, in Section 3.5, we avoid
negative or zero discounted probability mdss

e Monotonic constraintsin subsection 3.5.1, we compute the LOO estimates so thatthare
monotonic by modifying the algorithm presented in Sectidn 3

Additionally to thesel methods, we present tlegtended and exact Kneser-Ney (eekM)drés-Ferrer
and Ney, 2009] algorithm in Section 3.6 that computes anteastimation of the Kenser-Ney (KN)
discount and the modified Kneser-Ney (mKN) discount whilfinileg a parameter to fix the number of
free probability estimates.

In particular, all the methods except for the exact exteriieeiser-Ney (eeKN) enforce the mono-
tonicity of (almost) all the probability estimates. Althgluthe eeKN does not ensures the monotonicity,
this method provides a meta-parameter that is used to patlgtenforce this monotonicity.
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The remaining of this chapter is organised as follows. Ini6e@&.2, we propose a more comfort-
able formulation for the application of leaving-one-outiresites to smooth a-gram language model.
In Section 3.8 we analyse the proposed methods experiremewing conclusions when possible;
and finally, future work and concluding remarks are gatharete last Section.

3.2 Leaving-one-out for language modelling

Recall from Section 1.2 in Chapter 1 that some smoothingsetsddrn-gram modelling are obtained
by computing the smoothing parameters of the model in E§3jlby leaving-one-out (LOO) . The
solution to this model is reviewed in Section 1.2 and is depidén Eq. (1.85).

However, in order to apply the constraints, there is a maitalsle parametrisation for the model de-
fined in Eq. (1.93). There, we presented the smoothing maiiedjthe standardiscountingparametri-
sation in which a probability mass is subtracted to the cotiwaal ML estimates. In the new parametri-
sation, the whole discounted probability is regarded agampeterp,.. Recall that optimising the con-
ditional model under the assumption in Eq. (1.83) is eqaiviato directly optimising the joint model,
and, hence, we re-parametrise the joint model as follows,

£ N(w,h) =R
p(w, h) :== {p, 0< N(w,h)=r <R (3.3)

no P B(wlh) N(w,h) =0

Wherep{f‘1 or p is subject to thgoint normalisation constraint

R
Z nep,=1 . (3.4
r=0
Note that this model is equivalent to the joint model in Eq98). For instance, the discounted proba-
bility for a given historyh is given by
Bn=no(h)py (3.5

whereas the total amount of discounted probability massgaddent of any history, is

B=> Bn=nop, - (3.6)
h

Note that there is a direct conversion between the modehpatrised as a function gif~* and as
a function ofAZ~!; and vice-versa. This conversion is given by the followingression

r
b, = (17>\”“)

N r=1,...,R—1 . (3.7)
In this new model parametrised wiﬁﬁ‘l, the LOO log-likelihood function is given by

R—1
F(p; ') = (r+1)ns41logp, +const(py ') . (3.8)

r=0

In order to obtain the new optimal parameterp@t‘l, the log-likelihood in Eg. (3.8) is maximised
subject to the normalisation constraint in Eq. (3.4). Fand®o, we define the Lagrangian function

R—1 R
F@o ') = Y (r+Dneiilogp, —y (Z nr D, 1) 7 (3.9)
r=0

r=0
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and take the partial derivative with respecptoand-~y

0F(py 1) _ (r+Dnen

= -y, r=01,...,R—1 (3.10)
op, o
AFERF 1Y) o
=0 2P _NTpp -1 . 3.11
3 Z (3.11)

The optimal set of parameters must verify that the formetigladerivatives are equal @ from where
the optimal solution is obtained

. 1 (7"—|— 1)nr+1 R
= —-— " (1- — =0,1,... -1 . 12
Pr N T < nRN) ) r 07 ) 7R (3 )

Since typicallynR% < 1, it can be approximated as

. 1 (r+Dne

= —_— =0,1,...,R—1 . 3.13
PT N n, bl T P bl ( )

Note that Turing-Good counts ageneralisedunder this parametrisation as
*=p.N | (3.14)

for joint models; and as
r*(h) =p, N(h) , (3.15)

for conditional ones.
The result in Eq. (3.12) is totally equivalent to Eq. (1.88hce if we plug the optimal parameters

5\?71 into the Eq. (3.7), then the same optimal paramepéts' are obtained

(4 Ney1(r + 1) _ nrRY\\ 1 - -
p,=1—-1+ o 1 N N r=1,...,R—-1
. 1 (r+1)neg nrR

= — 1-— =1,... -1
p’)" N ’]’[,7, N ) r ) 7R

Note thatno p, is the probability mass reserved to the unseen eventsii.and hencep, is the
most important probability when LOO is used for smoothiriges it gives probability for the unseen
events. However, it is important to highlight that we obtiia probability mass to the unseen events at
the expense of reducing the probability mass of the seert®vEhe question tackled in this chapter is
how to discount the probability mass from the seen eventhatiie probabilities are still monotonic
and optimal for the LOO criterion.

The discounting idea in the new parametrisation given in B@) is less obvious than in the
parametrisation given in Eq. (1.93). However, since we fthe¢ all the probabilities must sum up
to 1 (constraint in Eq. (3.1))

B =nop, (3.16)

R
B:Ionrpr
r=1

1 R
B== <NZnTpTN> ,

r=1
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where taking into account the following property

R
N=>"m, , (3.17)
r=1

B is expressed as

1 R R
B= <Z ™y =Y neD, N) , (3.18)
r=1 r=1

and grouping common terms

R
1
B= N;nr (r—p.N) . (3.19)

Finally, by using the definition of the TG counts in Eq. (3,1#he following discounting equation is
obtained

R
1 *
B= N TEZI ny (r—r") (3.20)

from where the discounting process is depictea asr*. It is worth noting that a similar expression
can be obtained for the conditional normalisation constriai case of using a conditional smoothing
model

1 u " n—1
By = O] ;nr(h) (r—r*(h))  VYheWw : (3.21)

3.2.1 The smoothing distribution3(w|h)

The smoothing distributio(w|h) can also be estimated by LOO. The result of applying LOO to the
estimation of3(w|h) yields the following result [Ney et al., 1997]:

5= Ni(w|h)
h) = ———2 | 3.22
Bwlh) = =5 (3.22)
which resembles the (conventional) MI(E — 1)-gram distribution but defined with the especial counts
{N1(w, h)} instead of the conventional counf#&V(w, h)}. These especial counts are defined as fol-
lows
Niwh)y= > 1, (3.23)
h€h:N(w,h)=1
whereh € h stands for all ther-gram contexts:, that share the same prefpt — 1)-gram history;
i.e., if h = wy~", thenh € h comprises alh such thath = ww} " for any wordw € W. Finally,
the N1 (k) is the sum over all words oV (w|h)

Ni(h) =Y Ni(wlh) . (3.24)

The smoothing distribution in Eq. (3.22), captures the idéavord coupling. For instance, “New
York” is a coupled bi-gram, that means that if “York” is a freent word so would it be “New” and vice-
versa. However, the smoothing distribution should givénlmigpbabilities to words that have rarely been
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observed in the context. Therefore, if instead of usidw, k) to estimate the smoothing distribution,
we useN (w, h), the smoothing distribution are over-estimated.

Several works reported [Chen and Goodman, 1998, Ney et97]that changing the singleton
countsNy (- - - ) by positive countgV, (- - - )

Ny(wlh)= > 1, (3.25)

h€h:N(w,h)>1

incur in better perplexities. Therefore, to counteractwioed coupling effect, we recompute counts by
the number of different contexts in which the smoothedram occurs. High orders of this smoothing
distribution are often recursively smoothed with LOO utitie uni-gram distribution following the
smoothing scheme presented for the language model.

3.2.2 The interpolated smoothing model

All the previous discussion is focused on the back-off mod€his model redistributes the gained
probability massB among the unseen events. Oppositely, the interpolationemedlistributes this
gained probability mass among all the events, both seenreebn. Therefore, our joint interpolation
model is given by

"4 w(w,ﬁ) N(w,h) =R

p(w, h) :== < p, +iB(w,h) 0< N(w,h)=r<R (3.26)

iB(w, h) N(w,h) =0
with the discounted probabilitigs’®* ! and the interpolation factarcomprising the parameter set. Note
that the smoothing probability distributigh(w, k) must sum up td for all n-grams, and not just the

unseen ones, i.e.,
S Bwh) =1, (3.27)
h w

and, finally, the probabilities must sum

R
> onep,i=1 . (3.28)
r=1

Usually this interpolation parameter is estimated in thekbeg-off model and afterwards assumed
to be the same in the interpolation model. That is to say,dften assumed that

i=mnopy - (3.29)

Itis worth highlighting that this assumption is actuallyerif the optimal smoothing probability(w, k)
is known. Although, we focus on this chapter on the backifignodels, we take the previous assump-
tion to compute interpolated smoothing models in the expenital Section 3.8.

3.3 Interval Constraints

The goal of this method is to modify the original MLE probdsis, p, = r/N, only a little bit.
Therefore, we introduce what we call the interval constsain
r—1
N

gprgﬁ, r=1,....R—1 , (3.30)
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and
<L (3.31)
pO SN . .
Recall that the upper bound in Eq. (3.30) is the MLE estimate.

As presented in the model in Eq. (3.3), the probabitity is not used in the LOO log-likelihood
function and its value is fixed to the MLE.

Therefore, mathematically, we want to maximise the LOOllkelihood obtained in Eq. (3.8)

i

F(py ) =Y (r+1)nrs1logp, (3.32)

ﬂ
Il
<}

constrained to Egs. (3.31), (3.30) and the normalisatioisicaint

R
> nep. =1, (3.33)
r=0
and recalling thapr is fixed to the MLE, i.e.

Pr =

==

The idea of applying these constraints was previouslymedlin [Kneser and Ney, 1995], where an
heuristic and not optimal solution was proposed. In ordett@in an optimal solution to the problem,
we use the Karush-Kuhn-Tucker (KKT) conditions (see Appperfd. In this case, the Lagrangian
function is instanced to

i

L Apv) =Y (r+Dnesilogp, —Apy A —¥(pd )

T

Il
<}

WhereA(pff‘l, A) is the Lagrangian part for the normalisation constraint

R
AR, 0 = A (zm pr—l) |
=0

and wherelf(p?‘l, w, v) is the part generated by the inequality constraints

R—1 R—

1
U(py ' p,v) = ;ur (% fpr) + ; Ur (prf%) + 10 (po*%)
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In this case the KKT conditions are reduced to
(r+Dnrsa

= — e A+ pr — v =0 r=1...,R—-1 (3.34)
E - no)\ — Vo = 0 (335)
Po

R
an p,=1 (3.36)
r=0
e A Y (3.37)
pr\———pr) = r=2..., :
r
l/r(pr—ﬁ)—() r=1,...,R—1 (3.38)
1
Vo (po _N) =0 (3.39)
pr >0 r=2,...,R-1 (3.40)
vr >0 r=0,...,R—-1 (3.41)

together with constraints in Egs. (3.30) and (3.31).

In the previous KKT conditionsy, stands for the “strictness” of the lower bound for each proba
bility p,., andv, is the corresponding “strictness” for the upper bound. &fwee, if 11, is greater than
0 then the lower constraint is (strictly) active, i.e. the bdus verified by equality angd,. has the value
of the lower bound. Oppositely, if. is equal to0, then the lower bound is not (strictly) active apd
can take values larger than it. This interpretation of thgraagian multipliers allows us to make a case
analysis depending on the multipliers for a given probabji. with » > 1:

e “Lower bound is active’; thenu, > 0 andv, =0

e “Upper bound is active’, thenu, = 0 andv, > 0

e “Unbound case’, theny, = 0 andy, =0

Note that we have omitted the cgse > 0 andv, > 0, since it implies that both constrains are active,
which is impossible by definition.

“Lower bound is active”

In this case, since, = 0 we can work out the value ¢f,. from Eq. (3.34)

e = — (M _ nr)\) ) (3.42)
Pr
As result of Eq. (3.40) and (3.42) we obtain
p, > L FDnen (3.43)
A Ty
and using the constraints in Eq.(3.30)
r—1
> .
P> (3.44)

we obtain a solution by plugging previous Egs.(3.43) and4ginto the constraint in Eq. (3.37)

p.(A) = max{rj;l, % (rJrTllznTH } )

which depends on a normalisation constant

(3.45)
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“Upper bound is active”
In this case, sincg, = 0 we can again work out the value of from Eqg. (3.34)

= D (3.46)

As result of Eq. (3.41) and (3.46) we obtain

1 (7" =+ 1)nr+1
< -t .
p< it e (3.47)

and using the constraints in Eq.(3.30), specifically

r

< 4
PSE o (3.48)
we obtain a solution by means of the constraint in Eq. (3.38)
. r 1(r+1)nrm
A) = —_ 3.49
() = min { 7, $ T (3.49
which depends on a normalisation constant
“Unbound case”
In this case sinc@, = 0 andv, = 0, the value ob,. is straightly worked out from Eq. (3.34)
o 1 (7" + 1)nr+1
PN = 3 (3.50)

The actual solution

Finally, taking into account the result for each case depliat Egs. (3.45), (3.49),and (3.50), we obtain
a solution dependent on a normalisation conshant

_ r—1 . l(r+1)nr+1 T
p,(A) = max{—N , min { ST N}} . (3.51)

Note that this solution is valid for =2,... , R — 1.
An analogous procedure can be carried out for the speciakeas: 0, 1 yielding the following

result Lt 1) .
. r Tr41
p,.(A\) = min {XT, N}

The interpretation of the solution in Eq. (3.51) is as folélowVe compute the unconstrained LOO
estimatep, = i% with the unknown normalisation constakit This estimate is then com-
pared with the lower and upper bound and it is clipped if ne@gs Now the only remaining problem
is that this comparison requires the normalisation comgtabe known. To this purpose we introduce
the A dependinghormalisation function

R
QM) =) nep.(N) (3.52)

This way, the normalisation constraint is reformulatedd3) = 1. SinceQ()) is a monotonically
decreasing function, the value farcan be easily computed.
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Note that in order to ensure monotonicity the following dosisit must be added to the algorithm
Po<p; - (3.53)

The addition of this constrain does not significantly modifg algorithm, though it becomes more
awkward. The solution with the additional constraint in B2153) can be obtained in the same way that
in the proposed method but it becomes more cumbersome.fisphyiif we define

12712 + na1

Por(N) = 5 el (3.54)
and )
Po(A) = XZ_; : (3.55)
and Lo
Py (A) = Xn_f : (3.56)

then the solution to the interval constraints with the dddal constraint in Eq. (3.53) is given by
Eq. (3.51) for all the- values but foi0 and1 which are equal to

¥ Por(A) >  andpy () > B, (A)
Po(A) = { Po1(A)  Por(A) < % andpy(A) > p1(A) (3.57)
Do(A)  otherwise
and
¥ Po1(A) = 5 andpy(A) = b (A)
P ()‘) = 1301()‘) @010\) < % andpo()‘) > 131()‘) ) (3.58)

p;(A)  otherwise

respectively. Let it be as it were, the constraint in Eq. 3BiS always verified in practice, and hence,
this constraint becomes useless.

3.4 Quasi-monotonic constraints

A natural requirement is that the probability estimaies,should be a monotonic function of This
is a more natural requirement than the interval constraiftt® monotonic requirement is specified by
the following set of constraints

Pr < Pry1 r=0,1,...,R—2 . (3.59)

Similar constraints were previously proposed in [Kneset Hery, 1995] but no algorithm or solution
to computed them was given. Note that, we have intentiomatiitted the last monotonic constraint

R
Pr_1 <Pr= N (3.60)

Obviously this makes the following discourse not to ensumnaotonicity, and that is why we will
refer to this algorithm aguasi-monotoni@lgorithm. This assumption has two main motivations. On
the one hand, dropping this last bound incur in a simplerrédtyo that will allow us to introduce
another algorithm in the following Section 3.5. On the othand, the algorithm for obtaining the
totally monotonic solution is a special case of the algaomithroposed in the mentioned Section 3.5.
Furthermore, this constraint is (almost) always verifiegriactice by the current algorithm.
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Thereby, for the remaining of this section, we wish to opsienihe model in Eq. (3.3), constrained
by the monotonic requirements in Eq. (3.59). By applyingKik&@ conditions (see Appendix A), only
a characterisation of the solution is obtained,

R
pO:...:prl<pr1+1:...:pr2<...<p,«K71+1:...:pTK,qK:N (3.61)

q0 q1 9K —1

Since eithep,_; < p,. orp,_; = p, must be verified; the solution is a structurefof+ 1 segments
of probabilities with the set of boundarie§ ™"

—li=rp<n<...<rg:=R-1, rg4+1: =R . (3.62)

Inside thek-th segment, all the probabilities share the very same pilityag,. The number of seg-
ments range frorg to R. For K = 1, there are just two segments: one segment contains jushder, i
R, and the other segment contains the remaining indexes), . . ., R — 1; which share the very same
probability,qo. For K = R — 1, each segment is made up of one probability.

In order to simplify notation, we express the constrainteims of the segment probabilitig§ :=
qo, ..., ¢x . By defining

Th41

mp= Y n (3.63)
r=r,+1
the normalisation constraint is rewritten as
K
> megr =1, (3.64)
k=0

and the monotonicity constraints are summarised as
qr—1 < Qi k=1,..., K -1 . (3.65)
Recall thatyk is as usual fixed to the relative frequencies. i.e.

R
w=5 (3.66)

In order to obtain the solution, we start by assuming thastdrgfmentatiorflr(‘;<+1 is given. In such

case, the LOO log-likelihood function is

K—-1
F(gi™") =) Axlogaq (3.67)
k=0
with Ay defined as
Tk+1
A=Y (r+Dney (3.68)
r=r,+1

subject to the normalisation constraint in Eq. (3.64). Tlagrdangian function for this optimisation
problem is

Ligy " A)=F(gs ) -ANgy ) (3.69)
with
K
AN gy ) =2 <Z Mgk — 1) . (3.70)
k=0
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Constraining the partial derivatives of the Lagrangiandceljual ta) yields the optimal solution for a
given segmentation

1A
G =~ 5 (3.71)
A My
where the normalisation constantis independent of the segmentation
A= N N (3.72)

- 1 —miqk - 1,anR

Since we have assumed the segmentation given, whether ltht®soverifies the constraints in
Eqg. (3.65) or not depends on if the segmentation is optimalodr Therefore, in order to obtain the
boundaries of the segmentation, we should find the bourstafie* that maximise the log-likelihood
in Eq. (3.67) while satisfying the monotonic constraints.

This is efficiently solved by dynamic programming using thkdwing recurrence

F(r)= argmax {F(r'—1)+A(',7)logq(r’,7)} (3.73)
r'<r:p.s<p,
with

A )= (s+ Dnepr (3.74)

and with .

’ 1 r,r
=T - 3.75
R (375)

Note thatF'(r) is the log-likelihood for the partial segmentation that iad countr. As usual with
dynamic programming, the optimal solution is obtained lgitng back the decisions made during the
recurrence in Eq. (3.73).

3.5 Monotonic Constraints with Upper Bounds

In Section 3.4, we analysed the quasi-monotonic consgraifhis constraints involve practical prob-
lems since the probability for am-gram that has occurredtimes can be larger thatry N, leading to
conditional probabilities that may not verify the conditéd normalisation constraints in Eq. (3.1). This
problem is one of the model deficiencies outlined in Sectidn &nd it is derived from the assumption
made in Eq. (1.83) in Chapter 1.

In order to avoid those problems, we could add another sebm$traints to the formulation in
Section 3.4 .
N r=12,...,R . (3.76)

Our aim is, then, to maximise Eq. (3.8) with the normalisatinstraint in Eq. (3.33), with the
monotonic constraints in Egs. (3.59) and (3.60); and withitpper boundaries defined in Eq. (3.76).
Similarly to Section 3.4, if we apply the KKT conditions teetimaximisation, we obtain the character-
isation of the solution. The solution structure is similathe structure in Eq. (3.61) as follows

p,. <

Po=--=Pp <Pry1=---=Pp, <o <Dppj1 = =D, (3.77)

q0 q1 9K

with the following additional constraints

<™ k=0 K1 (3.78)
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In this case, we proceed in a similar fashion to the previeatian. Therefore, if the segmentation
ré“’l is given, then we have to maximise Eq. (3.67) subject to thenatisation constraint in Eq. (3.64),
and constrained by Eq.(3.78). Applying KKT conditions testhroblem requires the definition of the
following Lagrangian function

K-1

Ll H ) =D Agloggs — AN\ qf ") = ¥(v,q5 1) (3.79)
k=0

with A(X, ¢&~1) being the Lagrangian terms induced by the normalisatiostcaimt,

K
Avgy ) =2 <Z MEqr — 1) , (3.80)
k=0
and with¥ (v, ¢i* ') being the Lagrangian terms concerning to the upper bounBsg.i3.78),
K—-1 q r
K—1y _ k — Tk+1
V(v,qf )= Y w (B (3.81)
k=0
Recall thatA,, is defined in Eq. (3.68).
The KKT conditions in this case are the followings
A gt = 0 (3.82)
QK
Tk4+1 .
,,k( g ) -0 (3.83)
Tk+1
_— > .
> (3.84)
v, >0 (3.85)

Similarly to Section 3.3, we proceed by cases:
e Bound is activethenvy > 0.
e Bound is not activethenv, = 0.
On the one hand, if the bound is active then, using Eq. (3.&3)et the value ofx

.
a = % : (3.86)

On the other hand, if the bound is not active, we work out theevaf g, from Eq.(3.82)
_ 1A
T Amy

qk (3.87)

From Egs. (3.83), (3.86), and (3.87), we obtain a solutigredding on a normalisation constaif,

qk(A):mm{%%,”ﬁl}, k=0,... K—1 , (3.88)
k

where the normalisation constantlepends on the segmentation
A=A )

Recall thatmy, is defined in Eq. (3.63) and,. is defined in Eq. (3.68).
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Therefore, if the unknown normalisation constait->**') were known, then the question of

whether the solution in Eq. (3.88) verifies the monotonicst@ints in Eq. (3.59) or not depends on the
segmentation boundariesy —*, that maximise Eq. (3.67), constrained by Eq.(3.78) anddpy(&64).
Therefore, if the normalisation constakts given, then we can compute the segmentation that max-
imises Eqg. (3.67) with the following recurrence

F'(r)= argmax {F'(r'-1)+A@",r)log(gr(v', 7))} (3.89)
r/<r: Pt <Pr
with )
, . 1 A(r',r T
g (r',r) = min { AT n N} . (3.90)

Recall thatA(r’, r) is defined in Eq. (3.74).

After evaluating the recurrence in Eq. (3.89) fo&= 0, ..., R; we trace back the decisions made in
the evaluation to recover the optimum segmentation. Gireroptimal segmentation, it is straightfor-
ward to compute the optimal probabilitigs for £ = 0, ..., K.

In a fashion similar to the interval constraints in Sectidd, 8ve define & dependent normalisation
function

K
QN = md(n) (3.91)
k=0
and reformulate the normalisation constraint in Eq. (38&)
QN=1 . (3.92)

Note that the functio®)’ ()\) is defined using the probabilities of the optimal segmeotafidr ).
Since the function’(\) is monotonically decreasing the normalisation constreamt be found
using algorithms similar to the ones used €pf)) in Section 3.3.

3.5.1 Monotonic constraints

In order to make the quasi-monotonic algorithm fully momito we can develop a similar training
scheme to that obtained for computing the solution to theatwmic constraints with upper bounds. We
start with the quasi-monotonic wording but also adding #fiedut constraint in Eq. (3.60). Afterwards,
if we apply the techniques used for obtaining the solutionhi® monotonic constraints with upper
bounds, then we obtain a solution where the only differeade the recursion in Eq. (3.89) which now
is given by

F'(r)= argmax {F"('-1)+A(',7)log(gx(v",7))} (3.93)

r'<r:p,/<p,

whereg, (r’, r) is defined by cases as follows

1_A(@'r)
by Z::,./ na r<R-1

o (r',r) = . (3.94)
T

Unlike the quasi-monotonic case, the addition of the caistin Eq. (3.60), makes the normalisation
constant\, not to be independent of the segmentation. Therefore éésssary to use a scheme similar
to the monotonic with upper bounds, restating the normtédisaonstraint as a normalisation function
Q" ()\) and requiring it to bd.
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3.6 Exact extended Kneser-Ney smoothing

The exact extended Kneser-Ney smoothing [Andrés-FeraeNay, 2009] method reduces the number
of free parameters in the LOO estimation by using an absdistmunting model for counts larger than
a given discounting thresholél, mathematically expressed as

S—1 _ ) bpr r<S
p’r(pO 7d) - {TTd r 2 S ) (395)

where the parameteris the so-called discounting parameter. Obviously, thithoe: does not guaran-
tee that the remaining probabilitigs for r = 0,1, ..., S — 1 are monotonic. Whether monotonicity is
satisfied or not depends on the training data and the choseouttiting threshold'.

This estimation technique was initially presented with adidiscounting threshold;, = 1 [Kneser
and Ney, 1995], and afterwards extended&'te- 3 [Chen and Goodman, 1998]. Nevertheless, no exact
solution was given for the estimation 6f > 1. In this section, we analyse the exact solution for this
approach using the LOO log-likelihood criterion.

We wish to optimise the model in Eq. (3.3), but with the prabids, p,., depending onl as
expressed in Eqg. (3.95), for countdarger or equal to the threshokl Therefore, the log-likelihood
function in Eq. (3.32) is rewritten by

S—1 R
_ —d
Fpg " d)= 3 (r+ Dnvstlogpr + 3 (r + D log 2 (3.96)
r=0 r=S

subject to the normalisation constraint in Eq. (3.33) retemi as

S—1 R r—d
rPr r—— =1 . 3.97

The optimal parameter set must maximise Eq. (3.96) subgethé normalisation constraint in
Eq. (3.97). The Lagrangian function of such mathematicabjem is

L(py~'.d, ) =F(p; ', d)— Alpy " d,\) (3.98)
with
S—1 R T*d
AlpS~Hd,N) = A nepr + Y np—— —1| | 3.99
i = (Lt Lon 299)

and whereF'(p; !, d) is defined in Eq. (3.96).
As usual convex optimisation problems, it is needed to camphe gradient of the Lagrangian
function with respect td, andp,.,

Lpg 'd,N) _ (r+Dn,

= — Ay, r=0,1,....,8—1 (3.100)
8p7‘ pr
ﬁ(Pgilvdv A) . u TN R Ny
54 ——r§lrilid+A;N , (3.101)

and equalling them t6 allow us to work out the value of the optimal probability esitesp..,

R 1 (r+1)neq _ B
pr(d)——)\(d)inr , 7=0,...,8-1 | (3.102)
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where the normalisation constant depends as follows
A N A n o
r=S+1 r=S

Similarly to Sections 3.3 and 3.5, we reformulate the noisasibn constraint in Eq. (3.97) by
defining a normalisation functioR””’ (d)

S—1 R
) —d
Q"(d) =Y mepe(d) + Y et (3.104)
r=0 r=S

and requiring it to be equal th Q"' (d) = 1.

