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Abstract. Mathematical expression recognition is an active research
field that is related to document image analysis and typesetting. In this
study, we present a novel global performance evaluation measure for
mathematical expression recognition based on image matching. Using an
image representation for evaluation tries to overcome the representation
ambiguity as human beings do. The results of a recent competition were
used to perform several experiments in order to analyze the benefits and
drawbacks of this measure.
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1 Introduction

Automatic recognition of Mathematical Expressions (ME) is an important prob-
lem for scientific document analysis and scientific document typesetting [3,10].
ME recognition techniques have been studied for both handwritten [10] and
printed ME [3]. For recognition of handwritten ME, most of the works have con-
centrated on online recognition [10]. Online recognition of ME makes use of stroke
information that is not present in offline recognition. Offline techniques [10] must
be considered for handwritten images and printed ME recognition.

ME recognition comprises mainly two problems, that is, the recognition of
mathematical symbols of the ME, and the recognition of the structural relation
between these mathematical symbols [10]. As a pattern recognition problem, a
fundamental issue in ME recognition is the definition of automatic evaluation
techniques. Given that the recognition of mathematical symbols can be stated as
a regular classification problem, the classification error rate of individual symbols
is usually provided as a performance measure. However the recognition of the
structural relation between mathematical symbols, which can be seen a parsing
problem, requires more sophisticated evaluation methods [8,11].

When the ground-truth structural information is fully available, a representa-
tion (for example LATEX format or MathML format) that allows automatic eval-
uation is needed. Evaluation techniques are usually based on tree-matching [8],
but these techniques may report non-existent recognition errors due to the rep-
resentation ambiguity of the coded ME [1].
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In this paper, we present an automatic global performance evaluation mea-
sure of ME recognition systems when the ground-truth information is available
as a coded string in LATEX. Given a recognition result and its ground-truth,
we generated the images from their LATEX string and then we compared both
images. This way we avoided most of ambiguity representation problems by com-
paring ME as human beings do, but the comparison between the images should
be tackled in order to obtain a normalized error value.

We review some proposals for the evaluation of ME in Section 2. Section 3
describes the proposed measure. Section 4 presents the experiments performed
to validate this approach and conclusions are presented in Section 5.

2 Evaluation of ME recognition systems

Several metrics have been proposed in the past to evaluate mathematical expres-
sion recognition systems. Some metrics have be defined at symbol level when the
ground-truth is available [6]. However, these values only take into account the
evaluation of a specific part of the ME recognition problem. Another measure
that is often used is the expression recognition rate [10,6].

Given that the previous methods only provide a partial vision of the possible
errors, additional measures have been developed. Chan and Yeung [2] proposed
an integrated performance measure, which was a simple combination of symbol
recognition and operator recognition rates. Garain and Chaudhuri [4] presented a
global performance index that combined symbol and structural errors according
to the complexity of the ME. Sain et al. [8] proposed EMERS, a tree matching-
based performance evaluation measure. EMERS computes an edit distance using
the tree representation of the ME. Zanibbi et al. [11] defined a set of performance
metrics at different levels based on bipartite graph representation: that different
metrics seem to provide a canonical representation, but it is not detailed in the
paper and no experimentation is reported.

One important problem of the global metrics is the representation ambigu-
ity that is present in the ME ground-truth. Given a ME, it is usually coded
as a string in LATEX or MathML. However, the same ME can be represented
(ground-truthed) in several correct ways using these codifications [1]. Actually,
in competition CROHME 2012 the organizers added a section with normaliza-
tion guidelines for the output tree of recognized ME, although the expression-
level reported metrics were expression recognition rate and structure recognition
rate [6]. Therefore, an automatic global performance evaluation measure that can
tackle the representation ambiguity problem seems appropriate.

