EL REPARTO DOMICILIARIO EN LA LOGÍSTICA URBANA DE MERCANCÍAS: EL CASO DE LA EMPRESA CONSUM. ANÁLISIS Y PROPUESTAS DE MEJORA

Titulación: Grado en Ingeniería de Obras Públicas
Curso: 2015/16

Autores: Juan María García Plaza
Lucas Moscardó Velencoso
Víctor Martínez Almenar
Tutor: Pedro Coca Castaño

BLOQUE I: ASPECTOS GENERALES DEL TFG.

Autores: Lucas Moscardó Velencoso
Víctor Martínez Almenar
Juan María García Plaza

BLOQUE II: DATOS DE PARTIDA, DESCRIPCIÓN DE PROCESOS Y HERRAMIENTAS DE ANÁLISIS.

Autor: Juan María García Plaza

BLOQUE III: RECURSOS, COSTES E IMPLANTACIÓN.

Autor: Lucas Moscardó Velencoso

BLOQUE IV: CAPACIDADES DE MEJORA MEDIANTE LA APLICACIÓN DE LAS NUEVAS TECNOLOGÍAS.

Autor: Víctor Martínez Almenar
ÍNDICE

1. DESCRIPCIÓN DEL PROYECTO ... 19
 1.1 INTRODUCCIÓN .. 19

BLOQUE I: ASPECTOS GENERALES DEL TRABAJO FINAL DE GRADO

2. LOGÍSTICA URBANA ... 23
 2.1. INTRODUCCIÓN .. 23
 2.2. LA LOGÍSTICA URBANA ... 24
 2.3. SECTORES Y ACTORES IMPLICADOS ... 24
 2.4. LA DISTRIBUCIÓN URBANA DE MERCANCÍAS .. 25
 2.5. AGENTES QUE CONFIGURAN LA OFERTA DE SERVICIOS LOGÍSTICOS 26
 2.5.1. PEC (TRANSPORTE DE PAQUETERÍA, EXPRESS Y COURIER) 27
 2.5.2. OPERADORES LOGÍSTICOS ... 27
 2.5.3. DISTRIBUIDORES ... 28
 2.5.4. PRODUCTORES .. 29
 2.5.5. ESTABLECIMIENTOS QUE LLEVAN A CABO EL AUTO APROVISIONAMIENTO DE MERCANCÍAS31
 2.6. AGENTES QUE CONFIGURAN LA DEMANDA DE SERVICIOS LOGÍSTICOS 32
 2.6.1. ESTABLECIMIENTOS EMPRESARIALES .. 32
 2.6.1.1. ESTABLECIMIENTOS COMERCIALES .. 33
 2.6.1.2. ESTABLECIMIENTOS INDUSTRIALES .. 34
 2.6.2. DOMICILIOS PARTICULARES .. 35
 2.7. PRINCIPALES MAGNITUDES ... 36
 2.8. EXTERNALIDADES DE LA DISTRIBUCIÓN URBANA DE MERCANCÍAS 37
 2.8.1. CONTAMINACIÓN AMBIENTAL .. 38
 2.8.2. CONTAMINACIÓN ACÚSTICA ... 40
 2.8.3. CONGESTIÓN ... 41
 2.8.4. ACCIDENTES ... 42
 2.8.5. PÉRDIDA ECONÓMICA .. 42
 2.8.6. COSTES DE LAS EXTERNALIDADES .. 43
 2.9. SOSTENIBILIDAD ... 44
 2.9.1. GESTIÓN DE LA CAPACIDAD .. 44
 2.9.1.1. ENTREGA DE MERCANCÍAS EN HORAS VALLE, LOGÍSTICA NOCTURNA 44
 2.9.1.2. TASA A LA CIRCULACIÓN URBANA ... 46
 2.9.1.3. REGULACIÓN Y RESTRICCIÓN DE ACCESOS 47
 2.9.2. INFRAESTRUCTURA ... 48
 2.9.2.1. DISEÑO/IMPLEMENTACIÓN DE ZONAS DE CARGA Y DESCARGA 48
 2.9.2.2. ESPACIOS LOGÍSTICOS URBANOS (CENTROS DE CONSOLIDACIÓN URBANA) .. 50
 2.9.3. MEDIO AMBIENTE ... 53
3. EL REPARTO DOMICILIARIO EN LA CADENA DE SUPERMERCADOS 63

3.1. INTRODUCCIÓN ... 63
3.2. TIPOS DE ESTABLECIMIENTOS .. 64
 3.2.1. TIENDAS DE ALIMENTACIÓN INDEPENDIENTES ... 64
 3.2.2. SUPERMERCADOS ... 64
 3.2.3. HIpermERCADOS ... 65
 3.2.4. REPARTO DE VENTAS ... 66
3.3. SITUACIÓN DEL REPARTO DOMICILIARIO EN LAS EMPRESAS ESPAÑOLAS 68
 3.3.1. AL CAMPO ... 68
 3.3.2. CARREFOUR .. 69
 3.3.3. HIpermERCADOS EL CORTE INGLÉS ... 70
 3.3.4. MERCADONA .. 71
 3.3.5. CONSUM .. 72
 3.3.6. DIA .. 73
 3.3.7. LIDL/ALDI/PLUS ... 73
 3.3.7. FACTORES QUE DETERMINAN LA ELECCIÓN DE UN ESTABLECIMIENTO 74

4. ANÁLISIS DE LA CADENA CONSUM .. 75

4.1. HISTORIA ... 75
4.2. ESTUDIO DETALLADO ... 77
 4.2.1. MISIÓN, VISIÓN Y VALORES ... 77
 4.2.2. ORGANIGRAMA ... 78
 4.2.3. RED DE PUNTO DE VENTAS ... 80
 4.2.4. PLATAFORMAS LOGÍSTICAS ... 81
 4.2.5. POLÍTICA Y GESTIÓN EN MATERIA DE SOSTENIBILIDAD 83
 4.2.6. CONSUM EN CIFRAS E INNOVACIÓN .. 87
4.3. CADENA DE VALOR ... 89
 4.3.1. INTRODUCCIÓN ... 89
 4.3.2. CADENA DE VALOR DE CONSUM ... 91
 4.3.2.1. LOGÍSTICA GLOBAL .. 93
 4.3.2.1.1 PROYECTO TEO .. 95
 4.3.2.2. LOGÍSTICA DE SERVICIO DOMICILIARIO .. 96
4.4. VENTA ONLINE ... 98
 4.4.1. BREVE INTRODUCCIÓN .. 98
BLOQUE II: DATOS DE PARTIDA, DESCRIPCIÓN DE PROCESOS Y HERRAMIENTAS DE ANÁLISIS

5. DATOS DE PARTIDA ... 105

5.1. INTRODUCCIÓN .. 105
5.2. SITUACIÓN INICIAL .. 105
5.3. CADE LOGISTIC ... 106
 5.3.1. INTRODUCCIÓN ... 106
 5.3.2. ¿QUIÉNES SON? ... 106
 5.3.3. MISIÓN Y VALORES ... 107
 5.3.4. SERVICIO DOMICILIARIO ... 108
 5.3.4.1. ¿QUÉ HACEN? .. 108
 5.3.4.2. ¿CÓMO TRABAJAN? .. 109
 5.3.4.3. SEGUIMIENTO DEL PRODUCTO .. 109

6. DESCRIPCIÓN DE PROCESOS ... 111

6.1. INTRODUCCIÓN ... 111
6.2. CONSIDERACIONES DE PARTIDA .. 111
 6.2.1. DESCRIPCIÓN DEL SERVICIO ACTUAL DE DISTRIBUCIÓN ALIMENTARIA DE CONSUM ... 111
 6.2.2. OBJETIVOS Y CONDICIONES DE CONSUM .. 111
 6.2.3. DESCRIPCIÓN DEL PROCESO DE ENTREGA A DOMICILIO EN TIENDAS. RELACIÓN CADE-CONSUM... 112
6.3. DESCRIPCIÓN DE PROCESOS REALIZADOS POR CADE LOGISTIC PARA EL SERVICIO DOMICILIARIO114
 6.3.1. CENTROS ASIGNADOS A CADE LOGISTIC... 114
 6.3.2. CONTROL Y GESTIÓN DEL FLUJO DE LA INFORMACIÓN...................................... 118
 6.3.3. CONTROL Y GESTIÓN DEL FLUJO FÍSICO .. 120

7. HERRAMIENTAS DE ANÁLISIS .. 121

7.1. INTRODUCCIÓN ... 121
7.2. FLUJOGRAMAS .. 122
7.3. EXCEL .. 124
 7.3.1. SITUACIÓN INICIAL... 124
 7.3.2. ANÁLISIS DE DATOS FACILITADOS POR CONSUM .. 124
 7.3.2.1. ANÁLISIS PARA EL CASO CADE LOGISTIC.. 124
 7.3.2.1.1 MÉTODO DE ANÁLISIS .. 126
 7.3.2.1.2 ANÁLISIS MENSUAL .. 129
 7.3.2.1.3 ANÁLISIS DE LA ESTACIONALIDAD .. 130
 7.3.2.1.4 ANÁLISIS DE SITUACIONES SINGULARES ... 133
<table>
<thead>
<tr>
<th>Capítulo</th>
<th>Título</th>
<th>Páginas</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.1</td>
<td>INTRODUCCION</td>
<td></td>
</tr>
<tr>
<td>16.2</td>
<td>CASO CADE-CONSUM</td>
<td></td>
</tr>
<tr>
<td>16.3</td>
<td>ARCGIS</td>
<td></td>
</tr>
<tr>
<td>16.4</td>
<td>PROCEDIMIENTO DE ANÁLISIS</td>
<td></td>
</tr>
<tr>
<td>16.5</td>
<td>ESTUDIO COMPARATIVO DE RUTAS</td>
<td></td>
</tr>
<tr>
<td>17.</td>
<td>ALMACENAMIENTO DE DATOS</td>
<td></td>
</tr>
<tr>
<td>17.1</td>
<td>INTRODUCCION</td>
<td></td>
</tr>
<tr>
<td>17.2</td>
<td>BIG DATA</td>
<td></td>
</tr>
<tr>
<td>17.3</td>
<td>TIPOS DE DATOS</td>
<td></td>
</tr>
<tr>
<td>17.4</td>
<td>ANÁLISIS DE DATOS</td>
<td></td>
</tr>
<tr>
<td>17.5</td>
<td>UTILIDAD EMPRESARIAL DEL BIG DATA</td>
<td></td>
</tr>
<tr>
<td>18.</td>
<td>VEHÍCULOS ALTERNATIVOS</td>
<td></td>
</tr>
<tr>
<td>18.1</td>
<td>INTRODUCCION</td>
<td></td>
</tr>
<tr>
<td>18.2</td>
<td>FUENTES DE ENERGÍA ALTERNATIVAS</td>
<td></td>
</tr>
<tr>
<td>18.3</td>
<td>BENEFICIOS FISCALES</td>
<td></td>
</tr>
<tr>
<td>18.4</td>
<td>IMPLANTACIÓN DE LOS VEHÍCULOS EN EL CASO</td>
<td></td>
</tr>
<tr>
<td>18.4.1</td>
<td>VENTAJAS</td>
<td></td>
</tr>
<tr>
<td>18.4.2</td>
<td>INCONVENIENTES</td>
<td></td>
</tr>
<tr>
<td>19.</td>
<td>CONCLUSIONES DEL BLOQUE IV</td>
<td></td>
</tr>
<tr>
<td>20.</td>
<td>PROPUESTAS DE MEJORA</td>
<td></td>
</tr>
<tr>
<td>21.</td>
<td>BENEFICIOS ESPERADOS</td>
<td></td>
</tr>
<tr>
<td>22.</td>
<td>BIBLIOGRAFÍA</td>
<td></td>
</tr>
</tbody>
</table>
ÍNDICE DE FIGURAS

Figura 1. Agentes que configuran la oferta de los servicios logísticos. (Fuente: Instituto Cerdá) .. 26
Figura 2. Representación de los diferentes efectos de la contaminación atmosférica sobre la salud. .. 39
Figura 3. Costes externos de las externalidades. ... 43
Figura 4. Intensidad horaria de circulación. Sentido de entrada a Barcelona. .. 46
Figura 5. Mapa de zonas de descarga en la ciudad de Valencia. ... 49
Figura 6. Parquimetro en zona de bajas emisiones. ... 57
Figura 7. Plataforma ELCIDIS .. 59
Figura 8. Cuota de los lugares de compra en volumen. .. 67
Figura 9. Evolución del volumen de compra. ... 67
Figura 10. Precios de Alcampo. .. 69
Figura 11. Precios de hiperco. .. 70
Figura 12. Tabla de horarios de Mercadona. ... 71
Figura 13. Evolución histórica de Consum. (Fuente: Consum) ... 77
Figura 14. Organigrama de Consum (Fuente: Consum) .. 79
Figura 15. Reparto de tiendas de Consum en España (Fuente: Consum) .. 80
Figura 16. Plataformas lógisticas (Fuente: Consum) ... 81
Figura 17. Plataformas lógisticas y su distribución (Fuente: Consum) .. 82
Figura 18. Evolución de las ventas de Consum entre 2008 y 2015. (Fuente: Consum) ... 87
Figura 19. Evolución del resultado de Consum entre 2008 y 2015. (Fuente: Consum) ... 88
Figura 20. Evolución de la inversión de Consum entre 2008 y 2015. (Fuente: Consum) .. 88
Figura 21. Cadena de valor de Porter. .. 91
Figura 22. Cadena de valor de Porter aplicado a Consum. (Fuente: Consum) ... 92
Figura 23. Croquis de lógistica de Consum en la Comunidad Valenciana. (Fuente: Gálvez, P.) ... 94
Figura 24. Croquis del Proyecto TEO (Fuente: Consum) .. 96
Figura 25. Condiciones de compra a domicilio de Consum. (Fuente: Consum) .. 98
Figura 26. Evolución de los supermercados Online en España. ... 100
Figura 27. Reparto de la compra domiciliaria a través de Internet. (Fuente: MAGRAMA) .. 101
Figura 28. Instalaciones de Cade Logistic. (Fuente: Cade Logistic) ... 107
Figura 29. Formación de personal en Cade Logistic. (Fuente: Cade Logistic) 108
Figura 30. Área de trabajo en Cade Logistic. (Fuente: Cade Logistic) 108
Figura 31. Vehículos e instalaciones de Cade Logistic. (Fuente: Cade Logistic) 109
Figura 32. Fujograma de los procesos del servicio a domicilio 123
Figura 33. Poblaciones a las que atiende Cade Logistic. (Fuente: Consum) 125
Figura 34. Localización de centros en la ciudad de Valencia realizado con ArcGis. Elaboración propia ... 126
Figura 35. Localización en Valencia del Centro Peset Aleixandre. Elaboración Propia. (Fuente: Consum) ... 131
Figura 36. Localización en Valencia del Centro Avenida Malvarrosa. Elaboración Propia. (Fuente: Consum) ... 132
Figura 37. Localización de centros en la ciudad de Valencia de la zona piloto. Elaboración propia ... 140
Figura 38. Fujograma de clasificación de centros. Elaboración Propia. (Fuente: Consum) .. 163
Figura 39. Ruta tipo. Elaboración Propia. (Fuente: Consum) 164
Figura 40. Situación de los centros. Elaboración Propia. (Fuente: Consum) 168
Figura 41. Características técnicas y de explotación. ACOTRAM. Elaboración Propia. 188
Figura 42. Amortización y financiación. ACOTRAM. Elaboración Propia 189
Figura 43. Personal. ACOTRAM. Elaboración Propia .. 190
Figura 44. Convenio CV. Personal de movimiento. Elaboración Propia 190
Figura 45. Seguros. ACOTRAM. Elaboración Propia .. 191
Figura 46. Costes fiscales. ACOTRAM. Elaboración Propia 191
Figura 47. Carburantes. ACOTRAM. Elaboración Propia 192
Figura 48. Neumáticos. ACOTRAM. Elaboración Propia 192
Figura 49. Costes anuales. ACOTRAM. Elaboración Propia 193
Figura 50. Costes por hora. ACOTRAM. Elaboración Propia 193
Figura 51. Costes por hora II. ACOTRAM. Elaboración Propia 196
Figura 52. Componentes de un SIG .. 208
Figura 53. Representación de los datos de un SIG .. 214
Figura 54. Representación del terreno mediante archivo raster 215
Figura 55. Representación de curvas de nivel sobre una superficie tridimensional 216
Figura 56. Resumen de la representación de los datos 219
Figura 57. Enrutamiento de vehículos. Fuente ArcGis 224
Figura 58. Interfaz de ArcCatalog .. 234
Figura 59. Interfaz de ArcMap. ... 235
Figura 60. Aplicación ArcToolbox. ... 236
Figura 61. Representación de zonas de influencia de 3 km. Elaboración propia. Fuente ArcMap... 238
Figura 62. Representación de zonas de influencia en franjas de 250 metros. Elaboración propia. Fuente ArcMap.. 239
Figura 63. Representación del recorrido en Google Maps. Elaboración propia. 249
Figura 64. Datos facilitados por CADE .. 257

ÍNDICE DE TABLAS

Tabla 1. Factores que determinan la elección de un establecimiento 74
Tabla 2. Pedidos a domicilio en el mes de marzo del centro General Llorens. Elaboración propia. (Fuente: Consum) .. 127
Tabla 3. Pedidos totales del mes de marzo en los centros de Cade Logistic. Elaboración Propia. (Fuente: Consum) ... 128
Tabla 4. Pedidos domiciliarios totales en el mes de noviembre de los establecimientos gestionados por Cade Logistic. Elaboración Propia. (Fuente: Consum) 133
Tabla 6. Pedidos domiciliarios totales en el mes de diciembre de los establecimientos gestionados por Cade Logistic. Elaboración Propia. (Fuente: Consum) 135
Tabla 7. Clasificación de los centros. Elaboración Propia. (Fuente: Consum) 157
Tabla 8. Horas de salida en centros tipo I Elaboración Propia. (Fuente: Consum)..... 160
Tabla 9. Horas de salida en centros tipo II Elaboración Propia. (Fuente: Consum) ... 162
Tabla 34. Valores para dimensionamiento. Viernes. Sueca. Elaboración Propia. (Fuente: Consum) .. 180
<table>
<thead>
<tr>
<th>Tabla</th>
<th>Descripción del contenido</th>
<th>Autor</th>
<th>Fuente</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tabla 41.</td>
<td>Valores totales. Sábado. Elaboración Propia.</td>
<td>(Fuente: Consum)</td>
<td></td>
<td>182</td>
</tr>
<tr>
<td>Tabla 42.</td>
<td>Horario de rotaciones. Sábado. Elaboración Propia.</td>
<td>(Fuente: Consum)</td>
<td></td>
<td>183</td>
</tr>
<tr>
<td>Tabla 43.</td>
<td>Asignación de furgonetas. Elaboración Propia.</td>
<td>(Fuente: Consum)</td>
<td></td>
<td>184</td>
</tr>
<tr>
<td>Tabla 44.</td>
<td>Capacidad de carga. Elaboración Propia.</td>
<td>(Fuente: Consum)</td>
<td></td>
<td>184</td>
</tr>
<tr>
<td>Tabla 45.</td>
<td>Pedidos por centro y año natural. Elaboración Propia.</td>
<td>(Fuente: Consum)</td>
<td></td>
<td>184</td>
</tr>
<tr>
<td>Tabla 46.</td>
<td>Horas de funcionamiento de los vehículos. Elaboración Propia.</td>
<td>(Fuente: Consum)</td>
<td></td>
<td>186</td>
</tr>
<tr>
<td>Tabla 47.</td>
<td>Horas y pedidos por vehículo en año natural. Elaboración Propia.</td>
<td>(Fuente: Consum)</td>
<td></td>
<td>186</td>
</tr>
<tr>
<td>Tabla 48.</td>
<td>Rangos de rendimientos. Elaboración Propia.</td>
<td></td>
<td></td>
<td>187</td>
</tr>
<tr>
<td>Tabla 49.</td>
<td>Datos por orden de pedido en el centro de la calle Sueca. Elaboración propia.</td>
<td></td>
<td></td>
<td>197</td>
</tr>
<tr>
<td>Tabla 50.</td>
<td>Datos por orden de proximidad en el centro de la calle Sueca. Elaboración propia.</td>
<td></td>
<td></td>
<td>243</td>
</tr>
<tr>
<td>Tabla 51.</td>
<td>Datos por orden de pedido en el centro de la calle Matías Perelló. Elaboración propia.</td>
<td></td>
<td></td>
<td>243</td>
</tr>
<tr>
<td>Tabla 52.</td>
<td>Datos por orden de proximidad en el centro de la calle Matías Perelló. Elaboración propia.</td>
<td></td>
<td></td>
<td>244</td>
</tr>
<tr>
<td>Tabla 53.</td>
<td>Datos por orden de pedido en el centro de la calle Obispo Jaime Perez. Elaboración propia.</td>
<td></td>
<td></td>
<td>245</td>
</tr>
<tr>
<td>Tabla 54.</td>
<td>Datos por orden de pedido en el centro de la calle Obispo Jaime Perez. Elaboración propia.</td>
<td></td>
<td></td>
<td>245</td>
</tr>
</tbody>
</table>
Tabla 55. Datos por orden de pedido en el centro de la calle Conde de Salvatierra.
Elaboración propia. ... 247
Tabla 56. Datos por orden de proximidad en el centro de la calle Conde de Salvatierra.
Elaboración propia. ... 248

ÍNIDICE DE GRÁFICAS

Gráfica 1. Distribución mensual de los pedidos domiciliarios en las tiendas gestionadas por Cade Logistic. Elaboración propia. (Fuente: Consum) .. 129
Gráfica 2. Estacionalidad en los pedidos domiciliarios en las tiendas gestionadas por Cade Logistic. Elaboración propia. (Fuente: Consum) .. 130
Gráfica 3. Distribución mensual de los pedidos domiciliarios en el centro Peset Aleixandre. Elaboración Propia. (Fuente: Consum) .. 131
Gráfica 5. Distribución mensual de pedidos domiciliarios del centro Avenidad Malvarrosa. Elaboración propia. (Fuente: Consum) .. 132
Gráfica 6. Distribución diaria de los pedidos a domicilio en el mes de noviembre de los centros gestionados por Cade Logistic. Elaboración Propia. (Fuente: Consum) 134
Gráfica 7. Distribución diaria de los pedidos a domicilio en el mes de diciembre de los centros gestionados por Cade Logistic. Elaboración Propia. (Fuente: Consum) 135
Gráfica 8. Distribución a lo largo de la semana de los pedidos domiciliarios totales de los centros gestionados por Cade Logistic. Elaboración Propia. (Fuente: Consum) 136
Gráfica 9. Distribución diaria de los pedidos totales en el mes de noviembre de los centros gestionados por Cade Logistic. Elaboración Propia. (Fuente: Consum) 137
Gráfica 10. Distribución de los pedidos totales en turnos de trabajo en el total de centros gestionados por Cade Logistic. Elaboración propia. (Fuente: Consum) 138
Gráfica 11. Distribución horaria de los pedidos totales en el total de centros gestionados por Cade Logistic. Elaboración Propia. (Fuente: Consum) 138
Gráfica 12. Distribución mensual de los pedidos totales en el caso piloto. Elaboración propia. (Fuente: Consum) ... 142
Gráfica 13. Distribución mensual de los pedidos domiciliarios por centros en el caso piloto. Elaboración propia. (Fuente: Consum) ... 142
Gráfica 14. Distribución a lo largo de la semana de los pedidos domiciliarios totales en el caso piloto. Elaboración Propia. (Fuente: Consum) ... 143
Gráfica 15. Distribución diaria de los pedidos domiciliarios totales por centros en el caso piloto. Elaboración propia. (Fuente: Consum) ... 144
Gráfica 16. Distribución diaria de los pedidos domiciliarios del centro Conde de Salvatierra. Elaboración Propia. (Fuente: Consum) ... 145
Gráfica 17. Distribución de los pedidos totales en turnos de trabajo en la zona piloto. Elaboración propia. (Fuente: Consum) .. 145
Gráfica 18. Distribución horaria de los pedidos totales en el caso piloto. Elaboración Propia. (Fuente: Consum) .. 146
Gráfica 19. Distribución horaria por centros de los pedidos totales en el caso piloto. Elaboración Propia. (Fuente: Consum) .. 146
Gráfica 20. Distribución horario de pedidos totales. Elaboración Propia. (Fuente: Consum) ... 155
1. DESCRIPCIÓN DEL PROYECTO

1.1 INTRODUCCIÓN

La Distribución Urbana de Mercancías (DUM) es una actividad fundamental para el desarrollo económico de las ciudades, esta comprende las diferentes operaciones logísticas que tienen que ver con la entrega y recogida de mercancías en los centros y zonas urbanas. Dichas operaciones logísticas incluyen procesos de transporte, manipulación y almacenamiento de mercancías, así como su gestión de las mismas y los servicios de entrega a domicilio.

La importancia creciente del transporte urbano de mercancías se relaciona con el aumento de la población y el crecimiento económico sostenido en las zonas urbanas. Pero si bien esta actividad es esencial para el desarrollo de la vida en la ciudad, la DUM también tiene efectos negativos en la sociedad, ya que contribuye a la congestión de las vías de circulación, a la ocupación del espacio público y afectan a la movilidad.

Es por esto que surge la necesidad de llevar a cabo un análisis de esta actividad teniendo en cuenta todos los factores, con la finalidad de minimizar el impacto que esta tiene en el ritmo de vida de la sociedad actual y realizar el servicio de la forma más eficiente. También es necesario tener en cuenta la posible implantación de vehículos ecológicos que reduzcan la contaminación que produce esta actividad en las ciudades.

Dentro de las operaciones logísticas comentadas anteriormente, tienen gran importancia las relacionadas con la distribución domiciliaria de alimentos, cada vez más en auge, realizada por las cadenas de alimentación; puesto que proporcionan un servicio básico para las personas. Este tipo de distribución proporciona una serie de datos muy peculiar que requiere un análisis de datos detallado. Para llevar a cabo este servicio de la mejor manera posible se debe contar con una serie de herramientas que consigan recoger y organizar estos datos correctamente, y así gestionar las cadenas logísticas de forma eficiente para obtener tiempos de respuesta rápidos, con el menor coste posible y proporcionando unos niveles de servicio competitivos.
La recogida y el análisis de estos datos es cada día más sencillo debido al desarrollo de las nuevas tecnologías como los sistemas de información geográfica (SIG) que es conjunto de herramientas que permiten la organización, análisis y modelización de grandes cantidades de datos procedentes del mundo real que están vinculados a una referencia espacial o las grandes bases de datos que analizan la información gracias a diversas herramientas de análisis para extraer conclusiones y ayudar a resolver problemas.

Estas herramientas juegan un papel decisivo en la organización de los recursos de una empresa y pueden suponer un ahorro importante de los costes, por lo tanto, sería interesante aplicar esta serie de herramientas tecnológicas a la distribución urbana de mercancías y más en concreto a la distribución domiciliaria de alimentos para obtener mejores resultados en la recogida de datos y utilizando estos mismos para mejorar el servicio y disminuir los problemas asociados a este.

Por otro lado, el objetivo de este proyecto de final de grado es analizar el servicio de distribución urbana de mercancías que realiza la empresa Cade a la cadena de supermercados Consum. Se pretende realizar un modelo logístico del reparto domiciliario intentando mejorar el actual en servicio, gracias al estudio de los patrones más restrictivos de compra. Y con todo ello implementar el uso de diferentes herramientas de análisis que se apoyan en las nuevas tecnologías para intentar mejorar y optimizar el trabajo realizado por Cade Logistic.

Como consecuencia de este análisis se esperan alcanzar unas conclusiones que permitan asentar las bases de la mejora del servicio que Consum ofrece a sus clientes.
BLOQUE I: ASPECTOS GENERALES DEL TRABAJO FINAL DE GRADO
2. LOGÍSTICA URBANA

2.1. INTRODUCCIÓN

Cada vez se está hablando más de logística, pero ¿qué es la logística? Si buscamos en internet existen miles de definiciones, pero he aquí la más apropiada en nuestra opinión: conjunto de actividades de movimiento y almacenaje que facilitan el flujo de productos desde la adquisición de materias primas hasta el consumo de productos terminados, así como los flujos de información que generan el producto buscando el nivel adecuado de servicio al cliente a un precio razonable.

Es en las últimas décadas, en concreto desde los años 80, cuando más se está hablando de logística, pero en parte siempre ha estado ahí de una manera o de otra. La palabra en sí proviene de la antigua Grecia “logistikos”, y significa habilidad para el cálculo.

En el Antiguo Régimen, la intendencia era el ejercicio de las funciones del intendente, el cual se dedicaba a recaudar tributos, dinamizar la economía a través del cuidado de las fábricas o impulsando la agricultura. Lo que venimos diciendo con esto es que ya en esos tiempos, el intendente era un organizador.

Y sin irnos tan lejos, en el ámbito militar, la intendencia se dedica a la organización y optimización de munición y provisiones, ni que decir tiene la importancia de dicha labor.

Con el nacimiento de internet, de la globalización, las empresas se han vuelto cada vez más competitivas, de hecho la única manera de sobrevivir en el mercado es optimizar al máximo sus recursos, y es aquí donde entra de lleno la logística.

Como conclusión a esta breve introducción, remarcar que la logística es una ciencia en auge, cada vez más importante en todos los sectores.
2.2. LA LOGÍSTICA URBANA

La logística urbana es la parte de la logística que enlaza a las personas, las mercancías y la información con el tiempo y la distancia de forma eficiente, global y sostenible dentro del entorno urbano.

Cuando hablamos de Logística Urbana no nos referimos únicamente a la distribución urbana de mercancías, sino de todas las operaciones urbanas que necesita una sociedad moderna, como servicios o movilidad.

No solo es importante en el ámbito privado, también en el público, gestionar las basuras o el diseño de rutas en un plan de movilidad requieren optimización. Nosotros nos concentramos en el ámbito privado ya que nuestro proyecto trata sobre distribución de mercancías.

2.3. SECTORES Y ACTORES IMPLICADOS

Planificación y gestión:

- Urbanistas: Son los encargados de diseñar la ciudad, distribución del espacio, estética, servicios urbanos o flujos de movilidad son sus principales competencias.
- Ingenieros de transporte: Se encargan de planificar y gestionar la movilidad urbana de forma sostenible. Dentro de sus competencias podemos encontrar la fluidez del tráfico, la seguridad vial, organizar el transporte público o los semáforos.

Producción y comercialización:

- Fabricantes: Son los encargados de la producción de bienes y servicios. A menudo subcontratan el transporte, por lo que no suelen tener en cuenta el concepto global de logística urbana.
- Comerciantes: Son quienes reciben dichos bienes, los principales clientes de la DUM.
Con el alto precio de los alquileres en locales comerciales se hacen cada vez más importantes las operaciones logísticas. Resulta más económico utilizar todos los metros cuadrados de un local en la calle Colón para actividad comercial y abastecerse de producto cada vez que se necesite que partir el local en uso comercial/almacén.

Distribución:

- Transportistas: Se encargan de unir a los productores con los comerciantes. En una sociedad tan competitiva, en la que prima la rapidez, los transportistas suelen estar en contra de cualquier medida que les repercuta económicamente. Son quizá, el agente más importante y uno de los más difíciles de regular.
- Administración local: La administración es el agente con más responsabilidad, ya que son los encargados de mejorar la calidad de vida de los ciudadanos (reducción contaminación acústica y atmosférica, congestión, mejora de la seguridad vial, etc...).
- Policía municipal: Se encargan de hacer cumplir la ley, o al menos intentarlo, ya que no disponen de los medios para vigilar y sancionar todas las infracciones que ocurren en el día a día.
- Clientes: Los habitantes de la ciudad son los usuarios de la vía pública y quienes se ven afectados por los continuos cambios de carril que las paradas en estacionamiento ilegal de los vehículos de DU obligan a hacer. Los resultados son demoras, menor capacidad efectiva del viario y posibilidad de accidentes. Existe indisposición de los vecinos a operaciones de C/D por las noches debido al ruido.

2.4. LA DISTRIBUCIÓN URBANA DE MERCANCÍAS

Los desplazamientos urbanos de mercancías responden a tres motivaciones:

- Movimiento de mercancías: Su finalidad es el aprovisionamiento de puntos de venta y es la fuente principal de la movilidad urbana.
- Prestación de servicios: Su objetivo no es el movimiento de mercancías sino la realización de tareas concretas:
 - Acondicionamiento de instalaciones (fontanería, electricidad, etc...).
2.5. AGENTES QUE CONFIGURAN LA OFERTA DE SERVICIOS LOGÍSTICOS

Según su metodología de trabajo, los productos que transportan y los clientes, tenemos dos grandes grupos de agentes ofertantes de servicios logísticos: los proveedores y los que practican el autoaprovisionamiento.

Proveedores:

- Los PEC (transporte de paquetería, express y courier)
- Los operadores logísticos
- Los distribuidores
- Los productores

Autoaprovisionamiento:

- Detallista tradicional y canal horeca tradicional
- Detallista organizado.

Figura 1. Agentes que configuran la oferta de los servicios logísticos. (Fuente: Instituto Cerdá)
2.5.1. PEC (TRANSPORTE DE PAQUETERÍA, EXPRESS Y COURIER)

Estos agentes transportan documentos y paquetes pequeños en servicios que pueden ser de hasta 24 horas, según el tipo de entrega pactado.

El sector está constituido por grandes empresas de ámbito multinacional y por un grupo numeroso de transportistas autónomos que, en general, trabajan subcontratados por esos grandes grupos multinacionales.

Estas son sus principales características:

- El volumen de las mercancía media por entrega que se reparte es pequeño y también lo es el tamaño de los paquetes.
- La ruta de un vehículo abarca un gran número de detenciones y entregas, y varía diariamente en función de los clientes.
- Las rutas de entrega y recogida son de corta distancia, y el tiempo empleado en cada una de ellas es muy breve.
- La operativa es sencilla: consiste en recoger, entregar y firmar el albarán.
- Los vehículos utilizados son pequeños (PMA<3.500 kg de MMA).
- El reparto suele hacerse por la mañana.

2.5.2. OPERADORES LOGÍSTICOS

Con arreglo al Artículo 122 de la Ley 9/2013 se considera operadores logísticos “a las empresas especializadas en organizar, gestionar y controlar, por cuenta ajena, las operaciones de aprovisionamiento, transporte, almacenaje o distribución de mercancías que precisan sus clientes en el desarrollo de su actividad empresarial”. Así mismo, en el ejercicio de su función, el operador logístico “podrá utilizar infraestructuras, tecnología y medios propios o ajenos”.

Los operadores prestan servicio a las empresas productoras que han optado por externalizar la logística de la empresa. El grado de externalización depende de cada empresa y puede incluir no sólo el transporte específico, sino también el almacenamiento, la preparación de pedidos y otro tipo de actividades.

Al igual que en los PEC, también suele subcontratarse el servicio de autónomos para el transporte.
Sus principales características son:

- Los principales clientes de este servicio son la gran distribución comercial organizada (alimentación, ropa, artículos para el hogar, artículos de uso personal, etc.) y el canal horeca.
- Los volúmenes desplazados son de dimensión mediana y se reparten pedidos de tamaño mediano (50-100 kg, en el ámbito urbano).
- Tienen, para cada ruta, menos puntos de entrega que los operadores de paquetería, express y courier. Con todo, los puntos de distribución están menos concentrados y, por tanto, las rutas cubren distancias mayores.
- Las rutas de establecen semanalmente y los servicios son periódicos (su frecuencia varía en función del consumo y de las necesidades de los clientes).
- El tiempo para la entrega es más largo que el que emplean los operadores de paquetería, express y courier.
- Los vehículos utilizados son de 6 a 20 toneladas de MMA.
- El servicio que ofrecen los operadores logísticos puede incluir servicios complementarios (almacenamiento, preparación de pedidos, gestión de devoluciones, merchandising...).
- El reparto suele hacerse por la mañana, aunque en determinadas épocas se hace también por la tarde.

2.5.3. DISTRIBUIDORES

El distribuidor es el agente de la cadena que adquiere (compra) productos de diversos fabricantes, los concentra en una plataforma y desde ella realiza su distribución comercial. En este caso, la gran diferencia con respecto al operador logístico es que el agente es propietario de la mercancía que distribuye.

La cadena tiene su inicio en una serie de fabricantes que venden sus productos a los distribuidores. A partir de ahí, el distribuidor es quien se encarga de llevar a cabo las tareas comerciales orientadas a la venta de los productos que previamente ha comprado.

Los distribuidores suelen dirigirse sobre todo a la distribución comercial organizada y al canal horeca. Las rutas de entrega suelen ser constantes, aunque dependen de las necesidades de los clientes.
Las principales características que los definen son:

- El distribuidor compra el producto al fabricante, lo almacena, gestiona y prepara los pedidos, transporta el producto y se ocupa de la facturación.
- Estos agentes tienen una fuerte implantación en el sector de la distribución de bebidas (están también presentes en otros sectores: farmacéutico, electrodomésticos, electrónica, muebles...).
- Desde el punto de vista del fabricante, los distribuidores se encargan a menudo de la distribución de los productos de los clientes que consumen menos o están situados en zonas alejadas de los núcleos urbanos.
- Operan tanto en preventa como en autoventa.
- El volumen de subcontratación del transporte no es tan considerable como con los otros operadores.
- Las entregas son de mediano volumen (50-100 kg), y el tamaño de los vehículos suele ser mediano y pequeño.
- Las rutas son largas y tienen muchos puntos de entrega, si bien se intenta minimizar las detenciones y realizar la distribución desde un punto único cuando se da una concentración de establecimientos.
- Los distribuidores, a menudo, no se limitan a hacer la entrega e incluyen otros servicios: albarán, *merchandising*, facturación e, incluso, según el producto, instalación (muebles, electrodomésticos, etc.).
- El tiempo que tardan en hacer la entrega es significativamente largo (entre quince y treinta minutos, y puede ser superior si los productos requieren instalación).
- La frecuencia de las entregas varía según el producto. En el caso de las bebidas, por ejemplo, puede ser semanal, mientras que en las farmacias del entorno metropolitano se llega hasta las cuatro entregas diarias.

2.5.4. PRODUCTORES

Pese a la tendencia generalizada a externalizar una parte de la actividad empresarial, y pese a la creciente diversificación de los servicios logísticos, hay fabricantes que distribuyen sus productos por medio de su propia estructura logística.
Son, básicamente, tres los factores que explican la existencia de fabricantes que controlan y realizan por sí mismos la distribución de sus productos:

- El fabricante quiere tener un control completo sobre la cadena de distribución.
- Su estructura es más eficiente que la ofrecida por los operadores externos.
- Son empresas que no han evolucionado junto con las tendencias a la externalización de la logística.

Existe mucha diversidad en cuanto al tipo de producto (bebidas, alimentación, electrodomésticos, muebles...). Aunque la mayoría van dirigidos a la distribución comercial organizada y al canal HORECA.

Las principales características que definen la operativa de los productores en el ámbito urbano son:

- Las entregas son de dimensiones medianas (25-100 kg).
- Una característica que comparten también los fabricantes en su mayoría es que ofrecen una operativa que incluye todos los servicios: almacenamiento, venta, preparación de pedidos, consolidación de referencias y embalaje, transporte, facturación, etc. Además, es también característico que los pedidos puedan atenderse tanto en preventa como en autoventa.
- Hay que destacar que las entregas suelen hacerse en horario de mañana; sin embargo, esporádicamente, en épocas punta, se hacen por la tarde. Las rutas suelen tener una periodicidad semanal, aunque eso depende de las necesidades del cliente.
- El tiempo para realizar la entrega suele aproximarse a los quince minutos (tiempo que varía según el producto).
- Las rutas son bastante fijas y largas (más de 50 km), porque incluyen muchos puntos de entrega.
- Debido a la heterogeneidad del sector, los tipos de vehículo utilizado para el reparto son también muy diversos (desde 6.000 hasta 20.000 kg de MMA).

La tendencia de cara al futuro es subcontratar la distribución (externalización) con operadores especializados que ofrecen cada vez más servicios a medida de las necesidades del cliente.
2.5.5. ESTABLECIMIENTOS QUE LLEVAN A CABO EL AUTOAPROVISIONAMIENTO DE MERCANCÍAS

Dentro de este grupo de agentes se encuentran: los establecimientos propios del detallista tradicional y los establecimientos detallistas organizados.

Detallista tradicional:

La compra de parte de la mercancía o de toda suele hacerse en vehículo propio a mayoristas, mercados centrales o plataformas del tipo cash and carry.

Las principales características de este grupo de operadores son las siguientes:

- Normalmente, la frecuencia es una vez al día, por la mañana.
- El vehículo utilizado es de tamaño pequeño (<3.500 kg de MMA), tipo turismo comercial o furgoneta.
- Las rutas suelen tener un solo origen y un solo destino.
- La mercancía puede almacenarse en el establecimiento mismo, o en un almacén cercano al punto de venta. En algunos casos se utiliza, incluso, el vehículo como almacén (productos frescos).
- Estos comerciantes-operadores topan con la dificultad de estacionar el vehículo una vez efectuada la descarga. Esto provoca que, a menudo, se utilicen las zonas de carga/descarga como estacionamiento permanente, y que el espacio de carga del vehículo se emplee como almacén.

Detallista organizado

En cuanto al grupo de los establecimientos detallistas organizados, las principales empresas de gran distribución comercial minorista (cadenas de tiendas de alimentación, equipamiento de la persona, equipamiento del hogar, etc.) han desarrollado sus plataformas y ejercen un control total sobre la cadena de distribución a sus establecimientos comerciales. Cabe destacar, con todo, que detrás de un esquema en el que la estructura de plataformas de distribución y de establecimientos pertenece a una misma empresa, se dan casos en que el transporte se subcontrata con autónomos, e incluso la gestión de la cadena puede ser externalizada a un operador logístico. A veces, algunos de estos operadores son creados especialmente a partir de
la misma empresa productora para gestionar la logística de un determinado tipo de productos.

Los principales factores que definen a estos comerciantes-operadores son los siguientes:

- Las organizaciones de este tipo venden el producto, controlan la cadena logística y tienen plataformas de almacenamiento y distribución.
- Las entregas son de gran tamaño (>1.000 kg), hasta el punto de ser frecuente que la carga transportada ocupe un camión entero.
- Dado que el volumen es considerable, el tiempo que se requiere para la operación de carga/descarga es largo, del orden de treinta minutos.
- Las entregas, normalmente, son diarias.
- Las rutas pueden tener un único origen y un único destino; en función del volumen y de la existencia de varios establecimientos de la misma organización, puede resultar habitual que haya tres o cuatro detenciones por ruta.
- Los vehículos utilizados son medianos y grandes (desde 6.000 kg de MMA hasta 40Tn).

2.6. AGENTES QUE CONFIGURAN LA DEMANDA DE SERVICIOS LOGÍSTICOS

En el sector demandante de servicios logísticos en ámbitos urbanos se encuentran los puntos de destino final de la mercancía en la cadena logística. Entre ellos encontramos, ante todo, establecimientos de carácter comercial, domicilios particulares y otros establecimientos empresariales de servicios o actividades industriales presentes en el tejido urbano.

En una primera clasificación entre los sectores demandantes, hay que distinguir entre establecimientos empresariales y domicilios particulares.

2.6.1. ESTABLECIMIENTOS EMPRESARIALES

Entre estos establecimientos distinguimos, por la diferencia de operativas y de función que tienen en la cadena, los propiamente comerciales y los de tipo industrial.
2.6.1.1. ESTABLECIMIENTOS COMERCIALES

Pueden satisfacer sus necesidades de distribución según los siguientes apartados:

- **Canal HORECA.** Corresponde a los establecimientos de hostelería, restauración y hoteles. Es un sector dominado por empresas pequeñas y de carácter familiar, aunque cada vez más se desarrollan grupos que aglutinan cadenas de establecimientos. Dado que la superficie de almacenamiento de estos establecimientos suele ser mínima, la reposición de productos debe hacerse más a menudo. Se distinguen dos tipos de operativas:
 - Aprovisionamiento por parte de terceros:
 - Vehículos de tamaño pequeño y mediano (3.500 - 10.000 kg de MMA) y paquetes de volumen mediano (50 - 100 kg)
 - El servicio incluye la entrega, la carga del producto de retorno y la facturación.
 - Los establecimientos horeca tienen recepción de mercancía una o dos veces por semana y proveedor. Horario de mañanas normalmente.
 - Autoaproxionamiento:
 - En mayor parte con vehículos pequeños (<3.500 kg de MMA) y paquetes medianos (50 - 100 kg)
 - Suele ser diario, punto de compra cash and carry.

- **Distribución comercial organizada.** Este es un concepto muy amplio e incluye diferentes tipologías de productos, que dan lugar a operativas diversas que se clasifican en tres grupos:
 - Alimentación y supermercados: en este sector domina el autoaproxionamiento que llevan a cabo las empresas de distribución comercial desde sus plataformas hasta cada uno de los establecimientos de su cadena. Determinados productos, sin embargo, son distribuidos a los establecimientos por el fabricante mismo o por un operador logístico que trabaja para el fabricante
 - Equipamiento de la persona: se incluyen los sectores textil, farmacéutico o perfumería.
o Equipamiento del hogar: se incluyen productos como muebles o electrodomésticos. Los establecimientos de este sector suelen tener una superficie de almacenamiento.

En los 3 grupos anteriores se practica tanto el autoapropvisionamiento como el uso de proveedores.

- Distribución comercial tradicional. Este grupo de la demanda está constituido por pequeñas empresas del sector comercial que son a menudo de carácter familiar, por ejemplo, la tienda tradicional, una parada de mercado, etc. Este grupo de establecimientos incluye todo tipo de sectores, y abarca desde los productos perecederos hasta el textil. En general, estos establecimientos tienen un importante componente de autoapropvisionamiento por medio de mercados mayoristas o plataformas de tipo *cash and carry*.

- Centros de trabajo y empresas de servicios. La actividad comercial de las empresas incluidas en este sector de la demanda no corresponde a la venta de productos tangibles, sino a la venta de servicios intangibles. Forman parte de este grupo los despachos profesionales, bancos, agencias de viajes, compañías de seguros, etc. Se trata de sectores de actividad que desplazan documentos y pequeña paquetería, o sea, productos de poco volumen y de consumo inmediato, sin requisito de almacenamiento y cuyos proveedores son los operadores del grupo PEC.

2.6.1.2. ESTABLECIMIENTOS INDUSTRIALES

En el curso de los últimos años, la estructura económica metropolitana ha experimentado un proceso de relocalización de sus actividades.

A escala regional, este proceso de relocalización ha consistido básicamente en la salida de la ciudad de las actividades más incompatibles con ella hacia espacios en los que la oferta de suelo es más abundante y barata, pero en los que también es mayor la accesibilidad y donde se maximiza la eficiencia del funcionamiento de conjunto del sistema productivo.
Pese a la tendencia señalada hacia la relocalización de la actividad industrial, hay todavía un número destacable de actividades situadas dentro de la trama urbana, las cuales, por tanto, interactúan a diario con la distribución urbana de mercancías.

Los citados establecimientos industriales generan diariamente una demanda tanto de aprovisionamiento de materia prima para llevar a cabo el proceso productivo como de distribución para entregar a sus clientes los productos fabricados.

2.6.2. DOMICILIOS PARTICULARES

La distribución de mercancías a domicilio tiene dos modos fundamentales de integrarse en la cadena de suministro:

- Eslabón adicional, que no se añade a la cadena logística hasta que la mercancía ha llegado al establecimiento comercial.
- Transporte de mercancías que no pasa por ningún establecimiento detallista sino que se realiza directamente desde un almacén o plataforma hasta el domicilio. Es el canal utilizado para las compras realizadas a través de internet o telefónicas.

El origen de una distribución de mercancías a domicilio puede ser de dos tipos, en función de cómo se realiza el pedido:

- *Servicio a domicilio*, en el que la compra se lleva a cabo por medio de una llamada telefónica o de modo presencia en el establecimiento.
- *B2C (business to consumer, o sea, el comercio electrónico de las empresas con los particulares. Este servicio tiene un elevado potencial y un gran recorrido a largo plazo en segmentos que cuentan con una gran distribución comercial organizada.*

Conviene señalar que hay grandes diferencias entre el servicio tradicional a domicilio y la distribución comercial a través del *B2C*:

- El *B2C* requiere que un operario prepare el pedido, mientras que en el servicio a domicilio tradicional el pedido lo hace el cliente mismo al establecimiento.
- En el transporte *B2C* de la distribución comercial organizada hay dos estrategias:
o El transporte se hace desde la plataforma central, externa al núcleo urbano.
o El transporte se hace desde establecimientos que la cadena tiene en la ciudad.

