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Abstract. Road traffic is experiencing a drastic increase in recent years,
thereby increasing the every day traffic congestion problems, especially
in cities. Vehicle density is one of the main metrics used for assess-
ing the road traffic conditions. Currently, most of the existing vehicle
density estimation approaches, such as inductive loop detectors or traf-
fic surveillance cameras, require infrastructure-based traffic information
systems to be installed at various locations. In this paper, we present
I-VDE, a solution to estimate the density of vehicles that has been spe-
cially designed for Vehicular Networks. Our proposal allows Intelligent
Transportation Systems to continuously estimate the vehicular density
by accounting for the number of beacons received per Road Side Unit,
as well as the roadmap topology. Simulation results indicate that our
approach accurately estimates the vehicular density, and therefore auto-
matic traffic controlling systems may use it to predict traffic jams and
introduce countermeasures.

Keywords: Vehicular Networks, vehicular density estimation, Road Side
Unit, VANETs.

1 Introduction

Enhancing transportation safety and efficiency has emerged as a major objective
for the automotive industry in the last decade [12]. However, road traffic is
experiencing a drastic increase. Hence, vehicular traffic congestion is becoming a
major problem, especially in metropolitan environments throughout the world.
Traffic congestion: (i) reduces the efficiency of the transportation infrastructure,
(ii) increases travel time, fuel consumption, and air pollution, and (iii) leads to
increased user frustration and fatigue [14].

Some of the factors that cause traffic congestion are badly managed roads,
poorly designed roads, or bad traffic lights sequencing [13]. These factors provoke
that vehicles are not uniformly distributed on the roads, making it possible to
find extremely high congested areas where vehicles travel very slow or even get
stuck.
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2 Javier Barrachina et al.

In vehicular environments, wireless technologies enable peer-to-peer mobile
communication among vehicles (V2V) [9], and communication between vehicles
and the infrastructure (V2I) [11]. Vehicles can broadcast warning messages in
case of an accident, and also periodically exchange other messages (beacons)
that contain information about their position, speed, route, etc. These messages
are received by the rest of vehicles and by the Road Side Units (RSUs), which
are communication nodes installed to create a vehicular infrastructure.

Traditionally, vehicle density has been one of the main metrics used for as-
sessing the road traffic conditions. A high vehicle density usually indicates that
the traffic is congested. However, the density of vehicles circulating in a city
highly varies depending on the area and the time during the day.

Currently, most of the vehicle density estimation approaches are designed
for using infrastructure-based traffic information systems, which require the de-
ployment of vehicle detecting devices such as inductive loop detectors or traffic
surveillance cameras. However, these approaches are limited since they can only
be aware of traffic density in a very specific and reduced area (i.e., the streets
and junctions in which these devices are already located), making it difficult to
estimate the vehicular density of a neighborhood, or a whole city. In addition,
some of these approaches are not able to perform the density estimation process
in real time (e.g., using cameras involves hard image treatment and analysis).

We consider that a vehicular communications system able to estimate the
traffic density in real-time could mitigate or even solve traffic congestion prob-
lems. In this work, we present a solution to estimate the traffic density on the
roads that relies on the V2I communication capabilities offered by Vehicular Net-
works. In particular, we intend to estimate the density, taking into account the
number of beacons received by the RSUs and the characteristics of the topology
of the selected area. Hence, real-time traffic controlling systems can precisely
estimate the vehicular density in a determined area, and then redirect vehicles
to lower traffic density areas in order to avoid traffic jams. This could be possible
by using the in-vehicle communication capabilities and navigation systems.

The rest of this paper is organized as follows: Section 2 reviews previous
approaches related to our work, focusing on infrastructure-based solutions to
estimate traffic density. Section 3 details our proposal for real-time RSU-based
vehicular density estimation, assessing its goodness. Additionally, we discuss the
obtained results and measure the estimated error. In Section 4 we validate our
proposal. Finally, Section 5 concludes this paper.