3 Image-based ME global error

Given a recognition result of a certain expression and its ground-truth (both
usually coded as a string in LATEX or MathML), we wanted to evaluate the
quality of this result. Since there can be several string representations of the
same ME, and the image obtained should be unique, we propose comparing the
images directly instead of their string representation.
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As the image representation of a ME can be generated from its string codifi-
cation, the idea was to compute a matching between the recognized expression
image (test image) and the ground-truth label (reference image). In the following
subsections we explain how by using an image-matching model (Section 3.1), we
defined the evaluation algorithm (Section 3.2) that is used to finally compute
the recognition error (Section 3.3).

3.1 Image-matching model (IDM)

In order to obtain a matching between two images, the initial idea was to com-
pute a 2-dimensional warping between them. Keysers et al. [5] presented several
deformation models for image classification, and the Image Distortion Model
(IDM) represented the best compromise between computational complexity and
evaluation accuracy. For this reason, we chose the IDM to perform a matching
between two images.

The IDM is a zero-order model of image variability [5]. This model uses a
mapping function with absolute constraints; hence, it is computationally much
simpler than a 2-dimensional warping. Its lack of constraints is compensated
using a local gradient image context window. This model obtains a dissimilitude
measure from one image to another such that if two images are identical, their
distance is equal to zero.

The IDM has two parameters: warp range (w) and context window size (c).
The algorithm requires each pixel in the test image to be mapped to a pixel
within the reference image not more than w pixels from the place it would take
in a linear matching. Over all these possible mappings, the best matching pixel
is determined using the c × c local gradient context window by minimizing the
difference with the test image pixel.

3.2 The evaluation algorithm (BIDM)

Once we had a model that was able to detect similar regions of two images,
we wanted to use this information to compute an error measure between them.
Starting from the IDM-distance algorithm presented in [5], we proposed the
Binary IDM (BIDM) evaluation algorithm shown in Fig. 1. First, instead of
calculating the vertical and horizontal derivatives (‘ver der’ and ‘hor der’) using
Sobel filters, these derivatives are computed using the method described in [9].
Next, the double loop computes the IDM distance for each pixel, and these values
are stored individually. After that, the difference between each pixel of the test
image and the most similar pixel found in the reference image can be represented
as a gray-scale image (Fig. 2c-1). At this point, we have a dissimilitude value
for each pixel of the test image. However, rather than knowing how different a
pixels is, we want to know whether or not a pixel is correct. This is achieved
by normalizing the distance values in the range [0, 255] and then performing a
binarization process using Otsu’s method [7] (Fig. 2c-2). Finally, we intersect the
foreground pixels of the test image with the binarized mapping values (like an
error mask), and, as a result, we know which pixels are properly recognized and
which are incorrectly recognized (Fig. 2c-3). Therefore, since the background
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Input: test image A (I × J), warp range w
reference image B (X × Y ), context window size c
Output: BIDM(w, c) from A to B

Av = ver der(A); Ah = hor der(A); Bv = ver der(B); Bh = hor der(B)
for i = 1 to I do
for j = 1 to J do {
i′ =

⌊
iX
I

⌋
, j′ =

⌊
j Y

J

⌋
, z =

⌊
c
2

⌋
S1 = {1, . . . , X} ∩ {i′ − w, . . . , i′ + w}
S2 = {1, . . . , Y } ∩ {j′ − w, . . . , j′ + w}

map(i, j)= min
x∈S1
y∈S2

z∑
m=−z

z∑
n=−z

(Av
i+n,j+m −Bv

x+n,y+m)2+(Ah
i+n,j+m −Bh

x+n,y+m)2

}
normalize depth(map, 255)
binarize(map) //Otsu’s method

fg = {(x, y) | A(x, y) < 255} //Foreground pixels
cp = fg ∩ {(x, y) | map(x, y) = 0} //Correct pixels

return
|cp|
|fg| //Correct pixels ratio

Fig. 1. Binary IDM (BIDM) evaluation algorithm.

pixels do not provide information, the number of correct pixels is normalized by
the foreground pixels.

The time complexity of the algorithm is O(IJw2c2), where I×J are the test
image dimensions, w is the warp range parameter, and c is the local gradient
context window size. It is important to note that in practice both w and c take
low values compared to the image sizes as we will show in the experiments.