The functionQ"’(d) is again monotonically decreasing, and therefore it isgittéorward to find
the optimal valuel such that)"” (d) = 1

Unlike original and modified Kneser-Ney, we have not madeapproximation in order to obtain
the exact value fod andp,. Additionally, the threshold courfi is not fixed beforehand to be either
(Kneser-Ney), o8 (modified Kneser-Ney).

Note also that although these estimation techniques westlyfintroduced by defining,. forr < .S
as a function of a discount parametkr both parametrisation are equivalent by means of the fatigw
equation

3.7 A word on time complexity

Until now, we have not analysed the time requirements of topgsed methods compared with the
standard Kneser-Ney (KN) and modified Kneser-Ney (mKN). idbsly, all the proposed methods
need to compute both the conventionajiram countsV (w, k) and the counts-of-counts (CO@) for
r=0,1,..., R — 1. Therefore, we omit the time complexity required to compttese counts.

The standard KN and mKN smoothings require a time compl@fity (R), since only one or three
discounting parameters must be computed in order to defenprifbabilitiesp(w|h) of the model in
Eq (1.75) in Chapter 1. For instance, the Kneser-Ney malkesnly ofni, no andngs for defining just
one discounting parametgias expressed in Eq. (1.96) Chapter 1.

The proposed methods are split into two groups:

Iterative methods: comprising the constrained methods that need to perforatibas to compute the
normalisation constant by means of a decreasingly monotonic normalisation funaf)@)),
that is to say the following methods: interval constraimsnotonic constraints with and without
upper bounds; and exact extended Kneser-Ney (eeKN).

Non-iterative methods: made up of the methods that do not require to iterate, i @qulasi-monotonic
method.

For the latter we give the total time complexity. Specifizathe quasi-monotonic constraint need to
compute the recursion specified in Eq. (3.73), which can bepeoed inO(R?).

However, for the iterative methods, we give the time comipfefor each iteration. On the one
hand, the monotonic constraints with and without upper deumeed to compute the recursions in
Egs. (3.89) and (3.93) which are similar to the recursiortlierquasi-monotonic constrains requiring
a time complexity of0( R?) for each iteration. Therefore, these two methods reqDifB>7) in order
to find the solution wheréd stands for the total amount of iterations needed to find thienatisation
constant.
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On the other hand, the interval constraints and eeKN can gtarthe probability estimates in a
time complexity ofO(R) for a given normalisation constant. This leads to a totaéteomplexity of
O(RI) wherel stands for the total amount of iterations needed to find thmalisation constant.

The number of iterationg varies depending on the data, the model orderand the smoothing
algorithm. However, in all the experimentation we haveiedrout in the following section, it usually
lays in betweerl0 and50.

3.8 Experiments

Experiment setup

In this section, the practical performance of all the prggbsmoothing techniques is analysed from the
LM point of view. The perplexity (see Section 1.2 Chapter d)eotest set will be used to compare all
the techniques. The less the perplexity is, the better thedems. Furthermore, we also use a modified
version of the perplexity, the so-callgoint perplexityfor evaluating some of the proposed methods.
This is motivated by the assumption made in the modelling irekes equivalent the optimisation of
the joint and conditional models. The joint perplexity idided as the (conditional) perplexity but for
the probabilities which are joint probabilitiggw, k) instead of the conditional probabilitiggw|h) as
follows e -

PP(T) = 2W Ym=1 2421 loga P(smish) , (3.105)
with the testing dat® comprising a set of evaluation sentenges, . . ., sar} each of lengti,,; and
wherelV stands for the total amount of words, i.e.,

In order to quantify the behaviour of each techniques, weet@mpared all the the proposed
techniques with the baseline perplexity given by the modiKeeser-Ney [Chen and Goodman, 1998]
and original Kneser-Ney [Kneser and Ney, 1995]. In orderhtaim the baseline, we have used the
standard SRILM toolkit [Stolcke, 2002]. Additionally, tlexperiments have been obtained using the
smoothed back-off model in Eq. (3.3) unless it is otherwjsextied.

For analysing the different smoothing techniques two caas been used: the English part of the
Europarl \3 [Callison-Burch et al., 2007] and the Wall Street JournalSJ)/[Kneser and Ney, 1995].
Table 3.1 summarises some statistics about the two corgsareviously discussed, it is observed
that the percentage of singlet8ris very high for3-grams comprising th@8.5% of the total3-gram
occurrences.

Table 3.2 contains some statistics for the testing data t83teset for the Europarl is defined in the
shared task [Callison-Burch et al., 2007]; on the other h&mdthe WSJ, we have selected an small
percentage of paragraphs from all the years, in order toigdependence on the test set with respect
to time factors.

In order to analyse the behaviour of all the techniques asetifin of the training size, we have
split the training into increasing sizes starting fraddK sentences and doubling the size until the full
corpus, i.e.200K, 400K, 800K, and full corpus & 1.6M for WSJ and= 1.4M for Europarl).

An important problem in LM evaluation is how to handle thet of vocabulary (OOVyvords.

If the OOV are not handled properly, then misleading coriohs could be drawn from evaluation.
Some works [Kneser and Ney, 1995], tackled the problem bgctiab the most frequent words, for
instance20K, from training and tagging the remaining words as unknovards. Then the unknown

bBy singleton we denote here, an event such as a worchegrmm that has occurred just once in the corpus.
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Table 3.1: Table with some statistics of the both corpora used in themxents.

Training Europarl WSJ
sentences 1.40M 1.62M
avg. length 24.6 26.0

runningwords | 34.4M  42.12M
vocab. size 280.5K  200.1K

ny/N (1-gram) 0.4% 0.2%
ny/N (2-gram)| 18.9%  18.1%
n1/N (3-gram) | 28.5%  28.5%

Table 3.2: Some statistics of the both test sets.

Test Europarl  WSJ
sentences 2K 12.5K
avg. length 26.8 26.1

running words| 53.6K  326.3K

word becomes a very common event, such that small variaiioits probability could dominate the
perplexity differences among systems. For instance, ifake the extreme example in which all the
vocabulary words are unknown, then the perplexity of anywek be 1; although the meaning of this
perplexity is misleading since it does not mean that givenesipus history of words the LM is able
to predict the following word. Instead, this perplexity medhat our model is able to predict that the
following word will be unknownto the LM, which is useless for most of the applications.

In order to avoid these misleading conclusions, two stepe baen taken. On the one hand, we
report perplexity results skipping OON-grams. On the other hand, we have performed experiments
increasing the size of the vocabulary frat% of the vocabulary until tha00% in steps of10%.
For the100% case in which all the vocabulary words are considered, we teserved the smoothing
probability mass for the unseen uni-grams in order to givebability to the unknown words. For
doing so, the full vocabulary size must be known, howeveyr,samsible estimation of the size suffices,
specifically, we have extrapolated the number of unseensiarthe vocabulary from the seen words.
Bare in mind that we also report perplexities ignoring OOVrd&to quantify the influence of our
estimation for unknown events. Table 3.4 reflects the péagenof OOV in test as a function of the
training size. Furthermore, in table 3.3 the sizes of thakatary partitions are detailed.

In the remaining of this section, we have obtained resultsim&or bi-grams and tri-grams lan-
guage models. For some experiment configurations we haveatsputedi-grams results. In all cases
the conclusions are consistent with results obtained ftrikgram language model.

Theoretical properties in practice

We can gain some insights into the constrained techniquenblysing the TG counts*. Therefore,
in Figure 3.1 the TG counts,” = p,. N, are plotted as a function of the original countsThe plots
were obtained using 4gram language model in th®0k partition of the WSJ corpus and using the
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Table 3.3: Percentage of out of vocabulary words (OOV) in test as a fonaif the
training size and the percentage of vocabulary size. Thedfigrepresent percentages,
i.e.,5.4 stands folb.4% words.

| Voc. Pctg.  Corpus | 200K | 400K [ 800K | full size |

10% Europarl| 5.4 4.0 2.9 2.1

WSJ 6.3 4.9 3.7 2.8
26wy | a4 | a5 | 1% | 1
0w | 25 | 16 | 12 | os
0% ey | 7 | 12 | ox | o
T VR N R
0% wss | 12 | 0% | 03 | o3
™ wsy | 10 | or | 05 | 03
% wer | 10 | 06 | 04 | o3
% wes | 08 | 06 | 04 | oo
T I R O

full vocabulary. It is worth noting that the original TG cdsrwildly oscillate for larger values of,
i.e.m the estimation of* is noisy Recall that we have already outlined this property of thecbGnts
when analysing the LOO smoothing model deficiencies in Se@il.

It is valuable to mention, the way in which each of the proposeethods counteract such over-
training. The probability estimates obtained with the imé constraints tend to strictly verify one of
the constraints, either the upper or the lower. The (quasiaptonic constraints howeverer, tend to
produce strips with the same TG count. These strips are soeetarger than the countitself. Oppo-
sitely, the monotonic constraints with upper bounds methaxids this undesirable result by splitting
these strips whenever necessary. Finally, in the case e&tkbl and for the chosen discounting thresh-
old (S = 30), it can be seen that the TG counts are not monotonic. Howiéwee had chosers = 10
instead, then the counts would have been monotonic, siht¢keeahoisy counts are approximated by
one discount as depicted in Figure 3.1.

The figure 3.2 is the analogous version of figure 3.1 but fargiaB-gram model instead af-gram
model. When comparing figures 3.1 and 3.2, we observe that thlee-gram order, i.en, is increased
the counts oscillate more wildly.

¢Since the only difference between the quasi-monotonic hadrtonotonic constraints is the upper constraint
Pr_1 < R/N; their plots are virtually the same.
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Table 3.4: Vocabulary size as a function of the training size and thegraage of the
full vocabulary. The figures represent Kilo-words, i&7 stands fo8.7K words.

| Voc. Pctg.  Corpus | 200K [ 400K | 800K | full size ]

10% Europarl| 8.7 11.7 | 15.3 20.0
WSJ 10.2 14.6 20.9 28.1
920% Europarl| 174 | 23.3 | 30.7 40.0
WSJ 20.4 29.2 41.8 56.1
30% Europarl| 26.2 | 35.0 | 46.0 60.0
WSJ 30.7 44.0 62.7 84.2
40% Europarl| 34.9 | 46.6 | 61.3 80.0
WSJ 40.9 58.3 83.7 112.2
50% Europarl| 43.6 | 58.3 | 76.7 100.0
WSJ 51.1 73.0 | 104.6 140.3
60% Europarl| 52.3 70.0 92.0 120.1
WSJ 61.3 87.5 | 125.5 168.3
70% Europarl| 61.1 81.6 | 102.4 140.1
WSJ 71.6 | 102.1 | 146.4 196.4
30% Europarl| 69.8 | 93.3 | 122.7 | 160.1
WSJ 81.8 | 116.7 | 167.3 2244
90% Europarl| 78.5 | 104.9 | 138.1 180.1
WSJ 92.0 | 131.3 | 188.2 252.5
100% Europarl| 87.2 | 116.6 | 153.5 | 200.0
WSJ 102.3 | 145.8 | 209.1 280.5

Finally, the figure 3.3 depicts one of the normalisation fiows, Q()). Specifically, we have
selected the normalisation function for the interval coaists. In this plot, it is observed that the
function is monotonically decreasing. Note that the totaiber of seem-grams, N, is equal to
5210341 and the optimal normalisation constantakes the value of 244 023. The normalisation
functions of the other proposed smoothings show a similaatieur of that depicted in figure 3.3 but
for the eeKN smoothing.

For the eeKN case, we have plotted the normalisation fundtidigure 3.4. Recall that, the nor-
malisation function for the eeKN smoothing is parametridegending on the discounting parameter
d instead of a normalisation constaxt In the figure 3.4, we have plotted the normalisation funrctio
Q(d) for severaln-gram models in the case of eeKN with= 3. The larger the:-gram order is, the
larger the discounting parameiéitis. Specifically, the discounting parameter takes the vafue61,
1.01, 1.13 and1.20 respectively for uni-gram, bi-gram, tri-gram and four+granodels.

Backing-off results

Firstly, in the figures 3.5 and 3.6 we analyse the practichhbieur of all the methods involving mono-
tonic constraints: quasi-monotonic, monotonic with uppeunds and monotonic. The first surprising
result is that the (conventional) Kneser-Ney (KN) outperfse the modified Kneser-Ney (mKN). Re-
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Figure 3.1: The4-gram modified count™ as a function of the original countfor the4
proposed technigues obtained withoK sentences partition of WSJ and full vocabulary
size.

sults in [Chen and Goodman, 1996] report that the mKN outper$ the KN smoothing, however, this
result are obtained using a linear discounting instead afickihg-off discount. Afterwards, we analyse
the behaviour of linear discounting smoothings, and, thenwill see that mKN outperforms the KN

for interpolated discounting methods.

In figure 3.5, the (conditional) perplexity ignoring OOV ewe is plotted as a function of the per-
centage of most frequent words from the vocabulary. Theetteehniques show virtually the same
behaviour which slightly improves the best baseline, KNisTimprovement, is systematic and grows
with the vocabulary size. Although, the plot in figure 3.5 wésained with &-gram language model,
other orders such agram or4-gram, obtain similar plots. For the case of the perplexittheut
ignoring the OOV the plots show a similar behaviour. Therefave do not include the plots for the full
perplexity (with OOV) since the behaviour is similar but ki slightly smaller gap.

Figure 3.6, comprises two plots with the perplexity as a fiamcof the training size for the WSJ
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Figure 3.2: The3-gram modified count™ as a function of the original countfor the4
proposed technigues obtained withoK sentences partition of WSJ and full vocabulary
size.

corpus. The top plot, shows the performance of the monotemioothing techniques for 2zgram
language model. The bottom plot is the analogous plogfgram language model. There is not any
difference between the performance of the monotonic maasleish obtain slightly better results than
the KN baseline. Itis observed that the improvement gaprggtaor low order models.

Since we have not observed any significant difference betweemonotonic approaches, we will
henceforth take monotonic with upper bounds as the repsen of these smoothing techniques.
Furthermore, the KN smoothing is taken as the baseline siraigtains better results for a back-off
smoothing scheme than the mKN.

The behaviour of the exact and extended Kneser-Ney (eekdé€psted in figure 3.7. Itis observed
that the best perplexity results are obtained wite= 1, that is to say, with jus® free parametersp,,
andd. Note that in this case the eeKN is just a different estinmatibthe conventional KN smoothing.
Anyway, as the training data increases, the differencesdsst different choices of this discounting
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Figure 3.3: The normalisation functio) () for a interval constrain8-gram model
computed with th€00K sentences partition of WSJ and full vocabulary.
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Figure 3.4: The normalisation functiof)(d) for the eeKN § = 3) smoothing com-
puted with the200K sentences partition of WSJ and full vocabulary size.

threshold do not significantly modify the result. It is of wonoting that for the tested-grams ¢ =
2, 3,4), the eeKN always outperforms the KN smoothing. The morecgcaaining data is, the larger
the improvement is.

In Table 3.5, we compare the perplexities obtained in bothama (full vocabulary) using a trigram
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Figure 3.5: Perplexity skipping OOV events as a function of vocabularg gin %)
with the full size partition of the Europarl corpus foBayram language model smoothed
with all the monotonic approaches and the standard smaystidneser-Ney (KN) and
modified Kneser-Ney (mKN).

language model. We can conclude that all the proposed wabsiperform at least as the baseline,
being better in certain circumstances. It is observed th&iNeoutperforms the baseline in all the
circumstances. It is also observed that all the proposedtonit constraints yield the same result.

In the first place, we had expected better results with theatemric approaches since they are less
restrictive than the interval constraints. Recall fromt##r1.2.3 in Chapter 1, that for optimising
the probability estimates, we have smoothed the conditiprababilitiesp(w|h) with the model in
Eqg. (1.75) and in order to optimise the parameters, we h&enthe assumption in Eq. (1.83) which
leads to the optimisation of the joint model in Eq. (1.93).efidfore, we may loose performance by
the assumption made in Eqg. (1.83). Figure 3.8 showgdiné perplexity as defined in Eq. (3.105) for
the the different approaches using the full size partitibthe WSJ corpus. We have plotted only the
monotonic constraints with upper bounds since all the nariotconstraints obtain the very same joint
perplexities as well as conditional perplexities.

Two conclusions can be drawn from figure 3.8. On the one hédmedjoint perplexity always in-
creases with the training size since it is computed with tiet jprobabilities and, hence, the more
n-grams we observe the smaller the probabilities are in geer@®n the other hand, it clearly shows
that the monotonic approaches are significantly influengetid assumption in Eq. (1.83) which make
us to optimise a joint model instead of a conditional modettually, all the proposed smoothings but
for the monotonic constrained, have almost the same balvaa@rording to the joint perplexity. This
common behaviour is also shared by the KN. Therefore, thavdetr observed with the conditional
perplexity is due to the fact that the smoothings are degrade=n passing from the joint model to the
conditional model. The models which obtain better resuitsl@ss degraded than the others. This fact
is somehow surprising and inspiring for future work (seeti®ac3.9).
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Figure 3.6: Perplexity a function of the WSJ training size with full vascdary, and
for all the monotonic approaches and the standard smogathdngser-Ney (KN) and
modified Kneser-Ney (mKN).

Linear interpolation results

Although the theory and the proposed methods are aimed atkinigeoff smoothing model, we can
experimentally use the smoothings in a linear interpotetimdel as discussed in Section 3.2.2.
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Figure 3.7: Perplexity ignoring OOV events as a function of the eeKN aiisting
threshold ) in logarithmic scale computed with the Europarl corpus asithg a3-
gram language model.

As can be seen in table 3.6, the mKN outperforms the KN as ésgéo this case. In general, all
the proposed smoothing techniques are significantly degradhen used in a interpolation smoothing,
obtaining similar results to that of the mKN. This degradatis also observed fargrams an®-gram.

It is also observed that for the interpolation case the disting threshold of the eeKN seems
to play an important role. In Fig. 3.9, it is clearly obsertbdt the best result is obtained with the
discounting threshold$ = 3.

If we compare tables 3.5 and 3.6, it is observed that in gétieganterpolated smoothing obtains
better results.

3.9 Conclusions and future work

Standard discounting models based on leaving-one-ouh&ss represent two extremes. On the one
extreme the absolute discounting (Kneser-Ney) reducesuhwer of parameters to estimate to one.
On the other extreme the Turing-Good smoothing estimaléiseal OO probabilities, producing small
probabilities and over-fitting problems.

In this chapter, we have developed novel discounting methivat are less restrictive than absolute
discounting approaches, but more restrictive than TuBGogd method. Therefore, we try to optimise
the trade-off between the number of parameters and the clateits.

Specifically, we have proposed five novel discounting methmted on constraining leaving-one-
out estimates: interval constraints, quasi-monotonistaimts, monotonic constraints, monotonic con-
straints with upper bound and the exact extended Kneseisiepthing. The associated estimation al-
gorithms are also derived in order to compute the discousgéthates in an efficient way. We have also
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Figure 3.8: Joint perplexityas a function of WSJ training size for several smoothing
techniques applied to&gram language model.

performed systematic experiments for two language madgtisks, comparing the proposed methods
with other standard discounting methods. This experintemtaeports slight improvements over the
baseline of the KN/mKN method under some circumstancesialpefor scarce data. However, an
improvement in terms of perplexity does not always implympiovement in terms of word error rate
(WER). As future work we intend to check if the perplexity impement are transferred to the system
performance.

We have found several surprising and interesting conahgsid-irstly, all the monotonic-tagged
methods (quasi-monotonic, monotonic, and monotonic withen bounds) behave similarly. This is
very surprising, since except for the monotonic with uppeurid, all monotonic smoothing models
have normalisation deficiencies. As discussed in SectibndBie to the way in which we use the joint
probability estimatep,. to define the conditional smoothing model as depicted in B@)( the dis-
counted probabilityB;, can be0 or even negative if < r*. In such cases, the heuristic approaches
renormalise those parameters adding the negative prdjabiss plusl, i.e. —By + 1, to the total
probability amount. We thought that this arbitrary renolission was distorting the probability esti-
mates degrading the system performance. Oppositely, welfthat fixing theoretically that problem
by adding upper boundaries to the probability estimatesio not incur in any profit when compared
with deficient models fixed heuristically.

For eeKN case, we found that several values of the discaythiresholdS, obtain worse results
than that of the minimum valug = 1 for a backing-off smoothing. From previous works, where the
mKN obtained better results than KN; this conclusion wascpaeted since the KN can be understood
as an alternative estimation of the case= 1 and the mKN as an alternative estimation for the case
S = 3. However, in a interpolation model, we have found that eekith W = 3 outperformsS = 1,
which is consistent with the fact that mKN outperforms KN wihterpolation smoothing. Hence, it
seems that the fact of redistribution the discounted priihamass over all the events has a positive
effect, however in this case is important to ts€S = 3) different discounting parameters oppositely
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Figure 3.9: Perplexity ignoring OOV events as a function of the eeKN alistting
threshold §) in logarithmic scale computed with the Europarl corpus asidg a inter-
polated smoothed-gram language model.

to back-off smoothing.

Another interesting observation is that directly applythg optimal smoothing parameters for the
backing-off smoothing model to the interpolated model ddgs all the smoothings. It would be in-
teresting to apply the proposed theory to an interpolatesbsinimg model, in order to see whether the
proposed smoothings improve the interpolation baselimetr

Finally, the most surprising conclusion is that the monimtdagged smoothings do not report an
improvement with respect to the interval constraint in teoh(conditional) perplexity. However, if we
define a joint version of such perplexity then these modetaiota higher performance, as expected.
Therefore, the assumption of optimising a joint model iadtef the conditional model has some impor-
tant and negative repercussions. Actually, all the distogmnmethods but for the monotonically-tagged
methods, obtain almost the same results in terms of joirglgety. This make us think that the main
difference among the smoothings methods is the way in which emoothing is degraded when pass-
ing from a joint model to a conditional one.

From the discussion above, we expect to obtain improvenisntérectly optimising a conditional
smoothing model without any assumption. As future work, mtend to optimise conditional probabil-
ities avoiding the map to a joint model.
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Europarl

Training Size 200K 400K 800K Full Size
Al SkOOV | Al SkOOV | Al SkOOovVv | All  SkOOV
mKN 117.7 117.0 106.0 105.2 96.3 95.7 89.3 88.7
KN 115.3 114.0 104.1 103.0 94.8 93.9 88.0 87.2

Monotonic Upper| 115.3 113.7 104.0 102.7 94.6 93.6 87.9 87.0
Quasi-Monotonic| 115.3 113.7 104.0 102.7 94.6 93.6 87.9 87.0
Monotonic 115.3 113.7 104.0 102.7 94.6 93.6 87.9 87.0
Interval 115.1 113.6 103.8 102.6 94.5 93.6 87.8 86.9
eeKN (S =1) 114.8 113.2 103.6 102.3 94.4 934 87.6 86.7
eeKN (S = 3) 115.1 113.6 103.8 102.6 94.5 93.5 87.8 86.9
Wall Street Journal (WSJ)
mKN 120.3 118.6 107.4 106.0 95.9 94.8 85.9 85.2

KN 120.3 118.6 107.4 106.0 95.9 94.8 85.9 85.2
Monotonic Upper| 120.2 118.2 107.2 105.7 95.8 94.6 85.8 85.0
Quasi-Monotonic| 120.1 118.2 107.2 105.7 95.8 94.6 85.7 85.0
Monotonic 120.1 118.2 107.2 105.7 95.8 94.6 85.7 85.0
Interval 119.9 118.0 107.1 105.6 95.7 94.5 85.7 84.9
eeKN (5 =1) 119.7 1177 | 106.9 105.3 | 95.6 94.4 85.6 84.8
eeKN (5 = 3) 120.0 118.0 107.1 105.6 95.7 94.5 85.7 84.9

Table 3.5: Perplexities on the corpora fortacking-off smoothed3-gram language modeSk OOVcolumn stands for the perplexity
skipping the OQV, while théll column accumulates all the events (OOV and known).



Europarl

Training Size 200K 400K 800K Full Size
All SkOOov | Al SkOOov | Al SkOovVv | Al SkOoVv
mKN 123.9 111.6 109.3 101.3 97.9 92.7 90.4 86.2
KN 124.2 111.6 109.6 101.5 98.2 92.9 90.8 86.4

Monotonic Upper| 123.9 111.3 109.3 101.2 98.0 92.6 90.5 86.2
Quasi-Monotonic| 124.0 111.3 109.3 101.2 98.0 92.6 90.5 86.2
Monotonic 124.0 111.3 109.3 101.2 98.0 92.6 90.5 86.2
Interval 124.0 111.3 109.3 101.2 97.9 92.6 90.5 86.1
eekKN (S =1) 124.3 111.5 109.6 1014 98.2 92.9 90.8 86.4
eeKN (S = 3) 123.8 111.2 109.2 101.1 97.2 92.6 90.5 86.1
Wall Street Journal (WSJ)
mKN 126.6 116.3 110.7 104.5 97.6 93.9 86.8 84.5

KN 127.1 116.6 111.2 104.8 98.1 94.2 87.1 84.9
Monotonic Upper| 126.8  116.2 110.9 104.5 97.8 93.9 86.8 84.6
Quasi-Monotonic| 126.8 116.2 110.9 104.5 97.8 93.9 86.9 84.6
Monotonic 126.8 116.2 110.9 104.5 97.8 93.9 86.9 84.6
Interval 126.8 116.3 110.9 104.5 97.8 93.9 86.9 84.6
eeKN (@S =1) 127.3 116.6 111.4 104.9 98.2 94.3 87.2 84.9
eeKN (S = 3) 126.7  116.2 1109 1044 | 97.7 93.9 86.8 84.5

Table 3.6: Perplexities on the corpora forlaear interpolationsmoothed3-gram language modelSk OOVcolumn stands for the
perplexity skipping the OOV, while thall column accumulates all the events (OOV and known).
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The loss function in statistical pattern recognition

“ Life's most important questions are, for the most part, irgtbut probability problems’
PIERRE-SIMON LAPLACE

Contents
4.1 Introduction . . . . . . . .. 82
4.2 BayesDecisionTheory . . . . . . . . . . . ..o 82
4.3 Statistical Machine Translation . . . . . ... ... ......... 86
4.3.1 Generalerrorfunctions . . ... ... ... ... ........ 87
87

4.3.2 Simplified error functions . . . . .. .. .. L oL
4.3.3 Approximation to general error functions . . . . ... .... 89

434 EXperiments . . . . . . ... 91
435 COorpora . . . ... 92
4.4 Conclusions . . . . . .. 98
103

Bibliography . . . . . . ..