2.7. PRINCIPALES MAGNITUDES

No existen indicadores para la medición cuantitativa del impacto de la logística urbana en las ciudades, pero sí determinados factores que ayudan a analizarlo

- Relación entre la población y la distribución urbana de mercancías: El número de habitantes influye directamente en la movilidad, de modo directo en los desplazamientos diarios, e indirecto conformando la demanda de los comercios.
- Relación entre el establecimiento empresarial y la distribución urbana de mercancías: Dependiendo del tipo de producto o servicio que ofrecen los establecimientos generan más o menos volumen de desplazamientos. Los comercios de alimentación son los que más generan.
- Comercio minorista: Es uno de los sectores que más demanda servicios de logística urbana. Suelen estar en los centros urbanos y requieren la entrada de transporte a la ciudad para aprovisionarse.
- El parque de vehículos: Dada la distribución de las calles y las restricciones municipales, los vehículos empleados deben ser ágiles y no sobrepasar un peso máximo autorizado. Los camiones y furgonetas son los vehículos más utilizados.
- Número de desplazamientos: El 50% de los viajes que se realizan dentro de un municipio son en vacío. Este es uno de los puntos más importantes y en los que más se debe trabajar para optimizar los flujos en el ámbito urbano
- Número de zonas de carga/descarga: Son un buen indicador para calibrar la importancia de la DUM en las ciudades, ya que en ellas se realizan las actividades pertinentes.
2.8. EXTERNALIDADES DE LA DISTRIBUCIÓN URBANA DE MERCANCÍAS

El tráfico en la gran ciudad cada día se ha vuelto más complicado. La movilidad personal se mezcla con los desplazamientos realizados para la distribución final y las congestiones habituales en los centros urbanos. La actividad ligada al transporte de mercancías en zona urbana genera congestión, consumo de espacio, ruido y polución, pero es también absolutamente necesaria para el buen funcionamiento de comercios, abastecimientos, servicios y casi toda la actividad económica en su conjunto.

La distribución urbana de mercancías es una actividad fundamental para el desarrollo económico de cualquier ciudad. Debido a la concentración de la población en determinados puntos de la geografía, durante las últimas décadas se han formado grandes núcleos urbanos. Es por tanto imprescindible la construcción de redes de circulación para permitir la movilidad dentro de las extensas áreas de estos núcleos.

Este espacio urbano es compartido diariamente gran cantidad de usuarios que utilizan las vías de circulación, pero cuando hablamos de movilidad, la mayoría de ocasiones pensamos en coches, transporte público, bicicletas y notos, en el transporte de personas en general. Pero en realidad se necesita que los bienes materiales se desplacen de un lugar a otro, principalmente desde los lugares de producción hasta nuestras manos.

La Distribución Urbana de Mercancías (DUM) como servicio contribuye a la generación de efectos nocivos que afectan a los núcleos urbanos. Se podrían dividir estas externalidades en tres grandes grupos que se enunciaran a continuación:

- **Sociales**: entre los que se encuentra el colapso de las vías urbanas que afectan a la movilidad, los accidentes de tráfico, la contaminación acústica, las vibraciones o la intrusión visual.
- **Económicos**: producidos a causa de la ineficacia de los procesos por la congestión de las vías de circulación, suponen una mayor pérdida de tiempo en los desplazamientos y un mayor consumo de combustibles.
- Ambientales: el aumento de los desplazamientos y la aglomeración de las vías urbanas significa una mayor emisión de gases nocivos a la atmósfera, así como la polución en las ciudades.

Más de dos tercios de los ciudadanos europeos viven en ciudades, así que esta serie de problemas afectan a gran parte de la población, por este motivo es importante adaptar el transporte de mercancías en ámbito urbano tratando de dar soluciones efectivas para que estas externalidades se vean reducidas en la medida de lo posible.

A continuación se desarrollaran algunas de las externalidades citadas anteriormente. La actividad ligada al transporte de mercancías en zona urbana genera congestión, consumo de espacio, ruido y polución. Pero es también absolutamente necesaria para el buen funcionamiento de comercios, abastecimientos, servicios y casi toda la actividad económica en su conjunto.

2.8.1. CONTAMINACIÓN AMBIENTAL

El transporte urbano de mercancías es el responsable de la emisión de la tercera parte del total de Dióxido de nitrógeno (NO₂) emitido a la atmósfera. En las grandes ciudades, un cuarto de Dióxido de carbono (CO₂), un tercio de óxidos de nitrato, y la mitad de las partículas que provienen del transporte son generados por camiones o furgonetas. Los datos obtenidos por la Unión Europea (UE) muestran que en 2007 alrededor del 19,5% del total de emisiones de Gases de Efecto Invernadero (en adelante GEI) en Europa fueron causadas por el transporte.

En España, un total de 44,7 millones de personas respiraron aire contaminado durante 2014. Diversos informes sobre la calidad del aire concluyen que el 95% de la población y el 94% del territorio estuvieron expuestos a unos niveles de contaminación que superan las recomendaciones de la Organización Mundial de la Salud. El tráfico en las zonas metropolitanas es la principal causa de la contaminación.

Los principales efectos de la contaminación atmosférica sobre la salud van desde alteraciones de la función pulmonar, problemas cardíacos y molestias hasta un aumento del número de defunciones, de ingresos hospitalarios y de visitas a urgencias, especialmente por causas respiratorias y cardiovasculares.
El efecto de la contaminación atmosférica mantiene una gradación tanto en la gravedad de sus consecuencias como en la población a riesgo afectada (Figura. XX). Así, a medida que los efectos son menos graves, el porcentaje de población afectada es mayor. Los efectos de la exposición crónica superan en magnitud a los efectos agudos debidos a exposiciones en el corto plazo.

En los últimos años ha habido un importante avance en el conocimiento y comprensión de los efectos de la contaminación atmosférica sobre la salud proporcionado por un gran número de trabajos científicos en todo el mundo. Estos estudios han puesto de manifiesto la importancia de la calidad del aire en la salud de la población y han permitido identificar los principales mecanismos de acción por los cuales la exposición a contaminación atmosférica causa daños en la salud.

![Diagrama de los diferentes efectos de la contaminación atmosférica sobre la salud](image)

Figura 2. Representación de los diferentes efectos de la contaminación atmosférica sobre la salud.

Los efectos de las partículas en suspensión sobre la salud se producen a los niveles de exposición a los que está sometida actualmente la mayoría de la población urbana y rural de los países desarrollados y en desarrollo. La exposición crónica a las partículas aumenta el riesgo de enfermedades cardiovasculares y respiratorias, así como de cáncer de pulmón. En los países en desarrollo, la exposición a los contaminantes derivados de la combustión de carburantes sólidos en fuegos abiertos y cocinas tradicionales en espacios cerrados aumenta el riesgo de infección aguda en las vías
respiratorias inferiores y la mortalidad por esta causa en los niños pequeños; la polución atmosférica procedente de combustibles sólidos, como es el caso de los vehículos a motor, constituye también un importante factor de riesgo de enfermedad pulmonar obstructiva crónica y cáncer de pulmón entre los adultos. La mortalidad en ciudades con niveles elevados de contaminación supera entre un 15% y un 20% la registrada en ciudades más limpias.

La DUM es más contaminante que el transporte de mercancías de larga distancia. Esto se debe al tipo de desplazamientos que realizan los vehículos, es sabido que la circulación por ciudad tiene un consumo medio más elevado que los desplazamientos largos por el hecho de no mantener una velocidad constante, debido al mayor número de paradas y arrancadas. La renovación de la flota de transporte urbano de mercancías es generalmente más lenta en comparación con la del transporte de larga distancia, ya que el transporte urbano de mercancías implica a un número elevado de pequeños operadores compitiendo entre sí y buscando reducir los costos tanto como sea posible.

2.8.2. CONTAMINACIÓN ACÚSTICA

Según la Ley del Ruido (37/2003, de 17 de noviembre) la contaminación acústica se define como la presencia en el ambiente de ruidos o vibraciones, cualquiera que sea el emisor acústico que los origine, que impliquen molestia, riesgo o daño para las personas, para el desarrollo de sus actividades o para los bienes de cualquier naturaleza, o que causen efectos significativos sobre el medio ambiente.

El nivel de ruido se mide en decibelios (dB). El límite recomendado como tolerable por la OMS es de 65 decibelios durante el día y 55 por la noche. Si se supera este tope, comienzan los problemas de salud.

En España este límite se sobrepasa y así lo confirma un estudio de la Fundación la Caixa. Este informe indica que casi el 60% de la población española padece niveles sonoros superiores a los 65 decibelios.

Los vehículos a motor son la principal fuente de contaminación acústica. La Organización Mundial de la Salud (OMS) calcula que solo el ruido del tráfico perjudica la salud de al menos un tercio de los europeos.
Según el estudio "La contaminación acústica en nuestras ciudades", los vehículos a motor causan el 80% de la contaminación acústica. La actividad industrial representa un 10%, el tráfico del ferrocarril un 6% y el ocio alrededor de un 4%.

Los efectos nocivos del ruido sobre la salud están demostrados científicamente y publicados en informes de organismos con la OMS. Algunos de esos problemas son:

- Problemas auditivos: los ruidos (entre 90 decibelios o más) pueden causar la pérdida de audición o pitidos en los oídos.
- Problemas psicológicos: irritabilidad, estrés, problemas de comunicación, ansiedad e incluso agresividad.
- Problemas fisiológicos: aumento de la frecuencia cardíaca y respiratoria y la presión arterial.
- Alteraciones del sueño y del descanso: falta de atención y aprendizaje, somnolencia diurna, cansancio y bajo rendimiento.

Para paliar el efecto de la contaminación acústica se deben adoptar medidas que la mejoren de la calidad de vida en las ciudades y contribuyan a generar una menor cantidad de molestias a los vecinos, cumpliendo las normativas respecto a los límites de decibelios señalados por los municipios. La adopción de estas medidas tiene una serie de inconvenientes entre los que destacan la inversión necesaria en tecnología y la formación del personal necesaria en los casos de alguna de las tecnologías.

2.8.3. CONGESTIÓN

La palabra “congestión” se utiliza frecuentemente en el contexto del tránsito vehicular, la Lengua Española (Real Academia Española, 2001) la define como “acción y efecto de congestionar o congestionarse”, en tanto que “congestionar” significa “obstruir o entorpecer el paso, la circulación o el movimiento de algo”, que en nuestro caso es el tránsito vehicular. Se entiende congestión como la condición en que existen muchos vehículos circulando y cada uno de ellos avanza lenta e irregularmente.

La congestión constituye un problema importante por sus efectos sobre la movilidad de los ciudadanos, además dicha aglomeración de vehículos supone una concentración de emisiones en determinadas zonas y tiene una repercusión negativa en los resultados económicos. La distribución urbana de mercancías contribuye a la congestión del
tráfico, pero también es víctima de este problema, puesto que se pierde eficiencia en el servicio ya que aumentan los tiempos de transporte y entrega.

Este problema se ha visto agravado a causa de las restricciones sobre los vehículos pesados en las ciudades, lo cual supone que la mercancía se transporten en vehículos de menor capacidad haciendo falta más vehículos para transportar un mismo volumen de mercancía.

2.8.4. ACCIDENTES

Existen diversos estudios en los que se pone de manifiesto que los vehículos de transporte de mercancías tienen una gran participación en los accidentes con víctimas mortales, en torno al 10-12%, mientras que su participación en el total de accidentes es en torno a la mitad, un 5%.

En los núcleos urbanos, en cambio, los camiones participan en un número muy reducido de accidentes, sin embargo, estos accidentes suelen acarrear una gravedad importante. En ciudades como Paris, Londres y Ámsterdam, se están instaurando una serie de políticas enfocadas a la buena convivencia del tráfico pesado en la ciudad y el incipiente uso de la bicicleta como medio de transporte alternativo, con el fin de poner especial atención y prevención a los accidentes entre ambos, ya que suelen ser de consecuencias fatales.

2.8.5. PÉRDIDA ECONÓMICA

Todas las externalidades anteriormente citadas y explicadas tienen un factor común, contribuyen a la pérdida de eficiencia y por consiguiente a la pérdida de beneficios por parte del servicio.

La congestión supone una pérdida de tiempo en los desplazamientos, lo que significa una menor eficiencia en el transporte de mercancías y como consecuencia de dinero. Tanto la contaminación acústica como la contaminación ambiental afectan a la sociedad de forma negativa, así que es necesaria emplear recursos en disminuir en la medida de lo posible estas externalidades, realizando cuantiosas inversión en investigación e implantación de medidas correctoras. Por último los accidentes, son la externalidad que produce perdidas más graves llegando a cobrarse incluso vidas si el accidente es de gravedad.
Por lo tanto, mejorar los servicios y reducir las externalidades suponen una mejora importante para la sociedad a todos los niveles.

2.8.6. COSTES DE LAS EXTERNALIDADES

A continuación, se adjunta una tabla en la que podemos observar los costes de externos de estas externalidades:

![Figura 3 Costes externos de las externalidades. (Fuente: Ministerio de Fomento)](image)

Con los datos de la tabla se puede observar que los automóviles son, con mucha diferencia, los que más costes suponen para el sistema excluyendo la congestión. Destacan sobre todo los costes por accidentes seguido de la contaminación atmosférica y el cambio climático.
2.9. SOSTENIBILIDAD

El Desarrollo Sostenible es el paradigma global de las Naciones Unidas. El concepto de Desarrollo Sostenible fue descrito en 1987 en el Informe de la Comisión de Bruntland como un “desarrollo que satisface las necesidades de la generación presente, sin comprometer la capacidad de las generaciones futuras de satisfacer sus propias necesidades”. Dicho esto, la sostenibilidad en el campo de la DUM consistirá en realizar el servicio de transporte con el menor impacto posible sobre la sociedad y el medio ambiente.

Para conseguir que el desarrollo de la DUM no afecte de una forma tan notable a la sociedad y el medioambiente, se deben tomar una serie de medidas que regulen los distintos factores de la movilidad.

Se distinguen 3 factores sobre los que se pueden aplicar medidas:

- Gestión de la capacidad
- Infraestructura
- Medio ambiente

2.9.1. GESTIÓN DE LA CAPACIDAD

En la actualidad, el uso masivo de los vehículos para desplazarse, junto con el aumento del flujo de mercancías ha supuesto la congestión de las vías de circulación en la ciudad, amenazando la calidad de vida de la población y la competitividad del tejido empresarial.

Existen varias medidas que se comentaran a continuación, que se pueden poner en funcionamiento para intentar mejorar el servicio que dan las infraestructuras.

2.9.1.1. ENTREGA DE MERCANCÍAS EN HORAS VALLE. LOGÍSTICA NOCTURNA

La gestión de mercancías en horas valle es una de las alternativas con más potencial para generar capacidad en el sistema logística y poder así, mitigar la congestión de las vías en las horas punta. Si bien esta puede ser una buena medida para evitar dicha congestión no es una alternativa para todas las empresas, ya que normalmente se depende de otras cadenas logísticas. También hay que tener en cuenta que los nodos
logísticos no suelen estar abiertos de cara al público por la noche y que la contratación de personal se complicaría y sería más caro debido a la nocturnidad de la actividad.

Por último el reparto de mercancías nocturno supondría un aumento de las emisiones acústicas por la noche que podrían perturbar el descanso de los vecinos, esto supondría realizar una inversión en tecnología por parte de las empresas en tecnología para minimizar en ruido generado por la actividad.

Entre las ventajas que dicha medida nos proporcionaría destacan:

- La reducción del tiempo de desplazamiento puesto que de noche las vías urbanas están libres de vehículos.
- El ahorro de combustible debido a la conducción fluida.
- Se reduce el número de viajes necesarios ya que por la noche, los gestores municipales permiten la circulación de vehículos de mayor tamaño por los núcleos urbanos.

Inconvenientes de la logística nocturna:

- Necesidad de garantizar una masa crítica que haga rentable el servicio.
- Dificultad para encontrar trabajadores que quieran realizar este trabajo en horario nocturno.
- Obligatoriedad de cumplir algunos requisitos en cuanto a contaminación acústica.

En la gráfica se observa la intensidad de vehículos aumenta considerablemente en las horas punta respecto de las horas valle diurnas y como durante la noche el flujo de vehículos es prácticamente insigñificante.
Como ejemplo se puede citar el caso de Mercadona, que en la ciudad de Barcelona pidió un permiso para poder realizar sus actividades de aprovisionamiento por las noches utilizando las horas valle, cumpliendo eso sí, con la condición de no sobrepasar los 60 dB de sonido y que no se presentaran quejas por parte de los vecinos.

Los horarios sueles ser de 22h a 24h para el primer camión y de 4h a 6h para el segundo camión.

2.9.1.2. TASA A LA CIRCULACIÓN URBANA

La tasa sobre la circulación urbana puede ser una respuesta a la congestión para restringir el tráfico innecesario en los núcleos de población. Con esta medida se pretende conseguir que los usuarios no utilicen el vehículo privado como método de transporte para desplazarse al centro de la ciudad, reduciendo así la congestión y la contaminación en la ciudad y fomentando el uso de los medios de transporte público y el crecimiento de su infraestructura.

El diseño de este sistema depende de la geografía de la ciudad y de las condiciones de movilidad, aunque la mayor parte de las ciudades que han instaurado este sistema (Londres, Singapur, Estocolmo) fijan un perímetro a partir del cual hay que pagar un peaje para circular.
En cuanto a los sistemas de pago, hay ciudades que cuentan con cámaras de seguridad en las entradas a la zona de tráfico reducido, estas captan las matrículas de los coches que después se cotejan con la lista de pagos, también hay sistemas que instauran una tarjeta inteligente en los vehículos que registra el número de kilómetros, la velocidad de la vía y en función de eso se debe abonar una cantidad determinada. Normalmente los residentes de esa zona no pagan peaje.

Ventajas de la aplicación de las tasas sobre la circulación:

- Se produce un aumento de la velocidad comercial en los medios de transporte público, que se traduce en una mayor frecuencia de paso y fiabilidad del servicio.
- Posible aumento del número de usuarios del transporte público.
- Mejores condiciones de trabajo para los empleados del transporte.
- Los periodos de congestión intensa se reducen y también el tiempo necesario para acceder a la ciudad.
- Se mejora el nivel de contaminación de los núcleos urbanos.

Inconvenientes de dicha medida:

- Reacción ciudadana y del comercio contra el peaje.
- Los beneficios obtenidos por la medida son difícilmente cuantificables.
- Necesidad de invertir en tecnología.
- Posible aumento de usuarios del transporte público.
- Posibles efectos negativos en la frontera del peaje relacionados con la congestión.

Se debe tener en cuenta, que pese a los beneficios que puede tener esta medida estos son generalmente cualitativos, son difíciles de valorar económicamente, en cambio si lo son los costes que se deben asumir, por lo tanto estas medidas necesitaran de apoyo político y social con el objeto de que no fracasen.

2.9.1.3. REGULACIÓN Y RESTRICCIÓN DE ACCESOS

Regulación: Apunta a que lo vehículos circulen por las vías más adecuadas en el interior de las ciudades, protege los centros urbanos de ciertas tipologías de vehículos.
Restricción: Promoviendo zonas peatonales, prohibiendo así el paso de vehículos completamente. Protege espacios urbanos de valor arquitectónico, cultural o comercial.

Ventajas de esta medida:

- Estas medidas evitan el paso de vehículos de mercancías.
- Contribuyen a potenciar el carácter comercial de una zona.
- Proporcionan un espacio donde el ciudadano puede pasear libremente.

Inconvenientes:

- Dichas acciones necesitan de una buena señalización
- Inversión en tecnología para gestionar el sistema.

2.9.2. INFRAESTRUCTURA

2.9.2.1. DISEÑO/IMPLANTACIÓN DE ZONAS DE CARGA Y DESCARGA

Las zonas de carga y descarga son espacios de la vía pública situados en las proximidades de los establecimientos comerciales reservados para el uso exclusivo de la carga y descarga de mercancías.

El principal objetivo de esta medida es permitir la carga y descarga de mercancías sin interferir con la libre circulación del resto de usuarios.

En la ciudad de Valencia existen actualmente más de 15.000 establecimientos de comercio minorista y alrededor de 1.500 plazas de vados de carga y descarga con lo que se reserva una plaza para cada 10 establecimientos, según recoge el Plan de Movilidad Urbana Sostenible de Valencia.

En el mismo documento se indica que para lograr una distribución ágil y ordenada de las mercancías es necesario disponer como mínimo de una plaza por cada ocho establecimientos comerciales, por lo que la ciudad necesitaría de unas 1.850 plazas, un 25% más de las que dispone actualmente.
En Valencia, más del 80% de las entregas se realiza en furgonetas o camiones pequeños de hasta seis toneladas. La hora punta en el reparto de mercancías se produce entre las 9:00 y las 12:00 horas, con más del 70% de las entregas realizadas por la mañana. Estas operaciones se realizan con bastante rapidez, ya que el tiempo de estacionamiento máximo permitido en la ciudad es de 20 minutos.

Ventajas:

- Los agentes de la distribución urbana de mercancías disponen de un espacio reservado en exclusiva
- El estacionamiento de vehículos dedicados a la distribución urbana en zonas no adecuadas disminuye parcialmente.

Inconvenientes:

- Es necesario un seguimiento periódico de las zonas para evitar que los usuarios no sobrepasen el tiempo permitido y sobre todo, para que los vehículos no autorizados no estacionen.
Las tipologías y demisiones de los vehículos deben estar bien definidas según los establecimientos comerciales y es importante establecer una franja horaria amplia y un tiempo límite para la operación de carga y descarga. La medida debe ir acompañada de una señalización clara y visible.

2.9.2.2. ESPACIOS LOGÍSTICOS URBANOS (CENTROS DE CONSOLIDACIÓN URBANA)

Se define al Centro de Consolidación Urbano (CCU) como “una instalación logística situada relativamente cerca del área geográfica a la que sirve (sea un centro urbano, una ciudad entera o un sitio específico como, por ejemplo, un centro comercial), a la cual muchas empresas de logística entregan los productos destinados a dicha área y desde donde se realizan repartos dentro de la misma, proporcionándose servicios de logística y de comercio de valor añadido”.

Así, un CCU permite que empresas de distribución lleven las mercancías, con destino a un área urbana, a un centro especializado cercano para su posterior entrega final en un lugar concurrido de la ciudad. Al tratarse de plataformas urbanas de transbordo resulta imprescindible que existan convenios entre el ayuntamiento y las empresas transportistas. Esta propuesta ofrece la posibilidad de mejorar la fiabilidad del reparto y cumplir con los objetivos económicos, ambientales y relativos al tráfico.

Best Urban Freight Solutions, BESTUFS, en su guía de buena práctica, clasifica los CCU en tres clases diferentes, pudiendo ofrecer todos ellos servicios de consolidación o de valor añadido:

- **CCUs que abastecen a un municipio:** Este tipo de centro de consolidación abastece cualquier área geográfica de un municipio, desde un área específica de comercios, el centro de una ciudad o una ciudad. El número de empresas que lleven a cabo la realización del plan puede variar desde una sola empresa a varias.

- **CCUs en sitios con dirección única:** Este tipo de CCU da servicio a una sola actividad. Los puntos de descarga final se encuentran apartados de la calle y se accede a ellos por una única ruta designada a tal efecto. Existe la posibilidad de autofinanciación por medio de los ingresos de los alquileres y las tasas por manejo. Un claro ejemplo de esta clase de CCU serían los centros comerciales.
- **Proyectos especiales de CCU**: Estos son proyectos definidos para un tiempo determinado que dan servicio a una zona específica en un periodo específico de tiempo. Normalmente se llevan a cabo para propósitos de no-venta, como es el caso de la distribución de material de construcción.

Los CCU tienen como finalidad crear un impacto positivo en el entorno de la zona, razón por la cual se desglosan estos posibles impactos que producen si se ejecutan correctamente:

- **Impacto en el funcionamiento del transporte**, pues los centros de consolidación pueden mejorar la fluidez del transporte si se elabora un buen plan y el mercado responde de la forma esperada. Dicho plan puede incluir:
 - La reducción del número de desplazamientos y en consecuencia una menor necesidad de vehículos en el área abastecida por el centro de consolidación.
 - Reducción de las distancias recorridas.
 - Mejora de los vehículos y usos en el abastecimiento a los CCU.
 - Amortización del vehículo en un tiempo menor.
 - Posible reducción en el número de fallos.
 - Mejores instalaciones para la carga y descarga.
 - Capacidad de separar grandes desplazamientos de entregas locales y así reducir la distancia recorrida.
 - Facilitar el uso de modos alternativos y tipos de vehículos.
 - Reducción del coste unitario de transporte en la etapa final.
 - Oportunidades para generar ingresos con las cargas de vuelta.

Los estudios realizados han demostrado que el número de desplazamientos y/o kilómetros se reducen entre un 30% y 80% en los casos en que se utiliza un CCU. Sin embargo, el bajo nivel de respuesta ha generado reducciones muy pequeñas respecto a la actividad total en el transporte.

IMPACTOS EN OTRAS ACTIVIDADES DE LA CADENA DE SUMINISTRO.

Los CCU influyen en actividades de la cadena de suministro como la gestión del almacén, pues facilitan el control del inventario; el control de la calidad y cantidad de producto; la pre-venta del producto, pues reducen el embalaje y mejoran la
preparación y etiquetado de los productos para el punto de venta; y la mejora en el control de la cadena de suministro para reducir costes y mejorar los niveles de servicios.

IMPACTOS ECONÓMICOS, SOCIALES Y AMBIENTALES.

Los CCU ayudan a reducir el número de vehículos de mercancías y el número total de vehículos que circulan por el área urbana, a reducir también el número de desplazamientos, de los viajes en vacío y la distancia recorrida, a la disminución del coste unitario del transporte, a mejorar la utilización del vehículo por parte del conductor, a utilizar una flota de vehículos respetuosos con el medio ambiente en el tramo final de la cadena de suministro urbano, a reducir el número de entregas a lugares del centro urbano, a reducir el consumo de combustibles fósiles y emisiones de gases contaminante así como la contaminación acústica y a convertir la zona en un lugar seguro para los peatones.

Ventajas de los Centros de Consolidación Urbana:

- Beneficios ambientales y sociales por operaciones de transporte más eficientes y menos intrusivas.
- Mejor planificación e implementación de la logística.
- Oportunidad de introducir nuevos sistemas de información.
- Mejor control del inventario, de disponibilidad de productos y servicio al cliente.
- Facilitan el cambio de logística push a pull a través de un mayor control y visibilidad de la cadena de suministro.
- Posibilidad de unirlos a iniciativas más amplias.
- Costes-beneficios teóricos subcontratando la entrega final.
- Ventajas de relaciones públicas (contactos) para los participantes.
- Posibilidad de realizar un mejor uso de los recursos en los puntos de entrega.
- Ventajas específicas para el transporte.
- Posibilidad de llevar a cabo actividades de valor añadido.

Inconvenientes de esta medida:

- Costes de puesta en marcha potencialmente altos (especialmente con los elevados precios del suelo en áreas urbanas).
Complejidad operacional como resultado de los diferentes requisitos de almacenamiento y manejo de tan variados tipos de productos.

Posible coste (y tiempo) añadido, al introducir un punto adicional en la cadena de suministro.

La introducción de un punto de reparto adicional puede impedir el ahorro de transporte en futuras distribuciones.

Problemas de organización y de contrato.

Posibilidad de crear monopolios.

Pérdida de relación directa entre los proveedores y los consumidores.

Para que un centro de consolidación urbana tenga éxito, es necesario conciliar intereses de transportistas, comerciantes y la Administración, sin su colaboración es muy posible que la iniciativa no prospere. Esta iniciativa requiere cierta inversión inicial que debe ser suficiente para comprobar si es viable aunque se debe aspirar a que estos centros funcionen con autofinanciación.

No todos los productos son adecuados para ser gestionados por un centro de consolidación urbana como los productos sensibles al paso del tiempo o con necesidades de manipulación específicas.

En España tenemos como ejemplo el Centro de Consolidación Urbana del barrio de Sant Andreu en Barcelona que abasteció a un distrito concreto durante un periodo de prueba de dos meses en el año 2007. Se realizaron 46 entregas, el 80% de las cuales llegaba por la mañana a la plataforma, desde donde se remetían al destino final en menos de dos horas. La valoración tanto de comerciantes como de transportistas fue muy positiva.

2.9.3. MEDIO AMBIENTE

El uso masivo de los medios de transporte para realizar desplazamientos dentro del núcleo urbano es una de las fuentes de emisiones más importantes cuantitativamente y que más está creciendo en los últimos años. Es por eso que se redactan directivas, que establecen el protocolo para la comercialización de derechos de emisión de gases de efecto invernadero en la Unión Europea y se persigue el objetivo de ayudar a cumplir las obligaciones derivadas del Convenio Marco de Naciones Unidas sobre el cambio climático y el Protocolo de Kyoto.
En 2007, España presentó el segundo Plan Nacional de asignaciones y la estrategia Española de movilidad Sostenible con el objetivo de aumentar los medios de transporte más limpios.

2.9.3.1. VEHÍCULOS CON MENORES EMISIONES.

El principal objetivo de esta medida es adaptar la distribución urbana de mercancías a las nuevas exigencias medioambientales de las ciudades y reducir lo máximo posible las emisiones de gases de efecto invernadero y de las partículas en suspensión derivadas de la utilización de combustibles fósiles.

En los últimos años se están investigan distintas alternativas para sustituir al vehículo tradicional de combustible. Algunas de las soluciones desarrolladas son:

- Gas natural vehicular
- Hidrógeno
- Biocombustibles (bioetanol y biodiesel)
- Vehículos eléctricos e híbridos
- Vehículos de tecnología convencional en conformidad con directivas tales como la Euro III y la Euro IV
- Bicicletas o triciclos de propulsión mecánica o eléctrica

Entre las ventajas del uso de este tipo de vehículos se encuentran las siguientes:

- Los vehículos movidos por combustibles alternativos son más respetuosos con el medio ambiente (menos emisiones de gases contaminantes y de efecto invernadero).
- Los vehículos movidos por combustibles alternativos suelen ser más silenciosos
- Contribuyen a la diversificación de las fuentes de combustible y optimizan la utilización de recursos
- En ciertos casos, como el del gas natural, el coste de combustible por kilómetro es inferior.
En contraposición, los posibles inconvenientes que presentan son los que siguen:

- En algunos casos, la tecnología se encuentra todavía en proceso de desarrollo y mejora.
- Los vehículos movidos por combustibles alternativos requieren normalmente más inversión que los vehículos que funcionan con combustibles tradicionales.
- Dada su permeabilidad, todavía baja, en el mercado del automóvil, hay escasez de puntos de recarga de combustible.
- Es necesario la formación de personal.

Para promover este tipo de energías que no afectan al medio ambiente o lo afecta de una forma mucho más moderada se deberían adoptar ciertas medidas tales como subvencionar e incentivar la adquisición de uno de estos vehículos para que al cliente le resulte atractivo y se produzca un cambio en los hábitos de la sociedad.

También se les debería otorgar ciertas ventajas a las personas en posesión de dichos vehículos que preservan el medio ambiente, tales como la exención de impuestos o el acceso a las vías restringidas.

Por último sería conveniente predicar con el ejemplo y añadir a la flota municipal vehículos de dichas características.

2.9.3.2. VEHÍCULOS CON MENOR IMPACTO ACÚSTICO

Hoy en día se cuenta con la tecnología necesaria para minimizar los niveles sonoros de los vehículos y de las operaciones de pero muchas empresas no la adoptan por el coste. La adopción de esa tecnología se hace, sin embargo, imprescindible para las empresas que realizan transporte nocturno de mercancías, debido a las exigencias de la normativa urbana.

Resulta interesante destacar que la contaminación acústica generada por un camión del año 1970 equivale a la que generaban doce camiones en el año 2000, lo cual pone de manifiesto que ha tenido lugar una importante evolución tecnológica (Institut Cerdà).
Entre los sistemas de reducción del impacto acústico, destacan:

- Sistemas de refrigeración silenciosos (especialmente importante para la distribución de alimentos)
- Insonorización (interior camión y pavimento de zonas de carga/descarga)
- Ruedas silenciosas
- Dispositivo limitador de velocidad y revoluciones
- Persianas eléctricas
- Cierre silencioso de las puertas
- Tecnologías antivibración de los sistemas de tracción
- Sistemas de sujeción de la carga
- Sistemas de cámaras
- Roll container

Las ventajas de utilizar estos sistemas de reducción de ruido son las siguientes:

- Mejora la calidad de vida en las ciudades y contribuye a reducir la contaminación acústica.
- Se deja de causar molestias a los vecinos en horario de descanso.
- Garantiza que no se sobrepasen los límites de decibelios señalados por la normativa.

Inconvenientes de las medidas:

- La inversión necesaria es superior que en los vehículos convencionales.
- Es necesaria en ocasiones la formación del personal.

2.9.3.3. ZONA DE BAJAS EMISIONES

Esta medida tiene su objetivo en crear “Zonas ambientales” con el fin de mejorar la calidad del aire y las emisiones de ruido. Una “Zona de Bajas Emisiones” (ZBE) o Zona Ambiental es un área en la que solo pueden entrar vehículos que cumplan ciertos criterios de emisión. Se establecen los parámetros de un área geográfica, un periodo de tiempo, los niveles de emisión de los vehículos y los tipos de los mismos y se trata de combinar tanto el cumplimiento de los estándares ambientales como el peaje por utilización de las calles. También se pueden imponer normas de acceso basadas en
niveles de emisiones atmosféricas o de ruido sin necesidad de definir un área ZBE específica.

Madrid ha delimitado una zona de bajas emisiones (ZBE) para aplicar medidas de reducción de la contaminación. Este nuevo 'centro' de Madrid tiene mayores precios en el Servicio de Estacionamiento Regulado (SER), autobuses más limpios y en 2014 un sistema de alquiler de bicicletas.

Figura 6. Parquímetro en zona de bajas emisiones. (Fuente: Ayuntamiento de Madrid)

Hace unos años, el Ayuntamiento de Madrid ha delimitado una zona céntrica de la ciudad para aplicar medidas que reduzcan la contaminación. Se trata de la ZBE, que trazó atendiendo a un estudio de la Universidad de Alcalá sobre la zona con mayores concentraciones de contaminantes, precisamente para concentrar las medidas para reducirlas.

En un primer momento, esta zona se pensó para restringir la entrada de vehículos, como se recogía en el Estrategia de la Calidad del Aire para 2008, pero tiempo después se rechazó esta idea.

A día de hoy la zona de bajas emisiones es donde se concentran algunas de las medidas contenidas en el Plan de Calidad del Aire, con el que pretende cumplir con la normativa europea en esa fecha, pero que no ha sido aceptado por la Comisión para concederle la moratoria al Ayuntamiento y evitar así posibles sanciones por superar los límites legales.
Las medidas que se están aplicando hasta ahora son:

- La subida de un 10 por ciento en la tarifa del SER (Servicio de Estacionamiento Regulado)
- La creación de la M-10, un anillo para transporte público y bicicletas.
- La creación de un sistema de bicicletas de alquiler
- La inclusión progresiva de autobuses 'limpios' hasta llegar al 100 por cien en 2015.

Para que las ZBE tengan éxito se debe apoyar con medidas sobre los medios de transporte públicos en la zona, para que los ciudadanos no tengan dificultades a la hora de desplazarse.

En un primer momento, el sistema de alquiler de bicicletas está previsto que se extienda por toda la zona para facilitar el desplazamiento con una oferta de más de 4.000 bicicletas. Los nuevos ciclistas que se animen a usar el sistema público y los que ya venían usando este medio de transporte disponen también de nuevos ciclocarriles en el primer cinturón de la ciudad, con la nueva M-10, y desde 2014 habrá una red de 70 kilómetros de estos carriles.

Por su parte, la EMT también está implicada en este plan, ya que su flota es una parte importante del tráfico de la ciudad. En concreto, circulan 990 autobuses de la EMT por la ZBE y a día de hoy el 100 por cien de los mismos son 'limpios', es decir, con tecnologías que reducen las emisiones contaminantes.

Así a diciembre de 2013, un 89,7 por ciento de esos autobuses ya eran de tecnologías limpias, con 316 unidades que cumplen las normativas más estrictas o a los que se han instalado catalizadores para reducir su impacto, 552 de gas natural, 10 híbridos y 10 eléctricos. Mientras, en el resto de la ciudad, la flota verde supone un 60,1 por cien.

2.9.3.4. PROYECTO ELCIDIS

Se trata de un proyecto impulsado por la administración local de Rotterdam y la Asociación Europea de Ciudades Interesadas en Vehículos Eléctricos (Citelec). El proyecto está incluido, además, en el Programa de Energía de la Comisión Europea.
ELCIDIS es un proyecto europeo que trata de resolver el problema medioambiental del transporte por dos vías: por una parte, la instalación de los llamados centros de consolidación urbana y, por otra, la sustitución de los vehículos convencionales dedicados a la distribución urbana por vehículos «limpios» o ecológicos.

En Rotterdam, tres compañías (TPG, VGL y NPD) concentran más del 70% de la distribución urbana de mercancías, la cual se realizaba mediante furgonetas o camiones pequeños. Con el proyecto ELCIDIS, el reparto en la ciudad y cercanías pasa a hacerse por medio de vehículos eléctricos o mixtos, que realizan envíos a una cincuentena de direcciones cada día en un único viaje. Esto condiciona que los vehículos tengan la autonomía y la capacidad de carga suficientes para que se pueda continuar con el mismo sistema de envíos.

Se pueden aplicar regulaciones horarias de carga y descarga en las aceras, restringiendo las horas a las que los vehículos pueden cargar y descargar en dicho lugar. Estas restricciones deben realizarse en base a un balance de las necesidades o las ventajas que supone el uso de este espacio para carga y descarga o para otras actividades como dedicar éste espacio para plazas de aparcamiento.

Programas orientados a la eficiencia y mejora del medio.

![Figura 7. Plataforma ELCIDIS (Fuente: Proyecto ELCIDIS)](image)

El principal objetivo del proyecto es demostrar la viabilidad del uso de vehículos eléctricos en la distribución urbana de mercancías, demostrar los beneficios medioambientales y promover el uso de este tipo de vehículos.
Más concretamente se distinguen los siguientes objetivos:

- Para demostrar la viabilidad económica, técnica y social de la distribución urbana de mercancías utilizando vehículos eléctricos.
- Analizar los beneficios medioambientales del despliegue de vehículos eléctricos para la distribución de mercancías.
- Obtener información sobre las especificaciones técnicas de las furgonetas híbridas que realizan las operaciones de distribución urbana.
- Analizar la eficiencia logística de los recientemente creados centros de distribución urbana.
- Demostrar el valor de los incentivos para promover los vehículos respetuosos con el medio ambiente.
- Obtener una visión clara de los beneficios del uso de este tipo de vehículos para todas las partes implicadas en la actividad.

Como resultado del proyecto se realizará un guía de recomendaciones con los factores clave para el éxito de esta medida, el uso de vehículos eléctricos para la distribución de mercancías. Este proyecto puede ayudar a otras ciudades a empezar a elaborar un proyecto propio para implantar sistemas de distribución de mercancías limpios y eficientes.

A continuación se van a citar algunas cifras sobre la DUM para ver la importancia que esta rama del transporte tiene en relación a la movilidad:

- Los desplazamientos con motivo compra (para ir a buscar esos bienes materiales) se realizan de media entre el 55% y el 60% en coche, del 30% al 35% a pie y del 5% al 10% en transporte público.
- Si solo consideramos los viajes al hipermercado, el uso del coche es superior al 80%. De hecho estos establecimientos hacen consumir el doble de energía que los supermercados de barrio.
- De toda la logística urbana, el 50% de los flujos corresponden a las mercancías transportadas por personas como parte de sus compras, el 40% son los del transporte de mercancías desde el sector privado (industria, comercio, etc.), y
el 10% corresponde a los vertidos de construcción, la recogida de basuras, servicios postales, etc.

- Ha habido un crecimiento del 30% del número de camiones y furgonetas desde 2000 a 2014, y un 61% del parque de más de 10 años (Fuente: Anfac).
- El 61% de las empresas de transporte es de 1 trabajador, y menos del 2% tiene más de 20 trabajadores (Fuente: INE).
- El 15% de las operaciones de estacionamiento que se realizan en el centro de la ciudad corresponden a vehículos comerciales. El 78% de las operaciones de C/D se realizan de forma ilegal, o dicho de otro modo, de todos los estacionamientos ilegales que se producen en Madrid, el 39% corresponden a usuarios que hacen carga y descarga.
- No es un tema baladí, se estima en más de 43 millones de euros anuales los costes que genera la indisciplina de estacionamiento sólo en Madrid como consecuencia de las demoras de vehículos particulares y de transporte público, aumento de consumo, y externalidades medioambientales (Fuente: Ayto. Madrid).
- El efecto de llevar la misma mercancía en vehículos de 6 tn en lugar de camiones de 20 tn es de +123% de congestión, +121% de contaminación y +165% de coste económico (Fuente: AECOC y Instituto Cerdà).
- El coste del “último kilómetro” es la etapa más costosa y representa el 20% del coste total de transporte desde origen a destino.
- Además, el transporte de mercancías supone el 50% del consumo de combustible en la ciudad y el 35% de las emisiones de CO2 y partículas (Fuente: La Poste).
- Según el estudio de INFRAS/IWW, el automóvil es responsable de la mitad de las externalidades del conjunto del transporte, pero el transporte de mercancías por carretera provoca el 25% (camión pesado) y el 9% (vehículo ligero) (Fuente: INFRAS/IWW).
3. EL REPARTO DOMICILIARIO EN LA CADENA DE SUPERMERCADOS

3.1. INTRODUCCIÓN

La RAE define supermercado como un establecimiento comercial de venta al por menor en el que se expenden todo género de artículos alimenticios, bebidas, productos de limpieza, etc... Y en el que el cliente se sirve a sí mismo y paga a la salida.

Hace unos años atrás la situación del mundo empresarial destinado a la venta de este tipo de producto era bien distinta, pues predominaban las pequeñas empresas de barrio en las que se encontraba productos básicos de alimentación, menaje y limpieza del hogar. Hoy en día estas empresas de barrio han sido absorbidas por las grandes cadenas de supermercados o se han visto obligadas a cerrar debido a que su clientela ha disminuido considerablemente como consecuencia de la crecida de las grandes cadenas de supermercados que ofrecen una gama de productos más variada, a un precio más competitivo.

Para comprender el tipo de distribución de mercancías que realiza un supermercado de estas características hay que tener en cuenta una serie de factores que influyen en la distribución de mercancías.

Lo primero que hay que saber es en qué clase de mercados se ha de trabajar, entendiendo el mercado desde una visión microeconómica como conjunto de ofertas y demandas relativas a un bien o servicio. Ya que se está analizando estos datos desde un punto de vista empresarial, se analizará que tipo de mercados de demanda es posible encontrarse.

Si se clasifica el tipo de mercado en función de los productos que ofrece una empresa se hablaría de mercado de productos perecederos, que son aquellos que tienen fecha de caducidad y deben ser consumidos antes de un tiempo límite determinado como es el caso de los alimentos.
El mercado en cuanto al ámbito geográfico tiene en cuenta la distancia recorrida por los clientes para llegar hasta las instalaciones, que para un supermercado suelen distancias cortas por lo tanto se habla de un mercado local/comarcal. Por último los productos están destinados al mercado de consumidores que es en el que se encuentran los compradores que buscan cubrir una necesidad mediante la adquisición de un bien o servicio de consumo.

Pero en definitiva el factor que más influye en el desplazamiento que tiene que realizar es el tipo de establecimiento al que se ha comentado anteriormente, pues dependiendo de este, el establecimiento tendrá una serie de características como tipo de productos concretos que ofrece y la ubicación dentro del entramado urbano.

3.2. TIPOS DE ESTABLECIMIENTOS

Después de lo explicado, se sabe que en función del establecimiento que se estudie, sus características van a ser totalmente diferentes, incluido su servicio de entrega a domicilio. Se va a analizar el abanico de establecimientos que se pueden encontrar dentro del sector de la alimentación. Se han clasificado los establecimientos en 3 categorías.

3.2.1. TIENDAS DE ALIMENTACIÓN INDEPENDIENTES

Una tienda de barrio es un establecimiento ubicado en el local o el bajo de una edificación, están constituidas por una o más tiendas propiedad de un único comerciante o minorista que es el que normalmente los dirige. Estos distribuyen productos de alimentación, bebidas, productos de limpieza, droguería, etc... Son establecimientos de dimensiones reducidas cuyos clientes viven bastante próximos a la ubicación del mismo. El trato que ofrecen es muy cercano pero las mínimas distancias de los clientes y el tipo de comercio no propician que se produzca un servicio de entrega a domicilio por lo tanto no se tendrán en cuenta.

3.2.2. SUPERMERCADOS

Un supermercado es un establecimiento comercial urbano que debe disponer de 3 o más cajas registradoras según la definición del Instituto Nacional de Estadísticas y que
ofrece a sus clientes productos de consumo en sistema de autoservicio entre los que se encuentran alimentos, ropa, artículos de higiene, perfumería y limpieza.

Estas tiendas pueden formar parte de una cadena de supermercados, generalmente en forma de franquicia aunque existe la posibilidad de que estén organizados como una cooperativa, y suele hacer más centros en la misma ciudad.

Por su tamaño, los supermercados se dividen en:

- Supermercado mediano - de 400 a 1.500 m² de superficie de venta.
- Supermercado grande - de 1.500 a 2.500 m² de superficie de venta.

Dentro de esta tipología de supermercados encontramos variaciones dependiendo de sus productos. Son los clasificados como supermercados descuento entre los que encontramos 2 tipos:

- Hard discount (LIDL, Plus, Aldi): distribuyen marcas blancas, localización periférica, personal escaso, y con una superficie de 300 a 900 m².
- Soft discount (DIA): localizados en área urbanas, ofrecen primeras marcas y marcas blancas.
- El 70% de los productos que podemos encontrar en estos establecimientos son de alimentación, tanto frescos como en seco.
- Estos establecimientos se centran en productos de primera necesidad, del día a día, casi siempre están ubicados dentro de los núcleos de población, por lo que no tienen zona de aparcamiento o esta suele ser reducida, así que suelen recibir clientes de la propia localidad o de las zonas cercanas al centro. Las características de los supermercados contribuyen a que se realicen servicio de entrega a domicilio puesto que las distancias no son tan grandes como para acudir con vehículo propio.

3.2.3. HIPERMERCADOS

Según el Instituto Francés de Libre Servicio, un hipermercado es un establecimiento de venta al por menor que, tiene una superficie de venta de más de 2.500 m², realiza sus operaciones comerciales en régimen de autoservicio y pago en las cajas de salida.
Normalmente están localizados en áreas suburbanas, algo alejado de los núcleos de población o en los aledaños de las autopistas y avenidas con mucho tráfico, por lo que es necesario realizar grandes desplazamientos dentro del contexto de las compras en el sector de la alimentación.

Los hipermercados ofrecen una amplia gama de productos que se agrupan en tres grandes divisiones:

- Productos alimenticios, que suponen alrededor del 60% del volumen de ventas.
- Artículos complementarios del hogar.
- Artículos de uso y vestido.

3.2.4. REPARTO DE VENTAS

Esta amplia gama de productos influye el servicio de entrega a domicilio puesto que estos establecimientos no solo están centrados de alimentación (cosa que sí hacen los supermercados) así que los vehículos utilizados no tienen las mismas características, estos vehículos deben estar preparados para cargar otro tipo de productos complementarios de hogar cuyo volumen es mucho mayor.

La situación dentro de la urbe de estos centros que suelen complementar su oferta con centros comerciales u otros grandes almacenes situados en el entorno, hace que sea necesario en la mayoría de casos el desplazamiento con vehículo privado para realizar las compras por lo que se ven reducidos los servicios de envío a domicilio, ya que el cliente mismo carga las compras realizadas en su vehículo y se las lleva a casa.

Se puede deducir que los envíos que realizan estos centros serán de mayor distancia puesto que están alejados de la población.

