
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

 

Additional Information 

 

http://dx.doi.org/10.1007/978-3-319-00551-5_66

http://hdl.handle.net/10251/71422

Springer Verlag

Palomares Chust, A.; Carrascosa Casamayor, C.; Rebollo Pedruelo, M.; Gómez, Y. (2013).
Implementing MAS agreement processes based on consensus networks. Distributed
Computing and Artificial Intelligence. 217:553-560. doi:10.1007/978-3-319-00551-5_66.



Implementing MAS Agreement Processes Based on
Consensus Networks

A. Palomares, C. Carrascosa, M. Rebollo, and Y. Gómez

Universitat Politècnica de València,
Camino de Vera s/n 46022 Valencia (Spain)

{apalomares, carrasco, mrebollo, ygomez}@dsic.upv.es

Abstract. Consensus is a negotiation process where agents need to agree upon
certain quantities of interest. The theoretical framework for solving consensus
problems in dynamic networks of agents was formally introduced by Olfati-Saber
and Murray, and is based on algebraic graph theory, matrix theory and control the-
ory. Consensus problems are usually simulated using frameworks as MATLAB or
Mathematica. However simulation using multi-agent system platforms is a very
difficult task due to problems such as synchronization, distributed finalization,
and monitorization among others. The aim of this paper is to propose a protocol
for the consensus agreement process in MAS, implement it in the MAGENTIX2
platform, and integrate the results with a MATLAB in order to get a previous
simulation of the system, check the correctness of the algorithm and validate the
protocol.

Keywords: Self-Organization, Agreement, Consensus, Networks

1 Introduction

In agent-based networks, ’consensus’ is referred to reach an agreement about a certain
quantity of interest or distribution function that depends on the state of all agents [7].
Consensus algorithms can be modeled as iterative processes in which autonomous
agents work in a distributed fashion, without the necessity of sending information to
a central node that acts as coordinator.

When it is implemented in a real system, some considerations about how the com-
munication process will take place must be taken into account. The set of rules that
specifies the information exchange between an agent and all of its neighbors on the
network are specified in a consensus protocol.

Distributed Constraint Optimization Problems (DCOP) [6, 11] are a model for rep-
resenting multiagent systems (MAS) in which agents cooperate to optimize a global ob-
jective, which could be used to deal with this type of problem too. A DCOP is a formal-
ism that captures the rewards and costs of local interactions in a MAS where each agent
chooses a set of individual actions. In a DCOP each agent receives knowledge about all
relations that involve its variable(s). There are two main types of complete algorithms to
solve DCOPs: search and dynamic programming. Search algorithms, like ADOPT (or
extensions such as IDB-ADOPT), require an exponential number of linear-size mes-
sages. Dynamic programming algorithms, like the distributed pseudo-tree optimization



procedure (DPOP) and its extensions, only require a linear number of messages, but
their complexity lies on the message size, which may be very large.

Nonetheless, as [9] details, there are some limitations in the way DCOP algorithms
approaches the problem. Firstly, they assume that the environment is deterministic and
fully-observable, meaning that agents have complete information about the utility of
the outcomes of their possible decisions. Thus, agents’ utilities do not change while the
problem is being solved. Moreover, agents’ actions are only applied once the problem
is solved. Furthermore, the set of agents in the system is constant, not allowing the
entrance or exit of the system.

This paper propose a protocol for the consensus agreement process in MAS. This
protocol has been implemented it in the MAGENTIX2 MAS platform, addressing the
problems that a real implementation introduces in a theoretical mathematical model.
To check its correctness, the results of the MATLAB simulations are compared with the
results obtained by the real execution of the MAS in MAGENTIX2.

2 Consensus Networks

The theoretical framework for solving consensus problems in dynamic networks of
agents was formally introduced by Olfati-Saber and Murray [7]. The interaction topol-
ogy of the agents is represented by a graph and consensus means to reach an agreement
regarding a certain quantity of interest that depends on the state of all agents in the net-
work. This value represents the variable of interest in our problem (agreement term),
and might be for example a physical quantity, a control parameter or a price among
others.