81



Chapter 4. The loss function in statistical pattern rectigmi

4.1 Introduction

Statistical pattern recognition is a well-founded disiciplthat allow us to solve many practical classi-
fication problems. A classification problem is stated as tioblpm of choosing to which class a given
object belongs. LeX be the domain of the objects that a classification system tnailgberve; and
Q the set of possible classe§.(,ws, .. .,wc}) to which an object may belong to. A classification
system is characterised by a function that maps each olgjemté class, the so-calledassification
function ¢ : X — Q) [Duda et al., 2001].

The performance of a classification system is usually measas a function of the classification
error. However, there are problems in which all the clasaiifim mistakes or misclassifications do not
have the same repercussions. Therefore, a criterion this these mistakes should be provided. The
loss function](w,|x, w.), evaluates théossin which the classification system incurs when classifying
the objectz into the classv,, knowing that the correct class is. [Duda et al., 2001]. It is well
known that, if a0—1 loss function is provided, then the optimal system minimmitee classification
error rate [Duda et al., 2001].

This chapter is mainly devoted to design loss functions shauld improve system performance
while keeping the simplicity ob—1 optimal classification system. In [R. Schluter and Ney, 2005
complex classification rules were analysed usingedric loss function Some other works, for in-
stance [Ueffing and Ney, 2004], analyse the most generaflmesions. However, we focus on other
loss functions which are not restricted by the metric rezuints at the expense of ignoring the class
proposed by the system, i®,.

The remainder of this chapter is organised as follows. Iri&ed.2 pattern recognition problems
are analysed from a decision theory point of view. In Sectid) we introduce statistical machine
translation as a case of study. Finally, concluding remarkssummarised in Section 4.4.

4.2 Bayes Decision Theory

In this Section, we review and develop some of the ideasdnted in Section 1.1 Chapter 1. A
classification problem is an instance of a decision probl&mm this point of view, a classification
problem is composed of three different items:

1. A set ofObjects(X) the system might observe and has to classify.

2. A set of classest = {w1,...,wc,...}) in which the system has to classify each observed
objectz € X.

3. ALoss functionl(w, |z, w.), used to weight the classification actions. This functioalestes
the loss of classifying an observed objecinto a classw, € €2, knowing that theoptimal class
for the objectz isw. € (.

Recall that a classification system is characterised byl#ssiication function, which maps each

object to one class [Duda et al., 2001]
c: X -0 . (4.1)

Therefore, when an objeat € X is observed in a classification system, the system shouloseho
the “correct” class from all possible classes. Taking thasrfework into account, we define the risk of
a system when classifying an objegtthe so-callectonditional risk givene, as

R(wplz) = Z Wwpl|z, we) prwelx) . (4.2)

weEN

Note that the conditional risk is the expected value of tiss fonction](w, |z, w.), with respect to the
actual probability distributionp, (w|z).
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4.2. Bayes Decision Theory

Using the conditional risk, we define thige global risk[Duda et al., 2001] as the contribution of
all objects to the classifier performance, i.e.

R(c) = Ea [R(c(x)|2)] /R o)) pr(@)de 4.3)

whereR(c(x)|z) is the conditional risk giver, as defined in Eq. (4.2).

We wish to design the classification function that minimigesglobal risk. Since minimising the
conditional risk for each objeet is a sufficient condition to minimise the global risk, withi@ny loss
of generality, the optimal classification rule, namelinimum Bayes’ riskis the one that minimises the
conditional risk, i.e.

¢(x) = argmin R(w|z) . (4.4)
we
Therefore, depending which loss function the system deisidgpased on, there is a different optimal
classification rule.

The algorithms that perform the minimisation in previous Eg4), are often calledecoding al-
gorithmsor search algorithmsConsequently, the problem of designing an algorithm teafiogpm such
minimisation is calledhe decoding problerar the search problem

Throughout this chapter we focus on the way of building thinegl classification system with the
best possible model. We do not intend to discuss about whédhinig criterion, method or algorithm
is better for improving the system performance. Insteaddead with the following stage in the design
of the system. Once we have the best possible approximatithe tactual probability distributions, we
answer the question of which the best decoding strategy is.

In practice, we also need to compare among systems. In ardkr 0, we need to compare the
global risk of those systems. The global risk in Eq. (4.3 ba understood as the expected loss with
respect to the object-class joint probability distribuatio

R(c) = Ez[R(c(x)|x)] —/ Z )|z, w)pr(w, x)de (4.5)

weN

with p-(w, ) = pr(w|z) p(x). Therefore, using the law of great numbers for a given test/se=
{(n,wn)Yh_y, i.i.d. according tg,(w, ), the global risk can be approximated by

Rr(©) = = 3 Mc(@a)|@n,wn) - (4.6)
N

n=1

We call this approximation thempirical riskon the test set".

There is not a unique best loss function for any system, gheéoss depends on the characterisa-
tion of the task that we want to solve. The classical and marsingon approach is to consider that each
misclassification has the same impact. Therefore, a prierdistinguish two sorts of actions: wrong
classifications (loss of) and correct classifications (zero loss), i.e.,

0 wp=uwe

) 4.7
1 otherwise

Nwplz,we) = {

This loss function is known as tite-1 loss function

Minimising the risk when the loss function is tBe-1 loss functionis equivalent to minimise the
classifying errors. When Eq. (4.7) is used, the minimum Bayisk in Equation (4.4) is simplified
yielding the well-known optimal Bayes’ classification riiRuda et al., 2001],

c(x) = argmaxpr(w|x) , (4.8)
weN
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wherez is the object to be classified, anddenotes a possible proposed class.

However, while thed—1 loss function is adequate for many problems, which have dl s@iaof
classes; there are problems where a more appropriate lostoin should be defined. For example, if
the system classifies diseases, it may be worse to classiffypanson as a healthy one than vice-versa.
This distinction is made independently of the illness phility, and depending upon the repercussions
of the wrong actions, i.e., depending on the following gioest is the illness treatment dangerous?
is the illness deadly?, and so on. Another important exansplee case in which the set of classes
is large, or even infinite (but still enumerable). In such aegaas the set of all possible classes is
huge, it is not appropriate to penalise all wrong classels thi2 same weight. In other words, since it is
impossible to define a uniform distribution when the numbelasses is infinite, it does not make sense
to define a uniform loss function in the infinite domain beestlere are objects that are more probable
than others, and the error will be increased if the systels faiprobable objects. Instead of using
the 0-1 loss function, it would be better to highly penalise the dommones where the probability
is high. In this way, the system will avoid mistakes on prdbatibjects at the expense of making
mistakes on unlikely objects. Consequently, the error beélldecreased since unlikely objects occur
fewer times in comparison with probable objects. Note thatane dealing with infinite enumerable
sets in this example, and, therefore, this is a classificgtioblem and not a linear regression problem.
An example of this idea is plotted at Fig. 4.1

The most general loss function that can be defined makes ube tffree variables: the object to
classifyx, the proposed class, and the correct class.. In general, it is useless to define a non-zero
loss function when the proposed class and the correct ctassqaial. Therefore, we define teeor
functione(zx, wp, w.) as the value of the loss function whep # w.. For each error function we define
a loss function in the following way

0 Wp =W
1 We) = P 4.9
(Wple, we) {e(:c,wp,wc) otherwise (4.9)

The error function must verify the following finiteness peoty,

Z pT(wC|w) e(wvavu"c) < o0 ) (410)
WeEN

since the conditional risk defindl(w,|x) in Eq. (4.2) must exist.
The optimal Bayes' classification rule corresponding toptevious loss function in Eq. (4.9) is

c(x) = argmin Z pr(welz) e(x, wp, we) . (4.11)

wp€N werwp

The previous classification rule in Eqg. (4.11), has a gresstdliantage. In order to classify an object
we have to perform the minimisation which also implies a swerall classes. If we compare the rules
in Eq. (4.11), and the rule in Eq. (4.8), it is clear that in fbamer case, the cost is higher since the
sum over all possible correct classes should be performied. siim is not important if the number of
classes is small, however, in several appealing languadsgons such as statistical machine translation
or speech recognition the number of classes is huge or efieitéanenumerable). In those cases, the
sum inside the minimisation could be even unfeasible.

The loss functions in Eq. (4.9) and in Eq. (4.7) representaxtcemes of the loss function possibil-
ities. On the one hand, the-1 loss function yields the simplest and fastest classificatide. On the
other hand, the general loss function in Eq. (4.11), is thetrgeneral loss but also the slowest one.

There is another category of loss functions which represérade-off between computational cost
and generality. This category is characterised by the ptppéignoring the proposed class, in the
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error function. Therefore, if we define the following lossftion,

0 Wp = We

) (4.12)
e(x,w.) otherwise

(wplew,we) = {

where the dependence «f - - ) on the proposed class, is dropped, and, then, the optimal classifica-
tion rule is given by
c(x) = arg min Z pr(welx) e(x,we) . (4.13)
wp €N weAwp
Applying some basic arithmetic operations to the clasgificarule in previous Eq. (4.13), the classifi-
cation rule is significantly simplified, i.e.,

c(x) = arg glin Z pr(wele) e(x, we) (4.14)
“p WeFEWp
= argmin{—pr(wp|2) €(@,wp) + (@)} (4.15)
wp€
— arg max{p. (wy|e) e(z,w,)} (4.16)

with S(z) = > o €(w, ) pr(w|z).

Note that comparing Egs. (4.16) and (4.8), it is observetittigacost is almost the same, except for
the computation o (x,w,). Actually, all the constant error functions, i.e(x,w,) = c, lead to the
same classification rule than thel loss function in Eq. (4.8). Therefore, thel loss function is the
simplest error function of this category. If we further caamp Eq. (4.16) with Eq. (4.11), it is seen that
the former is fastest that the latter, since in the formemasuer all the class domain must be computed
for each candidate class in the minimisation search. Waifjahe loss functions into two categories:

e Thegeneral loss functionsharacterised in Eq. (4.9) that require to scan the set e§etatwice:
one to compute the minimisation and another scan in ordemtpate the sum for each candidate
in the former minimisation (see Eq. (4.11)).

e Thesimplified loss functionthat drop the dependence on the proposed class defined dsdleta
in Eq. (4.12), and that only require to scan the set of clasises for computing the maximisation
(see Eg. (4.16)).

Analysing the Eq. (4.12), the question of which the bestrdmction is, raises immediately. The
answer is not easy, and it depends on the task and problenhioh we are designing the classification
system. For instance, if the number of classes is huge origfieite, a good approximation is to use
the probability distribution over the classes, kér,w.) = pr(w.). Figure 4.1 plots this idea. Note that
since there are classes in the domain with a small probabilioccurrence, it is useless to uniformly
distribute the loss. For instance, let assume ¢hais the most probable class and thatis one of the
less probable classes. We further assume that for a givextahjthe loss of classifying it in each of
both classes, say;, andw;, is the same. Ift belongs tav;, then we could misclassify it by assigning
it to the classv;, and vice-versa. Since the clasg is more probable, the system could fail more times
than if the loss of misclassifying an object of the clagswere the highest at the expense of reducing
the loss of misclassifying objects belonging to classNote that this fact is independent of the quality
of the models used to approximate the actual probabilitiHss idea is analysed into detail for the
statistical machine translation problem in Section 4.3.

According to previous argument, if the loss wefe,w.) = pr(we, ) then we should expect
that the system would work even better. The difference betvike marginal probability and the joint
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Figure 4.1: Difference of using &-1 loss function (on the left) and an approximation
to the true class probability as the loss function (on thitjighen using a loss function
of the sort of Eq. (4.12). The left-scale of the y axis showsssfble actual probability
over the target sentences. The right-scale of the y axis il value of the loss
function when a mistake is made. Finally, the x axis is an it&ienumeration of the
numerical identifiers corresponding to the infinite enurbkraet of possible classes (or
target sentences in the SMT case).

probability is that we can modify the loss on the correctsldepending on each object. Obviously, this
refines the accuracy of the the loss.

A more general approach can be used for mixing different nsoded information sources. It
consists in defining an additional training step to optindasgarametrised loss function. We start by
defining a family of error functionsY', and identifying each function in the family with some vecto
of parameters, sax. Then, we use another function criterion, @yex (x,w.)), in order to range
between the classification systems. Afterwards, with tHp bkan optimisation method, either theo-
retical or practical, the vectox is optimised. In practice, this is used to approximate a gersror
functione(x, we, wp) With a faster error function that drops the dependence oprthgosed class, i.e.
ex(x,w.). In this way, we design a fast classification rule, that apipnate our real classification risk.
In order to perform the minimisation, a validation set isitglly used. This idea is further explored in
Section 4.3.3 under the view of statistical machine traiwsia

4.3 Statistical Machine Translation

In this section, we propose and analyse different loss fomstwhich are eligible for substituting tite-

1 loss function in pattern recognition problems. Since, shilsstitution is specially appealing when the
set of classes is infinite, we focus on the real scenargiaifstical machine translation (SMT) [Brown
etal., 1993].

In Chapter 1, we stated the SMT problem as the problem of finthie translatiory for a given
source sentence. SMT is a specific instance of a classification problem whbeeset of possible
classes is the set of all the possible sentences that mightitten in a target language, i.€ = Y™,
whereY is the target lexicon. Likewise, the objects to be classifeed sentences of a source language,
i.e.x € X*, whereX is the source lexicon.

In this context to classify an objegtin the classv. is a way of expressing that. is the translation ok.
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4.3. Statistical Machine Translation

Recall from Section 1.3 that, the SMT systems are based oBdkies’ classification rule for the
0-1 loss function depicted in Eq. (4.8). Usually, the class st probability is decomposed using
Bayes' theorem into two probabilities,

y

&(x) = argmax{p-(x|y,) pr(y,)} (4.17)
€Y *

Yp

which is known as thénverse translation rule (ITR}ince the translation probability, (x|y,,), is
defined in an inverse way, i.e., we define a probability distion over the source sentengewhich

is the information that is “given” to the system. On the othand, a direct model distributes the
probability among the target sentenags conditionally to the given informatiow, p.(y,|x). Note
that we usedy,, instead ofy to highlight the fact thay,, plays the role of the proposed translation in
the definition of the loss function.

Equation (4.17) implies that the system has to search thettatringy that maximises the product
of both, the target language modgl(y) and the inverse translation model(x|y). Nevertheless,
using this rule implies, in practice, changing the disttidnu probabilities as well as the models through
which the probabilities are approached. This is exactlyaiteantage of this approach, as it allows the
modelling of the direct translation probabilipy.(y|x) with two models: an inverse translation model
that approximates the direct probability distributior(x|y); and a language model that approximates
the language probability- (y).

This approach has a strong practical drawback: the seaothepn. This search is known to be
an NP-hard problem [Knight, 1999, Udupa and Maji, 2006]. ldeer, several approximate search
algorithms have been proposed in the literature to solhe ghoblem efficiently [Al-Onaizan et al.,
1999, Brown et al., 1990, Garcia-Varea and Casacubertd,, Z&&rmann et al., 2001, Jelinek, 1969,
Tillmann and Ney, 2003, Wang and Waibel, 1997].

Another drawback of the ITR, is that it is obtained using @ké loss function. As stated in Sec-
tion 4.2, this loss function is not particularly appropeiathen the number of classes is huge as it
happens in SMT problems. Specifically, if the correct tratish for the source sentengeis y., and
the hypothesis of the translation systemyis then using thed-1 loss function (Eg. (4.7)) has the
consequence of penalising the system in the same way, indeptly of which translation the system
proposesy, and which the correct translatign is.

4.3.1 General error functions

As stated above, the most generic loss functions depicté&ttji(4.9), produce minimisations which
require the computation of a sum over all the set of classeachMe translation is a classification
problem with a huge set of classes. Hence, the most genascflmctions yield difficult search al-
gorithms which are approximated. There are some works that hlready explored this kind of loss
functions [R. Schluter and Ney, 2005, Ueffing and Ney, 2004].

The more appealing application of this loss functions iaige=of a metric loss function [R. Schliter
and Ney, 2005]. For instance, in machine translation oneesyicead metric is the WER (see Sec-
tion 1.3 for a definition), since the loss function in Equat{d.12) depends on both, the proposed trans-
lation and the reference translation, the WER can be usedsasfunction [Ueffing and Ney, 2004].
Nevertheless, due to the high complexity, the use of thesergkloss functions, is only feasible in
constrained situations like-best lists [Kumar and Byrne, 2004].

4.3.2 Simplified error functions

The search algorithms generated by the classification nuegi (4.12) have the same asymptotic cost
than0-1 loss function, at the expense of dropping the dependenckeoproposed class. As stated in
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Section 4.2, a more suitable loss function thanhe loss, is obtained using as the error function the
target sentence probabilitx,y.) = pr(ye),

0 Yp =Ye
1 JVe) = . 4.18
(ol ye) {pr(yc) otherwise (4.18)

This loss function seems to be more appropriate tha®theThis is due to the fact that if the system
misclassifies some sentences of a given test set, this lostdn tries to force the system to fail in the
source sentence of which correct translatidly. is one of the least probable in the target language.
Thus, the system will fail in the least probable translagiomhenever it gets confused; and therefore,
the Global Riskwill be reduced.

The associated Bayes’ rule for loss function in Eq. (4.18) is

9(x) = argmax {p,(y, [)pr(y,)} - (4.19)

Yp

Note that we useg,, instead ofy to highlight the fact thay,, plays the role of the proposed translation
in the definition of the loss function in Eq. (4.18).

Previous Eq. (4.19) is known as th&ect translation rule (DTR}¥ince the translation probability,
pr(y,[x), is defined in an direct way. The direct translation rule wearistically introduced into
the scope of machine translation in order to alleviate tlaeckeproblem by many of the current SMT
systems [Koehn et al., 2003, Och and Ney, 2004a, Och et &9,18ens, 2008]. Note that the DTR
was introduced as a heuristic version of the ITR in Eq. (4.WRerep. (x|y) is substituted by, (y|x).
This rule allows an easier search algorithm for some of twestation models. Although the DTR has
been widely used, its statistical theoretical foundatias hot been clear for long time, as it seemed
to be against the Bayes’ classification rule. As stated ghttneedirect translation rule is the Bayes’
optimal classification rulé the loss function in Eq4.18)is usedAndrés-Ferrer et al., 2008].

Since the DTR uses the target language probability as tbe farrction, it should work better than
the ITR, from a theoretical point of view. Nevertheless, steistical models used for approximate the
translation probabilities may not be good enough. Thusjribdelling error, which is the error made
when approximating the actual probability with a model,lddee more important than the advantage
obtained from the use of a more appropriate loss functionerdfbre, it seems a good idea to use
the direct rule in the equivalent inverse form so that thadiaion system will be the same and then
these asymmetries will be reduced. By simply applying thgeBatheorem to Eq. (4.19), we obtain a
equivalent rule

¥ = argmax {p-(y)°p(xly)} . (4.20)
yeY *

Theoretically, rules in Eq. (4.19) and Eq (4.20) are eqeieland must give the same solution. There-
fore, the difference between the Eg. (4.19) and Eq (4.20)soreathe asymmetries of the translation
models as well as the error in the modelling. Bare in mind tiaianguage models also presents some
modelling errors and, hence, this last approach assumethéhanguage model is a very good approx-
imation to the actual probability distribution, due to ttaetfthat the “direct weight” has passed from
the direct translation modei, (y|x) to the language model. Whether the direct model or the ievers
model is better for the translation task depends on the mudglerties, the estimation technique and
the training data.

PHere lies the importance of distinguishing between thestedion proposed by the systeyn, and the correct
translationy . for a given source sentenge
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As stated in Section 4.2 a refined loss function is designewyuke joint probability as the error
function,e(x,y;) = pr(%,y;),

0 Yp = Ye
Wy, |%,ye) = _ 4.21
ol ye) {p,«(x,yc) otherwise (4-21)

which leads to
9 = argmax {p-(x,y) pr(ylz)} - (4.22)
YEY *

Depending on how we model probabilities in Eq. (4.22), saveptimal classification rules are
obtained. Specially if the joint probability(x, y)) is modelled with an inverse translation probability
plus a target language probability, then, ilneerse and direct translation rule (I&DTRjs obtained

y = argmax {p-(y) p-(x|y) p-(y %)} . (4.23)
YEY *

The interpretation of this rule is a refinement of the direahslation rule. In this case, if the system
makes a mistake, then it tends to be done in the least propabike, y) in terms ofp.(y, x).

4.3.3 Approximation to general error functions

As stated in Section 4.2, the loss functions of the kind in(BdL.2), are usually faster than the general
loss functions depicted in Eq. (4.9) since the former schagbssible translations once and the latter
twice (one for the minimisation and another for the sum). MAse function in Eq. (4.12) sacrifices the
proposed translation in order to speed up the search protkesertunately, the automatic evaluation
metrics used to quantify the translation systems requithk, the proposed and the correct translation.
Therefore, with the fastest loss functions we are not abl@itomise the evaluation metrics, which
in principle is what we expect from our best system. Howebgrdefining a family of simple error
functions depending on a parametric vector, dayve are able to approximate the evaluation metric,
such as the BLEU or WER.

One way to approximate this general error function is to usetaof featuresf.(x,y,), that
depend on both the source sentence and its correct targstatian. Then we define the following
error function

K
@ y.) =[] (e y)™ . (4.24)
k=1
If our actual evaluation error function is

6(:E7 yp7 yc) =1- BLEU(yT_m yc) ) (425)

then using a validation sé&@ = {(x.,¥,,)}A_; we can use any optimisation algorithm to minimise our
actual error function in Eq. (4.25). For instance, the maximentropy algorithm [Berger et al., 1996]
is typically applied to find the optimal parameter vechor

The error function defined in Eq. (4.24) leads to the follayvatassification rule

K

g (@) = argmax p,(y Jz) [ felx,y)™ . (4.26)
Yo Y™ k=1

If we extend the feature vectof, by adding the conditional probability,-(y.|x) as a new feature with
a new parametéer Ak 11, then the classification rule expressed in terms of the eefieature vector,

CIn the case that there existed a feature, gdy), which already is the conditional probability, then the new
feature vector remains the same and the new parameter \@ter previous one but for the componénthich is
increase by one, i.e\; = \; + 1.
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£ and the extended parametric veclois

K —
Y5 (x) = arg max H Fe(z,y ) . (4.27)

YeCY" 15

If we apply the logarithm to the previous Eg. (4.27) we obthi@ equivalent expression

K
Ux(x) = arg maxz i log fx(z,y,) - (4.28)

Ye€Y" 5

If we defineh = log f then the classification rule in Eq. (4.28) is expressed oWl

K
U5(z) = argmax > Nehi(w,y,.) (4.29)

yCGY* k=1

whereX stands for the extended extended parameter vector as id 2g).(

Most of the state-of-the-art systems use this idea, althahbgy present it as if they were using a
log-linear model [Marifio et al., 2006, Och and Ney, 2004gle&fically, if in Eq. (4.8) we model the
direct probability as a log linear model

K
Pa(vle) = Zs (Y Mehi(.v) (4.30)
k=1
with
K
Za(z) = > exp(d_ Arhi(z,y)) (4.31)
yey * k=1

then using the model in Eq. (4.30) in the rule in Eq. (4.8), Wi the following rule

. 1
) = arg max
I = )

K
exp()_ Aeh(x, y)) (4.32)

k=1
K
= arg max exp(z Achi (2, y)) (4.33)
yeyr k=1
K
= arg maxz Aehi(z,y) . (4.34)
yeEY™ k=1

Note that if you compare Eqgs. (4.34) and (4.29), they arevatpnt.

Although the log-linear explanation of the process yielis same classification rule, it is not sat-
isfactory in the sense that the log-linear model in Eq. (#i8ever trained in its full form and, its
normalisation weigh& (x) is ignored This ellipsis can be done in the decoding processchanot
be done in training In other words, the log-linear model in Eq. (4.30) is onlgiied in the form of
classification rule (4.34) so that it minimises the genavatifunction in Eq. (4.25) by using the loss
function in Eq. (4.12) with the error function in Eq. (4.24herefore, the state-of-art log-linear models
are alog-lineal loss functiortrained to resemble the general loss function in Eqg. (4.25).

Typical features used by the state-of-the-art systemserangong [Marifio et al., 2006, Och and
Ney, 20044] the followings:

90 JAF-DSIC-UPV



4.3. Statistical Machine Translation

e Direct translation modelsa typical feature is to use a direct translation model

hi(z,y) =logpe(ylx), fe(z,y) =pe(ylz) - (4.35)

The most used models are the IBM model 1 and the phrase-bas#eisn

e Inverse translation models typical feature is to use a inverse translation model

hi(z,y) =logpe(xly), fe(x,y) =rpe(x|y) - (4.36)

The most used models are the IBM model 1 and the phrase-basdeisn

e Joint translation modelsa typical feature is to use a stochastic finite transducer,
hi(x,y) =logpe(x,y), [fu(x,y)=rpe(z,y) . (4.37)
e An n-gram language modethat is to say
hi(x,y) =logpe(y), fe(w,y)=pe(y) - (4.38)

e Word bonusit is a well know problem of the-gram language models that they give more prob-
ability to short sentences. Additionally, the translatioodels tend to distribute the probability
among ill-formed sentences as the length of the sentenceaises [Brown et al., 1993]. There-
fore, in order to keep the translation systems from alwagsiyeing poor translations because
of trying to shorten them, the following feature is used

hi(z,y) = logexp(ly|), fx(z,y) =exp(ly|) . (4.39)

4.3.4 Experiments

The aim of this Section is to show experimentally how the thesated in this work can be used to
improve the performance of a translation system. Thergtbesobjective is not to obtain a competitive
system, but rather to analyse the previously stated piiegért practice.