Todos estos condicionantes hacen que varié el servicio de entrega a domicilio.

En las siguientes tablas se puede observar las tendencias de los consumidores respecto a los establecimientos donde están realizando la compra de sus productos alimentarios.
Como se puede observar los productos de alimentación se adquieren principalmente en los supermercados, excepto cuando se trata de productos frescos. Casi el 60% de la alimentación es distribuida por supermercados.

Y la evolución de estos durante los últimos años

La compra de productos de alimentación ha descendido tanto en hipermercados como en tiendas tradicionales siendo los supermercados los que abarcan la mayor parte de las ventas de este tipo de productos. Los supermercados de descuento registran subidas en la venta de productos frescos y también se observa un aumento de las ventas online.
3.3. SITUACIÓN DEL REPARTO DOMICILIARIO EN LAS EMPRESAS ESPAÑOLAS

A continuación se procederá a analizar casos concretos de distintas empresas del sector de la alimentación españolas y se podrá observar como varía su servicio de entrega a domicilio en función de las características de los establecimientos.

Lista de las empresas:

- Al campo (hipermercado)
- Carrefour (hipermercado)
- Hipercor (hipermercado)
- Supermercados El Corte Inglés (Grandes almacenes)
- Mercadona (supermercado)
- Consum (supermercado)
- Día (supermercado)
- Supercor (supermercado)
- LIDL (supermercado)
- Aldi (supermercado)
- Plus (supermercado)

Se procederá al análisis detallado de los servicios que ofrecen cada una de estas empresas a la hora de realizar el transporte del pedido.

3.3.1. AL CAMPO

Para sus compras de comestibles, el costo del servicio de entrega es de 9,90€ (3,90 € de costes de preparación + 6.00 € por el envío). Los encargos que contienen solo los electrodomésticos, textiles, aparatos electrónicos, artículos para el hogar o juguetes tienen un coste de entrega a domicilio de 6,00€. Para sus pedidos aparatos electrónicos, el coste de entrega será el siguiente:
Figura 10. Precios de Alcampo. (Fuente: Alcampo)

Para los pedidos de tiendas de comestibles, se puede elegir entre 4 franjas horarias tanto para recoger su pedido en su hipermercado cercano como para la entrega a domicilio desde las 9 de la mañana hasta las 10 de la noche. Igualmente para los pedidos de electrodomésticos, se puede elegir entre 2 franjas para la entrega a casa o recogida, de 9 de la mañana a 9 de la noche de lunes a viernes y para el sábado una franja de 9 de la mañana a 9 de la noche.

3.3.2. CARREFOUR

Dispone de servicio de entrega a domicilio te llevan la compra a casa tras pasarla por caja, el precio de la compra a domicilio, dependiendo del pedido que hagas, el envío de la compra te puede salir más o menos barato. Los precios que tienen estipulados son:

- Compra inferior a 90 euros: 9 euros de gastos de envío.
- Compra superior a 90 euros y menor de 200 euros: 6 euros de gastos de envío.
- Compra superior a 200 euros: gastos de envío gratis.

Los horarios de reparto a domicilio son los siguientes:

- Lunes a viernes: de 10:00 a 22:00 horas.
- Sábados: 10:00 a 14:00 horas.
- Domingo: no está disponible.
Salvo que la compra se realice a última hora de la tarde, en todos los casos los envíos llegan en el día intentando ajustarse al horario del cliente. Igualmente, productos frescos y congelados van directamente a cámaras refrigeradas para que ninguno pierda sus cualidades, primero durante la espera y después en el trayecto.

3.3.3. HIPERCOR/SUPERMERCADOS EL CORTE INGLÉS

En alimentación y limpieza, el envío es gratis por compra superior a 100 € pagando con la Tarjeta de El Corte Inglés y 120 € con otros medios de pago, sino el coste de este servicio es de 8€. En los pedidos de alimentación y limpieza, el plazo de entrega es de 24 horas, siempre que el pedido se confirme antes de las 17:00 h (Excepto sábados, domingos y festivos, en los que el plazo será de 48 h). Los pedidos son repartidos en camiones frigoríficos que garantizan que en ningún momento se rompe la cadena de frío.

Tabla con los gastos de envío según el producto:

<table>
<thead>
<tr>
<th>Departamentos</th>
<th>Envío a domicilio</th>
<th>Recogida en Hipercor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moda, accesorios, ropa y calzado deportivo</td>
<td>0,00€</td>
<td>Gratis</td>
</tr>
<tr>
<td>Videojuegos</td>
<td>2,00€</td>
<td>Gratis</td>
</tr>
<tr>
<td>Videoconsolas</td>
<td>5,00€</td>
<td>Gratis</td>
</tr>
<tr>
<td>Juguetes</td>
<td>5,00€</td>
<td>Gratis</td>
</tr>
<tr>
<td>Piscinas</td>
<td>5,00€</td>
<td>No se recoge</td>
</tr>
<tr>
<td>Pequeño Electrodoméstico</td>
<td>5,00€</td>
<td>No se recoge</td>
</tr>
<tr>
<td>Gran Electrodoméstico</td>
<td>5,00€</td>
<td>No se recoge</td>
</tr>
<tr>
<td>Informática y Electrónica</td>
<td>5,00€</td>
<td>No se recoge</td>
</tr>
<tr>
<td>TV y sonido</td>
<td>5,00€</td>
<td>No se recoge</td>
</tr>
<tr>
<td>Menaje, textil, decoración y orden en casa</td>
<td>5,00€</td>
<td>No se recoge</td>
</tr>
<tr>
<td>Colchones</td>
<td>GRATIS</td>
<td>No se recoge</td>
</tr>
<tr>
<td>Bebés</td>
<td>5,00€</td>
<td>Gratia</td>
</tr>
<tr>
<td>Muebles y carrocera</td>
<td>15€</td>
<td>GRATIS</td>
</tr>
</tbody>
</table>

Figura 11. Precios de hipercor. (Fuente: Hipercor)

Para estos productos el plazo de entrega es de 72 horas (excluyendo sábados, domingos y festivos), siempre que la totalidad del pedido esté compuesto por artículos señalados con el indicativo de entrega a domicilio en 72 h. Para el resto de artículos, el plazo de entrega es de entre 4 y 10 días laborables.
3.3.4. MERCADONA

Esta cadena de supermercados es una de las más importantes de España que funciona con un sistema de franquicias. Tiene servicio de envío a domicilio para los servicios de compra online y para las compras realizadas en la propia tienda.

Tabla con franja horaria de pedidos online:

Para el envío de la compra realizada en tienda tienen 4 franjas horarias que son de dos horas: de 9 a 11h, de 12 a 14h, de 15 a 17h y de 18 a 20h. En estas franjas horarias se incluyen pedidos online y de tienda y cuando se llega a un número máximo de pedidos por franja horaria esta se cierra, de esta forma los siguientes envíos quedan relegados a la siguiente franja horaria.

El encargado de realizar estos pedidos es un trabajador del establecimiento que atiende pedidos online realizando la selección de productos y organiza las compras en tienda según la franja en la que tengan que ser entregadas.

Las compras en tienda se depositan en bolsas de color azul si se trata de productos frescos y verde de productos congelados para que durante el tiempo que pasen en el establecimiento se depositen en los lugares correspondientes según el tipo de artículo.

El coste del envío a domicilio cuando la compra se realiza en el establecimiento es de 4,21€ mientras que si se realiza online es de 7,21€ (3€ por costes de manipulación de alimentos).

La distancia máxima a la que entrega los pedidos Mercadona es de 10 Km aunque se reserva el derecho de elegir si llevan o no el pedido según la localización.
3.3.5. CONSUM

Otra gran cadena de supermercados española, causa de análisis del presente proyecto, que tiene instalaciones por toda la costa mediterránea. Su organización empresarial es distinta ya que funciona como una cooperativa, sus trabajadores fijos figuran como socios de la cooperativa teniendo que aportar capital, pero esto se explicará más adelante.

En cuanto al reparto de mercancías Consum no tiene una distribución por franjas horarias como tal, aunque sí tienen un límite máximo de pedidos por franja horaria. Lo que hacen en este caso es comprometer a llevar la compra a tu domicilio en menos de 2 h pero limitan el número máximo de pedidos por franja horaria a 3 pedidos por franja y centro. Los repartidores de la compra no son trabajadores de Consum sino que este servicio externalizado.

En cuanto al coste del servicio se adjunta la siguiente tabla donde podemos ver el coste según el tipo de cliente.

Tarifas especiales para socios-clientes

<table>
<thead>
<tr>
<th>Tarifa</th>
<th>Coste</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compras superiores a 60 euros</td>
<td>GRATIS</td>
</tr>
<tr>
<td>Compras inferiores a 60 euros</td>
<td>3 €</td>
</tr>
<tr>
<td>Pedidos telefónicos</td>
<td>6 €</td>
</tr>
</tbody>
</table>

Jubilados y/o mayores de 65 años

<table>
<thead>
<tr>
<th>Tarifa</th>
<th>Coste</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compras superiores a 25 euros</td>
<td>GRATIS</td>
</tr>
<tr>
<td>Compras inferiores a 25 euros</td>
<td>1'5 €</td>
</tr>
</tbody>
</table>

Tarifa general

<table>
<thead>
<tr>
<th>Tarifa</th>
<th>Coste</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compras superiores a 75 euros</td>
<td>GRATIS</td>
</tr>
<tr>
<td>Compras inferiores a 75 euros</td>
<td>3 €</td>
</tr>
<tr>
<td>Pedidos telefónicos</td>
<td>6 €</td>
</tr>
</tbody>
</table>

Jubilados y/o mayores de 65 años

<table>
<thead>
<tr>
<th>Tarifa</th>
<th>Coste</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compras superiores a 37 euros</td>
<td>GRATIS</td>
</tr>
<tr>
<td>Compras inferiores a 37 euros</td>
<td>1'5 €</td>
</tr>
</tbody>
</table>
Este servicio tiene una serie de condicionantes, una de ellos es que los envíos se realizan como máximo a 8 km del centro en cuestión en poblaciones y a 3 km máximo en capital de provincia y solo se realiza en centros adheridos a esta promoción.

3.3.6. DIA

Este supermercado ofrece el servicio a domicilio pero no todos sus establecimientos están adscritos a este servicio. Aquellos que sí realizan este servicio te llevan la compra a casa por un precio de 3€, con la condición de que se realice una compra mínima de 40€. La empresa acuerda con el cliente el horario que más le conviene para realizar la entrega.

3.3.7. LIDL/ALDI/PLUS

Estas 3 cadenas de supermercados de las llamadas supermercados descuento no disponen de servicio de entrega a domicilio ni servicio de compra online.

Después de analizar los distintos centros de distribución de alimentos llegamos a la conclusión de que hay una diferencia notable en el reparto de pedidos de cada centro dependiendo de su estructura. Los centros que no solo están destinados a la venta de productos alimentarios tienen un servicio a domicilio más lento y normalmente realizan el reparto al día siguiente de haber realizado la compra mientras que los centros especializados en la venta de estos productos tienen un servicio al cliente mucho más rápido y ajustado. Se comprometen a llevar el pedido al domicilio del cliente unas horas después de pagar la compra siempre que la compra se realice antes de una hora determinada, sino la entrega se realiza al día siguiente. Esto se debe a que la mayoría de productos que distribuyen son de alimentación y a que se encuentran mejor situados dentro del entramado urbano.
3.3.7. FACTORES QUE DETERMINAN LA ELECCIÓN DE UN ESTABLECIMIENTO

<table>
<thead>
<tr>
<th>Factores que determinan la elección de un establecimiento (%)</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calidad de productos</td>
<td>54,0</td>
<td>56,0</td>
<td>62,1</td>
<td>67,2</td>
<td>66,7</td>
<td>51,9</td>
<td>64,1</td>
<td>59,9</td>
<td>66,3</td>
</tr>
<tr>
<td>Proximidad/Cercanía</td>
<td>54,8</td>
<td>52,2</td>
<td>44,3</td>
<td>45,1</td>
<td>40,4</td>
<td>50,9</td>
<td>47,8</td>
<td>54,5</td>
<td>56,7</td>
</tr>
<tr>
<td>Buenos precios, aparte de ofertas</td>
<td>35,3</td>
<td>34,1</td>
<td>55,5</td>
<td>58,3</td>
<td>59,3</td>
<td>62,7</td>
<td>55,3</td>
<td>52,9</td>
<td>48,4</td>
</tr>
<tr>
<td>Atención al cliente</td>
<td>24,7</td>
<td>22,1</td>
<td>19,4</td>
<td>24,5</td>
<td>25,3</td>
<td>34,9</td>
<td>25,1</td>
<td>25,7</td>
<td>24,7</td>
</tr>
<tr>
<td>Variedad de productos</td>
<td>28,4</td>
<td>24,2</td>
<td>23,1</td>
<td>28,7</td>
<td>28,0</td>
<td>21,9</td>
<td>19,4</td>
<td>21,7</td>
<td>22,3</td>
</tr>
<tr>
<td>Buenas ofertas</td>
<td>23,0</td>
<td>20,4</td>
<td>20,4</td>
<td>20,2</td>
<td>14,0</td>
<td>17,5</td>
<td>13,7</td>
<td>14,5</td>
<td>15,5</td>
</tr>
<tr>
<td>Variedad de marcas</td>
<td>14,3</td>
<td>11,7</td>
<td>11,7</td>
<td>13,4</td>
<td>11,5</td>
<td>11,7</td>
<td>8,1</td>
<td>8,9</td>
<td>4,8</td>
</tr>
<tr>
<td>Rápidez en compra</td>
<td>4,4</td>
<td>3,8</td>
<td>5,9</td>
<td>4,0</td>
<td>4,3</td>
<td>4,3</td>
<td>2,9</td>
<td>3,5</td>
<td>3,6</td>
</tr>
<tr>
<td>Parking</td>
<td>4,5</td>
<td>4,6</td>
<td>3,2</td>
<td>3,2</td>
<td>5,1</td>
<td>6,9</td>
<td>3,0</td>
<td>3,1</td>
<td>3,3</td>
</tr>
<tr>
<td>Horario</td>
<td>5,4</td>
<td>3,8</td>
<td>3,6</td>
<td>2,8</td>
<td>2,8</td>
<td>7,7</td>
<td>3,9</td>
<td>3,1</td>
<td>2,9</td>
</tr>
<tr>
<td>Marca Propia</td>
<td>1,4</td>
<td>1,7</td>
<td>1,6</td>
<td>2,3</td>
<td>3,0</td>
<td>1,6</td>
<td>2,3</td>
<td>1,5</td>
<td>2,1</td>
</tr>
<tr>
<td>Otras</td>
<td>8,1</td>
<td>6,3</td>
<td>3,5</td>
<td>6,7</td>
<td>11,3</td>
<td>13,4</td>
<td>15,6</td>
<td>10,8</td>
<td>10,7</td>
</tr>
<tr>
<td>Bases</td>
<td>8,918</td>
<td>3,007</td>
<td>4,012</td>
<td>2,402</td>
<td>2,800</td>
<td>1,500</td>
<td>1,500</td>
<td>1,500</td>
<td>1,500</td>
</tr>
</tbody>
</table>

Tabla 1. Factores que determinan la elección de un establecimiento. (Fuente: Magrama)

La tabla refleja los factores que deciden la elección de los establecimientos por parte de los consumidores para la compra de productos de alimentación. La calidad de productos, proximidad/cercanía y los buenos precios son los tres principales factores que determinan la elección del establecimiento de compra. A lo largo de todo el intervalo 2006-2015 estos tres factores han obtenido siempre los mayores porcentajes.

En cuarto lugar, aunque bastante distanciada en cuanto a porcentaje se encuentra la atención al cliente, se le asocia una menor importancia a la atención al cliente puesto que los trabajadores de los supermercados solo tienen contacto directo con el cliente para cobrar los productos, ya que es el cliente el que se suministra los productos que necesita.
4. ANÁLISIS DE LA CADENA CONSUM

En el presente apartado se va a tratar el caso de la cadena de supermercados Consum. Se hará un repaso e identificación de las principales características de la Cooperativa, también se describirán y detallarán todos los procesos logísticos de Consum desde los proveedores hasta la entrega domiciliaria de los productos. Del mismo modo, se introducirá la venta online de productos alimenticios, crucial para los años venideros en materia de ventas de las cadenas de supermercados.

4.1. HISTORIA

El inicio de la andadura de la cooperativa valenciana Consum arranca en 1975 como una cooperativa de consumo, con la apertura de su primer establecimiento en Alaquàs (Valencia) y un colectivo de 600 socios consumidores.

Desde entonces, la evolución de Consum se ha caracterizado por un crecimiento continuado hasta posicionarse, en la actualidad, como la mayor cooperativa de la Comunidad Valenciana y una de las primeras empresas del sector de la distribución.

Prácticamente el 100% de la plantilla de Consum son socios trabajadores con derecho a participar en la gestión de la empresa y en el reparto de beneficios anuales; asimismo Consum tiene consumidores que también son socios clientes, y gracias a ellos la Cooperativa realiza un gran esfuerzo para su satisfacción.

A diferencia de la mayoría de empresas del sector, Consum optó por la forma jurídica de cooperativa, y pese a las dudas iniciales generadas en torno a esta decisión, Consum ha demostrado que puede estar a la altura de cualquier otro gran grupo del sector.

El rápido crecimiento inicial de la red comercial y del número de socios consumidores consolidó una realidad empresarial a la que se fueron sumando pequeñas cooperativas de consumo existentes en algunas localidades como Silla, Enguera y L'Olleria (Valencia).
A partir de 1987, se produce un cambio en las pautas de expansión de la cooperativa Consum, con la adquisición de otras empresas de distribución de mayor envergadura: Vegeva, Ecoben, Alihogar y Jobac en la Comunidad Valenciana, así como Distac y Disbor en Cataluña.

A principios de la década de los 90, la cooperativa Consum constituyó Grupo Eroski, en calidad de socio fundador. Esta alianza comercial finalizó en febrero de 2004, tras la decisión de la cooperativa Consum de desvincularse por divergencias en el modelo organizativo que progresivamente se iba conformando.

En 2007, Consum incrementa con 53 Supermercados Supersol, la red de Supermercados Consum y Consum Basic que dispone en Cataluña, consolidando así su expansión en Cataluña. Ese mismo año, la Cooperativa también adquiere 62 supermercados de Caprabo, repartidos por la Comunidad Valenciana, Murcia, Castilla-La Mancha y Andalucía, reforzando su posición estratégica en el arco Mediterráneo. En mayo de 2010 adquiere 21 supermercados a Vidal Europa y uno a Eroski, siguiendo su política de expansión orgánica.

Consum basa su modelo de gestión en la satisfacción del cliente a través de la calidad y el precio de sus productos añadiendo la variedad como un atributo más. La Cooperativa ha logrado situar en sus supermercados una gran variedad de primeras marcas de fabricante junto con las marcas propias de la cadena. Pretende con ello dejar en manos del consumidor la decisión de escoger y combinar en su compra los dos tipos de marcas según sus gustos o necesidades. La estrategia comercial de Consum también se ha diferenciado del resto de empresas del sector al apostar por tres formatos comerciales diferenciados: Consum, Consum Basic y Charter. La Cooperativa engloba así supermercados pequeños, medianos y grandes; los cuales se explicarán más adelante, para aportar la mejor oferta según las necesidades.

Actualmente, Consum desarrolla su actividad en el sector de la distribución a través de una red comercial formada por más de 660 supermercados propios y franquicias Charter. Tiene una plantilla que supera a los 12.400 trabajadores, más de 2.600.000 socios consumidores y está presente en la Comunidad Valenciana, Cataluña, Murcia, Castilla-La Mancha, Aragón y Andalucía.
4.2. ESTUDIO DETALLADO

4.2.1. MISIÓN, VISIÓN Y VALORES

Consum centra su desarrollo como empresa en tres directrices básicas que son:

Misión: la misión de Consum es satisfacer a los socios y clientes con una compra única de calidad, variedad, precio y servicio, basada en la atención y el compromiso de los trabajadores, es decir: trabajadores comprometidos, clientes satisfechos.

Visión: en cuanto a su visión, quiere ser una cooperativa independiente, innovadora, honesta y sostenible en la que comprar con capacidad de elección y buenos precios. Es decir, ser un modelo de empresa referente en el sector de la distribución.

Valores: los valores son escuchar al cliente, a los trabajadores, a los proveedores y a su entorno, aportar productos, formación, información, bienestar, desarrollo y sostenibilidad y responsabilizarse con compromiso, honestidad y respeto.
4.2.2. ORGANIGRAMA

Los máximos órganos de gobierno de la cooperativa Consum son la Asamblea General y el Consejo Rector, con una composición paritaria de socios trabajadores y de socios consumidores.

La Asamblea General ordinaria se reúne una vez al año para ratificar las decisiones adoptadas por el Consejo Rector en cuanto a gestión de la Cooperativa y aprobar las cuentas anuales. Está formada por 150 delegados, entre trabajadores y consumidores.

El Consejo Rector, presidido por Francesc Llobell, está compuesto por 12 representantes, el 50% representa a los trabajadores propietarios y, el otro 50%, a los socios consumidores, como consejeros independientes.

Además, como órgano de representación de los socios trabajadores existe el Comité Social, que es a su vez órgano de consulta del Consejo Rector y fundamental para la comunicación interna en lo que se refiere a temas socio-laborales. Está compuesto por 15 delegados y su presidenta.

Por otra parte, el Consejo Rector nombra al Director General de la Cooperativa y al Comité de Dirección. Este Consejo de Dirección lo forman 9 personas, al frente de las cuales se encuentra Juan Luis Durich, Director General de la cooperativa Consum.

Los órganos de representación y gestión, cuya estructura y capacitación está regulada por los Estatutos de la Cooperativa, son:
Figura 14. Organigrama de Consum (Fuente: Consum)

Consejo Rector:

- **Presidente**: Francesc Llobell Mas
- **Vicepresidenta**: Mª Teresa Caballer Sancho
- **Secretaria**: María Sánchez Alcaraz
- **Vicesecretaria**: Ana Isabel Cano García
- **Vocales**: Ana Llácer Rodrigo, Ana Martínez Monsalvez, Guillermina Cano Gascón, Enrique Cerezo Cebrián, Juan Vicente Ríos Mascarell, María Cristina Durá Valero, Pablo Terol Piqueras, Raquel Tarazona Martínez.

Comité Social

- **Presidenta**: Inma Costa Hernández
- **Vicepresidenta**: Francisca Bayarri Soriano
- **Secretario**: Vicente Ferrando Perpiñá
4.2.3. RED DE PUNTO DE VENTAS

La red de puntos de venta de Consum está integrada en la actualidad por 671 establecimientos distribuidos, en la Comunidad Valenciana, Cataluña, Murcia, Castilla-La Mancha, Andalucía y Aragón.

<table>
<thead>
<tr>
<th>Tiendas</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comunidad Valenciana</td>
<td>413</td>
</tr>
<tr>
<td>Cataluña</td>
<td>175</td>
</tr>
<tr>
<td>Castilla la Mancha</td>
<td>36</td>
</tr>
<tr>
<td>Murcia</td>
<td>29</td>
</tr>
<tr>
<td>Andalucía</td>
<td>14</td>
</tr>
<tr>
<td>Aragón</td>
<td>4</td>
</tr>
</tbody>
</table>

Figura 15. Reparto de tiendas de Consum en España (Fuente: Consum)

Como se ha comentado anteriormente Consum apuesta por tres tipos diferenciados de formatos comerciales:

- **Supermercados Consum**: Establecimientos de entre 1.300 y 2.500 m² de superficie. Especializados en la venta de productos frescos: carne, frutas, charcutería, panadería, pescado y verduras. Ofrece una amplia gama de servicios a sus clientes, como transporte domiciliario gratis de tu compra si se cumplen una serie de requisitos, pan recién horneado durante todo el día, etc.

- **Supermercados Consum Basic**: Tiendas de una superficie de entre 500 y 1.200 m², esta variedad de tienda representa un moderno concepto de establecimiento, dotado de las instalaciones necesarias para ofrecer al consumidor una amplia variedad de productos frescos, pan recién horneado durante todo el día y productos de autoservicio.

- **Supermercados Charter**: Establecimientos franquiciados de entre 250 y 600 m² de superficie. En la actualidad, existen más de 150 tiendas de este tipo. Con Charter, Consum apuesta por la franquicia como fórmula estratégica de crecimiento.
4.2.4. PLATAFORMAS LOGÍSTICAS

Consum cuenta con un total de seis plataformas logísticas repartidas a lo largo del arco mediterráneo, una red de distribución de casi 250.000 m² de superficie.

![Figura 16. Plataformas lógisticas (Fuente: Consum)](image)

Las plataformas logísticas situadas en la Comunidad Valenciana están ubicadas en:

- **Silla**: En este municipio están ubicadas las oficinas centrales y al lado de esta se encuentra la plataforma de mercancías generales, cuenta con una superficie de 33.000 m² dividida en un almacén para alimentación seca de 11.000 m², un almacén para productos de droguería, perfumería y bazar de 10.000 m² y un almacén automatizado, denominado Silo, de 12.000 m².

- **Quart de Poblet**: Plataforma de productos frescos, cuenta con una superficie total de 23.000 m², dividida en un almacén para refrigerados y congelados de 8.200 m², un almacén para carnes de 3.300 m² y la zona de expediciones y mantenimiento que ocupa una superficie conjunta de 6.500 m².

- **Riba-roja de Túria**: Plataforma que completa el abastecimiento de productos frescos a la red comercial, cuenta con 12.000 m² divididos en un almacén de...
frutas de 6.000 m², un almacén de verduras de 2.500 m² y un almacén de pescado 2.500 m².

A su vez, las distintas plataformas se organizan en centrales, que corresponden a los distintos centros de coste según el producto que se comercializa en ellas. En el caso valenciano, la Plataforma de mercancías generales está integrada por una única central con productos de alimentación y no alimentación, denominada comúnmente secos. En segundo lugar, la Plataforma de productos frescos, refrigerados y congelados de Quart de Poblet está compuesta por tres centrales. La central de charcutería, que a su vez se subdivide en charcutería, lácteos, pasta seca, masa molde y chocolates, la central de carnes y la central de congelados y masa congelada. Por último, la Plataforma de productos frescos y refrigerados de Riba-roja de Túria tiene dos centrales, la central para las frutas y verduras y la central de pescado fresco.

Figura 17. Plataformas logísticas y su distribución (Fuente: Consum)

Conjuntamente, Consum dispone de diversas plataformas logísticas en Barcelona:

- El Prat de Llobregat: Plataforma que cuenta con 13.500 m² para el almacenamiento de frutas y verdura, carne, lácteos, charcutería y congelados.
- Zona Franca: Situada en Barcelona, esta plataforma cuenta con unos 92.000 m² de mercancías generales; como alimentación seca, droguería, perfumería y bazar.

Por último, Consum también tiene una Plataforma de integración regional en la Región de Murcia, concretamente en Las Torres de Cotillas, con una superficie de 76.000 m².
destinados al almacenamiento de alimentación seca, droguería, perfumería, bazar, carne y pescado.

4.2.5. POLÍTICA Y GESTIÓN EN MATERIA DE SOSTENIBILIDAD

Consum trabaja de forma continua para satisfacer todos los aspectos que define la Responsabilidad Social. Así, desde el marco que establece su Política de Responsabilidad Social, proponen actuaciones coherentes en la elaboración de todos sus procesos, y también en la evaluación de sus resultados.

Para ser una empresa sostenible en el plano económico, en el social, y en el relativo al medio ambiente, incorporan la responsabilidad social en su estrategia empresarial, siempre desde la voluntad de aplicar una mejora continua y constante la gestión.

La Política de Sostenibilidad, integradora a su vez del resto de políticas empresariales de Consum, se vertebra a partir de 3 dimensiones:

Dimensión económica / gestión organizacional

- La actuación económica está guiada por criterios de sostenibilidad, basando las decisiones en el intento de lograr el éxito a largo plazo de la organización con una permanente actuación innovadora.
- En el marco de la Política de Calidad, ofrecen a socios y clientes productos sanos, saludables, seguros, útiles y en unas condiciones adecuadas. Mantienen constantemente abiertos los canales de comunicación, información y formación, que les permitan recoger sus opiniones y demandas, e impulsar así acciones socialmente responsables que respondan a sus expectativas.

DIMENSIÓN SOCIAL

- Ofrecen puestos de trabajos estables y seguros, y de calidad, dotados de salarios competitivos. Consideran que las condiciones de trabajo inseguras son inaceptables, y por ello se comprometen a la protección de su personal, a partir del cumplimiento de la Ley de Prevención de Riesgos Laborales, garantizando unas buenas condiciones de trabajo.
- Favorecen la iniciativa, la autonomía, la creatividad y la participación, estimulando la participación en los órganos de la organización, y creando un clima de confianza basado en una relación abierta y una comunicación activa y
transparente. Promueven la formación de las personas que trabajan en la cooperativa, posibilitando una mejora en su desarrollo personal y profesional, y velan por la igualdad de oportunidades sin ningún tipo de discriminación.

- Sus actuaciones comerciales son siempre legales con el mercado, respetando en todo momento sus reglas y renunciando de forma consciente al ejercicio de cualquier actividad que pueda ser considerada como competencia.
- Trabajan para el desarrollo económico de nuestro entorno más inmediato, principalmente en el ámbito cultural, solidario, ambiental y educativo, fortaleciendo los procesos de diálogo para crear un ámbito de trabajo basado en la colaboración y en la proximidad. Con la voluntad de estimular el desarrollo económico local, y en igualdad de condiciones de suministro, impulsan progresivamente el uso de recursos de los territorios donde actuamos comercialmente, dando preferencia a estas empresas.
- Asumen el principio de igualdad de oportunidades en todos y cada uno de los ámbitos en los que se desarrolla la actividad de la cooperativa. A través del Plan de Igualdad, fomentan y evalúan aquellas medidas que contribuyan a avanzar en la consecución de la igualdad real entre mujeres y hombres en la organización.
- Disponen de un sistema de gestión de la conciliación de la vida familiar y laboral basado en los valores de Empresa Familiarmente Responsable, del que se benefician todas las personas trabajan en la Cooperativa y que permite, desde la figura del Comité de Igualdad y Conciliación, definir las medidas que más favorezcan sus necesidades.
- Respetan los derechos fundamentales de las personas trabajadoras y su libertad de expresión y de asociación.

DIMENSIÓN AMBIENTAL

- A partir de su Política Ambiental, evalúan los posibles impactos medioambientales derivados de su actividad, y promueven actuaciones respetuosas con el medio ambiente a través de la definición de objetivos y metas que contribuyan a evitar o minimizar dichos impactos.
- Promueven iniciativas relacionadas con la sensibilización ambiental, tanto del colectivo de trabajadores como de consumidores, así como actividades de formación e información propias, o en colaboración con entidades.
4.2.5.1 COMPROMISO SOCIAL

Como se ha explicado precedentemente Consum está muy concienciado con el compromiso social y por ello tiene diversos programas y colaboraciones para luchar contra esta causa.

Consum ha destinado más de 9,2 millones de euros a proyectos de colaboración solidaria en 2015, un 35% más que en el ejercicio anterior. Junto a estas colaboraciones, en 2015 han aumentado los servicios prestados para el beneficio público mediante compromisos comerciales con entidades sociales, en base a la emisión de vales, que han ascendido a 673.666 euros.

Uno de los proyectos más importantes en este aspecto es el llamado Programa PROFIT, Consum ha consolidado este programa de Gestión Responsable de Alimentos provenientes de los supermercados, las plataformas y las escuelas de frescos. El programa se basa en la donación de productos que se retiran de la venta previamente a su caducidad y son perfectamente aptos para su consumo. Después de seguir un riguroso protocolo para mantener la seguridad alimentaria, Consum contacta con las entidades sociales, quienes lo reparten entre las personas que más lo necesitan.

Asimismo Consum ha colaborado en más de 300 proyectos sociales con entidades como Caritas, Cruz Roja, Oxfam Intermón, Unicef, Manos Unidas, etc. Del mismo modo goza de varios reconocimientos y proyectos voluntarios de colaboración con entidades nacionales e internacionales.

4.2.5.1 GESTIÓN AMBIENTAL

Consum consciente del impacto ambiental que puede generar, actúa para reducirlo al máximo. Anualmente se analizan los aspectos ambientales y se definen objetivos de mejora. Estos se centran en la gestión eficiente de los recursos naturales, de residuos y de consumos, la sensibilización de la plantilla en cuestiones ambientales y la implementación de medidas para garantizar el cumplimiento de la normativa vigente en materia de gestión ambiental.

Consum lleva el seguimiento, a través de las acciones definidas en su plan de gestión, de las consecuencias derivadas del cambio climático que afectan a su actividad
también evalúa el impacto ambiental de las operaciones propias de la actividad que desarrolla, y que se consideran en el cálculo de la Huella de Carbono.

La Huella de Carbono de la Cooperativa ha disminuido en un 2,6% respecto al año anterior, una cifra menor si se compara con lo reducido en otros ejercicios. En este aspecto, la reducción de las emisiones de gases de efecto invernadero en 2015 Consum ha reducido en 3.351,9 Toneladas de CO2 una mejora del 2,6% respecto a 2014. La Cooperativa ha invertido 4,3 millones de euros en la mejora de sus instalaciones frigoríficas. Además, se ha implantado un modelo pionero de instalaciones frigoríficas de temperatura negativa alimentadas con CO2 en las nuevas aperturas. Por otra parte, la implantación de los proyectos logísticos TEO y NODRIZA, han contribuido también a reducir los gases de efecto invernadero, promoviendo la eficiencia en el transporte de mercancías.

Del mismo modo, y para minimizar el impacto ambiental de cara al próximo ejercicio, se ha destinado una partida importante de inversiones para la reforma de los supermercados con más antigüedad.

La energía consumida por la Cooperativa es principalmente eléctrica, siendo el 70% de la misma generada mediante fuentes de origen renovable.

Durante el ejercicio 2015 se ha reducido el consumo eléctrico. Esto ha supuesto evitar la emisión de 2.853 Toneladas de CO2 a la atmósfera. El ahorro energético obtenido durante el 2015 hace referencia a la reducción de consumo resultante en los centros en los que se han implantado medidas de eficiencia energética, principalmente iluminación LED, puertas en el mobiliario frigorífico de los supermercados, optimización de las potencias contratadas, baterías de condensadores con filtros de armónicos y auditorías energéticas.

Por último, referido a la gestión del agua, Consum ha disminuido en 6 puntos en 2015 el consumo de agua referido a la superficie de sala de ventas.
4.2.6. CONSUM EN CIFRAS E INNOVACIÓN

A pesar de este tiempo incierto de crisis económica, Consum ha perpetuado un crecimiento continuo en estos últimos años. Seguidamente se muestran las principales magnitudes que revelan esta evolución.

Consum ha alcanzado unas ventas de 2.121,2 millones de euros en el ejercicio 2015, la mayor cifra de ventas de su historia y un 9,2% más que el año anterior.

![Ventas Evolución 2008 - 2015](image)

Figura 18. Evolución de las ventas de Consum entre 2008 y 2015. (Fuente: Consum)

El resultado ha ascendido hasta los 39 millones de euros, lo que ha supuesto un incremento del 14,4%. Esta evolución responde a una gestión eficiente de los recursos y a una mejora en el control del gasto.
La Cooperativa ha invertido 90,9 millones de euros en 2015 en la ampliación y adecuación de la red de tiendas a los estándares de calidad de Consum y a las nuevas instalaciones logísticas de Cataluña.

En un contexto en el que las nuevas tecnologías de la información están cambiando los procesos y la forma en que la sociedad se relaciona y trabaja, la innovación se convierte en un instrumento fundamental.
En 2015, Cosum ha mantenido el esfuerzo por la innovación con una inversión de 7 millones de euros. Entre los proyectos más destacados está el desarrollo de los nuevos terminales de pago EMV con firma digital y contactless que permitirán una mayor facilidad y comodidad para realizar las compras a los clientes reduciendo los tiempos de espera en caja. También ha extendido un sistema de gestión de la información en tiempo real, a través de terminales móviles en la gestión de tiendas a través de terminales móviles. Finalmente, han seguido apostando por la optimización logística a través de mejoras en los procesos de aprovisionamiento y preparación de pedidos.

4.3. CADENA DE VALOR

4.3.1. INTRODUCCIÓN

La cadena de valor de Porter es una herramienta de gestión desarrollada por el profesor e investigador Michael Porter, que permite realizar un análisis interno de una empresa, a través de su desagregación en sus principales actividades generadoras de valor.

Se denomina cadena de valor debido a que considera a las principales actividades de una empresa como los eslabones de una cadena de actividades que van añadiendo valor al producto a medida que éste pasa por cada una de ellas.

Según esta herramienta, el desagregar una empresa en estas actividades permite identificar mejor sus fortalezas y debilidades, especialmente en lo que respecta a fuentes potenciales de ventajas competitivas, y costos asociados a cada actividad.

Igualmente, todas las empresas cuentan con una cadena de valor conformada por estas actividades que van desde el diseño del producto y la obtención de insumos hasta la distribución del producto y los servicios de posventa.

Este instrumento clasifica las actividades generadoras de valor de una empresa en dos: las actividades primarias o de línea y las actividades de apoyo o de soporte.

Actividades primarias o de línea:

Son aquellas actividades que están directamente relacionadas con la producción y comercialización del producto:
• **Logística interior (de entrada):** actividades relacionadas con la recepción, almacenaje y distribución de los insumos necesarios para fabricar el producto.

• **Operaciones:** actividades relacionadas con la transformación de los insumos en el producto final.

• **Logística exterior (de salida):** actividades relacionadas con el almacenamiento del producto terminado, y la distribución de éste hacia el consumidor.

• **Mercadotecnia y ventas:** actividades relacionadas con el acto de dar a conocer, promocionar y vender el producto.

• **Servicios:** actividades relacionadas con la provisión de servicios complementarios al producto tales como la instalación, reparación y mantenimiento del mismo.

Actividades de apoyo o de soporte:

Son aquellas actividades que agregan valor al producto pero que no están directamente relacionadas con la producción y comercialización de éste, sino que más bien sirven de apoyo a las actividades primarias:

• **Infraestructura de la empresa:** actividades que prestan apoyo a toda la empresa, tales como la planeación, las finanzas y la contabilidad.

• **Gestión de recursos humanos:** actividades relacionadas con la búsqueda, contratación, entrenamiento y desarrollo del personal.

• **Desarrollo de la tecnología:** actividades relacionadas con la investigación y desarrollo de la tecnología necesaria para apoyar a las demás actividades.

• **Aprovisionamiento:** actividades relacionadas con el proceso de compras.
El análisis de una cadena de valor implica asignarle un valor a cada una de estas actividades, así como un costo asociado (tanto en términos de dinero como de tiempo), y luego, buscar en estos valores y costos fortalezas y debilidades que puedan significar una ventaja o desventaja competitiva.

En resumen, la cadena de valor nos permite identificar mejor fortalezas y debilidades en una empresa (sobre todo cuando la comparamos con las cadenas de valor de empresas competidoras), detectar mejor fuentes potenciales de ventajas competitivas, y comprender mejor el comportamiento de los costos.

Y en última instancia, potenciar o aprovechar dichas fortalezas, especialmente al convertirlas en ventajas competitivas, y reducir o superar dichas debilidades, especialmente al minimizar costos; buscando así generar el mayor margen posible, entendiéndose éste como la diferencia entre el valor y el costo de cada actividad.

4.3.2. CADENA DE VALOR DE CONSUM

En el actual apartado se va a hablar de todo lo relacionado con la gestión y organización logística, por lo que se centrará de entre todos los apartados vistos anteriormente de la cadena de valor en el denominado como logística exterior, ya que son actividades relacionadas con el almacenamiento del producto terminado, y la
distribución de éste hacia el consumidor. La logística interior, pertenecería a la parte de los proveedores, pero la realización de sus productos no depende de Consum.

La figura XX muestra la cadena de valor de Consum, en la cual podemos ver todas las actividades que generan valor de la empresa.

![Cadena de valor de Porter aplicado a Consum. (Fuente: Consum)](image)

Figura 22. Cadena de valor de Porter aplicado a Consum. (Fuente: Consum)

En cuanto a la logística exterior, desde el punto de vista logístico del transporte podemos distinguir dos etapas, ya que su forma de actuación, gestión y desarrollo son totalmente diferentes.

Tenemos una primera parte, que son todas las actividades desde la recogida de productos a los proveedores, su correspondiente transporte hasta los centros logísticos oportunos y más adelante su envío a los supermercados. Por otra parte tenemos, la actividad del transporte de los productos en los supermercados y que deben ser transportados a los hogares de los consumidores, denominado servicio a domicilio, el cual, posteriormente será la parte principal del proyecto, donde se tratará principalmente entre otras cosas, en el análisis y la propuesta de mejora del presente servicio a domicilio instaurado por Consum.
4.3.2.1. LOGÍSTICA GLOBAL

Centrándose en la organización logística de Consum desde los proveedores a los centros logísticos correspondientes y a sus respectivas tiendas, tenemos que Consum agrupa su sistema logístico en cuatro grandes bloques:

- **Logística de aprovisionamiento**: el principal objetivo es el control de las actividades correspondientes al suministro de mercancías hasta su recepción en las plataformas logísticas.

- **Logística de distribución**: se encarga de que exista un adecuado flujo de mercancías, desde su recepción en las plataformas logísticas hasta el usuario final. Lo logística de distribución en Consum abarca las siguientes actividades:
 - Almacenaje
 - Preparación de pedidos.
 - Distribución física a los puntos de venta: transporte capilar.

- **Logística a origen**: consiste en generar sinergias entre el transporte de aprovisionamiento y el transporte capilar.

- **Logística inversa**: se basa en aprovechar el transporte capilar para el retorno de productos, envases, embalajes y residuos.
En la Figura se muestra el esquema general de la logística de Consum en las plataformas situadas en la Comunidad Valenciana.

Figura 23. Croquis de lógística de Consum en la Comunidad Valenciana. (Fuente: Gálvez, P.)

Como se ha visto anteriormente, las plataformas logísticas de Consum a nivel interno se organizan en centrales, lo que se debe tener en cuenta tanto en la logística de aprovisionamiento como en la logística de distribución. En cada central se desempeñan las funciones logísticas del producto genérico correspondiente.

La cadena de suministro sigue un proceso cíclico, que se inicia ante la necesidad de abastecimiento de productos por los clientes, en este caso las tiendas, y finaliza en el mismo punto con la entrega en las tiendas de estos productos.

Cabe mencionar que durante todo el proceso logístico de aprovisionamiento y distribución existen dos flujos diferenciados. Por un lado, el flujo de información que sigue el camino Cliente - Plataforma logística – Proveedor y por otra parte, el flujo de mercancías de recorrer el camino contrario Proveedor – Plataforma Logística – Cliente.
4.3.2.1.1 PROYECTO TEO

Con el objetivo de optimizar todos los procesos logísticos y, en especial, el transporte, llegando de forma más eficiente a los clientes, en 2015 Consum ha seguido desarrollando el proyecto de Transporte en Origen (TEO), que consiste en recoger y entregar las mercancías directamente del proveedor a cada una de las plataformas logísticas de la Cooperativa en Valencia, Murcia y Barcelona, optimizando así el transporte y las propias plataformas. De esta manera se gestionan de forma más eficiente los stocks entre ellas, repartiendo excedentes de campañas, respondiendo de manera inmediata ante las posibles faltas de servicio y reaprovisionando entre las centrales logísticas las referencias necesarias.

Entre los logros del Programa está la reducción del tiempo de entrega, garantizando aún más la cadena de frío para los productos frescos, refrigerados y congelados, con el objetivo de ofrecer a los clientes un mejor servicio. A este proyecto ya se han sumado 132 proveedores de productos de las secciones de frutas, carne, pescado, charcutería, lácteos, refrigerados y congelados, y 5 de alimentación y no alimentación.

Transportando más de 585.000 palets al año (150 camiones diarios) y consiguiendo una participación superior al 63% del total de las compras de frescos, refrigerados y congelados, el doble que en 2014, y del 6% en alimentación y no alimentación. Para 2016 se prevé conseguir el 80% y 16% de las compras respectivamente.

Por otra parte, con el objetivo de mejorar diferentes aspectos logísticos así como reducir la Huella de Carbono, se ha desarrollado también el proyecto NODRIZA a través del cual Consum pasa a formar parte activa de su cadena de suministro y al que 47 proveedores ya se han sumado en 2015. El proyecto NODRIZA consiste en que los proveedores pueden descargar toda la mercancía en una única Plataforma de Consum, la que por distancia y coste les suponga más ventajosa, en lugar de tener que repartir a todas las centrales. Posteriormente los productos se reparten por parte de la propia flota de Consum al resto de las plataformas. El pasado ejercicio se ha transportado mediante este sistema más de 60.000 palets de producto. Este modelo aporta importantes mejoras a nivel económico y medioambienta a lo largo de la cadena puesto que ha permitido un ahorro estimado de más de 868.000 kilómetros a los proveedores y ha favorecido además la optimización de los transportes internos entre Plataformas de la Cooperativa y la eficiencia de costes y procesos logísticos.
4.3.2.2. LOGÍSTICA DE SERVICIO DOMICILIARIO

En este apartado se estudiará la parte de la organización logística referida al servicio domiciliario de los productos de Consum. Esta fase Consum la realiza con la externalización de la actividad a otras empresas de transporte.

Para la gestión y realización del servicio a domicilio, Consum centra su servicio logístico únicamente en la logística de distribución, explicada anteriormente. Este servicio es subcontratado y externalizado por tres empresas. Una de ellas, CADE LOGISTIC, que ha sido la encargada de facilitar los datos para confección del presente trabajo.

En este sentido, la distribución de productos alimenticios es la que está experimentando un mayor crecimiento en la subcontratación debido a la complejidad derivada del tipo de producto con el que se opera, el cual está sujeto a condiciones de caducidad y temperatura, con la consiguiente necesidad de controlar la cadena frío.

Los modelos de expediciones, en función del grado de externalización, se clasifican en:

- Flota propia, sin externalización: los vehículos son propiedad de la propia empresa y, por consiguiente, en ella recaen todas las funciones referentes a la gestión y supervisión del transporte.
- Flota subcontratada con gestión y supervisión propias: los vehículos son subcontratados a operadores logísticos externos, pero la gestión y supervisión son desarrollados por la propia empresa.
El reparto doméstico en la logística urbana de mercancías: el caso de la empresa Consum. Análisis y propuestas de mejora

- Flota y gestión subcontratadas con supervisión propia: del mismo modo que en la categoría anterior, los vehículos son subcontratados a operadores logísticos a los que también se les cede el control sobre el transporte. La empresa usuaria únicamente se encarga de supervisar todo el proceso.
- Flota, gestión y supervisión subcontratadas: a diferencia de las categorías anteriores, en este caso todo el proceso se cede al operador logístico, siendo la empresa un mero usuario del servicio.

Más adelante se explicará la relación y modelo de externalización entre Consum y CADE LOGISTIC para la realización satisfactoria del servicio domiciliario.

El funcionamiento actual del servicio a domicilio ha sido facilitado por Consum y Cade Logistic, del que podemos obtener la siguiente información:

- Se trabaja con horario ininterrumpido de 9h a 21h de lunes a viernes y de 9h a 14h los sábados. Esto significa que los pedidos realizados por los clientes los sábados por la tarde pasan a entregarse en la mañana del lunes siguiente.
- Los pedidos se entregan el mismo día de la compra incluso si se realiza a las 20h, siempre que el volumen de entregas en esa franja horaria lo permita. Si por el contrario el servicio no permite otro pedido más a partir de dicha hora éste será entregado al día siguiente, al igual que los pedidos realizados más tarde.
- El día, en caso de que no pueda ser el mismo, y el intervalo horario en el que será entregada la compra se acuerda con el cliente cuando éste se encuentra en la caja realizando su pedido.

Actualmente, las distancias máximas abastecidas por los establecimientos CONSUM situados en la ciudad de Valencia son de 3 kilómetros. Por el contrario, si la tienda y el destinatario del servicio se encuentran en otro municipio, la distancia máxima que cubrirá la entrega a domicilio será de 8 kilómetros.