3.3 Recognition error (IMEGE)

The BIDM algorithm computes the number of pixels of an test image that are
correctly allocated in another image according to the IDM model. The algo-
rithm that we used followed the concepts of precision and recall to compute the
Image-based Mathematical Expression Global Error (IMEGE)1. First, we com-
pute the BIDM value from the test image to the reference (precision p). Second,
we compute the same value from the reference image to the test image (recall r).
Finally, both values are combined using the harmonic mean f1 = 2(p ·r)/(p+r),
and we obtain the final error value. Fig. 2 illustrates an example of this process.

4 Experiments

In order to validate our approach we performed several experiments using the
recognition results of a recent competition. We used them to tune the BIDM
parameters. Finally, we added our evaluation measure to the competition results
and the values reported are analyzed.

1 Software available at http://users.dsic.upv.es/~falvaro
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a) Mathematical expression recognition result

ground-truth = {x^2 + 1^3}
recognition = {x2 + 1}

b) Image generation from ground-truth and recognition

img1 = x2 + 13 img2 = x2 + 1
c) BIDM computation in both directions

img2 → img1 img1 → img2

1

2

3

4 precision = 1489 correct
2197 foreground

= 0.6777 recall = 1429 correct
2338 foreground

= 0.6112

d) Recognition global error

f1(precision, recall) = 0.6427

error = 100(1− 0.6427) = 35.73

Fig. 2. Example of the procedure for computing the IMEGE measure given a ME
recognition and its ground-truth in LATEX.

4.1 CROHME 2012 Database

As discussed in Section 2, competitions on ME recognition have taken place re-
cently. The organizers of CROHME 2012 [6] released the recognition results of
the contestants, which provided a great resource for testing evaluation method-
ologies. The competition had 3 different parts each one having a different number
of samples. Part-I was composed of 296 ME for training and 108 ME for test;
Part-II had of 921 ME for training and 301 ME for test; and Part-III was com-
posed of 1336 ME for training and 488 for test. Seven systems participated in
CROHME 2012, hence, the total number of ME for evaluation were 756 for
Part-I, 2107 for Part-II and 3416 for Part-III.

4.2 Parameter tuning

The BIDM has two parameters to be tuned: warp range (w) and context window
size (c). We carried out several experiments to see the influence of each parameter
on the IMEGE metric behavior. BIDM algorithm complexity is proportional to
w2 and c2, so smaller parameter values are preferred. It is important to note
that these values depend on the image resolution.
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The resolution of the images had an important effect on the error computa-
tion due to renderization problems. A single error in a ME can produce displace-
ments that slightly change the shape of other symbols in the expression. We made
several decisions in order to tackle this problem. First, after performing some
previous experiments we selected a 600dpi resolution to generate the ME images
because lower resolution values could make the measure fail due to renderization
problems. Furthermore, the horizontal and vertical derivatives were computed
as described in [9], where a Gaussian function is applied to smooth the image.
Taking this into account, we tuned the amplitude of this function to properly
smooth the derivatives and alleviate the renderization problem. Moreover, the
binarization process performed over the IDM-distance mapping (Fig. 2b-2) dis-
carded small values that could occasionally appear due to slight displacements
caused by a recognition error in another zone of the ME.

We tuned the BIDM parameters using the results of Part-I and Part-II of the
CROHME 2012 competition. ME misrecognitions often produce displacements
in the image generated. For this reason, larger w values are needed to give
enough freedom to the BIDM to match correct recognized displaced regions.
Consequently, tuning experiments showed that as the warp range increases, the
error decreases. For larger values, the error remained almost invariant. As lower
values are preferred, we chose w = 40 as a good compromise between correctness
and performance.

As the IDM is less constrained than a 2D warping, the context window com-
bined with the horizontal and vertical derivatives alleviate this lack. Therefore,
larger context window sizes leaded to more reasonable and homogeneous map-
pings. However, excessive large context window sizes could cover areas that are
to large. This caused misrecognized zones to extend their values to properly
recognized regions and it required more computation time. On the other hand,
small context windows could produce undesired results as, for example, report-
ing no error when comparing expressions ‘(y + 1)2’ and ‘(y + 12)’, because the
algorithm could match every symbol despite one was wrongly placed. For that
reason, we fixed w = 40 and after varying the context window size, we selected
c = 27 because it was the lower value that avoided these unlikely type of errors.