In order to analyse the theory, we have used two set of expeatdn For the former set we used
a semi-synthetic corpora and a simple translation model|BM model Il (see Section 1.3.1). For
the latter, two real tasks are used whilst the translatiodetsoused were the phrase-based models
(see Section 1.3.2). Through both experimentsgram language model is used to approximate the
language probability distributions, i.es,-(y). Specifically, the language model was trained using a
5-gram model obtained with the SRILM toolkit [Stolcke, 2002]

Similarly to Germann et al. [2001], we defined two error measisearch error andmodel error
These error measures are inspired on the idea that when a &W#Tsproposes a wrong translation, itis
due to of one of the following reasons: either the suboptsealch algorithm has not been able to find a
good translation or the model is not able to make up a goodlation, and hence it is impossible to find
it. A translation error is @earch error (SE)f the probability of the proposed translations is less than
a reference translation; otherwise it isrevdel error i.e., the probability of the proposed translations
is greater than the reference translation. Although a medet always has more probability than the
reference translation, this does not excludes the facethaich better translation maybe found.

In order to evaluate the translation quality, we used thieviohg well-known automatically com-
putable measuresvord error rate (WER)bilingual evaluation understudy (BLEW)osition indepen-
dent error rate (PER)andsentence error rate (SER)
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4.3.5 Corpora

Three different corpora were used for the experiments tleséwearried out in this chapter: Eutrans-I
(Tourist), Europarl and Xerox.

Table 4.1 summarises some of the statistics of the Tourigtuso[Amengual et al., 1996]. The
Spanish-English sentence pairs correspond to humanna@icommunication situations at the front-
desk of a hotel which were semi-automatically producedgigismall seed corpus compiled from travel
guides booklets.

Table 4.1: Basic statistics of the Spanish-EnglisbORrisTtask.

Spanish | English
Sentences 170K
Training Running Words 2.2K 2.2M
Vocabulary 688 540
Avg. sentence length 12.9 13.0
Sentences 1K
Test Running Words 12.7K 12.6K
Perplexity 3.6 2.9

Table 4.2 shows some statistics of the Europarl corpus [Ko2005]. Specifically, this is the
version that was used in the shared task of the NAACL 2006 #ag on SMT [NAACL 2006].
Europarl corpus is extracted from the proceedings of the@gan Parliament, which are written in
the different languages of the European Union. There aferdiit versions of the Europarl corpus
depending on the pair of languages that are used. In this,waly the English-Spanish version was
used. As can be observed in Table 4.2, the Europarl corpusinsna great number of sentences
and large vocabulary sizes. These features are commoneowtil-known corpora described in the
literature.

Table 4.2: Statistics of the Europarl corpus

Spanish | English

Sentences 730K
Training Running Words 15.7M 15.2M
Vocabulary 102.9K 64.1K
Avg. sentence length 21.5 20.8

Sentences 3.1K
Test Running Words 91.7K 85.2K
Perplexity 102 120

Table 4.3 reports some statistics of the Xerox corpus [Atagi@ Instituto Tecnoldgico de Infor-
matica, RWTH Aachen, RALI Laboratory, Celer Soluciones Sagdiété Gamma and Xerox Research
Centre Europe, 2001]. This corpus involves the translaifdachnical Xerox Manuals from English to
Spanish, French and German, and vice-versa. In this wolk tle@ English-Spanish version was used.
As can be observed in Table 4.3, the Xerox corpus containsisiderable number of sentences and
medium-size vocabularies.
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Table 4.3: Statistics of the Xerox corpus

Spanish | English

Sentences 55.7K
Training Running Words 0.75M 0.67TM
Vocabulary 11.0K 8.0K
Avg. sentence length 135 11.9

Sentences 1.1K
Test Running Words 10.1K 8.4K
Perplexity 35 47

Word Based Translation experiments

In this section, the IBM Modet [Brown et al., 1993] is used to approximate the translatiabability
distributions. Together with the IBM Modél[Brown et al., 1993], its corresponding search algorithms
are used to carry out the experiments in this Section. Thiécehwas motivated by several reason.
Firstly, the simplicity of the translation model allows us @btain a good estimation of the model
parameters. Secondly, there are several models that tiadiseid using the alignments and dictionaries
of the IBM model 2, for instance, the IBM HMM [Och et al., 19984 the phrase-based models can
be initialised by the IBM model 2. Finally, the search prablean be solved exactly using dynamic
programming for the case of the direct translation rule ciepliin Eq. (4.19).

In order to train the IBM ModeR, we used the standard to@IZA++ [Och, 2000]. We re-
implemented the algorithm presented in [Garcia-Varea aashC@uberta, 2001] to perform the search
process for the ITR. Even though this search algorithm i®ptinal, we configured the search parame-
ters in order to minimise the search errors, so that moseoétiors should be model errors. In addition,
we implemented the corresponding version of this algorithnthe DTR and for the I&DTR. All these
algorithms were developed by dynamic programming. For &#2TIR, we implemented two versions
of the search: one guided by the direct model (a non-optieeich algorithm, namely I&DTR-D) and
the other guided by the inverse translation model (whiclsis aon-optimal but more accurate, namely
1&DTR-I).

In order to have an experimentation as close as possiblehieaadtical scenario, we selected the
Spanish-English DURIST task (see Section 4.3.5). The parallel corpus consistdd yf352 differ-
ent sentence pairs, whei& sentences were randomly selected from testing, and thedinesets of
exponentially increasing sizesK, 2K, 4K, 8K, 16K, 32K, 64K, 128K and 170K sentences pairs) for
training. All the figures show the confidence interval at 95%.

Figure 4.2 shows the differences in terms of the WER amoni@limentioned forms of the DTR:
“IFDTR” (Eq. 4.20), and “DTR” (Eq. 4.19). Since the IBM Mod2I(in its direct version) tries to pro-
vide very short translations, we implemented a normalisedth version of the DTR. In the figure this
normalised version is referred “DTR-N". Note the importard the model asymmetry in the obtained
results. The best results were the ones obtained usingtaesanform of the DTR. This behaviour is
not surprising, since the only mechanism that the IBM Mode&8 to ensure that all sources words are
translated is a length distribution that usually allowsntedel to ommit the translation of a few words.
Anyway, the “DTR” and “DTR-N" performed worse than the ITRafdle 4.4).

Figure 4.3 shows the results achieved with search algosithase on the most important classi-
fication rules. All the I&DTR obtain similar results to theRT Nevertheless, the non-optimal search
algorithm guided by the direct model (“I&DTR-D") was an ordaf magnitude faster than the more
accurate one (“I&DTR-I") and the “ITR”. The inverse form df¢ DTR (“IFDTR") behaved similarly
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Figure 4.2: Asymmetry of the IBM Model 2 measured with the respect to tHeRAfor
the TouRisTtest set for different training sizes.
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Figure 4.3: WER results for the DURIST test set for different training sizes and
different classification rules.

to these, significantly improving the results reported byRDThere are no significant differences be-
tween the rules analysed in terms of WER. However, the eiattimes were significantly reduced by
the direct guided search in comparison with the other searcFable 4.4 shows these execution times
and the figures with the maximum training size.

The different search algorithms (based on loss functioas)al convey a significant improvement
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Table 4.4: Translation quality results with different translatiodesifor TOURISTtest
set for a training set of 70K sentences. Where T is the time expressed in seconds and
SE stands for the percentagesefarch errors

Model WER SER BLEU (%) SE (%) T
I&DTRT  10.0 492 84.7 13 34
I&DTRD 10.6 51.6 84.4 9.7 2
IFDTR 105 60.0 83.7 27 35
ITR 10.7 58.1 84.3 1.9 43
DTRN 17.9 741 75.0 00 2
DTR 30.3 924 53.5 00 2

in WER in Figure 4.3. Note that the loss function only evadsathe SER, i.e. the loss function min-
imises the SER, and does not try to minimise the WER. Thusgihg the loss function, does not
necessarily decrease the WER.

In order to check this hypothesis, Figure 4.4 shows the goal® version of Figure 4.3 but with
SER instead of WER. It should be noted that as the trainingisizreases, there is a difference in the
behaviour between the ITR and both I&DTR. Consequentlyuseof these rules provides better SER,
and this difference becomes statistically significant &sdstimation of the parameters improve. In
the case of the inverse form of the DTR (“IFDTR?”), as the tiansize increases, the error tends to
decrease and approximate the ITR error. However, the diffas are not statistically significant and
both methods are equivalent from this point of view.

DTR-N “-s5pms
90 .. TR =G -
T IFDTR »-le-es
Y e ; I&DTR-D —&—
804 : Y, I&DTR-l +—A—

SER

0
1000 2000 4000 8000 16000 32000 64000 128000
Training Size

Figure 4.4: SER results for the DURIST test set for different training sizes and differ-
ent classification rules.

In conclusion, there are two sets of rules: the first set issmgdof IFDTR and ITR, and the second
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Table 4.5: The results of translation quality obtained using the psaglovariety of loss
functions with the Europarl test set.

Spanish— English
Rule Formula BLEU (%) WER PER
ITR pr(x[y)pr(y) 26.8 611 452
DTR pr(y|x)p: (y) 20.6 61.1 48.9
I&DTR  p.(y|x)p: (x|y)p-(y) 28.1 59.0 43.3
IFDTR pr(x|y)[pr ()] 22.2 62.5 48.3
English— Spanish
Rule Formula BLEU WER PER
ITR pr(X[y)pr(y) 25.7 60.7 458
DTR pr(y|x)p: (y) 19.9 62.0 51.3
I&DTR  p,(y|x)p, (x|y)p-(¥) 26.0 59.4 45.1
IFDTR pr(x|y)[pr ()] 21.5 62.7 49.4

is composed by the two versions of the I&DTR. The first set repavorse SER than the the second
set. However, the I&DTR guided with the direct model ("I&DTIR’) has many good properties in
practice. Note that for real tasks and state-of-the-attegys, it is expected that the behaviour of the
rules correspond to the result obtained with the smallegiussize, where no significant difference
exists among the systems in terms of SER.

Phrase-based translation experiments

In the case of phrase-based translation (PBT) differentatsoffor the two tasks considered) were
estimated. The training of these models were carried outdridllowing way:

e First, a word-level alignment of all the sentence pairs @tthining corpus was carried out. This
alignment was performed for the Spanish-to-English andifimgo-Spanish directions, using a
standard GIZA++ [Och, 2000] training, with the standardriray schemel®2°3'45.

e Then, a symmetrisation of both alignment matrices was,huglhg the HoT toolkit [Ortiz et al.,
2005]. Specifically, the refined symmetrisation method wsesiyOch and Ney, 2004b].

e Finally, a phrase-based model was estimated, using #teer Toolkit [Ortiz et al., 2005].

With respect to the decoding process, we implemented oupbwase-based decoder. Specifically,
the decoder implements atw algorithm which is very similar to that described in ther#rire [Ger-
mann et al., 2001, Ortiz et al., 2003] for single-word modglse decoder was adapted to deal with the
different translation rules (or equivalently, the diffetéoss functions) proposed here. These decoders
verbatim the unknown words to the output, since our modebtdine-grained and its basic units are
words.

Tables 4.5 and 4.6 show the translation quality measuretédeuroparl and Xerox tasks, respec-
tively, for the different loss functions proposed in Seotib2. The DTR and FIRTD behaves similarly.
As expected, the D&ITR obtains the best performance. THerdifices between the FIRTD and the
DTR (which are theoretically equivalent) are not too greatthe under-performance of the DTR com-
pared with the ITR is not due to model asymmetries. If thedi@ions given by the DTR are compared
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Table 4.6: Translation quality results obtained, using the proposetkty of loss func-
tions, with the test set of Xerox task.

Spanish— English
Rule Rule (Search Alg.) | BLEU (%) WER PER
ITR pr(x]y)pr(y) 61.7 259 176
DTR pr(y[x)pr(y) 59.0 27.0 18.9
I&DTR  p.(y|x)p: (x|y)p-(y) 61.6 259 175
IFDTR pr(x[y)[pr(y)]? 60.6 26.2 18.0
English— Spanish
Rule Rule (Search Alg.) BLEU WER PER
ITR pr(x]y)pr(y) 63.6 256 185
DTR pr(y|%)pr (¥) 62.8 260 19.1
I&DTR  p.(y|x)p: (x|y)p-(y) 64.6 251 181
IFDTR pr(x[y)[pr(y)]? 62.8 26.2 19.0

with the ITR, it can be observed that the DTR tends to genestadeter translations. This result is ex-
pected since the error function of the DTfR(y), is modelled using a-gram language model, and it
is well-known that:-gram language models give more probability to short seegrthat is to say, the
resulting systems tends to shorten translations.

Tables 4.5 and 4.6 show that the theoretically expecte@aser of the translation performance in
terms of WER and BLEU, is apparently not achieved for the DTiR lboth corpora. Although in the
Xerox corpus the improved performance for the DTR is actuetiee differences between the systems
are not very high. However, figures 4.5 and 4.6 show thatdh fae DTR rule outperforms the ITR, but
also provides shorter translations. Note that the longeséntences are the worse tirevity penalty
(BP) of the BLEU scorés and consequently the worse the BLEU is (Fig. 4.6). Not¢ ith&ig. 4.5,
the DTR incurs in a WER which is in all cases smaller than theRAferformed by ITR. Again this
is due to then-gram model which is used to model the language model, i.e. the &mztion of the
DTR. The I&DTR had the same brevity penalty problem, howgeiwethis case the problem was not so
important since the rule includes the inverse translatiodeh which counteracts the problem.

Table 4.7 shows some translations obtained using both DRTd As can be seen, DTR tends to
produce shorter translations than ITR, which typicallyduoes more translation errors. For instance,
in the first sentencehe European agendg translated athe agencyy the DTR,; this is due to the fact
that although the first translation is more precise, thedagg model (the loss function for the DTR)
scores the second as a more probable sentence. Opposieed;TR correctly translatesiustin the
first sentence but the ITR translates itsk®uld Most of the common mistakes shared for both rules
are syntactic errors, although semantic errors can be fasaell.

In conclusion, the DTR and I&DTR, obtain better results wattort sentences due to a bias in the
language model, although the precision of such sentendesttisr. Nevertheless, the I&DTR is not
dramatically affected by an increase in the sentence lengthfuture work, we intend to solve the
language model bias to short sentence in some way, perhapsragucing a length normalisation in
the loss function or in the models.
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Figure 4.5: The WER results obtained for the Europarl test set (Spawnidtnglish)
with the length of the reference sentences restricted tese than the value of the
x-axis.

Table 4.7: Differences between some translation examples obtained TR and
ITR. Bold words highlight the differences between the twopgmsed translations. B
stands for the reference translation.

SRC:en segundo lugar , la agencia europea debe ser completarimetgpendiente .
REF: secondly , the European agency must be completely independe

DTR: secondly , thegency mustbetotally independent

ITR: secondly , theeuropean agency shoulde completelyindependent .

SRC: es crucial que los consumidores acepten el euro .
REF: it is crucial for consumers to accept the euro .
DTR: itis crucial that consumets acceptthe euro .

ITR: itis crucial that consumeracceptance othe euro .

SRC:de modo que me siento reacio a ir mas lejos en materia de careeaconsejar
medidas suplementarias en materia de comercio o inversion .

REF: so i am reluctant to go further on trade or to advise furtheti@ae on trade or investment .

DTR: i am reluctant to go further trade or advisether steps trade or investment .

ITR: iam reluctant to go furtheon trade orto adviseadditional efforts on trade or investment |

4.4 Conclusions

The analysis of the loss function is an appealing issue. &balts of analysing different loss functions
range from allowing to use metric loss functions such as BLEUWER; to proving the properties
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of some outstanding classification rules such as the diragsiation rule, the inverse translation rule
or even the maximum entropy rule. For each different erracfion ¢(x,y;,yx) in the general loss
function of Eq. (4.9), there is a different optimal BayederuThe point of using one specific rule is an
heuristic and practical issue.

An interesting focus of study is the use of metrics such asBL& WER; as the loss function.
Nevertheless due to the high complexity, it is only feasdsieconstrained situations like-best lists.

The work developed in this chapter is focused on the studyss functions that have a linear
complexity and that are outstanding due to historical octical reasons. This work explores the direct
translation rule, the inverse translation rule, and thealiand inverse translation rule. In this sense,
we have provided a theoretical approach based on decistamythwhich explains the differences and
resemblances between the Direct and the Inverse Translaties. We have also given insights into
the practical differences of these two rules, which are lyidsed. For instance, this theoretical frame
predicts an improvement (in terms of SER), an improvemeat ltlas been confirmed in practice for
simple words models. In conclusion, according to the expental results, the DTR outperforms the
ITR when short sentences are provided to the system.

The proposed modifications to tbel loss function depicted in Eg. (4.12) can handle the inteitiv
idea of penalising a wrong action based on the repercuseiathe correct action. For instance, if the
correct translationy ., of a source sentence, is a very unlikely sentence, failure in the translation of
such a sentence is not important. Oppositely, failure itréneslation of a likely sentence is an important
mistake. It is important to note the fact that the proposed fanctions cannot handle significant cases.
For example, it is not the same to make an incorrect transiatue to grammar errors than to make
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an incorrect translation due to semantic errors. In ordégilte into account such cases, it is necessary
to work with general loss functions of the sort in Eq. (4.95giee of its cost. However, the idea of
penalising the mistakes proportionally to the probabitifythe correct translation can also be used in
case of dealing with more complicated decision rules anentesally, with more complicated search
algorithms.

Note that though we have focused our analysis to error fanstivhich are a probability distribu-
tion, the error functiore(-) does not necessary have to be a probability distributions iHea brings
up the question of which the best loss function is. For instaa confidence measure could even be
used to define error functions. Maybe the growing of the lesgtion should better be non-lineal
with the probability. In this sense more interesting logsctions could be obtained using information
theory. For instance, we can penalise the system withetimaining information That is, if we know
pr(x,y), then the information associated with a target sentgnés — log(p-(x, y..)). The remaining
information, or the information that the system has learimémit fails is given by

—log( Y. pe(@,y)) =—log(l-pr(z,yc)
(@ y") (@)

leading to the the error function

e(z,y.) = —log(l —p(z,9.) - (4.40)

Figure 4.7, shows the remaining information of a probapflinction. Note that the remaining informa-
tion has a singularity dt, i.e. if the system has not been able to learn a sure evernthvahais probability
of 1, then the loss is infinity. Note that this loss can be definedafty probability such ag,(y) or
pr(x,y).

Another very interesting research line is derived from apgjnating complex loss functions in
Eq. (4.9) with simple loss functions in Eq. (4.12). Althoughany of the state-of-art SMT systems
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indirectly make use of this idea, as analysed in Sectiongagd 90), this idea may be exploited from
the point of view presented in this chapter.
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Statistical stochastic finite state transducers
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Chapter 5. Statistical stochastic finite state transducers

5.1 Introduction

As stated in Section 1.3 Chapter 1, the machine translatiotegs is a classification problem. There-
fore, multiplying the maximisation Eq. (1.9) Chapter 1fhy(«), which is a constant for the maximi-
sation, the optimal translation is the one that maximisedahowing equation

Y(x) = arg max {pr(y, )} (5.1)

where the joint probability, (y, ) can be modelled by atochastic finite state transducer (SFST)
Note that Eq. (5.1) is equal that Eq. (1.11) but instantiadeitie MT notation.

SFSTs constitute an important family of translation moeétkin the theory of formal languages [Vi-
dal et al., 2005a]. Even though these models are much moitedirthan other more powerful ones,
the computational costs of the algorithms that are needelabwith them are much lower. SFSTs
also permit a simple integration with other information sz@s, which makes it easy to apply SFSTs to
more difficult tasks such as speech translation [Casaaubedl., 2004]. SFSTs and the corresponding
training and search techniques have been studied by seudfairs, in many cases explicitly moti-
vated by MT applications [E. Vidal and Segarra, 1989, Ona@hal., 1993, Knight and Al-Onaizan,
1998, Méakinen, 1999, Amengual et al., 2000, Alshawi et &0Q0a, Casacuberta, 2000a, Vilar, 2000,
Vogel and Ney, 2000, Pic6 and Casacuberta, 2001, Bangator®izcardi, 2003, Kumar and Byrne,
2003, Casacuberta and Vidal, 2004, Tsukada and Nagata, @a8dcuberta et al., 2005, Kumar et al.,
2006, Casacuberta and Vidal, 2007, Marioo et al., 2006]rd hee other statistical models for MT that
are based on alignments between wosldat{stical word-alignment modglfBrown et al., 1993] or be-
tween word sequencegh{rase-based models or alignment templpf@sh and Ney, 2004, Zens, 2008].
Some of these modelmpnotone phrase-based modglens, 2008]) are closely related to SFST. Other
translation models, which can be considered generalisatd SFSTS, are thiaversion transduction
grammargWu, 1995] and thdnead transducerfAlshawi et al., 2000b]. These models are theoretically
more powerful than SFSTSs, but in general, they require mighmputational costs.

The GIATI technique [Casacuberta and Vidal, 2007] has bpplied to machine translation [Casacu-
berta and Vidal, 2004], speech translation [Casacubertd. ,e2004] and computed-assisted transla-
tion [Barrachina et al.]. The results obtained using GlATggest that, among all the SFST learning
techniques tested, GIATI is the only one that can cope withdiation tasks under real conditions of
vocabulary sizes and amounts of training data availableveder, as the task complexity increases, Gl-
ATl tends to fall behind other approaches that more explicély on statistics [Casacuberta and Vidal,
2007, Marioo et al., 2006].

5.2 Stochastic finite-state transducers (SFST)

Stochastic finite-state transducers (SFST) are similaothastic finite-state grammars or automata [Vi-
dal et al., 2005b], but in this case two different alphabetsravolved: source (input) and target (output)
alphabets. Each transition in a SFST has attached a sourd@aval a (possible empty) string of target
words [Vidal et al., 2005a].

Definition 1 A SFSTT is defined as a tuplé X,Y, Q, qo, ¢, f}, whereX is a finite set of source
words; Y is a finite set of target wordsg) is a finite set of statesjy € Q is the initial state;p :
QX X*xY*x @ — [0,1] is a transition probability function angt : Q — [0, 1] is a final-state
probability function. The functionsand f must verify:

Vae Q, flog + Y,  tHazyd)=1 . (5.2)

(2,9,/)EXXY*XQ

aThe term “word” is used to refer a single token as in MT i.e. yibol” in formal language theory.
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5.2. Stochastic finite-state transducers (SFST)

The non-probabilistic counterpart of a given a SF5,Tcalledcharacteristic finite-state transducer
of 7 (FST), can be defined. Theansitionsare those tuples i) x X* x Y* x @ with probability
greater than zero and tiet of final stateare those states i@ with final-state probability greater than
zero.

Given 7, atranslation formwith J (the number of words or symbols in the source sentence)
transitions associated with theanslation pair(z,y) € X* x Y * is a sequence of transitiors =
(g0, ®1,Y1,q1) (91,22, Y2, q2) (92, 23,Y5,93) -~ (qu—1,Z5,Y;,qs), such thate,z2 ... 2, = @
andy,y, ...y, = y. Its probability is the product of the corresponding tréinsi probabilities, times
the final-state probability of the last state in the sequethe is to say,

J
pr(9) = Ht(qy'flafcj,@j,qj) flas) - (5.3)

The set of translation forms associated with a translatan (g, y) with probability higher than zero
is denoted a®(z, y).

The probability of a translation paif(x, y) according td7 is then defined as the sum of the proba-
bilities of all the translation forms associated with, y), i.e.,

pr(z.y)= Y  pr(¢) . (5.4)

Voed(z,y)

If 7 has no useless states [Vidal et al., 200%8](x, y) describes a probability distribution on
X* x Y* which is calledstochastic finite-state translationRecall that this distribution is used to
model the joint probability introduced in Eq. (5.1). Thenmsrregular or, more properlyrational
translations are also often used in the scientific litematarrefer to (the non-probabilistic counterpart
of) these mappings [Berstel, 1979].

A SFST has two embedded stochastic regular languages, e faource alphabet and another for
the target alphabet. These languages correspond to theavgimals $* andp®) of the joint distribution
modelled by the SFST as follows

pzT(m) = Z p"(wvy)v p%(y) = Z p(:c,y) . (5.5)

yey * xeX*

In practice, the corresponding source or target finiteegighmmars are obtained from the finite-state
transducer by dropping the target or source words of eaoRitian, respectively.

SFSTSs exhibit properties and problems similar to thosebétdd by stochastic regular languages.
One of these properties is the formal basis of the GIATI tégn for transducer inference. It can be
stated as the following theorem [Casacuberta et al., 2@DHEry stochastic finite-state translation can
be obtained from a stochastic regular language and two mismi This is a weaker version of the
stochastic extension of a classical morphism theorem {Bled979]: Every rational translation can be
obtained from a local language and two alphabetic morphisnitere docal languages defined by a
set of permitted two-word segments (and therefastahastic local languagis equivalent to digram
distribution[Vidal et al., 2005a]). In both cases, the morphisms allovousuild the components of a
pair of the finite-state translation from a string of the egponding local language [Casacuberta et al.,
2005].

A SFSTT can be used to approximate the joint probability in Eq. (5ljx, y), obtaining

Yy = argmax pr(z,y). (5.6)
yeY *

That is, givenZ andxz € X *, search for a target stringgwhich maximise®r(x, y).
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Chapter 5. Statistical stochastic finite state transducers

While this SFST stochastic translation problémproved to beNP-Hard [Casacuberta, 2000b], a
generally good approximation can be obtained in polynotimaé through a simple extension of the
Viterbi algorithm [Pic6é and Casacuberta, 2001]. This agpnation consists in replacing the sum
operator in Eq. (5.4) with the maximum operator as follows

pr(z,y) ~ pr(z,y) = pT(9)- (5.7

max
VoED(2,y)
This approximation to the SFST stochastic translation lepralpermits the computation of the optimal
translation form (with respect to Eq. (5.7)) in linear timé&wthe number of source words. The trans-
lation of the given source sentence is then approached asdtfuence of target strings which appear in
this optimal translation form.