2 Related Work

In this section we review previous works related to our proposal. In particular,
we focus on the infrastructure-based solutions to estimate traffic density.

Despite the importance of determining the vehicular density to reduce traffic
congestion, so far there have been few studies that explored the density estima-
tion process.
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Tyagi et al. [14] considered the problem of vehicular traffic density estimation,
using the information cues available in the cumulative acoustic signal acquired
from a roadside-installed single microphone. This cumulative signal comprises
several noise signals such as tire noise, engine noise, engine-idling noise, occa-
sional honks, and air turbulence noise of multiple vehicles. The occurrence and
mixture weightings of these noise signals are determined by the prevalent traffic
density conditions on the road segment. Based on these learned distributions,
they used a Bayes’ classifier to classify the acoustic signal segments spanning
a duration of 5-30 s. Using a discriminative classifier, such as a Support Vector

Machine (SVM), results in further classification accuracy compared to a Bayes’
classifier. Tan and Chen [13] proposed a novel approach based on video analysis
which combines an unsupervised clustering scheme called AutoClass with Hid-

den Markov Models (HMMs) to determine the traffic density state in a Region

Of Interest (ROI) of a road. Firstly, low-level features were extracted from the
ROI of each frame. Secondly, an unsupervised clustering algorithm called Au-
toClass was applied to the low-level features to obtain a set of clusters for each
pre-defined traffic density state.

These works established the importance of vehicular density awareness for
neighboring areas, but none has deepened in the analysis of the accuracy of the
method used to estimate this density, or the effect of the topology in the results
obtained. Moreover, this estimation does not take place in real time.

Regarding the use of Vehicular Networks, Garelli et all. [6] proposed a fully-
distributed approach to the online estimation of vehicle traffic density. Their
approach makes communicating vehicles to cooperate in order to collect density
measurements through a uniform sampling of the road sections of interest. The
proposed scheme does not require the presence of any network infrastructure,
central controller or devices triggered by the passage of vehicles, and it is suitable
for both highway and urban environments. Results derived through simulations
show that their solution is very effective, providing accurate, on-line estimates
of the traffic density with minimal protocol overhead. More recently, Akhtar
et al. [1], proposed a fully distributed and infrastructure-free mechanisms for
the density estimation in vehicular ad hoc networks. Unlike previous distributed
approaches, that either rely on group formation, or on vehicle flow and speed
information to calculate density, their proposal is inspired by the mechanisms
proposed for system size estimation in peer-to-peer networks. Authors adapted
and implemented three fully distributed algorithms, namely Sample & Collide,
Hop Sampling, and Gossip-based Aggregation. The simulations of these algo-
rithms at different vehicle traffic densities and area sizes for both highways and
urban areas reveal that Hop Sampling provides the highest accuracy in least
convergence time and introduces least overhead on the network, but at the cost
of higher load on the initiator node.

Although these works studied the use of Vehicular Networks to estimate ve-
hicular density in real time, authors did not account for the effect of obstacles in
the wireless signal propagation which can make results very inaccurate, especially
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Fig. 1. Different criteria when counting the number of streets.

in urban scenarios. Moreover, they only accounted for the number of beacons
received, while omitting the map features where the vehicles are located.

3 Real-Time Vehicular Density Estimation

In this work we propose a method able to accurately estimate the density of
vehicles, which is based on the number of beacons received by RSUs and the
roadmap topology. We made a total of 900 experiments. These experiments
involved the simulation of controlled scenarios (i.e., scenarios where the actual
density is known). According to the results obtained, and using a regression
analysis, we propose a density estimation function capable of estimating the
vehicular density in every urban environment at any instant of time.

In this section we first present a discussion about the most important fea-
tures of the different city roadmaps. Later, we present the parameters and the
methodology used in our simulations. Finally, we detail our proposed density
estimation function, and estimate its error.

3.1 Features of the Cities Studied

The roadmaps used during the experiments to achieve the density estimation
were selected in order to have different profile scenarios (i.e., with different topol-
ogy characteristics).