Let G be a graph of order n with the set of entities E as nodes and weighted adja-
cency matrixA = [aij ]. Let (G,X) be the state of a network with valueX and topology
G, where X = (x1, . . . , xn)T ∈ Rn, where xi is a real value associated with the node
Ei. The value of a node might represent physical quantities measured in a distributed
network of sensors (temperatures, voltages, velocities, prices, qualities,. . . ). A network
is a dynamic system if (G,X) evolves in time. A consensus algorithm is an interaction
rule that specifies the information exchange between the agents and all of its neigh-
bors on the network in order to reach the agreement. Consensus of complete network
is reached if and only if xi = xj ∀i, j. Distributed solutions of consensus problems in
which no node is connected to all nodes are especially interesting. The most commonly
used consensus protocols are Average, Maximum and Minimum because the have broad
applications in distributed decision-making multi-agent systems.

These authors have demonstrated that a convergent and distributed consensus algo-
rithm in discrete–time can be written as follows:

xi(k + 1) = xi(k) + ε
∑
j∈Ni

aij(xj(k)− xi(k)), (1)

where Ni denotes the set formed by all nodes connected to the node i (neighbors of i).
The collective dynamics of the network for this algorithm can be written as

x(k + 1) = P x(k) (2)



Algorithm 1 Consensus algorithm. Power iteration method for the matricial form

1: D =
P

i 6=j aij

2: L = D −A
3: assign a ε < 1/∆
4: P = I − εL
5: init x with random values
6: repeat
7: x = P ∗ x
8: until the system converges or maxiter reached

where P is the Perron matrix of a graph with parameter ε, defined as

P = I − ε L (3)

with I is the identity matrix, ε > 0 is the step size, and L is the Laplacian matrix,
L = D − A, that is the difference of the degree matrix D and the adjacency matrix
A of the graph. The algorithm converges to the average of the initial values of the
state of each agent and allows computing the average for very large networks via local
communication with their neighbors on a graph. Algorithm 1 is the specification of the
consensus process in matricial form.

Solving consensus is a cooperative task because if a single agent decides not to co-
operate and keep its state unchanged, all others asymptotically agree with them. How-
ever, if there are multiple non cooperative agents then no consensus can be asymptoti-
cally reached. When an agent does not cooperate with the rest its links in the network
might be disconnected in order all others will asymptotically agree. In this case it is
impossible for all agents to reach an agreement but is possible to reach an agreement
for the rest of the agents.

3 Implementation of Consensus Protocol for MAS

Usually, consensus algorithms are checked by means of simulation executions, where
the multi-agent system is modeled as a matrix. Using a power iteration method, the
matrix is applied over the solution vector until the changes between successive iterations
are under a threshold. This kind of solutions are easier to implement and to test than
real executions, because they avoid to deal with problems such as:

– Synchronization: how the agents coordinate to deal with the consensus process. To
get this, a new consensus protocol is needed.

– Distributed finalization: how any agent detects when the consensus is reached, or
when the process has to end.

– Monitorization: how can be observed the dynamic of the consensus process.
– Bottlenecks: are there any bottleneck in the process? and if so, how it is dealt with.
– Communication: how to deal with the overload of messages, and the ordering of

the different messages from the different agents any agent is connected to?



– Scalability: is it possible to scale the MAS trying to reach the consensus? how it
affects to the above mentioned problems?

– Lack of MAS design toolkits with connection networks (point-to-point agent com-
munication), allowing the automatization in the developing of different scenarios.

Nevertheless, the use of a matricial system assumes a complete knowledge scenario
in which all agents know the entire network structure and the values. This approach
can be useful in centralized and relatively small systems, but if the size of the network
grows or participants play in conditions of bounded rationality, a centralized approach
is not feasible.

