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some assumptions on the representation of the dual space of such a space, we prove3

that this is the case for instance if the Banach space where the vector measure takes4
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L. Agud et al.

1 Introduction11

Let X be a Banach space, X∗ its topological dual space and BX the closed unit ball of12

X . It is said that x∗ ∈ X∗ norms x ∈ X—or that x∗ is norming for x—if ‖x∗‖ = 1 and13

〈x, x∗〉 = ‖x‖. By the Hahn–Banach theorem there always exists such a functional.14

A Banach space X is called smooth if for every 0 �= x ∈ X the norming element15

for such x is unique. This element is denoted by �X (x). For instance, it is known16

(see [1, Part 3, Ch. 1]) that the spaces X = L p(µ)—where µ is a scalar measure and17

1 < p < ∞—are smooth and, moreover, the unique norming element for a function18

f ∈ L p(µ) is given by the formula19

�L p(µ)( f ) =
sgn( f )| f |p−1

‖ f ‖p−1
, (1)20

where the sign function sgn(·) is defined as usual.21

The aim of this paper is to study conditions under which a space of p-integrable22

functions with respect to a vector measure for 1 ≤ p < ∞, is smooth. The reader may23

take into account that these spaces represent a broad class of Banach lattices, since24

each p-convex Banach lattice (with p-convexity constant equal to one) with a weak25

unit can be represented as such a space. In particular, we analyze the natural question26

of when the property is inherited from the space where the vector measure takes its27

values, obtaining a result in the positive (Theorem 2). We also give some examples.28

A (partial) motivation of our study comes from the setting of the norm attaining29

operators. A bounded linear operator between Banach spaces, T : X → Y , is said30

to be norm attaining—or that T attains its norm—if there exists 0 �= x ∈ X such31

that ‖T (x)‖Y = ‖T ‖ · ‖x‖X . The following result, whose proof can be found in [6,32

Section 2], gives a link between smooth spaces and norm attaining operators.33

Theorem (Howard and Schep). Let T : X → Y be a linear and bounded operator34

between smooth Banach spaces. Given x ∈ X, the following assertions are equivalent:35

(a) T attains its norm at x.36

(b) T ∗(�Y (T (x))) = ‖T ‖ · �X (x).37

Actually, in the paper quoted above only the implication (a)⇒(b) is shown; however38

for the converse it suffices to notice that39

‖T (x)‖Y = 〈T (x),�Y (T (x))〉 = 〈x, T ∗(�Y (T (x)))〉40

= 〈x, ‖T ‖�X (x)〉 = ‖T ‖〈x,�X (x)〉 = ‖T ‖ · ‖x‖X .41

This general result can be improved when X and Y are spaces of p-integrable42

functions with respect to a vector measure (or in a more general case where X and Y43

are order continuous Banach functions spaces having weak unit). This will be done44

in Theorem 4. The concrete formula that can be given in this case for the functional45

attaining the norm of a norm one element f is46

�L p(m)( f )(h) = 〈h,�L p(m)( f )〉 :=

∫

�

sgn( f )| f |p−1hd〈m, x∗
f 〉, h ∈ L p(m),47
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On the smoothness of L p of a positive vector measure

for a certain positive norm one element x∗
f of X∗. Moreover, if m1 and m2 are vector48

measures, this formula will provide the better expression49

∫

�2

sgn(T ( f ))|T ( f )|q−1

‖T ( f )‖q−1
· T (h) dν2 = α

∫

�1

sgn( f )| f |p−1

‖ f ‖p−1
· h dν1, h ∈ L p(m1),50

for the equation that characterize an element f in which the norm of an operator51

T : L p(m1) → Lq(m2) is attained, where ν1 and ν2 are specific scalar measures and52

α is a positive constant.53

In order to do that, we need to give conditions that assure the smoothness of the54

spaces of p-integrable functions with respect to a vector measure. However it must be55

pointed out that not all the L p(m) spaces are smooth (see Example 1).56

2 Preliminaries and notation57

Let (�,�,µ) be a positive finite measure space. A Banach function space X (µ) over58