En cuanto a las condiciones tarifarias vigentes, cabe destacar que existen dos condicionantes previos con importes diferentes que se corresponden con el carácter de SOCIO o NO SOCIO del consumidor y con la condición o no de JUBILADO. Así mismo también se observa que los umbrales a partir de los cuales los servicios se ofrecen de forma gratuita varían desde los 25€ hasta los 75€.
4.4. VENTA ONLINE

4.4.1. BREVE INTRODUCCIÓN

En estos tiempos de cambio y revolución tecnológica, la venta online de alimentos es un punto muy importante para futuras investigaciones y su posterior desarrollo para las cadenas de supermercados. Prácticamente en España, la venta de alimentación online, ha comenzado hace unos cinco años con empresas punteras como Ulabox y Tudespensa. Tanto en Estados Unidos como en Europa la venta online surgió unos años antes que en España, con empresas afianzadas en este sector como Instacart en EEUU u Ocado en Inglaterra, colocándose esta última como la mayor empresa del
mundo en este sector, facturando en 2014 la cantidad de 1.026 millones de libras. En España, la venta online de los supermercados apenas se ha desarrollado y en algunos centros como Lidl ni siquiera han comenzado.

La gran problemática de la venta online es su organización y gestión, un punto muy importante es la dificultad y complejidad logística, ya que el sector de la alimentación necesita una gran y ágil infraestructura logística: los usuarios quieren su compra el mismo día. En España, un intento creado en 2011, el de Alice.com, fracasó casi de inmediato. Sin embargo, en los últimos cuatro años han aparecido iniciativas más ágiles, apuntaladas en la externalización, sobre todo en lo que se refiere a los vehículos para el reparto. A esto se le suma que el negocio online no suma ni un 1% del total de ventas totales nacionales, aún es irrelevante, pero apunta que en un futuro es una buena opción para crecer.

Otro punto muy importante, es la venta de productos frescos, las cadenas ahora mismo, salvo algunas excepciones y en diversas zonas seleccionadas, no entregan productos frescos ya que entorpece aún más si cabe la distribución, ya que deberían ser transportados en vehículos isoterms y sin ninguna duda el mismo día. Ahora mismo en este sector lo que más se entrega son productos que no son perecederos inmediatamente, pero la clave para que prospere la compra online son los productos frescos, para poder fidelizar a los clientes y que puedan realizar toda su compra vía internet, sin la necesidad de ir físicamente a la tienda.

Cada vez más las grandes cadenas de supermercados como Mercadona, Consum, etc. O grandes empresas de distribución como Amazon están poniendo más interés en este sector; pese a perder dinero están apostando fuertemente y quieren afianzar este mercado. Para tener éxito se necesitan a parte de una buena gestión y organización logística otros aspectos que a priori pueden parecer menos importantes pero que son imprescindibles. Uno de estos aspectos a tener en cuenta es tener una página web intuitiva, clara y sencilla de utilizar, donde sea fácil y rápido encontrar los productos. Además también hay trabajar y ser dadosos con las condiciones de embalaje y entrega de los productos.
Figura 26. Evolución de los supermercados Online en España. (Fuente:Euromonitor)

En lo referido a Consum su director en Relaciones Exteriores, Javier Quiles, ha anunciado que la Cooperativa empezará a vender la gran parte de sus productos después del verano de 2016 y han iniciado una primera fase de un programa piloto que consiste en acotar el servicio a un número limitado de códigos postales con la previsión de que si es satisfactorio se generalizará la venta online en 2017.

4.4.2. COMPRA DE PRODUCTOS ALIMENTICIOS A TRAVÉS DE INTERNET

Según el informe del consumo de alimentación en España del 2015 realizado anualmente por el Ministerio de Agricultura Alimentación y Medio Ambiente, se han obtenido los resultados de la compra de productos alimenticios a través de internet.

El aumento de las compras por internet conlleva un aumento proporcional de los envíos a domicilio de la compra realizada por parte de estas empresas. El 10,8% de los consumidores entrevistados ha realizado alguna compra de alimentación a
través de internet. Por edad, la compra de alimentos a través de internet disminuye a medida que aumenta la edad. Entre los entrevistados más jóvenes, un 22,7% compra alimentos por internet, porcentaje que disminuye a un 6,1% entre los entrevistados mayores de 55 años. Por hábitat, el porcentaje más elevado se sitúa en las poblaciones que tienen entre 50.001 y 100.000 habitantes y el porcentaje más bajo en las poblaciones más pequeñas (menos de 10.000 habitantes).

La compra por internet de productos de alimentación ha aumentado un 8,1% desde el año 2004, año en el que un 2,7% de los consumidores manifestaba haber comprado algún producto de alimentación y/o bebida a través de internet. En 2015 este porcentaje se sitúa en un 10,8%.

![Diagrama de reparto de la compra domiciliaria a través de Internet](image)

Figura 27. Reparto de la compra domiciliaria a través de Internet. (Fuente: MAGRAMA)
BLOQUE II: DATOS DE PARTIDA, DESCRIPCIÓN DE PROCESOS Y HERRAMIENTAS DE ANÁLISIS
5. DATOS DE PARTIDA

5.1. INTRODUCCIÓN

En el presente punto se desarrollan y explican cuáles han sido nuestros primeros pasos en dicho proyecto, la situación de donde partíamos y donde queríamos llegar. Además se conoceremos en más profundidad la empresa encargada de facilitar los datos.

5.2. SITUACIÓN INICIAL

El servicio domiciliario de Consum es subcontratado a la empresa de servicio domiciliario, Cade Logistic, gracias a la cual podemos hacer este Trabajo Fin de Grado ya que ha facilitado los datos pertinentes para la realización del mismo, debido a que nuestro tutor, Don Pedro Coca, nos puso en contacto con el gerente de Cade Logistic, Don Vicente Gillot.

Como se ha expuesto, Consum externaliza su reparto domiciliario de mercancía a tres operadores logísticos, y Cade Logistic ha comenzado este año 2016 ha realizar ese trabajo.

Tras diversas reuniones con Vicente, hasta tres, nos explicó todo lo relacionado y resolvió algunas dudas sobre la puesta en marcha y funcionamiento del servicio domiciliario que Consum había externalizado a Cade Logistic. Se pudo entender todo los procesos que se llevan a cabo, tanto los de gestión de recursos, organización de vehículos, procesos logísticos, etc. Y como todos estos se ponen en práctica en el reparto domiciliario.

Una vez estaba concebida la problemática a grandes rasgos: Analizar todos los procesos que conllevan poner en funcionamiento una flota de vehículos para la realización de los pedidos a domicilio de Consum, realizando un servicio de calidad y rapidez para satisfacer las necesidades de nuestros clientes, y consiguientemente con este estudio intentar aportar alguna mejora al servicio actual.

Después de todo ello se intentó llegar a un acuerdo, el cual era que los integrantes del
El reparto domiciliario en la logística urbana de mercancías: el caso de la empresa Consum. Análisis y propuestas de mejora

El grupo se comprometían a intentar ayudar a Cade Logistic con un análisis y diversas propuestas de mejora de todo el servicio domiciliario que realiza a cambio de los datos que les provee Consum. Por lo que nos serviría a nosotros de Trabajo Final de Grado y a ellos para intentar mejorar el negocio.

Posteriormente de proponerlo no hubo ningún problema por parte de la empresa, por lo que accedió a dejarnos los datos.

Cade Logistic nos pasó todos los datos que Consum les proporcionó, los cuales eran información de los servicios de reparto a domicilio de todos los Consum en 2015, desglosado en todos los centros que Consum tiene servicio domiciliario, la población y dirección donde estos se encuentran; los servicios por mes que realizan y el detalle diario de cómo estos se reparten. Asimismo dentro de este Excel se encontraban los centros que Cade Logistic se hacía cargo, ya que las más de 670 tiendas de Consum se las reparten entre las comentadas tres empresas de transporte.

Cade se encargaría del reparto domiciliario de 59 tiendas en toda la Comunidad Valenciana en el año 2016, pero lo haría paulatinamente con la inserción de centros desde febrero hasta diciembre.

5.3. CADE LOGISTIC

5.3.1. Introducción

Ya que tenemos dos actores principales en este Trabajo Final de Grado, que son Consum y Cade Logistic, y entre los dos deben ser capaces de conseguir de satisfacer al cliente con el servicio domiciliario de alimentos y dado que en el Bloque I de dicho trabajo se ha hablado extensamente de Consum, pasaremos ahora a explicar y entender un poquito mejor la empresa con la que hemos trabajado, Cade Logistic.

A continuación se expone una breve información de esta empresa de transporte con servicio integral de logística domiciliaria.

5.3.2. ¿Quiénes son?

Cade Logistics nace en 2010 para ofrecer servicios especializados de distribución domiciliaria en todo el país. Son una de empresa pionera con experiencia en el sector
desde el año 1994, momento en el que detectan que sus clientes necesitan un servicio más completo y deciden invertir en formación y mejorar sus niveles de eficiencia. Con unas instalaciones de 4.000 metros cuadrados y una flota de 35 vehículos es la empresa más importante de distribución domiciliaria y montaje en nuestra área de influencia de Valencia, Castellón y Alicante y ofrecen cobertura en todo el territorio nacional.

![Figura 28. Instalaciones de Cade Logistic. (Fuente: Cade Logistic)](image)

5.3.3. MISIÓN Y VALORES

Su principal misión es obtener la máxima satisfacción de sus clientes, anteponerse a sus necesidades y superar sus expectativas son las bases de nuestro proyecto. En Cade Logistics trabajan con las principales marcas de la gran distribución como Carrefour, Alcampo, Makro, Bauhaus, Leroy Merlin o El Corte Ingles, lo que les sitúa en la primera línea del mercado.

Las instalaciones de Cada Logistics cuentan con aulas donde se imparte formación específica a todos sus empleados de manera regular para mejorar su capacidad de respuesta. Consideran a los clientes como el bien más valioso y su misión es conseguir que se sientan satisfechos, ofreciendo un trato profesional, una imagen impecable y un servicio integral que vaya más allá de lo esperado.
5.3.4. SERVICIO DOMICILIARIO

5.3.4.1. ¿QUÉ HACEN?

Están especializados en el transporte de muebles, electrodomésticos, alimentación y toda clase de producto voluminoso. Son una de las pocas empresas que llevan el artículo hasta el hogar, lo dejan instalado y se llevan el producto usado en caso de que el cliente lo solicite. Ejercen de nexo entre su empresa y sus clientes añadiendo un plus al proceso de compra con un servicio integral que va más allá del transporte: su personal, especializado y uniformado, está formado para ofrecer el mejor servicio posible.
5.3.4.2. ¿CÓMO TRABAJAN?

Han elaborado un protocolo de acción que siguen de manera minuciosa en cada caso. Avisan a los clientes con una llamada telefónica del momento de la entrega ofreciendo franjas temporales de dos horas y se comunican con ellos si se produce alguna incidencia. Hacen la entrega en la dirección solicitada, instalan el producto, lo conectan o sintonizan en caso de que sea necesario y se llevan el artículo usado si el cliente lo desea. Disponemos de 35 vehículos de diferentes tamaños, en la mayoría de los cuales viajan dos personas.

5.3.4.3. SEGUIMIENTO DEL PRODUCTO

Gracias a su sistema de trazabilidad el cliente puede conocer la trayectoria del envío desde el lugar de origen hasta el punto de destino. A través de su página web es posible seguir el movimiento de los artículos en cualquier momento gracias a los dispositivos que lo identifican a lo largo de toda la cadena. Esto se traduce en transparencia, profesionalidad y eficiencia.

Figura 31. Vehículos e instalaciones de Cade Logistic. (Fuente: Cade Logistic)
6. DESCRIPCIÓN DE PROCESOS

6.1. INTRODUCCIÓN

El objeto del presente apartado es analizar las necesidades logísticas de Consum para
la distribución domiciliaria de las compras realizadas en tienda con la intención de
ofrecer por parte del Operador Logístico Cade Logistic, una solución que mejore el
servicio actual que Consum ofrece a sus clientes. Se explicarán todos los procesos que
se realizan en el servicio domiciliario y qué papel juega Consum y Cade Logistic en el
mismo.

6.2. CONSIDERACIONES DE PARTIDA

6.2.1. DESCRIPCIÓN DEL SERVICIO ACTUAL DE DISTRIBUCIÓN
ALIMENTARIA DE CONSUM

Actualmente la cadena de alimentación Consum ofrece un servicio de entrega a
domicilio en las tiendas a través de una externalización de estos servicios.

De esta forma, una vez que se realiza una compra en caja y el cliente solicita la
entrega a domicilio, Consum transmite esta información al Operador Logístico, Cade
Logistic, quien entrega la compra en turnos de mañana y tarde.

6.2.2. OBJETIVOS Y CONDICIONES DE CONSUM

Actualmente Consum tiene un objetivo principal para el servicio de entrega a domicilio
de sus clientes, que a su vez se convierten en restricciones para Cade Logistic.
Consum garantiza a sus clientes que le llevará su compra a casa en un tiempo máximo
de 2 horas, aunque a Cade Logistic esa restricción la disminuye aún más en tiempo y
le requiere la entrega del pedido en 1:15 horas.
A su vez Consum también impone diversas consideraciones para la realización de servicio domiciliario:

1. Consum solamente admite 3 pedidos por franja horaria, es decir, una vez que se llena esa franja horaria con tres pedidos, si un cliente viene y la quiere su pedido para la franja horaria que ya está saturada, su pedido pasará a la siguiente franja horaria libre o a la franja horaria que escoja siempre y cuando no esté llena.
2. El radio de acción del reparto domiciliario de Consum es de 3 kilómetros en capitales de provincia y 8 kilómetros en el resto.
3. Consum no hace reparto los sábados por la tarde.
4. Las cajas utilizadas para el reparto tienen unas dimensiones de 60x40x40 centímetros, lo que habrá que tener en cuenta ya que dependiendo del medio de transporte utilizado y los pedidos del centro pueden ser un factor principal.

Igualmente Consum también tiene como objetivo en un futuro cercano la implantación de la venta on-line de sus productos.

6.2.3. DESCRIPCIÓN DEL PROCESO DE ENTREGA A DOMICILIO EN TIENDAS. RELACIÓN CADE-CONSUM

El proceso de entrega domiciliaria que Consum realiza es el que se describe a continuación:

1. El cliente de Consum realiza la compra y en el momento que pasa por caja indica al personal de Consum que solicita la entrega domiciliaria.

2. En ese momento el usuario ya sabrá la franja horaria de la entrega, ya que solo se permiten tres pedidos por franja horaria, o también cabe la posibilidad que el usuario lo quiera a una hora concreta.

3. En ese mismo instante dicha información pasa al ordenador central de Consum donde están conectadas todas las tiendas.

4. Simultáneamente Consum pasa la información al sistema informático de Cade Logistic para que pueda conocer la siguiente información del pedido: hora, teléfono, nombre usuario, dirección de entrega, nºbultos y PVP.
5. Una vez la información pasa a Cade Logistic, su sistema informático enviará un aviso a sus transportistas para la aceptación del pedido y que puedan ir a recogerlo.

6. El Operador Logístico recoge los pedidos en cada una de las tiendas de Consum. Las condiciones de entrega que solicita Consum son las siguientes:
 ✓ El tiempo máximo desde que se realiza la compra hasta la entrega en su domicilio tiene que ser de 2 horas. Por tanto, el lead-time del cliente son 2 horas.
 ✓ El tiempo máximo del Operador para entregarlo es de 1:15 horas. El lead-time de la recogida del pedido en la tienda para los transportistas es de 45 minutos, ya que si no lo recoge antes el programa informático de Cade avisa del problema.

7. El Operador Logístico, una vez que el transportista recoge el pedido en tienda, confirma al usuario por sms que su entrega va a ser realizada en su domicilio.

8. En caso de que el usuario no se encuentre en su domicilio al llegar el transportista del Operador Logístico, el transportista llamará directamente al usuario. Si el usuario no puede llegar para la entrega, este pedido se devolverá a tienda. Si puede llegar en un tiempo (previamente definido), el transportista se esperará para la entrega.

10. La confirmación de la entrega llegará al sistema del Cade y al sistema de Consum.

11. Se procederá a realizar la facturación por parte de Cade Logistic según la tarifa acordada con Consum. Se realizará un feed-back mensual con análisis internos entre las dos partes para revisar las incidencias y establecer posibles mejoras.
6.3. DESCRIPCIÓN DE PROCESOS REALIZADOS POR CADE LOGISTIC PARA EL SERVICIO DOMICILIARIO

Profundizando un poco más en el trabajo realizado por Cade Logistic, se pasará a explicar todo lo relacionado con el servicio domiciliario realizado por este.

6.3.1. CENTROS ASIGNADOS A CADE LOGISTIC

Consum y Cade Logistic han llegado a un acuerdo sobre la externalización del servicio domiciliario para el presente año, donde como se ha mostrado antes, Cade es el encargado de realizar los pedidos a domicilio que se producen en diversas tiendas de Consum. También se ha visto que Consum impone algunas consideraciones al servicio y además se va a explicar ahora más detalladamente cuales y donde están los centros asignados a Cade y como estos entrarán en funcionamiento en 2016, ya que el servicio, como es la primera vez que lo realiza Cade se irá realizando paulatinamente a través de los meses.

Esto quiere decir que Cade empezará este servicio en el mes de febrero con 12 centros en Valencia y se irán añadiendo gradualmente centros hasta acabar en diciembre con 59 centros repartidos en toda la Comunidad Valencia. Si el resultado del servicio es satisfactorio tanto para Consum como para Cade Logistic se continuará el servicio con las 59 tiendas para 2017 con vistas a aumentar el servicio en más tiendas de Consum.

Uno de los objetivos de este proyecto es tener un buen análisis del servicio que ha de realizar Cade Logistic para poder hacer una buena planificación para el año 2017, referido al dimensionamiento de flota y de ahorro de recursos, para así poder economizar el negocio y que este sea más rentable que hasta ahora.

Se pasará a explicar ahora cuál es el orden de entrada de las tiendas en el servicio de Cade Logistic dictado por Consum:

- Por meses:
 - Febrero: 12 tiendas
 - Marzo: 13 tiendas
 - Abril: 19 tiendas
 - Mayo: 20 tiendas
Junio: 20 tiendas
Julio: 28 tiendas
Agosto: 28 tiendas
Septiembre: 37 tiendas
Octubre: 54 tiendas
Noviembre: 59 tiendas
Diciembre: 59 tiendas

Por lo que al final del año 2016 Cade tendrá 59 tiendas de las que encargarse, destacar que la entrada de centros son de forma continua y a la vez que aumentan los meses entran más centros, por ejemplo de febrero a marzo solo entra una tienda, mientras que la mayor entrada de centros la observamos de septiembre a octubre con la entrada de 17 centros.

Por referencia geográfica:
- Valencia (capital): 20 tiendas
- Burjassot: 2 tiendas
- Paterna: 3 tiendas
- Meliana: 2 tiendas
- Alboraia: 2 tiendas
- Moncada: 2 tiendas
- Foios: 1 tienda
- Alfara del Patriarca: 1 tienda
- Burriana: 2 tiendas
- Almassora: 2 tiendas
- Villarreal: 4 tiendas
- Alquerias del Niño Perdido: 1 tienda
- Calpe: 1 tienda
- Teulada: 1 tienda
- Benidorm: 3 tiendas
- Javea: 1 tienda
- Vergel: 1 tienda
- Denia: 3 tiendas
- Alfas del Pi: 2 tiendas
- Villajoirosa: 2 tiendas
• Altea: 2 tiendas
• Benissa: 1 tienda

Como se ha comentado, hay 59 tiendas repartidas a lo largo de toda la Comunidad Valencia concentrando 20 tiendas en la ciudad de valencia y siendo el punto más importante de estudio del proyecto ya que en las diferentes ciudades y pueblos tenemos entre un tienda y un máximo de 3, exceptuando Villarreal con 4 centros. Por lo que el servicio domiciliario en estas ciudades o pueblos es más sencillo si se compara con la ciudad de valencia.

Próximamente se expondrá que sobre todo nos centraremos en el análisis de la ciudad de valencia ya que ahí se centra la parte principal de los ingresos de la empresa y es donde se intentará optimizar el trabajo realizado hasta ahora mismo. En las diferentes ciudades y pueblos donde tenemos entre una y cuatro tiendas el servicio domiciliario será diferente al de Valencia, hasta el punto que la forma de dimensionar no será parecida.

A continuación y a modo de cuadro resumen se presenta una tabla donde vemos todos los centros destinados a Cade a lo largo del año del año 2016 y como se van instaurando para el servicio domiciliario. Los centros rellenos de naranja son los que van entrando respecto al mes pasado
6.3.2. CONTROL Y GESTIÓN DEL FLUJO DE LA INFORMACIÓN

Primeramente hay que resaltar que Cade Logistic ha revolucionado la forma de control y utilización de la información, lo que le permite trabajar y cumplir el servicio domiciliario más eficiente que los otros operadores logísticos, ya que estos trabajan de forma manual el flujo de información y la ejecución de órdenes a los transportistas. Cade Logistic ha creado un software informático adrede para el control de la información y elaboración de mandatos a su flota de vehículos. Todo ello a través de un programa informático donde accede a toda la información y gestión de sus automóviles de una forma intuitiva y sencilla de encargarse todo.

Este software, tiene una pantalla principal dividida en dos; en la parte derecha, un mapa a tiempo real de la posición GPS de sus vehículos, y en la otra parte de la pantalla, la izquierda, un sistema de gestión de los pedidos también a tiempo real de las tiendas de Consum que Cade es la encargada.

Es decir, como se ha explicado, cuando un cliente de Consum quiere un envío a domicilio, el dependiente en caja de la tienda, pulsa un botón de servicio domiciliario e inmediatamente la información pasa a este programa informático de Cade con toda la información pertinente, y aparece en la parte izquierda de la pantalla un punto verde, lo que quiere decir que hay un pedido para entregar.

Seguidamente, los transportistas están localizados por GPS gracias a un dispositivo móvil. Esta información GPS hace que el programa informático mande un aviso de recogida del pedido realizado al conductor más cercano a la tienda.

Este aviso llega al transportista que dependiendo de su estado, si lleva ya carga o no, u otras consideraciones, puede aceptar ese pedido o rechazarlo. Si este acepta, directamente se le asignará ese pedido a dicho transportista que también está identificado y referenciado en el programa.

Después automáticamente otra vez en la parte izquierda de la pantalla aparecerá ahora un segundo punto verde, que quiere decir que el pedido ya está asignado.

Si ese pedido el primer transportista lo rechaza por cualquier razón, inmediatamente se le envía otro aviso a otro trabajador, otra vez al que más cerca esté de dicha tienda, obviando al primero que rechaza. Este, otra vez, podrá aceptar o rechazar, si este lo acepta es el mismo procedimiento que anteriormente se ha explicado. Si lo rechazara,
automáticamente el programa avisa al puesto de mando en la empresa Cade para que gestionen y decidan que transportista es el encargado de realizar ese pedido.

Una vez se asigna ese pedido a un trabajador, por lo que se vería en el programa dos puntos verdes en el pedido, tienen como dicta Consum 1:15 horas para la entrega del pedido. En circunstancias normales el trabajador debería llevarlo sin problema, pero si el transportista no recoge el pedido en los primeros 45 minutos, el programa vuelve a enviar otro aviso a la centralita para que arreglen esa situación.

Si el transportista recoge el pedido antes de 45 minutos, una vez que llega a la tienda y lo recoge, marca en su terminal móvil que el pedido está recogido y se dispone a entregarlo. En ese momento en el programa aparece el tercer punto verde que significa que el conductor ha recogido la carga antes del lead-time, 45 minutos, y se dispone a entregarlo, como se ha dicho antes si en ese lead-time no está recogido el pedido el programa avisa poniendo el pedido en rojo y se observa que algo va mal y desde el puesto de Cade Logistic deben ser capaces de arreglar la situación.

Cuando el conductor recoge el pedido avisa al usuario a través de un sms de la hora de llegada. Una vez se entrega el pedido, el usuario y el trabajador de Cade lo confirman, lo que se traduce en el programa informático en la desaparición de dicho pedido, que indica que todo ha salido favorablemente. Los datos de entrega, ya sea en el tiempo marcado por Consum o no, también pasan al sistema informático de Consum, para la comprobación del trabajo de Cade.

Ese sería un ejemplo de un pedido cualquiera en una tienda, cuando hay diversas tiendas y diversos conductores la situación no es tan sencilla. Pero con este sistema de gestión de la información se optimiza mucho en cuanto a tiempo del servicio y desplazamientos de los vehículos ere. Ahora mismo Cade Logistic está en un 95% de confianza en entregas realizadas a tiempo.

En definitiva, con este software donde tenemos por una parte todo el control de los transportistas y su localización, y por otra toda la información de los pedidos a tiempo real con el sistema de los puntos verdes, el cual era:

1. Primer punto verde: Registro de un pedido cualquiera una tienda que hay que realizar el servicio domiciliario.
2. Segundo punto verde: Confirmación de pedido aceptado por algún transportista.

3. Tercer punto verde: Recogida a tiempo, 45 minutos, del pedido para disponerse a la entrega del mismo. Si este no se recoge en el lead-time acordado, el programa avisa para arreglar la situación.

4. Desaparición del pedido: Una vez se confirma la entrega del pedido, este mismo desaparece del programa y todo el procedimiento queda registrado.

Por lo que de un solo vistazo tenemos a tiempo real todos los pedidos a domicilio controlados y gestionados por una sola persona. Gracias a esta revolución informática en este campo, donde también almacenamos información más cómodamente y esta se puede gestionar mucho mejor, Cade Logistic realiza un servicio domiciliario más óptimo que los otros operadores logísticos.

6.3.3. CONTROL Y GESTIÓN DEL FLUJO FÍSICO

Cade para la realización física del reparto a domicilio, es decir, las acciones propiamente dichas de llevar los pedidos a las casas gracias a los transportistas, ha optado por subcontratar de autónomos que se encarguen de la entrega de los pedidos. Otra opción que tenía la empresa era comprar su propia flota de vehículos para la ejecución de pedidos, pero está conlleva mucha más inversión por la compra de vehículos y contratación de personal, y a su vez mucho más riesgo ya que si en el contrato entre Cade Logistic y Consum alguna de las partes no está satisfecha y se rompe dicho contrato, Cade Logistic tendría que cargar con todos esos vehículos sin poder amortizarlos ni rentabilizarlos, por lo que sufriría una gran pérdida de dinero.

Por lo tanto Cade, a su vez, también ha preferido externalizar su servicio con la contratación de autónomos especializados en el transporte de mercancías, donde Cade se encarga de controlarlos y gestionarlos.
7. HERRAMIENTAS DE ANÁLISIS

7.1. INTRODUCCIÓN

En los siguientes puntos se van a explicar las herramientas que se han utilizado para analizar el servicio domiciliario de Cade.

Ya que los datos proporcionados por Consum están en un formato Excel, utilizaremos esa herramienta para un análisis general donde se podrán obtener conclusiones de cómo realizar un buen servicio en base a las necesidades que presentan los clientes.

Del mismo modo se utilizará un flujograma para explicar de una forma más sintética y visual los procesos de entrega a domicilio, esta herramienta permite ver todos los pasos que se llevan a cabo para la realización de un pedido a domicilio y ver también la relación que existe entre Cade Logistic y Consum, es decir, las tareas que desempeñan cada uno.

Como última herramienta de análisis se darán unas pequeñas pinceladas, ya que en el bloque IV se expone con más detenimiento, de los Sistema de Información Geográfica que puede pueden aportar mejoras sustanciales al servicio.
7.2. FLUJOGRAMAS

El flujograma mostrado a continuación resume el proceso de entrega domiciliaria de Consum. En la leyenda el color identifica las tareas a realizar por el personal de Consum y por el personal de Cade Logistic.

Tarea a realizar Por CONSUM

Tarea a realizar Por CADE LOGISTIC
Figura 32. Fijograma de los procesos del servicio a domicilio.
7.3. EXCEL

7.3.1. SITUACIÓN INICIAL

Con los datos en formato Excel proporcionados por Consum de repartos domiciliarios se va a obtener un análisis de los parámetros de compras de los clientes. Por lo que el objeto de este apartado es observar como varían los pedidos domiciliarios a través de los días, horas, meses, etc. Para así obtener esas conductas de comportamiento de pedidos a domicilio y poder dimensionar una flota de vehículos en base a todo el análisis. Dicho análisis se ha elaborado gracias a que los datos de Consum fueron facilitados por Cade Logistic.

En el transcurso de la realización del proyecto han surgido muchas dudas sobre muchos aspectos del dimensionamiento, parte fundamental del trabajo. Al no tener mucha noción sobre logística, ya que en la carrera hemos dado unas pinceladas de esta, han surgido problemas sobre la mejor manera de dimensionar.

Para dimensionar, primeramente tienes que contar, por un lado, con un análisis de los datos recogidos y saber cuáles son los aspectos más condicionantes y ajustar los picos de volumen de repartos a domicilio con el dimensionamiento. Por otro lado tienes que seguir un criterio de dimensionamiento representativo y que pueda servir para la realidad. Además para hacer ese análisis es fundamental una buena organización de los datos.

Al conocerse la forma de trabajo de Cade Logistic, puesto que el servicio ya está en funcionamiento, se ha decidido hacer un dimensionamiento que intente mejorar al realizado actualmente por Cade con una zona piloto de valencia con 4 centros que sería extrapolable al caso de Cade Logistic. Este dimensionamiento se apoyará en dicho análisis.

7.3.2. ANÁLISIS DE DATOS FACILITADOS POR CONSUM

7.3.2.1. ANÁLISIS PARA EL CASO CADE LOGISTIC

Cade Logistic es el Operador Logístico encargado de realizar los repartos domiciliarios de Consum y cuenta con un total de 59 centros repartidos en toda la Comunidad Valenciana, como se visto anteriormente.
Como se puede observar en la Figura 33, Cade Logistic abastece a 22 municipios, de los cuales la ciudad de Valencia es el núcleo principal de análisis ya que en ella donde se concentran un total de 20 de establecimientos, siendo esto más de un 33% del total de toda su red de los puntos de ventas.
7.3.2.1.1 MÉTODO DE ANÁLISIS

Para el análisis, primeramente han de organizarse los datos de la mejor manera posible, ya que una buena gestión y organización de los datos hará que el resultado sea más representativo. Para el desarrollo de los siguientes apartados se ha fabricado un Excel propio donde los datos se han segregado a la unidad para poder luego poder integrarlos y observar cuáles son los parámetros más determinantes en la conducta de compra a domicilio de los clientes y ver el volumen de esas compras, lo que nos llevará a una buena planificación y gestión de los vehículos.

En ese Excel con datos unitarios se han diferenciado cada mes del año y dentro de cada mes, todos los centros que Cade Logistic realiza repartos. A su vez esos centros presentan los datos de entregas a domicilio separados en días de la semana y franja horaria, como muestra la Tabla 2 de un centro al azar gestionado por Cade Logistic.
In the Table 3 of the month of March, you can observe, as we have commented, that the central data is the sum of all those unitary data of the orders registered in each of the centers of that month (rounded in blue). In addition, you can observe rounded in red the hourly bands and rounded in green the days of the month. So if we integrate all the centers that are in operation in that month as in Table 2, it results in Table 3.

Tabla 2. Pedidos a domicilio en el mes de marzo del centro General Llorens. Elaboración propia.

(Fuente: Consum)

En la Tabla 3 del mes marzo se puede observar, como se ha comentado, que los datos centrales son la suma de todos esos datos unitarios de los pedidos registrados en cada uno de los centros de ese mes (redondeado en azul). Además se observa redondeado en rojo las franjas horarias y redondeadas en verde los días del mes. Por lo que si integramos todos los centros que están en funcionamiento ese mes como el de la Tabla 2, da como resultado la Tabla 3.
Con todo ello al sumar todos los pedidos tenemos que Cade Logistic tiene que realizar en este año 2016 un total de 60457 repartos y de esos, 36060 pedidos corresponden a la ciudad de Valencia, un 59,64%. Lo que da pie a ver la importancia que tiene la ciudad de Valencia en todo el reparto domiciliario.

A continuación se realizará un análisis de todos los aspectos significativos que condicionaran al dimensionamiento de la flota de vehículos de Cade Logistic.
7.3.2.1.2 ANÁLISIS MENSUAL

Al empezar el servicio este año, Cade irá aumentando con el paso de los meses los puntos de venta donde tiene que trabajar, por lo que es importante ver de forma global como van a evolucionar los pedidos a través de los meses.

Gráfica 1. Distribución mensual de los pedidos domiciliarios en las tiendas gestionadas por Cade Logistic. Elaboración propia. (Fuente: Consum)

Al no contar con un mismo número de tiendas durante todo el año se ve como naturalmente cuantos más centros tenemos, el volumen de pedidos aumenta. Debido a esto, diciembre es el mes con más volumen de pedidos con un total de 9730 teniendo este mes un 13% más de volumen de repartos que el mes de febrero, respecto del total de pedidos.

También se puede notar que los saltos sustantivos de pedidos durante los meses corresponden esencialmente a la intrusión de tiendas como ocurre de junio a julio, con la entrada de 8 centros. De agosto a septiembre, con la entrada de 9 centros y a partir de septiembre crece paulatinamente ya que se van introduciendo meses hasta noviembre.
7.3.2.1.3 ANÁLISIS DE LA ESTACIONALIDAD

Del mismo modo, también será muy importante fijarse para años venideros en la estacionalidad, es decir, los periodos vacacionales donde la gente no suele realizar un ritmo normal de vida. Esto en algunos centros será acusado por la disminución de pedidos, pero en otros centros situados cerca de la cosa los pedidos tenderán a aumentar. Por esto será importarte estudiar bien la estacionalidad, en este caso no se puede observar muy bien ya que al no tener todos los meses los mismos centros no es completamente representativo. Aun así se puede observar levemente este fenómeno en los meses de julio y agosto, meses de periodo vacacional, donde se nota como en agosto bajan los pedidos a domicilio, teniendo los mismos centros esos dos meses.

Para ver un mejor ejemplo de la estacionalidad y ver como esta afecta diferentemente a los centros situados dentro de la ciudad y en la costa, haremos un pequeño estudio de cómo se puede ver el desarrollo durante todo el año de un centro situado en la costa y otro situado dentro de la ciudad.

Primeramente vamos a ver el ejemplo con el centro situado en la calle Peset Aleixandre, establecimiento situado dentro de la ciudad de Valencia.
En la Gráfica 3 se puede atisbar como un centro de dentro de la ciudad disminuye en el periodo vacacional los pedidos a domicilio.

![Gráfica 3. Distribución mensual de los pedidos domiciliarios en el centro Peset Aleixandre. (Fuente: Consum)

Y a continuación se verá el resultado de un centro de la misma ciudad, pero situado en la costa. El centro escogido está situado en la Avenida Malvarrosa y tenemos datos de este centro desde abril hasta diciembre.
En la Gráfica 4 del establecimiento situado cerca de la costa, en el periodo vacacional aumentan los pedidos ya que la gente suele tener segundas residencias en zonas costeras o sencillamente pueden ir de vacaciones a estas zonas. Por lo que un factor a tener en cuenta para el año 2017 es la estacional de todos nuestros centros, ya que determinará el dimensionamiento.

Gráfica 4. Distribución mensual de pedidos domiciliarios del centro Avenida Malvarrosa.
Elaboración propia. (Fuente: Consum)

En la Gráfica 4 del establecimiento situado cerca de la costa, en el periodo vacacional aumentan los pedidos ya que la gente suele tener segundas residencias en zonas costeras o sencillamente pueden ir de vacaciones a estas zonas. Por lo que un factor a
tener en cuenta para el año 2017 es la estacional de todos nuestros centros, ya que determinará el dimensionamiento.

7.3.2.1.4 ANÁLISIS DE SITUACIONES SINGULARES

Cabe destacar que al estudiar los datos se ha comprobado que hay situaciones que se repiten a lo largo de los meses que son un tanto singulares, ya que en un principio no se sabía que iban a ocurrir, lo que luego a posteriori de observarlas, son pautas de conducta totalmente lógicas. Estas situaciones son dos, la primera corresponde a que en todos los meses a partir del 25 de cada mes las compras a domicilio aumentan sustantivamente. Y la segunda situación corresponde a que los días previos a festivos se ha nota que también aumentan las compras para el servicio domiciliario.

<table>
<thead>
<tr>
<th>PEDIDOS TOTALES/HORARIOS EN NOVIEMBRE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 A 10</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>02/11/2015</td>
</tr>
<tr>
<td>03/11/2015</td>
</tr>
<tr>
<td>04/11/2015</td>
</tr>
<tr>
<td>05/11/2015</td>
</tr>
<tr>
<td>06/11/2015</td>
</tr>
<tr>
<td>07/11/2015</td>
</tr>
<tr>
<td>08/11/2015</td>
</tr>
<tr>
<td>09/11/2015</td>
</tr>
<tr>
<td>10/11/2015</td>
</tr>
<tr>
<td>11/11/2015</td>
</tr>
<tr>
<td>12/11/2015</td>
</tr>
<tr>
<td>13/11/2015</td>
</tr>
<tr>
<td>14/11/2015</td>
</tr>
<tr>
<td>15/11/2015</td>
</tr>
<tr>
<td>16/11/2015</td>
</tr>
<tr>
<td>17/11/2015</td>
</tr>
<tr>
<td>18/11/2015</td>
</tr>
<tr>
<td>19/11/2015</td>
</tr>
<tr>
<td>20/11/2015</td>
</tr>
<tr>
<td>21/11/2015</td>
</tr>
<tr>
<td>22/11/2015</td>
</tr>
<tr>
<td>23/11/2015</td>
</tr>
<tr>
<td>24/11/2015</td>
</tr>
<tr>
<td>26/11/2015</td>
</tr>
<tr>
<td>27/11/2015</td>
</tr>
<tr>
<td>28/11/2015</td>
</tr>
<tr>
<td>29/11/2015</td>
</tr>
</tbody>
</table>

Tabla 4. Pedidos domiciliarios totales en el mes de noviembre de los establecimientos gestionados por Cade Logistic. Elaboración Propia. (Fuente: Consum)
En la Tabla 4 y Gráfica 5 del mes de noviembre, se ve como a partir del 25 pese a que sea miércoles, está por encima de las compras normales de esos días en diferentes semanas, por lo que cada final de mes habrá que tenerlo en cuenta. Esto puede darse por ejemplo a que los jubilados suelen cobrar la paga a final de mes y por sus condiciones físicas la compra a domicilio es muy útil, otra razón podría ser que las familias suelen comprar productos que reponen cada mes y los compran cada final de mes, como puede ser por ejemplo agua, alimentos en conserva, etc.

Del mismo modo, en los días previos a festivos los clientes realizan más pedidos a domicilio, lo que es totalmente normal ya que las compras suelen ser de mucha cantidad para preparar el/los días festivos.
En el mes de diciembre este fenómeno se aprecia muy bien ya que los días previos a navidad hay un aumento muy sustancial de pedidos a domicilio, se observan tres días seguidos marcando un nivel de reparto a domicilio prácticamente igual que el máximo del mes. Lo que es una situación que habrá que saber gestionar.

Tabla 5. Pedidos domiciliarios totales en el mes de diciembre de los establecimientos gestionados por Cade Logistic. Elaboración Propia. (Fuente: Consum)

<table>
<thead>
<tr>
<th>Fecha</th>
<th>9 A 12</th>
<th>10 A 11</th>
<th>11 A 12</th>
<th>12 A 13</th>
<th>13 A 14</th>
<th>14 A 15</th>
<th>15 A 16</th>
<th>16 A 17</th>
<th>17 A 18</th>
<th>18 A 19</th>
<th>19 A 20</th>
<th>20 A 21</th>
<th>21 A 22</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>01/12/2015</td>
<td>18</td>
<td>41</td>
<td>71</td>
<td>73</td>
<td>68</td>
<td>69</td>
<td>42</td>
<td>22</td>
<td>28</td>
<td>62</td>
<td>62</td>
<td>60</td>
<td>38</td>
<td>418</td>
</tr>
<tr>
<td>02/12/2015</td>
<td>17</td>
<td>45</td>
<td>64</td>
<td>76</td>
<td>36</td>
<td>36</td>
<td>18</td>
<td>15</td>
<td>14</td>
<td>14</td>
<td>16</td>
<td>27</td>
<td>13</td>
<td>368</td>
</tr>
<tr>
<td>03/12/2015</td>
<td>18</td>
<td>41</td>
<td>60</td>
<td>68</td>
<td>44</td>
<td>29</td>
<td>19</td>
<td>21</td>
<td>14</td>
<td>21</td>
<td>23</td>
<td>20</td>
<td>23</td>
<td>387</td>
</tr>
<tr>
<td>04/12/2015</td>
<td>25</td>
<td>71</td>
<td>75</td>
<td>76</td>
<td>69</td>
<td>26</td>
<td>22</td>
<td>28</td>
<td>26</td>
<td>30</td>
<td>33</td>
<td>22</td>
<td>22</td>
<td>377</td>
</tr>
<tr>
<td>05/12/2015</td>
<td>17</td>
<td>42</td>
<td>70</td>
<td>69</td>
<td>56</td>
<td>35</td>
<td>12</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>6</td>
<td>7</td>
<td>4</td>
<td>357</td>
</tr>
<tr>
<td>07/12/2015</td>
<td>13</td>
<td>35</td>
<td>27</td>
<td>35</td>
<td>14</td>
<td>14</td>
<td>7</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>330</td>
</tr>
<tr>
<td>08/12/2015</td>
<td>23</td>
<td>55</td>
<td>75</td>
<td>72</td>
<td>65</td>
<td>24</td>
<td>32</td>
<td>23</td>
<td>21</td>
<td>29</td>
<td>18</td>
<td>11</td>
<td>9</td>
<td>357</td>
</tr>
<tr>
<td>10/12/2015</td>
<td>23</td>
<td>47</td>
<td>86</td>
<td>73</td>
<td>53</td>
<td>25</td>
<td>16</td>
<td>17</td>
<td>29</td>
<td>41</td>
<td>15</td>
<td>9</td>
<td>8</td>
<td>458</td>
</tr>
<tr>
<td>11/12/2015</td>
<td>27</td>
<td>78</td>
<td>91</td>
<td>81</td>
<td>68</td>
<td>51</td>
<td>25</td>
<td>26</td>
<td>23</td>
<td>37</td>
<td>39</td>
<td>26</td>
<td>19</td>
<td>456</td>
</tr>
<tr>
<td>12/12/2015</td>
<td>11</td>
<td>52</td>
<td>56</td>
<td>69</td>
<td>49</td>
<td>25</td>
<td>13</td>
<td>9</td>
<td>13</td>
<td>4</td>
<td>5</td>
<td>7</td>
<td>3</td>
<td>218</td>
</tr>
<tr>
<td>14/12/2015</td>
<td>20</td>
<td>55</td>
<td>61</td>
<td>68</td>
<td>52</td>
<td>26</td>
<td>14</td>
<td>24</td>
<td>14</td>
<td>18</td>
<td>26</td>
<td>16</td>
<td>9</td>
<td>371</td>
</tr>
<tr>
<td>15/12/2015</td>
<td>19</td>
<td>39</td>
<td>53</td>
<td>57</td>
<td>39</td>
<td>23</td>
<td>17</td>
<td>21</td>
<td>17</td>
<td>19</td>
<td>25</td>
<td>22</td>
<td>6</td>
<td>357</td>
</tr>
<tr>
<td>16/12/2015</td>
<td>20</td>
<td>36</td>
<td>50</td>
<td>68</td>
<td>52</td>
<td>24</td>
<td>18</td>
<td>10</td>
<td>14</td>
<td>22</td>
<td>14</td>
<td>12</td>
<td>5</td>
<td>343</td>
</tr>
<tr>
<td>18/12/2015</td>
<td>27</td>
<td>63</td>
<td>59</td>
<td>76</td>
<td>41</td>
<td>32</td>
<td>12</td>
<td>22</td>
<td>11</td>
<td>27</td>
<td>29</td>
<td>15</td>
<td>10</td>
<td>424</td>
</tr>
<tr>
<td>19/12/2015</td>
<td>24</td>
<td>71</td>
<td>92</td>
<td>90</td>
<td>68</td>
<td>39</td>
<td>23</td>
<td>27</td>
<td>14</td>
<td>30</td>
<td>33</td>
<td>25</td>
<td>9</td>
<td>348</td>
</tr>
<tr>
<td>20/12/2015</td>
<td>19</td>
<td>32</td>
<td>61</td>
<td>65</td>
<td>45</td>
<td>24</td>
<td>10</td>
<td>12</td>
<td>11</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td>6</td>
<td>296</td>
</tr>
<tr>
<td>21/12/2015</td>
<td>24</td>
<td>66</td>
<td>86</td>
<td>88</td>
<td>61</td>
<td>37</td>
<td>17</td>
<td>16</td>
<td>28</td>
<td>38</td>
<td>27</td>
<td>24</td>
<td>19</td>
<td>337</td>
</tr>
<tr>
<td>22/12/2015</td>
<td>21</td>
<td>69</td>
<td>73</td>
<td>75</td>
<td>66</td>
<td>45</td>
<td>24</td>
<td>22</td>
<td>15</td>
<td>30</td>
<td>39</td>
<td>31</td>
<td>21</td>
<td>327</td>
</tr>
<tr>
<td>23/12/2015</td>
<td>17</td>
<td>71</td>
<td>86</td>
<td>83</td>
<td>70</td>
<td>40</td>
<td>38</td>
<td>25</td>
<td>24</td>
<td>36</td>
<td>24</td>
<td>23</td>
<td>17</td>
<td>327</td>
</tr>
<tr>
<td>24/12/2015</td>
<td>15</td>
<td>37</td>
<td>37</td>
<td>25</td>
<td>11</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>98</td>
</tr>
<tr>
<td>26/12/2015</td>
<td>6</td>
<td>24</td>
<td>46</td>
<td>50</td>
<td>30</td>
<td>9</td>
<td>10</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>102</td>
</tr>
<tr>
<td>28/12/2015</td>
<td>17</td>
<td>49</td>
<td>71</td>
<td>69</td>
<td>54</td>
<td>26</td>
<td>20</td>
<td>17</td>
<td>19</td>
<td>28</td>
<td>20</td>
<td>10</td>
<td>9</td>
<td>403</td>
</tr>
<tr>
<td>29/12/2015</td>
<td>16</td>
<td>40</td>
<td>67</td>
<td>69</td>
<td>43</td>
<td>26</td>
<td>13</td>
<td>12</td>
<td>24</td>
<td>24</td>
<td>23</td>
<td>25</td>
<td>16</td>
<td>395</td>
</tr>
<tr>
<td>30/12/2015</td>
<td>18</td>
<td>51</td>
<td>75</td>
<td>77</td>
<td>65</td>
<td>45</td>
<td>25</td>
<td>19</td>
<td>17</td>
<td>23</td>
<td>25</td>
<td>16</td>
<td>9</td>
<td>459</td>
</tr>
<tr>
<td>31/12/2015</td>
<td>13</td>
<td>37</td>
<td>48</td>
<td>45</td>
<td>12</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>73</td>
</tr>
</tbody>
</table>

Gráfica 6. Distribución diaria de los pedidos a domicilio en el mes de diciembre de los centros gestionados por Cade Logistic. Elaboración Propia. (Fuente: Consum)

En el mes de diciembre este fenómeno se aprecia muy bien ya que los días previos a navidad hay un aumento muy sustancial de pedidos a domicilio, se observan tres días seguidos marcando un nivel de reparto a domicilio prácticamente igual que el máximo del mes. Lo que es una situación que habrá que saber gestionar.
Estos dos aspectos son especialmente importantes por su naturaleza y hay que tenerlos en cuenta para una buena planificación y dar un buen servicio a los clientes.

7.3.2.1.5 ANÁLISIS POR FRANJAS TEMPORALES

DISTRIBUCIÓN POR DÍA DE LA SEMANA:

Gráfica 7. Distribución a lo largo de la semana de los pedidos domiciliarios totales de los centros gestionados por Cade Logistic. Elaboración Propia. (Fuente: Consum)

La anterior gráfica representa la distribución a lo largo de los días de la semana de los pedidos totales que Cade tiene que realizar. El día de la semana que representa una mayor demanda general en el conjunto de tiendas es el viernes, mientras que el que menos número de pedidos registra es el sábado.