MAGENTIX21 agent platform [10] has been used to implement real agents that fol-
low the consensus algorithm to reach agreements. In a platform with real agents, the
formerly mentioned problems have to be addressed and properly solved.

The next subsections details, first of all, the simulation calculus that was realized
using MATLAB2 to test in a first installment the validity of the proposal, and after that,
the real implementation in an agent platform (MAGENTIX2), along with the developed
mechanism that allows from a GraphML3 file indicating the connection network, gen-
erate automatically the MAS following such connections and execute it to reach a con-
sensus (see Figure 1).

3.1 MATLAB Implementation

Algorithm 1 describes the implementation of equation 2, which simulate the behavior
of a network following the matricial form. Languages that include numerical libraries
can be used to program the model and simulate the results. Some possibilities are MAT-
LAB, Mathematica, Fortran, Python (with Numpy library) among others. In our case,
we have decided to use MATLAB. Algorithm 2 contains the code that corresponds to
the MATLAB implementation of the consensus process.

At the beginning, adjacency matrix A is imported from a GraphML file. After that,
the Perron matrix P is calculated. Finally, the code enters in a loop in which the values
xi of the variables for each agent are updated until the maximum number of iterations
maxiter is reached.

The main limitation of this method is the memory needed to store the adjacency
matrix and the Perron matrix. But this can be solved using sparse matrices and adapting
the corresponding functions to deal with them. With this change, a model can be easily
created with a maximum of 107 agents, which is the bound for the 32-bit version of
MATLAB.

Nonetheless, the numerical method is a valid tool to (i) simulate the behavior of
the system, (ii) check the correctness of the consensus algorithm in different situations
other than the original Olfati-Saber and Murray proposal, and (iii) validate the imple-
mentation.

1 http://magentix2.gti-ia.upv.es
2 http://www.mathworks.com/products/matlab/
3 http://graphml.graphdrawing.org



A

B C

D

<?xml&version="1.0"&encoding="UTF98"?>&
<graphml&xmlns="h?p://graphml.graphdrawing.org/xmlns">&
&&<!99&ProperEes&99>&
&&<key&id="name"&for="node"&a?r.name="name"&a?r.type="string"/>&
&&<key&id=“value"&for="node"&a?r.name=“value"&a?r.type=“double"/>&
&&<key&id=“iniEator"&for="node"&a?r.name=“iniEator"&a?r.type=“boolean"/>&
&&<!99&Graph&99>&
&&<graph&id="G"&edgedefault="undirected">&
&&&&<!99&VerEces&99>&
&&&&<node&id=“1">&
&&&&&&<data&key="name">Alice</data>&
&&&&&&<data&key="&value&">456</data>&
&&&&&&<data&key="&iniEator&">true</data>&
&&&&</node>&
&&&&<node&id=“2">&
&&&&&&<data&key="name">Bob</data>&
&&&&&&<data&key="&value&t">456</data>&
&&&&&&<data&key="&iniEator&">false</data>&
&&&&</node>&
&&&&<node&id=“3">&
&&&&&&<data&key="name">Carol</data>&
&&&&&&<data&key="&value&">789</data>&
&&&&&&<data&key="&iniEator&">false</data>&
&&&&</node>&
&&&&<node&id=“4">&
&&&&&&<data&key="name">Dave</data>&
&&&&&&<data&key="&value&">789</data>&
&&&&&&<data&key="&iniEator&">false</data>&
&&&&</node>&
&&&&<!99&Edges&99>&
&&&&<edge&id=“1_2"&source=“1"&target=“2“&label=”connecEon”/>&
&&&&<edge&id=“1_3"&source=“1"&target=“3“&label=”connecEon”/>&
&&&&<edge&id=“2_3"&source=“2"&target=“3“&label=”connecEon”/>&
&&&&<edge&id=“3_4"&source=“3"&target=“4“&label=”connecEon”/>&
&&</graph>&
</graphml>&