µ is defined to be an ideal of the space of (equivalence classes of) measurable functions59

L0(µ) endowed with a complete norm that is compatible with the µ-a.e. order and60

such that L∞(µ) ⊆ X (µ) ⊆ L1(µ) (see p. 28 in [7]).61

Let X be a Banach space, BX its closed unit ball and SX its unit sphere. Let (�,�) be62

a measurable space and m : � → X be a (countably additive) vector measure. If 1 ≤63

p < ∞ we write p′ by the extended real number satisfying 1/p +1/p′ = 1. We write64

|m| for the variation of m. A �-measurable function f is p-integrable with respect to65

m if (i) | f |p is integrable with respect to each scalar measure 〈m, x∗〉 := x∗ ◦ m, for66

each x∗ ∈ X∗, and (ii) for every A ∈ � there is an element
∫

A
| f |pdm ∈ X such that67

〈
∫

A
| f |pdm, x∗〉 =

∫

A
| f |pd〈m, x∗〉, x∗ ∈ X∗. The set of all (classes of m-a.e. equal)68

p-integrable functions is denoted by L p(m) and it defines a p-convex order continuous69

Banach function space with weak unit χ�—in the sense of [7, Def.1.b.17]—over any70

Rybakov measure ν = |〈m, x∗
0 〉| for m (see [2, Ch.IX,2]) with the norm71

‖ f ‖p,m := sup
x∗∈BX∗

(∫

�

| f |p d|〈m, x∗〉|

)
1
p

, f ∈ L p(m).72

If only condition (i) is satisfied then the corresponding spaces (with the same m-73

a.e. identification and norm) are denoted by L
p
w(m) and it is again a p-convex Banach74

function space for which L p(m) is a closed subspace. Since L p(m) is order continuous75

then its topological dual L p(m)∗ coincides with its Köthe dual L p(m)′ (cf. [8, Corollary76

2.6.5]), which is defined as77

L p(m)′ = {h �-measurable : f h ∈ L1(ν) for all f ∈ L p(m)}.78

The duality is given by the formula 〈h, f 〉 =
∫

�
f hdν. More information on L p(m)79

spaces can be found in [3,9] All unexplained terminology can be found in the standard80

references [7,8] (for Banach lattices) and [9] (for integration of scalar functions with81

respect to vector measures).82
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L. Agud et al.

Let us explain now some relevant facts regarding the integration operator83

Im :L1(m) → X associated to a vector measure m. Assume that m is positive. For84

a fixed positive x∗
0 ∈ SX∗ let ν = 〈m, x∗

0 〉 be the associated Rybakov measure. By85

using Radon–Nikodým derivatives the adjoint operator I ∗
m : X∗ → L1(m)∗ = L1(m)′86

can be written as87

I ∗
m(x∗)( f ) =

∫

�

f
d〈m, x∗〉

dν
dν, x∗ ∈ X∗, f ∈ L1(m).88

Consider the subspace of L1(m)′ given by89

R(m) =

{

I ∗
m(x∗) =

d〈m, x∗〉

dν
: x∗ ∈ BX∗

}

⊆ BL1(m)′ . (2)90

Given 1 < p < ∞, the pointwise product space B
L

p′

w (m)
· R(m) is defined as91

B
L

p′

w (m)
· R(m) =

{

h ∈ L0(ν) : h = g · I ∗
m(x∗), g ∈ B

L
p′

w (m)
, x∗ ∈ BX∗

}

.92

Note that B
L

p′

w (m)
· R(m) ⊆ BL p(m)′ . Indeed for each f ∈ L p(m), g ∈ B

L
p′

w (m)
and93

x∗ ∈ BX∗ , one has94

∣

∣

(

g · I ∗
m(x∗)

)