En un primer momento parece que este análisis de la distribución semanal no es representativo ya que todos los meses no disponen de los mismos centros y eso puede hacer pensar que los datos pueden estar equivocados o sesgados, pero después de ver la distribución semanal de los diferentes meses por separado vemos que es bastante similar. A modo de ejemplo, se muestra el mes de noviembre, mes que podemos catalogar de estándar porque es un mes donde ya contamos con los 59 centros y no hay días festivos ni estacionalidad, observamos que la conducta de compra es la misma.
Por lo que se puede concluir que lo anteriormente comentado de que la mayor demanda en el conjunto de tiendas son los viernes es totalmente cierto. Además afirmar que los sábados es el día que menos pedidos se realizan y que el resto de los días de la semana son parecidos.

DISTRIBUCIÓN POR HORA FISCAL:

Consum trabaja con franjas horarias de dos horas para realizar sus pedidos a domicilio, de manera que resulta interesante analizar la demanda sectorizada para cada hora fiscal para poder realizar una planificación lo más ajustada posible.

En primer lugar, como se puede observar en la Gráfica 9, existe una mayor cantidad de pedidos registrados por la mañana que por la tarde en todos los días de la semana.
Por norma general se registran alrededor del doble de servicios por las mañanas que por las tardes, excepto en el caso de los sábados, donde se observa en la Gráfica 9, que no hay repartos.

Como se aprecia en la Gráfica 10, el momento de mayor actividad se registra en la franja de 10h a 12h de la mañana, siendo ésta última la que recoge un mayor número de servicios.
En la misma gráfica también se aprecia un pico al atardecer, aunque más leve, a las 19h, que coincide con la salida del trabajo de muchas personas que deciden realizar su pedido a domicilio a esta hora.

Como puede observarse, independientemente de la variable que se analice, (día de la semana, fecha concreta, centro o mes) se repite el mismo patrón ininterrumpidamente: la franja horaria comprendida entre las 10h y las 12h es el periodo donde los clientes realizan un mayor número de compras con servicio domiciliario con un pequeño repunte entre las 18h y las 20h de la tarde.

7.3.2.2. CONSIDERACIONES PARA EL DIMENSIONAMIENTO

Con vistas al dimensionamiento, planificación y gestión de una flota de vehículos (acciones que se desarrollarán en el bloque III) y viendo los resultados obtenidos en el análisis; se dedujo que la mejor manera de hacer el dimensionamiento era agrupar diferentes centros a lo que se le llamaría zona, creando esta con un estudio de los volúmenes de repartos a domicilio de cada uno de los centro pertenecientes a dicha zona. Para luego asignar el número de furgonetas óptimo a esa zona con un modelo de cálculo generado en el siguiente bloque. Es decir, con las pautas generales de compra a domicilio y los datos más restrictivos de volumen de repartos a domicilio, se crean zonas para dimensionarlas singularmente y luego integrarlas para así saber el número de vehículos totales que se necesitan en la flota.

Por eso en el apartado siguiente se realizará un análisis de un escenario piloto con cuatro centros, que se comportaría como una de las zonas comentadas anteriormente, donde en base a un modelo generado y explicado posteriormente se podrá estimar el número de furgonetas que nos hacen falta y ver si mejoramos el sistema de reparto domiciliario que hay en funcionamiento.

Pese a ser una zona de estudio de 4 centros sería perfectamente extrapolable al caso de Cade Logistic, aunque Cade debería hacer un buen estudio de cómo repartir en zonas todos sus centros. En caso de Valencia habría que hacer un estudio dependiendo de la demanda de pedidos a domicilio y dividir la ciudad en subzonas. Atendiendo a las tiendas en las demás poblaciones, en líneas generales tienen 1, 2 o 3 centros por lo que habría que ver otra vez el volumen de pedidos de cada población y ver si esta es suficiente para ser una zona independiente o si diferentes poblaciones por proximidad y volumen de pedidos pueden integrar una misma zona. De igual manera en esta...
posible zona de una o varias poblaciones las condiciones del servicio, ya que el volumen de pedidos domiciliario es muy bajo, serán totalmente diferente y seguramente habrá solo dos turnos de reparto, uno por la mañana y otro por la tarde. Pero este aspecto no se va tratar mucho en el proyecto.

7.3.2.3. ANÁLISIS PARA EL CASO PILOTO

7.3.2.3.1 INTRODUCCIÓN Y OBJETIVO DEL CASO PILOTO

Para el análisis del caso piloto que se va desarrollar en el presente Trabajo Final de Grado se han elegido los siguientes centros ubicados en la ciudad de Valencia:

- Consum C/Matías Perelló
- Consum C/Sueca
- Consum C/Obispo Jaime Pérez
- Consum C/Conde de Salvatierra

Figura 37. Localización de centros en la ciudad de Valencia de la zona piloto. Elaboración propia

Estos centros, como se dicho anteriormente, se ha elegido por la observación y estudio del volumen de pedidos y la integración de estos 4 establecimientos da lugar a la conformación de una zona.

El análisis de datos que se obtendrá a continuación será el punto partida del Bloque III, en dicho bloque se tendrán en cuenta estas pautas de compras a domicilio y
además se hará un examen más exhaustivo de los datos para la creación del modelo de dimensionamiento.

También este análisis será prácticamente igual que el del apartado anterior para el caso de Cade Logistic, pero a una escala menor ya que solo contamos con 4 centros. Así mismo, al tener que realizar el estudio de una zona cualquiera y encargarte de un número menor de centros se pueden observar mejor las necesidades de cada centro y hacer análisis con más profundidad e individualizado, por lo que con un estudio detallado de distribuciones zonales y realizando los mismos análisis que en el presente trabajo, se podrá hacer un dimensionamiento de vehículos más ajustado.

7.3.2.3.2 MÉTODO DE ANÁLISIS

La metodología utilizada, como se citado antes, es prácticamente similar a la del apartado anterior para Cade Logistic, ya que los datos se han gestionado totalmente igual y se han ordenado de la misma manera, además se estudian los mismos parámetros que precedentemente. Igualmente se ha analizado individualmente cada centro ya que solamente se tienen 4 centros, y se ha de decir que se ha estudiado de la misma forma, es decir, con la gestión de datos unitarios. Por lo que se ha obtenido así unos resultados de pedidos domiciliarios que se traducen en unos parámetros de conducta determinados para cada uno de los centros.

Por último comentar que de estos 4 centros no tenemos datos de todos los meses, solamente de febrero a agosto. Aunque al contar con datos de la mayoría de los meses el estudio es totalmente legítimo.
7.3.2.3.3 ANÁLISIS MENSUAL

Para comenzar, nuestra zona de análisis tiene un volumen de repartos a domicilio de 30713 pedidos, repartido de la siguiente forma.

(Fuente: Consum)

Se observa en la Gráfica 11 como hay un reparto equitativo en todos los meses, alcanzando un máximo en los meses de mayo y junio. También destaca la estacionalidad en los meses de verano con la disminución de pedidos. Por todo ello habrá que estudiar de diferente forma los meses de verano y los del resto del año.

Gráfica 12. Distribución mensual de los pedidos domiciliarios por centros en el caso piloto.
Elaboración propia. (Fuente: Consum)
Analizando ahora por separado cada centro, tenemos que por un lado los centros con más volumen de reparto son Matías Perelló y Conde de Salvatierra, por otro lado el centro Obispo Jaime Pérez es el que menor volumen de pedidos tiene y el centro de calle Sueca tiene un volumen más elevado que Obispo Jaime Pérez, pero con una magnitud del alrededor del 50% menos de pedidos que los dos más cargados, por lo que se podría decir que tiene un nivel medio de pedidos.

También, todos los centros responden a la conducta de los meses más cargados, que son mayo y junio, exceptuando Matías Perelló que es Marzo.

De la misma manera se puede observar claramente la estacionalidad en todos los centros en el periodo vacacional de los meses de julio y agosto, dato que posteriormente se ha de tener en cuenta.

7.3.2.3.4 ANÁLISIS POR FRANJAS TEMPORALES

DISTRIBUCIÓN POR DÍA DE LA SEMANA:

La Gráfica 13 muestra que el reparto semanal en esta zona resulta ser un tanto especial si se compara con lo ya dicho sobre la distribución semanal, debido a que los días con más volumen de pedidos son el lunes y el martes, seguido del viernes. Destacando también que los sábados si tenemos una bajada drástica de compras a domicilio, conducta que se cumple siempre.

![Gráfica 13. Distribución a lo largo de la semana de los pedidos domiciliarios totales en el caso piloto. Elaboración Propia. (Fuente: Consum)](image-url)
Haciendo ahora el análisis de cada centro individualmente, se obtiene explicación de la distribución de los días de la semana del total. Ya que como se muestra en la Gráfica 14 se observa que todos los centros, exceptuando Conde de Salvatierra, los días más cargados son los viernes. Y la explicación de que los lunes y los martes son los días más cargados es porque los centros que más volumen de pedidos tienen aglutanan muchos repartos los lunes y los martes, mientras que los viernes solamente uno de estos centros tiene una gran demanda de pedidos. Por eso en la distribución semanal integrada de todos los centros se deduce que los lunes y los martes son los días más cargados.

![Distribución diaria](attachment:image1)

Gráfica 14. Distribución diaria de los pedidos domiciliarios totales por centros en el caso piloto.

Elaboración propia. (Fuente: Consum)

Destacar que el centro Conde Salvatierra se distribuye linealmente a lo largo de la semana con la disminución de pedidos, como se puede ver en la siguiente gráfica.
Gráfica 15. Distribución diaria de los pedidos domiciliarios del centro Conde de Salvatierra.
Elaboración Propia. (Fuente: Consum)

Y este centro al ser uno de los centros con más volumen de pedidos, como se ha comentado, induce a que haya esa desigualdad entre la distribución semanal del total de establecimientos respecto la particular de cada centro.

DISTRIBUCIÓN POR HORA FISCAL:

En primer lugar, y siguiendo la misma línea explicativa como en el análisis de Cade, como se muestra en la Gráfica 16 se observa que se realizan más pedidos en el turno de mañana que en el de la tarde.

Gráfica 16. Distribución de los pedidos totales en turnos de trabajo en la zona piloto.
Elaboración propia. (Fuente: Consum)
Este fenómeno se produce en todos los centros exactamente igual, y se puede decir que en los turnos de mañana hay alrededor de entre un 40% y 50% más de pedidos a domicilio que por la tarde.

Gráfica 17. Distribución horaria de los pedidos totales en el caso piloto. Elaboración Propia.

(Fuente: Consum)

En cuanto a la distribución por franjas horarias se obtienen los mismos parámetros de compra para todos los centros, obedeciendo así a los mismos los mismos patrones de compra domiciliaria vistos anteriormente.

Gráfica 18. Distribución horaria por centros de los pedidos totales en el caso piloto. Elaboración Propia. (Fuente: Consum)
7.4. SISTEMAS DE INFORMACIÓN GEOGRÁFICA

Un sistema de información geográfica (también conocido con los acrónimos SIG en español o GIS en inglés) es un conjunto de herramientas que integra y relaciona diversos componentes (usuarios, hardware, software, procesos) que permiten la organización, almacenamiento, manipulación, análisis y modelización de grandes cantidades de datos procedentes del mundo real que están vinculados a una referencia espacial, facilitando la incorporación de aspectos sociales-culturales, económicos y ambientales que conducen a la toma de decisiones de una manera más eficaz.

En el sentido más estricto, es cualquier sistema de información capaz de integrar, almacenar, editar, analizar, compartir y mostrar la información geográficamente referenciada. En un sentido más genérico, los SIG son herramientas que permiten a los usuarios crear consultas interactivas, analizar la información espacial, editar datos, mapas y presentar los resultados de todas estas operaciones.

Esta herramienta de información geográfica puede ser muy útil para este tipo de trabajo si utilizamos la tecnología necesaria para ponerla en funcionamiento. Este tema se tratará en el Bloque IV con más profundidad, pero en un primer momento ha servido para georreferenciar las tiendas y saber cuál es su situación. Ya que los datos facilitados por Consum recoge posicionamiento GPS. Con una buena implementación del programa se podría realizar un análisis más amplio como por ejemplo estudiar el tiempo de recorrido de un transportista, estudios para la división en zonas de nuestros centros, número de personas que realizan habitualmente un pedido a domicilio, generación de rutas, etc.

Por lo que pese a no saber mucho manejo de esta herramienta se ha visto que pueden ser muy beneficiosos sus resultados y aportar un valor añadido enorme al servicio.
8. CONCLUSIONES DEL BLOQUE II

Tras lo evaluado a lo largo de este bloque, por un lado se obtienen las siguientes conclusiones sobre proceso del reparto domiciliario:

- Consum externaliza su servicio a domicilio a tres empresas de transporte, una de las cuales Cade Logistic.

- Cade Logistic es una empresa de logística domiciliaria con servicio integral, aunque es la primera vez que realiza repartos domiciliarios de alimentos.

- Como se ha comentado anteriormente quedan muy definidas las labores de Consum y Cade en el proceso de reparto domiciliario.

- Por último, Cade gracias a la innovación en la gestión de la información, con su programa informático, ha obtenido un gran avance en el terreno de la logística domiciliaria y ha generado que el servicio llevado a cabo sea satisfactorio.

Por otro lado tras el análisis, se puede concluir que los datos arrojan algunas conclusiones bastante claras en cuanto a los patrones y estilos de vida de los clientes.

- En primer lugar la organización de los datos es crucial para la consecución de unos resultados significativos.

- En segundo lugar, por norma general el día de la semana que mayores pedidos a domicilio recibe, independientemente de donde se encuentre el centro, es el viernes. En el análisis anual realizado con las tiendas de Cade lo corrobora. Y pese al resultado de la zona piloto, donde el viernes no es el día más cargado, en 3 de los 4 centros sí lo es.
En contraposición el día con menor volumen de pedidos domiciliarios es el sábado, mientras que el resto de días de la semana se comportan muy parecidamente.

De forma general todos los meses suelen tener el mismo nivel de pedidos domiciliarios, es decir, no hay un salto sustancial de compras entre un mes y otro, salvo los meses de verano.

Por lo anteriormente comentado, habrá que estudiar la estacionalidad ya que se ha visto que en los meses de julio y agosto disminuyen las compras debido a los periodos vacacionales.

Del mismo modo es importante tener en cuenta los días previos a festivos debido al aumento de demanda.

Por último, es el turno de mañanas el que registran más servicios a domicilio todos los días de la semana, más exactamente la franja horaria de 10h a 12h; habiendo un pequeño repunte por la tarde que coincide con los horarios de salida laboral.

Todas estas circunstancias deben tenerse en cuenta a la hora de realizar una correcta planificación logística que dé respuesta a los servicios a domicilio pedidos por los clientes. Se deberá prestar especial atención a los picos de demanda para ajustar la previsión y poder así disponer de vehículos suficientes y rutas lo más eficientes posible.
BLOQUE III: RECURSOS, COSTES E IMPLANTACIÓN
0. Introducción y objetivos

¿Qué es la logística? La palabra viene del griego ‘logistikus’ y significa ‘habilidad para el cálculo’. Ha pasado mucho desde entonces, hoy en día cuando hablamos de logística nos referimos al flujo de productos, procesos e información que se crea entre las materias primas y el producto final.

Este proyecto trata de logística urbana, en particular de distribución urbana de mercancías.

Como en todos los proyectos logísticos, el objetivo es la optimización de los recursos del negocio, ya venga dada en una mejora de calidad, de tiempo o de dinero.

En la primera parte del bloque se diseñará un sistema organizativo para la logística del reparto domiciliario de CONSUM para cuatro centros de la ciudad de Valencia, con el fin de poder extrapolarse a cualquier ciudad. En dicha parte se clasificarán los centros, se hablará de horarios, tiempos de carga y eficiencia de los vehículos.

En el siguiente apartado se dimensionará la flota para la muestra representativa de centros. Se estudiará el número mínimo de furgonetas con el cuál se puede dar servicio y cómo colocarlas de la manera más eficiente posible.

En el último apartado se calcularan los costes asociados a la flota dimensionada, y se estudiará la mejor manera de implantarla.
9. ORGANIZACIÓN DE LOS RECURSOS

9.1. INTRODUCCIÓN.

El principal problema de todas las empresas de paquetería o servicio urgente es la previsión de la demanda. Tienes unos datos de partida, por lo que se puede estimar lo que va a suceder, pero exactamente no se saben los pedidos que habrá un día determinado. Esto desembocará en que algunos días los vehículos tendrán cierta holgura, y otros se podrán producir retrasos.

En este apartado se va a diseñar la organización logística de los repartos domiciliarios de CONSUM. Nosotros hemos obtenido únicamente un archivo Excel como datos de partida. En dicho archivo aparecen las ventas de una serie de tiendas de la Comunidad Valenciana desglosadas por número de pedidos por cada franja horaria. Al no tener datos referentes a tiempos y distancias se han tenido que suponer una serie de parámetros que se explicarán más adelante. Al principio se pensó que la falta de datos podría suponer un problema, y a raíz de ella lo que se ha hecho es cambiar el enfoque. Siempre habrá un momento en que alguien tenga que organizar la logística de los repartos y no tenga datos porque no existan. Así que el problema se ha planteado como si fuera la primera vez que se fuera a organizar. Dada la magnitud del número de tiendas, para el presente proyecto sólo se va a estudiar un área determinada, la cual contiene cuatro centros de diferentes tamaños. El objetivo de este apartado, y del bloque en sí, es poder extrapololar el modelo a la ciudad entera.

9.2. FUNCIONAMIENTO ACTUAL E INFORMACIÓN DE PARTIDA

Actualmente CONSUM tiene subcontratado el servicio de reparto. La empresa que lo gestiona se llama CADE, y es la que nos ha facilitado los datos de partida. CONSUM abona a CADE por cada pedido, y CADE a su vez tiene subcontratada la flota con conductores autónomos, a los cuales también les retribuye de la misma manera.

Las condiciones que exige CONSUM son las siguientes:
- Tres pedidos por franja horaria.
- Dos horas de lead time (tiempo desde que se emite el pedido hasta que lo recibe el cliente).
- Cierre de pedidos a las 19’30 (a partir de ésta hora pasan para el día siguiente).
- Repartos con un radio de acción de 3 km en capitales de provincia.
- Sábados por la tarde no se hacen repartos.

Aquí nos encontramos con el primer problema. Hay algunas restricciones que no se cumplen, otras que no se pueden cumplir y otras que presentan incongruencias. Vayamos por partes, si se asignan tres pedidos por franja horaria (la idea de las franjas es buena, se comenta más abajo), estás limitando el servicio a 36 pedidos por día (12*3), y sin embargo, en los datos de ventas facilitados aparecen muchos centros que superan ese umbral.

El segundo problema, es que CONSUM garantiza llevar el pedido a casa en un lead time máximo de dos horas. No es que esto no se pueda realizar, es que los costes serían completamente inviables. La distribución horaria de los repartos a domicilio es constante a lo largo del año, sólo cambia el orden de magnitud. Podemos observarlo en la gráfica siguiente:

Gráfica 19. Distribución horario de pedidos totales. Elaboración Propia. (Fuente: Consum)
Siempre describe el máximo entre las 11 y la 13, por lo que si dimensionamos para un LT de dos horas, para cumplir en la franja horaria máxima necesitaríamos cinco o seis vehículos más, y los costes serían inasumibles. El último problema es que dicen que los sábados por la tarde no se hacen repartos, sin embargo en el fichero sí que aparecen ventas los sábados por la tarde.

El funcionamiento del sistema es el siguiente: conforme se van emitiendo los pedidos, se les va asignando una franja horaria. Las franjas horaria se van llenando, por lo que cuando hay una llena, el envío pasa directamente a la siguiente. Para que un pedido se asigne para la franja inmediatamente siguiente, además de estar vacía, la compra deberá hacerse entre las XX:00 y las XX:45 horas. Si se emite entre XX:45 y XX:00 pasa dos franjas siguientes. Los últimos 15 minutos de cada hora se guardan para cargar la furgoneta.

Uno de los datos de partida más importantes que tenemos (más abajo se explicara), es que sabemos que actualmente, se están repartiendo tres pedidos por franja horaria, y que en más del 95% de los casos se cumplen las horas de entrega.

El último punto, es que actualmente no existe organización en cuanto a horas de carga, horas de salida u orden de reparto. La furgoneta va al centro, carga lo que hay y se va a repartirlo en el orden de emisión de compra. El funcionamiento se asemeja al de un “taxi”. El modelo que se plantea a continuación pretende asemejarse al de un “autobús”, para poder optimizar al máximo los vehículos y su capacidad de carga.

9.3. CLASIFICACIÓN DE LOS CENTROS

El gran dilema que se tuvo al principio del proyecto, es como asignar los recursos. Se asignan furgonetas a centros, o viceversa?

Como al principio no se sabía cómo hacerlo, y ya que no todos los centros tienen el mismo volumen de ventas, el primer paso fue clasificarlos de esta manera. Se estipuló que había tres tipos, los que necesitan 1 única furgoneta para funcionar, los que necesitan más y los que necesitan menos.
Tabla 6. Clasificación de los centros. Elaboración Propia. (Fuente: Consum)

<table>
<thead>
<tr>
<th>Centro</th>
<th>Necesita</th>
<th>Pedidos/día</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>= 1 furg</td>
<td>30-44</td>
</tr>
<tr>
<td>II</td>
<td>< 1 furg</td>
<td>< 30</td>
</tr>
<tr>
<td>III</td>
<td>> 1 furg</td>
<td>> 44</td>
</tr>
</tbody>
</table>

En el siguiente punto se explican los parámetros de la tabla anterior.

9.4. PILOTO/MODELO

9.4.1. INTRODUCCIÓN

En este apartado se describe cómo se organizaría la logística de los repartos de los cuatro centros elegidos. Se asignarán restricciones, horas de carga y tiempos de ciclo, con los cuáles se pueda optimizar el sistema actual. El objetivo es crear un modelo extrapolable, es decir, si se cogieran cuatrocientos centros en lugar de cuatro, funcionara de la misma manera.

9.4.2. TIEMPOS DE CICLO Y PERCEPCIÓN DEL SERVICIO

CONSUM agrupa pedidos por franjas horarias de una hora. Esto tiene ventajas e inconvenientes. Como ventajas, la principal es que deja cierta holgura de cara a la organización interna, se sabe que se es capaz de entregar un número de pedidos por hora, por lo que normalmente no hay que ir contrarreloj. Otra ventaja es la opacidad que presenta de cara a los clientes. Los clientes no saben cómo están de cargadas las franjas, por lo que si algún día hubiera un problema técnico, sólo habría que comunicarles que ciertas franjas ya están asignadas. El principal inconveniente es el lead time. La asignación es progresiva, cuando una franja se llena se asignan a la siguiente, por lo que los retrasos se van acumulando y la percepción del servicio puede variar mucho si el cliente quiere la primera franja horaria disponible. CONSUM no hace bien en vender un lead time de dos horas, porque además de que no lo puede cumplir, no es necesario. La gente habitualmente pide que le lleven a casa los productos más pesados y aparatosos, por ejemplo agua, refrescos o cervezas. Que lleguen en menos de X tiempo no es importante. Es mucho más importante si te comprometes con
alguien a llevarle un pedido en una franja horaria, cumplirla. Ni anticiparse ni retrasarse.

Las franjas que presenta CONSUM son de una hora, así que lo primero que se ha pensado es subirlas a dos. Una franja de dos horas deja mucha más holgura de cara a la optimización de tiempos, organizando la ruta óptima para seis pedidos se puede ganar mucho más tiempo que para tres (ver apartado rutas). Además, obviamente, en una de las dos horas de la franja la furgoneta no carga, por lo que tiene tiempo extra.

La percepción del servicio es la sensación que tiene el cliente de la eficiencia del transporte. Si un cliente hace una compra a las 9:40 y se le asigna la franja de 10:00 a 11:00, siendo su pedido el primer reparto en realizarse, tendrá una percepción mucho mejor que otro cliente que compre a las 9:50, se le asigne la franja de 11:00 a 12:00 y su pedido sea el último en realizarse. En los dos casos se ha cumplido el objetivo de entregar la compra en la franja determinada, pero la sensación que tiene el cliente es diferente.

9.4.3. MODELO LOGÍSTICO

Como dato fundamental para clasificar los centros y organizar el servicio se ha cogido el número de pedidos por día. Y a falta de tiempos medios por pedido se ha establecido la siguiente hipótesis: si sabemos que actualmente se realizan tres pedidos entre las XX:00 y las XX:45 y en el 95% de los casos se realizan con éxito, podemos estimar 15’ por pedido. Si a lo anterior le añadimos que las franjas son de dos horas en lugar de una, y que no tiene por qué cargar en todas, se está ganando un pedido por cada 15’ de carga que no se efectúa. De esta manera se minimizarían los tiempos de carga para maximizar los tiempos de recorrido, y con ello el número de envíos posible.

En primer lugar se va a calcular, partiendo de la hipótesis anterior, cuántos pedidos puede atender una furgoneta si sólo se ocupa de un centro. Los resultados son los siguientes:
Centros tipo I

En estos centros se necesita exclusivamente una furgoneta.

Si el tiempo de reparto es de 9 a 21h, tenemos 720’ de tiempo de trabajo. Se ha comprobado que se pueden realizar los pedidos únicamente con cinco cargas, como se podrá ver en el ejemplo de abajo.

Si se hace la primera carga de 8:45 a 9:00 se tienen 60’ de carga de los 720’ (15’ * 4), por lo que tendremos 660’ de tiempo efectivo.

660’ / 15’ / pedido, nos da 44 pedidos máximos por día, que divididos entre las 12 franjas horarias nos salen 3,7 pedidos por hora (4 por hora menos en las horas de carga que serán 3).

Para que se cumpla el máximo debe darse una condición. El pico diario se da siempre entre las 11 y la 13, por lo que para que se dé el máximo deberán estar cubiertas las horas anteriores al pico. Éstas vienen determinadas por los pedidos del día anterior, las compras que se realicen entre las 19:30 y el cierre se repartirán siempre entre las 9 y las 11. Entonces diremos que deberán repartirse siete pedidos entre 9 y 11 para que se cumpla el máximo.

Los centros tipo II, el máximo número de pedidos que puede hacer una furgoneta cuando carga en dos centros es de 30 pedidos, por lo que ya tenemos una franja de 30 y 44 pedidos por día, en la cual siempre se utilizará una única furgoneta.

Cuando se tienen menos de 30 pedidos por día, el centro puede ser I o II, porque puede ser que el centro no se pueda emparejar, por ejemplo por no tener un centro apropiado colindante. Así que no existe un mínimo establecido para que un centro pertenezca al tipo I.

Las salidas y horas de carga para centros tipo I serán las mostradas en la siguiente tabla:
<table>
<thead>
<tr>
<th></th>
<th>1a salida</th>
<th>2a salida</th>
<th>3a salida</th>
<th>4a salida</th>
<th>5a salida</th>
<th>6a salida</th>
<th>7a salida</th>
</tr>
</thead>
<tbody>
<tr>
<td>mínimo</td>
<td>6:00 si p.d.a. >= 7</td>
<td>7:00 si p.d.a. <= 7</td>
<td>12:00</td>
<td>13:00</td>
<td>15:00</td>
<td>17:15</td>
<td>19:30</td>
</tr>
<tr>
<td>máximo</td>
<td>11:00 - X si p.d.a. < 7, siendo X = p.d.a. * 15' + 15' de carga</td>
<td>11:00 + X si p.d.a. > 7, siendo X = máx p.d.a. (siempre > 8) - 8 + 15' de carga</td>
<td>12:00 d.m.p. del centro entre 9 y 11' + hora de máx de la 2a salida</td>
<td>13:00 d.m.p. del centro entre 3a y 4a salida + 15' + hora de máx de la 3a salida</td>
<td>19:30</td>
<td>19:30</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 7. Horas de salida en centros tipo I Elaboración Propia. (Fuente: Consum)

- p.d.a. son los pedidos del día anterior entre 19:30 y cierre que se acumulan para el día siguiente.
- d.m.a. es el día de más pedidos que ha tenido la tienda en la franja horaria determinada.
- Para el mínimo de la primera salida la furgoneta se cargaría fuera de hora, a las 8:45.

Las furgonetas funcionarán de 8:45 a 21:15, salvo los lunes que empezarán a las 10:45 y los sábados que volverán a las 14:45. Como se ha observado en la tabla anterior, las salidas siempre serán entre cinco y siete.
Centros tipo II:

Estos son los centros que necesitan menos de una furgoneta. Tienen menos de 30 pedidos diarios, y una furgoneta puede servir a más de uno, siempre y cuando la suma de los pedidos de los dos centros sea igual a 30 como máximo. Para que ocurra esto los centros deben ser colindantes. También puede darse el caso que el centro sea tipo II, pero no haya un centro colindante con el que compartir furgoneta.

Utilizando el mismo razonamiento que para los centros tipo I, si la primera carga se realiza antes de las 9:00, y como mínimo se necesitan cuatro cargas por centro, nos quedan 720′ – 15′*8 cargas = a 600′ de tiempo efectivo. La única diferencia, es que no sabemos el tiempo medio por pedido cuando se está atendiendo a dos centros, ya que la zona de influencia es mayor. A falta de datos he supuesto que si cargando una furgoneta es capaz de realizar tres pedidos, sin cargar podrá realizar los mismos tres aun suponiendo una zona de influencia mayor (los centros deben ser colindantes), por lo que tomaremos 20′ de media por pedido. Esto nos deja 30 pedidos por día para una furgoneta que se vaya a ocupar al menos de dos centros.

Con el razonamiento anterior queda claro que la suma de los pedidos diarios ha de ser menor o igual a 30. Cuando un centro se clasifica como tipo II, automáticamente hay que buscarle otro centro tipo II para emparejarlo y tener la máxima eficiencia posible. Para ello simplemente hay que dividir el promedio de pedidos entre 30 y buscar otro centro en el que la suma de ambos sea igual a 1.
Los horarios seguirán las condiciones de la siguiente tabla:

<table>
<thead>
<tr>
<th>Salida</th>
<th>Mín.</th>
<th>Máx.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a salida</td>
<td>9:00 si p.d.a. > 4</td>
<td>11:00 - X si p.d.a. <= 4, siendo X = p.d.a. * 20' +30' de carga</td>
</tr>
<tr>
<td>2a salida</td>
<td>11:00 si p.d.a. <= 4</td>
<td>11:00 + X si p.d.a > 4, siendo X = máx p.d.a. (siempre > 6) -6 + 30' de carga</td>
</tr>
<tr>
<td>3a salida</td>
<td>12:00</td>
<td>d.m.p. de los centros entre 9 y 11 + 30' + hora de máx de la 2a salida</td>
</tr>
<tr>
<td>4a salida</td>
<td>13:00</td>
<td>d.m.p. del centro entre 3a y 4a salida + 30' + hora de máx de la 3a salida</td>
</tr>
<tr>
<td>5a salida</td>
<td>15:00</td>
<td>19:30</td>
</tr>
<tr>
<td>6a salida</td>
<td>17:15</td>
<td>19:30</td>
</tr>
<tr>
<td>7a salida</td>
<td>máx 19:30</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 8. Horas de salida en centros tipo II Elaboración Propia. (Fuente: Consum)

Las salidas son iguales que las de tipo I.

- Centros tipo III:

Aquí aparece el primer problema. CONSUM dice que solo atiende tres pedidos por franja horaria, aun así, hay centros que tienen volúmenes de pedidos mucho mayores que 36. Así que lo que se propone desde aquí es que en cuanto la media de un centro de pedidos por día supere 44 (máximo de centros tipo 1) automáticamente se doblan los pedidos por franja que la tienda puede ofrecer a los clientes, es decir, las franjas de 3 pasarían a ser de 6 y las de 4 a 8. Los centros tipo III son los que tienen mayor magnitud, son los que necesitan más de una furgoneta, pudiendo darse dos casos, los que necesitan un número exacto, es decir 2 o más tipo I, o los que necesitan un tipo I y un tipo II.
Los que necesitan dos furgonetas o más (número exacto), funcionan exactamente como un tipo I.

Los que necesitan una furgoneta entera y menos de una, funcionan como un tipo I y un tipo II. Las horas de salida y de carga son las mismas que para los centros tipo I y tipo II, salvo que cuando dos furgonetas abastecen un centro una entra dos horas tarde (10:45) y la otra sale dos horas antes (19:15).

El criterio con el cuál se dimensiona, viene determinado por una serie de parámetros muy sencillos. De cada centro para cada día de la semana, se calcula la media, la moda, la mediana y el máximo de los pedidos diarios. A continuación se promedian la moda, media y mediana y el resultado se promedia con el máximo.

Como resumen, lo primero que se hace es clasificar el centro. Si es tipo I se le asigna una furgoneta. Si es tipo II, se intenta buscar un centro colindante con el cual compartir servicio. Y si es tipo III es una mezcla de los anteriores. Los horarios de carga son los anteriores. A pesar que por capacidad las horas pasan a poder realizar 4 pedidos en lugar de 3, las franjas son de 2h, por lo que en las franjas pasan a asignarse 7 pedidos.

En el siguiente flujograma podemos ver la organización de los centros:

Figura 38. Flujograma de clasificación de centros. Elaboración Propia. (Fuente: Consum)
Por último, decir que los sábados no se hacen repartos, a las 14:00 dejan de emitirse pedidos aunque sí que se acababan de entregar los acumulados. Por lo que los lunes se empezará a repartir a las 11:00.

9.4.4. RUTAS Y PEDIDOS

Hasta el momento, los vehículos van a cargar a las tiendas, y cuando salen a hacer los repartos utilizan el orden de compra. De esta manera no se está sacando el máximo partido al sistema.

Para cada lote de carga, habría que encontrar la ruta óptima. Para este problema se necesitaría software avanzado y para este proyecto no se dispone de conocimientos ni de recursos para solucionarlo. Sin embargo, sí que se propone una solución sencilla que puede ahorrar mucho tiempo.

Las franjas horarias son como cajas, las cuáles van llenándose de pedidos mientras la gente compra. Cuando una franja se llena o cuando llega la hora determinada la furgoneta parte. A falta de datos exactos de tiempos y demás, se han supuesto unos tiempos medios por reparto. Yo propongo crear un programa, que calcule el orden de los repartos y el orden de carga para cada franja.

Imaginémonos un centro con 8 puntos que representen 8 direcciones de los clientes, en coordenadas absolutas. Sobre un papel, sin mapas de tráfico, callejeros ni nada por el estilo.

![Figura 39. Ruta tipo. Elaboración Propia. (Fuente: Consum)](image-url)
Se propone que la furgoneta salga del centro a un destino (el más cercano), y de él, empiece a ir a los siguientes colindantes (no importa si en el sentido de las agujas del reloj o el inverso). Se medirían las distancias entre destinos colindantes en línea recta, y el programa nos diría que camino coger. Es decir, de alguna manera, los recorridos deben ser circulares alrededor del centro. Si se hiciera con un software más complejo, habría algunos puntos que no coincidirían con el ejemplo por el sentido de las calles, el tráfico, etc... pero en un gran porcentaje de casos acertaríamos.

La generación de rutas debe hacerse para cada lote (2h), y debe ir asignándose en el momento de la compra, para ir acompañado de un orden de carga inverso (no pueden cargarse al fondo de la furgoneta las cajas que hay que descargar primero).

Los pedidos en CONSUM se entregan en cajas de 60x40x40. Como en los datos de partida solo viene el número de compras por hora, no podemos saber el número medio cajas que tiene un pedido. Para aproximarlo, yo mismo he ido a tres tiendas y les he preguntado más o menos cuántas cajas lleva un pedido y me han contestado que alrededor de cuatro. Para estar más seguro, hice una compra de 50€ comprando productos que suele comprar la gente para que le envíen a casa (agua, refrescos, cerveza, latas), en general no perecederos, y ocupó exactamente cuatro cajas, así que para las suposiciones de este proyecto se ha utilizado ese número.

Es importante saber qué volumen de carga tienen los vehículos que vamos a utilizar y cuántas unidades vamos a transportar como máximo. Una furgoneta más grande es más cara, por lo que no nos conviene ni que vaya medio vacía ni que nos falte capacidad.

La furgoneta deberá ser capaz de transportar tantas cajas como pedidos haya acumulados como máximo para cargar.

9.4.5. EFICIENCIA DE LOS VEHÍCULOS

Con la hipótesis actual, ya sabemos cuántos pedidos puede hacer una furgoneta como máximo. Así que lo único que se propone es calcular unos porcentajes entre los pedidos que hacen y los máximos, a los cuales llamaremos rendimiento del vehículo. Cuánto más alto sea el porcentaje más beneficios se obtendrán de cada vehículo. Las furgonetas si sólo se ocupan de un centro son capaces de hacer 44 pedidos, si se ocupan de más de uno, la cifra baja a 30. Por lo que la situación ideal sería que todos
los centros tuvieran una media de 44 pedidos/día o cualquier múltiple de 44. La realidad es completamente diferente y cada centro tiene su volumen de ventas diario.

9.4.6. FUTURA ORGANIZACIÓN

Ya se ha comentado varias veces que por la falta de información se han supuesto varios datos. Pues en este apartado lo que vamos a suponer, es que tenemos una base de datos completa, en la cual aparecen tiempos de carga, de entrega, de compra o el número de cajas de cada envío.

Con todos esos datos podría plantearse la siguiente ecuación:

\[120' = tr + tcg \times j + tdcg \times i \]

Siendo:

- \(tr = \) tiempo de recorrido
- \(tcg = \) tiempo de carga
- \(tdcg = \) tiempo de descarga
- \(j = \) n° de centros
- \(i = \) n° de pedidos

De esta manera se sabría para cada centro exactamente los pedidos que puede atender por cada 2 horas y personalizar las franjas horarias.
10. IMPLANTACIÓN DEL MÉTODO

10.1. INTRODUCCIÓN

En este apartado se va a calcular el número mínimo de furgonetas necesarias para realizar el servicio de reparto en el área de estudio.

Sólo se va a hablar del número mínimo y del vehículo óptimo respecto a la capacidad, ya que también va ligado a los costes, por lo que se hablará en el correspondiente apartado, en este sólo se atiende al criterio técnico.

El criterio de dimensionamiento es el siguiente: se utiliza como dato principal los pedidos totales diarios. A continuación se saca el máximo, mínimo, moda media y mediana. Por último se hace el promedio de la media, moda y mediana, y el resultado se promedia con el máximo.

El análisis se hace para cada centro, para cada periodo (verano y resto del año) y para cada día de la semana. Evidentemente luego habrá muchos días de la semana que se parezcan, pero no en todos los centros es el mismo día el de mayor compra. Los cambios más significativo son los de los meses de julio y agosto con al resto del año y el de los lunes y viernes con el resto de la semana. Cada centro tiene una tabla para cada día de la semana, que refleja los datos anteriores, y en la última fila aparece el dato de dimensionamiento y la clasificación del centro para ese día y ese periodo asociada (un centro puede ser tipo I un lunes y tipo II un sábado).

El siguiente paso es juntar los criterios de dimensionamiento para cada día de la semana y estudiar como coordinar las furgonetas entre sí
10.2. SITUACIÓN

Para el modelo propuesto se ha elegido una muestra representativa de cuatro tiendas de Valencia capital. Las cuatro son colindantes y hay al menos un centro de cada tipo.

En el siguiente mapa se pueden ver los centros:

- Sueca
- Matías Perelló
- Conde Salvatierra
- Obispo Jaime Pérez

Figura 40. Situación de los centros. Elaboración Propia. (Fuente: Consum)
10.3. DIMENSIONAMIENTO

A continuación se van a adjuntar las tablas con las que se ha trabajado para calcular los datos para dimensionar necesarios. En cada una aparece para cada día de la semana (se diferencian verano e invierno) y para cada centro todos los datos necesarios. Después para cada día se razonará cuantas furgonetas deben hacer el servicio. Los problemas logísticos no son exactos como las matemáticas, aunque se haya demostrado en el punto anterior que una furgoneta puede hacer 44 pedidos cuando tiene un único centro asociado, si nos saliera un centro con una estimación de 45 pedidos no se le podrían asociar dos furgonetas de primeras, porque supondría un gasto importante. El procedimiento adecuado sería en principio asociar una furgoneta y probar durante una semana, si no es capaz de realizar el servicio se le asignaría otra de apoyo.

Dicho esto procedemos a dimensionar:

10.3.1. LUNES

<table>
<thead>
<tr>
<th>MATÍAS PERELLÓ LUNES</th>
<th>9 a 11</th>
<th>11 a 12</th>
<th>12 a 13</th>
<th>13 a 14</th>
<th>14 a 15</th>
<th>15 a 16</th>
<th>16 a 17</th>
<th>17 a 18</th>
<th>18 a 19</th>
<th>19 a 20</th>
<th>20 a Cierre</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Máximo</td>
<td>16</td>
<td>11</td>
<td>9</td>
<td>13</td>
<td>8</td>
<td>6</td>
<td>6</td>
<td>8</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>76</td>
</tr>
<tr>
<td>Promedio</td>
<td>10</td>
<td>7</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>56</td>
</tr>
<tr>
<td>Mediana</td>
<td>10</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>54</td>
</tr>
<tr>
<td>Mínimo</td>
<td>6</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>42</td>
</tr>
</tbody>
</table>

VERANO												
Máximo	12	10	13	10	9	6	6	4	9	6	8	51
Promedio	7	6	4	5	3	3	2	2	4	3	4	31
Mediana	8	6	3	5	2	3	2	2	3	3	3	23
Mínimo	4	4	2	2	1	1	1	2	1	1	1	12

| Dimensionamiento N | 4 | 3 | 5 | 4 | 4 | 3 | 3 | 3 | 3 | 3 | 5 | |

A la vista de los datos anteriores, podemos observar que en periodo normal tenemos dos centros tipo III, con una gran estimación de pedidos; uno tipo 1 y otro tipo II. En la siguiente tabla se han juntado la estimación de pedidos de los cuatro centros, obteniendo los siguientes resultados:

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>9 a 11</td>
<td>11 a 12</td>
<td>12 a 13</td>
<td>13 a 14</td>
<td>14 a 15</td>
<td>15 a 16</td>
<td>16 a 17</td>
<td>17 a 18</td>
<td>18 a 19</td>
<td>19 a 20</td>
<td>20 a Cierre</td>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Máximo</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Promedio</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mediana</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mínimo</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VERANO

<table>
<thead>
<tr>
<th>Dimensionamiento N</th>
<th>34</th>
<th>Centro tipo I</th>
<th>Dimensionamiento V</th>
<th>29</th>
<th>Centro tipo II</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>9 a 11</td>
<td>11 a 12</td>
<td>12 a 13</td>
<td>13 a 14</td>
<td>14 a 15</td>
<td>15 a 16</td>
<td>16 a 17</td>
<td>17 a 18</td>
<td>18 a 19</td>
<td>19 a 20</td>
<td>20 a Cierre</td>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Máximo</td>
<td>16</td>
<td>13</td>
<td>12</td>
<td>10</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Promedio</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mediana</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mínimo</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VERANO

<table>
<thead>
<tr>
<th>Dimensionamiento N</th>
<th>40</th>
<th>Centro tipo III</th>
<th>Dimensionamiento V</th>
<th>32</th>
<th>Centro tipo I</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>9 a 11</td>
<td>11 a 12</td>
<td>12 a 13</td>
<td>13 a 14</td>
<td>14 a 15</td>
<td>15 a 16</td>
<td>16 a 17</td>
<td>17 a 18</td>
<td>18 a 19</td>
<td>19 a 20</td>
<td>20 a Cierre</td>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Máximo</td>
<td>17</td>
<td>12</td>
<td>14</td>
<td>8</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>44</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Promedio</td>
<td>6</td>
<td>4</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mediana</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mínimo</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mínimo</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VERANO

| Dimensionamiento N | 60 | Centro tipo III | Dimensionamiento V | 32 | Centro tipo I |
Tabla 13. Valores totales. Lunes. Elaboración Propia. (Fuente: Consum)

<table>
<thead>
<tr>
<th>Clasificación</th>
<th>Matías Perelló</th>
<th>Sueca</th>
<th>Obispo Jaime</th>
<th>Conde Salvatierra</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pedidos</td>
<td>67</td>
<td>34</td>
<td>5</td>
<td>60</td>
<td>166</td>
</tr>
<tr>
<td>Vehículos</td>
<td>2</td>
<td>1</td>
<td>0,2</td>
<td>1,5</td>
<td>5</td>
</tr>
<tr>
<td>Rendimiento</td>
<td>76,14%</td>
<td>77,27%</td>
<td>73,86%</td>
<td>73,86%</td>
<td>75,45%</td>
</tr>
<tr>
<td>Verano</td>
<td>Matías Perelló</td>
<td>Sueca</td>
<td>Obispo Jaime</td>
<td>Conde Salvatierra</td>
<td>Total</td>
</tr>
<tr>
<td>Clasificación</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>107</td>
</tr>
<tr>
<td>Pedidos</td>
<td>42</td>
<td>29</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Vehículos</td>
<td>1</td>
<td>0,9</td>
<td>0,1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Rendimiento</td>
<td>95,45%</td>
<td>75,00%</td>
<td>75,00%</td>
<td>72,73%</td>
<td>81,06%</td>
</tr>
</tbody>
</table>

Periodo normal:

- **Matías Perelló:** Dos furgonetas, una de 10:45 a 19:15 y la otra de 10:45 a 21:15. 19 horas de funcionamiento.
- **Sueca:** Una furgoneta de 10:45 a 21:15. 10,5 horas de funcionamiento.
- **Obispo Jaime Pérez:** Dos furgonetas junto con Conde Salvatierra. Una de 10:45 a 21:15 y la otra de 10:45 a 19:15. 9,5 horas funcionamiento.
- **Conde Salvatierra:** Dos furgonetas junto con Conde Salvatierra. Una de 10:45 a 21:15 y la otra de 10:45 a 19:15. 9,5 horas funcionamiento.

Para verano:

- **Matías Perelló:** Una furgoneta, de 10:45 a 21:15 con 10,5 horas de funcionamiento.
- **Sueca:** Una furgoneta conjunta con Obispo Jaime de 10:45 a 21:15. 5,25 horas de funcionamiento.
- **Obispo Jaime Pérez:** Una furgoneta conjunta con Sueca de 10:45 a 21:15. 5,25 horas de funcionamiento
- **Conde Salvatierra:** Una furgoneta, de 10:45 a 21:15 con 10,5 horas de funcionamiento

Para verano se nota una disminución notable de pedidos en todos los centros. Salvo el de Obispo Jaime necesitan una furgoneta cada uno, pero como la previsión de ventas es muy pequeña sería un gasto muy importante asignar un vehículo extra, así que se haría una prueba adjuntándole el centro de Obispo Jaime al vehículo de la calle Sueca. En Matías Perelló ocurre algo similar, para que se cumpla el máximo de 44 debe estar llena la franja de 9 a 11 y tenemos un promedio de 4. En principio se probaría un par de días, y si no funcionara en alguno de los dos casos se pondría una furgoneta más.
El lunes tenemos los rendimientos más altos del sistema, rondando el 80%.

Como unos centros siempre tendrán más pedidos que otros, la idea para optimizar las furgonetas es que se roten los puestos. Si llamamos F1, F2, F3, F4 y F5 a las 5 furgonetas en el orden de la tabla superior, para el periodo normal quedaría así:

<table>
<thead>
<tr>
<th>Normal</th>
<th>Lunes 1</th>
<th>Lunes 2</th>
<th>Lunes 3</th>
<th>Lunes 4</th>
<th>Lunes 5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F1 - F2</td>
<td>F1 - F3</td>
<td>F1 - F4</td>
<td>F1 - F5</td>
<td>F1 - F6</td>
</tr>
<tr>
<td>Verano</td>
<td>F1 - F2</td>
<td>F3 - F4</td>
<td>F3 - F5</td>
<td>F3 - F6</td>
<td>F3 - F7</td>
</tr>
</tbody>
</table>

(Fuente: Consum)

10.3.2. MARTES

<table>
<thead>
<tr>
<th>Lunes 1</th>
<th>Lunes 2</th>
<th>Lunes 3</th>
<th>Lunes 4</th>
<th>Lunes 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>Verano</td>
<td>Normal</td>
<td>Verano</td>
<td>Normal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Fuente: Consum)

(Fuente: Consum)

Los martes en líneas generales son muy similares a los lunes en cuanto a volumen de ventas. En periodo normal tenemos dos centros tipo tres, uno tipo I y otro tipo II. En verano el único cambio es el de Conde Salvatierra que pasa de tipo I a tipo II.