5.2.1 Grammatical inference and alignments for transducerinference
(GIATI)

The morphism theorems stated in Section 5.2 suggest a tpehfiCasacuberta et al., 2005] to in-
fer an SFSTSs, the so-callggtammatical inferences and alignments for transducerrérfee (GIATI)
approach [Casacuberta, 2000b]. Therefore, the GIATI tigcierhas a strong and solid theoretical foun-
dation. This technique has been applied to machine tréms|pEasacuberta and Vidal, 2007, Marioo
etal., 2006], speech translation [Casacuberta et al. |20@4computed-assisted translation [Barrachina
et al.]. The results obtained using GIATI suggest that, agrelhthe SFST learning techniques tested,
GIATI is the only one that can cope with translation tasksarneal conditions of vocabulary sizes
and amounts of training data available. However, as thedasiplexity increases, GIATI tends to fall
behind other approaches that more explicitly rely on stesis

Given a finite sample of pair® = {(x,¥,,)}h—, of string pairs fromX* x Y* (a parallel
corpug, the GIATI approach works as follows,

1. Each training paifz., y,,) from D is transformed into a string,, from anextended alphabet
I' to obtain a sampl®’ of strings O’ C T'*).

2. A stochastic finite-statgrammar[Vidal et al., 2005b]G, is inferred fromD’.

3. The symbols (fronT") of the grammar transitionsare transformed into input/output symbols
(X*xY™).

The main problem of this procedure is to define the set of thenebed symbols. The transforma-
tion of the training pairs must capture the correspondeheéseen words of the input and the output
sentences and must permit the implementation of the intesssformation of the third step. This is
achieved with the help of bilingual segmentations [Casadatand Vidal, 2004].

In order to illustrate this first step, we will use the Sparisiglish pair (una habitacion doble” ,
“a double room”). A suitable word-alignment would aligruha’ with “ @, “ habitaciéri with “ room’
and ‘dobl€’ with “ doubl€. From this alignment, a possible string could lfarfa,a) (habitacion,room)
(doble,double) However, this would imply a reordering of the wordddublé and “roon, that is
difficult to model in the finite-state framework. The key idsao avoid a reordering, for example,
the alignment can be used to produce a left-to-right biladgegmentation into two segmentsuifé&’

“a@”) and (“habitacion doble, “double roort). This segmentation directly yields the single string
and the corresponding extended alphabet required by GIAThe first version of GIATI, empty target
segments were allowed, in this case, a simpler segmentatimm has proved equivalently adequate in
practice is: {una,a) (habitacion,-) (doble,double rogin)

One of the shortcomings of GIATI comes from the fact that fetigally it needs'external” statis-
tical techniques to preprocess the training pairs. Acgutie bilingual segmentation of first step in the
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5.3. Statistical GIATI (SGIATI)

original GIATI technique was based on statistical aligntmandels [Brown et al., 1992]. The proba-
bilities associated with the transitions of a SFST learrthia way are just those of the corresponding
stochastic finite-state grammar inferredsiiep 2 Therefore, an interesting feature of GIATI was that
it can readily make use of all the smoothing techniques knfmvn-grams language models (see Sec-
tion 1.2 Chapter 1) and for stochastic finite-state gramrfidosens et al., 2002]. Note, however, that
GIATI extended alphabets are typically very large and tai hardens the data-sparseness problems.

Clearly, for a given translation pair, there are many pdediilingual segmentations; but the orig-
inal version of GIATI did not take advantage of this fact,rét®y making less profit from the (always
scarce) training data. In the next section, a new GIATI werss introduced [Andrés-Ferrer et al.,
2008]. This version is more explicitly based on statistestimation procedures and would not suffer
from this shortcoming. These procedures require an ifg&iibn that can be random or based on the
above segmentation obtained using statistical alignmewlefs. Another interesting feature of the new
GIATI version is that thestep 2is embedded in the estimation procedure itself.

5.3 Statistical GIATI (SGIATI)

Our new, statistical version of GIATI, SGIATI [Andrés-Ferret al., 2008], is based on a rather simple
probabilistic model for segment-based (phrase-baseti}tital machine translation. Given a transla-
tion pair, (z, y), we assume that both sentences can be segmented into a certger of segments,
sayC, which are monotonically aligned one-to-one, to produeedésired segment-based translation
of  into y. This is illustrated in the example shown in Figure 5.1, vetthiree possible segmentations
of a given pair are considered. Note that we gisad< to define the precise limits of the segments in
x andy, respectively.

por favor s stbanos nuestros bultos a la habitacion .
please send up our luggage to the room
por favor , sGibanos nuestros bultos a la habitacion .
please , send up our luggage to the room .
por favor , subanos nuestros bultos a la habitacion .
please , send up our luggage to the room .

Figure 5.1: Three possible segmentations of the translation ppor "favor

, Slbanos nuestros bultos a la habitacién . " and "please ,
send up our luggage to the room . ”. The used segmentations arg:=
(0,2,3,4,6,7,8,9,10) ands = (0,1,2,4,6,7,8,9,10) for the first segmentation;
i = (0,3,6,8,10) andi = (0, 2,6, 8,10) for the second; ang = (0, 6, 8,10) and
i = (0,2, 5, 10) for the third.

Uncovering théniddenrandom variables for the number of segmefitsand those for the segmen-
tations ofz andy, 7 ands respectively; the probability of observing a given tratiskapair,p, (z, y),

is written as follows
pr(m7'y) = ZZpr(w,y,j,i,C) ) (58)
C j,i
wherej and< range over the set of all possible segmentations ahdy
j:(jo,jl,jQ,...,jc), 7 < Ji+1 Withle{l,...,Cfl} and jC:J,j():O (59)
i:(io,i1,i2,...,ic), 1 < 9141 WithlE{l,...,C—l} and ic =1,i0=0 (5.10)

JAF-DSIC-UPV 109



Chapter 5. Statistical stochastic finite state transducers

with J = |z| andI = |y|. For brevity, we usg’, to denote the sub-vector gffrom positionk to [;
i'e'lji; = (jkajk+17 e 7.jl—1?jl)'

Our probabilistic model fo(x, y), completedwith j, ¢ and C, is decomposed left-to-right as
follows

C
pT(w7yaj7iac) = HpT(w(C%y(c)?jMiC'H(ci 1))pr($a$7C|H(C)) ’ (511)
c=1
where we have used the notati@iic) for c-th segment ofe, i.e.,x?i_lﬂ; y(c) is similarly used for
y; andH (c — 1) denotes the history af — 1 previous segments,
H(c—1) = {e@5 )96 )55 i) (5.12)
wherex (j571) stands for the — 1 segmentscjﬁéﬂ, w§f+1, AU m;Z:;H and similarly doegy(i5™1);

and whereH (0) is defined as the sure event and, henegx(1),y(1), 71,71 | H(0)) is equal to
pr(z(1),y(1), j1,41); and, finally, the length distributiop,.($,$,C | H(C)) = 0 if C differs from
the length ofj or 3.

Note thatH (¢ — 1) can be approximated with themore recent segmentations, similarlytgram
language modelling. For simplicity, the probability of therrent segment given the history of the 1
previous segments is approximated using a first-order M@kcassumptionr{ = 2). That is to say,

H(c—1)m H*(c=1) = {(x}° 1), (i 1) Je-2 e 1y ie2,ic 1} . (5.13)

In this way, our complete probabilistic model in Eq. (5.14 gpproximated as follows

C
pr(®,y,5,3,C) i= [ [ pr(a(c), y(), jesic | H*(c=1))p: (8, 8| H*(C)) . (5.14)

The model in Eq. (5.14) is still difficult to learn due to thelimsion of absolute segment boundaries
while computing the probability of the current segment.téasl, to ease parameter estimation, each
absolute boundary is rewritten relative to its previousrutary,

C

pr(@,y,5,1,C) = [ [ pr(@(0), y(c), e — Ge1,ic —ic1 | H*(c=1))pr($, 8| H*(C))  (5.15)
C

=[I p(z(c).y(c)| H*(c=1)) p($,8| H*(C)) , (5.16)

where, in Eq. (5.16), we assume that segment probabilitees@l when the relative boundarigs —
je—1 andi. — i.—1 disagree with their corresponding segment lengths; andeviiem Eq. (5.15)
to Eq. (5.16) we have changed the probability distributipps - - ) by the model parametegs(- - - ).
Therefore, our final model is parametrised with the follogvparameter set:

© = {p(u,v),p(u,v |u',v') |Vu,u' € X", v,v" €Y'} |, (5.17)

where allu’, v’ verify the following normalisation property

Z plu,v|u v)=1 . (5.18)

ueX*,veY*
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5.4. Useful recurrences

For clarity shake, consider as an examples= z1x2x3 andy = y1y2. Using Eq. (5.8), the joint
probability of observinge andy can be written as follows

pr(z,y)=pr(z,y,(0,3),(0,2),1) + pr(x,y,(0,1,3),(0,1,2),2) + pr(x,y,(0,2,3),(0,1,2),2)

(5.19)
According to Egs. (5.14) and (5.15), the probabilities ia tlght-hand side of Eq. (5.19) are approxi-
mated by

pr(@,y,(0,3),(0,2), 1) := pr(@1,y7,3,2)p: (8, 8 21, 1) (5.20)
pr(z,y,(0,1,3),(0,1,2),2) := pr(21,y1, 1, )pr (23, y2, 2, 1| 21, 41)p- (8, $ | 3, y2) (5.21)
pr(x,y,(0,2,3),(0,1,2),2) := pr(x1,y1, 2, Dp, (3,92, 1, 1| @1, 51)pr(8,$ | 23,52) . (5.22)

From Egs. (5.19)—(5.22), and applying Eq. (5.16), the jpmabability of observinge andy is written

in terms of model parameters

pr(z,y) ==p(xi,y}) p($,$ | =7, y7)
+p(a1,y1) p(®3,y2 |21, 91) p(8,$ | @3, 2) (5.23)
+p(@i,y1) p(rs,y2 | %, 51) P8, $ | 23, 2)

Note that the source and target segmentations in Egs. {§5L2®) do not explicitly appear in Eq. (5.23),
though they are implicitly taken into account since theydguthe probability decompositions in Egs. (5.20)—
(5.22).

5.4 Useful recurrences

Given a bilingual pairz,y) and a parameter sé the joint probabilityp, (x, y) is efficiently com-
puted by means of any of the following two recurrences: ftrevard-like and backward-likerecur-
rences.

Roughly speaking, the forward recursion efficiently conaguthe probability of a given prefix.
More precisely, given the source boundarie¢ and the target boundaries’, m; the forward recur-
rence is defined as the probability of the prefixandy™ to occur knowing that the previous segment
ended at positiong andm’,

A im/m = al/lm’m(way) :pa(wllay;n7l,7m/) ) (524)

where0 < I’ <l < Jand0 <m’ <m < I.
The forward-like recursion is efficiently computed by thédwing recursive equation

1 !'=l=m=m'=0

p(zh,y1") =m'=0,
QU i/ m = p 17/11 [>0,m>0

1 om
i 4 ! :
Z Z QU ! ! p(wl/+1,y$,+1 |wl”+17y$”+l) Othel’Wlse
1"=0m’' =0
(5.25)

The backward counterpart efficiently computes the proligluf a given suffix. Specifically, given
the source boundarig§, I’ and the target boundaries”, m’ the forward recurrence is defined as the
probability of the suffixz;,, , andy! ., , given that the previous segments WezrﬁéJr1 andyﬁ:/ﬂ, in
other words

J I 4 !
ﬁl”l’m”m’ = ﬁl”l’m”m’(mv y) = p0($l’+17ym/+1 |wl”+17 yZ”-i,-l) ’ (526)
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where0 < " <’ < Jand0 <m” <m/ < I.
Again, the backward-like recursion is efficiently computsdthe application of the following re-
cursive equation

1 U'=l=Jm=m'=1
UV'=Jdm =1
J I 5 )
p $7 $ Lprr 41y Y
Byt amitms = 8,8l +) "<Jgm’ <I
J I , ,
ST D Butmm D@1, Yn iy | T,y ,)  Otherwise
I='4+1m=m'+1
(5.27)
Using the forward-like recurrence, the joint probability(x, y) is computed as follows
Po ((IT, y) = Z qlgmI - (528)
Iym

Alternatively, the joint probability can also be computeithiahe backward recursion as follows

Po(x,y) = Boooo . (5.29)

The total time complexity required to compute both recure=nisO(.JI®), and two matrices
of size O(J*I?) are needed to store them. It is important to highlight thavéf use a Markovian
approximation of orden, higher thar2, then the recurrence tables will ne&dJ" ™) elements and a
time complexity ofO(J" 1 *1).

The probability of using a given source and target segmesitipnsi”,!’,l andm”,m’, m, re-
spectively, is defined as follows

1 l/ ’
QUryrm! m! p(wl’-i,-h yzurl | xl”+17 yﬁ”«kl)ﬁl’lm’m
Pe(a% y)

YU Im! " m!m = ) (530)
witho <" <l' <l < Jand0 <m” <m’ <m <.

Finally, we will henceforth use the notation,; i/ ;m/'m/m 10 refer toy//im/m/m for the n-th
outcome of a given collection of training translation pdits1,vy,), ..., (x~,yy)}. This notation is
also expanded to the corresponding forwarg ;.,./..., and backward,,;:;.../,,, recurrences.

5.5 Maximum likelihood estimation of SGIATI

Since our model is based on a hidden bilingual segmentatiaable, it is necessary to use some ap-
proximate inference algorithm. Specifically, we use the Edathm introduced in Section 1.1.4 in or-
der to estimate the parameters in Eq. (5.17) w.r.t. a cédlect training translation pair§(z1, v, ) }A—; .
The (incomplete)og-likelihood function is given by

N
LLO) = > 1og ) > Dg(®n,Yprdnin: Cn) (5.31)
n=1 Cn Jpsin
with
Chn
Po(Tns Yy G ins Cn) = [ [ P(@n (), 9, (0) | Hi(c = 1) p($,$| Ha(Cn)) - (5.32)
c=1
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However, the EM algorithm maximisdsL(-) by iteratively maximising a variational function
L(q, @) as reviewed in Section 1.1.4 Chapter 1. Kt~ be a guess of the optimal parameters
obtained from previous iterations. Then, in the E-steptadl sufficient statistics needed to compute
a* V(G n,in) = Pete—1) (Jn,in | Tn,y,,) are calculated. Specifically, we compute the probabilities
Vo' ' imrrmim, forallo < 1 <1/ <1 < Jand0 < m” < m’ < m < I. Note that in order to
efficiently compute and store,;//;/;,./mm, DOth recurrences,,; ;p/m and By im/m are computed
and stored.

In the M-step, the parameter $¥{*) that maximises_(q*’, 8) are computed as follows

NED (u, v; 4’ v)

(k)(
Do NETD (0" 0 v")

(5.33)

p 'U/,’U|'U//,'U/):

where we have used the definition

N(k_l)(uv'l’;u/v'ul):z Z Yl U Im!" m’'m 6l”l’lm”m’m(wn7ynvulvuvvlvv) )
oo
m’<m’'<m
which is the expected value of the occurrences of the efent; w’, v’) in the training data. The
eXpressiondy i jm mtm(Tn, Y,,, v’ w, v', v) is a predicate that is if the segment boundarié§, I, I,
andm”,m’, m, and the source and target phrases are compatible, i.e.,

7 ’
1 (I?l// =u’ (I?l/ =u, Yy, =0 m, =v
U'+1 s +1 7ym —+1 7ym —+1 (534)

61”[’1 1o ! T,y 'LLl u 'Ul v) = .
m mm( IR-X) U, U, ) 0 otherwise

In order to implement the re-estimation Eq. (5.33), it isyoneeded to compute the forward
i imem and backwards,,; ;.. . for all samples and for all values éfm, !’ andm’. Afterwards,
the expected counts given by, 1m mm, are efficiently computed using the previously computed
forward and backward recursions.

As we have discussed in Section 1.1.3, the maximum liketirestimation technique tends to un-
derestimate the probability of the unseen events. The Ebtiglign is not an exception, and, therefore,
we need to resort to smoothing techniques. Since the SG&&HItiques is highly inspired in-gram
models, it seems sensible to extend the leaving-one-oubthing estimation techniques discussed in
Chapter 3. Therefore, we use the following backing-off sthivg

_ ;o v, ) (1 - ¢(u’,v")) if (u,v) € V(v v')
p(u,v]w,v) = {pbo(u',v’)¢(u’,v’) if (u,v) €V, v) (5-35)

whereV(u’,v’) € X* x Y* is the set of segments that have a not-null probability gisenhis-
tory (v, v"); p,,(u’,v") is a probability distribution defined over all unseen segiakons pairs, i.e.
(u,v) € V(u',v"); and, finally,¢(u’, v") stands for the probability mass discounted from the seen
events that occur after the previous histéwy, v').

Since in this model we are using fractional occurrence (S)Nrﬁf“*”(u, v;u',v"), instead of ac-
tual counts; it is not possible to apply leaving-one-outhitain a closed form solution to the discounted
probability massp(u’,v’) as it is done im-gram language models [Ney et al., 1997]. In practice, we
have fixed it to a constant valugu’, v’) = e.

5.6 Preliminary experiments

In this section, some preliminary experiments were cardetto asses the formal derivation of the
current GIATI version, SGIATI, and to compare it with the yius heuristic version of GIATI.
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Test Set Train Set
Spanish English Spanish English

sentences 2K 10K
avg. length 12.7 12.6 12.9 13.0
vocabulary 611 468 686 513
singletons 63 49 8 10
running words 35.0K 35.6K 97.2K 99.2K
perplexities §-gram) - - 5.4 3.8

Table 5.1: Basic statistics of the Spanish-English ERANS-1 task, wheresingletons
stands for the words occurring once, amehning wordsdenotes the total amount of
word occurrences.

WER BLEU SER
Order (v) 1 2 1 2 1 2
GIATI 20.4| 83| 63.2| 87.3| 80.4| 44.2
SGIATI 13.0| 7.7| 77.4| 88.5| 65.3| 41.1
Moses 11.7 88.3 42.1

Table 5.2: Results obtained with thelET RANS-1 task for different algorithms: SGIATI
(the EM version), and GIATI, which corresponds to the modghed by counting the
occurrences of each segment and then re-normalising byithekall counts.

The experiments were carried out using the Spanish-EnglishRANS-I task [Amengual et al.,
2000]. The Spanish-English sentence pairs correspondn@imio-human communication situations
at the front-desk of a hotel which were semi-automaticalbdpced using a small seed corpus compiled
from travel guides booklets. The corpus comprises severabihs andt persons each of which was
in charge of a (non-disjoint) subset of sub-domains. Théchstatistics of this corpus are shown in
Table 5.1.

Since the size of recurrence tables grow exponentially thighlength of the history size, we only
report results for the bigram and unigram case. Moreoveheérbigram case we used the smoothing
detailed in Eq. (5.35).

Table 5.2 summarises some results. The GIATI denotes thelrbthined by counting the occur-
rences of each segment and then re-normalising by the sulcofiats, i.e. previous GIATI estimation
technique. The SGIATI stands for the training algorithmsered in this chapter. Finallylosesstands
for the Moses system [Koehn et al., 2007] that were trainetbpaing the MERT in a validation set.
We have fixed the maximum phrase lengthvtevords for all the systems. The proposed statistical es-
timation provides an increase of performance with respette GIATI version for both history sizes.
The high increase obtained for the unigram model is due tdabiethat there is only one state and
the probability mass can be readjusted properly. This tieaaton meaningfully differs from GIATI
parameters. In the bigram case, the average of segmentpgaistate is oveb, which means that on
average the EM can only redistribute the probability maserajrfew segments (oveé) for a given
previous history. Both GIATI algorithms are highly depentien the quality of the selected segments
used to initialise the algorithm.
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5.7 Conclusions

In this chapter, we have proposed a new statistical estimdtr stochastic finite-state transducers.
Specifically, a segmental extension to these models olataiize GIATI methodology have been de-
scribed. This statistical framework is more independetit waspect to alignment methods. The results
reported show that the new technique increases the systdormance with respect to (the conven-
tional) GIATI in a small translation task.

However, the proposed statistical approach presents teat gisadvantages: the complexity and
the memory requirements. These requirements, which arergiea by the recurrences, make the
generalisation of this technique with complex data and Vaittger histories unfeasible. For example,
the algorithm needs abo@GB in order to store the recurrence tables for trigrams antesees no
longer thanl00 words. If a maximum memory is given for training the SGIAT| ded, then the longer
then of the Markovian approximation is, the shorter the sentet@ve to be. Additionally, we have
observed that the improvements obtained using the prof®&4T| model are not larger enough for
justifying the memory and time complexity that this modejuizes.

Another great disadvantage is that, unlike the GIATI mo@zidacuberta et al., 2005], the SGIATI
model cannot directly take profit from the-gram smoothing techniques based on leaving-one-out.
Therefore, we probably loose more performance than whatweyain by using SGIATI.

Finally, since the SGIATI is a joint model, (x, y), we are modelling more than what we need,
i.e., a conditional probability model, (y | ). In a joint model, not only the translation correspondence
between words is learnt but also their occurrence frequertoy problem generated by this fact can be
easily understood with the following example. We assumeleahave observed a bilingual pair just
once, but that the translation of this pair is unique. Fotainse, we might have observed “My room
is 217" and its translation “Mi habitacion es la 217". We het assume that the numbers “217” have
only occurred in this outcome. From this example it is cléat & good conditional model will assign
a high probability to the everf17|217), i.e.,p(217| 217) ~ 1. However, since the eve(217,217),
has only occurred once, a joint model will give it a very snpafibability, i.e.,p(217]217) = 0. This
small probability accounts for two facts: that the p@t7, 217) is a good translation phrase or/and that
the pair(217, 217) is not frequent; and there is no way to differentiate betwem. In the following
chapter, we propose a conditional model based on this SGiwTel that fixes some of the deficiencies
of this model.
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Chapter

A phrase-based hidden Markov model for monotone

machine translation

“ The existing scientific concepts cover always only a verigdipart of reality, and the other part
that has not yet been understood is infinite. W. HEISENBERG
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Chapter 6. A phrase-based hidden Markov model for monotahine translation

6.1 Introduction

As previously discussed, the machine translation prob¢esteited as the problem of translatingpairce
(input) sentenceg, into atarget (output)sentencey. Typically, at least one inverse translation model
is needed to approximate the probability(x | y) in Eq. (1.102).

In the Chapter 1, we discussed that the first proposed matielso-calledBM translation mod-
els [Brown et al., 1993], tackled the problem with word-levettibnaries plus alignments between
words. However, current systems model the inverse comditiprobability usingphrase dictionaries
This phrase-based methodology stores specific sequentagef words target phrasg into which a
sequence of source wordsolurce phrasgis translated. A key concept of this approach is the proeedu
through which these phrase pairs are inferred.

A popular, phrase-based technique consists in using thediBMment models [Brown et al., 1993]
to obtain a symmetrised alignment matrix from whibherentphrases are extracted (see Section 1.3
Chapter 1). Then, an approximate and heuristically matvatount normalisation is carried out in
order to obtain a conditional phrase dictionary [Koehn gt24103].

Alternatively, some approaches have been described iratiiddw years in which phrase dictio-
naries are statistically inferred. In particular, the SGIAodel presented in Chapter 5 defines a joint
model with its algorithm for estimating phrase-based pbiliges. Another joint probability model for
phrase-based estimation was proposed in [Marcu and WoB0g],2@owever, this model is a particular
case of SGIATI in which the previous history is ignored-£ 1) and where the monotonicity constraint
has been removed. In the work by Marcu and Wong [2002], akipts segmentations are extracted
using the EM algorithm [Dempster et al., 1977], without angtrix alignment constraint, in contrast
to the approach followed in Och and Ney [2004]. Based on thuigkyBirch et al. [2006], constrained
the EM to only consider phrases which agree with the aligrimmetrix, thus reducing the size of the
phrase dictionaries (or tables).

A drawback of the above phrase-based models is that theyoareonditional, but joint models
that need to be renormalised in order to make them conditiétecall that in the previous Chapter 5,
we outlined some of the problems of using a joint model. |is thapter, however, we introduce a
direct, conditional phrase-based approach for monotameskation [Andrés-Ferrer and Juan, 2007].
Monotonicity allows us to derive a relatively simple stttial model which is properly described as a
phrase-based hidden Markov model.

In the remaining of this chapter, we first introduce our made$ection 6.2, and then their asso-
ciated training recurrences in Section 6.3. The decodiggreihm is explained in the following Sec-
tion 6.4. EM-based maximum likelihood estimation of the lqghrameters is described in Section 6.5.
Empirical results are reported in Section 6.6 and then sanelading remarks are given.

6.2 Phrase-based hidden Markov model

Let z andy be a pair of source and target sentences of known lengémd 7. In order to define our
phrase-based hidden Markov model fgr(x | y, J), it is first convenient to introduce our definition of
monotone segmentation, both for the monolingual and hifihgases.