( f )
∣

∣=

∣

∣

∣

∣

∫

�

f g
d〈m, x∗〉

dν
dν

∣

∣

∣

∣

≤

∫

�

| f g|d〈m, x∗〉≤‖ f ‖p,m‖g‖p′,m‖x∗‖.95

As we will show in the next section, the smoothness of the space L p(m) is related to96

the opposite containment97

BL p(m)′ ⊆ B
L

p′

w (m)
· R(m).98

3 Results99

As we said at the end of the first section the space L p(m) is not, in the general case,100

smooth. This is shown in the following easy example.101

Example 1 Let 1 ≤ p < ∞. Let us consider the measure space � = {1, 2} with the102

algebra of all its subsets and the positive vector measure m : � → ℓ∞
2 defined by103

m({i}) := ei , i = 1, 2, where ei is the corresponding element of the canonical basis104

of R
2. Clearly m(�) = e1 + e2. Since the measure is positive then (cf. [9, Lemma105

3.13])106

‖ f ‖p,m =

∥

∥

∥

∥

∫

�

| f |pdm

∥

∥

∥

∥

1/p

ℓ∞
2

, f ∈ L p(m), (3)107

and so108

‖(λ1, λ2)‖p,m =
∥

∥|λ1|
pe1 + |λ2|

pe2

∥

∥

1/p

∞
= max{|λ1|

p, |λ2|
p}1/p

109

= ‖(λ1, λ2)‖∞.110
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On the smoothness of L p of a positive vector measure

Therefore L p(m) and ℓ∞
2 are isometrically isomorphic. But in [1, Part 3, Ch. 1] it is111

shown that ℓ∞ is not a smooth space. So, L p(m) is not a smooth space.112

We are ready to state and prove the main result of this paper.113

Theorem 2 Let 1 < p < ∞ and m : � → X be a positive vector measure satisfying114

(i) BL p(m)′ ⊆ B
L

p′

w (m)
· R(m).115

(ii) X is smooth.116

Then L p(m) is smooth.117

Proof Let f ∈ SL p(m). Since m is positive then (see [9, Lemma 3.13])118

‖ f ‖
p
p,m =

∥

∥

∥

∥

∫

�

| f |pdm

∥

∥

∥

∥

X

.119

Therefore, by using the Hanh–Banach Theorem we get that there is x∗
f ∈ BX∗ (that120

we can assume x∗
f ≥ 0) such that121

〈∫

�

| f |pdm, x∗
f

〉

= 1. (4)122

Let us consider the function g f = sgn( f )| f |p−1. Clearly g f ∈ B
L

p′

w (m)
(in fact it123

belongs to S
L

p′

w (m)
) since124

∥

∥

∥

∥

∫

�

|g f |
p′

dm

∥

∥

∥

∥

X

=

∥

∥

∥

∥

∫

�

| f |(p−1)p′

dm

∥

∥

∥

∥

X

= ‖ f ‖
p
p,m = 1.125

Let us define now the linear map ϕ : L p(m) → R given by126

ϕ(h) =

∫

�

hg f d〈m, x∗
f 〉, h ∈ L p(m). (5)127

Claim 1 ϕ ∈ SL p(m)′ and it norms f . Indeed, first note that for all h ∈ BL p(m) one has128

∣

∣ϕ(h)
∣

∣ ≤

∫

�

|hg f |d〈m, x∗
f 〉 ≤ ‖h‖p,m‖g f ‖p′,m ≤ 1,129

so ϕ ∈ BL p(m)′ . Moreover130

ϕ( f ) =

∫

�

f g f d〈m, x∗
f 〉 =

∫

�

f sgn( f )| f |p−1d〈m, x∗
f 〉 =

〈∫

�

| f |pdm, x∗
f

〉

= 1.131

Therefore ϕ ∈ SL p(m)′ and norms f . This proves our first claim.132
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L. Agud et al.

Since we have to prove that L p(m) is smooth and ϕ norms f let us see that ϕ is the133

unique function in SL p(m)′ norming f . Assume then that ψ ∈ SL p(m)′ norms f . We134