Periodo normal:

- Matías Perelló: Dos furgonetas, una de 8:45 a 19:15 y la otra de 10:45 a 21:15. 21 horas de funcionamiento.
- Sueca: Una furgoneta de 8:45 a 21:15. 12,5 horas de funcionamiento.
- Obispo Jaime Pérez: Dos furgonetas junto con Conde Salvatierra. Una de 8:45 a 19:15 y la otra de 10:45 a 21:15. 10,5 horas de funcionamiento.
Conde Salvatierra: Dos furgonetas junto con Conde Salvatierra. Una de 10:45 a 21:15 y la otra de 8:45 a 19:15. 10,5 horas de funcionamiento.

Para verano:

Matías Perelló: Una furgoneta, de 8:45 a 21:15 con 12,5 horas de funcionamiento.

Sueca: Una furgoneta conjunta con Obispo Jaime de 8:45 a 21:15. 6,25 horas de funcionamiento.

Obispo Jaime Pérez: Una furgoneta conjunta con Sueca de 8:45 a 21:15. 6,25 horas de funcionamiento.

Conde Salvatierra: Una furgoneta, de 8:45 a 21:15 con 12,5 horas de funcionamiento.

Rendimientos en los dos casos rondando el 70%.

El sistema de rotaciones es el mismo de antes ya que son las mismas furgonetas.

10.3.3. MIÉRCOLES

<table>
<thead>
<tr>
<th>MATÍAS PERELLÓ MIÉRCOLES</th>
<th>9 a 11</th>
<th>11 a 12</th>
<th>12 a 13</th>
<th>13 a 14</th>
<th>14 a 15</th>
<th>15 a 16</th>
<th>16 a 17</th>
<th>17 a 18</th>
<th>18 a 19</th>
<th>19 y 20</th>
<th>20 a Cierre</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Máximo</td>
<td>12</td>
<td>9</td>
<td>12</td>
<td>15</td>
<td>6</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>59</td>
</tr>
<tr>
<td>Promedio</td>
<td>8</td>
<td>5</td>
<td>7</td>
<td>6</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>32</td>
</tr>
<tr>
<td>Mediana</td>
<td>5</td>
<td>7</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>41</td>
</tr>
<tr>
<td>Moda</td>
<td>7</td>
<td>6</td>
<td>7</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>41</td>
</tr>
<tr>
<td>Mínimo</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>22</td>
</tr>
<tr>
<td>VERANO</td>
<td></td>
</tr>
<tr>
<td>Máximo</td>
<td>8</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>7</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>26</td>
</tr>
<tr>
<td>Promedio</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td>Mediana</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>22</td>
</tr>
<tr>
<td>Moda</td>
<td>3</td>
<td>7</td>
<td>7</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>19</td>
</tr>
<tr>
<td>Mínimo</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>14</td>
</tr>
<tr>
<td>Dimensionamiento N</td>
<td>5</td>
<td>Centro opc</td>
<td>III</td>
<td>Dimensionamiento V</td>
<td>54</td>
<td>Centro opc</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Los miércoles cambia el volumen de ventas notablemente, a pesar de que en el periodo normal no cambian las calificaciones, se experimenta una gran disminución. En verano pasan todos a tipo II salvo el de Matías Perelló.

<table>
<thead>
<tr>
<th></th>
<th>9 a 11</th>
<th>11 a 12</th>
<th>12 a 13</th>
<th>13 a 14</th>
<th>14 a 15</th>
<th>15 a 16</th>
<th>16 a 17</th>
<th>17 a 18</th>
<th>18 a 19</th>
<th>19 a 20</th>
<th>20 a Cierre</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curso tipo I</td>
<td></td>
</tr>
<tr>
<td>Mínimo</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>26</td>
<td>101</td>
</tr>
<tr>
<td>Promedio</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>26</td>
<td>71</td>
</tr>
<tr>
<td>Mediana</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>26</td>
<td>58</td>
</tr>
<tr>
<td>Moda</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>26</td>
<td>58</td>
</tr>
<tr>
<td>Mínimo</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>10</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>9 a 11</th>
<th>11 a 12</th>
<th>12 a 13</th>
<th>13 a 14</th>
<th>14 a 15</th>
<th>15 a 16</th>
<th>16 a 17</th>
<th>17 a 18</th>
<th>18 a 19</th>
<th>19 a 20</th>
<th>20 a Cierre</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curso tipo II</td>
<td></td>
</tr>
<tr>
<td>Mínimo</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>32</td>
</tr>
<tr>
<td>Promedio</td>
<td>1</td>
<td>9</td>
<td>37</td>
</tr>
<tr>
<td>Mediana</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>9</td>
<td>37</td>
</tr>
<tr>
<td>Moda</td>
<td>1</td>
<td>9</td>
<td>37</td>
</tr>
<tr>
<td>Mínimo</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>9 a 11</th>
<th>11 a 12</th>
<th>12 a 13</th>
<th>13 a 14</th>
<th>14 a 15</th>
<th>15 a 16</th>
<th>16 a 17</th>
<th>17 a 18</th>
<th>18 a 19</th>
<th>19 a 20</th>
<th>20 a Cierre</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curso tipo III</td>
<td></td>
</tr>
<tr>
<td>Mínimo</td>
<td>3</td>
<td>9</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>12</td>
<td>28</td>
</tr>
<tr>
<td>Promedio</td>
<td>5</td>
<td>7</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>15</td>
<td>28</td>
</tr>
<tr>
<td>Mediana</td>
<td>3</td>
<td>9</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>12</td>
<td>28</td>
</tr>
<tr>
<td>Moda</td>
<td>3</td>
<td>9</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>12</td>
<td>28</td>
</tr>
<tr>
<td>Mínimo</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>
Tabla 24. Valores para dimensionamiento. Lunes. Valores totales. Elaboración Propia. (Fuente:
Consum)

<table>
<thead>
<tr>
<th></th>
<th>Matías Perelló</th>
<th>Sueca</th>
<th>Obispo Jaime</th>
<th>Conde Salvatierra</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clasificación</td>
<td>II</td>
<td>I</td>
<td>II</td>
<td>III</td>
<td>3</td>
</tr>
<tr>
<td>Pedidos</td>
<td>34</td>
<td>22</td>
<td>4</td>
<td>28</td>
<td>88</td>
</tr>
<tr>
<td>Vehículos</td>
<td>1,2</td>
<td>1,0</td>
<td>0,2</td>
<td>1,2</td>
<td>4</td>
</tr>
<tr>
<td>Rendimiento</td>
<td>78,79%</td>
<td>72,73%</td>
<td>78,79%</td>
<td>78,79%</td>
<td>77,27%</td>
</tr>
</tbody>
</table>

Periodo normal:

- Matías Perelló: Dos furgonetas, una propia y otra compartida. La propia de 10:45 a 21:15 y la compartida de 8:45 a 21:15. 14,5 horas de funcionamiento.
- Sueca: Una furgoneta de 8:45 a 21:15. 12,5 horas de funcionamiento.
- Obispo Jaime Pérez: Una furgoneta conjunta Salvatierra. De 8:45 a 21:15. 4,5 horas de funcionamiento.
- Conde Salvatierra: Dos furgonetas conjuntas. La propia de 10:45 a 21:15 y la otra de 8:45 a 21:15. 14,5 horas de funcionamiento.

Para verano:

- Matías Perelló: Una furgoneta, de 8:45 a 21:15 con 12,5 horas de funcionamiento.
- Sueca: Una furgoneta conjunta con Obispo Jaime de 8:45 a 21:15. 6,25 horas de funcionamiento.
- Obispo Jaime Pérez: Una furgoneta conjunta con Sueca de 8:45 a 21:15. 6,25 horas de funcionamiento
- Conde Salvatierra: Una furgoneta, de 8:45 a 21:15 con 12,5 horas de funcionamiento

Rendimientos en los dos casos rondando el 70%.

El sistema de rotaciones es el mismo de antes ya que son las mismas furgonetas.

En periodo normal Matías Perelló y Conde Salvatierra sobrepasan en unos pocos pedidos el máximo diario, y Obispo Jaime sigue teniendo un volumen de ventas muy

pequeño, por lo que se asignarán 1 furgoneta a cada centro (Matías, Sueca y Conde), y otra que se ocupará de los picos de Matías y Conde y de Obispo Jaime. Rendimientos que rondan el 70%.

Al haber 4 furgonetas, el horario de rotaciones cambiaría:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>F1 - F2 - F3 - F4</td>
<td>F3 - F1 - F2 - F5</td>
<td>F1 - F4 - F5 - F1</td>
<td>F3 - F4 - F1 - F2</td>
<td>F2 - F3 - F4 - F5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verano</td>
<td>F1 - F2 - F3</td>
<td>F3 - F1 - F2</td>
<td>F4 - F5 - F1</td>
<td>F2 - F3 - F4</td>
<td>F2 - F3 - F4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10.3.4. JUEVES

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensionamiento N</td>
<td>54</td>
<td>Centro tipo III</td>
<td>Dimensionamiento V</td>
<td>54</td>
<td>Centro tipo I</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensionamiento N</td>
<td>51</td>
<td>Centro tipo I</td>
<td>Dimensionamiento V</td>
<td>59</td>
<td>Centro tipo II</td>
</tr>
</tbody>
</table>

Los jueves son prácticamente iguales a los miércoles, tanto en volumen de pedidos como en organización.

Periodo normal:

Matías Perelló: Dos furgonetas, una propia y otra compartida. La propia de 10:45 a 21:15 y la compartida de 8:45 a 21:15. 14,5 horas de funcionamiento.
Sueca: Una furgoneta de 8:45 a 21:15. 12,5 horas de funcionamiento.

Obispo Jaime Pérez: Una furgoneta conjunta Salvatierra. De 8:45 a 21:15. 4,5 horas de funcionamiento.

Conde Salvatierra: Dos furgonetas conjuntas. La propia de 10:45 a 21:15 y la otra de 8:45 a 21:15. 14,5 horas de funcionamiento.

Para verano:

- Matías Perelló: Una furgoneta, de 8:45 a 21:15 con 12,5 horas de funcionamiento.
- Sueca: Una furgoneta conjunta con Obispo Jaime de 8:45 a 21:15. 6,25 horas de funcionamiento.
- Obispo Jaime Pérez: Una furgoneta conjunta con Sueca de 8:45 a 21:15. 6,25 horas de funcionamiento.
- Conde Salvatierra: Una furgoneta, de 8:45 a 21:15 con 12,5 horas de funcionamiento.

10.3.5. VIERNES

<table>
<thead>
<tr>
<th>9 a 11</th>
<th>11 a 12</th>
<th>12 a 13</th>
<th>13 a 14</th>
<th>14 a 15</th>
<th>15 a 16</th>
<th>16 a 17</th>
<th>17 a 18</th>
<th>18 a 19</th>
<th>19 a 20</th>
<th>20 a Cierre</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Máximo</td>
<td>6</td>
<td>12</td>
<td>12</td>
<td>13</td>
<td>9</td>
<td>8</td>
<td>4</td>
<td>8</td>
<td>7</td>
<td>11</td>
<td>71</td>
</tr>
<tr>
<td>Promedio</td>
<td>10</td>
<td>7</td>
<td>6</td>
<td>8</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>60</td>
</tr>
<tr>
<td>Mediana</td>
<td>10</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>59</td>
</tr>
<tr>
<td>Moda</td>
<td>10</td>
<td>6</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>54</td>
</tr>
<tr>
<td>Máximo</td>
<td>6</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>46</td>
</tr>
</tbody>
</table>

Los viernes vuelven a cambiar sustancialmente el volumen de pedidos, asemejándose a los lunes y martes. Matías Perelló es tipo III todo el año, Sueca I y II (normal y verano respectivamente), Obispo Jaime tipo II en los dos casos y Conde Salvatierra III y II.

Periodo normal:

- Matías Perelló: Dos furgonetas, una de 8:45 a 19:15 y la otra de 10:45 a 21:15. 21 horas de funcionamiento.
- Sueca: Una furgoneta de 8:45 a 21:15. 12,5 horas de funcionamiento.
- Obispo Jaime Pérez: Dos furgonetas junto con Conde Salvatierra. Una de 8:45 a 19:15 y la otra de 10:45 a 21:15. 10,5 horas de funcionamiento.
- Conde Salvatierra: Dos furgonetas junto con Obispo Jaime. Una de 10:45 a 21:15 y la otra de 8:45 a 19:15. 10,5 horas de funcionamiento.

Para verano:

- Matías Perelló: Dos furgonetas, una propia de 10:45 a 21:45 y otra compartida de 8:45 a 21:15 con 16,75 horas de funcionamiento.
- Sueca: Una furgoneta de 8:45 a 21:15. 12,5 horas de funcionamiento.
- Obispo Jaime Pérez: Una furgoneta de 8:45 a 21:15. 6,25 horas de funcionamiento.
- Conde Salvatierra: Una furgoneta, de 8:45 a 21:15 con 12,5 horas de funcionamiento.

Los rendimientos oscilan entre 63 y 73%. En verano sería interesante buscar centros colindantes para aumentar rendimientos.
Las rotaciones serían las siguientes:

<table>
<thead>
<tr>
<th>Normal</th>
<th>Lunes 1</th>
<th>Lunes 2</th>
<th>Lunes 3</th>
<th>Lunes 4</th>
<th>Lunes 5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F1 - F2 - F3 - F4</td>
<td>F2 - F3 - F4</td>
<td>F3 - F4</td>
<td>F4 - F5</td>
<td>F1 - F2 - F3 - F4</td>
</tr>
</tbody>
</table>

| Verano | F1 - F2 - F3 | F5 - F1 - F2 - F3 | F4 - F5 | F1 - F4 - F5 | F1 - F2 - F3 - F4 |

<table>
<thead>
<tr>
<th></th>
<th>10.3.6. SÁBADOS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Fuente: Consum)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MATÍAS PERELLO Y SUECA</th>
<th>SÁBADOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Fuente: Consum)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OBITO SÁBADOS</th>
<th>CONDE SÁBADOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Fuente: Consum)</td>
<td></td>
</tr>
</tbody>
</table>

Tanto en invierno como en verano, todos los centros son tipo II. A pesar de que sólo se hacen entregas por la mañana el volumen de ventas es mucho menor que el resto de la semana.
Periodo normal:

- Matías Perelló: Una furgoneta conjunta, de 8:45 a 14:45. 3 horas de funcionamiento.
- Sueca: Una furgoneta conjunta, de 8:45 a 14:45. 3 horas de funcionamiento.
- Obispo Jaime Pérez: Una furgoneta conjunta, de 8:45 a 14:45. 3 horas de funcionamiento.
- Conde Salvatierra: Una furgoneta conjunta, de 8:45 a 14:45. 3 horas de funcionamiento.

Para verano:

- Matías Perelló: Una furgoneta conjunta, de 8:45 a 14:45. 3 horas de funcionamiento.
- Sueca: Una furgoneta conjunta, de 8:45 a 14:45. 3 horas de funcionamiento.
- Obispo Jaime Pérez: Una furgoneta conjunta, de 8:45 a 14:45. 3 horas de funcionamiento.
- Conde Salvatierra: Una furgoneta conjunta, de 8:45 a 14:45. 3 horas de funcionamiento.

Las rotaciones serían las siguientes:

Periodo normal:

- **Matías Perelló**: Una furgoneta conjunta, de 8:45 a 14:45. 3 horas de funcionamiento.
- **Sueca**: Una furgoneta conjunta, de 8:45 a 14:45. 3 horas de funcionamiento.
- **Obispo Jaime Pérez**: Una furgoneta conjunta, de 8:45 a 14:45. 3 horas de funcionamiento.
- **Conde Salvatierra**: Una furgoneta conjunta, de 8:45 a 14:45. 3 horas de funcionamiento.

Para verano:

- **Matías Perelló**: Una furgoneta conjunta, de 8:45 a 14:45. 3 horas de funcionamiento.
- **Sueca**: Una furgoneta conjunta, de 8:45 a 14:45. 3 horas de funcionamiento.
- **Obispo Jaime Pérez**: Una furgoneta conjunta, de 8:45 a 14:45. 3 horas de funcionamiento.
- **Conde Salvatierra**: Una furgoneta conjunta, de 8:45 a 14:45. 3 horas de funcionamiento.

Las rotaciones serían las siguientes:

Tabla 41. Horario de rotaciones. Sábado. Elaboración Propia. (Fuente: Consum)
A continuación pueden observarse los resultados finales:

<table>
<thead>
<tr>
<th>Día</th>
<th>Periodo</th>
<th>Pedidos</th>
<th>Matías</th>
<th>Sueca</th>
<th>Obispo</th>
<th>Conde</th>
<th>Rendimiento</th>
<th>Totales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lunes</td>
<td>Normal</td>
<td>166</td>
<td>2</td>
<td>1</td>
<td>0,5</td>
<td>1,5</td>
<td>75,45%</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Verano</td>
<td>107</td>
<td>1</td>
<td>0,5</td>
<td>0,5</td>
<td>1</td>
<td>81,06%</td>
<td>3</td>
</tr>
<tr>
<td>Martes</td>
<td>Normal</td>
<td>166</td>
<td>2</td>
<td>1</td>
<td>0,5</td>
<td>1,5</td>
<td>75,45%</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Verano</td>
<td>88</td>
<td>1</td>
<td>0,5</td>
<td>0,5</td>
<td>1</td>
<td>66,67%</td>
<td>3</td>
</tr>
<tr>
<td>Miércoles</td>
<td>Normal</td>
<td>136</td>
<td>1,4</td>
<td>1</td>
<td>0,3</td>
<td>1,3</td>
<td>77,27%</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Verano</td>
<td>88</td>
<td>1</td>
<td>0,5</td>
<td>0,5</td>
<td>1</td>
<td>66,67%</td>
<td>3</td>
</tr>
<tr>
<td>Jueves</td>
<td>Normal</td>
<td>136</td>
<td>1,4</td>
<td>1</td>
<td>0,3</td>
<td>1,3</td>
<td>77,27%</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Verano</td>
<td>86</td>
<td>1</td>
<td>0,5</td>
<td>0,5</td>
<td>1</td>
<td>65,15%</td>
<td>3</td>
</tr>
<tr>
<td>Viernes</td>
<td>Normal</td>
<td>161</td>
<td>2</td>
<td>1</td>
<td>0,5</td>
<td>1,5</td>
<td>73,18%</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Verano</td>
<td>112</td>
<td>1,5</td>
<td>1</td>
<td>0,5</td>
<td>1</td>
<td>63,64%</td>
<td>4</td>
</tr>
<tr>
<td>Sábado</td>
<td>Normal</td>
<td>48</td>
<td>0,5</td>
<td>0,5</td>
<td>0,5</td>
<td>0,5</td>
<td>54,55%</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Verano</td>
<td>27</td>
<td>0,5</td>
<td>0,5</td>
<td>0,5</td>
<td>0,5</td>
<td>30,68%</td>
<td>2</td>
</tr>
</tbody>
</table>

Tabla 42. Asignación de furgonetas. Elaboración Propia. (Fuente: Consum)

Se necesitará disponer cinco vehículos para después rotarlos.

10.4. CAPACIDAD ÓPTIMA DE CARGA

Actualmente, se están haciendo los repartos con una Ford Transit. Es una furgoneta muy grande, la cual puede cargar hasta 60 cajas. Hemos hablado en el punto 2 que íbamos a suponer cuatro cajas por pedido, por lo que en este punto intentaremos estudiar si el vehículo resulta óptimo en cuanto a capacidad.

<table>
<thead>
<tr>
<th>Normal</th>
<th>Matías Perelló</th>
<th>Sueca</th>
<th>Obispo Jaime</th>
<th>Conde Salvatierra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clasificación</td>
<td>III</td>
<td>I</td>
<td>II</td>
<td>III</td>
</tr>
<tr>
<td>Pedidos estimados</td>
<td>67</td>
<td>34</td>
<td>5</td>
<td>60</td>
</tr>
<tr>
<td>Pedidos máximos / franja</td>
<td>10</td>
<td>11</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>Nº Cajas</td>
<td>40</td>
<td>44</td>
<td>24</td>
<td>36</td>
</tr>
<tr>
<td>Vehículos</td>
<td>2</td>
<td>1</td>
<td>0,2</td>
<td>1,5</td>
</tr>
</tbody>
</table>

Tabla 43. Capacidad de carga. Elaboración Propia. (Fuente: Consum)

Si en lugar de cuatro cajas por pedido, suponemos cinco, por dejar cierta holgura, vemos que el número de cajas empieza a aproximarse a 60.

No se puede dar la posibilidad de paralizar algún envío por que no quepa la carga en la furgoneta, así que más vale que sobre algo a que nos falte espacio. Podemos decir que el vehículo es adecuado técnicamente.
11. COSTES

11.1. INTRODUCCIÓN

En éste último bloque se van a calcular los costes logísticos de transporte asociados al modelo piloto.

Se pretende calcular cuánto cuesta un pedido desde las dos opciones posibles; flota subcontratada (modelo actual) y flota propia, para después compararlos entre sí y estimar los ahorros de la mejor opción para un año natural.

Para el cálculo de costes se ha utilizado el programa ACOTRAM. El programa devuelve los resultados en €/km o en €/h, por lo que como no se disponen de datos para saber exactamente la distancia que recorren las furgonetas se ha optado por calcularlo en €/h, que en éste caso sí que sabemos las horas exactas que va a estar funcionando. Además debido a las diferentes velocidades, ya que todos los trayectos son urbanos, no se considera útil el coste enfocado en €/km. A pesar de esto, en ACOTRAM hay que introducir un número mínimo de km anuales, y se ha optado por estimar un km/pedido como explicará mi compañero Víctor Almenar en el siguiente apartado (en la práctica será menor). En la página del Ministerio de Fomento, hay una base de datos de observatorios de costes para cargar en ACOTRAM, con tipos de interés actualizados, precios de combustible, de neumáticos, etc. Se ha utilizado la última versión, de abril de éste mismo año. Así que el procedimiento será calcular los pedidos/hora que tenemos y a continuación calcular los €/h y comparar con €/pedido.

Tenemos datos de ventas de CONSUM desde febrero hasta agosto, entonces para estimar el volumen anual se ha utilizado la media mensual (teniendo en cuenta la estacionalidad) y se ha extrapolado a un año natural.
En el apartado de dimensionamiento se ha hablado de que las furgonetas deben rotar, así al final del año las cinco habrán realizado los mismos pedidos o km. Estas son las horas que las furgonetas están en funcionamiento para cada centro y totales:

Tabla 44. Pedidos por centro y año natural. Elaboración Propia. (Fuente: Consum)

Una vez sabiendo las horas semanales, el número de pedidos y el número de furgonetas, pasamos a calcular los costes.

Por último decir que CONSUM paga por cada pedido 6,75 €.
11.2. FLOTA PROPIA

En este apartado se calcula cuánto costarían los pedidos si compramos nosotros las 5 furgonetas. Partiendo de la siguiente tabla:

<table>
<thead>
<tr>
<th></th>
<th>Horas</th>
<th>Pedidos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semana N</td>
<td>261,5</td>
<td>679</td>
</tr>
<tr>
<td>Semana V</td>
<td>204</td>
<td>453</td>
</tr>
<tr>
<td>Total Relat</td>
<td>13080,5</td>
<td>30779</td>
</tr>
<tr>
<td>Total Abs</td>
<td>12566</td>
<td>29453</td>
</tr>
<tr>
<td>/Vehículo</td>
<td>2513</td>
<td>5891</td>
</tr>
</tbody>
</table>

Tabla 46. Horas y pedidos por vehículo en año natural. Elaboración Propia. (Fuente: Consum)

Como las furgonetas rotan, al cabo de un año se compensan las que más horas han funcionado y las que más pedidos han hecho con las que menos. Las semanas N son las del periodo normal y las V las de verano, el total relativo es N*43 + V*9, y el absoluto ajustando los 14 días de vacaciones anuales. En la última fila se han dividido las horas y los pedidos entre las cinco furgonetas, a continuación calcularemos los costes para una furgoneta.
A continuación comentaremos cada apartado del ACOTRAM y los resultados obtenidos:

![Características técnicas y de explotación. ACOTRAM. Elaboración Propia.](image)

En cuanto a los km anuales se han supuesto 6.000, unos pocos más que el número de pedidos anuales (5891) por km. Como en cada lote la furgoneta parte completamente cargada y va descargando progresivamente, se ha supuesto 50% de tiempo en carga, aunque este dato no es relevante.
Aquí tenemos el precio de la furgoneta. Para saber el precio y el descuento se ha llamado a la Ford y nos han dicho que comprando cinco se hablaría de un descuento aproximado del 20%. El resto de datos son obtenidos de la base de datos del programa.
En este apartado se ha calculado el coste total anual en salarios que tiene la furgoneta. Para ello se ha sacado del convenio de 2015 de la C.V. el salario bruto del conductor:

\[1.129,84 \times 15 \text{ meses} = 16.947,6 \text{€/año para 1.761h. Como se necesita que la furgoneta este activa 2.513 h se calcula para estas últimas:}\]

\[
(16.947,6 \times 2.513) / 1.761 = 24.184.7 \text{€, y sumándole el 30\% de la seguridad social 24.184,7} \times 1.3 = 31.440,1 \text{€/año para cada furgoneta en salarios.}\]
Los seguros, costes fiscales, mantenimiento, neumáticos y costes variables (combustible) se han extraído de la base de datos de ACOTRAM.

Figura 45. Seguros. ACOTRAM. Elaboración Propia.

Figura 46. Costes fiscales. ACOTRAM. Elaboración Propia.
Figura 47. Carburantes. ACOTRAM. Elaboración Propia.

Aquí tenemos el coste final desglosado en porcentajes. Lo primero que salta a la vista es que casi un 87% se debe a los salarios.

Podemos ver que una hora de nuestra furgoneta cuesta 14,448€/h.
Un apunte importante, es que para el cálculo se han dejado a cero los costes indirectos. Para un negocio de éste tipo, es necesario disponer un jefe de tráfico que gestione los repartos, lo que pasa es que si introducimos un salario de 20.000€ o 25.000€ para gestionar sólo cuatro centros, dispararía el coste por hora.

Si sabemos que una furgoneta realiza 2,34 pedidos/hora (5.891ped/2.513h) y por cada pedido se pagan 6’75€, sabemos que se paga la hora a 2,34*6.75=15,79€/hora.

 Esto significa que habría unos beneficios de 1,342€ / hora, que a lo largo del año se convertirían en 1,342 * 2.513 = 3.372,65€ por año y furgoneta, y en total, con las cinco furgonetas repercutiría en unos beneficios de 16.862,25€ anuales.

Los costes van ligados al rendimiento de la furgoneta. Si los pedidos máximos que puede realizar son 44, en 12h tendremos 3,7ped/hora como máximo. En nuestro caso tenemos un rendimiento del 63%(2,34/3,7), el cual solo nos da unos beneficios del 9,3% respecto los costes anuales. Para aumentar rendimientos es imprescindible, además de todas las mejoras técnicas basadas en la recopilación de datos, es extrapolar el modelo a más centros, con el fin de casar las demandas estimadas para que los vehículos estén completamente ocupados durante toda la jornada.

Analizando el sistema, la primera conclusión es que el problema reside en el centro de Obispo Jaime, el cual tiene un volumen muy pequeño de repartos y afecta negativamente al resto del sistema porque quita tiempo a las otras furgonetas. Esto también tiene una parte positiva, y es que a pesar de que tenemos un centro que genera muchas pérdidas y a pesar de que los tiempos de realización de pedidos se han estimado a groso modo, los gastos están prácticamente igual a los ingresos, incluso tenemos un pequeño margen de beneficios, de tal manera que introduciendo más centros con volúmenes notables de ventas (sin ser necesariamente como el de Matías Perelló) sólo se podría mejorar la situación.

11.3. FLOTA SUBCONTRATADA

En este apartado los cálculos son mucho más sencillos. CONSUM subcontrata la flota con autónomos, y les paga a 5 € el pedido, por lo que los beneficios son de 1,75€/pedido. Existen dos condiciones, la primera es que es necesario aplicar rotaciones para compensar volúmenes y gastos y la segunda condición es que existe un compromiso con los autónomos de garantizarles aproximadamente unos
20 pedidos/día. No sabemos exactamente las cláusulas del acuerdo, por lo que no sabemos si es un número aproximado o exacto. En cualquier caso los beneficios esperados serían 1,75€/pedido * 5891 pedidos/año = 10.309,25€/año de beneficios por furgoneta. Si hubiera que indemnizar a los autónomos habría que restar 1 pedido/día por los 298 días laborables a 5€ cada uno, siendo: 298*5=1.490€ y restándoselos a los beneficios quedarían 8.819,25€ anuales por cada furgoneta, quedando los beneficios del sistema entero de 8.819,25*5=44.096,25€.

De esta manera, además de que se obtienen casi tres veces más beneficios que con flota propia, la organización resulta mucho más sencilla. Lo único a tener en cuenta es que se cumpla los 20 pedidos diarios.

Una sugerencia, sería proponer a los autónomos que se les indemnice exactamente igual, pero los 20 pedidos diarios son sólo de lunes a viernes.

11.4. COMPARATIVA Y CONCLUSIONES

Para el caso actual si comparamos las dos soluciones propuestas, obtenemos casi tres veces más beneficios que con flota propia. Además resulta mucho más sencilla la organización, ya que no se necesitaría inversión inicial, contratación de seguros, etc. Otro punto a favor, es que como los autónomos cobran por pedido, resultarían incentivados, ya que a más pedidos, más dinero. Lo único a tener en cuenta es que se cumpla el compromiso de los 20 pedidos diarios.

A pesar de que en este caso la opción de flota subcontratada resulta favorable, se ha estudiado la posibilidad de cómo sería tendiendo un rendimiento más alto.

Nosotros, tengamos flota propia o no, siempre nos van a pagar por pedido a 6,75€. por lo tanto vamos a calcular el beneficio máximo de una furgoneta anualmente. El número máximo de pedidos por día es de 44, contando que los sábados solo se reparte hasta las 14, tenemos 239 pedidos/semana (44*5+3,7*5). Y el número máximo de horas semanales de 66,5h (lunes 10,5h; martes a viernes 12,5h y sábado 6h). Anualmente salen 3.325h (66,5*50) y 11.950 pedidos (239*50).

Según ACOTRAM, introduciendo los mismos parámetros que para el caso anterior, pero modificando número de horas, km y salario del conductor, obtenemos un coste por hora de:
Los costes son parecidos porque conforme aumenta el número de horas de funcionamiento de la furgoneta, aumenta las horas de salario del conductor. Así que podemos suponer perfectamente unos costes de 14,2€/hora. Con el volumen de pedidos anterior, 3,7 pedidos por hora, facturaremos 24,975€/h, restándole los costes nos quedan 10,78€/hora de beneficio. Para comparar unificamos magnitudes y nos quedan 2,96€/pedido de beneficios netos. Como podemos observar, en este caso se ganaría mucho más dinero con una frota propia, por lo que se ha diseñado un umbral asociado a los rendimientos, para escoger que método utilizar en función del rendimiento estimado de los vehículos.

Igualando costes a cero:

\[14,2€/h = 6,75€/pedido \times i \] pedidos/hora; despejando, \(i = 2,1 \) pedidos/hora.

Rendimiento de \(2,1/3,7 = 57\% \)

Suponiendo beneficios de 1,75€/pedido:

\[14,2€/h = 5€/pedido \times i \] pedidos/hora; despejando, \(i = 2,84 \) pedidos/hora.

Rendimiento de \(2,84/3,7 = 77\% \)
Obtenemos los siguientes resultados:

<table>
<thead>
<tr>
<th></th>
<th>Beneficios = 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>si $X < 2.1$</td>
<td>Inviable</td>
</tr>
<tr>
<td>si $y < 56%$</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>$0 < \text{Beneficios} < 1.5 \text{/pedido}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>si $2.1 \leq X \leq 2.84$</td>
<td>Flota subcontratada</td>
</tr>
<tr>
<td>si $56% \leq X \leq 77%$</td>
<td>Flota propia</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>(\text{Beneficios} > 1.5 \text{/pedido})</th>
</tr>
</thead>
<tbody>
<tr>
<td>si $X > 2.84$</td>
<td>Flota propia</td>
</tr>
<tr>
<td>si $y > 77%$</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 47. Rangos de rendimientos. Elaboración Propia.

$X=$pedidos/hora e $y = X/3,7$

Si tenemos un rendimiento menor de un 56% (2.1pedid/hora o 25,2pedid/día), el centro no resulta rentable. Con un 56% los costes se igualan a los ingresos, y empieza una franja, en la cual los beneficios son menores a 1,5€/pedido, que llega hasta 77%(2,84pedid/hora o 34pedid/día) por lo tanto la opción más rentable es subcontratar la flota. A partir del 77% lo más barato es tener flota propia.

Esto ocurre porque con el rendimiento del 56% se amortizan los costes fijos, por lo tanto los beneficios crecen a un ritmo mucho mayor.
12. CONCLUSIÓN DEL BLOQUE III

Como conclusión a este bloque, en primer lugar he de decir que es fundamental renegociar/aclarar las condiciones que ofrece CONSUM en su reparto de mercancías. Puede resultar perjudicial para el negocio prometer un lead time que no se puede cumplir. En segundo lugar es imprescindible la toma de datos para mejorar el modelo sugerido. Por ejemplo, se puede dar el caso de que un centro tenga un tiempo medio por pedido de 12’ en lugar de 15’, por lo que podrían hacerse 5 pedidos en lugar de 4 en una hora. Y no solamente en cuanto a tiempos de pedido, también para número de cajas por pedido, tiempos de carga o dirección de los clientes. Con una buena base de datos sería interesante saber las coordenadas de las direcciones de los envíos para ver las zonas de influencia reales de cada centro. También puede ser interesante hacer una base de datos con los datos de los clientes, para ver cuáles de ellos repiten y con qué frecuencia.

Otra conclusión que se ha sacado es que sería de gran utilidad programar el método diseñado en una aplicación informática, la cual llevara asociada una base de datos que lo retroalimentara.

En el apartado de dimensionamiento, nos hemos dado cuenta de que para optimizar los rendimientos de los vehículos es necesario que el área de estudio sea mayor, para poder cuadrar mejor los centros tipo II.

Respecto al apartado de los costes, decir que subcontratar la flota resulta más cómodo, pero con un buen estudio y unos rendimientos adecuados, se le pueden sacar beneficios mayores.
BLOQUE IV: CAPACIDADES DE MEJORA MEDIANTE LA APLICACIÓN DE LAS NUEVAS TECNOLOGÍAS
13. CAPACIDADES DE MEJORA MEDIANTE LAS NUEVAS TECNOLOGIAS

13.1. INTRODUCCIÓN

Hoy en día ya no podemos entender el mundo sin conexión a Internet, con la aparición de este gran invento se nos ofrecieron posibilidades que hasta el momento eran impensables, no solo cambió la forma de comunicarnos, sino también la forma en la que aprendemos, nos informamos y nos relacionamos.

La información es un elemento principal para el desarrollo de las civilizaciones que ayuda a modelar a los individuos, entregándoles las herramientas para crear, innovar y compartir sus experiencias. Con Internet, se ha desarrollado un ideal que hace tan sólo unas décadas hubiésemos pensado que era imposible: la democratización de la información.

Internet no solo ha supuesto cambio a nivel personal, también ha supuesto un cambio sustancial para las empresas, siendo una herramienta de gran relevancia a nivel profesional. Según las estadísticas 8 de cada 10 consumidores realizan una búsqueda en Internet con el fin de informarse antes de realizar la compra de un producto, esto quiere decir que si una empresa no está conectada a Internet se encuentra en desventaja respecto a las que sí lo están, puesto que el consumidor no podrá encontrar información sobre sus productos.

Para cualquier empresa que se precie en la actualidad, estar conectado a la red no solo es importante para que los consumidores puedan conocer sus productos o servicios, sino porque Internet y las nuevas tecnologías nos brindan la oportunidad de utilizar toda esa información en nuestro beneficio.

Las nuevas tecnologías también han influenciado nuestros hábitos y costumbres, nos han ofrecido una serie de comodidades a las que nos hemos adaptado rápidamente y
que nos resultan de gran utilidad. Hoy en día nadie sale de casa sin su teléfono móvil con el que además de realizar llamadas podemos consultar información en la red, la ruta para llegar a nuestro destino vacacional o realizar compras por la red. Todas estas comodidades se intentan integrar en los servicios que las empresas ofrecen a sus clientes.

13.2. OBJETO DEL BLOQUE

El objeto de este bloque está ligado a la innovación, a la intención de mejorar los procesos que suceden en una empresa mediante la utilización de las nuevas tecnología que juegan un papel cada vez más importante en el desarrollo de las actividades cotidianas. Se analizan las capacidades de mejora mediante la utilización de sistemas de información geográfica, la organización de macrodatos y la utilización de nuevos combustibles.

13.4. METODOLOGÍA

La realización del análisis de capacidades se divide en 3 partes. La más amplia es la optimización de rutas mediante sistema de información geográfica en la que primero se introduce y explica que es un SIG y cómo funciona puesto que es un sistema novedoso en este campo, después se realiza una análisis de ruta con la ayuda de dos aplicaciones y se comentan los resultados. La segunda parte se estudia la importancia de organizar los datos y de las técnicas para analizarlos. La tercera parte se estudia la implantación de vehículos que circulen utilizando energías alternativas teniendo en cuenta las ayudas que el estado da a esta clase de vehículos.
14. SISTEMAS DE INFORMACIÓN GEOGRÁFICA

14.1. INTRODUCCIÓN

Tradicionalmente el papel ha sido el soporte sobre el que se han representado todos los datos sobre las regiones de la Tierra debido a que era el mejor medio existente sobre el que poder representar gráficos. Este método también se utilizaba para realizar el estudio de un ámbito concreto en una zona determinada. Aunque este sistema era muy adecuado para determinados usos debido a su facilidad para su transporte y manipulación, la cartografía presentaba ciertos inconvenientes como:

- Los datos originales se simplifican por motivos de espacio en el papel.
- Las áreas grandes no podían representarse en una sola hoja, se realizaban en distintos documentos que no siempre eran representadas por el mismo autor y no presentaban la misma información en sus bordes, puesto que no existía un modelización concreta.
- Resulta complejo e inexacto combinar información de diferentes mapas, especialmente si están a diferente escala.
- Se trata de documentos estáticos, difícilmente actualizable.
- Disparidad de criterios entre hojas y entre ediciones.

A partir de mediados del siglo XX se producen un conjunto de acontecimientos que llevan al desarrollo de la cartografía digital:

- Aumento tanto la demanda como la disponibilidad de datos espaciales y de técnicas para su análisis.
- Los cambios dinámicos que se producen en la naturaleza hacen que los mapas en papel se conviertan en una herramienta completamente inadecuada debido a la necesidad de actualización constante.

El trabajo en diversas líneas de investigación requiere la combinación de varios mapas representando diferentes propiedades para una misma zona y en diferentes períodos.
Desarrollo de herramientas de digitalización y automatización de la cartografía.
Disponibilidad de información espacial a intervalos regulares de tiempo (imágenes de satélite).
Reducción del coste del hardware con lo que los SIG y la teledetección dejan de ser privativos de grandes centros de investigación o la administración.
Aparición de CDs y desarrollo de internet con lo que desaparecen los costes de almacenamiento y distribución de información digital.
Desarrollo de programas y herramientas destinados a la integración y análisis de la misma, especialmente los Sistemas de Información Geográfica (SIG).

14.2. SISTEMAS DE INFORMACIÓN GEOGRÁFICA

En general, un Sistema de Información consiste en la unión de información en formato digital y de herramientas informáticas para su análisis con unos objetivos concretos dentro de una organización, como es el caso de programas informáticos que almacenan y gestionan los datos de empresas privadas.

Los Sistemas de Información Geográfica (SIG) son el resultado de la aplicación de las llamadas Tecnologías de la Información (TI) a la gestión de la Información Geográfica (IG).

Un SIG es un caso particular de Sistema de Información en el que la información aparece georreferenciada, es decir, incluye su situación en el terreno utilizando un sistema de coordenadas estandarizado resultado de una proyección cartográfica.

Cuando se habla de Sistemas de Información, suele pensarse en grandes sistemas informáticos que prestan apoyo a empresas u organismos de cierta envergadura. Estos realizan tareas como:

- El almacenamiento de la información relativa al capital de la empresa y a todas las transacciones.
- Permitir la consulta de datos particulares con cierta facilidad y desde diferentes puntos.
Analizar estos datos para obtener un mejor conocimiento de las vicisitudes que atraviesa la empresa

Ayudar en la toma de decisiones importantes.

En el caso del Sistema de Información de una empresa de transporte de mercancías, es necesario registrar todos los movimientos de mercancías, origen y destino de las mismas, así como la ruta a seguir o información sobre la misma como la presencia de una curva peligrosa, la obligación de circular por debajo de una velocidad específica o la presencia de congestión en los próximos kilómetros.

Si pensamos en el SIG de una región, este contendrá información ambiental y socioeconómica de manera que podamos consultar las características de un determinado espacio o cuales son las áreas que cumplen con el conjunto de criterios recomendables para, por ejemplo, instalar un parque eólico. De este modo un SIG se convierte en una herramienta fundamental para llevar a cabo estudios de transporte de mercancías o evaluación de impacto ambiental.

Los Sistemas de Información Geográfica (SIG) o Geographic Information System (GIS) son una nueva tecnología que forma parte de los sistemas de información, se define como un conjunto de métodos, herramientas y datos que están diseñados para actuar coordinada y lógicamente para capturar, almacenar, manipular, analizar y desplegar en todas sus formas la información geográficamente referenciada con el fin de resolver problemas complejos de planificación y de gestión, esta tecnología surgió como resultado de la necesidad de disponer rápidamente de información para resolver problemas y contestar a preguntas de modo inmediato.

Podríamos considerar, en sentido amplio que un SIG está constituido por:

- Bases de datos espaciales en las que la realidad se codifica mediante unos modelos de datos específicos.
- Bases de datos temáticas cuya vinculación con la base de datos cartográfica permite asignar a cada punto, línea o área del territorio unos valores temáticos.
- Conjunto de programas que permiten manejar estas bases de datos de forma útil para diversos propósitos de investigación, docencia o gestión.
- Conjunto de ordenadores y periféricos de entrada y salida que constituyen el soporte físico del SIG. Estas incluyen tanto el programa de gestión de SIG como otros programas de apoyo.
• Comunidad de usuarios que pueda demandar información espacial.
• Administradores del sistema encargados de resolver los requerimientos de los usuarios bien utilizando las herramientas disponibles o bien produciendo nuevas herramientas.

14.3. COMPONENTES Y PARTES FUNCIONALES DE UN SIG

Según el libro “Geographic Information Systems and Science” (Longley, 2005) el principal componente de un SIG actual es la Red, sin la que el intercambio de información o la rápida comunicación no es posible. De hecho, las ventajas de las redes en el campo de los SIG son numerosas, al permitir la visualización, consulta y análisis de información espacial sin necesidad de instalar ningún software o descargar grandes cantidades de datos.

Si bien los componentes difieren en niveles de complejidad, costos y plazos de implementación, todos son igualmente importantes y necesarios para un sistema SIG funcione correctamente.

Técnico especialista en SIG o usuario: Es el operador básico de todo programa informático. Para manejar este tipo de programas capaces de realizar tantas operaciones se necesita una persona formada adecuadamente. Cualquier técnico de SIG debe ser capaz de desenvolverse con soltura con el software, ser conocedor de las posibilidades que ofrece el sistema y saber resolver los problemas que se le presenten de forma óptima.

Datos: Es indispensable disponer de información para poder analizar cualquier situación y obtener una conclusión. La disponibilidad y exactitud de los datos influyen de manera directa en el resultado o análisis final, registrar de forma correcta toda la información es esencial para el correcto funcionamiento de la aplicación.

No se debe confundir datos con bases de datos, puesto que las bases de datos son herramientas destinadas a gestionar los datos y organizarlos de forma adecuada.

Hardware: Este componente representa el soporte físico del SIG. Está conformado por las computadoras donde se desarrollan las distintas tareas de administración y operación del sistema, por los servidores donde se almacenan los datos y se ejecutan
ciertos procesos, por los periféricos de entrada, (scanner, dispositivos de lectura de archivos, GPS, etc.), los periféricos de salida (monitores, impresoras) y todos los componentes de la red informática.

Software: La información geográfica puede ser consultada, transferida, transformada, superpuesta, procesada y mostradas utilizando numerosas aplicaciones de software. El manejo de este tipo de sistemas es llevado a cabo generalmente por profesionales con experiencia en sistemas de información geográfica, ya que el uso de estas herramientas requiere un aprendizaje previo. El acceso del público en general a los geodatos está dominado por los recursos en línea, como Google Earth y otros basados en tecnología web mapping, puesto que esta información necesita ser actualizada constantemente. Los SIG que en la actualidad se comercializan son combinaciones de varias aplicaciones interoperables y APIs (Aplication Programming Interface) que son una serie de servicios o funciones que el Sistema Operativo ofrece al programador.

Procesos: Los procesos definen que tareas, utilizando los datos y recursos tecnológicos, serán realizadas por el sistema, para llevar a cabo las distintas tareas relacionadas con el diseño, creación y funcionamiento de los SIG, se requiere de un cuerpo metodológico específico. Una definición clara de los procesos a ejecutar resulta imprescindible para una correcta identificación de las necesidades de software, aplicaciones, conformación de la base de datos, hardware y capacitación.
Las herramientas SIG de que disponemos actualmente nos permiten realizar múltiples análisis para poder descubrir la situación futura que tratamos de alcanzar a partir de un estado inicial. En arquitectura de computadoras, una unidad funcional o unidad de ejecución es una parte de la CPU que realiza las operaciones y cálculos llamados por los programas. Son cinco las partes funcionales en que se dividen los SIG:

- **Introducción de datos**: La introducción de los datos incluye todos los aspectos para capturar datos espaciales desde diversas fuentes: mapas existentes, observaciones de campo y sensores (fotografías aéreas, satélites e instrumentos de grabación) y poder convertirlos en un formato estándar digital. También se puede trabajar con los datos concretos de los elementos geográficos representados digitalmente, los cuales se introducen mediante hojas de cálculo o bases de datos.

- **Almacenamiento de datos y manejo de bases de datos**: Concierne a los datos sobre su localización, relaciones, tipología y atributos de los elementos geográficos (puntos, líneas, áreas y entidades más complejas que representan los objetos de la superficie terrestre) que están estructurados y organizados.
Un archivo de estas características puede poseer todo la información referente a un vía de circulación (longitud, anchura, intensidad de vehículos/hora) a un punto en concreto como un cruce (señalización, giros permitidos, localización). Suelen venir presentados en hojas de cálculo o bases de datos de Access.

- **Transformación de los datos:** Existe software capaz de manipular esos datos según su tipología y reorganizarlos antes de ser introducidos en el SIG, para ser utilizados de la forma más conveniente de acuerdo a los resultados que se quieran obtener de los mismos. Este proceso se centra en la filtración de los datos iniciales, obtención de nueva información a partir de los datos de partida y reagrupación de estos. También se refiere a los cambios de formato dentro de los SIG, ya que según el formato que tengan los datos se podrá extraer diferente información.

- **Interacción con el usuario:** Imprescindible para la introducción de los datos y la creación de los modelos para proceder al análisis de estos. Debe ser lo más intuitiva posible.

- **Salida de los datos y presentación:** La salida de los datos y la prestación corresponden al formato en que los datos son presentados y, lo más importante, cómo los resultados de los análisis informan a los usuarios. Los datos se pueden presentar en mapas, tablas, o figuras en una gran variedad de tipos, que se extiende desde la imagen efímera en la pantalla del ordenador, pasando por copias en la impresora o plotter a la información almacenada en soporte digital en formato digital o magnético.
14.4. FUNCIONAMIENTO DE UN SIG

El SIG funciona como una base de datos con información geográfica (datos alfanuméricos) que se encuentra asociada por un identificador común a los objetos gráficos de un mapa digital. De esta forma, señalando un objeto se conocen sus atributos e, inversamente, preguntando por un registro de la base de datos se puede saber su localización en la cartografía.

La razón fundamental para utilizar un SIG es la gestión de información espacial. El sistema permite separar la información en diferentes capas temáticas y las almacena independientemente, permitiendo trabajar con ellas de manera rápida y sencilla, y facilitando al profesional la posibilidad de relacionar la información existente a través de la topología de los objetos, con el fin de generar otra nueva que no podríamos obtener de otra forma.