The first step before starting the simulations was to obtain the main features
of each roadmap (i.e., the number of streets, the number of junctions, the average
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Table 1. Number of Streets obtained depending on the approach used

City SUMO OSM RAV
New York 700 827 257

Minnesota 1592 105 459

Madrid 1387 1029 628

San Francisco 1710 606 725

Amsterdam 3022 796 1494

Sydney 1668 315 872

Liverpool 3141 1042 1758

Valencia 5154 1050 2829

Rome 2780 1484 1655

distance of segments, and the number of lanes per street). As for the streets,
we realized that different alternatives could be selected to obtain the number
of streets of a given roadmap. Basically, they are: (i) the number of streets
obtained in SUMO [7], where each segment between two junctions is considered
a street, (ii) the number of streets obtained in OpenStreetMap (OSM) [10], where
each street has a different ”name”, and (iii) the number of streets according to
our Real Attenuation and Visibility (RAV) radio propagation model, where the
visibility between vehicles is taken into account when identifying the streets [5].

Figure 1 shows a small portion of New York City to depict the different
criteria when counting the number of streets. For example, Thames Street is
considered only one street in OSM, whereas the SUMO and RAV models con-
sider that there are two different streets instead. However, if we observe Cedar
Street, the RAV visibility model and the OSM approaches consider a single street
(as expected), whereas it is represented by three different streets according to
SUMO, since it has three different segments. Finally, according to both the OSM
and SUMO approaches, Trinity Place and Church Street are represented as two
different streets, whereas the RAV model considers that only one street exists.

Table 1 shows the values obtained according to each criterion to count the
number of streets for the cities studied. As shown, the differences between these
approaches are significant (e.g., New York has 700, 827, or 257 streets when
considering SUMO segments, OSM streets, or the RAV visibility approach, re-
spectively, whereas Sydney has 1668, 315, or 872 streets, depending on the se-
lected criterion). Therefore, it is important to decide which one to use in order
to obtain accurate results. After some experiments, we realized that the third
approach better correlated with the real features of cities, since the other two
present some drawbacks: they are not accurate enough, or they present some
errors. So, we choose this approach for the analysis that follows.

Table 2 shows the main features of each map of the cities under study (i.e.,
the number of streets according to the RAV algorithm, the number of junctions,
the average distance of segments, and the number of lanes per street). We also
added a column labeled as SJ Ratio, which represents the result of dividing the
number of streets between the number of junctions. As shown, the first city (New
York) presents a SJ ratio of 0.5130, which indicates that it has a simple topology,
whereas the last cities in the table present a SJ greater value, which indicates a
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Table 2. Map Features

Map Streets Junctions avg. segment distance (m.) lanes/street SJ Ratio
New York 257 500 45.8853 1.0590 0.5140

Minnesota 459 591 102.0652 1.0144 0.7766

Madrid 628 715 83.0820 1.2696 0.8783

San Francisco 725 818 72.7065 1.1749 0.8863

Amsterdam 1494 1449 44.8973 1.1145 1.0311

Sydney 872 814 72.1813 1.2014 1.0713

Liverpool 1758 1502 49.9620 1.2295 1.1704

Valencia 2829 2233 33.3653 1.0854 1.2669

Rome 1655 1193 45.8853 1.0590 1.3873

more complex topology. This aggregated factor correlates well with the obtained
results.

3.2 Simulation Environment

Simulations were done using the ns-2 simulator [3], where the PHY and MAC
layers have been modified to follow closely the IEEE 802.11p standard, which
defines enhancements to the 802.11 required to support ITS applications. We
assume that all the nodes of our network have two different interfaces: (i) an
IEEE 802.11n interface tuned at the frequency of 2.4 GHz for V2I communi-
cations, and (ii) an IEEE 802.11p interface tuned at the frequency of 5 GHz
for V2V communications. In terms of the physical layer, the data rate used for
packet broadcasting is 6 Mbit/s, as this is the maximum rate for broadcasting
in 802.11p. The MAC layer was also extended to include four different priorities
for channel access. Therefore, application messages are categorized into four dif-
ferent Access Categories (ACs), where AC0 has the lowest and AC3 the highest
priority.