have to see that ψ = ϕ. By using the hypothesis (i) we find g ∈ B
L

p′

w (m)
and x∗ ∈ BX∗135

such that136

ψ = g ·
d〈m, x∗〉

dν
. (6)137

Define now the positive measure η : � → [0,∞[ given by η(A) =
d〈m, x∗〉

dν
· ν(A)138

for all A ∈ �.139

Claim 2 f ∈ SL p(η), g ∈ S
L p′

(η)
and g norms f —as a function on L p(η)—. First140

it is easy to see that ‖ f ‖L p(η) ≤ ‖ f ‖p,m = 1 and ‖g‖
L p′

(η)
≤ ‖g‖p′,m = 1. But, by141

using Hölder’s Inequality, one has142

1 =

∫

�

f gdη ≤ ‖ f ‖L p(η)‖g‖
L p′

(η)
.143

This proves our second claim.144

But bearing in mind that L p(η) is smooth (since 1 < p < ∞) and sgn( f )| f |p−1 =145

g f also norms f in L p(η) then146

g = sgn( f )| f |p−1 = g f in L p(η). (7)147

Claim 3 x∗
f and x∗ norm x =

∫

�
| f |pdm ∈ SX . Indeed by Eq. (4) we have 1 =148

〈x, x∗
f 〉. On the other hand the equality 1 = 〈x, x∗〉 follows from (7) since149

1 = ψ( f ) =

∫

�

f gd〈m, x∗〉 =

∫

�

f gdη =

∫

�

f g f dη150

=

∫

�

f g f d〈m, x∗〉 =

∫

�

| f |pd〈m, x∗〉 = 〈x, x∗〉.151

So 〈x, x∗
f 〉 = 1 = 〈x, x∗〉 and our last claim follows.152

By using the smoothness of X that is assumed by the hypothesis (ii) one has153

x∗ = x∗
f . (8)154

Therefore (6), (7), (8) and (5) give155

ψ(h) =

∫

�

hg
d〈m, x∗〉

dν
dν =

∫

�

hgdη =

∫

�

hg f dη156

=

∫

�

hg f

d〈m, x∗〉

dν
dν =

∫

�

hg f d〈m, x∗
f 〉 = ϕ(h),157

for all h ∈ L p(m) and the theorem is proved. ⊓⊔158
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On the smoothness of L p of a positive vector measure

As we know, for a scalar measure µ the space L p(µ) is smooth for 1 < p < ∞159

(see the Sect. 1). However, this is not the case for the space L1(µ). In the setting160

of the vector valued measures the situation is different. Indeed, if 1 < p < ∞ the161

space L1(m p) associated to the measure m p : � → L p(µ) given by m p(A) = χ
A

is162

isometrically isomorphic to L p(µ). This means that L1(m p) is smooth. Actually as a163

consequence of Theorem 2 we can prove that in general the space L p(m) is smooth164

provided that L1(m) is smooth and has the Fatou property. The proof is a consequence165

of a result regarding products of Banach function spaces which can be found in [10,166

Theorem 3.7].167

Theorem (Schep). Let E and F be Banach function spaces with the Fatou property.168

If E · F = G is a product Banach function space, then E · G ′ is a product Banach169

function space and E · G ′ = F ′.170

Corollary 3.1 Let 1 < p < ∞ and m : � → X be a positive vector measure. If171

L1(m) is smooth and has the Fatou property then L p(m) is smooth.172

Proof Let is consider the (countable additive) vector measure173

m0 : � → L1(m)

A �→ m0(A) = χA.
(9)174

By the hypothesis, Y = L1(m) is smooth. Since L p(m0) is isometrically isomorphic175

to L p(m), for 1 ≤ p < ∞, then we only have to show that (i) in Theorem 2 holds.176

First note that R(m0) = BL1(m0)
′ . Indeed, just bearing in mind (2) we have177

R(m0) ⊆ BL1(m0)
′ .178

But on the other hand, given h ∈ BL1(m0)
′ then179

〈m0, h〉(A) = 〈m0(A), h〉 =

∫

A

hdµ, A ∈ �,180

therefore h =
d〈m0,h〉

dµ
∈ R(m0) so R(m0) = BL1(m0)

′ .181

Hence hypothesis (i) in Theorem 2 is now182

BL p(m0)′ ⊆ B
L

p′

w (m0)
· BL1(m0)