A monotone, monolingual segmentationaofnto a given number of segmentg, is any sequence
of indexesj = (jo, ji,...,j7) such thatl = jo < j1 < --- < jr = J. Similarly, a monotone,
segmentation of into 7' segments is any sequence of indexes (ig,%1,...,4r) such thatl =
o < i1 < --- < ir = I. Given two monotone, monolingual segmentationsccdndy into T’
segmentsy ands, their associatediilingual segmentation ok andy is defined as = s1s2- - st
with s¢ = (je—1 + 1,J¢,9—1 + 1,4:), ¢ = 1,...,T. Reciprocally, given a monotondjlingual
segmentation ot andy, we can easily extract their associated monolingual copatts.
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6.2. Phrase-based hidden Markov model

Figure 6.1 shows an example in which all possible bilingeainsentations foJ = 4 andl = 5
are represented as paths in a directed, multi-stage graph.initial stage of the graph has a single,
artificial node labelled as "init", which is only includedpoint to the initial segments of all the possible
segmentations. There até of such initial segments, vertically aligned on the firsgsta Similarly,
there arel5, 3 and 13 segments aligned on the second, third and final stages,ctaghe The total
number of segments is thé. There is a uniqgue segmentation of unit length; s; = (1415), which
is represented by the rightmost path, but therel@el8 and4 segmentations of length, 3 and4,
respectively; comprising5 segmentations in total. As empty segments are not allovegpmentation
lengths range from one to the length of the shortest senteNote that segments on the first stage
can only appear in the first position of a segmentation. Adegments on the second and final stages
can only appear on analogous positions in a segmentationev#w, those three on the third stage (i.e.
(3334), (3333) and(3344)) may appear in the second or third positions, although theynat end any
segmentation. For instancg3334) appears in the second position (@1212), (3334), (4455)) and
also in the third position of(1111), (2222), (3334), (4455)).

Note that we are using the terms segment and segmentatipfoopbsitions in the input and output
sentences. We reserve the tephrasefor actual portions of the given sentences. For instanae, th
bilingual segmentatiof(1212), (3334), (4455)) of 1 andy? results in the bilingual phrasés?, y?),
(x3,y3) and (24, ys).

In what follows, we will writex(s:) to denote the portion of delimited by (the input part of)
segment;; more generallyz(st,) will denote the concatenatiae(sy )« (sy41) - - - (s:). Analogous
notation will be used foy, i.e.,y(s:) andy(s!).

Now, we can define our inverse translation modelfofz | y) as a full exploration of all bilingual
segmentations et andy,

min(J,I)

pr(x|y) = p(x|y,J) Z > pr(@,s, Ty, J) (6.)

where the second sum is defined over all possible bilinguahsatations of lengtii’; and as most of
the literature in SMT, although we do not explicitly the degence on the source sentence lenftht
is assumed to be known.

To computep,(x, s, T' |y, J) in (6.1), we use the following decomposition

pr(m,s,T|y,J) :pT(T|y7J)pT(S|y7T7 J)pT(m|y737T7 J) ’

wherep, (s |y, T, J) is modelled as a first-order Markovian process

( |y7T J Hpr 5t|5t 1 s (62)

with so :="init", i.e. the initial state used to model the probabilit§ each state to be the first in the
sequence of states; apd(x | y, s, T, J) is modelled as composed of independent bilingual phrases

pr(z|y,s,T,J) Hpr x(se) |y(se),5) - (6.3)

Clearly, the above modelling assumptions lead to a phraseebHMM-like model. Its set of states is
that of all possible bilingual segments, while its set ohsitions includes all pair&;’, q) in which the
state (segment) is a successor af , ¢ € Succ(q’). For each state, we will have a different emission
probability for each target segmemtq).
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Gy
Gaed [ G2
V)

Figure 6.1: Directed, multi-stage graph representing all possibladlal segmentations for an input sentence of ledgthd an output
sentence of length. Each node defines a different segment; the first two digith@fode label are the segment limits in the input
sentence, while the other two digits correspond to the duggotence.
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6.3. Forward and backward probabilities

For efficiency and simplicity, we will further assume in tlsisapter that both initial and transition
state probabilities are uniformly distributed; hence,dachg andq’, including “init” for ¢/,

w=—— if ¢ € Succ(q’)
|Succ(q’)| 6.4
prlald) = {O otherwise (64)
Also, T is assumed to be uniformly distributed,
1
pr(Ty,J) = (1) (6.5)

and the phrase translation probabilities are assumed tif®elsn a single, state-independent table

Pr(@(se) |Y(se), s¢) == p(®(se) [y(se))

Using the above assumptions, our model (6.1) can be rewagdollows

1 p(x(st) [y(st))
Po(®@ |y, ) = T Z H ISucc(si_1)| (6.6)

|s \<m1n(J I)
The vector of parameters governing this model only incluaisble of phrase translation probabilities,

© = {p(u|v) : (u,v) bilingual phrasé

6.3 Forward and backward probabilities

As usual with HMMs (see Section 1.1.5 Chapter 1), we will dgghere the so-callddrward and
backwardprobabilities for efficient computation of the model protiitibs, as given in Eq. (6.6). To fix
ideas, considex andy to be two arbitrary sentences for which we have to computg6). Given

a segmentation length and positiéh,and¢, and a state, the forward probability is defined as the
following prefix joint probability

OéZ:Z = Pe(m(si)vst :q|y7T) )

wheres! is any partial segmentation, from positiohso ¢, such thats; = g. This probability can be
recursively computed by dynamic programming, using theatedforward recurrence,

afg= Y. alagr@ld)pE@y@) = > ol RE@DIYE) - 7

’
q’ : g€Succ(q’) ¢’ : q€Suce(q’) |Succ(q )|

with the base casa;fq = 1fort = 0 andg ="init"; 0 otherwise. Note that in Eq. (6.7), we have
decomposed the cas€, in terms of a smaller case; , .

The backward probability also depends on a given segmentigingth7” and positiort; and a state
q. Itis defined as the following suffix probability

Biq ==Po(@(siy1) |y, T\t =q)

wheres?, ; is any partial segmentation, from positianisi to 7', that might follow the state in position
t. As before, it can be efficiently computed by dynamic prograng, using a “reverse” version of the
forward recurrence calldolckward recurrence,

Bla= D Bhagp(dlop@(d)|y@)= D o7, REDNUE) g g

q’ €Succ(q) q’ €Succ(q) |Succ(q)|
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with the base casﬁgq = 1 for any terminal stateq = (-, 1,-,J) and anyt; and0 otherwise. Note
that similarly to the forward recurrence, in Eq. (6.8), weddecomposed the caﬁé} in terms of the
simpler case3/, , .

Finally, Eq. (6.6) can be computed using (6.7) as

1 T
Po(®|Y) = s T
o(T| mll’l(uL[);q:(;‘,J) "
or using (6.8) as

Po(z|y) = m > Banie
’ T

An efficient implementation of both recurrences requires tables ofO(7.J min(J, I')) values and
a computational complexity ad(1%.J% min(J, I)).

6.4 Decoding and Viterbi recurrence

The Viterbi recursion, efficiently computes the most liketgte sequence that can emit a given output
sequence. We introduce this recursion here as a prelude teetirch recurrence. This recursion is
defined as the most likely state sequence of lenditat ends in the staig i.e.

gt = max {py(z(s1),si|y)} , (6.9)

t . —
s]:st=q

note that the last statg is required to bey.
The Viterbi recursion in Eq. (6.9) is efficiently computedtbg following recurrence

by = max { pla| ¢) p(e(@)|y(@) | max  (pola(si™) sty )} L (610

s tse_1=q'

where by applying the Viterbi's definition yields

by = max{p(a ) p(e (o) @)ty 1) = max {HEDWD)5, L e

Finally, the probability of the Viterbi’s segmentation iwen by

3 = o - 6.12
Po(8,@[y) = max ~dgr (6.12)

As usually, tracing back the decisions made during the miagaition process yields the maximum
segmentations.

The Viterbi recursion shares the same asymptotic requinésriban that of the forward and back-
ward recursions.

6.4.1 The decoding process

The decoding process is stated as the problem of finding ti® likely target sentencg for given a
source sentence. According to our model the decoding problem is stated as

Y = argmax{py(z|y) p(y)} - (6.13)
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During the decoding process, an additional problem witpeesto the Viterbi recursion must be
kept in mind, that is to say, the target sentegds unknown. Therefore, we want to find the following
maximum probability

s

min{I,J}
pﬂ(wvlg) Iman{ Z Zpﬂ(m78?7T|y) p(y)} ) (614)
T=1

since the fundamental equation of machine translatiowdioired in Eq. (1.102) Chapter 1 requires a
language model.

In order to solve Eqg. (6.14) it is usually assumed a Viteiltd-bpproach approximating each sum
by their maximum value as follows,

b =po(®,) = max {py(z,s{,T|y) p(y)} (6.15)
y,sT,

where recall thay stands for the target sentence that maximises this pratyabil
Provided that we only use-gram language models in this thesis, we further assumehadan-
guage model probability of a given target phragg(s:) | y(s:~')) only depends on thé: — 1)-most
recent words, i.e.
p(y(se) [y(si71) == ply(se) | suf (y(si) (6.16)

wheresuf ,,_1 (- - - ) stands for thén — 1)-most recent words.
In order to perform this maximisation, we define a decodiroginence

oan(@®) = max, {po(x(s1), 51 |y(s1)) p(y(s1)} (6.17)
»81,Y(81
st=aq,suf | (y(s}))=v
where bysuf |, (y(s1)) = v we denote the fact that the suffixgfs}) must be equal te. We further
assume that b = * then this constraint is ignored, i.e.,
0gx(®) = 0q(x) = max : {po(z(s1),s1]y(s1)) p(y(si))} - (6.18)

t t
t,s1,y(s]
st=q

Note thato,,., can be recursively expressed in terms of a more basic cateelifdas follows
Ogw = max {p(q1qd) p(z(q) |v") p(v'|h)og i} (6.19)
q,v,
suf |, (v/h)=v,|v’h|>|v|

where note that’ plays the role ofy(s:) andgq the role ofs;; and wherep(q | ¢’) is uniformly dis-
tributed as shown in Eq. (6.4).

In this way the probability of the desired target string isnputed using the search recurrence as
follows

§) = g 2
Po(®,9) = max{ max {og.}} (6.20)

As usually, tracing back the decisions made during the renge computation provides the optimal
solution defined in Eq. (6.15).

However, although the recursian,., speeds up the search problem, it is still a hard problem. For
this reason, we still need to perform an approximate degpidinvhich we use a maximum number of
hypothesis for each state say M, and also a beam pruning [Wang and Waibel, 1997, 1998]. Bhat i
to say, instead of using Eq. (6.19), we use the following axipnated version

Tl = m%xh {p(qlq") p(z(g) |v') p(v' |R) oy n} (6.21)
q,v,
suf‘v‘(v/h)zv,|v/h|2\v\
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wherembx stands for an approximate versioniafix where we have applied several heuristics, such
as beam search or histogram pruning.

6.5 Maximum likelihood estimation

As discussed in section 6.2, the unknown vector of parameitiour phrase-based HMM model
only includes a table of phrase translation probabilitiese(Eq. (6.2)). We will describe here its
EM-based maximum likelihood estimation with respect to Hection of training translation pairs

{(2171,'y1), sy (vayN)}‘
The log-likelihood function o8 is:

LL(0) = logpr(xa|y,,)

s
7 1 p(@n(st) [Yn(st))
N ;bg min(Jyn, I) Z H |Succ —1)] 6.22)

s =
|s|<min(Jp,In)

Remember from Section 1.1.4 in Chapter 1, that the EM algworinaximised.L(-) by iteratively
maximising a variational functiof(q, 8) through the application of two basic steps in each iteration
the E(xpectation) step and the M(aximisation) step.

Let@*~V be a guess of the optimal parameters obtained from previenagions; then, in this case,
the E step requires the computation, for each fajr, y,,), of the sample versions of (6.7) and (6.8),
as well as the following joint probability

T /
gntqlq = Pg(k—1) (317717515—1 =4q,St :q|yn7T) ’

which can be efficiently computed as

T T
T _ Qpt_1q/ p(w(Q) | y(q)) ﬁntq
Sna'a = = g [Sucel@)] (6.23)

On the other hand, the M step re-estimates the table of pinassation probabilities,

NE=D (y v)
(k) = ’ 24
p " (ulv) S NED(u/ v) (6.24)
whereN *=Y (u, v) is the expected number of occurrences of the the(paip); i.e
(k—1) _
NE (y, v) _me A Z;fnt” ng(w,v) (6.25)
n q q

With 6,4(u, v) defined ad if u = x,(¢) andv = y,,(g); 0 otherwise.

6.6 Experiments
6.6.1 Corpora

The proposed phrase-based hidden Markov model was asseswealdifferent corpora: the ET RANS-
| dataset [Amengual et al., 2000] and the Eurof#x|-The former dataset compris&2 000 bilingual
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EUTRANS-I Train Set Test Set
Spanish English Spanish  English

sentences 10K 2K

avg. length 12.9 13.0 12.7 12.6

vocabulary 686 513 611 468

running words 97.2K 99.2K 35.0K 35.6K

perplexities §-gram) - - 5.4 3.8

Table 6.1: Basic statistics of the Spanish-EnglisluERANS-I task, whererunning
wordsdenotes the total amount of word occurrences.

EUROPARL-10 Train set Test set
English Spanish English Spanish

sentences 76,996 5,000

avg. length 7.01 7.0 7.2 7.0

voc. size 16K 22K 4.1K 5.2K

running words 546K 540K 35.8K  3.91M

perplexities §-gram) - - 77.6 86.8

Table 6.2: Basic statistics of the BROPARL-10 corpus whereunning wordsdenotes
the total amount of word occurrences.

sentence pairs from a limited-domain Spanish-English mactianslation application for human-to-
human communication situations in the front-desk of a hdtéias also been used in previous Chap-
ter 5. The latter comprises all the sentences of the En§jsmish Europarl-v2 [Koehn, 2005] with
length equal or less thar). We have randomly select& sentences for testing. Some basic statistics
are shown in Table 6.1 and 6.2.

6.6.2 Results

Two basic experiments were carried out with the Eutranssbus In the first experiment, we used
Moses [Koehn et al., 2007] to obtain a baseline of the corgian inverse phrased-based probabil-
ity model and at-gram language model, i.e. without MERT training, as disedsin Section 6.4. For
this experiment, we have used a maximum phrase length wbrds and we have used only the inverse
translation model and the language model, i.e. we have mftrpethe MERT training. For evalu-
ating the performance we userd error rate (WER) andbilingual evaluation understud¢BLEU)
measures. We obtained a WER©Y% and a BLEU score 089.1%. These are relatively good re-
sults since, recall that in general low values of WER and hgles of BLEU are a clear indication
of high quality translations. Additionally, we comparedstiMoses baseline with the proposed phrase-
based hidden Markov model to better train the phrase trmstable. We proceeded as in the baseline
model although, now, the phrase table obtained before weabtosnitialise the EM algorithm proposed
in Section 6.5 for parameter training in accordance wittedon in Eq. (6.22). In this case, we obtained
a WER 0of7.8% and BLEU 0f88.5%.

Obviously, the result obtained with our model was not bettan that obtained with the baseline
approach. In analysing the phrase table provided by our meddound that the EM algorithm prefers
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long to short phrases; that is, given a target phrase, longeghrases are favoured with higher prob-
abilities. To empirically check this hypothesis, we repéathe two basic experiments described above
by first discarding training phrases longer that a given maxi threshold. For the most restrictive
thresholds, however, phrases longer than the threshokel megrdiscarded so as to ensure full coverage
of the training data. The results are shown in Figure 6.2rim$eof BLEU.

90

BLEU (%)
89 |

PHMM
88

87 +
baseline
86

85

ga Lo . maximum phrase length
12 4 8 15

Figure 6.2: BLEU (%) as a function of the maximum phrase length thresholdthe
baseline approach and our phrase-based HMM (PHMM).

The results in Figure 6.2 confirm our hypothesis on the bitsnim phrases in our model. A possible
solution to this problem is to refine our phrase-based HMMhwitlusion of length models to penalise
long phrases.

In the case of the Europarl-10 corpus, we carried out onergrpat similar to the first experiment
with the Eutrans-I corpus. In this case we fixed the phrasgtieto 7. The Moses baseline scored
50.0% points of WER and2.7% of BLEU; whilst the proposed model scoréd.6% points of WER
and26.7% of BLEU; which clearly worsens the baseline. It seems thatrikgative result is also due
to the overfitting tendency of the MLE, since we did not prapasmoothing model.

6.7 Conclusions

A phrase-based hidden Markov model has been proposed fstisel machine translation. We have
described the forward and backward recurrences for efficiemputation of the model and its EM-
based parameter re-estimation algorithm. Empiricallulteshave been reported comparing the pro-
posed model with a baseline system. It has been found thanodel is biased to long phrases and
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6.7. Conclusions

tends to quickly overfit the system. Due to this overfitting $iystems does not outperforms the baseline
system.

We have identified some problems. Firstly, a classical HMMasfully adequate for processing
both input and output strings, since the handling of the ssdation variables requires speciallised
states. Secondly, the computational time is too expensiveake this model useful with big corpora.
Actually, we need a matriX)(IJ min{I, J}); however the third dimensiomin{I, J} accounts for
the number of phrases that have been used and does not erady relevant statistical information to
the training process. Finally, the model tends to get ovedibiasing the long phrases.

In the following chapter, we extend and modify this model kaking use of didden semi-Markov
model (HSMMY¥ormalism. This allow us to amend the three previously nwem@d problems.
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Chapter

A phrase-based hidden semi-Markov model for
monotone machine translation

Then there was the man who drowned crossing a stream witherage depth of six inches.
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Chapter 7. A phrase-based hidden semi-Markov model for tomeanachine translation

T x2 x3 T4
Y1 Y2 Y3 Ya Ys

Figure 7.1: A generative example of the hidden semi-Markov model apgrda ma-
chine translation, in which a source strim§ is translated to a target string through
a segmentation of both sentences ihtmoncepts.

7.1 Introduction

In previous chapter, we introduced a novel approach to madhanslation based on the hidden Markov
model. One drawback of this model, is the computational derily associated with its training al-
gorithm. In this section, by making use of the hidden semildea formalism, we successfully amend
the computation problem of the previous model. With this figemnalism, we properly define a phrase-
based model eligible for being theoretically expanded evitithe problems derived from the heuristi-
cally computed phrase dictionaries. Finally, and in ordeamoid the harmful overfitting problems, we
resort to a smoothing word-based IBM model 1.

We begin this chapter with the description of our new propiws8ection 7.2. Likewise to classical
HSMM, in Section 7.3 the well-known forward and backwardureences are described into detail. The
training algorithms are explained in Section 7.4. The pcatbehaviour of the PBHSMM is analysed
in Section 7.6. Afterwards, concluding remarks are gatheré&ection 7.7.

7.2 The phrase-based hidden semi-Markov model

Inspired on the HSMM described in Section 1.1.6 Chapter 1defane here ouphrase-based hidden
semi-Markov model (PBHSMNYr monotone machine translation [Andrés-Ferrer and J2@09]. Let

x € X* be the source sentence amd= Y * the target sentence, we model the conditional translation
probability, p-(x | y, J) by assuming that the monotonic translation process hasdagerd out from

left to right in segments of words ghrases For this purpose, both sentences should be segmented
in the same amount of phrases. Figure 7.1, depicts an examhlepossible monotonic bilingual
segmentation in which the source sentence comptisasds,x1; whereas the target sentence is made
up of 5 words,y3. Note that each bilingual phrase formgenceptBrown et al., 1993]; for instance

c1, c2 andcg are concepts in fig. 7.1. In order to represent the segmentatiocess, we use two
segmentation variables for both sourbeand targetm, sentences.

To better understand our monotone translation megél |y, J), it is first convenient to fully
understand how the segmentation process is representegl thei formerly mentioned segmentation
variables: the source segmentation variahland the target segmentation variabbe,

On the one hand, the target segmentation variablstores each target segment length at the posi-
tion at which the segment begins. Therefore, if the targgtesmtation variablen has a value greater
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than0 at positioni, then a segment with length; starts at such positioh Note that this notation dif-
fers from that of Chapter 6, since now the length is specifieleasegment boundaries. For instance,
the target segmentation represented in Figure 7.1 is giyen b= m?$ = (2,0, 1,2, 0). Therefore, val-
ues for the segmentation variable suchas= (2, 1,0, 3,0) orm = (2, 2,0, 3,0), are out-of-domain
and, hence, invalid. The Table 7.1 enumerates in the seaalndhn all the target segment variable
domain for the case of a target sentencé wfords. In the same table, the third column corresponds to
the induced target segmentation for the valuerospecified in the first column. Note that the domain
of the target segmentation ranges among all the possibieesggtion lengths.

On the other hand, the source counterpart of the target segtiten variable is the source seg-
mentation variablé. The source segmentation random variable accounts foettggH of eaclsource
segmenat the position at which its corresponditeyget segmeniegins. If the source segmentation
variablel has a value greater th@inat position:, then the length of the source segment corresponding
to the target phrase that starts at positipis /;. Recall that the length of the target segment starting at
position is m;. For instance, in Figure 7.1 the source segmentation \ariab= 15 = (2,0, 1,1,0).

Table 7.1 enumerates all possible values of both segmensatiariablesyn and! for a source
sentence oft words and a target sentence®fand the segmentation they induce in both source and
target sentences. It is valuable to mention, that the plesgittues off depend on botlw and.J. There
is only one bilingual segmentation with unit length; butrtharel2, 18 and4 segmentations of length
2, 3 and4, respectively. Note that in the special case in whihsplits the target sentenag in 5
segments; there is no possible valuelfand no segmentation is inducedaif.

Now, we can mathematically define our inverse translatiodehalepicted in Figure 7.1, as a full
exploration of all segmentations

pe(@ly, )= pr(@lm|y,J) | (7.0)
l

m

wherem ranges among all the possible target segment valueg, fandl ranges only on those values
that are in accordance witle and.J.
The complete model in Eq. (7.1) is decomposed as follows

pT(wal7m|yaJ) :pT(m|yaJ)pT(l|may7J)p7‘(w|lvm7y?‘]) . (72)

All the probabilities in Eq. (7.2) are being decomposed-feftight. We explain into detail the
decomposition of the target segment length probability ehaihce the extension of this technique
to the source length and the emission probabilities isghitiirward and can make the discussion
cumbersome.

To simplify notation, we need to give some additional deifinis, before decomposing the target
length probabilityp,(m |y, J). Given a target segmentation variable, say we define its prefix
counterpartyn as follows

mi=y my i=01,...,1 . (7.3)
k=1

Similarly, for the source segmentation variablge can define its prefix counterparas follows
L=l i=0,1,....1 . (7.4)
k=1

For instance, in Figure 7.1, the prefix segments lengthsrare m3 = (0,2,2,3,5,5) andl = I; =
(0,2,2,3,4,4), for target and source segmentation variables respegtivel
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# segmentg m Y] segments l x1 segments
1 (57 O’ 07 O’ 0) yi’ (4’ 07 O’ 07 O) wil
(3,0,0,0,1) T3, 14
(4,0,0,0,1) yilv Ys (2,0,0,0,2) w%v :13%
(1a070a073) xlvwé
(3,0,0,1,0) x5, T4
(3,0,0,2,0) yi’,yi (2,0,0,2,0) w%,x%
2 (1,0,0,3,0) x1,Th
(3a071a070) w‘f,$4
(27 O’ 37 O’ 0) y%’ yg (2’ 07 2’ 07 O) w%? w%
(1a073a070) (L’l,ﬂ)%
(3,1,0,0,0) x3, T4
(1,4,0,0,0) y1, Y5 (2,2,0,0,0) x?, x5
(1a370a070) (L’l,ﬂ)%
(2,0,0,1,1) | @%, 23,24
(3,0,0,1,1) Y3, Yy, ys (1,0,0,2,1) 1, X5, 74
(1,0,0,1,2) | zy,20, 2]
(2a071a071) wf,$3,$4
(2,0,2,0,1) y%aygvyE) (1,0,2,0,1) xlawgv$4
(1a071a072) $1,$2,w§
(2,0,1,1,0) | @7, 3,24
(2,0,1,2,0) Y3, Y3, Y5 (1,0,2,1,0) | z1,23, 24
3 (1a071a270) xl;anwé
(2a170a071) wf,$3,$4
(173a070a1) y17y37y5 (1a270a071) £L'1,:E%,l’4
(1,1,0,0,2) | zy, 20,2}
(2,1,0,1,0) | @7, 3,24
(1,2,0,2,0) Y1, Y5, Y (1,2,0,1,0) | 1,23, 24
(1a170a270) xl;anwé
(2a171a070) w%,$3,$4
(1,1,3,0,0) | w192, 93 (1,2,1,0,0) | =y, 23,24
(1,1,2,0,0) | z1, 20,2}
(270a171a1) y%7y37y4ay5 (]-aov]-alv]-) T1,22,T3,T4
4 (172a071a1) y17y37y4ay5 (1,1,0,1,1) T1,22,T3,T4
(1,1,2,0,1) | wy1,92,93, 95 (1,1,1,0,1) | x1, 2,73, 74
(1,1,1,2,0) y17y2;y37y2 (1,1,1,1,0) T1,x2,T3,T4
S (17]-;171;1) Y1,Y2,Y3,Y4,Ys @ (Z)

Table 7.1: A full domain specification for both segmentation variables andl, in

the case of a source sentencetafords and a target sentencefoivords. For better
understanding of these variables, the induced segmemtiatiboth source and target
sentences is also provided in coluntand5. Although there is a possible segmenta-
tion of the target sentenaginto 5 segments (last row), it is not the case for the source
sentencer.
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The probability of the target segmentation variable is ik

I
pe(m|y,J) = [[pr(mi|mity, 7). (7.5)

i=1

At first stage, we assume that each partial probability in(£4) does not depend neither gnnor on
both lengths { and.J) and, hence, the probability.(m; | m:™!,y, J) is modelled as follows

i p(mi) mi—1+1=12,m; >0
pr(mi iy, 7) = { P07 . (7.6)
1 mi—1+1#1,m; =0

Note that the first case in Eq. (7.6) is satisfied by the pastian which a segment begins, whereas the
other case is satisfied by the positions that lay inside a sagtaxecept for the boundaries).
Finally the segmentation probability can be expressed|isv®

pr(mly,J):= [ 1 [] p(m:) 7.7)

i€Z(m) igZ(m)

where Z(m) or simply Z stands for the set of positiorisfor which m; is 0. For instance, in the
example in Figure 7.1Z is instanced t&(m) = {2, 5}.