Las principales cuestiones que puede resolver un sistema de información geográfica son:

- **Localización**: preguntar por las características de un lugar concreto.
- **Condición**: el cumplimiento o no de unas condiciones impuestas al sistema.
- **Tendencia**: comparación entre situaciones temporales o espaciales distintas de alguna característica.
- **Rutas**: cálculo de rutas óptimas entre dos o más puntos.
- **Pautas**: detección de pautas espaciales.
- **Modelos**: generación de modelos a partir de fenómenos o actuaciones simulados.

Por ser tan versátiles, el campo de aplicación de los Sistemas de Información Geográfica es muy amplio, pudiendo utilizarse en la mayoría de las actividades con un componente espacial. Además la posibilidad de disponer de información tan amplia y poder combinarla entre sí de forma que dé solución a problemas comunes de los diferentes ámbitos de estudio es una de las cualidades que hacen de este software una herramienta de gran utilidad para el que la profunda revolución que han provocado las nuevas tecnologías ha incidido de manera decisiva en su evolución.
14.5. CAMPOS DE APLICACIONES DE LOS SIG

Los sistemas de información geográfica tienen infinidad de aplicaciones y ayudan a la toma de decisiones importantes en el día a día de una empresa, algunas de las aplicaciones más importantes son:

Cartografía automatizada: Las entidades públicas utilizan los SIG para la construcción y mantenimiento de planos digitales de cartografía. Planos de redes viarias de una ciudad, distribución por manzanas, aparcamientos etc. Estos planos son utilizados por empresas que a su vez se encargan de actualizarlos.

Infraestructura: Estos sistemas almacenan información relativa a la conectividad de los elementos de redes de electricidad, agua gas, teléfono representados gráficamente, con el fin de realizar análisis de redes.

Gestión territorial: Son aplicaciones SIG dirigidas a la gestión de entidades territoriales. Facilitan labores de mantenimiento de infraestructura, mobiliario urbano, etc., y permiten realizar una optimización en los trabajos de mantenimiento de empresas de servicios.

Medio ambiente: Facilitan la evaluación del impacto ambiental en la ejecución de proyectos. Integrados con sistemas de adquisición de datos permiten el análisis en tiempo real de la concentración de efectos contaminantes, a fin de tomar las precauciones y medidas necesarias.

Ingeniería de Tráfico: Sistemas de Información Geográfica utilizados para estudiar la situación del tráfico determinando patrones de circulación por una vía en función de sus condiciones. Se pueden realizar desde análisis de ruta para empresas privadas, hasta solucionar problemas de congestión en la red viaria de una gran ciudad.

Demografía: Se evidencian en este tipo de SIG un conjunto diverso de aplicaciones cuyo vínculo es la utilización de las variadas características demográficas, y en concreto su distribución espacial, para la toma de decisiones como el análisis para la implantación de negocios o servicios públicos, zonificación electoral, etc.

GeoMarketing: La base de datos de los clientes potenciales de determinado producto o servicio relacionada con la información geográfica resulta indispensable para planificar una adecuada campaña de marketing o el envío de correo promocional.
14.6. INTRODUCCIÓN DE DATOS EN EL SIG

14.6.1. CREACIÓN DE DATOS

Las modernas tecnologías SIG trabajan con información digital, para la cual existen varios métodos utilizados en la creación de datos digitales. El método más utilizado es la digitalización, donde a partir de un mapa impreso o con información tomada en campo se transfiere a un medio digital por el empleo de un programa de Diseño Asistido por Ordenador (DAO o CAD) con capacidades de georreferenciación.

Dada la amplia disponibilidad de imágenes orto-rectificadas (tanto de satélite y como aéreas), la digitalización por esta vía se está convirtiendo en la principal fuente de extracción de datos geográficos. En el propio software SIG existen herramientas capaces de digitalizar archivos raster (ortofotos) mediante la vectorización de los elementos pudiendo así generar polígonos que pueden ofrecernos información georreferenciada. Esta forma de digitalización implica la búsqueda de datos geográficos directamente en las imágenes aéreas en lugar del método tradicional de la localización de formas geográficas sobre un tablero de digitalización.

14.6.2. BASES DE DATOS

Además de la creación de datos por parte de las diversas herramientas nombradas anteriormente, la información necesaria para la resolución de problemas con esta herramienta puede ser descargada de la red. He aquí la razón por la cual la tecnología de las comunicaciones a conseguir elevar a otro nivel el desarrollo de estas aplicaciones, la gran capacidad de compartir y utilizar información proporcionada por terceras personas. La mayoría de instituciones públicas ponen a disposición del usuario información sobre diferentes ámbitos de interés como puede ser medioambiente, urbanismo, transporte, infraestructura.

Los datos proporcionados se encuentran disponibles en varios formatos dependiendo de su naturaleza y el uso que le quiera dar. Como ejemplo el ayuntamiento de Valencia ofrece información variada sobre la ciudad, desde ejes viales, censos poblacionales e incluso datos de contaminación del aire por zonas.
Si bien es cierto que toda información es de gran ayuda, es importante verificarla puesto que algunas son actualizadas por los usuarios que las utilizan pueden tener algún error que produzca un mal funcionamiento en la resolución del problema.

14.6.3. CAPTURA DE DATOS

La captura de datos y la introducción de información en el sistema consumen la mayor parte del tiempo de los profesionales de los SIG. Hay una amplia variedad de métodos utilizados para introducir datos en un SIG almacenados en un formato digital.

Los datos impresos en papel o mapas en película PET pueden ser digitalizados o escaneados para producir datos digitales. Con la digitalización de cartografía en soporte analógico se producen datos vectoriales a través de trazos de puntos, líneas, y límites de polígonos. Este trabajo puede ser desarrollado por una persona de forma manual o a través de programas de vectorización que automatizan la labor sobre un mapa escaneado. No obstante, en este último caso siempre será necesario su revisión y edición manual, dependiendo del nivel de calidad que se desea obtener.

Los avances en tecnología han sido de gran ayuda a la hora de recoger datos, un Sistema de Posicionamiento Global (GPS) puede tomar las coordenadas de posición por las cuales pasa un vehículo durante su recorrido e introducirlas directamente en un sistema informático, los sensores remotos también juegan un papel importante en la recolección de datos. Son sensores, como cámaras, escáneres, acoplados a plataformas móviles como aviones o satélites. Los datos obtenidos de mediciones topográficas pueden ser introducidos directamente en un SIG a través de instrumentos de captura de datos digitales mediante una técnica llamada geometría analítica.

Actualmente, la mayoría de datos digitales provienen de la interpretación de fotografías aéreas. Para ello se utilizan estaciones de trabajo que digitalizan directamente elementos geográficos a través de pares estereoscópicos de fotografías digitales. Estos sistemas permiten capturar datos en dos y tres dimensiones, con elevaciones medidas directamente de un par estereoscópico de acuerdo a los principios de la fotogrametría.
14.7. REPRESENTACIÓN DE LOS DATOS

Los datos SIG representan los objetos del mundo real, estos objetos se pueden dividir en dos abstracciones: objetos discretos, un punto concreto como en nuestro caso podría ser la localización del domicilio y continuos como la cantidad de lluvia caída o datos sobre la elevación del terreno. Existen dos formas de almacenar los datos en un SIG: raster y vectorial.

Figura 53. Representación de los datos de un SIG

Los SIG que se centran en el manejo de datos en formato vectorial son más populares en el mercado. No obstante, los SIG raster son muy utilizados en estudios que requieran la generación de capas continuas, necesarias en fenómenos no discretos; también en estudios medioambientales donde no se requiere una excesiva precisión espacial (contaminación atmosférica, distribución de temperaturas, localización de especies marinas, análisis geológicos, etc.).

Normalmente cualquier sistema de información geográfica es capaz de trabajar con los dos formatos y disponen de herramientas de conversión para trabajar con el formato que mejor se adapte a nuestras necesidades.

14.7.1. RASTER

Un tipo de datos raster es, en esencia, cualquier tipo de imagen digital representada en mallas. El modelo de SIG raster o de retícula se centra en las propiedades del espacio más que en la precisión de la localización. Divide el espacio en celdas regulares donde cada una de ellas representa un único valor. Se trata de un modelo de datos muy adecuado para la representación de variables continuas en el espacio.
Figura 54. Representación del terreno mediante archivo raster

Los datos raster se compone de filas y columnas de celdas, cada celda almacena un valor único. Los datos raster pueden ser imágenes, con un valor de color en cada celda o píxel. Otros valores registrados para cada celda puede ser un valor discreto, como el uso del suelo, valores continuos, como temperaturas, o un valor nulo si no se dispone de datos.

Si bien una trama de celdas almacena un valor único, estas pueden ampliarse mediante el uso de las bandas del raster para representar los colores RGB (rojo, verde, azul), o una tabla extendida de atributos con una fila para cada valor único de células. La resolución del conjunto de datos raster es el ancho de la celda en unidades sobre el terreno. Así que dependiendo de las dimensiones de las celdas el archivo raster ofrecerá un mayor o menor detalle (resolución) de la representación del espacio geográfico.

Ventajas

- La estructura de los datos es muy simple.
- Las operaciones de superposición son muy sencillas.
- Formato óptimo para variaciones altas de datos.
- Buen almacenamiento de imágenes digitales.

Inconvenientes
- Mayor requerimiento de memoria de almacenamiento. Todas las celdas contienen datos.
- Las reglas topológicas son más difíciles de generar.
- Las salidas gráficas son menos vistosas y estéticas. Dependiendo de la resolución del archivo raster, los elementos pueden tener sus límites originales más o menos definidos.

14.7.2. VECTORIAL

En un SIG, las características geográficas se expresan con frecuencia como vectores, manteniendo las características geométricas de las figuras.

Figura 55. Representación de curvas de nivel sobre una superficie tridimensional

En los datos vectoriales, el interés de las representaciones se centra en la precisión de la localización de los elementos geográficos sobre el espacio y donde los fenómenos a representar son discretos, es decir, de límites definidos.

Cada una de estas geometrías está vinculada a una fila en una base de datos que describe sus atributos. Por ejemplo, una base de datos que describe los lagos puede contener datos sobre la batimetría de estos, la calidad del agua o el nivel de contaminación. Esta información puede ser utilizada para crear un mapa que describa un atributo particular contenido en la base de datos. Además, las diferentes geometrías de los elementos también pueden ser comparadas. Así, por ejemplo, el SIG puede ser usado para identificar aquellos pozos representados mediante una geometría
de puntos que están en torno a 2 kilómetros de un lago, delimitada su área por un polígono y que tienen un alto nivel de contaminación.

Ventajas:

- La estructura de los datos es compacta. Almacena los datos sólo de los elementos digitalizados por lo que requiere menos memoria para su almacenamiento y tratamiento.
- Codificación eficiente de la topología y las operaciones espaciales.
- Buena salida gráfica. Los elementos son representados como gráficos vectoriales que no pierden definición si se amplía la escala de visualización.
- Tienen una mayor compatibilidad con entornos de bases de datos relacionales.
- Las operaciones de re-escalado, re-proyección son más fáciles de ejecutar.
- Los datos son más fáciles de mantener y actualizar.
- En algunos aspectos permite una mayor capacidad de análisis, sobre todo en redes.

Inconvenientes:

- La estructura de los datos es más compleja.
- Las operaciones de superposición son más difíciles de implementar y representar.
- Eficacia reducida cuando la variación de datos es alta.
- Es un formato más laborioso de mantener actualizado.

14.8. DIMENSIÓN ESPACIAL DE LOS DATOS EN UN SIG

Los elementos vectoriales pueden crearse respetando una integridad territorial a través de la aplicación de unas normas topológicas. Los datos vectoriales se pueden utilizar para representar variaciones continuas de fenómenos.

Para modelar digitalmente las entidades del mundo real se utilizan tres elementos geométricos: el punto, la línea y el polígono.

Puntos

Los puntos se utilizan para las entidades geográficas que mejor pueden ser expresadas por un único punto de referencia, son las localizaciones de puntos de interés
dependiendo del estudio. Los puntos transmiten la menor cantidad de información espacial y no son posibles las mediciones con estos elementos pero se les puede otorgar atributos.

Líneas

Las líneas unidimensionales son usadas para rasgos lineales como ríos, calles, caminos, ferrocarriles, líneas topográficas o curvas de nivel. De igual forma que en las entidades puntuales, en pequeñas escalas pueden ser utilizados para representar polígonos. En los elementos lineales puede medirse la distancia.

Polígonos

Los polígonos bidimensionales se utilizan para representar elementos geográficos que cubren un área particular de la superficie de la tierra. Estas entidades pueden representar lagos, límites de parques naturales, edificios, provincias, o los usos del suelo. Los polígonos transmiten la mayor cantidad de información en archivos con datos vectoriales y en ellos se pueden medir el perímetro y el área.

14.9. **DATOS NO ESPACIALES**

Los datos no espaciales también pueden ser almacenados junto con los datos espaciales, aquellos representados por las coordenadas de la geometría de un vector o por la posición de una celda raster. En los datos vectoriales, los datos adicionales contienen atributos de la entidad geográfica. Un polígono de un inventario forestal también puede tener un valor que funcione como identificador e información sobre especies de árboles. En los datos raster el valor de la celda puede almacenar la información de atributo, pero también puede ser utilizado como un identificador referido a los registros de una tabla.

En el caso CADE los puntos pueden ser tanto centro de distribución como puntos de entrega y cada uno puede ofrecernos información.

Para los centros el número de pedidos que están a la espera de ser recogidos o en cada punto de entrega todo la información referente al domicilio, número de cajas, hora máxima de entrega etc.
De la misma forma que los puntos, las líneas pueden ofrecernos información adicional como la velocidad máxima de la vía, el caudal, la intensidad del tráfico o un polígono de un inventario forestal también puede tener un valor que funcione como identificador e información sobre especies de árboles.

![Diagrama de representación de datos vectoriales y rasteriales.](image)

Figura 56. Resumen de la representación de los datos.

14.10. GEOCODIFICACIÓN

La geocodificación es el proceso de asignar coordenadas geográficas a puntos del mapa, para ello se requiere una cartografía base sobre la que referenciar los códigos geográficos. Las direcciones concretas que se desea georreferenciar en el mapa, que suelen proceder de tablas tabuladas, se posicionan mediante interpolación o estimación. El SIG a continuación localiza en la capa de ejes de calles el punto en el lugar más aproximado a la realidad según los algoritmos de geocodificación que utiliza.

La georreferenciación es la técnica de posicionamiento espacial de una entidad en una localización geográfica única y bien definida en un Sistema de coordenadas y datos específicos.

La geocodificación puede realizarse también con datos reales más precisos como con cartografía catastral con lo que el resultado de la codificación geográfica será más preciso. En el caso de la geocodificación inversa el proceso sería al revés pero este...
método no devuelve las direcciones reales, sino sólo estimaciones de lo que debería existir basándose en datos ya conocidos.

La información geográfica puede ser consultada, transferida, transformada, superpuesta, procesada y mostradas utilizando numerosas aplicaciones de software. El manejo de este tipo de sistemas son llevados a cabo generalmente por profesionales de diversos campos del conocimiento con experiencia en sistemas de información geográfica (cartografía, geografía, topografía, etc.), ya que el uso de estas herramientas requiere una aprendizaje previo que necesita de conocer las bases metodológicas sobre las que se fundamentan.

Los SIG que en la actualidad se comercializan son combinaciones de varias aplicaciones interoperables y APIs.

14.10.1. PROYECTOS RELACIONADOS DEL IGN

El Sistema de Información Geográfica Nacional (SIGNA) es un proyecto del Plan Estratégico del Instituto Geográfico Nacional-Centro Nacional de Información Geográfica (IGN-CNIG) desde el año 2005 que tiene como objetivo integrar las bases de datos geográficos digitales del IGN en un SIG, especialmente las Bases Cartográficas y Topográficas, con la finalidad de utilizar sus datos de forma conjunta y coherente, y dotarlas de topología y continuidad más allá de la unidad mínima de producción/actualización.

Como consecuencia, se dispone de un SIG básico, inteligente, integrado y coherente para la consulta y actualización de los datos accesibles desde las unidades pertinentes del IGN-CNIG y para la consulta de usuarios externos mediante una aplicación accesible a través de Internet.

El proyecto SIGNA consta de dos grandes áreas de trabajo que a grandes rasgos podrían definirse como: la parte encargada de la continuidad y estructuración de los datos, denominada estructuración; y la parte de desarrollo y mantenimiento de las aplicaciones y clientes que permiten al público acceder y analizar los datos geográficos.

- Estructuración: consiste en el tratamiento de las bases topográficas y cartográficas del IGN-CNIG: Base Cartográfica Numérica a escala 1:25.000, Base Topográfica Numérica a escala 1:25.000 y Base Cartográfica Numérica a
escala 1:200.000, con el objetivo de generar fenómenos geográficos complejos y continuos a lo largo de todo el ámbito del Estado, a partir de los elementos geográficos que componen estas bases de datos, e integrarlos en un Modelo de Datos con topología

- Geoportal del SIGNA: consiste en el diseño de un portal web que permite la consulta y análisis de los fenómenos geográficos a través de Internet, usando la propia base de datos SIGNA y aquellos datos del IGN que son accesibles a través de servicios web: WMS, WFS, etc.
15. ANÁLISIS DE PROBLEMA DE GENERACIÓN DE RUTAS

15.1. INTRODUCCION

Diversas organizaciones dan servicio a órdenes con una flota de vehículos. Por ejemplo, un almacén de muebles grande podría utilizar varios camiones para entregar muebles a domicilio, una compañía especializada de reciclaje de aceite podría dirigir a los camiones desde una instalación para recoger el aceite usado de los restaurantes, un departamento de salud podría programar visitas de inspección diarias para cada uno de sus inspectores sanitarios o como ocurre en este caso de estudio, una empresa logística se encarga del reparto de mercancías para un tercero aplicando este ser por lo que existen varios puntos tanto de recogida como de entrega.

El problema común a los ejemplos citados es el problema de generación de rutas para vehículos (VRP). Cada organización necesita determinar a que órdenes se debería dar servicio en cada ruta y en que secuencia se deberían visitar las órdenes. El objetivo principal consiste dar mejor servicio a las órdenes y minimizar el coste total de funcionamiento para la flota de vehículos. Además, el solucionador de VRP puede resolver problemas más concretos porque hay disponibles numerosas opciones, como asignar capacidades de vehículos a cantidades de órdenes, proporcionar descansos a los conductores y emparejar órdenes para darles servicio en la misma ruta.

Existe la posibilidad de elegir que atributos de restricción se deben respects al solucionar el análisis. En la mayoría de casos, las restricciones ocasionan la prohibición de carreteras, pero también pueden ocasionar que sean evitados o preferidos. Un atributo de restricción, tal como los sentidos únicos, se debe utilizar al buscar soluciones para vehículos que deban recorrer calles de un solo sentido. Otros atributos de restricción comunes incluyen los límites de altura y peso que prohíben que algunos vehículos atraviesen ciertas carreteras o puentes; las restricciones de materiales peligrosos que los conductores de hazmat necesitan para omitir completamente o por lo menos intentar evitar; y las rutas designadas de un camión que los conductores de camiones deben intentar seguir.
Puede elegir que atributos de restricción se deben respetar al solucionar el análisis. Además puede especificar si los elementos que usa la restricción se deben prohibir, evitar o preferir.

15.2. ANÁLISIS DE RUTAS CON SIG

Resolver un análisis de ruta puede significar encontrar la ruta más rápida, más corta o incluso la más económica, dependiendo de la impedancia elegida. Si la impedancia es el tiempo, entonces la mejor ruta es la ruta más rápida. Si la impedancia es un atributo de tiempo con tráfico histórico o en vivo, entonces la mejor ruta es la ruta más rápida para una fecha y hora del día específica. Por lo tanto, la mejor ruta se puede definir como la ruta que tenga la impedancia más baja, o el menor coste, para un caso concreto con unas características puntuales.

Al determinar la mejor ruta se puede utilizar cualquier atributo de coste como impedancia. Se puede acumular cualquier número de atributos de impedancia en un análisis de ruta, pero los atributos acumulados no juegan un papel en el cálculo de la ruta a lo largo de la red. Por ejemplo, si se elige un atributo de coste temporal como atributo de impedancia y desea acumular un atributo de coste de distancia, para optimizar la solución solo se utiliza el atributo de coste horario. La distancia total se acumula y reporta, pero la ruta no se calcula a partir de la distancia en este ejemplo.

15.3. PROBLEMA DE GENERACIÓN DE RUTAS PARA VEHÍCULOS CON VENTANAS DE TIEMPO

El problema de generación de rutas para vehículos (VRP) es un superconjunto del problema del viajante de comercio. En un problema del viajante de comercio o TSP, se secuencia un conjunto de paradas de manera óptima. En un VRP, se debe asignar un conjunto de órdenes a un conjunto de rutas o vehículos de modo que se minimice el coste total de la trayectoria. También es necesario respetar las restricciones del mundo real, que incluyen la capacidad de los vehículos, las ventanas de tiempo de entrega y las especializaciones de los conductores. El VRP genera una solución que respeta esas
restricciones minimizando una función objetivo, compuesta de costes operativos y preferencias del usuario tales como la importancia de cumplir las ventanas de tiempo.

El solucionador VRP empieza por generar una matriz de origen-destino de los costes de las trayectorias más cortas entre todas las ubicaciones de orden y depósito a lo largo de la red. Con esta matriz de costes, que utiliza un algoritmo de varios orígenes y varios destinos basado en el algoritmo de Dijkstra, se construye una solución inicial insertando las órdenes de una en una en la ruta más adecuada. A continuación, la solución inicial se mejora cambiando la secuencia de las órdenes en cada ruta, así como moviendo los órdenes de una ruta a otra e intercambiando órdenes entre rutas. Las heurísticas utilizadas en este proceso se basan en metaheurística de búsqueda de tabúes y están patentadas, pero se han investigado y desarrollado durante muchos años y producen rápidamente buenos resultados.

Este sistema podría utilizarse para dar solución al problema de las zonas de reparto con varios vehículos.

![Enrutamiento de vehículos](image)

Figura 57. Enrutamiento de vehículos. Fuente ArcGIS
15.4. ENRUTAMIENTO CON ATRIBUTOS PARAMETRIZADOS

Cada enrutamiento que realice el software tendrá unas características diferentes puesto que raramente se repetirán las condiciones de trayecto para los puntos de entrega, aunque si pueden tener una cierta similitud los puntos de entrega no se repetirán por lo que cada ruta será diferente y las condiciones del tráfico tampoco serán las mismas.

Todos los sucesos que ocurran durante el transcurso del reparto deben estar registrados para poder realizar un análisis lo más detallado posible con los datos que se recojan. Utilizar hora de inicio, junto con las propiedades hora del día y fecha específica o día de la semana, permite especificar cuándo se iniciará la ruta desde la primera parada.

Especificar una hora de inicio no requiere los datos de tráfico; sin embargo, si el dataset de red incluye los datos de tráfico, los resultados del análisis son más precisos. Es decir, los resultados se calculan para la fecha de inicio y la hora que estableció. Por ejemplo, durante las horas punta, el recorrido de la ruta podría llevar mucho más tiempo que durante las horas valle. Es más, la mejor trayectoria podría cambiar dependiendo del estado del tráfico en ese momento.

La entidad o entidades de la ruta que genera el solucionador tienen propiedades StartTime y EndTime cuando se usa la impedancia basada en tiempo con una hora de inicio. El valor de StartTime coincidirá con el valor que especifique en la configuración que será la hora a la que el conductor cargue la furgoneta para repartir los pedidos. El valor de EndTime se calculará a partir de la hora de inicio y la duración de cada ruta.

Las paradas en un análisis de ruta tienen una propiedad de ArriveTime y DepartTime cuando se usa la impedancia basada en tiempo con una hora de inicio. Esta propiedad nos dará como resultado el tiempo que se tarda en realizar una entrega, teniendo en cuenta las horas de llegada y salida en las paradas. De hecho, todas las directivas en la ventana de indicaciones mostrarán una hora del día para que cada uno de los movimientos realizados quede registrado.

Con estos valores se puede conocer el tiempo de recorrido de cada ruta de reparto que hace un vehículo durante el día y con toda esta cantidad de datos poder establecer estimación y volumen de pedidos que se pueden realizar en un día.
Hora del día: El valor que ingresó aquí representa la hora en la que desea que inicie la ruta o las rutas. El valor predeterminado de la Hora del día es 8:00 AM.

La hora se debe asociar con una fecha. Puede elegir entre introducir un día flotante (Día de la semana) o una fecha concreta de calendario (Fecha específica).

Fecha específica: Para una fecha del calendario, proporciona el día, mes y año con el cual se asocia el valor hora del día.

Día de la semana: Los días flotantes le permiten configurar una capa de análisis reutilizable sin tener que acordarse de cambiar la fecha. En nuestro caso el día del análisis siempre será el día de hoy puesto que el cálculo de la ruta se realizará cada vez que el vehículo cargue mercancía para distribuir.

Los valores citados anteriormente siempre vendrán dados por Consum, puesto que al introducir el pedido en la base de datos para que se realice la entrega, el sistema registra la hora y la fecha de este modo todo el proceso estaría automatizado y no sería necesario introducir manualmente cada uno de los datos.

Las fechas flotantes son especialmente beneficiosas cuando se usan con la fecha de tráfico ya que el tráfico cambia de minuto a minuto y de día a día. Por ejemplo, si calcula las mismas rutas cada día y necesita tiempos precisos o las mejores de rutas dadas las condiciones de tráfico, puede elegir las configuraciones del Día de la semana y Hoy. El solucionador generará los resultados con base en el tráfico del día actual, el cual se determina desde el sistema operativo del equipo. Al día siguiente puede volver a resolver la misma capa de análisis actualizando las rutas para ese día. La solución se basará automáticamente en el tráfico de ese día ya que se estableció el Día de la semana a Hoy.

De igual modo, al elegir Lunes para la propiedad Día de la semana y a continuación resolver, la solución se basará en el pronóstico del tráfico para el lunes siguiente. Sin embargo, si hoy fuese lunes, la solución utiliza los datos de tráfico al día de hoy. Puede resolver hasta seis días de antelación en relación con el día actual.

Si una parada solo se puede visitar a una determinada hora del día, su ventana de tiempo se puede almacenar en las propiedades TimeWindowEnd y TimeWindowStart de la ubicación de red. Esta casilla de verificación habilita o inhabilita el uso de esas ventanas de tiempo. Si las ventanas de tiempo están habilitadas, la ruta se modificará
de forma que se respeten dichas ventanas de tiempo. Si la ruta no puede respetar algunas de las ventanas de tiempo, las paradas afectadas se simbolizarán como infracciones de las ventanas de tiempo.

En nuestro caso no existirá una restricción inicial de tiempo a no ser que el cliente quiera recibir el pedido en casa a partir de una hora determinada, en ese caso se establecerá una hora de entrega mínima y otra máxima, en la mayoría de los casos solo tendremos como restricción la hora de entrega final (TimeWindowEnd) cuyo valor será la suma de 2 horas a la hora de compra por parte del cliente.

15.5. REORDENACIÓN DE PARADAS

De forma predeterminada, una ruta atraviesa las paradas en el orden que defina. Sin embargo, es posible que pueda acortar aún más la ruta permitiendo a Network Analyst que encuentre el mejor orden. Se tendrán en cuenta toda una serie de variables, como las ventanas de tiempo. Otra opción consiste en conservar el origen y el destino, permitiendo a Network Analyst reordenar las paradas intermedias.

Al activar esta propiedad, el análisis de ruta pasa a considerar un problema del vendedor viajero (TSP).

Este parámetro permite considerar la importancia de reducir el exceso de tiempo de tránsito. El exceso de tiempo de tránsito es la cantidad de tiempo que excede el tiempo requerido para viajar directamente entre las órdenes asociadas. El exceso de tiempo resulta de los descansos o viajes a otras órdenes o depósitos entre las visitas a las órdenes asociadas.

La solución del VRP puede cambiar según el valor que elija para el parámetro de Importancia del exceso de tiempo de tránsito. La siguiente lista describe el significado de los valores y cómo puede variar la solución del VRP resultante:

- Alto: El solucionador intenta encontrar una solución con un menor exceso de tiempo de tránsito entre las órdenes asociadas a costa de incrementar el coste total del viaje.
Medio: es la configuración predeterminada. El solucionador busca un equilibrio entre reducir el exceso de tiempo de tránsito y reducir el coste total de la solución.

Bajo: El solucionador intenta encontrar una solución que minimice el coste total de la solución, independientemente del exceso de tiempo de tránsito. En general, esta configuración se usa para servicios de correo. Debido a que los servicios de correo transportan paquetes y no personas, no necesitan preocuparse por el tiempo de viaje. Al utilizar Bajo, los servicios de correo pueden cumplir con las órdenes asociadas en la secuencia adecuada y minimizar el coste total de la solución.

En el Problema del Agente Viajero - TSP (Travelling Salesman Problem), el objetivo es encontrar un recorrido completo que conecte todos los nodos de una red, pasando solo una vez y volviendo al punto de partida, y que además minimice la distancia total de la ruta.

Este tipo de problemas tiene gran aplicación en el ámbito de la logística y distribución, así como en la programación de curvas de producción.

En nuestro caso que vuelva o no al punto de partida dependerá de a cuántos centros presta servicio una furgoneta en concreto, puede que en vez de volver al centro de distribución desde el que se inició la ruta, vaya a dar servicio a otro centro cercano, en ese caso el punto final de ruta será establecido según el volumen de pedidos pendientes en cada centro y su hora máxima de entrega.

El problema del agente viajero tiene una variación importante, y esta depende de que las distancias entre un nodo y otro sean simétricas o no, es decir, que la distancia entre A y B sea igual a la distancia entre B y A. Puesto que en la práctica es muy poco probable que así sea la cantidad de rutas posibles en una red está determinada por la ecuación:

\[
(n-1)!\]

En una red de 5 nodos la cantidad de rutas posibles es igual a

\[
(5-1)! = 24, \text{ y a medida que el número de nodos aumente la cantidad de rutas posibles crece factorialmente. En el caso de que el problema sea simétrico la cantidad de rutas posibles se reduce a la mitad, es decir: } \frac{(n-1)!}{2}. \text{ Lo cual significa un ahorro significativo en el tiempo de procesamiento de rutas de gran tamaño.}

En el caso de CADE se solucionara el problema cada vez que el conductor cargue la furgoneta, por lo tanto el número de paradas no será un número excesivo.
La complejidad del cálculo del problema del agente viajero ha despertado múltiples iniciativas por mejorar la eficiencia en el cálculo de rutas. El método más básico es el conocido con el nombre de fuerza bruta, que consiste en el cálculo de todos los posibles recorridos, lo cual se hace extremadamente ineficiente y casi que se imposibilita en redes de gran tamaño. También existen heurísticos que se han desarrollado por la complejidad en el cálculo de soluciones óptimas en redes robustas, es por ello que existen métodos como el vecino más cercano, la inserción más barata y el doble sentido. Por último se encuentran los algoritmos que proporcionan soluciones óptimas, como el método de branch and bound (ramificación y poda), que trabaja el problema como un algoritmo de asignación y lo resuelve por medio del método simplex.
16. ANALISIS DE RUTAS DEL CASO CADE-CONSUM

16.1. INTRODUCCION

El objetivo de este estudio no es otro que el de conocer las capacidades de mejora que puede aportar las nuevas tecnologías al servicio que CADE ofrece a Consum, analizar en profundidad el procedimiento que se realiza de principio a fin, considerando todos los factores y procesos susceptibles de mejora, para conseguir la optimización del producto ofrecido.

Optimizar es un verbo que designa la acción de buscar la mejor forma de hacer algo, se dice que se ha optimizado algo cuando se han efectuado modificaciones en la fórmula usual de proceder y se han obtenido resultados que están por encima de lo regular o lo esperado. En este sentido, optimizar es realizar una mejor gestión de nuestros recursos en función del objetivo que perseguimos.

Dentro del contexto matemático, optimizar significa encontrar el valor máximo o mínimo de una función planteada en un modelo que describa y restrinja el problema, definido en un dominio empresarial sería elevar los rendimientos económicos y la efectividad de sus procesos con los recursos mínimos. Por lo tanto, el propósito perseguido al tomar una decisión consiste en llevar a cabo un plan que le permita a las empresas solucionar sus problemas de una manera óptima o efectiva que genere respuestas al objetivo de manera que el beneficio sea máximo con los mínimos costos.

Normalmente al plantear una solución a un problema que pretenda minimizar costos y obtener el máximo beneficio se debe empezar por recolectar la información pertinente que permita describir matemáticamente dicho problema en un modelo, estableciendo así las características que permiten visualizar un espacio de soluciones, los diferentes métodos para su solución y el alcance computacional; esto con el fin de encontrar un valor óptimo o adecuado a la respuesta esperada para el problema; sin embargo en ocasiones la complejidad de las condiciones reales para plantear un modelo preciso conlleva a incrementar la dificultad para implementar algoritmos de solución exacta,
por ello en estos problemas combinatoriales que en su medida de dificultad para el procesamiento computacional, los métodos de solución pueden ser inviables debido a la gran cantidad de procesos que se deban realizar para llegar a la solución óptima exacta en un tiempo adecuado, de modo que los problemas de optimización planteados frecuentemente se deben resolver con métodos aproximados que proporcionan soluciones factibles y satisfactorias.

Un tipo concreto de problemas de optimización son los denominados problemas de optimización combinatoria. Estos problemas son difíciles de resolver debido a la forma de crecimiento exponencial de las combinaciones de soluciones en relación con el número de clientes.

Por otra parte los problemas de ruteo de vehículos en la realidad presenta un gran número de condiciones que afectan al modelo que lo describe matemáticamente, haciéndolo más difícil de resolver de manera exacta, estas condiciones son por ejemplo la capacidad del vehículo, la cual puede ser homogénea o no; otra condición puede ser el número de centros donde se recoge la carga, otra es la posibilidad de que el cliente reciba, incluso la forma de los productos que se lleva en los vehículos puede afectar a la capacidad de estos puesto que se puede definir dicha capacidad en volumen, peso, o si es delicada o no, etc.

Otro factor importante es el tiempo en el que se debe entregar los productos a los clientes, ya que los pedidos se van realizando de forma puntual durante el día y a partir del pago del pedido, a este se le asigna una franja horaria en la que debería ser entregado y comienza una cuenta atrás para realizar la entrega. De modo que con cada condición que se tenga en una situación real, el problema tendría mayor dificultad en resolverse.

16.2. CASO CADE-CONSUM

En el caso de estudio que nos ocupa lo que se pretende es disminuir el tiempo de recorrido al mínimo posible para poder aumentar el volumen de negocio.

Para que esto suceda hay que desplazarse siempre por el camino óptimo, para que el servicio completo también lo sea. De esta forma se reducirá el tiempo de recorrido al
máximo posible dando la posibilidad de aumentar el número de servicio que una furgoneta puede realizar por hora.

La empresa de distribución CADE facilitó cierta información sobre el funcionamiento del servicio, de cómo se pretendía abordar el problema de distribución y las herramientas de que se disponían para llevarlo a término.

Actualmente los centros de Consum a los que CADE presta servicio están regulados para realizar un máximo de 3 pedidos por franja horaria, excepto los centros que producen un mayor número de servicio cuyo límite son 4 pedidos por franja horaria. Los pedidos deben tardar un máximo de 2 horas en entregarse desde que el consumidor realiza la compra en el centro, aunque esto no siempre se cumple puesto que si una franja horaria está completa, el pedido pasa a la franja horaria siguiente, aumentando así el tiempo máximo de entrega.

Las furgonetas están distribuidas para atender a varios centros a la vez, el número de centros depende del volumen de servicio que genera cada uno de estos, por lo tanto cada vehículo se mueve siempre en una zona determinada. CADE posee un sistema informático que organiza estos pedidos y manda una petición al conductor más cercano al centro, este se encuentra en disposición de aceptar el pedido o de rechazarlo según su volumen de actividad. De esta forma se supone que no existen vehículos adheridos a centros en concreto (en el caso de las grandes ciudades, sí puede que ocurra esto en poblaciones más pequeñas), sino que cada furgoneta atiende una zona del territorio medianamente amplia.

El sistema informático de CADE gestiona los pedidos de una forma sencilla con un software que registra por orden de tiempo los pedidos cuando son realizados en el centro de distribución, este software cuenta con un sistema de geolocalización que es capaz de ubicar un vehículo en la red de carreteras y calcular la distancia a los centros, así que utiliza este criterio para localizar el coche más cercano y asignarle un servicio. A partir de ese momento se inicia una cuenta atrás, puesto que el conductor tiene un tiempo determinado para recoger el pedido en tienda, cuando se recoge el pedido el conductor lo marca en su soporte informático y el sistema lo registra en la base de datos, en ese momento el software informático registra que el pedido está en ruta. Lo más común es que un conductor gestione varios pedidos a la vez, así que es necesario que por parte del conductor exista cierto criterio para decidir el orden de entrega, puesto que su elección puede suponer que uno de los pedidos que lleva en la
furgoneta no sea entregado a tiempo. Mientras que el conductor va realizando entregas que tenía acumuladas anteriormente, el sistema sigue realizando una cuenta atrás, esta vez marca el tiempo límite de entrega para que el pedido llegue a tiempo según las bases del servicio de Consum.

Cuando el pedido es entregado el sistema lo elimina de la lista de pedidos pendientes donde van quedando los que aún no se han entregado.

16.3. ARCGIS

Para el estudio del caso CADE-CONSUM se ha utilizado el sistema de información geográfica ArcGis que es un SIG de escritorio de licencia privada formado por un conjunto de productos de software. El paquete de software ArcGIS agrupa varias aplicaciones para la captura, edición, análisis, tratamiento, diseño, publicación e impresión de información geográfica.

EL software utilizado concretamente es el siguiente:

ArcCatalog: Esta aplicación proporciona una ventana de catálogo que se utiliza para organizar y administrar varios tipos de información geográfica entre las que se incluyen:

- Geodatabases
- Archivos ráster
- Documentos de mapa, documentos de globo, documentos de escena 3D
- Archivos de capa
- Cajas de herramienta de geoprocesamiento, modelos y secuencias de comandos Python
- Los servicios SIG publicados con ArcGIS Server

ArcCatalog organiza este contenido en una vista de árbol con la que puede trabajar para organizar los datasets SIG y los documentos de ArcGIS, así como buscar y encontrar elementos de información y administrarlos. La aplicación presenta esta información en una vista de árbol y le permite seleccionar un elemento SIG, ver sus
propiedades y acceder a las herramientas para operar con los elementos seleccionados.

Figura 58. Interfaz de ArcCatalog.

ArcMap: Aplicación que consiste en una ventana que representa la información geográfica como una colección de capas y otros elementos en un mapa. Los elementos de mapa comunes son el marco de datos, que contiene las capas de mapa para una extensión determinada, ArcMap es la aplicación principal de este software SIG. Se utiliza para realizar muchas de las tareas habituales de SIG, tales como:

- Trabajar con mapas, Imprimir mapas: con ArcMap puede imprimir mapas, muy sencillos o cartografía compleja.
- Compilar y editar datasets SIG ArcMap
- Utilizar geoprocesamiento para automatizar el trabajo y realizar análisis SIG
- Organizar y administrar geodatabases y documentos de ArcGIS
- Publicar documentos de mapa como servicios de mapas mediante ArcGIS for Server
- Compartir mapas, capas, modelos de geoprocesamiento y geodatabases con otros usuarios ArcMap mediante Arcgis Online.
- Documentar la información geográfica
Figura 59. Interfaz de ArcMap.

ArcToolbox: En la aplicación ArcMap existe un apartado de caja de herramientas donde se encuentran organizadas todas las herramientas de análisis según su campo de aplicación.

- Cartografía
- Conversión de datos
- Geocodificación
- Análisis de redes
- Análisis 3D
- Análisis Geoestadístico
16.4. PROCEDIMIENTO DE ANALISIS

Una vez familiarizados con el software SIG y sabiendo para qué sirven cada una de las aplicaciones de este sistema, se procede a la recopilación de datos necesarios para llevar a cabo algunos procedimientos analíticos.

Desde la aplicación de ArcMap se pueden descargar extensiones o software libre de código abierto que dan servicios adicionales y hacen de ArcGis una herramienta más completa. Para facilitar la utilización de mapas cartográficos se ha utilizado la extensión Arcbrutil que conecta el servidor ArcGis con mapas online y consigue combinar datos en diferentes proyecciones cartográficas que son de gran ayuda.
Estos mapas no descargan como archivo sino que se trabaja con ellos desde la nube, aunque ofrecen la posibilidad de descargar diferentes capas de información como pueden ser ejes viales, manzanas, códigos postales etc. Es necesario tener conexión a la red para poder utilizar estos servicios.

Para trabajar en este proyecto se ha descargado un archivo raster de la página web terrasit que ofrece mapas cartográficos de la Comunidad Valenciana. Este archivo se utiliza como base con la que trabajar, cuando se introduce esta base en ArcMap se tiene que georreferenciar mediante la asignación de un sistema de coordenadas proyectadas que concuerde con el posicionamiento espacial de la entidad en una localización geográfica única y bien definida.

En nuestro caso se ha utilizado el sistema de coordenadas ETRS_1989_UTM_Zone_30N que georreferencia la zona en la que se encuentra la ciudad de Valencia. Una vez georreferenciado el archivo todos los datos de dimensión espacial que se introducen tienen unas dimensiones y unos valores otorgados por el sistema de coordenadas definido.

Después de realizar este paso se procede a la ubicación de los centros de Consum en el mapa, se busca en Google la localización de los centros de Valencia y se descargan en un archivo shape, que es un formato de archivo informático propietario de datos espaciales.

Se busca toda la información espacial referente a esa zona cartográfica, en el párrafo web del ayuntamiento de Valencia existe un apartado llamado Portal de transparencia y Datos abiertos, donde se puede encontrar información georreferenciada de la ciudad de Valencia tales como ejes viales, manzanas, distritos postales, servicios, etc. que se descargan y se organizan con la ayuda de ArcCatalog en Datasets de entidades personales que agrupan archivos de información, de esta forma se puede disponer de toda la información en ArcMap de manera ordenada.

El paso siguiente ha sido delimitar el área de servicio de cada centro en distancia, para realizar esta operación es necesario tener una capa Network analyst, esta capa se crea a partir de una capa de líneas que simulan el entramado de calles de la ciudad de Valencia y ofrecen información sobre la situación y la longitud de las mismas.
Creado el Network Analyst, pasamos al análisis de la red para conocer el área de influencia de cada centro utilizando la herramienta Área de servicio de Network Analyst.

Primero se calcula con ArcMap un área de servicio de 3 kilómetros ya que Consum sus bases asegura el envío hasta esa distancia.

![Figura 61. Representación de zonas de influencia de 3 km. Elaboración propia. Fuente ArcMap.](image)

Como se puede apreciar en la figura anterior un área de influencia de 3 km parece excesiva, puesto que entre los 3 centros exteriores deberían ser capaces de realizar envíos casi a toda la extensión de la ciudad de Valencia, aumentando de manera considerable el tiempo de recorrido y disminuyendo el volumen total de pedidos por franja horaria. Aunque no se tienen datos de las distancias a las que se envían los pedidos de cada centro, se supone los centros tendrán una zona de entrega real mucho menos extensa y más parecida a la del centro que se encuentra rodeado. Si bien es verdad que puede haber excepciones seguramente serán puntuales y no modificaran demasiado el recorrido normal de los vehículos.

Posteriormente se realiza un análisis de los cuatro centros considerados en el estudio delimitando áreas de servicio en franjas de 250 metros hasta la longitud máxima de 1 kilómetro, también se tuvieron en cuenta los obstáculos de la infraestructura de la ciudad como en este caso puede ser el río de Valencia o las vías de ferrocarril de la Estación del Norte que delimitan la zona de compra por parte del cliente.
Aunque en la figura no aparece reflejado porque no se han calculado sus áreas de servicio se han tenido en cuenta los centros colindantes a los centros estudiados para posicionar los puntos de entrega aleatorios dentro del área de influencia de cada centro puesto que como se comentó anteriormente la cercanía al centro de distribución es uno de los factores más importantes para el consumidor a la hora elegir su lugar de compra.

En la figura se observa la superposición de las áreas de influencia de los centros que se tienen en cuenta para el estudio. Se puede apreciar que la zona de confluencia de los centros estudiados se encuentra como máximo a 500 metros de distancia de cada centro.

De esta forma se concreta la posible área de servicio de cada Consum en un máximo de 1 kilómetro, aunque dependiendo de la localización del centro en la ciudad de Valencia y los centros colindantes pueden variar.

Teniendo calculada esta área de servicio de una forma fiable y contrastada mediante la georreferenciación de los puntos de entrega, se podrían aplicar otras restricciones diferentes a los tiempos de entrega de aquellos pedidos que se salgan de esta zona y modifiquen de manera sustancial el recorrido de las furgonetas.
Con la ayuda de estos datos se procede a localizar los puntos de entrega dentro de las zonas de influencia para el posterior estudio de las rutas.

16.5. ESTUDIO COMPARATIVO DE RUTAS

Una vez definidas las áreas de influencia se realiza un estudio de rutas con la ayuda de Google Maps, puesto que esta aplicación es mucha más fácil de manejar que ArcGis y además se puede contar con información que en un software GIS no tiene por sí mismo sino que hay que acudir a base de datos para trabajar con ellos.

El estudio se realiza mediante el método del vecino más cercano que consiste en un algoritmo heurístico diseñado para solucionar el problema del agente viajero, no asegura una solución óptima, sin embargo suele proporcionar buenas soluciones, y tiene un tiempo de cálculo muy eficiente.

El método consiste en una vez establecido el nodo de partida, evaluar y seleccionar su vecino más cercano. En la siguiente iteración habrá que considerar los vecinos más cercanos al nodo en el que nos situamos en ese momento, excluyendo el nodo de origen.

Aunque este método no da la solución óptima, ofrece una sustancial mejora en los tiempos de entrega como se verá a continuación.

Se marcaron en Google Maps lo puntos que hacían referencias a los centros de Consum que se iban a utilizar como muestra. En este caso se escogieron 4 centros de la ciudad de Valencia que fueran cercanos entre sí para ver las posibles combinaciones entre centros.

Los centros que se han utilizado son:

- Consum C/ Sueca
- Consum C/ Matias Perelló
- Consum C/ Obispo Jaime Perez
- Consum C/ Conde de Salvatierra
Teniendo en cuenta los criterios nombrados anteriormente y con la zona de influencia delimitada se situaron aleatoriamente entre 5 y 6 puntos cercanos a cada centro, que simulan posibles puntos de entrega para los vehículos de CADE.

En la bases de Consum para el envío de la compra a casa se indica que como máximo se entregan pedidos a 3 km de distancia del centro en el que se realiza la compra, pero viendo las distribución de los centros en la ciudad de Valencia se puede apreciar que rara vez se realizará un desvío de tanta longitud.

Al ser un servicio que acaba de empezar a realizarse por parte de CADE no se cuenta con la suficiente información como para saber qué porcentaje de pedidos se envían fuera de las zonas de influencia provisional. Cuando se recopile una cantidad de datos importante se podrá delimitar un zona de influencia acorde a los servicios reales que se realizan para cada centro y además se podrá verificar el porcentaje de pedidos son entregados fuera de esas zonas.

En este caso lo que se ha hecho es localizar todos los puntos dentro de las zonas de influencia creadas según nuestro criterio y se ha realizado un estudio de distribución de los productos.

El estudio supone un caso en el que el conductor llega al centro y tiene listos para distribuir esos 5 o 6 pedidos, en la realidad el número de pedidos podría variar, pero se han tomado ese número de pedidos para que el resultado sea significativo. Con la ayuda de Google Maps se ha trazado la ruta a seguir de punto a punto de entrega siguiendo dos criterios diferentes.

En primer lugar se ha trazado una ruta de reparto que se inicia en el centro de distribución hasta el primer punto de entrega y pasando por todos los puntos de entrega sin volver a cargar el vehículo. En este caso se le da prioridad a cada punto en función del orden de realización del pedido, sin tener en cuenta su localización o proximidad al centro, el orden de realización se adjudicó de manera aleatoria. El desplazamiento entre un punto de entrega y otro se realiza por el camino más rápido, que suele coincidir con el camino más corto, aunque este factor puede variar en función del tráfico que cambia durante el transcurso del día. Al final del recorrido se obtienen datos de cada tramo del recorrido en tiempo y en distancia.
Para la segunda parte del estudio se realiza la misma operación saliendo desde el centro de distribución pero en vez de tener en cuenta el orden de entrega de los pedidos, se establece el orden de entrega en función de la distancia, es decir, por proximidad al punto en el que se encuentra el vehículo en cada momento. Así pues, el primer pedido en entregarse no será el de la primera que se efectuó, si no el que más cerca se encuentre del centro, cuando se ha realizado dicha entrega, se busca el siguiente punto más cercano y se realiza la siguiente entrega y así sucesivamente.