′ . (10)183

Therefore let us show184

L p(m0)
′ = L p′

w (m0) · L1(m0)
′. (11)185

It is well-known (see [9, Proposition 3.43]) that186

L p(m0) · L p′

w (m0) = L1(m0), (12)187

so taking E = L
p′

w (m0)—which has always the Fatou property—, F = L p(m0) and188

G = L1(m0)—which have the Fatou property by the hypothesis—, we can apply the189
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L. Agud et al.

theorem by Schep quoted above (taking into account that all the equalities are actually190

isometries), to obtain (11), and in consequence (10). The result follows applying our191

Theorem 2. ⊓⊔192

This result can be easily adapted for the case of order continuous Banach function193

spaces having the Fatou property by means of the well-known representation theorems194

and the pth powers theory for these spaces; actually it can also be deduced from195

Corollary 3.1. The pth power X (µ)[p] of a Banach function space X (µ) is defined as196

the space of functions197

X (µ)[p] = { f measurable : | f |1/p ∈ X (µ)},198

It is a Banach function space with the norm199

‖ f ‖X (µ)[1/p]
=

∥

∥| f |p
∥

∥

1/p

X (µ)
, f ∈ X (µ)[1/p].200

Note that with this definition, L p(m) = L1(m)[1/p] and L1(m) = L p(m)[p]. We refer201

the reader to [9, Sec. 2.2] for the unexplained information regarding Banach function202

spaces and theirs pth powers.203

Corollary 3.2 Let X (µ) be an order continuous Banach function space over a positive204

finite measure having the Fatou property and let 1 < p < ∞. If X (µ) is smooth, then205

X (µ)[1/p] is smooth.206

Let us analyze now the main requirement on the spaces that appears in our results207

in order to give a geometric meaning to our setting. Condition (i) in Theorem 2 can208

be replaced by the slightly stronger condition209

(i’) BL p(m)′ ⊆ B
L p′

(m)
· R(m).210

Clearly, condition (i’) implies condition (i). However this new condition (i’) can be211

interpreted in geometric terms. To explain this let us introduce first some terminology212

regarding boundaries in Banach spaces. Let X be a Banach space and K be a w∗-213

compact subset of X∗. A James boundary for K is a subset B of K such that for all214

x ∈ X there is b ∈ B such that215

〈x, b〉 = sup
k∈K

〈x, k〉.216

It is well-known (see [5]) that if X∗ is weakly compactly generated (WCG) then217

BX∗ = co(B)
‖·‖X

, (13)218

for each James boundary B of BX∗ . In our setting, a result by Ferrando and Rodríguez219

ensures that in the case when 1 < p < ∞ the space L p(m)′ is WCG (see [4, Theorem220

3.1]) so (13) applies for all James boundary B for BL p(m)′ . Moreover Theorem 3.12 in221

123

Journal: 605 Article No.: 0666 TYPESET DISK LE CP Disp.:2014/7/15 Pages: 15 Layout: Small-X

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d

p
ro

o
f

On the smoothness of L p of a positive vector measure

[4] asserts that in the case when the vector measure m is positive then the (pointwise222

product) set223

B
L p′

(m)
· R(m)224

is a James boundary for BL p(m)′ . This gives directly the proof of the next lemma.225

Lemma 3 Let m : � → X be a positive vector measure and 1 < p < ∞. The226

following assertions are equivalent:227

(a) B
L p′

(m)
· R(m) is convex and closed.228

(b) BL p(m)′ ⊆ B
L p′

(m)
· R(m).229

With all these results we obtain the next230

Corollary 3.3 Let 1 < p < ∞ and m : � → X be a positive vector measure231

satisfying:232

(i) B
L p′

(m)
· R(m) is convex and closed.233

(ii) X is smooth.234

Then L p(m) is smooth.235

We finish this section with a general version of the theorem by Howard and Schep236

mentioned in the introduction. In order to do that we fix some notation. For 1 < p < ∞237

the space L p(µ) for µ positive scalar measure is smooth. Hence the unique norming238