Provided that one of the two products in Eq. (7.7) simplifies,tthe segmentation probability is
expressed as

pr(m|y, J) = [[p(mi) . (7.8)
i¢Z

Since explicitly showing these details makes the discaorbe awkward, we will henceforth omit them
abusing of notation whenever it does not entail confusioend¢, we will use equations similar to the
following

p m | y7 H P mf ) (79)

where we have explicitly omitted thate Z, but we keep the subindexinstead ofi for subtly high-
lighting this modelling process. Note that decompositissimilar to the usual state probability de-
composition used in hidden semi-Markov models (see Sedttib® Chapter 1).
Similarly to the target segmentation modelling, the sosegmentation yields the following equa-
tion
prl|m,y,J):=[[plle[me) (7.10)
t

where we have assumed that thilh source segment lengthdepends only on the corresponditith
target segment length,; and hence, it is independent of the remaining target segieegths as well
as independent of the previotis- 1 source segment lengths™*.

Finally, knowing the segmentation variables, the emisgiabability is also decomposed left-to-
right yielding

pT(m | I,m,y, J) = Hp((l)(t) | y(t)) ’ (7.11)

where we have assumed that the emission of the source phfeisenly depends omy(t); and where
x(t) stands formé:iﬁl andy(t) for yi™™t ! i.e., thet-th “emitted” source phrase and its respective

t-th target phrase. Note thatis equal tol;—; + [, provided that position is a starting position for a
target segment.
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Summarising, the proposed (complete) conditional tréiosianodel is defined as follows

pr(w7l7m|yv Hp mt lt|mt) (:B(t)|y(t)) ’ (712)

and, hence, the incomplete model introduced in Eq. (7.12uarpetrised as follows

wherep, (2,1, m | y) is given by the following expression

po(@,l,m|y) = Hpmf (e [me) p((t) | y(1) (7.14)

with the following parameter sét
0 = {p(m),p(l|m),p(u|v)|Vl>0,Ym >0,Vu € X*,Vu e Y*} . (7.15)

In the phrase-based hidden semi-Markov model (PBHSM®&fined in this section, we can under-
stand each target phragét) as the “state” of a HSMM in which the source phrase) is emitted. Note
that the output sentence probabilipfy), plays the role of the state sequence probability in a HSMM.
Such probabilityp(y), is better modelled by a specific language model suchragi@am, due to the
nature of such variable. Obviously this is not a pure HSMM tmick we have a latent state variable.
The omission of this latent variable is more an assumptian threquirement. Recall that in Figure 7.1
we have depicted each bilingual phrase pair being emitteldmnceptwhich could represent a latent
state. We have proposed this extension in the conclusidioseas a future research line.

Since the model assumes that the segmentation variable®tgd/en in the training data, some
approximate inference algorithm such as the EM (see SettioA Chapter 1) is needed. In the follow-
ing section, the standard recurrences needed in HSMM tigaenie adapted to the proposed translation
model.

7.3 Recurrences

As it is common in hidden Markov models and specifically inddd semi-Markov models, some
helpful recurrences are defined in order to efficiently abthé answer to some common questions. We
focus, in this section, o8 selected questions among many others:

e Which is the probability for a given bilingual pair, y)?
e Which is the best segmentation for a given bilingual gairy)?

e Which is the best parameter gegiven a training sef(x,, y,,) }r—1?

7.3.1 Forward recurrence

The forward recurrence;; is defined as the following prefix probability
Qi = atl(mvy) ‘= Po (wlh Zt = l7 me =1 | y) ) (716)

where the eventg = [ andm; = ¢, imply that a source (or target) phrase ends at positi@n t) in
the input (or output, respectively).
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The prefix probability in Eq. (7.16) is recursively computeifollows

1 t=0,l=0
t—1 1—1 0<t<]
Q= Z Z app p(t’ = t)p(l' = 1|t" —1t) p($%/+1|y§’+1) 0 2 1< J (7.17)
t/=01'=0 -
0 otherwise

In order to compute the forward recurrence in Eq. (7.16), &imaf O(IJ) elements is needed.
The computational complexity required to fill such a matsxOi(12.7?). However, if the phrases are
constrained to a maximum source and target phrase lehgthd M respectively, then the complexity
is reduced t@(IJML).

Furthermore, a detailed analysis of the forward algoritmweils that not all the elements of;
must be computed. The elements excluded do not verify onleedfollowing requirements: that both
source and target sentences must be segmented in the samptahphrases; or that both source
and target phrases must be smaller thaand M respectively. For instance, in Figure 7.2, we have
highlighted which elements must be computed for two sem®iof length20 and22. The remaining
values are useless, and we should save the time needed toteotingm. Note that the longer the sen-
tences are, the more effective this optimisation is. Spdi§i, in the previous example the number of
elements to compute approximately account forih# of the total values. This reduces the computa-
tional complexity in a ratio oR. Additionally, it is possible to add some heuristics to thegess such
as beam pruning [Wang and Waibel, 1997, 1998].

Finally, the answer to the first question, i.e., how to coraghe probability of a given pair, is given
by means of the forward recurrence as follows

po(x|y)=ars . (7.18)

7.3.2 Backward recurrence
The backward recurrengs; is defined as the suffix probability
ﬁtl - ﬁtl(w7y):pg($i]+1|zt = lvmt = tvy) 5 (719)

wherel;, = | andm; = t, implies that a source (or target) phrase ended/starteusitiqn! (or t) of the
input (or output, respectively).
The suffix probability in Eq. (7.19) is recursively computesifollows

1 t=I1,1=J
d d ’ 4 0<t<I
Bu = Z Z Bew p(t =) p(l" = 1]t —1) p(93§+1 | y§+1) 0<! 2 J (7.20)
t/=t+11/=1+1 -
0 otherwise

The computational complexity, both in terms of memory antkti of the backward recurrence are
the same of that of the forward recurrence. Furthermoresahge optimisations applied to the forward
recursion are also eligible to be applied in the backwardnson.

Analogously to the forward recursion, the probability ofieem bilingual pair of sentences, y)
can be efficiently computed as follows

Pe(z|y) = Poo - (7.21)
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Figure 7.2: The relevant values that should be computed for the forweedrrence in
the case of a source sentenceofwords and a target sentence2@fwords. The max-
imum phrase length is assumed tod®r both source and target phrases. Finally, the
black squaresx() stand for then,; values that must be computed while the remaining
points are not needed.

7.3.3 Viterbi recursion

The second question proposed at the beginning of the sesttated as finding the best segmentation
for a given bilingual paiz, y), i.e.

(I, 1) = arg max{py (2,1, m |y, J)} . (7.22)
lm
In order to efficiently answer this question, we define thenii recursion as follows
6tl - max {Pe(xlhlim? ‘ y7J)} ) (723)
T mT

where note that, m are required to end at positiohandt respectively.
The Viterbi recursion in Eq. (7.23) is efficiently computedthe following recurrence

1 t=0,l=0
! ¢ 0<t<I
0y = rga}g {6t/1/ P(t/ —1) p(l/ —1] t'— t) P($;’+1|y;'+1)} 0 2 1<J (7.24)
0 otherwise
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A traceback of the decisions made to compiite provides the maximum segmentatign and!, i.e.
the solution to the Eq. (7.22).

The Viterbi recursion shares the computational requiramehthe forward and backward recur-
rence. Furthermore, the same optimisations applied toottreafd and backward recursion should also
be adapted for computing the Viterbi recursion.

7.4 Training

Since the proposed PBHSMM assumes that the segment lenigblea are not given in the training
data, an approximate inference algorithm such as the EMedet We give here the description of the
common training algorithms with respect to a collectiorrairting translation pair§(z1, y,), ..., (~n, Y5 )}
that is to say: the Baum-Welch algorithm [Rabiner, 1989} #re Viterbi algorithm [Rabiner, 1989].
Both algorithms are instantiations of the EM algorithm acdssed in Section 1.1.4 Chapter 1.

The log-likelihood function as a function of the parame#is

LL(6) = ) logp.(xn|y,,)
= ZlogZpg(wn,l, m | yn)
n Ilm

=> log» [ p(me) ple [me) p(an(t) |y, (1) (7.25)

lm t

However, recall that the EM algorithm maximises a lower lbtmthe log-likelihood function.L(-),
by iteratively maximising a variational functiofi(q, @) through the application of two basic steps in
each iteration: the E(xpectation) step and the M(axinisatstep.

7.4.1 Fractional counts
Using the previously defined forward and backward recussiare can compute the probability of using
the source phrasreﬁlr1 and the target phras;.i:rl when segmenting a given samijle, y),

Ve = Pe(wg;hzt =l Lhi=Lm=t,mi_1=t|y)

aup(t’ —t)p(l' —1[t' —t) P(wﬁ;l |7J§l+1)ﬁt’u ’ (7.26)
Pe (2, Y)

with [ < I’ andt < ¢'. This fractional counts are very useful for training thegmaeters of the model
in the following two Sections 7.4.2 and 7.4.3.

7.4.2 Baum-Welch training

Let0® be a guess of the optimal parameters obtained from previetsibns. In this case, the E step
requires the computation, for each pgir,, y,, ), of the sample versions of (7.16), sant} and (7.19),
sayﬁ,(f:g, as well as the fractional counts per sample, $T$§§)}t,l,. These sufficient statistics are com-
puted using the parameters obtained from previous iterai&’. Recall that these sufficient statistics
summarise the optimal functiaf}*’ obtained in the E-step, by storing the relevant informatioother
words, computing these recurrences is equivalent to camptit.

Afterwards, in the M step, a new set of parame#¥s™") is estimated from the recurrences com-
puted in the E step. The new set of the parameters includethitbe probabilities of the model: the
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phrase dictionarp**) (u | v), the target length probability“**) (m) and the source length condi-
tional probabilityp ) (m | 1).
The phrase dictionary is estimated as follow

N(k)(u 'v)
(k+1) _—F— 7.27
with
N (u,0) =33 A0 @a (L), w)d(y, (1)) (7.28)
n LU ottt

where we use the notatiofn(l,1’) to refer tOzf;l, and wherej(a, b) stands for the Kronecker delta
function which evaluates toif a = b and0 otherwise.
For the target phrase length probabilities, we obtain tHeviing re-estimation equation

N(k)(m)
(k+1) _
p (m) - Zm’ N(k)(m/) ’ (729)
with
N®(m ZZZ%H e (7.30)
n LUt

wherem is a target phrase length.
Finally, the source phrase length probabilities are reveded as follows

N®(1,m)
(k+1) _ )
p (Ilm) = Zl' N®E (1, m) ) (7.31)

with

N® (1,m) ZZZ%WM NI (7.32)

wherel denotes a source phrase length, and target phrase length.

If an initial parameter set is give®(*); we can iteratively refine our initial guess by alternatjvel
applying the E-step and the M-step until convergence. Thweargence criteria is given by either
reaching a maximum number of iterations or increasing tlgelilelihood under a given threshold.
Since the log-likelihood function in Eq. (7.25) is not corythe Baum-Welch training only provides a
local optimum after convergence. Therefore, the readeuldHuare in mind that a wrong initial guess
0 can ruin the system performance.

7.4.3 Viterbi training

Let 8%) be a guess of the optimal parameters obtained from previetatibns. In this case, the E-
step requires the computation of the maximum segmentﬁliﬁh m(k) as defined in Eq. (7.22), for
each pair(z.,y,, ). In order to efficiently compute the optimal segmentatidne, Yiterbi recursion in
Eq. (7.24) is computed for each sample.

Afterwards, in the M-step finding the parameter 86t that maximisesC(q, ) is equivalent to
find the parameter set that maximises the following function

Qoo™ Zzlogp 2) +1logp(tly) |m) +logp(an(t) [y, (1) . (7.33)

142 JAF-DSIC-UPV



7.4. Training

Rearranging terms in Eq. (7.33), we obtain

Qoo™ ZM m) log p(m +ZZM (I, m)logp(l| m)

* ) (7.34)
+ZZM (w,v)logp(u|v)

where M ®) () stands for the number of times the everitas occurred in the sample completed with
the length variables, i.e{(xn, y,,, lﬁf) (’“))}n 1. Specifically,M *) (m) is defined as follows

Z Za m® m) | (7.35)
andM ) (1, m) is given by
Z 26 (m&),m)s(), 0 (7.36)

and finally the phrase counts are defined as

ZZ& ), w)s(y® (t),v) (7.37)

Where:c““)( t) andy*)(¢) stand for the-th source and target phrase induced Y andm ", respec-

tively; and where the expressiofia, b) is the Kronecker’s delta function.

The Viterbi training described here is also an iterativentray process, since it is another instanti-
ation of the EM algorithm (see Section 1.1.4 Chapter 1). &foee, if an initial parameter set is given
09 we can iteratively refine our initial guess by alternatjvabplying the E-step and the M-step until
convergence. Similarly to the Baum-Welch training, theexhi training only provides a local optimum
after converge. However, since the Viterbi algorithm craiats the family of functions in the E-step,
ie. ¢, m) = §(1, lﬁlk))é(m mﬁlk)) the optimal parameter set obtained after a Viterbi trajnin
typically worse than that of the Baum-Welch training [Radir989].

The main advantage of the Viterbi training with respect taa/Nelch training is that we only need
to compute one recurrence, the Viterbi recurrence, in eshto the two recurrences, the forward and
backward recurrences, needed in the Baum-Welch trainirdglitidnally, since the Viterbi algorithm
only takes into account the most probable segmentationcim iggration, a given outcome has effect on
less parameters, speeding up the algorithm. Therefor&/itébi training is at least twice times faster
than the Baum-Welch training.

7.4.4 The model smoothing

A well-known drawback of the EM algorithm is that it tends teedit the models. Moreover, the
HMM-based model discussed in Chapter 6, shown severe dieggfiiroblems. In order to alleviate
these problems, we smoothed the phrase table| v) with a IBM model 1 [Brown et al., 1993] as
follows

Pulv) = (1—¢)p(u|v) +eprpr(ulv) (7.38)
wherep(u | v) stands for the smoothed phrase tall@y | v) stands for the optimal phrase table (not
smoothed) obtained after the EM training apgs,,, (v | v) stands for the probability of the IBM
model 1without the null wordli.e.,

proans (/v ful o) = 30 [T oo ol [v0) (739)
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The IBM model 1 performs accurately when deciding whetheztabwords contains the translations
of another set of words or not; even though it is unable tanléae order of such words.

7.5 Decoding Recurrence

In this section, we explain the recurrence used to perfoenntlbdel search or decoding process in-
side a system based on the fundamental equation of maclkinslation introduced in Section 1.3
(Eg. (1.102)). The search problem in such a system is stat#okegproblem of finding the maximum
probable target sentence as follows

g = arg;naX{pe (zly)p(y)} (7.40)

where thep, (z | y) is modelled according to the PBHSMM proposed in Eq. (7.18), i

§ = arg max {Zzpe(wvlvm | y)p(y)} : (7.41)
l

v m

In order to cope with Eq. (7.41) a Viterbi-like approximatiis taken for all the sums. In this way the
search problem is reduced to

§ = argmax {max{po(@,1,m |y) p(y)}} - (7.42)

For sake of simplicity, we focus on finding the probabilitytbé maximum probable translatign
ie.,
Po(z|Y) = max{py(x,l,m[y)p(y)} - (7.43)

Provided that we only use-gram language models, we assume that the language mobahiity
for a given target phrage(v | yT*) only depends on thé: — 1)-most recent words, i.e.

p(v |y} = p(o] suf (u7) (7.49)

wheresuf ,,_1 (- - - ) stands for thén — 1)-most recent words.
In order to perform the maximisation in Eq. (7.43) we definatangi-like decoding recurrence as
follows
o) = max {pe(wll,ltl,mtl [y7") p(y;n‘)} , (7.45)

t t . m
tal17m1ay1 t

le=l,suf |4 (y;nt):’u
where bysuf |, (y7"*) = v we denote that the suffix afi"* must be equal tw. We further assume
that if v = %, then this constraint is ignored, i.e.,

o.(x) = o(z) = L mex {pe(acll, 1, mi |y p(yT‘)} . (7.46)
b1t mty ]
le=1

The search recurrence ,, can be recursively expressed in terms of a simpler case aif és
follows

o(@) = max  {pO)p(v'] /) p@li [v)p(v |h)ow (@)} (7.47)
suf ‘v‘,(v;h):v

z’<z,|v’h|z\u\
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where note that is split into two partsy” andh. The first part is used in the translation of the source
phrase whereas the second garts used as the prefix of the language model.

Finally, the solution to the search problem in Eq. (7.43)isputed using the search recurrence as
follows

Po(x|9) = 0ur - (7.48)
Note that once it is known how to compupg (x | ¢), the optimaly is obtained by tracing back the
decisions made during its computation.

However, although the recursien, ., speeds up the search problem, it is still a hard problem. For
this reason, we still need to perform an approximate degpidinvhich we use a maximum number of
hypothesis for each source positibrsay M, and also a beam pruning [Wang and Waibel, 1997, 1998].
That is to say, instead of using Eq. (7.47), we use the fotigveipproximated version

dio@) = b {pOp(] 1D ek 19 p@ R @)} (7,49
suf‘v‘(v'h):v,|v'h|2\v\

wheremax stands for an approximate versionmafix where we have applied several heuristics, such
as beam search or histogram pruning.

In the experimental section, we have also used the proposeélrmside a log-linear loss func-
tion (see Section 1.3 of Section 4.3.3 for further detail)r this aim, we have used the Moses sys-
tem [Koehn et al., 2007], and added our model as a featurderis search. Should the reader be
interested in the details of this search, please refer tthKee al. [2007].

7.6 Experiments

We have carried out two types of experiments. The first sekpéements [Andrés-Ferrer and Juan,
2009] were designed to analyse the properties of the prdpmeelel when used in a classical phrase-
based model that is based on the fundamental equation dgdtis&@t machine translation defined in
Eq. (1.102). The second set of experiments were designettysz the behaviour of the improvements
obtained in the first experiment when passed as a featuredg-bBnear model based on Eq. (1.103).
To evaluate the quality of the translations, we used twaren@asures: bilingual evaluation understudy
(BLEU) [Papineni et al., 2001], and translation edit rate gy [Snover et al., 2006].

7.6.1 Classical phrase-based models.

For the first set of experiments, we tested our model in twpamr. the Europarl0 and the Europarl-
20. The former comprises all the sentences from the Englisbpanish part of Europarl-v3 [Koehn,
2005] with length equal to or less thaf. The latter is made up of all the English-to-Spanish Eurepar
v3 sentences with length equal to or less ti2in For both corpora we randomly selectd@00
sentences to test the algorithms. However, since the Exdropdas several repeated sentences, we
avoided repeated sentences in the test. Note that since medv@ perform detailed experimentation,
we constrained the training length because of the time reopgnt for training the proposed PBHSMM.
Table 7.2 shows some basic statistics of the training patidth corpora; Table 7.3 summarises some
statistics from the testing part.

All the experiments were carried out using-gram language model computed with the standard
tool SRILM [Stolcke, 2002] and a modified Kneser-Ney smaoaghiWe used two systems: the proposed
PBHSMM with the search algorithm depicted in Section 7.5} e Moses system [Koehn et al., 2007]
but constraining the model to a classical SMT system baséthgid.102) in Chapter 1 (a phrase-based
inverse model and a-gram language model). We used this constrained versiorosellinstead of the
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Training Europarl-10 Europarl-20
Language En Sp En Sp
sentences 76,996 306, 897

avg. length 7.01 7.0 12.6 12.7
running words| 546K 540K | 3.86M 3.91M
voc. size 15.5K  22.1K | 37.1K  57.8K

Table 7.2: Basic statistics of the training sets.

Test Europarl-10 Europarl-20
Language En Sp En Sp
sentences 5,000 5,000

avg. length 7.2 7.0 12.6 12.9
running words| 35.8K  35.2K | 63.0K 63.8K
ppl (4-gram) 48.3 56.9 62.3 69.1

Table 7.3: Basic statistics of the test sets.

full log-linear model in order to define a fair translatiorsbine. However, in the following subsection,
we will compare both systems inside a log-linear model.

The proposed training algorithms require an initial gudssthis aim, we computed the IBM word
alignment models with GIZA++ [Och and Ney, 2003], for bothrislation directions. We computed the
symmetrisation heuristic [Och and Ney, 2004] and extraefethe consistenphrases [Och and Ney,
2004]. Afterwards, we computed our initial guess by coumtire occurrences of each bilingual phrase
and then normalising the counts. Instead of using the Mogsters to perform this initialisation task,
we have implemented our own version of this process.

Since the training algorithm highly depends on the maximimage length, for most of the exper-
imentations we limited it tol words. Table 7.4 summarises the results obtained for battskation
directions with the Europar® corpus. Surprisingly, Viterbi training obtains almost geme results
as the Baum-Welch training; this is probably because mo#iieotentences accumulate all the proba-
bility mass in just one possible segmentation. Maybe thethig our algorithm is not able to obtain a
large improvement with respect to the initialisation. Nibtat since the proposed system and the Moses
system use different phrase-tables, these two numbersdshoube compared. Therefore, the Moses
baseline is only given as a reference and not as a system toueplhe important question is whether
the model produces an improvement with respect to the lisigon, i.e., the result on iteratidn Note
that this corpus is small; therefore, although its compjeallow us to check some properties of the
algorithm, we cannot draw further conclusions. Moreovecall that we have erased the repetitions
from the this test set.

Table 7.5 is the counterpart of Table 7.4 but for the Eureparl It can be observed that Baum-
Welch training has no advantage with respect to Viterbntrey. Typically, approximatelyt iterations
suffice to avoid overfitting which maximises the system panfnce. The results show a small im-
provement over the initialisation. Although the improvernes very small, its magnitude is similar
to the improvement obtained when extending the maximumsghlength as shown in Table 7.6. For
instance, as the table shows, extending the maximum pheasghl from4 to 5 incurs in the same
improvement as performing Viterbi iterations in the model. Finally, in most of the casthe Viterbi
training improves the translation quality in terms acfRland/or B_EU.

146
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En— Sp Sp— En

TER BLEU | TER BLEU

Mosesp(x | y)p(y) | 50.0 32.9 | 47.2 32.7
Iterations PBHSMM (Baum-Welch training

0 51.4  31.9 | 48.2 33.2

1 51.4  31.9 | 479 33.1

2 51.5  31.9 | 479 33.1

4 51.2 32.6 | 48.1 33.1

8 51.4 31.8 | 48.0 33.0

Iterations PBHSMM (Viterbi training)

0 51.4 319 | 48.2 33.2

1 51.4 31.9 | 479 33.1

2 51.1  32.6 | 48.0 33.2

4 51.2  32.6 | 48.0 33.0

8 51.4 31.8 | 48.0 33.0

Table 7.4: Results for the Europadlé corpus with a maximum phrase length4of

En— Sp Sp— En
TER BLEU | TER BLEU
Mosesp(x |y)p(y) | 57.3 23.5 | 55.1 24.10

Iterations PBHSMM (Baum-Welch training
0 57.7  25.0 | 56.0 26.0
1 57.7  25.1 55.8 26.4
2 57.7  25.1 55.9 26.4
4 57.7 252 | 55.8 26.5
8 57.7 252 | 55.8 26.5
Iterations PBHSMM (Viterbi training)
0 57.7 25.0 | 56.0 26.0

1 57.7 25.1 | 55.8 26.4
2 57.7 25.1 | 55.9 26.4
4 57.7 252 | 55.8 26.5
8 57.7 252 | 55.8 26.5

Table 7.5: Results for the Europat6 corpus with a maximum phrase length4of

Even though, the training does not incur in a significant immpment over the baseline in terms
of BLEU and/or TER; in practice, the quality of the transtai$ is increased by the training. Table 7.7
shows some translation examples. A detailed analysis opthygosed translations suggest that most
cases belong to case A, case B or case D, and few translagtrgtio case C.
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Iterations| En— Sp Sp— En
TER BLEU | TER BLEU
Iterations| Maximum phrase length
0 60.5 21.2 | 579 235
4 60.5 21.2 | 581 23.5
Iterations| Maximum phrase lengtB
0 58.6 24.1 | 56.1  25.7
4 58.3 24.1 56.4  25.5
Iterations| Maximum phrase length
0 57.7 25.0 | 56.0 26.0
4 57.7 25.1 | 55.8 26.5
Iterations| Maximum phrase length
0 57.7 25.1 | 55.8 26.6
4 57.4 253 | 55.3  26.9
Iterations| Maximum phrase length
0 57.7 254 | 55.9 26.6
4 57.3 25.6 | 554  26.8

Table 7.6: Results for the Europatle corpus with several phrase length.

7.6.2 Log-linear models.

In this case, we also used two corpora: the Europdrlnd Europarl-v3. The former has already been
described in the previous section. In this set of experigjane randomly selectexd00 sentences from
the EuroparR0 training set as the development set to train the log-linegights. The latter corpus is
the standard dataset used in Koehn and Monz [2006]. Tableur8narises the properties of the first
corpus and Table 7.9 summarises the porperties of the secopds.

We compared systems: Moses, log-PBHSMM, and log-PBHSMM+Moses. Alldlstems used
the Moses decoder [Koehn et al., 2007] to perform the degogincess. Therefore, the differences
among the three systems lay in the features used in therlegslimodel. The first system is the standard
log-linear system trained with Moses [Koehn et al., 200%Heve the following features were used:

e Direct phrase-based translation model

e Inverse phrase-based translation model

e Direct lexicon model

e |nverse lexicon model

e A phrase penalt2.718

e A word penaltye

e A 5-gram language model smoothed with the modified Kneser-Nmothing

The second model, the log-PBHSMM, has the same featureseadldies system, but we replaced
both direct and inverse phrase-based models with our gtaBHSMM systems. Finally, for the third
system, théog-PBHSMM+Mosesystem, we added both direct and inverse phrase-basedijiités
trained with our PBHSMM system to the Moses system. Addiilyn we obtained results with the
systems in a monotone way (not using reodering) and usingttrelard distance-based reordering
implemented in the Moses decoder [Koehn et al., 2007]. Thditear weights of the three systems
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Case A | Training improves evaluation measures

REF. | sincerely believe that the aim of the present directivessep in the right direction .

IT.0 I am convinced that the aim of this directive is a step in tigatrdirection .

IT. 4 I sincerely believe that the aim of the directive before us $$ep in the right direction .

MOSES | I sincerely believe that the aim behind the directive is alstep in the right direction .

Case B | Training improves translation but not evaluation measures

REF. Mr president , i wish to endorse mr posselt 's comments .

IT.0 Mr president , i support for to our .