To prove how maps affect the performance of vehicular communications, we
selected nine street maps, each one representing a square area of 4 km2. Figure
2 shows the topology of the maps used in the simulations. In order to deploy
RSUs in the maps, we use the Uniform Mesh deployment policy [2], that consists
on distributing RSUs uniformly on the map. The advantage of this deployment
policy is that it achieves a more uniform coverage area since the distance between
RSUs is the same, preventing RSUs to be positioned too closely, or too sparsely.

As for the mobility of the vehicles, it has been performed with CityMob for

Roadmaps (C4R) [4], a mobility generator able to import maps directly from
OpenStreetMap [10], and generate ns-2 compatible traces. Table 3 shows the
parameters used for the simulations.

We tested our proposal by evaluating the performance of a Warning Message
Dissemination mechanism, where each vehicle periodically broadcasts informa-
tion about itself or about an abnormal situation (traffic jams, icy roads, etc.). To
increase the realism of our results, we include the possibility that vehicles share
accident notification messages in our simulations. In fact, we consider that vehi-
cles can operate in two different modes: (a) warning, and (b) normal. Vehicles in
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2. Scenarios used in our simulations. Fragments of the cities of: (a) New York
(USA), (b) Minnesota (USA), (c) Madrid (Spain), (d) San Francisco (USA), (e) Am-
sterdam (Netherlands), (f) Sydney (Australia), (g) Liverpool (England), (h) Valencia
(Spain), and (i) Rome (Italy).
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Table 3. Parameters used for the simulations

Parameter Value

New York, Minnesota, Madrid,
roadmaps San Francisco, Amsterdam, Sydney,

Liverpool, Valencia, and Rome
roadmap size 2000m × 2000m
number of vehicles [100, 200, 300...1000]
beacon message size 512B
warning messages priority AC3
beacon priority AC1
interval between messages 1 second
number of RSUs 9
RSU deployment policy Uniform Mesh [2]
MAC/PHY 802.11p
radio propagation model RAV [5]
mobility model Krauss [8]
channel bandwidth 6Mbps
max. transmission range 400m

warning mode inform other vehicles about their status by sending warning mes-
sages periodically (every second). Normal mode vehicles enable the diffusion of
these warning packets and, every second they also send beacons with information
such as their positions, speed, etc. These periodic messages are not propagated
by other vehicles.

All the results represent an average of over 10 repetitions with different sce-
narios, and each simulation run lasted for 30 seconds.

3.3 Density Estimation Function

After performing the topological analysis of the studied maps, we obtained the
number of beacons received by each RSU during 30 seconds, taking into account
that each vehicle sends one beacon per second, and that these messages, unlike
warning messages, are not disseminated by the rest of the vehicles.

Figure 3 shows the results obtained for the different cities studied. As shown,
the performance in New York and Minnesota in terms of number of beacons
received highly differs from the rest of the cities. This is caused because New
York and Minnesota have a low SJ ratio (i.e., they are simple roadmaps). As
expected, complex roadmaps (maps which have a higher SJ Ratio) present a
number of beacons received lower than simple roadmaps for a similar vehicular
density. Figure 3 also shows that the vehicular density not only depends on the
number of beacons received, but also on the SJ ratio (according to data shown
in Table 2). Therefore, the characteristics of the roadmap will be very useful in
order to accurately estimate the vehicular density in a given scenario.