element for a function f ∈ SL p(µ) is given by the formula239

�L p(µ)( f ) = sgn( f )| f |p−1 = g f .240

In the case of the spaces L p(m) we know that ϕ : L p(m) → R given by241

ϕ(h) =

∫

�

hg f d〈m, x∗
f 〉, h ∈ L p(m),242

norms f for x∗
f ∈ BX∗ satisfying243

〈∫

�

| f |pdm, x∗
f

〉

= 1.244

Therefore if we assume that L p(m) for 1 < p < ∞ is smooth then ϕ is the unique245

norming element for f ∈ SL p(m) and will be denoted by �L p(m)( f ), i.e.,246

�L p(m)( f ) = sgn( f )| f |p−1
d〈m, x∗

f 〉

dν
= g f I ∗

m(x∗
f ).247

Theorem 4 Let m1, m2 : � → X be positive vector measures and let T : L p(m1) →248

Lq(m2) be a linear and bounded operator with 1 < p, q < ∞. Given f ∈ L p(m1),249

if L p(m1) and Lq(m2) are smooth then the following assertions are equivalent.250
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(a) T attains its norm at f .251

(b) There exists α ∈ R such that T ∗(�Lq (m2)(T f )) = α�L p(m1)( f ).252

In this case, α = ‖T ‖.253

(c) There exists α ∈ R such that the positive scalar measures ν1 = 〈m, x∗
f 〉 and254

ν2 = 〈m, x∗
T ( f )

〉 satisfy255

∫

�2

sgn(T ( f ))|T ( f )|q−1

‖T ( f )‖q−1
· T (h) dν2 = α

∫

�1

sgn( f )| f |p−1

‖ f ‖p−1
· h dν1,256

for all h ∈ L p(m1). In this case, α = ‖T ‖.257

Proof The equivalence between (a) and (b) is just the result of Howard and Schep258

taking X = L p(m1) and Y = Lq(m2). So let us show now the equivalence between259

(b) and (c); in fact (c) is just a reformulation of (b). Consider the positive measures ν1260

and ν2 by ν1 = 〈m1, x∗
f 〉 and ν2 = 〈m2, x∗

T ( f )
〉. So, given h ∈ L p(m1)261

T ∗(�Lq (m2)(T ( f )))(h) = 〈T ∗(�Lq (m2)(T ( f ))), h〉262

= 〈�Lq (m2)(T ( f )), T (h)〉263

=

∫

�2

sgn(T ( f ))
∣

∣T ( f )
∣

∣

q−1

‖T ( f )‖q−1
T (h)d〈m2, x∗

T ( f )〉264

=

∫

�2

sgn(T ( f ))
∣

∣T ( f )
∣

∣

q−1

‖T ( f )‖q−1
T (h)dν2.265

In a similar way we obtain266

〈�L p(m1)
( f ), h〉 =

∫

�1

sgn( f )| f |p−1

‖ f ‖p−1
hd〈m1, x∗

f 〉 =

∫

�1

sgn( f )| f |p−1

‖ f ‖p−1
hdν1,267

and so the equality is proved and we finish the proof. ⊓⊔268

4 Examples269

We finish the paper with some relevant examples in which we can apply our results.270

In particular, we show some cases in which the inclusion271

BL p(m)′ ⊆ B
L p′

(m)
· R(m) (14)272

holds. We start with a well-known case which comes from a canonical construction.273

Example 5 Let (�,�,µ) be a positive finite measure space and 1 < p < ∞ and274

consider the vector measure m0 : � → L1(µ) given by m0(A) = χ
A

for each A ∈ �.275

Then it is well-known that L p(m0) is isometrically isomorphic to L p(µ). On the other276
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On the smoothness of L p of a positive vector measure

hand, take the Rybakov measure ν associated to the function χ
�

∈ L∞(µ). Note that277

in such case ν = 〈m0, χ�
〉 = µ, since278

ν(A) = 〈m0, χ�
〉(A) = 〈m0(A), χ

�
〉 =

∫

A

χ
�

dµ = µ(A), A ∈ �. (15)279

For this vector measure, the relation that appears in formula (14) is B
L p′

(µ)
⊆ B

L p′
(µ)