.graphml)

0""""1""""1""""0"
1""""0""""1""""0"
1""""1""""0""""1"
0""""0""""1""""0"

5 10 15 20 25 30 35 40 45 50

100

200

300

400

500

600

700

800

900

1000

EPOCH

VA
LU

E

CONSENSUS AGREEMENT

1 2 3 4

1

2

3

4

SPARSITY PATTERN

T

T

T

Fig. 1: Implementation process. The network is described in a GraphML file that feeds the MAT-
LAB simulation and the initial configuration of the real MAS. A set of tracer agents can monitor
the evolution of the process

3.2 MAGENTIX2 Implementation

MAGENTIX2 is an agent platform that follows the levels proposed in [5], providing
support for organization (according to the THOMAS framework specification [1]), in-
teraction (by means of FIPA-ACL messages) and agent levels, through a java language
API. MAGENTIX2 provides developers with a predefined set of FIPA-based interac-
tions protocols. Consensus protocol can not be created by combination of these basic
protocols, so a new protocol has been implemented. MAGENTIX2 allows the definition
of protocols based on a finite-state machine that, once they has been specified, the agent
can automatically run them using the so called conversation factories [4].

Algorithm 2 MATLAB Code
n = size(A,1)
L = spdiag(sum(A)) - A
eps = 1 / max(sum(A))
P = speyes(n) - eps * L
x = rand(n,1)
for i = 1:maxiter
x = P * x

end



The logic associated to the consensus protocol is the one specified in equation 1.
We assume the agents are homogeneous and benevolent, so all of them implement the
same process and follow strictly the protocol specified.

Moreover, all the generated agents that participate in the consensus process make
use of the MAGENTIX2 tracing services [2] to generate events with all the needed in-
formation about the consensus process. So, any number of monitoring agents can be
generated to connect to the events generated by such agents. These monitoring agents
have their own Ubigraph4 server, a free software for visualizing dynamic networks.
The server is provided with all the information from the events generated by the agents
involved in the consensus process. In this way, it is easy to follow the consensus pro-
cess and check if and how the MAS reach a consensus through the visualization of the
graph using a color codification to describe the current value of each agent and different
shapes of the nodes to describe the state of each agent in the consensus protocol.

UbiGraph tool has been used to visualize the evolution of the agents during the
consensus agreement proccess in MAGENTIX2. The state of each agent in the network
at discrete time k, x(k), is represented by the color of the node property in UbiGraph,
that is calculated with a previously defined color-scale (see Figure 5). Initially, colors
of the agents are very different and tends to be more similar when consensus evolves
until the convergence is reached and all agents process have the same color.

It has been generated a system that has as input a GraphML file that describes the
connection network of a MAS, that is, nodes represent agents, and edges represent the
connections between them (who knows who, who can communicate with who). From
this file, it generates a real MAS composed of MAGENTIX2 agents.

Consensus Protocol A general consensus protocol has been designed in order to allow
a set of agents connected in a network to achieve an agreement exchanging information
exclusively with their direct neighbors. Agents do not have information about the size
of the network (how many agents are participating) nor how they are connected. The
protocol is characterized for the absence of any kind of controller agent and all decisions
are taken autonomously and in a decentralized way.

When an agent decides to start a consensus process, it sends a consensus proposal
to all its neighbors (Figure 2). Each one of these neighbors decide to participate or not.
If it participates, confirms its participation to the sender and re–sends the proposal to
its corresponding neighbors. The process continues until all agents in the network have
received the proposal. Therefore, all agents play two roles: initiator and participant in
the consensus.

Once agents have received the confirmation of the neighbors desiring to participate
in the consensus, the next step begins. Agents exchange their values with the neighbors
and, after each iteration, update their internal values following the equation 1. In this
step, all agents act as participant and they just send its value and recalculate it from the
values received from their neighbors until a maximum number of iterations are executed
or the difference with the value of the previous iteration |xi(k)− xi(k − 1)| is below a
threshold (see termination problems for a more detailed analysis of this question).