After observing the direct relationship between the topology of the maps, the
number of beacons received, and the density of vehicles, we proceed to obtain a
function to estimate, with the minimum possible error, each of the curves shown
in Figure 3. To this purpose, we performed a regression analysis that allowed us
to find a polynomial equation offering the best fit to the data obtained through
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Table 4. Proposed equation coefficients

Coeff. Value
a 2.4328753582642619E+02

b 8.8667060945557523E+00

c -4.2340086242746855E+02

d 3.2563178030488615E+01

f 1.8200236614892370E+02

g -6.4626326366022894E+01

simulation. Equation 1 shows the density estimation function, which is able to
estimate the number of vehicles per km2 in urban scenarios, according to the
number of beacons received per RSU, and the SJ ratio (i.e., streets/junctions).

f(x, y) = a+ b · ln(x) +
c

y
+ d · ln(x)2 +

f

y2
+

g · ln(x)

y
(1)

In this equation, x is the number of beacons received by each RSU, and y is
the SJ ratio obtained from the roadmap. The values of the polynomial coefficients
(a, b, c, d, f, and g) are listed in Table 4.

To determine the accuracy of our proposal, it is necessary to measure the
estimated error. Table 5 shows the different types of errors calculated when
comparing our density estimation function with the values actually obtained.
Note that the average relative error is of only 3.63%. We consider that this error
can be neglected in the majority of traffic congestion mitigation applications,
thus validating our proposed function.
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Table 5. Density Estimation Error

Error Absolute Relative
Minimum -5.736426E+01 -1.218902E+00

Maximum 5.135632E+01 1.784647E+00

Mean -1.642143E-14 3.634060E-02

Std. Error of Mean 2.596603E+00 3.592458E-02

Median -1.914503E+00 -2.313015E-02

Table 6. Received Beacons when simulating 200 vehicles/km2 in Mexico D.F.

RSU Received beacons % of received beacons
1 54 12.62

2 46 10.75

3 43 10.05

4 68 15.89

5 48 11.21

6 38 8.88

7 48 11.21

8 46 10.75

9 37 8.64

Total 428 100
Average 47.56 -

4 Validation of our Proposal

To assess our proposed density estimation function, we simulated a new par-
ticular case. Specifically, we chose Mexico D. F., a city with a small SJ Ratio
(0.7722), and we simulated a density of 200 vehicles per km2. Figure 4 shows the
RSU deployment strategy and the vehicles’ location at the end of the simulation
for the studied example, and Table 6 shows the obtained results. As shown, the
average number of beacons received per RSU is 47.56. According to I-VDE (i.e.,
applying the polynomial function as shown in Equation 2), we estimate a density
of 196.91 vehicles. In this example, the estimation of vehicular density obtained
an error of 3.09 vehicles, which only represents the 1.51% of the total vehicles.

f(x, y) = a+ b · ln(47.56) +
c

0.7722
+ d · ln(47.56)2 +

f

0.77222
+ (2)

+g ·
ln(47.56)

0.7722
= 196.91

Moreover, using our system, we are able to estimate the vehicular density
in more specific areas. For example, using the data included in Table 6, our I-
VDE can identify areas where the traffic is more congested (i.e., areas where the
RSUs receive a higher percentage of beacons). In our experiment, RSUs 4 and
1 received a higher number of beacons compared to RSUs 6 and 9. According
to these results, an automatic traffic control system could take advantage from
V2I communication capabilities, to adapt the vehicles’ routes in order to redirect
vehicles traveling in more congested areas to those areas where the RSUs receive
a lower number of messages (i.e., less congested), thus avoiding traffic jams.
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Fig. 4. RSUs deployment and vehicles location at the end of the simulation.

5 Conclusions

This paper proposes I-VDE, a method that allows estimating the vehicular den-
sity in urban environments at any given time by using the communication capa-
bilities between vehicles and RSUs. Our proposal allows improving traffic conges-
tion mitigation mechanisms to better redistribute the vehicles routes, adapting
them to the specific traffic conditions.

Unlike existing works, our vehicular density estimation algorithm takes into
account not only the number of beacons received by the RSUs, but also the topol-
ogy of the map where the vehicles are located. As a result of a large number of
simulations, using maps from different cities, we have obtained an equation that
is able to accurately predict the vehicular density. Results show that our proposal
allows estimating the vehicular density for any given city with a high accuracy,
thereby allowing governments to improve their traffic control mechanisms.
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