·280

R(m0). But this containment is trivially satisfied considering the decomposition g =281

gχ
�

for each g ∈ L p′
(µ) just taking into account that (15) gives282

d〈m0, χ�
〉

dµ
= χ

�
.283

Note that in this example the space X = L1(µ) is not smooth. However, the cor-284

responding space L p(m0) is a smooth space since it is isometrically isomorphic to285

L p(µ) for 1 < p < ∞. This means that conditions (i) and (ii) in Theorem 2 do not286

characterize the smoothness of the corresponding space L p(m).287

We present now a generalization of Example 5. Note that its proof follows the lines288

of the proof of Corollary 3.1.289

Example 6 Let us consider bounded linear map T : X (µ) → Y (µ) where290

(a) X (µ) is an order continuous Banach function space having weak unit.291

(b) Y (µ) is an order continuous Banach function space having weak unit and satis-292

fying the Fatou property.293

Take now the (countable additive) vector measure m
T

: � → Y (µ) given by m
T
(A) =294

T (χ
A
), A ∈ �, and suppose that the spaces X (µ) and Y (µ) are Banach function spaces295

over a Rybakov measure for m
T

(for instance, if µ is a Rybakov measure for m
T

).296

Assume finally that297

(c) the integration operator associated to the vector measure m
T

, that is, the operator298

Im
T

: L1(m
T
) → Y (µ) defined by Im

T
( f ) =

∫

�
f dm

T
= T ( f ), f ∈ L1(m

T
)299

is an isometry.300

With these assumptions we have:301

• L1(m
T
) = Y (µ) and then L2(m

T
) = Y (µ)

[ 1
2 ]

.302

• R(m
T
) = BY (µ)′ isometrically. Indeed, since Im

T
is an isometry then I ∗

m
T

303

also is and then R(m
T
) = I ∗

m
T
(BY (µ)′) = BY (µ)′ . Moreover if y′

0 ∈ Y (µ)′ then304

‖y′
0‖Y (µ)′ = ‖I ∗

m
T
(y′

0)‖L1(m
T

)′ =

∥

∥

∥

∥

d〈m
T
, y′

0〉

dµ

∥

∥

∥

∥

L1(m
T

)′
,305

so the equality is an isometry. Let us show that306

BL2(m
T

)′ ⊆ BL2(m
T

) · R(m
T
),307
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L. Agud et al.

that is308

BL2(m
T

)′ ⊆ BL2(m
T

) · BL1(m
T

)′ .309

First note that since Y (µ) has the Fatou property then L2(m
T
) = Y (µ)

[ 1
2 ]

also has.310

This means that L2(m
T
) = L2

w(m
T
) and then using [9, Proposition 3.43] one has the311

isometry312

L2(m
T
) · L2(m

T
) = L1(m

T
).313

On the other hand taking into account again that L2(m
T
) has the Fatou property, using314

[10, Theorem 3.7] with E = L2(m
T
) = F and L2(m

T
)·L2(m

T
) = L1(m

T
) we obtain315

L2(m
T
) · L1(m

T
)′ = L2(m

T
)′,316

and then317

BL2(m
T

)′ = BL2(m
T

) · BL1(m
T

)′ .318

It is easy to see that the previous example apply if, for instance, one considers as319

T the inclusion map between classical Lebesgue spaces as i : L2[0, 1] → L1[0, 1].320

We finish this paper by giving an example where we use our results in order to321

obtain the smoothness of the space322

X =
⊕

4

L2(µ|Ai
),323

where µ is the Lebesgue measure on [0, 1] and (Ai )i≥1 is a disjoint family of mea-324

surable subsets of [0, 1].325

Example 7 Let us consider µ the Lebesgue measure on [0, 1] and take (Ai )i≥1 a326

disjoint family of measurable subsets of [0, 1]. Define the positive ℓ2−valued vector327

measure m : � → ℓ2 given by328

m(A) =
∑

i≥1

µ(A ∩ Ai )ei , A ∈ �,329

where (ei )i≥1 is the usual canonical basis of ℓ2. Take now the Rybakov measure for330

m associated to x∗
0 = (2−i/2)i≥1 ∈ ℓ2. It is easy to see that331

L1(m) =

⎧

⎨

⎩

f ∈ L0(ν) :
∑

i≥1

(∫

Ai

| f |dµ

)2

< ∞

⎫

⎬

⎭

=
⊕

2

L1(µ|Ai
),332
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On the smoothness of L p of a positive vector measure

and, consequently333

L2(m) =

⎧

⎨

⎩

f ∈ L0(ν) :
∑

i≥1

(∫

Ai

| f |2dµ

)2

< ∞

⎫

⎬

⎭

=
⊕

4

L2(µ|Ai
).334

Therefore335

L2(m)′ =

(

⊕

4

L2(µ|Ai
)