4 http://ubietylab.net/ubigraph/



Initiator: Facilitator Participant-i

request

not-understood

refuse

inform-disagree

inform-agree

consensus 
value

calculation

n

n

n

Participant-j

inform-value

inform-value

k

k'

Fig. 2: General Consensus Protocol. An Initiator decides to start a consensus process and sends a
proposal to its neighbors, that is propagated to the complete network. After that, agents exchange
their values until the consensus is reached.

Agent implementation The protocol has been adapted to match the requirements of
MAGENTIX2 platform. A conversation factory has been created that follows the finite-
state machine shown in Figure 3. States are divided into three types: send states (in
which the result is a message sent to the system), receive states (in which the agent is
automatically awake to treat a concrete message) and general states.

The protocol has two steps. In the first one, agents that are interested in the con-
sensus process are identified (an agent can individually decide if it participates or not).
After that, the actual consensus step begins and all involved agents exchange their val-
ues and updates them until some finish condition is met.

The main problem that has to be addressed by the protocol is the synchronization
of the agents. The MATLAB model assumes that all agents update their value at the
same time and all of them have available the current value of their neighbors. But in
the case of the real system, with delays or even failures in the network, this can not
be ensured. And if the agents have not properly updated information, the final average
value obtained by the network can differ from the theoretical average value.

When the platform starts, all agents instantiate a factory for the consensus proto-
col that stay in a wait state until some agent decides to launch a consensus process.
Eventually, some agent will decide to begin a consensus. It sends a propose message
to all its neighbors and it waits until all its neighbors have answered. Each agent de-
cides if it wants to participate, in which case an agree answer is sent, or not, replying
with a refuse message. Any agent accepting the consensus, for its part, sends a pro-
pose to its neighbors until the complete network acknowledges the propose. In order to
let the second part of the consensus start, each agent must receive an answer from its
neighbors.



Fig. 3: State Automaton of the Consensus Communication Protocol in MAGENTIX2.

In a second step, all participating agents inform their neighbors with their current
values. The agent waits until all agents that have answered with their corresponding
values. When all values have been received, each agent calculates their new updated
value using equation 1 and informs its neighbor about the new value. This behavior
makes the agent to be synchronized and evolve step by step at the same time.

As stated above, the messages may have a delay. Furthermore, the agents are free
to inform when their direct neighbors have answered. These facts could cause that each
agent receive messages belonging to different iterations. In order to solve this problem,
a buffer has been created, in which the information of different iterations are saved,
ensuring the agents to have a properly updated information.

The distributed finalization problem refers to how an individual agent can detect
that the calculated value corresponds to the true consensus value or it is the process
which has an slow dynamics. The considered possibilities are

1. to introduce a timeout
2. to specify a maximum number of iterations
3. to establish a threshold for two consecutive iterations
4. to include other dynamic conditions (for example, if one agent leaves the consen-

sus)

In this work, static networks are considered only, so the last option is not applicable.
The limit by timeout or number of iterations can be easily implemented by exchanging
the corresponding value as a consensus parameter in the initial propose message.
Each agent will stop itself when the specified condition is met. The third case is more
complicated and requires the modification of the finite-state-machine to include addi-
tional states to handle a new set of messages. Basically, any agent can propose to stop
the process because it has reached a possible consensus value and this message is prop-



agated throughout the entire network (as has been done with the propose message). The
consensus will stop when all the agents answer affirmatively to this question.5

MAGENTIX2 platform has a trace system available for developers to supervise the
evolution of the system. It is implemented based on an event subscription scheme. All
the agents can generate events to make notice diverse changes: internal state, activation,
deactivation, message incoming, message sending, etc. Any other agent can subscribe
to a set of events, so it will eventually receive any change in the system related with the
event it is interested in. Using this mechanism, monitoring agents can be created and
subscribed to changes in the consensus value of all the agents. When an agent changes
its internal value, it triggers an event. The monitoring agent catches and treats it. An
event is lighter than a message, so the overload introduced in the system is tractable.