Finally, the IMEGE(w = 40, c = 27) measure represented a good compromise
between computation time and correctness. We tuned these parameters using
many results produced by several systems in a competition on ME recognition.
Thus, the metric IMEGE(w = 40, c = 27, 600dpi) should also be a good measure
for evaluating other ME recognition results, and then it would not be necessary
to tune them again.

4.3 CROHME 2012 Evaluation

The recent competition CROHME 2012 reported several metrics in order to
compare the performance of each system [6]. These measures were: stroke clas-
sification rate (STrec), symbol segmentation rate (SYMseg), symbol recognition
rate (SYMrec), structure recognition rate (Struct) and expression recognition
rate (EXPrec). The systems were ranked according to the EXPrec rate obtained
on Part-III test dataset.



VII

Expression recognition rate is a pessimistic metric because a single recog-
nition error causes that a whole ME is considered as misrecognized. IMEGE
metric computes a global error value that ranges from 0 to 100, hence, despite
the sources of errors are not identified (segmentation, symbol recognition or
structural), it reports a value that measures more precisely the quality of a ME
recognition process. Table 1 shows the CROHME 2012 results including the av-
erage IMEGE(w = 40, c = 27) value for each system. As reported metrics are in
terms of recognition rates, we also reversed the IMEGE value to be consistent
with them.

Table 1. CROHME 2012 results adding the IMEGE average.

System STrec SYMseg SYMrec Struct EXPrec IMEGE

Part I

I 80.74 90.74 89.20 62.04 35.19 79.78
II 59.14 73.31 79.79 21.30 8.33 58.08
III 90.05 94.44 95.96 70.37 57.41 86.58
IV 78.24 92.81 86.62 50.93 28.70 76.46
V 61.33 72.11 87.76 37.04 22.22 63.95
VI 89.00 97.39 91.72 78.70 51.85 85.86
VII 97.01 99.24 97.80 91.67 81.48 94.24

Part II

I 85.05 90.66 91.75 50.17 33.89 80.90
II 58.53 72.19 86.95 12.29 6.64 48.06
III 82.28 88.51 94.43 49.83 38.87 77.44
IV 76.07 89.29 91.21 27.57 14.29 67.01
V 49.06 61.09 88.36 17.61 7.97 47.07
VI 90.71 96.67 94.57 69.44 49.17 80.28
VII 96.85 98.71 98.06 88.37 75.08 91.98

Part III

I 79.85 91.95 86.25 42.21 22.75 73.60
II 55.75 71.21 84.97 9.84 3.69 44.61
III 78.94 87.75 91.38 36.89 25.61 72.47
IV 72.12 87.51 87.62 23.77 9.43 60.61
V 45.42 59.20 84.27 14.75 4.92 44.49
VI 86.41 95.56 91.17 61.27 40.16 79.37
VII 95.75 98.84 96.85 80.33 62.50 88.84

It can be seen that the proposed measure is coherent with the ranking of the
systems. Moreover, as IMEGE considers a range of errors in ME recognition,
there are some interesting results. For example, according to EXPrec in Part-I,
system V obtains significantly better results than system II, but their IMEGE
values are not such different. It seems reasonable because their results at symbol
level are similar, and the distribution of the errors among the ME recognition
results can produce substantial variations in EXPrec.
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5 Conclusions

In this work, we have presented IMEGE, a novel performance evaluation measure
of ME based on image matching. On the one hand, the image representation
solves many of the ambiguity representation problems and this measure provides
a value in [0, 100] than can be interpreted as a visual error (as human beings
do). On the other hand, IMEGE can not distinguish the source of the errors
although it can identify the misrecognized zones of the ME. Given that this
measure takes the global recognition information into account, it can be very
helpful to complement EXPrec and symbol related metrics in order to assess
system’s performance.
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