)′

=
⊕

4/3

L2(µ|Ai
).336

In order to have (14) we have to show that B⊕

4/3 L2(µ|Ai
) ⊆ BL2(m) · R(m) so take337

∑

i≥1 gχ
Ai

∈
⊕

4/3 L2(µ|Ai
) such that

∑

i≥1

( ∫

Ai
|g|2dµ

)2/3
≤ 1. Let us take the338

sequence (αi )i≥1 defined by339

αi =
1

2i/2

(∫

Ai

|g|2dµ

)
1
3

,340

and consider the decomposition341

∑

i≥1

gχ
Ai

=

⎛

⎝

∑

i≥1

g

2i/2αi

χ
Ai

⎞

⎠ ·

⎛

⎝

∑

i≥1

2i/2αiχAi

⎞

⎠ .342

• First of all note that (αi )i≥1 ∈ Bℓ2 since343

∑

i≥1

|αi |
2 =

∑

i≥1

1

2i

(∫

Ai

|g|2dµ

)
2
3

≤
∑

i≥1

(∫

Ai

|g|2dµ

)
2
3

≤ 1.344

• On the other hand
(
∑

i≥1 g/(2i/2αi )χAi

)

∈ BL2(m) since345

∑

i≥1

(∫

Ai

∣

∣

g

2i/2αi

∣

∣

2
dµ

)2

=
∑

i≥1

1

(2i/2αi )4

(∫

Ai

|g|2dµ

)2

346

=
∑

i≥1

(∫

Ai

|g|2dµ

)
2
3

≤ 1.347

123

Journal: 605 Article No.: 0666 TYPESET DISK LE CP Disp.:2014/7/15 Pages: 15 Layout: Small-X

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d

p
ro

o
f

L. Agud et al.

• Finally
∑

i≥1 2i/2αiχAi
∈ R(m). Indeed, if we write x∗ = (αi )i≥1 ∈ Bℓ2 , then348

I ∗
m(x∗) =

d〈m, x∗〉

dν
=

d〈m, x∗〉

dµ

dµ

dν
=

⎛

⎝

∑

i≥1

αiχAi

⎞

⎠

⎛

⎝

∑

i≥1

2i/2χ
Ai

⎞

⎠

349

=
∑

i≥1

2i/2αiχAi
.350

Since the space X = ℓ2 is smooth then as a direct consequence of our results one351

obtains the following352

Corollary 8 Let µ be the Lebesgue measure on [0, 1] and take (Ai )i≥1 a disjoint353

family of measurable sets of [0, 1]. Then the space354

X =
⊕

4

L2(µ|Ai
),355

is smooth.356

Clearly with the corresponding easy modifications one can get that if µ is the357

Lebesgue measure on [0, 1] and (Ai )i≥1 is a disjoint family of measurable subsets of358

[0, 1] then the space359

X =
⊕

p

Lq(µ|Ai
),360

is smooth for adequate 1 < p, q < ∞.361

Open problems. All the proofs of the results in this paper depend strongly of the362

condition given by the equation363

BL p(m)′ ⊆ B
L

p′

w (m)
· R(m).364

However we do not know the answers to the following general questions without this365

requirement. Let 1 < p < ∞.366

(Q1) If X is smooth, is L p(m) also a smooth space?367

(Q2) If L1(m) is smooth, is L p(m) also a smooth space?368

If the Fatou property is required for L1(m)—equivalently, if L1(m) = L1
w(m)—,369

Corollary 3.1 gives the answer. This happens for example if X is reflexive. But the370

general result is unknown.371
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