As the proposed implementation is a completely decentralized system, there is no
functional bottlenecks. Nonetheless, regarding with the network topology, it is possible
for a a reduce number of agents to concentrate the responsibility of the consensus pro-
cess. This fact is related with the convergence speed of the network and some spectral
properties of the adjacency matrix whose analysis is out of the scope of this paper.

Regarding with the cost of the communications, the number of exchanged mes-
sages needed to complete the consensus process depends on the connectivity of the
network. In each iteration, each agent sends exactly one message to each one of its
neighbors. If we assume the network to be undirected, each link is used twice. In the
case of a complete network, the number of messages in each step is n(n − 1) (where
n is the number of agents in the network), that belongs to O(n2). Nevertheless, com-
munication networks tend to be very sparse (with a low density: only a small fraction
of nodes are connected). In that case, the cost of the messages can be considered as
Θ(nd̄), where d̄ is the average degree of the network.

Finally, scalability of the system is provided by the MAGENTIX2 platform. It is
supported by AMQP standard for the communication, which is widely used in the in-
dustry as messaging middleware (see [2, 4, 10] for a more detailed explanation of the
internals of the platform).

4 Practical Usage

We have developed for this paper a case of study where we have 100 nodes (though in
the end, there is only 96 because 4 of them are not connected to the rest). This nodes
are structured in a random network with a average degree d = 3. Figure 4 (top–left)
shows the topology of the generated network and the consensus process as the result of
the MATLAB simulation Figure 4 (bottom). The agents has been reordered, but this step
is not mandatory and the same results can be obtained without the reordering (Figure 4
(top–right)).

It can be seen how the systems converges to the average value quickly. After 20
epochs, all agents have approached sufficiently to the consensus value and, after 100
epochs, almost all the agents have arrived to the definitive value. The speed of the

5 The variation has not been explained because it does not introduce any change in the consensus
process but complicates the comprehension of the protocol. The complete version has been
implemented and it is available to download.



−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
RANDOM NETWORK (n=96, k=3.0)

0 10 20 30 40 50 60 70 80 90

0

10

20

30

40

50

60

70

80

90

SPARSITY PATTERN

10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

700

800

900

1000

EPOCH

VA
LU

E

CONSENSUS AGREEMENT

Fig. 4: Network structure (top) and evolution simulated in MATLAB (bottom)

convergence does not depend on the size of the network, but on its connectivity, as can
be easily inferred from the theoretical model. For example, in the case of a complete
network (all nodes are connected with the rest of the network), the processes finishes
just in one step, as all the agents receives all the values and calculates directly the
true average value. Nevertheless, in other topologies, such as a ring, the convergence is
slower because each agent only is connected with its left and right neighbors and any
change in the values has to be propagated node by node until it reaches the opposite
side of the ring. The network topology is another determinant too. There exist several
well known techniques to analyze it in advance, but it is out of the scope of this paper.
We refer the reader to [8] for a broader explanation of this topic.

Figure 5 shows the real execution of the same consensus process in the MAGEN-
TIX2 implementation. Some snapshots of the animation generated in real–time by the
monitoring agents have been taken in different time instants. Monitoring agents are in-
dependent entities from the consensus process which are subscribed to the events gen-
erated by the agents participating in the consensus. The color of each node reflects the
current consensus value, which are mapped in the spectra that appears on the top. It can
be seen how, beginning from a random initial situation, (epoch 1), the agents gradually
get close each other and, after 100 epochs, the values are almost the same.



This section has shown the possibilities of the developed system to simulate and ex-
ecute in a real MAS the same connection network to reach an agreement. Nevertheless,
intensive tests have been run in the simulated process and in the MAGENTIX2 platform.