En principio puede parecer que la diferencia de tiempo y distancia en una ciudad al realizar desplazamientos cortos puede ser anecdótica, llegando a variar no más de unos minutos, pero si en cada desplazamiento que realizamos vamos acortando el tiempo, al final de la jornada puede suponer un ahorro de tiempo interesante, que se puede reflejar en un mayor número de pedidos por furgoneta al día, ya que el factor que limita el volumen de negocio es el número de pedidos diarios que puede entregar una furgoneta.

A continuación se van a mostrar las capturas y los datos recogidos para los 4 centros nombrados anteriormente. La hipótesis se realizó para un miércoles de agosto a las 12.30 del mediodía, cuando el volumen de tráfico es elevado en la zona de estudio.
Centro Consum de la calle Sueca

Ruta de entrega por orden de pedido

<table>
<thead>
<tr>
<th>Tramo</th>
<th>Distancia(m)</th>
<th>Tiempo (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-1</td>
<td>1500</td>
<td>8</td>
</tr>
<tr>
<td>1-2</td>
<td>1400</td>
<td>6</td>
</tr>
<tr>
<td>2-3</td>
<td>1100</td>
<td>6</td>
</tr>
<tr>
<td>3-4</td>
<td>1500</td>
<td>6</td>
</tr>
<tr>
<td>4-5</td>
<td>1500</td>
<td>6</td>
</tr>
<tr>
<td>TOTAL</td>
<td>7000</td>
<td>32</td>
</tr>
</tbody>
</table>

Tabla 48. Datos por orden de pedido en el centro de la calle Sueca. Eaboracion propia.

Ruta por proximidad

<table>
<thead>
<tr>
<th>Tramo</th>
<th>Distancia(m)</th>
<th>Tiempo (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-1</td>
<td>300</td>
<td>2</td>
</tr>
<tr>
<td>1-2</td>
<td>850</td>
<td>4</td>
</tr>
<tr>
<td>2-3</td>
<td>800</td>
<td>5</td>
</tr>
<tr>
<td>3-4</td>
<td>1100</td>
<td>6</td>
</tr>
<tr>
<td>4-5</td>
<td>1500/550</td>
<td>7/3</td>
</tr>
<tr>
<td>TOTAL</td>
<td>4550</td>
<td>20-24</td>
</tr>
</tbody>
</table>

Tabla 49. Datos por orden de proximidad en el centro de la calle Sueca. Elaboración propia.
Se obtiene una disminución de distancia de 2450 metros y un ahorro de tiempo de 12 minutos calculando la ruta por proximidad.

Centro Consum de la calle Matías Perelló

Ruta de entrega por orden de pedido

<table>
<thead>
<tr>
<th>Tramo</th>
<th>Distancia (m)</th>
<th>Tiempo (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-1</td>
<td>1500</td>
<td>6-8</td>
</tr>
<tr>
<td>1-2</td>
<td>550</td>
<td>3</td>
</tr>
<tr>
<td>2-3</td>
<td>1000</td>
<td>4</td>
</tr>
<tr>
<td>3-4</td>
<td>450</td>
<td>2</td>
</tr>
<tr>
<td>4-5</td>
<td>1100</td>
<td>6</td>
</tr>
<tr>
<td>5-6</td>
<td>900</td>
<td>6</td>
</tr>
<tr>
<td>TOTAL</td>
<td>5500</td>
<td>27-29</td>
</tr>
</tbody>
</table>

Tabla 50. Datos por orden de pedido en el centro de la calle Matías Perelló. Elaboración propia.

Ruta por proximidad

<table>
<thead>
<tr>
<th>Tramo</th>
<th>Distancia (m)</th>
<th>Tiempo (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-1</td>
<td>220</td>
<td>1</td>
</tr>
<tr>
<td>1-2</td>
<td>450</td>
<td>2</td>
</tr>
<tr>
<td>2-3</td>
<td>700</td>
<td>3</td>
</tr>
<tr>
<td>3-4</td>
<td>600</td>
<td>3</td>
</tr>
<tr>
<td>4-5</td>
<td>550</td>
<td>3</td>
</tr>
</tbody>
</table>
Tabla 51. Datos por orden de proximidad en el centro de la calle Matías Perelló. Elaboración propia.

Se obtiene una disminución de distancia de 2600 metros y un ahorro de tiempo de 14 minutos calculando la ruta por proximidad.

Centro Consum de la calle Obispo Jaime Pérez

Ruta de entrega por orden de pedido

<table>
<thead>
<tr>
<th>Tramo</th>
<th>Distancia (m)</th>
<th>Tiempo (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-1</td>
<td>800</td>
<td>5</td>
</tr>
<tr>
<td>1-2</td>
<td>1600</td>
<td>7</td>
</tr>
<tr>
<td>2-3</td>
<td>400/1100</td>
<td>2/5</td>
</tr>
<tr>
<td>3-4</td>
<td>280</td>
<td>2</td>
</tr>
<tr>
<td>4-5</td>
<td>1500</td>
<td>6-9</td>
</tr>
<tr>
<td>5-6</td>
<td>1400</td>
<td>4-7</td>
</tr>
<tr>
<td>TOTAL</td>
<td>6680</td>
<td>26-35</td>
</tr>
</tbody>
</table>

Tabla 52. Datos por orden de pedido en el centro de la calle Obispo Jaime Perez. Elaboración propia.

Ruta por proximidad
<table>
<thead>
<tr>
<th>Tramo</th>
<th>Distancia (m)</th>
<th>Tiempo (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-1</td>
<td>450</td>
<td>2</td>
</tr>
<tr>
<td>1-2</td>
<td>350/400</td>
<td>2</td>
</tr>
<tr>
<td>2-3</td>
<td>1400</td>
<td>6</td>
</tr>
<tr>
<td>3-4</td>
<td>300/1200</td>
<td>1/6</td>
</tr>
<tr>
<td>4-5</td>
<td>950</td>
<td>5</td>
</tr>
<tr>
<td>5-6</td>
<td>1100</td>
<td>5</td>
</tr>
<tr>
<td>TOTAL</td>
<td>4600</td>
<td>21</td>
</tr>
</tbody>
</table>

Tabla 53. Datos por orden de pedido en el centro de la calle Obispo Jaime Perez. Elaboración propia.

Se obtiene una disminución de distancia de 2000 metros y un ahorro de tiempo de 11 minutos calculando la ruta por proximidad.
Centro Consum de la calle Conde de Salvatierra

Ruta de entrega por orden de pedido

<table>
<thead>
<tr>
<th>Tramo</th>
<th>Distancia(m)</th>
<th>Tiempo (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-1</td>
<td>1100</td>
<td>4</td>
</tr>
<tr>
<td>1-2</td>
<td>800</td>
<td>4</td>
</tr>
<tr>
<td>2-3</td>
<td>2300</td>
<td>7-10</td>
</tr>
<tr>
<td>3-4</td>
<td>1600</td>
<td>7-10</td>
</tr>
<tr>
<td>4-5</td>
<td>1100</td>
<td>4-7</td>
</tr>
<tr>
<td>5-6</td>
<td>800</td>
<td>5</td>
</tr>
<tr>
<td>TOTAL</td>
<td>7700</td>
<td>31-40</td>
</tr>
</tbody>
</table>

Tabla 54. Datos por orden de pedido en el centro de la calle Conde de Salvatierra. Elaboración propia.

Ruta por proximidad

<table>
<thead>
<tr>
<th>Tramo</th>
<th>Distancia(m)</th>
<th>Tiempo (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-1</td>
<td>600</td>
<td>3</td>
</tr>
<tr>
<td>1-2</td>
<td>600</td>
<td>3</td>
</tr>
<tr>
<td>2-3</td>
<td>800</td>
<td>4</td>
</tr>
<tr>
<td>3-4</td>
<td>700</td>
<td>4</td>
</tr>
<tr>
<td>4-5</td>
<td>450</td>
<td>2</td>
</tr>
<tr>
<td>5-6</td>
<td>900</td>
<td>4</td>
</tr>
<tr>
<td>TOTAL</td>
<td>4050</td>
<td>20</td>
</tr>
</tbody>
</table>

Tabla 55. Datos por orden de proximidad en el centro de la calle Conde de Salvatierra.

Elaboración propia.

Se obtiene una disminución de distancia de 3650 metros y un ahorro de tiempo de 15 minutos calculando la ruta por proximidad

En las tablas, algunos valores de tiempo se pueden ver separados por un guión (4-7), esto quiere decir que cuando se realizó el cálculo Google Maps daba un intervalo de tiempo de 4 a 7 debido al tráfico existente en ese instante. Además marcaba en naranja los tramos de vía donde podía existir un aumento de la intensidad leve y con rojo los tramos de vía más problemáticos.

Otro apunte a realizar es que algunos de los valores están separados por una barra tanto en el tiempo como en la distancia, se han separado así para señalar que en este caso hay una posible modificación de la ruta ya que el punto de entrega se encuentra próximo a una intersección de la vía. Se muestran dos valores, uno corresponde a la distancia que se recorre si el conductor trata de aparcar en la puerta del domicilio donde se va a entregar el pedido, este siempre es el más elevado, el otro valor que es menor que el anterior, se corresponde a la distancia que se recorrería si el conductor estacionara en la intersección y se desplazara a pie hasta la puerta del domicilio. Esta distancia debería estudiarse puesto que supone una disminución de la distancia a recorrer bastante considerable, en el estudio se ha tomado una distancia máxima de 50 metros respecto de la intersección.
Como se puede apreciar en las figuras el hecho de estacionar en la intersección evita que se dé un rodeo de 4 manzanas para entregar el pedido.

Pasando al análisis de las tablas, como se puede apreciar en cada uno de los centros dependiendo del criterio para definir el próximo punto al que se debe entregar la carga, varía el tiempo y la distancia, normalmente a menor tiempo menor distancia puesto que la velocidad de las vías es la misma para casi toda la red viaria dentro de la zona de estudio, aunque sí que puede verse modificado en función de tráfico en ese instante.

Salta a la vista que se produce un notable ahorro tanto de distancia en kilómetros como de tiempo de recorrido cuando se traza la ruta siempre hacia el punto más cercano.

Para una media de 6 pedidos el ahorro en cuanto a tiempo y distancia oscila más o menos entre los mismos valores, se consigue una reducción de entre en el 30% y el 50% de estos.

Si consideramos que los valores utilizados para el estudio son representativos de lo que sucede en el día a día de la empresa, la metodología utilizada debería tenerse en cuenta y aplicar el sistema de rutas mediante la asignación de puntos más cercanos por parte de un sistema SIG que además tenga en cuenta la ventanas de tiempo a las que se tiene que entregar cada uno de los pedidos, modificando la ruta en caso de que...
no se vayan a cumplir los tiempos puesto que supone una mejora considerable en la organización de rutas y en la reducción de tiempos de recorrido.

Una vez vista la cantidad de procesos necesarios para optimizar el sistema de reparto y las diferentes aplicaciones que se necesitan parar llevar a cabo estos procesos, se debería crear una aplicación propia con la ayuda de informático en la que se agruparan las distintas herramientas como mapas interactivos con datos de tráfico o herramientas de análisis de enrutamiento y que la aplicación fuera capaz de automatizar todo el proceso indicando a cada conductor los pasos a seguir durante el transcurso de la jornada. Sería interesante que este sistema también recogiera toda la información que se va generando durante la realización del servicio para poder organizarla y analizarla con el fin de mejorar el servicio ya que como veremos a continuación el análisis de datos juega un papel muy importante en el desarrollo de la actividad.
17. ALMACENAMIENTO DE DATOS

17.1. INTRODUCCION

En un mundo informatizado, virtual y en constante transformación, los datos e informaciones de las empresas se convierten en activos esenciales para la supervivencia. Cada vez más, los negocios necesitan de sistemas que operen en tiempo real y las 24 horas del día.

Las Bases de Datos tienen una gran relevancia a nivel personal, pero más si cabe, a nivel empresarial, y se consideran una de las mayores aportaciones que ha dado la informática a las empresas. En la actualidad, cualquier organización que se precie, por pequeña que sea, debe contar con una Base de Datos, pero para que sea todo lo efectiva que debe, no basta con tenerla, hay que saber cómo gestionarlas.

Para un empresario, es importante estar siempre disponible para satisfacer a su cliente, pero la combinación de adopción de nuevas tecnologías con necesidades nuevas de negocio, crea un ambiente propicio para el caos de datos, sin importar el tamaño de la empresa.

En los últimos años, el acceso a los datos y aplicaciones por distintas plataformas han sido una premisa para llevar a cabo con éxito un negocio, puesto que hoy en día la condición dinámica de las relaciones empresariales hace que sean lideradas por plataformas móviles, redes sociales, Big Data, Analytics y tecnologías en la nube.

El éxito de muchas empresas en crecimiento depende de la recopilación de sus datos y del tratamiento que le dan a esa información. Las empresas en crecimiento cuentan con muchos datos cruciales y es de vital importancia para el negocio su correcto almacenamiento. Por lo tanto, es necesario buscar una estrategia para organizar y administrar adecuadamente sus necesidades de almacenamiento.
Las principales utilidades que ofrece una base de datos a la empresa son las siguientes:

- Agrupar y almacenar todos los datos de la empresa en un único lugar.
- Facilitar que se compartan los datos entre los diferentes miembros de la empresa.
- Evitar la redundancia y mejorar la organización de la agenda.
- Realizar una interlocución adecuada con los clientes.

En la era de la información, los datos son los insumos más importantes para la generación de conocimiento y ventaja competitiva para los negocios. Nombres de clientes y datos de inscripción en general, historial de ventas, información de crédito y stock, son datos básicos para el día a día de cualquier organización.

- Los objetivos que se pretenden conseguir realizando una organización y manipulación de datos son:
 - Rapidez de entrega
 - Reducción de costes
 - Fiabilidad
 - Maximización del volumen de servicio

Los beneficios que justifican su importancia son:

- Optimización de costes
- Agilidad en el desarrollo de procesos logísticos
- Mejora de la calidad del producto
- Nivel de satisfacción del cliente
- Reducción de tareas administrativas

17.2. BIG DATA

Big data, macrodatos o datos masivos es un concepto que hace referencia al almacenamiento de grandes cantidades de datos y a los procedimientos usados para encontrar patrones repetitivos dentro de esos datos.
Se trata de una nueva tendencia en el avance de la tecnología que ha abierto las puertas hacia un enfoque de entendimiento y toma de decisiones diferente, la cual es utilizada para describir enormes cantidades de datos que tomaría demasiado tiempo y sería muy costoso cargarlos a un base de datos relacional para su análisis.

Además del gran volumen de información, esta existe en una gran variedad de datos que pueden ser representados de diversas maneras en todo el mundo, por ejemplo de dispositivos móviles, audio, video, sistemas GPS, sensores, los cuales pueden medir y comunicar el posicionamiento, movimiento, vibración, temperatura, etc. de tal forma que las aplicaciones que analizan estos datos requieren que la velocidad de respuesta sea lo demasiado rápida para lograr obtener la información correcta en el momento preciso. Si bien sabemos que existe una amplia variedad de tipos de datos a analizar, una buena clasificación nos ayudaría a entender mejor su representación.

Una vez recopilados y clasificados todos los datos, debe tenerse claro el problema que se está intentando resolver, de esta forma poder enfocar el análisis en la dirección deseada y obtener unos resultados que sean útiles para nuestro negocio.

17.3. TIPOS DE DATOS

- **Web y de Redes Sociales:** Incluye contenido web e información que es obtenida de las redes sociales como Facebook, Twitter, LinkedIn, blogs.
- **Machine-to-Machine (M2M):** M2M se refiere a las tecnologías que permiten conectarse a otros dispositivos. M2M utiliza dispositivos como sensores o medidores que capturan algún evento en particular (localización, velocidad media, tiempos de recorrido,) los cuales transmiten a través de redes alámbricas, inalámbricas o híbridas a otras aplicaciones que traducen estos eventos en información significativa.
- **Datos de transición:** Incluye registros de facturación, en telecomunicaciones registros detallados de las llamadas (CDR), etc. Estos datos transaccionales están disponibles en formatos tanto semiestructurados como no estructurados.
- **Biometricos:** Información biométrica en la que se incluye huellas digitales, escaneo de la retina, reconocimiento facial, genética, etc. En el área de
seguridad e inteligencia, los datos biométricos han sido información importante para las agencias de investigación.

- **Generados por los humanos**: Las personas generamos diversas cantidades de datos como la información que guarda un call center al establecer una llamada telefónica, notas de voz, correos electrónicos, documentos electrónicos, estudios médicos, etc.

17.4. ANÁLISIS DE DATOS

Teniendo los datos necesarios almacenados según diferentes tecnologías de almacenamiento, nos daremos cuenta que necesitaremos diferentes técnicas de análisis de datos como las siguientes:

- **Asociación**: Permite encontrar relaciones entre diferentes variables. Bajo la premisa de causalidad, se pretende encontrar una predicición en el comportamiento de otras variables. Estas relaciones pueden ser los sistemas de ventas cruzadas en los e-commerce.

- **Minería de datos (Data Mining)**: Tiene como objetivo encontrar comportamientos predictivos. Engloba el conjunto de técnicas que combina métodos estadísticos y de machine learning con almacenamiento en bases de datos. Está estrechamente relacionada con los modelos utilizados para descubrir patrones en grandes cantidades de datos.

- **Agrupación (Clustering)**: El análisis de clústeres es un tipo de minería de datos que divide grandes grupos de individuos en grupos más pequeños de los cuales no conocíamos su parecido antes del análisis. El propósito es encontrar similitudes entre estos grupos, y el descubrimiento de nuevos conociendo cuáles son las cualidades que lo definen. Es una metodología apropiada para encontrar relaciones entre resultados y hacer una evaluación preliminar de la estructura de los datos analizados.

- **Análisis de texto (Text Analytics)**: Gran parte de los datos generados por las personas son textos, como e-mails, búsquedas web o contenidos. Esta metodología permite extraer información de estos datos y así modelar temas y asuntos o predecir palabras.
17.5. UTILIDAD EMPRESARIAL DEL BIG DATA

- **Ventajas competitivas en la gran distribución**: permite actualizar, optimizar y afinar inventarios en función de la demanda en tiempo real. El data mining o extracción de datos posibilita el análisis del comportamiento de los clientes, fijar los precios en consecuencia u ofrecer los incentivos adecuados para atraer a los clientes. Es posible realizarlo mediante la digitalización de elementos como los almacenes o las cajas registradoras.

- **Mejora de la eficiencia y los costes**: el análisis del Big Data puede acelerar la velocidad con que se desarrolla un producto. También permite compartir datos de forma rápida y realizar simulaciones de producto. En algunos sectores, los plazos de desarrollo se han llegado a reducir entre el 30% y el 50%.

- **Mejora de la gestión empresarial**: además de optimizar la cadena de suministro y el inventario, el Big Data puede ser útil para reducir el ciclo de conversión de efectivo, controlar factores de riesgo y tomar decisiones empresariales que pueden virar el futuro de la empresa fundamentadas en datos recogidos en tiempo real.

- **Almacenamiento en la nube**: uno de los problemas para gestionar altos volúmenes de datos es el elevado coste de la infraestructura de almacenamiento. Muchos proveedores de almacenamiento masivo de datos alquilan potentes servidores a los que se puede acceder en línea, y ponen a disposición del cliente como solución almacenarlos en una especie de nube. El resultado es que se puede acceder a ella mediante aplicaciones diseñadas para manejar grandes volúmenes de datos y se pueden obtener soluciones a menudo en tiempo real de forma sencilla.

- **Redes Sociales**: Cada vez más tendemos a subir a las redes sociales toda nuestra actividad y la de nuestros conocidos. Las empresas utilizan esta información para cruzar los datos de los candidatos a un trabajo, les permite crear una lista de posibles candidatos según el perfil profesional necesario, y así pasar a ofrecer el puesto de trabajo a un público mucho más objetivo.

En el caso concreto de CADE, la utilización y el análisis de datos masivos puede reportar grandes beneficios. La recopilación de información es una de las partes que más importancia puede tener para una empresa que realiza servicios a terceros.
Organizar la información de forma que se encuentren patrones de conducta o relaciones que no se habían percibido a simple vista, conocer los hábitos de compra del cliente para poder anticiparse a sus necesidades y predecir comportamientos puede ser una de las claves para ofrecer un mejor servicio al cliente.

Tanto CADE como Consum deberían ser conscientes de la importancia de este apartado, disponer de una base de datos donde almacenar y organizar toda esta información en la actualidad es casi imprescindible. Aparentemente los datos pueden no tener ninguna relación entre sí, o no ser importantes para una de las partes pero mediante combinación de métodos estadísticos puede llegar a ser información de gran valor para la empresa.

Información a recoger por parte de CADE:

- Nombre del cliente.
- Dirección.
- Fecha
- Hora de realización de la compra
- Hora de recepción
- Valor del pedido (Consum)
- Número de cajas que se necesitan para transportar el pedido
- Productos que suele contener
- Frecuencia con la que solicita el servicio
- Centro de distribución del que proviene
- Vehículo que realiza el servicio
- Distancia al centro de distribución
- Tiempo que se tarda en realizar el envío

Cruzando todos estos datos y agrupándolos de distinta formas se puede obtener información relevante para la organización del servicio de reparto. Saber que centros realizan más envíos a domicilio, la distancia media a la que cada centro envía los pedidos, la media de kilómetros realizados al día por cada furgoneta, se podrían crear zonas de influencia de cada centro, teniendo en cuenta también la localización de otros centros de alimentación y saber cuántos pedidos realiza el centro fuera de su zona de influencia.
No toda esta información está al alcance de CADE, algunos de estos datos solamente son conocidos por parte de Consum, es muy importante que exista una estrecha colaboración entre las partes implicadas, teniendo en cuenta objetivos en común, para realizar un buen análisis.

Durante el transcurso del ejercicio se le solicita a CADE la información que recogía un vehículo durante una jornada laboral y se nos facilita una tabla con los siguientes datos:

<table>
<thead>
<tr>
<th>Id</th>
<th>IdConductor</th>
<th>Fecha</th>
<th>Latitud</th>
<th>Longitud</th>
<th>Calidad</th>
<th>Exactitud</th>
<th>Online</th>
<th>FechaGPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>272158</td>
<td>201</td>
<td>1/3/16 8:04</td>
<td>39,5030632</td>
<td>-0.4483483</td>
<td>1</td>
<td>350</td>
<td>1</td>
<td>1/3/16 8:04</td>
</tr>
<tr>
<td>272180</td>
<td>201</td>
<td>1/3/16 8:09</td>
<td>39,503849</td>
<td>-0.4478027</td>
<td>1</td>
<td>192</td>
<td>1</td>
<td>1/3/16 8:09</td>
</tr>
<tr>
<td>272181</td>
<td>201</td>
<td>1/3/16 8:09</td>
<td>39,5010452</td>
<td>-0.4477707</td>
<td>0</td>
<td>1004</td>
<td>1</td>
<td>1/3/16 8:09</td>
</tr>
<tr>
<td>272183</td>
<td>201</td>
<td>1/3/16 8:10</td>
<td>39,5041847</td>
<td>-0.4480602</td>
<td>1</td>
<td>128</td>
<td>1</td>
<td>1/3/16 8:10</td>
</tr>
<tr>
<td>272190</td>
<td>201</td>
<td>1/3/16 8:13</td>
<td>39,5041847</td>
<td>-0.4480602</td>
<td>1</td>
<td>128</td>
<td>1</td>
<td>1/3/16 8:13</td>
</tr>
<tr>
<td>272198</td>
<td>201</td>
<td>1/3/16 8:15</td>
<td>39,5042992</td>
<td>-0.4477808</td>
<td>1</td>
<td>350</td>
<td>1</td>
<td>1/3/16 8:15</td>
</tr>
<tr>
<td>272199</td>
<td>201</td>
<td>1/3/16 8:15</td>
<td>39,5010452</td>
<td>-0.4477707</td>
<td>0</td>
<td>1004</td>
<td>1</td>
<td>1/3/16 8:15</td>
</tr>
<tr>
<td>272200</td>
<td>201</td>
<td>1/3/16 8:15</td>
<td>39,503746</td>
<td>-0.4481022</td>
<td>1</td>
<td>300</td>
<td>1</td>
<td>1/3/16 8:15</td>
</tr>
<tr>
<td>272247</td>
<td>201</td>
<td>1/3/16 8:28</td>
<td>39,5042992</td>
<td>-0.4477808</td>
<td>1</td>
<td>350</td>
<td>1</td>
<td>1/3/16 8:28</td>
</tr>
<tr>
<td>272311</td>
<td>201</td>
<td>1/3/16 8:43</td>
<td>39,503746</td>
<td>-0.4481022</td>
<td>1</td>
<td>300</td>
<td>1</td>
<td>1/3/16 8:43</td>
</tr>
<tr>
<td>272322</td>
<td>201</td>
<td>1/3/16 8:45</td>
<td>39,5045578</td>
<td>-0.4695621</td>
<td>0</td>
<td>1966</td>
<td>1</td>
<td>1/3/16 8:45</td>
</tr>
<tr>
<td>272363</td>
<td>201</td>
<td>1/3/16 8:58</td>
<td>39,5045578</td>
<td>-0.4695621</td>
<td>0</td>
<td>1966</td>
<td>1</td>
<td>1/3/16 8:58</td>
</tr>
<tr>
<td>272376</td>
<td>201</td>
<td>1/3/16 8:58</td>
<td>39,5045578</td>
<td>-0.4695621</td>
<td>0</td>
<td>1966</td>
<td>1</td>
<td>1/3/16 8:58</td>
</tr>
</tbody>
</table>

Figura 64. Datos facilitados por CADE

A simple vista se observan datos que parecen no tener mucha utilidad en cuanto al servicio de entrega o que por lo menos no está ordenada de la forma correcta.

Las columnas “Calidad”, “Exactitud” y “Online” son datos que se recogen sobre el funcionamiento del GPS para los que se debería crear una base de datos que organice los datos independientemente de los datos del pedido y del cliente.

También se ve como el GPS realiza posicionamientos innecesarios, realizados en horas en las que los vehículos no están operativos, en la tabla se aprecia que el vehículo permanece situado en el mismo punto la mayor parte del tiempo que suponen un coste innecesario para el servicio.
18. VEHÍCULOS ALTERNATIVOS

18.1. INTRODUCCION

Las nuevas fuentes de energía están llamadas a formar parte de la movilidad sostenible en las ciudades, debido a sus beneficios en materia de eficiencia energética y reducción de la dependencia de los productos petrolíferos, así como por la reducción de emisiones de CO\textsubscript{2} y de otras emisiones contaminantes y de efecto invernadero. La implantación de estos vehículos ayudaría por tanto a mejorar la calidad del aire de nuestras ciudades y a disminuir la contaminación acústica y favoreciendo además el consumo de energías autóctonas, especialmente de fuentes renovables.

Se parte por tanto del convencimiento de que esta tecnología de transporte representa, en el actual contexto económico, un reto y una oportunidad para varios sectores estratégicos como son el energético, el de automoción y el de tecnologías de la información y las comunicaciones, tanto desde un punto de vista industrial y tecnológico, como energético y medioambiental.

El Plan de Impulso a la Movilidad con Vehículos de Energías Alternativas (MOVEA), es una medida que forma parte de la Estrategia de Impulso del Vehículo con Energías Alternativas (VEA) en España 2014-2020, diseñada y puesta en marcha por el Ministerio de Industria, Energía y Turismo, en colaboración con otras entidades y Ministerios, con el objeto de unificar los distintos programas y planes dirigidos a apoyar la adquisición de los vehículos más eficientes que se han desarrollado hasta el momento. El presente Plan, desarrollado conjuntamente por el Ministerio de Industria, Energía y Turismo y por el Ministerio de Agricultura, Alimentación y Medio Ambiente, pretende continuar y unificar el Plan PIMA Aire y el Plan MOVELE para promocionar los vehículos impulsados por energías alternativas.

Se concederán ayudas a la adquisición de vehículos eléctricos, de gas licuado del petróleo (GLP/Autogás), de gas natural comprimido (GNC) y licuado (GNL), motos eléctricas y bicicletas de pedaleo asistido por motor eléctrico. También se seguirán contemplando las ayudas para la instalación de puntos de recarga.
18.2. FUENTES DE ENERGÍA ALTERNATIVAS

- **Gas natural comprimido**: Una de las alternativas a la gasolina es el gas natural comprimido o GNC, que consiste en un depósito de gas metano almacenado a mucha presión en depósitos voluminosos. Bajo coste económico, el precio del kilo es de aproximadamente un euro y con 11 kilos se pueden realizar hasta 380 km. A nivel ecológico, es aún más limpio que el GLP. Respecto a gasolina y gasóleo, reduce hasta un 97% el monóxido de carbono y emisiones contaminantes, hasta el 100% de las partículas, no emite nada de azufre ni de plomo. Además es un recurso que se puede generar de forma natural.

- **Gas natural licuado**: El gas natural empleado como combustible vehicular es el mismo que se emplea en la calefacción o producción de agua caliente, pero se suministra en unas condiciones especiales de presión y temperatura que permite la carga en vehículos. El Gas Natural Licuado (GNL) se suministra en forma líquida a baja temperatura. Es similar al gas natural comprimido pero este ofrece una mayor autonomía a los vehículos, este sistema se utiliza en camiones de largo recorrido, es inusual verlo en vehículos de uso convencional. Es más económico que lo derivados del petróleo, más respetuoso con el medio ambiente, reduce casi al 100% las emisiones de agentes contaminantes y también es un carburante más seguro y menos inflamable.

- **GLP**: El gas licuado (propano, butano y autogás) es una fuente de energía eficiente y sostenible, con un poder calorífico mucho más alto que los combustibles tradicionales, lo que significa que una llama de GLP produce mucho más calor que la de otras energías. Dada su relación efectividad-coste, puede representar cinco veces más eficiencia que los combustibles tradicionales. Esta fuente de energía contribuye a la protección de la salud humana y del medio ambiente gracias a sus bajos índices contaminantes y su fuente energética baja en carbono. Suelen ser versiones con potencias no muy altas (la mayoría entre 70 y 100 CV) y tienen un sobrecoste entre 1.500 y 2.000 euros aproximadamente sobre la versión de gasolina equivalente.
- Ventajas medioambientales frente a la gasolina
 - Reducción del 68% de las emisiones de NOx
 - Reducción del 15% de las emisiones de CO2

- Ventajas medioambientales frente al gasóleo o biodiesel
 - Reducción del 99% de las emisiones de partículas
 - Reducción del 96% de las emisiones de NOx
 - Reducción del 50% del nivel de ruido
 - Reducción del 10% de las emisiones de CO2

- **Energía eléctrica**: Sistema de baterías implantadas en un vehículo que se nutre de energía eléctrica para desplazarse. La propulsión es exclusiva por medio de un motor eléctrico alimentado por una batería que se recarga en las desaceleraciones, frenada y conectando en la red. La recarga puede ser rápida: 20 minutos; semirrápida: 1h 30 min y lenta: 7 h.
 - No contamina y además, es silencioso. La autonomía actual de estas máquinas ronda en torno a los 130 y 250 Km y los gastos de mantenimiento se reducen considerablemente.
 - La recarga supone un coste más bajo que el repostaje dependiendo del tamaño del vehículo. Para un consumo medio de 15 kWh/100km, puede suponer un coste de unos 1,5€/100km, frente a un mínimo de 8,45€/100km de un vehículo de combustión tradicional.
 - Reduce totalmente el impacto negativo de los vehículos en el medio ambiente y sus recursos naturales, utiliza menos energías y más limpias.

18.3. **BENEFICIOS FISCALES**

Además de todas estas ventajas medioambientales, todos los vehículos que utilizan energías alternativas se ven económicamente beneficiados puesto que todo aquel vehículo cuyas emisiones sean inferior a 120g/km están exentos de pagar el impuesto de matriculación y tienen una reducción de entre el 50% y el 75% en el impuesto de circulación.
También se les aplican tarifas especiales en aparcamientos como la zona azul y en los peajes de las autopistas.

Entre las medidas contempladas en la estrategia hasta ahora, han ocupado un lugar destacado las orientadas al fomento de la demanda de vehículos eléctricos y en particular, las ayudas para la adquisición de estos vehículos, establecidas por Decreto el que se regula la concesión directa de subvenciones para la adquisición de vehículos eléctricos desde el año 2011 hasta la actualidad. Estos programas de incentivos, complementados por otros programas y proyectos puestos en marcha con anterioridad, han contribuido a favorecer la adquisición de cerca de 10.000 vehículos eléctricos hasta final de 2014, lo que permitirá evitar, a lo largo de la vida útil de los mismos, la emisión de 150.000 toneladas de CO$_2$ y el ahorro en ese periodo de 300.000 barriles de petróleo.

En este contexto, y atendiendo al elevado coste que todavía tiene el vehículo eléctrico a día de hoy, con relación a los vehículos de tecnologías convencionales, la Secretaría General de Industria y de la PYME ha estimado conveniente y necesario dar continuidad a tales programas de incentivos, encaminados a promover su adquisición, como el que se lleva a cabo mediante la regulación de concesión directa de subvenciones, establecida por este real decreto y cuya gestión se encomienda al Instituto para la Diversificación y Ahorro de la Energía (IDAE).

Este programa de incentivos mantiene la mayoría de los requisitos establecidos en el Real Decreto 414/2014, de 6 de junio, por el que se regula la concesión directa de subvenciones para la adquisición de vehículos eléctricos en 2014 (Programa MOVELE 2014), llevado a cabo en el marco de la Estrategia Integral de Impulso al Vehículo Eléctrico en España 2010-2014.

Constituye el objeto y finalidad de este real decreto, la regulación del procedimiento para la concesión directa de ayudas a la adquisición de vehículos eléctricos en el año 2015 (Programa MOVELE 2015), para incentivar y promover la adquisición de vehículos eléctricos nuevos, entendiendo como tales aquellos cuya energía de propulsión procede, total o parcialmente, de la electricidad de sus baterías, cargadas a través de la red eléctrica, facilitando y fomentando, con ello, el desarrollo de la movilidad eléctrica por su contribución a la mejora del sector del transporte, de la eficiencia energética y medioambiental así como a la reducción de la dependencia energética del petróleo.
Las ayudas se destinarán a la adquisición directa o a la adquisición por medio de operaciones de financiación por leasing financiero o arrendamiento por renting (también llamado leasing operativo) de las siguientes categorías de vehículos eléctricos nuevos, matriculados por primera vez en España, que hayan sido adquiridos y abonados al punto de venta en su totalidad.

En este caso las furgonetas utilizadas para el servicio a domicilio de productos alimentarios se encuentran dentro de la siguiente categoría:

- **Furgonetas o camiones ligeros N1**: Vehículos de motor destinados al transporte de mercancías que tengan, por lo menos, cuatro ruedas con una masa máxima autorizada (MMA) igual o inferior a 3.500 kg.

La adquisición de vehículos comerciales de las categorías N1 y N2 y vehículos microbuses de la categoría M2, con autonomía en modo exclusivamente eléctrico superior a 60 km será objeto de una subvención de 8.000 euros por vehículo.

En el marco de este programa, se establece un límite de adquisición de vehículos por parte de un mismo beneficiario de hasta un máximo de treinta vehículos para autónomos y entidades públicas o privadas con personalidad jurídica.

Los vehículos susceptibles de ser apoyados en el marco del presente programa de ayudas, deberán figurar en el Catálogo de Vehículos (Catálogo MOVELE) publicado en la página web: www.movele.es, en la fecha de realización de la reserva de presupuesto, de acuerdo con lo dispuesto en el artículo 8.c).

De conformidad con los citados Reglamentos (UE y CE) 1407/2013, 1408/2013 y 875/2007, la cuantía de la subvención o ayuda acumulada a las que hayan percibido por el concepto de minimis en el ejercicio 2015 y en los dos ejercicios anteriores, no podrá exceder de la cantidad de 200.000 euros.

18.4. **IMPLANTACIÓN DE LOS VEHÍCULOS EN EL CASO**

En el caso de la empresa CADE los vehículos que se utilizan para realizar el servicio son furgonetas de 3.500 kg de carga máxima por lo tanto entran dentro de la categoría N1.
Teniendo en cuenta la localización de los servicios que Consum ha encomendado a CADE y las restricciones de longitud máxima de envío, se puede decir que la implantación de este tipo de vehículo solo sería viable en las ciudades más grandes. Esto se debe a que la longitud máxima de envío son solo 3 kilómetros, llegando raras veces a alcanzarse esa cifra, ya que, a pesar de no disponer de datos contrastados, según el estudio realizado teniendo en cuenta la proximidad de los distintos centros dentro del entramado urbano de la ciudad de Valencia, se puede asumir no mayor de 1 kilómetro, sobrepasando esta distancia en centros puntuales.

Los vehículos eléctricos poseen una autonomía máxima de 180 km con las baterías cargadas al 100%, serían capaces de llevar a cabo el servicio de un día sin tener que parar a cargar las baterías. Esta tarea se complicaría en centros localizados en ciudades y pueblos pequeñas debido a que las distintas suelen ser considerablemente mayores.

18.4.1. VENTAJAS

En cuanto a la adquisición de dichos vehículos, la empresa podría beneficiarse de las ayudas que ofrece el plan MOVEA para vehículos respetuosos con el Medio Ambiente. Según las restricciones del plan, la empresa podría beneficiarse de un máximo de 200.000 durante el transcurso de 3 ejercicios, a 8.000 euros por vehículo eléctrico adquirido que forme parte de la categoría N!, se podrían adquirir 25 vehículos en un periodo de 3 años que aprovechen estas ayudas.

Estos 25 vehículos estarían destinados a desempeñar los servicios de la ciudad de Valencia, de la cual CADE realiza los envíos de 61 centros de Consum, por lo tanto casi la totalidad de los vehículos dentro de los servicios dentro de la ciudad podrían afrontarse con vehículos eléctricos.

Los beneficios serían bastante importantes a largo plazo, puesto que la energía eléctrica es bastante más económica, casi veces más barata que los combustibles convencionales. Cabría tener en cuenta el ahorro en cada coche respecto a impuestos de matriculación, impuestos de circulación mantenimiento y estacionamiento.

El impuesto de matriculación depende del valor fiscal de vehículo y de sus emisiones de CO2 a la atmósfera. Cualquier vehículo con una emisión inferior a 120g/km no paga
impuesto de matriculación. El impuesto de circulación varía desde los 500 euros de los coches menos contaminantes hasta los 1.600 € los más contaminantes, la suma se incrementa con el aumento de precio del vehículo.

El impuesto de circulación en Valencia es de 210€ al año, para vehículo eléctrico tiene una reducción del 75%, por lo que se pasaría a pagar 52€ al año. El precio del seguro de un coche eléctrico es entre en un 5% y un 15% más barato. El ahorro en el mantenimiento viene a estar sobre un 20% respecto a los vehículos convencionales.

18.4.2. INCONVENIENTES

Después de realizar este estudio sobre estos vehículos que los vehículos eléctricos son considerablemente más caros, las furgonetas de carga que mejor se adaptan al servicio que realiza CADE parten desde los 20.000€ en adelante, a pesar de esto los precios entre vehículos convencionales y eléctricos se pueden llegar a equiparar debido a las ayudas y a los ahorros adicionales.

Otro hándicap es la escasa autonomía de estos vehículos aunque para el papel que desempeñaría en la empresa pueden ser aceptables, siguen teniendo una autonomía muy reducida.

Las baterías se desgasta con el paso de los años (5 o 6 años) y este es un componente costoso de cambiar, pueden alcanzar cifras de hasta 5.000 € y las reparaciones tienen que ser realizadas por talleres especializados.

El catálogo de vehículos eléctricos es bastante reducido, además, para beneficiarse de las ayudas para adquisición de estos vehículos hay que hacerlo en los centros adheridos a la promoción, lo que hace que se reduzcan todavía más las posibilidades.

Adicionalmente, la infraestructura de recarga asociada a los vehículos eléctricos es la que presenta actualmente mayores barreras a su implantación, ya que existen escasos puntos dentro de la ciudad de Valencia donde poder conectar un vehículo en caso de emergencia. Tampoco se puede abusar de los puntos de recarga rápida puesto que fatigan los componentes de los vehículos.

Si se decidiera adquirir una flota de vehículos de estas características sería interesante la implantación en la sede de CADE de una estación de suministro dotada de todos los
enchufes y servicios necesarios para atender dicha flota, pudiendo además, dar servicio a otros vehículos que soliciten el repostaje con sus consecuentes beneficios.
CONCLUSIONES DEL BLOQUE IV

Tras la realización de este estudio en el que se analizan varias formas de mejorar el servicio de distribución urbana de mercancías se pueden alcanzar varias conclusiones:

- Las nuevas tecnologías son una herramienta imprescindible para la mejorar la calidad de los servicios de una empresa, ofrecen una serie de servicios y comodidades que agradan al cliente.
- La creación de una aplicación que automatice el servicio de distribución aportaría grandes beneficios a la empresa.
- La utilización de sistemas de información geográfica para el enrutamiento de los servicios de entrega supone un gran ahorro tanto de tiempos de entrega, como de kilómetros realizados por el vehículo, lo que supone la disminución del desgaste del vehículo y la optimización del sistema de reparto.
- El análisis de datos es un apartado a tener muy en cuenta y que puede marcar la diferencia a la hora de prestar un servicio, es necesaria su correcta organización y el análisis de los mismos para poder sacarles el máximo partido.
- Aunque la utilización de vehículos sería un punto positivo para la empresa, las condiciones de infraestructura y los costes no favorecen que se utilice este tipo de vehículos en las empresas de distribución de mercancías.

Después de comentar estos puntos que son importantes para la mejora del servicio añadir que la empresa de logística CADE añadir a su plantilla una sección para que se encargue de todas las actividades que tienen que ver con la implantación y aprovechamiento de las nuevas tecnologías en el día a día de la empresa.

Una vez terminado el estudio, se puede decir que aunque no llega a unas conclusiones definitivas en cuanto a la implantación de mejoras para el servicio de distribución de mercancías, si se asientan la bases de la forma en que se debería proceder para alcanzar dichos objetivos.
20. PROPUESTAS DE MEJORA

Este apartado pretende enunciar una serie de propuestas que se deberían estudiar por parte de CADE para aumentar los beneficios y la calidad de su servicio.

Aunque el hecho de informatizar todo el proceso supone una gran mejora para el servicio en general, existen varios factores que quizás no sean los más adecuados para el sistema y que se podrían optimizar.

Uno de estos factores sería que el sistema pregunte al conductor si puede realizar el pedido según su volumen de trabajo, el sistema tendría que ser capaz de realizar los algoritmos pertinente para saber si debe asignarle ese servicio a un conductor en función de la cantidad de trabajo acumulado que tenga, sin dejar que esa elección se haga bajo el criterio del conductor. El sistema también debería ser capaz de trazar la ruta más rápida en función del tiempo para un momento del día en concreto, puesto que la intensidad del tráfico afecta al tiempo que se tarda en transportar el pedido.

Además, podría establecer el orden en que se entregan los pedidos que lleva cargados en el vehículo, es decir, no solo generar la ruta más óptima para el siguiente pedido que aparece en la lista según el orden de entrada, sino ser capaz de analizar todos los pedidos en conjunto y trazar una ruta de entrega para todos los pedidos en el menor tiempo posible y teniendo en cuenta que todos deben ser entregados a tiempo. Esta ruta debería poder actualizarse si surge algún inconveniente y resulta inviable la entrega de los pedidos en tiempo.

Aunque ArcGis es un software de gran utilidad y puede aportar mejoras al proceso de entrega de los pedidos, por sí solo no es de gran ayuda.

Para realizar esta serie de mejoras se debería trabajar conjuntamente con un informático para crear una aplicación propia e independiente en la que se fusionen las herramientas de ArcGis con los servicios APIs de Google que ofrecen gran cantidad de información georreferenciada, además de información sobre el tráfico en tiempo real y estimaciones de tiempo de recorrido en función del tiempo de recorrido de los demás conductores que utilizan el servicio Google Maps.
ArcGis en su aplicación proporciona el código fuente de sus herramientas en lenguaje de programación Python, por lo que se pueden aprovechar estos códigos para diseñar una aplicación que realice los cálculos de manera automática cada vez que el conductor cargue un pedido en la furgoneta utilizando los datos que Consum introduce en el sistema cuando el cliente realiza la compra.

Ajustar al máximo estos factores puede suponer para CADE un aumento del volumen de servicio interesante.

Otro punto a mejorar es el almacenamiento y tratamiento de los datos. Los datos deberían ser organizados según la información que ofrecen y según el uso que se vaya a hacer de ellos. Esto nos ayudaría a analizarlos de una forma efectiva y conocer la realidad del servicio para poder dar un solución lo más ajustada posible al problema de reparto.

También sería necesario comunicar a Consum la intención de realizar ciertos cambios en la organización del servicio que ofrecen como agrupar las franjas de envío en intervalos de 2 horas para poder dar mayor flexibilidad al servicio y aprovechar la acumulación de pedidos para reducir los tiempos de reparto.

Además se tendrían que cambiar las condiciones del servicio en los pueblos alejados de las grandes zonas urbanas ya que el volumen de pedidos es muy bajo, el hecho de tener que desplazarse hasta ellos cada vez que realiza una solicitud de entrega a domicilio supone una pérdida de beneficios considerable, además de un desajuste para los demás servicios de entrega. La idea sería proponer a Consum el reparto de mercancías de esos centros en dos horarios, uno de mañana y otro de tardes y realizar el reparto de estos centros dos veces al día.
21. BENEFICIOS ESPERADOS

EN CUANTO A RECOGIDA DE DATOS

- Acceso a la información de una forma más fluida.
- Mejora de la calidad de las datos
- Reconocimiento de patrones de compra: porcentaje de compras que se llevan fuera de la zona de influencia hipotéticamente delimitada, porcentaje de pedidos que se repiten, fidelización de clientes.

EN CUANTO A DIMENSIONAMIENTO DE FLOTA Y ORGANIZACIÓN

- Mejor organización y aprovechamiento de la flota de vehículos
- Aumento del número máximo de pedidos por franja horaria para una furgoneta.
- Carga del vehículo según el orden de entrega por proximidad y no según orden de realización de los pedidos en el centro.
- Aumento de los beneficios gracias al mejor aprovechamiento de los
- Automatización del proceso de reparto de mercancías

EN CUANTO GENERACIÓN DE RUTAS

- Reducción de kilómetros por parte de cada vehículo con todos los beneficios que eso conlleva: menor gasto de combustible, menor desgaste del vehículo.
- Creación de modelos de análisis de rutas que tengan que analicen todas las posibles soluciones en tiempo real, incluyendo información como la intensidad de tráfico en una franja horaria concreta.
- Localizar puntos de estacionamiento para entorpecer lo menos posible la normal circulación de vehículos por la vía pública.
- Conseguir implementar una aplicación móvil que mejore la presente, la cual incluya una mejor organización de pedidos y la generación de rutas teniendo en cuenta factores como: la distancia al punto de entrega, tiempo de recorrido, hora máxima de entrega de los pedidos.
22. BIBLIOGRAFÍA

- **Calvo, M.** (2012) "Geo-conceptualización y modelado del espacio geográfico". EAE. Saarbrücken,
- **Cabeza Nieto, Domingo**.(2012). Logística inversa en la gestión de la cadena de suministro.
- **Institut Cerdà.** (2010). Logística urbana. Ciudad y mercancías.
- **Tutorial Network Analyst.** ArcGis.
- **Tutorial de Geodataset.** ArcGis.
- **Parlamento Europeo.** (2010). El futuro de un transporte de mercancías y una logística sostenibles.
- **Ministrio de Fomento.** (2016) Observatorio de costes del transporte de mercancías por carretera de Abril de 2016.

PÁGINAS WEB:

- www.consum.es
- www.elpais.com
- www.valenciaplaza.com
- http://www.magrama.gob.es/
- https://www.ign.es/ign/
- http://www.minetur.gob.es/