IT. 4 Mr president , i join in good faith to our colleague , mr possel

MOSES | mr president , i would like to join in good faith in the wordsair colleague , mr robig .

Case C | Training degrades the system

REF. BSE has already cost the uk gbp 1.5 billion in lost exports .

IT.0 BSE has cost the uk 1.5 million losses exports .

IT. 4 BSE already has cost in the uk alone 1500 million pounds bge bf exports .

MOSES | BSE has already claimed to britain 1500 million pounds insslof trade .

Case D | Other cases

REF. I will finish by telling you a story .

IT.0 I will history .

IT. 4 To conclude a story .

MOSES | | shall conclude a history .

REF. Are there any objections to amendment nos 3 and 14 beingd=resi as null and void
from now on ?

IT.0 Are there any objections to give amendments nos 3 and 14 .

IT. 4 Are there any objections to adopt amendments nos 3 and 14 ?

MOSES | Are there any objections to consider amendments nos 3 and 14 ?

Table 7.7: Some translation examples (Sp En) before and after training the phrase
table,4 iterations with the Viterbi training, and maximum phrasegth of4 words.

Training Development Test
Language En Sp En Sp En Sp
sentences 304 897 2000 5000
avg. length 12.7 12.6 12.8 12.6 12.6 12.8
running words| 3.83M  3.88M | 25.1K  25.5K | 63.8K  63.0K
voc. size 37.0K 577K | 39K 47K | 6.3K  8.1K
ppl (5-gram) - - 62.2 67.2 63.3 69.2

Table 7.8: Basic statistics of Europarl-20 with development set.

were trained in the development set of each corpus perfgrinimum Error Rate Training (MERT)
in terms of BLEU.

Table 7.10 shows the results in terms afe® and TeR for these systems using the Europ2il-
training corpus. Instead of computing a single figure, we mated the confidence interval 26% as
described in Koehn [2004]. In this case we constrained thérman phrase length té words, so that
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Training Development Test
Language En Sp En Sp En Sp
sentences 730740 2000 2000

avg. length 20.8 21.5 29.3 30.3 30.0 30.2
running words| 15.2M  15.7M | 58.7K  60.6K | 58.0K 60.3K
voc. size 72,7 113.9K | 6.5K 8.2K 6.5K 8.3K
ppl (5-gram) - - 79.6 78.8 78.3 79.8

Table 7.9: Basic statistics of Europarl-v3.

System | En— Sp | Sp— En
Distance-based reordering

TER BLEU TER BLEU
Moses 56.7+0.7 27.74+0.7 | 54.2+0.7 285+0.7
log-PBHSMM 56.44+0.7 281+0.7 | 53.8+£0.7 28.7+0.6
Moses + log-PBHSMM| 56.4 +0.7 28.3+0.7 | 53.4+0.7 28.8+0.7

Monotone

TER BLEU TER BLEU
Moses 58.6 0.7 26.14+0.6 | 55.1+£0.7 27.3+0.7
log-PBHSMM 57.6 0.7 26.6+0.6 | 54.4+0.7 27.9+0.6
Moses + log-PBHSMM| 58.6 +0.7 26.4+0.7 | 54.24+0.6 28.0+0.7

Table 7.10: Results for several translation systems on the Europacie?fus.

these results were comparable with the results obtaindakiptevious experimental setup. It can be
observed, that the log-PBHSMM obtains an improvement dwentonotonic baseline, though it is not
statistically significant.

Table 7.11 is the same as Table 7.10 but with the Europarbydus. In this case, we constrained
the maximum phrase length to the standard lengthwbrd. It can be observed, that, in this case, our
proposed model PBHSMM is not better than the standard Massslibe. However, this corpus has the
peculiarity that the development and test set are not biged according to the training set probability
distribution. This can be easily checked in Table 7.9 by canmg the average sentence lengths in
each partition. Therefore, the fact that the proposed PBMS#drks slightly worse than the standard
phrase-tables is not surprising. The only reason for piogithese results is because it is a standard
corpus.

7.7 Conclusions

In this chapter, we have presented a phrase-based hiddéiMsgkov model for machine translation
inspired on both phrase-based models and classical hidaeiMarkov models. The idea behind this
model is to provide a well-defined monotonic formalism thdtile remaining close to the phrase-based
model, explicitly introduces the statistical dependenaieeded to define the monotonic translation
process with theoretical correctness.

Although the proposed model does not take full advantage thee HSMM formalism, we could
not ignore some previous negative results [DeNero et aDgP@hen conditional phrase-based models
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System | En— Sp | Sp— En
Distance-based reordering

TER BLEU TER BLEU
Moses 55.0+0.8 299409 | 53.6+0.9 30.5+1.0
log-PBHSMM 55.64+0.9 29.3+09 | 53.8+0.9 30.1+0.9
Moses+log-PBHSMM| 54.94+0.9 29.94+0.8 | 53.5+1.0 30.6+0.9

Monotone

TER BLEU TER BLEU
Moses 55.64+09 29.14+08 | 53.8+£0.9 30.2+0.9
log-PBHSMM 56.04+0.9 289409 | 54.3+0.9 29.8+0.9
Moses+log-PBHSMM| 55.6 0.8 29.24+0.9 | 54.0+0.9 30.1+0.9

Table 7.11: Results for several translation systems on the Europadievius.

are trained statistically. In that work, DeNero et al. [2PB6ncluded that a statistical (conditional)
phrase-based model worsens the translation performareglofase-based system because statistical
systems peak the phrase table probabilities. Consequevghhave forced our PBHSMM to be as
close as possible to a phrase-based model to check whether®g conclusion was extensible to this
formalism or not. In contrast to DeNero et al. [2006], our exymental analysis has shown a slight
improvement in some cases by applying the estimation dlgorwith respect to the baseline, though
this improvement is not statistically significant. Furttnere, we have surprisingly found that both
training algorithms, Viterbi and Baum-Welch, obtain thenggpractical behaviour. Hence, we advocate
for the use of Viterbi training.

We consider that the addition of a well defined training pdare would allow us to improve the
system with future extensions. For instance, we could haseraed that theth source segment length
depends on theth target segment length and on thth target segmenj(¢), that is to say,

prl|m,y, J):= [ ol |me,y(t) . (7.50)

In order to fully take advantage of the HSMM theoretical feamork, one outstanding and simple
extension to the proposed model is to “unhide” tbaceptvariable by having a mixture of phrase-based
dictionaries. Hence, the model proposed in Section 7.2dvbelgiven by

pe(@ly, 7y = 3" S S T ler ] en) plme | ) plle | me, ) pla(@) | y(0).c) . (75D)

wherep(z(t) | y(¢), c:) stands for a phrase-table that depdends on the currentrhageeptc; and
the seen concepj(¢); and wherep(c; | ¢, ) plays the role of the transition probabilities. Actuallyet
requirements of this extension would not significantly etffdtne proposed estimation algorithms. For
instance, the forward recurrence will be slightly modifisd@lows

1 t=0,1=0
<
Qett = § Yoo Cerer Dle] &) p(E'—t [ ) p(I' =1 #'—t, ¢) p(ay |yl i, ©) 8 2 Z/ 2 §
0 otherwise
(7.52)

where the sum ovef ranges front + 1 to I; likewise the sum ovelf ranges froni + 1 to J; and where
¢’ ranges among all the possible phrase states.
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Note that the new unhidden concepts proposed in Eq.(7.50dw@apture the syntactic, semantic
and grammatical constraints between the source and thet teegtence inside the same translation
pair. However, we have left this interesting extension duhis thesis, and we intend to develop it in
immediate future work.

We have also used the proposed PBHSMM as a feature insidelméag model as most of the
current state of the art systems do. The results show an ireprent over the baseline, both monotone
and non-monotone systems, but only if the test probabilgtridution is similar to the training proba-
bility distribution. This improvement would probably bestas the monotonicity of the language pairs
decreases. However, we leave the practical analysis ofitb@el in other language pairs for future
work.

The model presented in this chapter, PBHSMM, can have soamsemess issues for some lan-
guages. Furthermore, the model extension proposed in)(Zabilaggravate this sparseness problems.
In order to alleviate them, we could use word categoriesgs, taither statistically inspired or syntacti-
cally inspired. This approach would give a more reliablénestion of the phrase emission probabilities
by reducing the sparsity problems.

Finally, the most undesirable property of the proposed tizdigss monotonicity. Although the
monotonic constraint is a clear disadvantage for this fiB#fBMM translation model, it can be ex-
tended to non-monotonic processes. For instance, the IBM¢ordering models [Zens et al., 2003]
can be included in the proposed model by means of memorysstatethermore, we can decouple the
translation problem in two problems: the reordering of tygut and then a monotonic translation. In
this way we could define specific input reordering models tltahot need to tackle the problem of
translating the source sentence but rather reorder itrAdiiels, we could use any monotone translation
model to carry out the translation from the reordered sosetgence to the target sentence. Neverthe-
less, these extensions lay far beyond the aim of this thesis.
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Chapter 8. Conclusions

8.1 Summary

The work developed in this thesis covers several topics tarablanguage processing: text classifica-
tion, language modelling, and statistical machine trdimiaMoreover, from a statistical point of view,
this thesis revisits several statistical techniques usetthiése natural language processing problems:
parameter estimation, loss function design, and stalgtimbability design.

With regard to parameter estimation, in Chapter 2, we pregp@sconstrained-domain maximum
likelihood estimation technique (CDMLE). Our new propoaabids the additional heuristic smoothing
step that removes the good theoretical properties that tHe Wérifies. The proposed technique can be
extended to avoid the smoothing stage of any statisticakinad order to introduce this technique, we
have applied it to the estimation of the naive Bayes classifieich follows a multinomial distribution.
We tested the novel training algorithm in several text éfecsdion tasks: Eutrans-1, 20-Newsgroups,
Industry Sectors, and Job Categories. Finally, we obseghaidhe proposed CDMLE technigue shows
performance that is similar to that obtained by classicalaimng techniques in these text classification
tasks.

In Chapter 3, we used the CDMLE idea to smoothsihgram leaving-one-out smoothing methods.
We smoothed the Good-Turing probability estimates by cairshg their domain. This novel approach
filled the gap between two extremes in LM smoothing, that sty between the Good-Turing and the
Kneser-Ney smoothing methods. The new proposed smootlgogthms were compared in practice
with respect to the Kneser-Ney baseline in terms of perylexiwo corpora were used to perform
this comparison: the Wall-Street-Journal and the Englistt pf Europarl-v3. The results reported
an improvement over the baseline in terms of perplexity facking-off n-gram language models.
The proposedi-gram smoothing techniques are also generalisable to etheing-one-out estimation
problems.

In Chapter 4, we carefully studied the consequences of @h@rge 0-1 loss function for more
complex loss functions. We focused our study on those lasstifons that retain a similar decoding
complexity when compared with th@-1 loss function. Several candidate loss functions were pre-
sented and tested in several statistical machine tramslédsks. Furthermore, two different machine
translation models were used to analyse the propertiescbfleas function: the IBM model 2 and the
phrase-based models. We proved that some outstandingatiansules such as thRirect Translation
Ruleor even the log-linear models are, in fact, particular caééisese loss functions.

The remaining three chapters of this thesis, are focuse@fomiisy monotone phrase-based models
with efficient training algorithms. We started this hardktéas Chapter 5 by giving a purely statistical
definition and a training algorithm for a phrase-based Glé&Xtension. However, in this case, the
training algorithm had high requirements in terms of botimragy and time. This fact made the training
algorithm practically unfeasible for many tasks.

After analysing the proposed SGIATI method, we found thatiatjmodel hardens the modelling
task unnecessarily since a joint translation model solve®ie complex modelling task than what is
needed: a conditional translation model. Hence, in Chdtare proposed a monotone phrase-based
hidden Markov model (PBHMM) for machine translation. Thariing algorithms for this new proposal
are faster than the previous SGIATI model, which allowedaugtitain results in more complex tasks.
However, the time and memory complexity were still demagdifrurthermore, the model did not
improve the phrase-based model baseline for complex tasks.

Finally, we improved the PBHMM by using the hidden semi-Markmodel formalism. Thus, a
phrase-based hidden semi-Markov model was proposed int&hap This model, while remaining
close to the conventional phrase-based models, introdhedaidden semi-Markov formalism in order
to define efficient training algorithms. The experimenteadlgsis reported improvements with respect
to a phrase-based model when used as a statistical modelassical SMT system. However, when
this model played the role of a feature inside a log-lineas lfunction (a log-linear model in the SMT
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literature), the results were similar to those obtainedhwie state-of-the-art systems.
In summary, the main contributions of this thesis are thiefdhg:

e Constrained-domain maximum likelihood estimation (CDMIli&€proposed as an alternative to
the standard maximum likelihood estimation and smoothiost-processing. This novel ap-
proach was applied to the naive Bayes text classifier, dbtagood results in practice.

e New n-gram language smoothing models are proposed by applyingllEDto smooth the
leaving-one-out (Good-Turing) probability estimatese8fically, we have proposegismooth-
ing models: interval-constrained smoothing, quasi-moemiatsmoothing, monotonic smoothing,
monotonic smoothing with upper constraints, and exactneldd Kneser-Ney (eeKN) smooth-
ing.

e A detailed practical analysis of several loss functionshie scope of machine translation is
given. We proved that the direct translation rule is a speaise of a loss function. Furthermore,
we proved that the log-linear models are a special loss ifumatith a parametric vector for
characterising the loss. This parametric loss is usuallyséed or trained to resemble an error
measure such as the.Bu or the WER.

e Translation models for monotone translation problems aeegnted as the application of well-
known statistical modelling techniques such as HMM or HSMiMe results reported for the
the PBHSMM improved the quality of the translations when pared with a phrase-based
translation model. Unfortunately, the results obtaine@mthe PBHSMM model plays the role
of a feature inside a log-linear loss do not outperform thgesof-the-art translation systems for
both monotone and non-monotone systems.

e Exact EM training and Viterbi-like training obtain the samesults in practice when phrase-
based translation models are used. Specifically, we chetbiedvide spread intuition with the
proposed PBHSMM.

8.2 Ideas and future work

As research is a constantly changing and expanding field whenresearch line is explored, it is
common for several more interesting lines to arise. Siniethiesis is not the exception, we have left
several interesting and appealing lines for future expiona

Firstly, we circumvented the problem of smoothing by prapgshe CDMLE technique in Chap-
ter 2. The CDMLE technique can be easily expanded to seveybhpility models, and, hence, systems.
Specifically, in the case of multinomial distribution, wesbdeft out complex constraints that are similar
to complex smoothing techniques.

When applied tm-gram smoothing, the CDMLE yields several novel smoothemhnhiques. The
proposed techniques for smoothinggram models reported an improvement in terms of perplexity
when a back-off model is used; however, it is not yet cleat thes improvement would yield an
improvement in terms of \&WR or BLEU. We think that this is a very interesting research line since
depending on the task, we would get full improvement. Fataimse, all the improvements in isolated
models are not directly transferred to a global improveniera log-linear loss (log-linear model in
SMT literature) for machine translation tasks.

The proposed smoothings followed a backing-off scheme ghievy the best practice performance
is obtained with linear interpolation models. It would beeayinteresting research line to extend the
proposed discounting methods to linear interpolation ghing models. This extension would entail
the problem of computing leaving-one-out withctional countssince an iterative algorithm EM-like
would be necessary.
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The experimentation carried out in Chapter 3 suggestshbatifferences between the proposed and
the standard smoothing methods lay in the transition franjdimt probability domain to the conditional
domain. Recall that the techniques based on leaving-oheadnich include the proposed smoothing
models, maximise thpint likelihood function p, (w, h); even though the system goal is to optimise
the (conditional) likelihood functiorp, (w | k). We observed that the best smoothing technique, exact
extended Kneser-Ney, obtains the sgoiet perplexitieshan the KN technique; however, it is also the
technique whose performance is less diminished when it asored in terms of the standafcbndi-
tional) perplexity Therefore, we believe that improvement will be achievedlisgctly applying the
proposed techniques to maximise the (conditional) likedhfunction, even if there is no close solution
available. Moreover, it would also allow us to have discoumparameters that depend on thgram
context,h, thereby, flexibilising the smoothing models.

Another interesting observation is that directly applythg optimal smoothing parameters for the
backing-off smoothing model to the interpolated smoothimadel degrades all the proposed smooth-
ings in Chapter 3. It would be interesting to apply the pregbtheory to an interpolated smoothing
model, in order to see whether the proposed smoothings iraghe interpolation baseline or not.

In Chapter 4, we have explored the loss functions that laytween thé-1 loss function and the
general error loss functions, such as the®ér the BLEu, which have already been studied [R. Schlter
and Ney, 2005, Ueffing and Ney, 2004]. We found thatltiielinear modelsare really dog-linear loss
function The results showed that none of the proposed loss functiandeat these log-linear loss
functions. Although some outstanding loss functions wardisd in Chapter 4, there are some appeal-
ing loss functions that have been left out, such as the réngninformation. If these loss functions
were introduced inside a log-linear loss function that agjpnates the error criterion, then we think
that the system performance would be improved.

Finally, in the remaining three chapters we proposed skm@yaotone translation models. Specifi-
cally, the last model improved (in some circumstances) gseline, while having a very clear statistical
foundation. Note that we have decided to adhere to the moimtonstraint since for mainly mono-
tone (at phrase level) language pairs such as Spanish arnidtErge translation task is still an open
problem. Furthermore, adding complex reordering modelg iapurs in slight improvements.

We think that a more detailed experimentation with otheglege pairs is necessary in order to
see to what extent monotone formulation is good for thosguage pairs. Additionally, the PBHSMM
proposed in Chapter 7 can be greatly extended, as proposeection 7.7. The PBHSMM exten-
sions range from substituting the phrase emission prabiabiby a word-level model, to expanding the
model to be non-monotone at the phrase-level. However, ink that the most appealing extension is
the extension of the model with a “hidden concept” or statés Will generate a mixture of phrase dic-
tionaries to be used at different positions in the sourcéeser while performing the translation. This
extension would take into account not only semantic retatiips but also syntactic or grammatical
dependencies.

The reader should keep in mind that this extension wouldrimeislight modifications of the
PBHSMM training algorithms. Obviously, such an extensioouild require a huge parameter set.
However, this set can be reduced by modelling the emissiobatuilities at each state by IBM mod-
els 1 and 2 [Brown et al., 1993]. This would eventually lead ®BHSMM where the phrase tables are
dynamically built whenever a source phrase is needed.

Surprisingly, we found that simplified translation tasksdwh on real data such as the Europarl-
20 corpus report similar or worse results than those obtainid tive full corpora. How can long
sentences be properly translated if short sentences charmirrectly translated with similar training
data? We consider this to be a problem in the current stagetpophrase-based log-linear models and/or
error measures. Note that the length of the translated rsmegedoes not seem to simplify the task
when the training data is also restricted. Therefore, iinget® us that the current models lack enough
generalisation capacity. Although the phrase table is @ gitbin the translation process, we think that
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it is necessary to use a fined-grain unity in the translatimegss such as word-based phrase-tables, as
we proposed in the above extension to the PBHSMM.

One of the major criticisms to the proposed PBHSMM model ileg#s monotonicity at phrase
level. This problem would be solved by one of the proposedresions in Section 7.7. We are referring
to the implementation of IBM-like reorderings [Zens et &003] by means of memory states. Also,
the translation process can be divided in two steps (a reagdef the input and a monotone translation
from the reordered input to the output [Kanthak et al., 2D0BJorder to make the model non-monotone.

8.3 Scientific publications

Most of the work in this thesis has directly yielded interoaal articles in workshops, conferences and
journals. In this section, we enumerate these contribationthe scientific community, highlighting the
relationship with this thesis.

The theory and experimental results in Chapter 2 have ydetae publication in an international
conference:

e J.Andrés-Ferrer and Alfons Juan. Maxima versoimilitud con dominio restiittggapplicada a
clasificacion de textos. IRroceedings of “Campus Multidisciplinar en Percepcion eligen-
cia”, CMPI-06, pages: 791-803, Albacete, Spain July 10-14, 2006

It has also yielded a publication in an international jolirna

e J.Andrés-Ferrer and Alfons Juan. Constrained domain maximum likelihoodhesion for
naive Bayes text classificatioRattern Analysis and Applications (PAAublished online. 2009.

Some of the smoothing techniques proposed in Chapter 3 madaqged a participation in an inter-
national conference:

e J. Andrés-Ferrer and H. Ney. Extensions of absolute discounting (Kneser-ideghod). In
Proceedings of IEEE International Conference on Acoust8seech, and Signal Processing
ICASSP2009, Taipei, Taiwan, 2009. Association for Computational Lirggics.

This contribution was awarded with tHEEE Spoken Language Processing Student Travel Grant
which honours the student of an outstanding paper in theesplalkaguage processing area accepted for
publication in the ICASSP conference or a ASRU workshop spred by the IEEE Signal Processing
Society.

The results obtained with IBM model 2 in Chapter 4 were ptigiesin two international confer-
ences:

e J.Andrés-Ferrer, |. Garcia-Varea, F. Casacuberta. Analisis teérico s@sredglas de traduccion
directa e inversa en traduccion automatica estadisticRrdoeedings of “Campus Multidisci-
plinar en Percepcion e InteligenciaCMPI-06, pages: 855-867, Albacete, Spain July 10-14,
2006.

e J.Andrés-Ferrer, |. Garcia-Varea, F. Casacuberta. Combining translatiodeis in statisti-
cal machine translation. IRroceedings of the 11th International Conference on Thewate
and Methodological Issues in Machine TranslatiarMI-07, pages: 11-20, Skovde, Sweden
September 7-9, 2007.

The phrase-based results and a summary of the theory welishein an international journal:

e J.Andrés-Ferrer, D. Ortiz-Martinez, |. Garcia-Varea, F. Casacuberta. @nusbe of different
loss functions in statistical pattern recognition applieenachine translatiorPattern Recogni-
tion Letters Volume 29, pages: 1072-1081, 2008.

aMore information ahttp://research.microsoft.com/en-us/people/alexac/a ward.aspx
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Chapter 8. Conclusions

The statistical extension to GIATI, the SGIATI model, whishpresented in Chapter 5, was pub-
lished in the following journal:

e J.Andrés-Ferrer, A. Juan and F. Casacuberta. Statistical estimation afrratitransducers ap-
plied to machine translatioipplied Artificial Intelligence22(1-2):4-22, 2008.

The hidden Markov model approach to machine translatiocudised in Chapter 6 was published
in the following international workshop:

e J.Andrés-Ferrer and A. Juan. A phrase-based hidden Markov model approachathinme
translation. InProceedings of New Approaches to Machine Translatpages 57-62, January
2007.

Finally, the proposed phrased-based hidden semi-Markalefrapproach and some of the results
in Chapter 7 were published in the following internationahference:

e J.Andrés-Ferrer and A. Juan. A phrase-based hidden semi-Markov approaclhdbire trans-
lation. InProceedings of European Association for Machine TranstafEAMT) pages 168—
175, May 2009, Barcelona (Spain). European Associatioivichine Translation.
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Appendix

Karush-Kuhn-Tucker Conditions

In Chapters 2 and 3, we have used advanced convex optinmgatibniques that deserve a superficial
survey. In Section 1.1.2 Chapter 1, we have analysed thatir ¢o obtain the optimal parameter set,
it is needed to find the maximum parameter set according teemgiriterionC(60; D). Almost all the
optimisation problems that derive form this formulatiorg aubject at least to some normalisation con-
straint. In order to solve these constrained optimisatioblems theconvex optimisatiotheory [Boyd
and Vandenberghe, 2004] is usually applied.

First, we review a typical convex optimisation example. Wehato solve the following equation

6 = argmax {C(6; D)} , (A.1)
6co
subject to
P,.(0) =0, (n=1,...,N) . (A.2)
In order to solve the previous optimisation thagrangian functiormust be defined

L(6,X) =C(6;D) = > A\ Pn(6) (A.3)

where aLagrangian multiplier(),,) is defined for each equality constrainy,.
Theory concludes that solving Eq. (A.1) subject to Eq. (As2¢quivalent to solve the following
problem

6 = arg max{max £(6,\)} . (A.4)
0ce A

Therefore, an optimal point must verify the following projye
VLEO,Nps=0 , (A.5)

rising up a linear system from which the valuefbis hopefully worked out.

The above optimisation example is typically known aggnality constrained progranmowever,
in this thesis, we solve some optimisation problems that imlslude inequality constraints. In order to
solve problems with inequality constraints, tarush-Kuhn-Tucker (KKTgonditions are needed.
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Appendix A. Karush-Kuhn-Tucker Conditions

The new problem is similar to the previous constrained pnolbut with some additional inequality
constraints, that is to say, we wish to solve Eqg. (A.1) suliie&q. (A.2) and subject to the following
constraints

Q,,0)<0, (m=1,....,.M) . (A.6)
In this case, the Lagrangian function is defined as follows
LOXNp)=—CO;D)+ > APn(0) + > 1imQ,(0) - (A7)

Solving Eq. (1.15) subject to Eq. (A.2) and to Eq. (A.6) is égeiivalent to solve

6 = argminmin £(0,\, ) . (A.8)
6c® Ap

The KKT necessary conditions for a poif@, A, ) to be a maximum point of Eq. (A.8) are the fol-
lowing

Vo L0, X\, p)lg 5, =0 (A9)
P,(6)=0, (n=1,...,N) (A.10)

tm Q,,(0) =0, (m=1,...,M) (A.11)

um >0, m=1,...,M (A.12)

Q,,0)<0, (m=1,...,M) (A.13)

Even though KKT conditions amecessargonditions, they are not sufficient conditions. That is to
say that a maximum point must verify them, but not all poiheg verify them are maximum points. An
additional condition must be verified in order to check wieeth point that verifies the KKT conditions
is optimal or not. This condition states that the Hessiamefliagrangian function must be positive at a
maximum point [Boyd and Vandenberghe, 2004]. After the fids®ptimal points are given, checking
whether this sufficient and necessary condition is verifiedad, is a simple mathematical exercise. If
the characterisation of the solution is unique, then thet&ml is necessarily the maximum (if it exists).

The KKT conditions often provide just a characterisatiorthaf solution, but not a procedure to
obtain it. Hopefully, once the form of the solution is knowhis often possible to define an efficient
algorithm to obtain this characterised solution.
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