5 Conclusions

This paper shows the application of consensus networks in a distributed and self-organized
fashion, implemented in an agent platform with real agents.

The contribution of the paper is the proposal of a protocol that allows a network
of agent achieve agreements using the consensus algorithm. This protocol has been
implemented in the MAGENTIX2 MAS platform and tested, comparing the obtained
results with the MATLAB simulation data. Both implementations arrive to the same
numerical result, validating the correctness of the proposed protocol.

As future work, the integration with a development tool is planned, in order to cre-
ate virtual organizations that follow a concrete network topology. After that, is possible
to automatically generate templates for the agents forming a network that follows the
links specified at design time. Different network topologies can be easily generated just
providing some basic configuration parameters, such as the topology itself (random,
preferential attachment, small-world, growing), degree distribution, clustering, or as-
sortativity index. Furthermore, more complicated scenarios can be tested, as the effect
of time delays, changes in the dynamics when agents are allowed to enter or leave the
system, multi–variable consensus and consensus in coupled systems, generated when
several consensus processes take place at the same time in different groups with some
common participants.

References

1. Argente, E., Botti, V., Carrascosa, C., Giret, A., Julian, V., Rebollo, M.: An Abstract Archi-
tecture for Virtual Organizations: The THOMAS approach

2. Búrdalo, L., Garcı́a-Fornes, A., Julian, V., Terrasa, A.: TRAMMAS: A tracing model for
multiagent systems

3. Carrascosa, C., Rebollo, M.: Agreement spaces for counselor agents (short paper). In: Proc.
of 8th Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS 2009). Decker,
Sichman, Sierra and Castelfranchi (eds.), May, 10-15, 2009, Budapest, Hungary (2009)

4. Fogués, R.L., Alberola, J.M., Such, J.M., Espinosa, A., Garcı́a-Fornes, A.: Towards Dynamic
Agent Interaction Support in Open Multiagent Systems

5. Luck, M., McBurney, P., Shehory, O., Willmott, S.: Agent technology: Computing as inter-
action (a roadmap for agent based computing)

6. Mailler, R., Lesser, V.: Solving distributed constraint optimization problems using coopera-
tive mediation. In: Proceedings of the Third International Joint Conference on Autonomous
Agents and Multiagent Systems - Volume 1. pp. 438–445. AAMAS ’04, IEEE Computer
Society, Washington, DC, USA (2004), http://dx.doi.org/10.1109/AAMAS.2004.249

7. Olfati-Saber, R., Fax, J.A., Murray, R.M.: Consensus and cooperation in networked multi-
agent systems. Proceedings of the IEEE 95(1), 215–233 (2007)

8. Pereira, S.S., Zamora, A.P.: Mean Square Convergence of Consensus Algorithms in Random
WSNs. IEEE Transactions on Signal Processing 58, 2866 – 2874 (2010)



Fig. 5: Evolution of the consensus network in the MAGENTIX2 implementation.

9. Pujol-Gonzalez, M.: Multi-agent coordination: Dcops and beyond. In: Proceedings of the
Twenty-Second International Joint Conference on Artificial Intelligence. pp. 2838–2839
(2011), http://aaai.org/ocs/index.php/IJCAI/IJCAI11/paper/view/3106

10. Such, J., Garcı́a-Fornes, A., Espinosa, A., Bellver, J.: Magentix2: A privacy-enhancing agent
platform. Eng. Appl. Artif. Intel. 26(1), 96–109 (2013)

11. Vinyals, M., Rodriguez-Aguilar, J., Cerquides, J.: Constructing a unifying theory of dynamic
programming dcop algorithms via the generalized distributive law. Autonomous Agents
and Multi-Agent Systems 22, 439–464 (2011), http://dx.doi.org/10.1007/s10458-010-9132-
7, 10.1007/s10458-010-9132-7


